Mono- and diiodo-1,2,3-triazoles and their mono nitro derivatives.
Chand, Deepak; He, Chunlin; Hooper, Joseph P; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M
2016-06-21
4-Iodo-1H-1,2,3-triazole (2) and 4,5-diiodo-1H-1,2,3-triazole (3) were synthesized using an efficient and viable synthetic route. The N-alkylation of 3 resulted in the formation of two tautomers. The N-alkyl-diiodo-triazoles were nitrated with 100% nitric acid to form monoiodo-mononitro-triazoles. The structures of 2-methyl-4,5-diiodo-1,2,3-triazole (5), 1-ethyl-4,5-diiodo-1,2,3-triazole (6), 1-methyl-4-nitro-5-iodo-1,2,3-triazole (8) and 1-ethyl-4-nitro-5-iodo-1,2,3-triazole (10) were confirmed by X-ray crystal analysis. All of the new triazoles were fully characterized via NMR, and infrared spectra, and elemental analyses as well as by their thermal and sensitivity properties. Decomposition products calculated using Cheetah 7 software show that these iodo-nitro triazoles liberate iodine.
NASA Astrophysics Data System (ADS)
Süleymanoğlu, Nevin; Ustabaş, Reşat; Direkel, Şahin; Alpaslan, Yelda Bingöl; Ünver, Yasemin
2017-12-01
Thiol-thione tautomerism of 1,2,4-triazole derivative with Schiff base was investigated by spectroscopic methods and quantum mechanical calculations. Theoretical study of thiol-thione tautomeric forms of 1,2,4-triazole derivative with Schiff base; 1,2,4-triazole-thiol form, 1-((5-mercapto-4-(thiophene-2-ylmethyleneamino)-4H-1,2,4-triazole-3-yl)methyl)-3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1H-1,2,4-triazole-5(4H)-one (I) and 1,2,4-triazole-thione form, 3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1-((4-(thiophene-2-ylmethyleneamino)-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl)-1H-1,2,4-triazole-5(4H)-one (II) was performed by the density functional theory (DFT) method with 6-311++G(d,p) basis set. Structural parameters were obtained and spectral parameters of NMR, FTIR and UV-vis were compared with experimental ones to determine structural details. In vitro antileishmanial activity was studied against Leishmania infantum promastigots by microdilution broth assay with Alamar Blue Dye. The results indicate that 1,2,4-triazole derivative exists in both thiol and thione form and, can be evaluated as antiparasitic in term of antileishmanial activity.
Synthesis of triazole based unnatural amino acids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW conditions. The developed method is applicable to a broad substrate scope a...
Lee, Seungeun; Xu, Siyu; Bivila, Chemmeri Padasseri; Lee, Hyeyoung; Park, Myung Soo; Lim, Young Woon; Yamamoto, Naomichi
2015-01-01
Emerging fungi resistant to triazoles are a concern because of the increased use of medical triazoles and exposure to agricultural triazoles. However, little is known about the levels of triazole susceptibility in outdoor airborne fungi making it difficult to assess the risks of inhalation exposure to airborne, antifungal-resistant fungi. This study examined triazole susceptibilities of the airborne thermotolerant fungi isolated from the ambient air of the Seoul Capital Area of South Korea. We used impactor air sampling with triazole-containing nutrient agar plates as the collection substrates to screen for airborne fungal isolates based on their triazole susceptibilities. This study estimated that 0.17% of all the culturable fungi belong to the pathogenic thermotolerant taxa, among which each isolate of Aspergillus niger and Aspergillus tubingensis showed a minimum inhibitory concentration (MIC) of 2 μg/mL or greater for itraconazole. Their concentration in air was 0.4 CFU/m3. Seven human pathogenic Paecilomyces variotii isolates had MICs of 32 μg/mL or greater and lower than 2 μg/mL for the agricultural fungicide tebuconazole and the medical triazole itraconazole, respectively. Though the concentration was low, our results confirm the presence of airborne fungi with high MICs for itraconazole in ambient air. Inhalation is an important exposure route because people inhale more than 10 m3 of air each day. Vigilance is preferred over monitoring for the emergence of triazole-resistant fungal pathogens in ambient outdoor air.
Synthesis, characterization, and pharmacological studies of ferrocene-1H-1,2,3-triazole hybrids
NASA Astrophysics Data System (ADS)
Haque, Ashanul; Hsieh, Ming-Fa; Hassan, Syed Imran; Haque Faizi, Md. Serajul; Saha, Anannya; Dege, Necmi; Rather, Jahangir Ahmad; Khan, Muhammad S.
2017-10-01
A series of ferrocene-1H-1,2,3-triazole hybrids namely 1-(4-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (1), 1-(4,4‧-dinitro-2-biphenyl)-4-ferrocenyl-1H-1,2,3-triazole (2), 1-(3-chloro-4-fluorophenyl)-4-ferrocenyl-1H-1,2,3-triazole (3), 1-(4-bromophenyl)-4-ferrocenyl-1H-1,2,3-triazole (4) and 1-(2-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (5) were designed and synthesized by copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction. All the new hybrids were characterized by microanalyses, NMR (1H and 13C), UV-vis, IR, ESI-MS and electrochemical techniques. Crystal structure of the compound (3) was solved by single crystal X-ray diffraction method. The structural (single crystal) and spectroscopic (UV-Vis. and IR) properties of the compound 3 have been analyzed and compared by complementary quantum modeling. Hybrids 1-5 exhibited low toxicity and demonstrated neuroprotective effect.
40 CFR 180.485 - Cyproconazole; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-cyclopropylethyl)-1H-1,2,4-triazole-1-ethanol) in or on the following commodities: Commodity Parts per million...)-1H-1,2,4-triazole-1-ethanol) and its metabolite δ-(4-chlorophenyl)-β,δ-dihydroxy-γ-methyl-1H-1,2,4...-cyclopropylethyl)-1H-1,2,4-triazole-1-ethanol) and its metabolite 2-(4-chlorophenyl)-3-cyclopropyl-1-[1,2,4]triazol...
40 CFR 180.485 - Cyproconazole; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-cyclopropylethyl)-1H-1,2,4-triazole-1-ethanol) in or on the following commodities: Commodity Parts per million...)-1H-1,2,4-triazole-1-ethanol) and its metabolite δ-(4-chlorophenyl)-β,δ-dihydroxy-γ-methyl-1H-1,2,4...-cyclopropylethyl)-1H-1,2,4-triazole-1-ethanol) and its metabolite 2-(4-chlorophenyl)-3-cyclopropyl-1-[1,2,4]triazol...
Ion chemistry of 1H-1,2,3-triazole.
Ichino, Takatoshi; Andrews, Django H; Rathbone, G Jeffery; Misaizu, Fuminori; Calvi, Ryan M D; Wren, Scott W; Kato, Shuji; Bierbaum, Veronica M; Lineberger, W Carl
2008-01-17
A combination of experimental methods, photoelectron-imaging spectroscopy, flowing afterglow-photoelectron spectroscopy and the flowing afterglow-selected ion flow tube technique, and electronic structure calculations at the B3LYP/6-311++G(d,p) level of density functional theory (DFT) have been employed to study the mechanism of the reaction of the hydroxide ion (HO-) with 1H-1,2,3-triazole. Four different product ion species have been identified experimentally, and the DFT calculations suggest that deprotonation by HO- at all sites of the triazole takes place to yield these products. Deprotonation of 1H-1,2,3-triazole at the N1-H site gives the major product ion, the 1,2,3-triazolide ion. The 335 nm photoelectron-imaging spectrum of the ion has been measured. The electron affinity (EA) of the 1,2,3-triazolyl radical has been determined to be 3.447 +/- 0.004 eV. This EA and the gas-phase acidity of 2H-1,2,3-triazole are combined in a negative ion thermochemical cycle to determine the N-H bond dissociation energy of 2H-1,2,3-triazole to be 112.2 +/- 0.6 kcal mol-1. The 363.8 nm photoelectron spectroscopic measurements have identified the other three product ions. Deprotonation of 1H-1,2,3-triazole at the C5 position initiates fragmentation of the ring structure to yield a minor product, the ketenimine anion. Another minor product, the iminodiazomethyl anion, is generated by deprotonation of 1H-1,2,3-triazole at the C4 position, followed by N1-N2 bond fission. Formation of the other minor product, the 2H-1,2,3-triazol-4-ide ion, can be rationalized by initial deprotonation of 1H-1,2,3-triazole at the N1-H site and subsequent proton exchanges within the ion-molecule complex. The EA of the 2H-1,2,3-triazol-4-yl radical is 1.865 +/- 0.004 eV.
Gogoi, Anupal; Guin, Srimanta; Rajamanickam, Suresh; Rout, Saroj Kumar; Patel, Bhisma K
2015-09-18
The higher propensity of C-N over C-S bond forming ability was demonstrated, through formal C-H functionalization during the construction of 4,5-disubstituted 1,2,4-triazole-3-thiones from arylidenearylthiosemicarbazides catalyzed by Cu(II). However, steric factors imparted by the o-disubstituted substrates tend to change the reaction path giving thiodiazole as the major or an exclusive product. Upon prolonging the reaction time, the in situ generated thiones are transformed to 4,5-disubstituted 1,2,4-triazoles via a desulfurization process. Two classes of heterocycles viz. 4,5-disubstituted 1,2,4-triazole-3-thiones and 4,5-disubstituted 1,2,4-triazoles can be synthesized from arylidenearylthiosemicarbazides by simply adjusting the reaction time. Desulfurization of 1,2,4-triazole-3-thiones is assisted by thiophilic Cu to provide 1,2,4-triazoles with concomitant formation of CuS and polynuclear sulfur anions as confirmed from scanning electron microscope and energy dispersive X-ray spectroscopy measurements. A one-pot synthesis of an antimicrobial compound has been successfully achieved following this strategy.
Are 1,4- and 1,5-disubstituted 1,2,3-triazoles good pharmacophoric groups?
Massarotti, Alberto; Aprile, Silvio; Mercalli, Valentina; Del Grosso, Erika; Grosa, Giorgio; Sorba, Giovanni; Tron, Gian Cesare
2014-11-01
Over the last decade, 1,2,3-triazoles have received increasing attention in medicinal chemistry thanks to the discovery of the highly useful and widely applicable 1,3-dipolar cycloaddition reaction between azides and alkynes (click chemistry) catalyzed by copper salts and ruthenium complexes. After a decade of medicinal chemistry research on 1,2,3-triazoles, we feel that the time is ripe to demonstrate the real ability of this heterocycle to participate in important and pivotal binding interactions with biological targets while maintaining a good pharmacokinetic profile. In this study, we retrieved and analyzed X-ray crystal structures of complexes between 1,2,3-triazoles and either proteins or DNA to understand the pharmacophoric role of the triazole. Furthermore, the metabolic stability, the capacity to inhibit cytochromes, and the contribution of 1,2,3-triazoles to the overall aqueous solubility of compounds containing them have been analyzed. This information should furnish fresh insight for medicinal chemists in the design of novel bioactive molecules that contain the triazole nucleus. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Animal Models for Studying Triazole Resistance in Aspergillus fumigatus.
Lewis, Russell E; Verweij, Paul E
2017-08-15
Infections caused by triazole-resistant Aspergillus fumigatus are associated with a higher probability of treatment failure and mortality. Because clinical experience in managing these infections is still limited, mouse models of invasive aspergillosis fulfill a critical void for studying treatment regimens designed to overcome resistance. The type of immunosuppression, the route of infection, the timing of antifungal administration, and the end points used to assess antifungal activity affect the interpretation of data from these models. Nevertheless, these models provide important insights that help guide treatment decisions in patients with triazole-resistant invasive aspergillosis. Animal models confirmed that a high triazole minimal inhibitory concentration corresponded with triazole treatment failure and that the efficacy of other classes of drugs, such as the polyenes and echinocandins, was not affected by the presence of triazole resistance mutations. Furthermore, the feasibility of triazole dose escalation, combination therapy, and prophylaxis were explored as strategies to overcome resistance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Pyta, Krystian; Blecha, Marietta; Janas, Anna; Klich, Katarzyna; Pecyna, Paulina; Gajecka, Marzena; Przybylski, Piotr
2016-09-01
Synthetic limitations in the copper-catalyzed azide alkyne cycloaddition (CuAAC) on gossypol's skeleton functionalized with alkyne (2) or azide (3) groups have been indicated. Modified approach to the synthesis of new gossypol-triazole conjugates yielded new compounds (24-31) being potential fungicides. Spectroscopic studies of triazole conjugates 24-31 have revealed their structures in solution, i.e., the presence of enamine-enamine tautomeric forms and π-π stacking intramolecular interactions between triazole arms. Biological evaluation of the new gossypol-triazole conjugates revealed the potency of 30 and 31 derivatives, having triazole-benzyloxy moieties, comparable with that of miconazole against Fusarium oxysporum. The results of HPLC evaluation of ergosterol content in different fungi strains upon treatment of gossypol and its derivatives enabled to propose a mechanism of antifungal activity of these compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Detonating an insensitive explosive
Lee, Kien-yin; Storm, Carlyle B.
1992-01-01
A method for making 3-amino-5-nitro-1,2,4-triazole using ammonium 3,5-dinitro-1,2,4-triazole and hydrazine hydrate as starting materials and a method for providing energy derived from 3-amino-5-nitro-1,2,4-triazole.
Farrán, M Ángeles; Bonet, M Ángels; Claramunt, Rosa M; Torralba, M Carmen; Alkorta, Ibon; Elguero, José
2018-04-01
J147 [N-(2,4-dimethylphenyl)-2,2,2-trifluoro-N'-(3-methoxybenzylidene)acetohydrazide] has recently been reported as a promising new drug for the treatment of Alzheimer's disease. The X-ray structures of seven new 1,4-diaryl-5-trifluoromethyl-1H-1,2,3-triazoles, namely 1-(3,4-dimethylphenyl)-4-phenyl-5-trifluoromethyl-1H-1,2,3-triazole (C 17 H 14 F 3 N 3 , 1), 1-(3,4-dimethylphenyl)-4-(3-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 16 F 3 N 3 O, 2), 1-(3,4-dimethylphenyl)-4-(4-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 16 F 3 N 3 O, 3), 1-(2,4-dimethylphenyl)-4-(4-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 16 F 3 N 3 O, 4), 1-[2,4-bis(trifluoromethyl)phenyl]-4-(3-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 10 F 9 N 3 O, 5), 1-(3,4-dimethoxyphenyl)-4-(3,4-dimethoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 19 H 18 F 3 N 3 O 4 , 6) and 3-[4-(3,4-dimethoxyphenyl)-5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl]phenol (C 17 H 14 F 3 N 3 O 3 , 7), have been determined and compared to that of J147. B3LYP/6-311++G(d,p) calculations have been performed to determine the potential surface and molecular electrostatic potential (MEP) of J147, and to examine the correlation between hydrazone J147 and the 1,2,3-triazoles, both bearing a CF 3 substituent. Using MEPs, it was found that the minimum-energy conformation of 4, which is nearly identical to its X-ray structure, is closely related to one of the J147 seven minima.
Triazole induced concentration-related gene signatures in rat whole embryo culture.
Robinson, Joshua F; Tonk, Elisa C M; Verhoef, Aart; Piersma, Aldert H
2012-09-01
Commonly used as antifungal agents in agriculture and medicine, triazoles have been shown to cause teratogenicity in a diverse set of animal models. Here, we evaluated the dose-dependent impacts of flusilazole, cyproconazole and triadimefon, on global gene expression in relation to effects on embryonic development using the rat whole embryo culture (WEC) model. After 4 h exposure, we identified changes in gene expression due to triazole exposure which preceded morphological alterations observed at 48 h. In general, across the three triazoles, we observed similar directionality of regulation in gene expression and the magnitude of effects on gene expression correlated with the degree of induced developmental toxicity. Significantly regulated genes included key members of steroid/cholesterol and retinoic acid metabolism and hindbrain developmental pathways. Direct comparisons with previous studies suggest that triazole-gene signatures identified in the WEC overlap with zebrafish and mouse, and furthermore, triazoles impact gene expression in a similar manner as retinoic acid exposures in rat embryos. In summary, we further differentiate pathways underlying triazole-developmental toxicity using WEC and demonstrate the conservation of these response-pathways across model systems. Copyright © 2012 Elsevier Inc. All rights reserved.
Massarotti, Alberto; Brunco, Angelo; Sorba, Giovanni; Tron, Gian Cesare
2014-02-24
Since Professors Sharpless, Finn, and Kolb first introduced the concept of "click reactions" in 2001 as powerful tools in drug discovery, 1,4-disubstituted-1,2,3-triazoles have become important in medicinal chemistry due to the simultaneous discovery by Sharpless, Fokin, and Meldal of a perfect click 1,3-dipolar cycloaddition reaction between azides and alkynes catalyzed by copper salts. Because of their chemical features, these triazoles are proposed to be aggressive pharmacophores that participate in drug-receptor interactions while maintaining an excellent chemical and metabolic profile. Surprisingly, no virtual libraries of 1,4-disubstituted-1,2,3-triazoles have been generated for the systematic investigation of the click-chemical space. In this manuscript, a database of triazoles called ZINClick is generated from literature-reported alkynes and azides that can be synthesized within three steps from commercially available products. This combinatorial database contains over 16 million 1,4-disubstituted-1,2,3-triazoles that are easily synthesizable, new, and patentable! The structural diversity of ZINClick ( http://www.symech.it/ZINClick ) will be explored. ZINClick will also be compared to other available databases, and its application during the design of novel bioactive molecules containing triazole nuclei will be discussed.
Preparation and characterization of 3,5-dinitro-1H-1,2,4-triazole.
Haiges, R; Bélanger-Chabot, G; Kaplan, S M; Christe, K O
2015-04-28
Neat 3,5-dinitro-1H-1,2,4-triazole was obtained in quantitative yield from potassium 3,5-dinitro-1,2,4-triazolate and sulfuric acid. The compound was purified by sublimation in vacuo at 110 °C. Pure HDNT is a hygroscopic white solid that is impact and friction sensitive and decomposes explosively upon heating to 170 °C. However, the presence of impurities might lower the decomposition temperature and increase the sensitivity of the material. Potassium 3,5-dinitro-1,2,4-triazolate was prepared from commercially available 3,5-diamino-4H-1,2,4-triazole with sodium nitrite and sulfuric acid. The synthesis of HDNT from 2-cyanoguanidine and hydrazine hydrate without isolation and purification of the 3,5-diamino-4H-1,2,4-triazole intermediate can result in the formation of azidotriazole impurities. A triclinic and a monoclinic polymorph of 3,5-dinitro-1H-1,2,4-triazole were found by X-ray structure determination. In addition, the crystal structure of the hydrate (HDNT)3·4H2O, as well as those of several HDNT impurities and decomposition products were obtained.
Tsai, Yi-Hsuan; Borini Etichetti, Carla M; Di Benedetto, Carolina; Girardini, Javier E; Martins, Felipe Terra; Spanevello, Rolando A; Suárez, Alejandra G; Sarotti, Ariel M
2018-04-06
The design and synthesis of biomass-derived triazoles and the in vitro evaluation as potential anticancer agents are described. The discovery of base-catalyzed retro-aza-Michael//aza-Michael isomerizations allowed the exploration of the chemical space by affording novel types of triazoles, difficult to obtain otherwise. Following this strategy, 2,4-disubstituted 1,2,3-triazoles could be efficiently obtained from the corresponding 1,4-disubstituted analogues.
Tully, Douglas B; Bao, Wenjun; Goetz, Amber K; Blystone, Chad R; Ren, Hongzu; Schmid, Judith E; Strader, Lillian F; Wood, Carmen R; Best, Deborah S; Narotsky, Michael G; Wolf, Douglas C; Rockett, John C; Dix, David J
2006-09-15
Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected for hormone measurements, and liver and testes were collected for histology, enzyme biochemistry, or gene expression profiling. Body and testis weights were unaffected, but liver weights were significantly increased by all four triazoles, and hepatocytes exhibited centrilobular hypertrophy. Myclobutanil exposure increased serum testosterone and decreased sperm motility, but no treatment-related testis histopathology was observed. We hypothesized that gene expression profiles would identify potential mechanisms of toxicity and used DNA microarrays and quantitative real-time PCR (qPCR) to generate profiles. Triazole fungicides are designed to inhibit fungal cytochrome P450 (CYP) 51 enzyme but can also modulate the expression and function of mammalian CYP genes and enzymes. Triazoles affected the expression of numerous CYP genes in rat liver and testis, including multiple Cyp2c and Cyp3a isoforms as well as other xenobiotic metabolizing enzyme (XME) and transporter genes. For some genes, such as Ces2 and Udpgtr2, all four triazoles had similar effects on expression, suggesting possible common mechanisms of action. Many of these CYP, XME and transporter genes are regulated by xeno-sensing nuclear receptors, and hierarchical clustering of CAR/PXR-regulated genes demonstrated the similarities of toxicogenomic responses in liver between all four triazoles and in testis between myclobutanil and triadimefon. Triazoles also affected expression of multiple genes involved in steroid hormone metabolism in the two tissues. Thus, gene expression profiles helped identify possible toxicological mechanisms of the triazole fungicides.
Synthesis of triazole-based unnatural amino acids, triazole bisaminoacids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW irradiation conditions. The developed method is app...
Questions Agricultural and pharmaceutical 1,2,4-triazole fungicides are potent cytochrome P450 modulators that can disrupt mammalian steroid biosynthesis. Triadimefon [(RS)-1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one] is unique with respect to tumorige...
Xia, Yi; Qu, Fanqi; Peng, Ling
2010-08-01
Synthetic nucleoside mimics are important candidates in the searing for antiviral and anticancer drugs. Ribavirin, the first antiviral nucleoside drug, is unique in its antiviral activity with mutilple modes of action, which are mainly due to its special triazole heterocycle as nucleobase. Additionally, introducing aromatic functionalities to the nucleobase is able to confer novel mechanisms of action for nucleoside mimics. With the aim to combine the special characteristics of unnatural triazole heterocycles with those of the appended aromatic groups on the nucleobases, novel 1,2,4-triazole nucleoside analogs bearing aromatic moieties were designed and developed. The present short review summarizes the molecular design, chemical synthesis and biological activity of these triazole nucleoside analogs. Indeed, the discovery of antiviral and anticancer activities shown by these triazole nucleosides as well as the new mechanism underlying the biological activity by one of the anticancer leads has validated the rationale for molecular design and impacted us to further explore the concept with the aim of developing structurally novel nucleoside drug candidates with new modes of action.
Antileishmanial activity study and theoretical calculations for 4-amino-1,2,4-triazole derivatives
NASA Astrophysics Data System (ADS)
Süleymanoğlu, Nevin; Ünver, Yasemin; Ustabaş, Reşat; Direkel, Şahin; Alpaslan, Gökhan
2017-09-01
4-amino-1,2,4-triazole derivatives; 4-amino-1-((5-mercapto-1,3,4-oxadiazole-2-yl)methyl)-3-(thiophene-2-ylmethyl)-1H-1,2,4-triazole-5(4H)-one (1) and 4-amino-1-((4-amino-5 mercapto-4H-1,2,4-triazole-3-yl)methyl)-3-(thiophene-2-ylmethyl)-1H-1,2,4-triazole-5(4H)-one (2) were studied theoretically by Density Functional Theory (DFT) method with 6-311++G(d,p) basis set, structural and some spectroscopic parameters were determined. Significant differences between the experimental and calculated values of vibrational frequencies and chemical shifts were explained by the presence of intermolecular (Ssbnd H⋯O and Ssbnd H⋯N type) hydrogen bonds in structures. The Molecular Electrostatic Potential (MEP) maps obtained at B3LYP/6-311G++(d,p) support the existence of hydrogen bonds. Compounds were tested against to Leishmania infantum promastigots by microdilution broth assay with Alamar Blue Dye. Antileishmanial activity of 4-amino-1,2,4-triazole derivative (2) is remarkable.
Kocalka, Petr; Andersen, Nicolai K; Jensen, Frank; Nielsen, Poul
2007-11-23
A general protocol for converting alkyl and aryl halides into azides and for converting these in situ into 1,4-disubstituted triazoles was applied with 5-ethynyl-2'-deoxyuridine. This afforded three modified 2'-deoxyuridine analogues with either unsubstituted or 1-phenyl-/1-benzyl-substituted triazoles in their 5-positions. Modelling demonstrates coplanarity of the two heteroaromatic rings, and UV spectroscopy showed the uracil pK(a) values to be almost unchanged. The three nucleosides were introduced into nonamer oligonucleotides by phosphoramidite chemistry. The heteroaromatic triazoles became positioned in the major grooves of the short dsDNA and DNA-RNA duplexes. While single modifications led to decreased duplex stability, the stacking of four consecutive modifications led to enhanced duplex stability, especially for DNA-RNA duplexes. The duplex structures were studied by CD spectroscopy and molecular dynamics simulations, which supported the conjecture that the duplex stabilizing effect is due to efficient stacking of the heteroaromatic triazoles.
Ciocoiu, Calin C; Nikolić, Natasa; Nguyen, Huyen Hoa; Thoresen, G Hege; Aasen, Arne J; Hansen, Trond Vidar
2010-07-01
Ten 1,4-disubstituted 1,2,3-triazoles 2a-2j were prepared and tested for their ability to increase oleic acid oxidation in human myotubes using a high-throughput multiwell assay. Compounds 2e (2-{4-[(1-(3-fluoro-4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)methylthio]-2-methylphenoxy}acetic acid) and 2i (2-{4-[(1-(3-chloro-4-(trifluoromethoxy)phenyl)-1H-1,2,3-triazol-4-yl)methylthio]-2-methylphenoxy}acetic acid) exhibited potent agonist activities. Compounds 2e and 2i also exhibited powerful agonist effects for both PPARalpha and PPARdelta in a luciferase-based assay. Consequently, these triazoles can be categorized as dual PPAR agonists. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Development of Enabling Chemical Technologies for Power from Green Sources
2013-11-18
structurally analogous polymers based on N-heterocycles (triazole, imidazole and pyrazole) and benz-N-heterocycles (benzotriazole, benzimidazole ...found that triazole (benzotriazole) and imidazole ( benzimidazole ) containing polymers exhibit similar proton conductivities, about 4 orders of...magnitude higher than those with pyrazole (benzopyrazole) (Figure 6b). The similar behavior of triazole and imidazole (benzotriazole and benzimidazole
Analysis of microRNA and gene expression profiling in triazole fungicide-treated HepG2 cell line.
An, Yu Ri; Kim, Seung Jun; Oh, Moon-Ju; Kim, Hyun-Mi; Shim, Il-Seob; Kim, Pil-Je; Choi, Kyunghee; Hwang, Seung Yong
2013-01-07
MicroRNA (miRNA) plays an important role in various diseases and in cellular and molecular responses to toxicants. In the present study, we investigated differential expression of miRNAs in response to three triazole fungicides (myclobutanil, propiconazole, and triadimefon). The human hepatoma cell line (HepG2) was treated with the above triazoles for 3 h or 48 h. miRNA-based microarray experiments were carried out using the Agilent human miRNA v13 array. At early exposure (3h), six miRNAs were differentially expressed and at late exposure (48 h), three miRNAs were significantly expressed. Overall, this study provides an array of potential biomarkers for the above triazole fungicides. Furthermore, these miRNAs induced by triazoles could be the foundation for the development of a miRNA-based toxic biomarker library that can predict environmental toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Klein, Michael; Dinér, Peter; Dorin-Semblat, Dominique; Doerig, Christian; Grøtli, Morten
2009-09-07
Efficient routes to 3-(1,2,3-triazol-1-yl)- and 3-(1,2,3-triazol-4-yl)pyrazolo[3,4-d]pyrimidin-4-amines using a one-pot two-step reaction are presented. The two routes give easy access to two different isomers of 1,4-disubstituted triazoles and the target compounds are obtained from a variety of readily available aromatic and aliphatic halides without isolation of potentially unstable organic azide intermediates. Two compounds show activity towards the PfPK7 kinase (IC(50) 10-20 microM) of P. falciparum, the organism responsible for the most virulent form of malaria, and can be regarded as hits useful for further development into lead compounds.
We report on the in vitro metabolism of the enantiomers of two triazole fungicides: triadimefon [two enantiomers; 1-(4-chlorophneoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one] and bromuconazole {two diastereomers, each having two enantiomers; 1-[(2RS,4RS:2RS,4SR)-4-brom...
40 CFR 180.410 - Triadimefon; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... residues of the fungicide triadimefon, 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone, and triadimenol, β-(4-chlorophenoxy)-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol, expressed... of the fungicide triadimefon, 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone...
Sensitivity of Texas strains of Ceratocystis fagacearum to triazole fungicides
A. Dan Wilson; L.B. Forse
1997-01-01
Ten geographically diverse Texas strains of the oak wilt fungus Ceratocystis fagacearum were tested in vitro for their sensitivity to five triazole fungicides based on accumulated linear growth, linear growth rates, and dry weight accumulation in response to fungicide concentrations of 0.1 to 600 parts per billion (ppb). None of the triazoles inhibited growth at 0.1...
Preparation of 1,1'-dinitro-3,3'-azo-1,2,4-triazole. [1,1'-dinitro-3,3'-azo-1,2,4-triazole
Lee, K.Y.
1985-03-05
A new high density composition of matter, 1,1'-dinitro-3,3'-azo-1,2,4-triazole, has been synthesized using inexpensive, commonly available compounds. This compound has been found to be an explosive, and its use as a propellant is anticipated. 1 fig., 1 tab.
Siles, Rogelio; Kawasaki, Yuko; Ross, Patrick; Freire, Ernesto
2011-01-01
A small library of 25 triazole/tetrazole-based sulfonamides have been synthesized and further evaluated for their inhibitory activity against thrombin, trypsin, tryptase and chymase. In general, the triazole-based sulfonamides inhibited thrombin more efficiently than the tetrazole counterparts. Particularly, compound 26 showed strong thrombin inhibition (Ki =880 nM) and significant selectivity against other human related serine proteases like trypsin (Ki =729 µM). Thrombin binding affinity of the same compound was determined by ITC and demonstrated that the binding of this new triazole-based scaffold is enthalpically driven, making it a good candidate for further development. PMID:21807511
Synthesis and Degradation of Schiff Bases Containing Heterocyclic Pharmacophore
Ledeţi, Ionuţ; Alexa, Anda; Bercean, Vasile; Vlase, Gabriela; Vlase, Titus; Şuta, Lenuţa-Maria; Fuliaş, Adriana
2015-01-01
This paper reports on the synthesis and characterization of two Schiff bases bearing 1,2,4-triazolic moieties, namely 4H-4-(2-hydroxy-benzylidene-amino)-5-benzyl-3-mercapto-1,2,4-triazole and 4H-4-(4-nitro-benzylidene-amino)-5-benzyl-3-mercapto-1,2,4-triazole using thin layer chromatography, melting interval, elemental analysis, spectroscopy and thermal stability studies. PMID:25590299
40 CFR 180.615 - Amicarbazone; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-oxo-1H-1,2,4-triazole-1-carboxamide] and its metabolites DA amicarbazone [N-(1,1-dimethylethyl)-4,5-dihydro-3-(1-methylethyl)-5-oxo-1H-1,2,4-triazole-1-carboxamide] and iPr-2-OH DA amicarbazone [N-(1,1...-methylethyl)-5-oxo-1H-1,2,4-triazole-1-carboxamide] and its metabolites DA amicarbazone [N-(1,1-dimethylethyl...
Copper-catalyzed one-pot synthesis of 1,2,4-triazoles from nitriles and hydroxylamine.
Xu, Hao; Ma, Shuang; Xu, Yuanqing; Bian, Longxiang; Ding, Tao; Fang, Xiaomin; Zhang, Wenkai; Ren, Yanrong
2015-02-06
A simple and efficient copper-catalyzed one-pot synthesis of substituted 1,2,4-triazoles through reactions of two nitriles with hydroxylamine has been developed. The protocol uses simple and readily available nitriles and hydroxylamine hydrochloride as the starting materials and inexpensive Cu(OAc)2 as the catalyst, and the corresponding 1,2,4-triazole derivatives are obtained in moderate to good yields. The reactions include sequential intermolecular addition of hydroxylamine to one nitrile to provide amidoxime, copper-catalyzed treatment of the amidoxime with another nitrile, and intramolecular dehydration/cyclization. This finding provides a new and useful strategy for synthesis of 1,2,4-triazole derivatives.
Singh, Amandeep; Biot, Christophe; Viljoen, Albertus; Dupont, Christian; Kremer, Laurent; Kumar, Kewal; Kumar, Vipan
2017-06-01
Copper-catalyzed azide-alkyne [3 + 2] cycloaddition has been utilized for preparing a series of 1H-1,2,3-triazoles with the purpose of probing structure-activity relationships among a uracil-ferrocene-triazole conjugate family. The antitubercular evaluation studies revealed an improvement in activity with the introduction of a ferrocene nucleus among N-alkylazido-uracil precursors, with a preference for a bromo-substituent along with moderate chain lengths of n = 2-6. The reported protocol is a successful approach for integrating uracil-ferrocene-chalcone functionalities tethered via 1H-1,2,3-triazole rings with apparent physicochemical stability. © 2016 John Wiley & Sons A/S.
Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R
2010-09-01
A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.
Amalian, Jean-Arthur; Trinh, Thanh Tam; Lutz, Jean-François; Charles, Laurence
2016-04-05
Tandem mass spectrometry was evaluated as a reliable sequencing methodology to read codes encrypted in monodisperse sequence-coded oligo(triazole amide)s. The studied oligomers were composed of monomers containing a triazole ring, a short ethylene oxide segment, and an amide group as well as a short alkyl chain (propyl or isobutyl) which defined the 0/1 molecular binary code. Using electrospray ionization, oligo(triazole amide)s were best ionized as protonated molecules and were observed to adopt a single charge state, suggesting that adducted protons were located on every other monomer unit. Upon collisional activation, cleavages of the amide bond and of one ether bond were observed to proceed in each monomer, yielding two sets of complementary product ions. Distribution of protons over the precursor structure was found to remain unchanged upon activation, allowing charge state to be anticipated for product ions in the four series and hence facilitating their assignment for a straightforward characterization of any encoded oligo(triazole amide)s.
Andersen, Nicolai Krog; Døssing, Holger; Jensen, Frank; Vester, Birte; Nielsen, Poul
2011-08-05
5-(1-Phenyl-1,2,3-triazol-4-yl)-2'-deoxycytidine was synthesized from a modified CuAAC protocol and incorporated into mixed pyrimidine oligonucleotide sequences together with the corresponding 5-(1-phenyl-1,2,3-triazol-4-yl)-2'-deoxyuridine. With consecutive incorporations of the two modified nucleosides, improved duplex formation with a complementary RNA and improved triplex formation with a complementary DNA duplex were observed. The improvement is due to π-π stacking of the phenyl-triazole moieties in the major groove. The strongest stacking and most pronounced positive influence on thermal stability was found in between the uridine analogues or with the cytidine analogue placed in the 3' direction to the uridine analogue. Modeling indicated a different orientation of the phenyl-triazole moieties in the major groove to account for the difference between the two nucleotides. The modified oligonucleotides were all found to be significantly stabilized toward nucleolytic degration.
Rate of Interfacial Electron Transfer through the 1,2,3-Triazole Linkage
Devaraj, Neal K.; Decreau, Richard A.; Ebina, Wataru; Collman, James P.; Chidsey, Christopher E. D.
2012-01-01
The rate of electron transfer is measured to two ferrocene and one iron tetraphenylporphyrin redox species coupled through terminal acetylenes to azide-terminated thiol monolayers by the Cu(I)-catalyzed azide–alkyne cycloaddition (a Sharpless “click” reaction) to form the 1,2,3-triazole linkage. The high yield, chemoselectivity, convenience, and broad applicability of this triazole formation reaction make such a modular assembly strategy very attractive. Electron-transfer rate constants from greater than 60,000 to 1 s−1 are obtained by varying the length and conjugation of the electron-transfer bridge and by varying the surrounding diluent thiols in the monolayer. Triazole and the triazole carbonyl linkages provide similar electronic coupling for electron transfer as esters. The ability to vary the rate of electron transfer to many different redox species over many orders of magnitude by using modular coupling chemistry provides a convenient way to study and control the delivery of electrons to multielectron redox catalysts and similar interfacial systems that require controlled delivery of electrons. PMID:16898751
Di(hydroxyphenyl)- 1,2,4-triazole monomers
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Wolf, Peter (Inventor)
1993-01-01
The di(hydroxyphenyl)- 1,2,4-triazole monomers were first synthesized by reacting bis (4-hydroxyphenyl) hydrazide with aniline hydrochloride at 250 C in the melt and also by reacting 1,3 or 1,4-bis- (4-hydroxyphenyl)- phenylene- dihydrazide with 2 moles of aniline hydrochloride in the melt. Purification of the di(hydroxyphenyl)- 1,2,4-triazole monomers was accomplished by recrystallization. Poly (1,2,4-triazoles) (PT) were prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)- 1,2,4-triazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions were carried out in polar aprotic solvents such as sulfolane or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. This synthetic route has provided high molecular weight PT of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides.
Angajala, Kishore Kumar; Vianala, Sunitha; Macha, Ramesh; Raghavender, M; Thupurani, Murali Krishna; Pathi, P J
2016-01-01
Nonsteroidal anti-inflammatory drugs are of vast therapeutic benefit in the treatment of different types of inflammatory conditions. 1,2,3-Triazoles and their derivatives have a wide range of applications as anti-bacterial, anti-fungal, anti-tubercular, cytostatic, anti-HIV, anti-allergic, anti-neoplastic and anti-inflammatory (AI) agents. Considering the individual biological and medicinal importance of ibuprofen and 1,2,3-triazoles, we wanted to explore novel chemical entities based on ibuprofen and triazole moieties towards their biological significance. Click chemistry has utilized as an ideal strategy to prepare novel ibuprofen-based 1,4-disubstituted 1,2,3-triazole containing molecules. These compounds were screened for their in vivo AI activity, among all the synthesized analogues 13o was shown potent effect than the reference AI drug ibuprofen at the same concentration (10 mg/kg body weight). Compounds 13l, 13g, 13c, 13k, 13i, 13n, 13m and 13j were shown significant AI activity. These triazole analogues were also screened for their bactericidal profile. Compounds 13c, 13i, 13l and 13o exhibited considerable bactericidal activity against gram positive and gram negative strains. In addition to this, molecular docking studies were also carried out into cyclooxygenase-2 active site to predict the affinity and orientation of these novel compounds (13a-q). In summary, we have designed and synthesized 1,2,3-triazole analogues of ibuprofen in good yields using Click chemistry approach. AI and bactericidal activities of these compounds were evaluated and shown remarkable results.
Wu, Ruiqin; Wu, Haobo; Jiang, Xinbai; Shen, Jinyou; Faheem, Muhammad; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; Wang, Lianjun; Liu, Xiaodong
2017-04-01
The secondary effluent from biological treatment process in chemical industrial plant often contains refractory organic matter, which deserves to be further treated in order to meet the increasingly stringent environmental regulations. In this study, the key role of biogenic manganese oxides (BioMnOx) in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater was investigated. BioMnOx production by acclimated manganese-oxidizing bacterium (MOB) consortium was confirmed through scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. Pseudomonas and Bacillus were found to be the most predominant species in acclimated MOB consortium. Mn 2+ could be oxidized optimally at neutral pH and initial Mn 2+ concentration below 33 mg L -1 . However, 1,2,4-triazole removal by BioMnOx produced occurred optimally at slightly acidic pH. High dosage of both Mn 2+ and 1,2,4-triazole resulted in decreased 1,2,4-triazole removal. In a biological aerated filter (BAF) coupled with manganese oxidation, 1,2,4-triazole and total organic carbon removal could be significantly enhanced compared to the control system without the participation of manganese oxidation, confirming the key role of BioMnOx in the removal of highly recalcitrant 1,2,4-triazole. This study demonstrated that the biosystem coupled with manganese oxidation had a potential for the removal of various recalcitrant contaminants from bio-treated chemical industrial wastewater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ju-Wen; Zhao, Wei; Lu, Qi-Lin
2014-04-01
Five new metal–organic coordination polymers ([Cu{sub 3}(μ{sub 2}-OH){sub 2}(atrz){sub 2}(nph){sub 2}(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (1), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)]·2H{sub 2}O){sub n} (2), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)(H{sub 2}O)]·H{sub 2}O){sub n} (3), [Cu(dth){sub 0.5}(nph)(H{sub 2}O)]{sub n} (4) and [Cu(dth)(Hnip){sub 2}]{sub n} (5) [atrz=4-amino-1,2,4-triazole, dth=N,N'-di(4H-1,2,4-triazole)hexanamide, H{sub 2}nph=3-nitrophthalic acid, 1,2,4-H{sub 3}btc=1,2,4-benzenetricarboxylic acid and H{sub 2}nip=5-nitroisophthalic acid] were hydrothermally synthesized and structurally characterized. Polymer 1 shows a one-dimensional (1D) chain. Polymers 2 and 3 exhibit similar tetranuclear Cu{sup II}{sub 4} cluster-based three-dimensional (3D) frameworks with the same components. Polymer 4 possesses a 3D framework with a 4{sup 12}·6{sup 3}-pcu topology. Polymer 5 displays a 3D frameworkmore » with a 4{sup 4}·6{sup 10}·8-mab topology. The magnetic properties of 1–4 were investigated. - Graphical abstract: Five triazole-based copper(II) polymers modulated by polycarboxylates were synthesized. Bis-triazole-bis-amide ligand and polycarboxylates play important roles in tuning dimensionality of polymers. Magnetic properties of polymers were investigated. - Highlights: • Five triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates were obtained. • The aromatic polycarboxylates have an important influence on the dimensionality of five polymers. • The magnetic properties of four polymers were investigated.« less
Uppal, Baljinder S; Booth, Rebecca K; Ali, Noreen; Lockwood, Cindy; Rice, Craig R; Elliott, Paul I P
2011-08-07
A series of 1-alkyl-4-aryl-1,2,3-triazoles (1-methyl-4-phenyl-1,2,3-triazole (1a); 1-propyl-4-phenyl-1,2,3-triazole (1b); 1-benzyl-4-phenyl-1,2,3-triazole (1c); 1-propyl-4-p-tolyl-1,2,3-triazole (1d)) have been prepared through a one-pot procedure involving in situ generation of the alkyl azide from a halide precursor followed by copper catalysed alkyne/azide cycloaddition (CuAAC) with the appropriate aryl alkyne. Cationic Re(I) complexes [Re(bpy)(CO)(3)(1a-d)]PF(6) (2a-d) were then prepared by stirring [Re(bpy)(CO)(3)Cl] with AgPF(6) in dichloromethane in the presence of ligands 1a-d. X-ray crystal structures were obtained for 2a and 2b. In the solid state, 2a adopts a highly distorted geometry, which is not seen for 2b, in which the plane of the triazole ligand tilts by 13° with respect to the Re-N bond as a result of a π-stacking interaction between the Ph substituent and one of the rings of the bpy ligand. This π-stacking interaction also results in severe twisting of the bpy ligand. Infrared spectra of 2a-d exhibit ν(CO) bands at ∼2035 and ∼1926 cm(-1) suggesting that these ligands are marginally better donors than pyridine (ν(CO) = 2037, 1932 cm(-1)). The complexes are luminescent in aerated dichloromethane at room temperature with emission maxima at 542 to 552 nm comparable to that of the pyridine analogue (549 nm) and blue shifted relative to the parent chloride complex. Long luminescent lifetimes are observed for the triazole complexes (475 to 513 ns) in aerated dichloromethane solutions at room temperature.
Triazole biotin: a tight-binding biotinidase-resistant conjugate.
Germeroth, Anne I; Hanna, Jill R; Karim, Rehana; Kundel, Franziska; Lowther, Jonathan; Neate, Peter G N; Blackburn, Elizabeth A; Wear, Martin A; Campopiano, Dominic J; Hulme, Alison N
2013-11-28
The natural amide bond found in all biotinylated proteins has been replaced with a triazole through CuAAC reaction of an alkynyl biotin derivative. The resultant triazole-linked adducts are shown to be highly resistant to the ubiquitous hydrolytic enzyme biotinidase and to bind avidin with dissociation constants in the low pM range. Application of this strategy to the production of a series of biotinidase-resistant biotin-Gd-DOTA contrast agents is demonstrated.
McNeill, K S; Cancilla, D A
2009-03-01
Soil samples from three USA airports representing low, mid, and large volume users of aircraft deicing fluids (ADAFs) were analyzed by LC/MS/MS for the presence of triazoles, a class of corrosion inhibitors historically used in ADAFs. Triazoles, specifically the 4-methyl-1H-benzotriazole and the 5-methyl-1H-benzotriazole, were detected in a majority of samples and ranged from 2.35 to 424.19 microg/kg. Previous studies have focused primarily on ground and surface water impacts of larger volume ADAF users. The detection of triazoles in soils at low volume ADAF use airports suggests that deicing activities may have a broader environmental impact than previously considered.
Metronidazole-triazole conjugates: Activity against Clostridium difficile and parasites
Jarrad, Angie M.; Karoli, Tomislav; Debnath, Anjan; Tay, Chin Yen; Huang, Johnny X.; Kaeslin, Geraldine; Elliott, Alysha G.; Miyamoto, Yukiko; Ramu, Soumya; Kavanagh, Angela M.; Zuegg, Johannes; Eckmann, Lars; Blaskovich, Mark A.T.; Cooper, Matthew A.
2015-01-01
Metronidazole has been used clinically for over 50 years as an antiparasitic and broad-spectrum antibacterial agent effective against anaerobic bacteria. However resistance to metronidazole in parasites and bacteria has been reported, and improved second-generation metronidazole analogues are needed. The copper catalysed Huigsen azide-alkyne 1,3-dipolar cycloaddition offers a way to efficiently assemble new libraries of metronidazole analogues. Several new metronidazole-triazole conjugates (Mtz-triazoles) have been identified with excellent broad spectrum antimicrobial and antiparasitic activity targeting Clostridium difficile, Entamoeba histolytica and Giardia lamblia. Cross resistance to metronidazole was observed against stable metronidazole resistant C. difficile and G. lamblia strains. However for the most potent Mtz-triazoles, the activity remained in a therapeutically relevant window. PMID:26117821
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karayel, A., E-mail: matchlessjimmy@163.com, E-mail: yccaoh@hotmail.com; Özbey, S.; Ayhan-Kılcıgil, G.
2015-12-15
The crystal structures of 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(3-fluorophenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G6C) and 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(2-methylphenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G4C) have been determined by single-crystal X-ray diffraction. Benzimidazole ring systems in both molecules are planar. The triazole part is almost perpendicular to the phenyl and the benzimidazole parts of the molecules in order to avoid steric interactions between the rings. The crystal structures are stabilized by intermolecular hydrogen bonds between the amino group of the triazole and the nitrogen atom of benzimidazole of a neighboring molecule.
González-Olvera, Rodrigo; Román-Rodríguez, Viridiana; Negrón-Silva, Guillermo E; Espinoza-Vázquez, Araceli; Rodríguez-Gómez, Francisco Javier; Santillan, Rosa
2016-02-22
An efficient one-pot synthesis of 1,2,3-triazole derivatives of dihydropyrimidinones has been developed using two multicomponent reactions. The aldehyde-1,2,3-triazoles were obtained in good yields from in situ-generated organic azides and O-propargylbenzaldehyde. The target heterocycles were synthesized through the Biginelli reaction in which the aldehyde-1,2,3-triazoles reacted with ethyl acetoacetate and urea in the presence of Ce(OTf)₃ as the catalyst. The corrosion inhibition of steel grade API 5 L X52 in 1 M HCl by the synthesized compounds was investigated using the electrochemical impedance spectroscopy technique. The measurements revealed that these heterocycles are promising candidates to inhibit acidic corrosion of steel.
Ferreira, Vitor F; da Rocha, David R; da Silva, Fernando C; Ferreira, Patrícia G; Boechat, Núbia A; Magalhães, Jorge L
2013-03-01
The triazoles represent a class of five-membered heterocyclic compounds of great importance for the preparation of new drugs with diverse biological activities because they may present several structural variations with the same numbers of carbon and nitrogen atoms. Due to the success of various triazoles that entered the pharmaceutical market and are still being used in medicines, many companies and research groups have shown interest in developing new methods of synthesis and biological evaluation of potential uses for these compounds. In this review, the authors explored aspects of patents for the 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole families, including prototypes being considered in clinical studies between 2008 and 2011. The triazoles have been studied for over a century as an important class of heterocyclic compounds and still attract considerable attention due to their broad range of biological activities. More recently, there has been considerable interest in the development of novel triazoles with anti-inflammatory, antiplatelet, antimicrobial, antimycobacterial, antitumoral and antiviral properties and activity against several neglected diseases. This review emphasizes recent perspective and advances in the therapeutically active 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivative patents between 2008 and 2011, covering the development of new chemical entities and new pharmaceuticals. Many studies have focused on these compounds as target structures and evaluated them in several biological targets. The preparation of 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives brings to light several issues. There is a need to find new, more efficient preparations for these triazoles that take into consideration current issues in green chemistry, energy saving and sustainability. New diseases are discovered and new viruses and bacteria continue to challenge mankind, so it is imperative to find new prototypes for these new diseases. Of great urgency is finding prototypes against bacteria that continue to increase resistance and for neglected diseases that affect a large part of humanity, especially the poor and vulnerable.
Schermerhorn, Patricia G; Golden, Paul E; Krynitsky, Alexander J; Leimkuehler, William M
2005-01-01
A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed for the determination of 14 parent triazole fungicides and 8 of their metabolites found in apples, peaches, flour, raw water, and tap water. The triazole fungicides chosen for this multiresidue method development project included propiconazole, fenbuconazole and its RH-9129 and RH-9130 metabolites, cyproconazole, difenoconazole, tebuconazole and its HWG 2061 metabolite, hexaconazole, bromuconazole (both stereoisomers), epoxiconazole, tetraconazole, triticonazole and its RPA-404886 and RPA-406341 metabolites, triadimefon, triadimenol, and myclobutanil. Of special concern to the U.S. Environmental Protection Agency were the metabolites common to all triazole fungicides: free triazole, 1,2,4-triazole (T), and its 2 conjugates: triazolylalanine (TA) and triazolylacetic acid (TAA). These metabolites were the primary focus of this project. All samples we cleaned up by a combination of C18 solid-phase extraction (SPE), mixed-mode cationic SPE, and mixed-mode anionic SPE columns. A triple-stage quadrupole mass spectrometer, equipped with electrospray ionization in the positive-ion mode, was used to determine the compounds of interest. T, TA, and TAA were quantitated using isotopically labeled internal standards (IS), in which the 1,2,4-triazole ring had been synthesized by using 13C and 15N (IS_T, IS_TA, and IS_TAA). These isotopically labeled internal standards were necessary to correct for matrix effects. The T, TA, and TAA metabolites were quantitated at the 25-50 parts-per-billion (ppb) level in food commodities and at 0.50 ppb in water. Recoveries were 70-101% from apples, 60-121% from peaches, 57-118% from flour, 75-99% from raw water, and 79-99% from tap water.
Goetz, Amber K; Ren, Hongzu; Schmid, Judith E; Blystone, Chad R; Thillainadarajah, Inthirany; Best, Deborah S; Nichols, Harriette P; Strader, Lillian F; Wolf, Douglas C; Narotsky, Michael G; Rockett, John C; Dix, David J
2007-01-01
Triazole fungicides associated with a range of reported male reproductive effects in experimental animals were selected to assess potential toxic modes of action. Wistar Han rats were fed myclobutanil (M: 100, 500, or 2000 ppm), propiconazole (P: 100, 500, or 2500 ppm), or triadimefon (T: 100, 500, or 1800 ppm) from gestation day 6 to postnatal day (PND) 120. One male per litter was necropsied on PND1, 22, 50, or 92. Measurements included anogenital distance (AGD) at PND0, body and organ weights, serum hormone levels, age at preputial separation (PPS), sperm morphology and motility, and fertility and fecundity. AGD was increased by the high dose of all three triazoles, indicating hypervirilization. Triadimefon delayed PPS, consistent with delayed puberty, at 1800 ppm. Relative liver weights were increased at PND1, 50, and 92 by all three triazoles. Hepatocellular hypertrophy was present at PND50 from propiconazole and triadimefon and at PND92 from all three high-dose triazole treatments. Relative pituitary weights were decreased at PND92 by middle- and high-dose myclobutanil treatment. Absolute testis weights were increased at PND1 by myclobutanil, at PND22 by myclobutanil and triadimefon, and at PND50 by propiconazole and triadimefon treatment. Relative ventral prostate weights were increased at PND92 by myclobutanil and triadimefon treatment. Serum testosterone was increased at PND50 by triadimefon and at PND92/99 by all three triazole treatments. Insemination and fertility were impaired by myclobutanil and triadimefon treatment. In addition to the reproductive system effects, total serum thyroxine levels were decreased at PND92 by high-dose triadimefon. These reproductive effects are consistent with the disruption of testosterone homeostasis as a key event in the mode of action for triazole-induced reproductive toxicity.
Practical Methylation Procedure for (1H)-1,2,4-Triazole (Postprint)
2007-09-01
Francis Group, LLC. 14. ABSTRACT Conversion of (1H)-1,2,4-triazole to its sodium salt with methanolic sodium methoxide is followed by reaction ...From - To) 04-06-2007 Journal Article 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Practical Methylation Procedure for (1H)-1,2,4-Triazole (Postprint...continuous extraction (chloroform/water) with a final short-path distillation under a controlled vacuum to obtain spectroscopically pure 1- methyl -1,2,4
Synthesis of 5-iodo-1,2,3-triazole-containing macrocycles using copper flow reactor technology.
Bogdan, Andrew R; James, Keith
2011-08-05
A new macrocyclization strategy to synthesize 12- to 31-membered 5-iodo-1,2,3-triazole-containing macrocycles is described. The macrocycles have been generated using a simple and efficient copper-catalyzed cycloaddition in flow under environmentally friendly conditions. This methodology also permits the facile, regioselective synthesis of 1,4,5-trisubstituted-1,2,3-triazole-containing macrocyles using palladium-catalyzed cross-coupling reactions. © 2011 American Chemical Society
Chipoline, Ingrid C; Alves, Evelyne; Branco, Paola; Costa-Lotufo, Leticia V; Ferreira, Vitor F; Silva, Fernando C DA
2018-01-01
The 1,2-naphthoquinone compound was previously considered active against solid tumors. Moreover, glycosidase inhibitors such as 1,2,3-1H triazoles has been pointed out as efficient compounds in anticancer activity studies. Thus, a series of eleven 1,2-naphthoquinones tethered in C2 to 1,2,3-1H-triazoles 9a-k were designed, synthesized and their cytotoxic activity evaluated using HCT-116 (colon adenocarcinoma), MCF-7 (breast adenocarcinoma) and RPE (human nontumor cell line from retinal epithelium). The chemical synthesis was performed from C-3 allylation of lawsone followed by iodocyclization with subsequent nucleophilic displacement with sodium azide and, finally, the 1,3-dipolar cycloaddition catalyzed by Cu(I) with terminal alkynes led to the formation of 1H-1,2,3-Triazol-1-ylmethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones in good yields. Compounds containing aromatic group linked to 1,2,3-triazole ring (9c, 9d, 9e, 9i) presented superior cytotoxic activity against cancer cell lines with IC50 in the range of 0.74 to 4.4 µM indicating that the presence of aromatic rings substituents in the 1,2,3-1H-triazole moiety is probably responsible for the improved cytotoxic activity.
Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts.
Guino-O, Marites A; Talbot, Meghan O; Slitts, Michael M; Pham, Theresa N; Audi, Maya C; Janzen, Daron E
2015-06-01
The asymmetric units for the salts 4-(4-fluoro-phen-yl)-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3 (+)·I(-), (1), 1-isopropyl-4-(4-methyl-phen-yl)-1,2,4-triazol-1-ium iodide, C12H16N3 (+)·I(-), (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3 (+)·I(-), (3), and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3 (+)·I(-), (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3 (+)·Br(-)·H2O, (5), there is an additional single water mol-ecule. There is a predominant C-H⋯X(halide) inter-action for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π-anion inter-action between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π-π inter-actions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects.
Whiting, Matthew; Tripp, Jonathan C; Lin, Ying-Chuan; Lindstrom, William; Olson, Arthur J; Elder, John H; Sharpless, K Barry; Fokin, Valery V
2006-12-28
Building from the results of a computational screen of a range of triazole-containing compounds for binding efficiency to human immunodeficiency virus type 1 protease (HIV-1-Pr), a novel series of potent inhibitors has been developed. The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), which provides ready access to 1,4-disubstituted-1,2,3-triazoles, was used to unite a focused library of azide-containing fragments with a diverse array of functionalized alkyne-containing building blocks. In combination with direct screening of the crude reaction products, this method led to the rapid identification of a lead structure and readily enabled optimization of both azide and alkyne fragments. Replacement of the triazole with a range of alternative linkers led to greatly reduced protease inhibition; however, further functionalization of the triazoles at the 5-position gave a series of compounds with increased activity, exhibiting Ki values as low as 8 nM.
Kumbhare, Ravindra M; Kosurkar, Umesh B; Bagul, Pankaj K; Kanwal, Abhinav; Appalanaidu, K; Dadmal, Tulshiram L; Banerjee, Sanjay Kumar
2014-11-01
A series of novel diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate embedded triazole and mannich bases were synthesized, and evaluated for their angiotensin converting enzyme (ACE) inhibitory activity. Screening of above synthesized compounds for ACE inhibition showed that triazoles functionalized compounds have better ACE inhibitory activity compared to that of mannich bases analogues. Among all triazoles we found 6 h, 6 i and 6 j to have good ACE inhibition activity with IC50 values 0.713 μM, 0.409 μM and 0.653 μM, respectively. Among mannich bases series compounds, only 7c resulted as most active ACE inhibitor with IC50 value of 0.928 μM. Copyright © 2014. Published by Elsevier Ltd.
Chen, Po C; Patil, Vishal; Guerrant, William; Green, Patience; Oyelere, Adegboyega K
2008-05-01
Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. Small molecule HDAC inhibitors identified so far fall in to three distinct structural motifs: the zinc-binding group (ZBG), a hydrophobic linker, and a recognition cap group. Here we report the suitability of a 1,2,3-triazole ring as a surface recognition cap group-linking moiety in suberoylanilide hydroxamic acid-like (SAHA-like) HDAC inhibitors. Using "click" chemistry (Huisgen cycloaddition reaction), several triazole-linked SAHA-like hydroxamates were synthesized. Structure-activity relationship revealed that the position of the triazole moiety as well as the identity of the cap group markedly affected the in vitro HDAC inhibition and cell growth inhibitory activities of this class of compounds.
Zang, Qin; Javed, Salim; Hill, David; Ullah, Farman; Bi, Danse; Porubsky, Patrick; Neuenswander, Benjamin; Lushington, Gerald H; Santini, Conrad; Organ, Michael G; Hanson, Paul R
2012-08-13
The construction of a 96-member library of triazolated 1,2,5-thiadiazepane 1,1-dioxides was performed on a Chemspeed Accelerator (SLT-100) automated parallel synthesis platform, culminating in the successful preparation of 94 out of 96 possible products. The key step, a one-pot, sequential elimination, double-aza-Michael reaction, and [3 + 2] Huisgen cycloaddition pathway has been automated and utilized in the production of two sets of triazolated sultam products.
Zang, Qin; Javed, Salim; Hill, David; Ullah, Farman; Bi, Danse; Porubsky, Patrick; Neuenswander, Benjamin; Lushington, Gerald H.; Santini, Conrad; Organ, Michael G.; Hanson, Paul R.
2013-01-01
The construction of a 96-member library of triazolated 1,2,5-thiadiazepane 1,1-dioxides was performed on a Chemspeed Accelerator (SLT-100) automated parallel synthesis platform, culminating in the successful preparation of 94 out of 96 possible products. The key step, a one-pot, sequential elimination, double-aza-Michael reaction, and [3+2] Huisgen cycloaddition pathway has been automated and utilized in the production of two sets of triazolated sultam products. PMID:22853708
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mo; Sun, Wenlong; Pang, Haijun, E-mail: panghj116@163.com
With tuning the ligands from bte, btp, btb to bth, four new decavanadate-based metal–organic hybrid compounds, [Zn(bte)(H{sub 2}O){sub 4}][Zn{sub 2}(bte)(H{sub 2}O){sub 10}](V{sub 10}O{sub 28})·8H{sub 2}O, [Zn{sub 2}(btp){sub 4}(H{sub 2}O){sub 6}](H{sub 2}V{sub 10}O{sub 28})·4H{sub 2}O, [Zn(H{sub 2}O){sub 6}][Zn{sub 2}(btb){sub 2}V{sub 10}O{sub 28}(H{sub 2}O){sub 6}]·4H{sub 2}O, and [Zn{sub 2}(bth)(H{sub 2}O){sub 10}](H{sub 2}V{sub 10}O{sub 28})·6H{sub 2}O (bte=1,2-bis(1,2,4-triazol-1-yl)ethane, btp=1,3-bis(1,2,4-triazol-1-y1)propane, btb=1,4-bis(1,2,4-triazol-1-y1)butane, bth=1,6-bis(1,2,4-triazol-1-y1)hexane), have been synthesized under conventional conditions. The four compounds represent the first examples of decavanadate-based metal–organic hybrids constructed by Zn–bis(triazole) complexes. Their structural analyses show that the four compounds possess different Zn–bis(triazole) structural motifs and various finally structures, which verifies that regular changingmore » the spacers of ligands is an effective strategy to tuning the structures of polyoxometalate-based hybrids. Also, the electrochemical studies show that the compounds have good electrocatalytic activities towards oxidation of nitrite molecules ascribed to V-centers. - Graphical abstract: Four compounds representing the first examples of V{sub 10}O{sub 28}-based hybrids constructed by Zn–bis(triazole) complexes have been synthesized by changing the spacers of the ligands and their electrocatalytic properties have been investigated. - Highlights: • The first examples of V{sub 10}O{sub 28}-based hybrids constructed by Zn-bis(triazole) complexes. • Verifying that changing the spacers of ligands is a strategy to tuning structures. • Showing good electrocatalytic activities toward oxidation of nitrite molecules.« less
Triazole Fungicides Can Induce Cross-Resistance to Medical Triazoles in Aspergillus fumigatus
Karawajczyk, Anna; Schaftenaar, Gijs; Kema, Gert H. J.; van der Lee, Henrich A.; Klaassen, Corné H.; Melchers, Willem J. G.; Verweij, Paul E.
2012-01-01
Background Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14α-demethylase inhibitors (DMIs). The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR34/L98H). We investigated if TR34/L98H could have developed through exposure to DMIs. Methods and Findings Thirty-one compounds that have been authorized for use as fungicides, herbicides, herbicide safeners and plant growth regulators in the Netherlands between 1970 and 2005, were investigated for cross-resistance to medical triazoles. Furthermore, CYP51-protein homology modeling and molecule alignment studies were performed to identify similarity in molecule structure and docking modes. Five triazole DMIs, propiconazole, bromuconazole, tebuconazole, epoxiconazole and difenoconazole, showed very similar molecule structures to the medical triazoles and adopted similar poses while docking the protein. These DMIs also showed the greatest cross-resistance and, importantly, were authorized for use between 1990 and 1996, directly preceding the recovery of the first clinical TR34/L98H isolate in 1998. Through microsatellite genotyping of TR34/L98H isolates we were able to calculate that the first isolate would have arisen in 1997, confirming the results of the abovementioned experiments. Finally, we performed induction experiments to investigate if TR34/L98H could be induced under laboratory conditions. One isolate evolved from two copies of the tandem repeat to three, indicating that fungicide pressure can indeed result in these genomic changes. Conclusions Our findings support a fungicide-driven route of TR34/L98H development in A. fumigatus. Similar molecule structure characteristics of five triazole DMIs and the three medical triazoles appear the underlying mechanism of cross resistance development. Our findings have major implications for the assessment of health risks associated with the use of triazole DMIs. PMID:22396740
TOXICOGENOMIC STUDY OF TRIAZOLE FUNGICIDES AND PERFLUOROALKYL ACIDS
Toxicogenomic analysis of five environmental contaminants was performed to investigate the ability of genomics to categorize chemicals and elucidate mechanisms of toxicity. Three triazole antifungals (myclobutanil, propiconazole and triadimefon) and two perfluorinated compounds (...
Yadav, Pinki; Lal, Kashmiri; Kumar, Lokesh; Kumar, Ashwani; Kumar, Anil; Paul, Avijit K; Kumar, Rajnish
2018-06-02
A simple and green synthesis of some fluorinated chalcone-triazole hybrids from propargylated chalcones and organic azides catalyzed by cellulose supported copper nanoparticles click reaction is reported. All the synthesized compounds were well characterized by various analytical and spectroscopic methods. The X-rays crystallographic study of compounds 6k revealed the self assembling properties. The antimicrobial screening results of all the synthesized compounds revealed that most of the triazole hybrids exhibited significant efficacy against tested bacterial and fungal strains. The activity results showed the synergistic effect of biological activity when two pharmacophoric units, i.e. chalcone and 1,2,3-triazole are conjugated. Further, docking simulation of the most active compounds 6p into Escherichia coli topoisomerase II DNA Gyrase B was also carried out. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts
Guino-o, Marites A.; Talbot, Meghan O.; Slitts, Michael M.; Pham, Theresa N.; Audi, Maya C.; Janzen, Daron E.
2015-01-01
The asymmetric units for the salts 4-(4-fluorophenyl)-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3 +·I−, (1), 1-isopropyl-4-(4-methylphenyl)-1,2,4-triazol-1-ium iodide, C12H16N3 +·I−, (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3 +·I−, (3), and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3 +·I−, (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3 +·Br−·H2O, (5), there is an additional single water molecule. There is a predominant C—H⋯X(halide) interaction for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π–anion interaction between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π–π interactions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects. PMID:26090137
Fate of triazoles in softwood upon environmental exposure.
Kukowski, Klara; Martinská, Veronika; Sedgeman, Carl A; Kuplic, Paige; Kozliak, Evguenii I; Fisher, Stephen; Kubátová, Alena
2017-10-01
Determining the fate of preservatives in commercial wood products is essential to minimize their losses and improve protective impregnation techniques. The fate of triazole fungicides in ponderosa pine wood was investigated in both outdoor and controlled-environment experiments using a representative triazole, tebuconazole (TAZ), which was accompanied by propiconazole (PAZ) in selected experiments. The study was designed to mimic industrial settings used in window frame manufacturing. To investigate the TAZ fate in detail, loosely and strongly bound fractions were differentiated using a multi-step extraction. The loosely bound TAZ fraction extracted through two sonications accounted for 85± 5% of the total TAZ, while the strongly bound TAZ was extracted only with an exhaustive Soxhlet extraction and corresponded to the remaining 15± 5%. A significant fraction (∼80%) of the original TAZ remained in the wood despite a six-month exposure to harsh environmental conditions, maintaining wood preservation and assuring minimal environmental impact. Depletion of loosely bound TAZ was observed from cross-sectional surfaces when exposed to rain, high humidity and sunlight. Water leaching was deemed to be the major route leading to triazole losses from wood. Leaching rate was found to be slightly higher for TAZ than for PAZ. The contribution of bio-, photo- and thermal degradation of triazoles was negligible as both PAZ and TAZ sorbed in wood remained intact. Triazole evaporation was also found to be minor at the moderate temperature (20-25 °C) recorded throughout the outdoor study. Copyright © 2017 Elsevier Ltd. All rights reserved.
Production of the ammonium salt of 3,5-dinitro-1,2,4-triazole by solvent extraction
Lee, Kien Y.; Ott, Donald G.
1980-01-01
The ammonium salt of 3,5-dinitro-1,2,4-triazole has utility as a chemical explosive. In accordance with the present invention, it may readily be produced by solvent extraction using high-molecular weight, water-insoluble amines followed by amination with anhydrous ammonia gas. The aqueous reaction mixture produced in the synthesis of the parent compound, 3,5-dinitro-1,2,4-triazole, is quite suitable--and indeed is preferred--for use as the feed material in the process of the invention.
Niu, Teng-fei; Gu, Lin; Yi, Wen-bin; Cai, Chun
2012-05-14
An efficient copper-free protocol for the synthesis of 5-methyl-1H-1,2,3-triazole-modified peptidomimetics through the combination of Ugi four-component reaction with a three-component cycloaddition, has been developed. The copper-free straightforward process is suitable for drug discovery. The chemoselective preparation of 1,4-disubstituted, triazole-modified peptidomimetics by using alkynyl substituted amines may have potential biological and synthetic application. At last, a "Lapinski type" analysis of the physical properties was performed, which is expected to help drug discovery.
Liu, Chen-Jiang; Wang, Ji-De
2010-03-24
An efficient synthesis of novel 4-(2-phenyl-1,2,3-triazol-4-yl)-3,4-dihydro-pyrimidin-2(1H)-(thio)ones from 1,3-dicarbonyl compounds, 2-phenyl-1,2,3-triazole-4-carbaldehyde and urea or thiourea under ultrasound irradiation and using samarium perchlorate as catalyst is described. Compared with conventional methods, the main advantages of the present methodology are milder conditions, shorter reaction times and higher yields.
Production of the ammonium salt of 3,5-dinitro-1,2,4-triazole by solvent extraction
Lee, K.Y.; Ott, D.G.
1979-11-07
The ammonium salt of 3,5-dinitro-1,2,4-triazole has utility as a chemical explosive. In accordance with the present invention, it may readily be produced by solvent extraction using high-molecular weight, water-insoluble amines, followed by amination with anhydrous ammonia gas. The aqueous reaction mixture produced in the synthesis of the parent compound, 3,5-dinitro-1,2,4-triazole, is quite suitable - and indeed is preferred - for use as the feed material in the process of the invention.
Isolation of a Moderately Stable but Sensitive Zwitterionic Diazonium Tetrazolyl-1,2,3-triazolate.
Klapötke, Thomas M; Krumm, Burkhard; Pflüger, Carolin
2016-07-15
An unexpected formation of a diazonium compound was observed by nitration of an amino substituted triazolyl tetrazole with mixed acid. The crystal structure determination revealed a zwitterionic diazonium tetrazolyl-1,2,3-triazolate, whose constitution was supported by NMR and vibrational spectroscopic analysis. The thermal stability and sensitivity toward impact and friction were determined. In contrast, diazotriazoles are rather unstable and are mainly handled in solution and/or low temperatures, which is not the case for this diazonium tetrazolyl-1,2,3-triazolate, being stable at ambient temperature.
Goetz, Amber K; Dix, David J
2009-08-01
The mode of action for the reproductive toxicity of some triazole antifungals has been characterized as an increase in serum testosterone and hepatic response, and reduced insemination and fertility indices. In order to refine our mechanistic understanding of these potential modes of action, gene expression profiling was conducted on liver and testis from male Wistar Han IGS rats exposed to myclobutanil (500, 2000 ppm), propiconazole (500, 2500 ppm), or triadimefon (500, 1800 ppm) from gestation day six to postnatal day 92. Gene expression profiles indicated that all three triazoles significantly perturbed the fatty acid, steroid, and xenobiotic metabolism pathways in the male rat liver. In addition, triadimefon modulated expression of genes in the liver from the sterol biosynthesis pathway. Although expression of individual genes were affected, there were no common pathways modulated by all three triazoles in the testis. The pathways identified in the liver included numerous genes involved in phase I-III metabolism (Aldh1a1, Cyp1a1, Cyp2b2, Cyp3a1, Cyp3a2, Slco1a4, Udpgtr2), fatty acid metabolism (Cyp4a10, Pcx, Ppap2b), and steroid metabolism (Ugt1a1, Ugt2a1) for which expression was altered by the triazoles. These differentially expressed genes form part of a network involving lipid, sterol, and steroid homeostatic pathways regulated by the constitutive androstane (CAR), pregnane X (PXR), peroxisome proliferator-activated alpha, and other nuclear receptors in liver. These relatively high dose and long-term exposures to triazole antifungals appeared to perturb fatty acid and steroid metabolism in the male rat liver predominantly through the CAR and PXR signaling pathways. These toxicogenomic effects describe a plausible series of key events contributing to the disruption in steroid homeostasis and reproductive toxicity of select triazole antifungals.
Toxicogenomic effects common to triazole antifungals and conserved between rats and humans.
Goetz, Amber K; Dix, David J
2009-07-01
The triazole antifungals myclobutanil, propiconazole and triadimefon cause varying degrees of hepatic toxicity and disrupt steroid hormone homeostasis in rodent in vivo models. To identify biological pathways consistently modulated across multiple timepoints and various study designs, gene expression profiling was conducted on rat livers from three separate studies with triazole treatment groups ranging from 6 h after a single oral gavage exposure, to prenatal to adult exposures via feed. To explore conservation of responses across species, gene expression from the rat liver studies were compared to in vitro data from rat and human primary hepatocytes exposed to the triazoles. Toxicogenomic data on triazoles from 33 different treatment groups and 135 samples (microarrays) identified thousands of probe sets and dozens of pathways differentially expressed across time, dose, and species--many of these were common to all three triazoles, or conserved between rodents and humans. Common and conserved pathways included androgen and estrogen metabolism, xenobiotic metabolism signaling through CAR and PXR, and CYP mediated metabolism. Differentially expressed genes included the Phase I xenobiotic, fatty acid, sterol and steroid metabolism genes Cyp2b2 and CYP2B6, Cyp3a1 and CYP3A4, and Cyp4a22 and CYP4A11; Phase II conjugation enzyme genes Ugt1a1 and UGT1A1; and Phase III ABC transporter genes Abcb1 and ABCB1. Gene expression changes caused by all three triazoles in liver and hepatocytes were concentrated in biological pathways regulating lipid, sterol and steroid homeostasis, identifying a potential common mode of action conserved between rodents and humans. Modulation of hepatic sterol and steroid metabolism is a plausible mode of action for changes in serum testosterone and adverse reproductive outcomes observed in rat studies, and may be relevant to human risk assessment.
Sood, Rakhi; Donnadio, Anna; Giancola, Stefano; Kreisz, Aurélien; Jones, Deborah J; Cavaliere, Sara
2016-07-06
Microwave heating holds all the aces regarding development of effective and environmentally friendly methods to perform chemical transformations. Coupling the benefits of microwave-enhanced chemistry with highly reliable copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry paves the way for a rapid and efficient synthesis procedure to afford high performance thermoplastic materials. We describe herein fast and high yielding synthesis of 1,2,3-triazole-functionalized polysulfone through microwave-assisted CuAAC as well as explore their potential as phosphoric acid doped polymer electrolyte membranes (PEM) for high temperature PEM fuel cells. Polymers with various degrees of substitution of the side-chain functionality of 1,4-substituted 1,2,3-triazole with alkyl and aryl pendant structures are prepared by sequential chloromethylation, azidation, and microwave-assisted CuAAC using a range of alkynes (1-pentyne, 1-nonyne, and phenylacetylene). The completeness of reaction at each step and the purity of the clicked polymers were confirmed by (1)H-(13)C NMR, DOSY-NMR and FTIR-ATR spectroscopies. The thermal and thermochemical properties of the modified polymers were characterized by differential scanning calorimetry and thermogravimetric analysis coupled with mass spectroscopy (TG-MS), respectively. TG-MS analysis demonstrated that the commencement of the thermal degradation takes place with the decomposition of the triazole ring while its substituents have critical influence on the initiation temperature. Polysulfone functionalized with 4-phenyl-1,2,3-triazole demonstrates significantly higher Tg, Td, and elastic modulus than the ones bearing 4-propyl-1,2,3-triazole and 4-heptyl-1,2,3-triazole groups. After doping with phosphoric acid, the functionalized polymers with acid doping level of 5 show promising performance with high proton conductivity in anhydrous conditions (in the range of 27-35 mS/cm) and satisfactorily high elastic modulus (in the range of 332-349 MPa).
Inhibition of Rat and Human Steroidogenesis by Triazole Antifungals
Environmental chemicals that alter steroid production could interfere with male reproductive development and function. Three agricultural antifungal triazoles (myclobutanil, propiconazole and triadimefon) that are known to modulate expression of cytochrome P450 (CYP) genes and e...
Bokor, Éva; Kyriakis, Efthimios; Solovou, Theodora G A; Koppány, Csenge; Kantsadi, Anastassia L; Szabó, Katalin E; Szakács, Andrea; Stravodimos, George A; Docsa, Tibor; Skamnaki, Vassiliki T; Zographos, Spyros E; Gergely, Pál; Leonidas, Demetres D; Somsák, László
2017-11-22
Aryl substituted 1-(β-d-glucosaminyl)-1,2,3-triazoles as well as C-β-d-glucosaminyl 1,2,4-triazoles and imidazoles were synthesized and tested as inhibitors against muscle and liver isoforms of glycogen phosphorylase (GP). While the N-β-d-glucosaminyl 1,2,3-triazoles showed weak or no inhibition, the C-β-d-glucosaminyl derivatives had potent activity, and the best inhibitor was the 2-(β-d-glucosaminyl)-4(5)-(2-naphthyl)-imidazole with a K i value of 143 nM against human liver GPa. An X-ray crystallography study of the rabbit muscle GPb inhibitor complexes revealed structural features of the strong binding and offered an explanation for the differences in inhibitory potency between glucosyl and glucosaminyl derivatives and also for the differences between imidazole and 1,2,4-triazole analogues.
van der Knaap, Matthijs; Lageveen, Lianne T; Busscher, Henk J; Mars-Groenendijk, Roos; Noort, Daan; Otero, José M; Llamas-Saiz, Antonio L; van Raaij, Mark J; van der Marel, Gijsbert A; Overkleeft, Herman S; Overhand, Mark
2011-05-02
The influence of replacing the d-phenylalanine residue with substituted and unsubstituted azoles on the structure and biological activity of the antibiotic gramicidin S was investigated against a representative panel of Gram-positive and Gram-negative bacteria strains. Substituted triazole derivatives, obtained using a convergent synthetic strategy, are as active as gramicidin S, provided that any substituent on the triazole moiety is not too large. The unsubstituted triazole derivative was biologically less active than the parent natural product, gramicidin S. In general for the triazole series, the hemolytic activity could be correlated with the antibacterial activity, that is, the higher the antibacterial activity, the higher the toxicity towards blood cells. Interestingly, its imidazole counterpart showed high antibacterial activity, combined with significantly diminished hemolytic activity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Connell, J. W.; Hergenrother, P. M.; Wolf, P.
1992-01-01
Poly(arylene ether)s containing l,3,4-oxadiazole and 1,2,4-triazole units were prepared by the aromatic nucleophilic displacement reaction of bisphenol oxadiazole and bisphenol triazole compounds with activated aromatic dihalides. The polymers exhibited glass transition temperatures (Tg) ranging from 182 to 242 C, and several polymers exhibited melting transitions (Tm) ranging from 265 to 390 C. Inherent viscosities ranged from 1.02 to 3.40 dl/g, indicating relatively high molecular weights. Thin films exhibited tensile strengths, moduli, and elongations at 23 C of 90-110 MPa, 2.7-3.6 GPa, and 4-7 percent, respectively. Titanium-to-titanium tensile shear specimens of a poly(arylene ether 1,3,4-oxadiazole) exhibited tensile shear strengths at 23 and 150 C of 22.1 and 17.9 MPa, respectively.
Bortolot, Carolina S; da S M Forezi, Luana; Marra, Roberta K F; Reis, Marcelo I P; Sa, Barbara V F E; Filho, Ricardo Imbroisi; Ghasemishahrestani, Zeinab; Sola-Penna, Mauro; Zancan, Patricia; Ferreira, Vitor F; de C da Silva, Fernando
2018-05-23
Low molecular weight 1,2,3-triazoles and naphthoquinones are endowed with various types of biological activity, such as against cancer, HIV and bacteria. However, in some cases, the conjugation of these two nuclei considerably increases their biological activities Objective: In this work, we decided to study the synthesis and screening of bis-naphthoquinones and xanthenes tethered to 1,2,3-triazoles against cancer cell lines, specifically the human breast cancer cell line MCF-7. Starting from lawsone and aryl-1H-1,2,3-triazole-4-carbaldehydes (10a-h) several new 7-(1-aryl-1H-1,2,3-triazol-4-yl)-6H-dibenzo[b,h]xanthene-5,6,8,13(7H)-tetraones (12a-h) and 3,3'-((1-aryl-1H-1,2,3-triazol-4-yl)methylene)bis(2-hydroxynaphthalene-1,4-diones) 11a-h were synthesized and evaluated for their cytotoxic activities using the human breast cancer cell line MCF-7 and the non-tumor cell line MCF10A as control. We performed test of cell viability, cell proliferation, intracellular ATP content and cell cytometry to determine reactive oxygen species (ROS) formation. Based on these results, we found that compound 12a promote ROS production, interfering with energy metabolism, cell viability and proliferation, and thus promoting an whole cell damage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Triadimefon, a triazole fungicide, has been observed to increase locomotion and induce stereotyped behavior in rodents. he present experiments characterized the stereotyped behavior induced by triadimefon using a computer-supported observational method, and tested the hypothesis ...
Coumarin incorporated triazoles: a new class of anticonvulsants.
Bhat, Mashooq A; Al-Omar, Mohammed A
2011-01-01
A series of coumarin incorporated 1,2,4- triazole compounds (1-14) were evaluated for their possible anticonvulsant and neurotoxic properties, log P values, pharmacophoric mapping and three dimensional structure analysis. Compound (6) with para-fluoro substitution showed significant anticonvulsant activity.
Toxicogenomic Effects Common to Triazole Antifungals and Conserved Between Rats and Humans
The triazole antifungals myclobutanil, propiconazole and triadimefon cause varying degrees of hepatic toxicity and disrupt steroid hormone homeostasis in rodent in vivo models. To identify biological pathways consistently modulated across multiple time-points and various study d...
1,4-Bis(4H-1,2,4-triazol-4-yl)benzene dihydrate
Wang, Xiu-Guang; Li, Jian-Hui; Ding, Bin; Du, Gui-Xiang
2012-01-01
The asymmetric unit of the title compound, C10H8N6·2H2O, comprises half the organic species, the molecule being completed by inversion symmetry, and one water molecule. The dihedral angle between the 1,2,4-triazole ring and the central benzene ring is 32.2 (2)°. The water molecules form O—H⋯N hydrogen bonds with N-atom acceptors of the triazole rings. C—H⋯N hydrogen bonds are also observed, giving a three-dimensional framework. PMID:22904851
Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method
NASA Astrophysics Data System (ADS)
Li, Ailin; Yan, Tianying; Shen, Panwen
Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer.
Antibacterial and antifungal metal based triazole Schiff bases.
Chohan, Zahid H; Hanif, Muhammad
2013-10-01
A new series of four biologically active triazole derived Schiff base ligands (L(1)-L(4)) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (1-16) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.
Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers.
Sum, Tze Han; Sum, Tze Jing; Galloway, Warren R J D; Collins, Súil; Twigg, David G; Hollfelder, Florian; Spring, David R
2016-09-16
Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability) and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.
Triazole-induced toxicity in developing rare minnow (Gobiocypris rarus) embryos.
Zhu, Bin; Liu, Lei; Gong, Yu-Xin; Ling, Fei; Wang, Gao-Xue
2014-12-01
Using rare minnow (Gobiocypris rarus) at early-life stages as experimental models, the developmental toxicity of five widely used triazole fungicides (myclobutanil, fluconazole, flusilazole, triflumizole, and epoxiconazole) were investigated following exposure to 1-15 mg/L for 72 h. Meanwhile, morphological parameters (body length, body weight, and heart rate), enzyme activities (superoxide dismutase (SOD), glutathione S-transferase (GST), adenosine triphosphatase (ATPase), and acetyl cholinesterase (AChE)), and mRNA levels (hsp70, mstn, mt, apaf1, vezf1, and cyp1a) were also recorded following exposure to 0.2, 1.0, and 5.0 mg/L for 72 h. Results indicated that increased malformation and mortality, decreased body length, body weight, and heart rate provide a concentration-dependent pattern; values of 72 h LC50 (median lethal concentration) and EC50 (median effective concentration) ranged from 3 to 12 mg/L. Most importantly, the results of the present study suggest that even at the lowest concentration, 0.2 mg/L, five triazole fungicides also caused notable changes in enzyme activities and mRNA levels. Overall, the present study points out that those five triazole fungicides are highly toxic to the early development of G. rarus embryos. The information presented in this study will be helpful in better understanding the toxicity induced by triazole fungicides in fish embryos.
Gajanan Khanage, Shantaram; Raju, Appala; Baban Mohite, Popat; Bhanudas Pandhare, Ramdas
2013-01-01
Purpose: In the present study in vivo analgesic activity of some previously synthesized 1,2,4-triazole derivatives containing pyrazole, tetrazole, isoxazole and pyrimidine ring have been evaluated. Methods: Acetic acid induced writhing method and Hot plate method has been described to study analgesic activity of some 1,2,4-triazole derivatives containing pyrazole, tetrazole, isoxazole and pyrimidine as a pharmacological active lead. Results: Thirty six different derivatives containing 1,2,4-triazole ring were subjected to study their in vivo analgesic activity. Chloro, nitro and methoxy, hydroxy and bromo substituted derivatives showed excellent analgesic activity and dimethylamino, furan and phenyl substituted derivatives showed moderate analgesic activity in both of the methods. Compounds IIIa, IIId, IIIf, IIIi, IIIj, IVa, IVb, IVd, IVf, IVh, IVj IV3a and IIj were found to be superior analgesic agents after screening by Acetic acid induced writhing method. Compounds IIIb, IIId, IIIf, IIIh, IIIj, IVa, IVb, IVd, IVf, IVh, IVi, IV3c, IV3e and IIj were showed analgesic potential after screening of Hot plate method. Conclusion: All tested compounds containing 1,2,4-triazole were found to be promising analgesic agents, for this activity pyrazole, tetrazole, isoxazole and pyrimidine leads might be supported. PMID:24312806
Normal Raman spectroscopy was evaluated as a metabolomic tool for assessing the impacts of exposure to environmental contaminants, using rat urine collected during the course of a toxicological study. Specifically, one of three triazole fungicides, myclobutanil, propiconazole or ...
Baietto, Lorena; D'Avolio, Antonio; Marra, Cristina; Simiele, Marco; Cusato, Jessica; Pace, Simone; Ariaudo, Alessandra; De Rosa, Francesco Giuseppe; Di Perri, Giovanni
2012-11-01
Therapeutic drug monitoring (TDM) of triazoles is widely used in clinical practice to optimize therapy. TDM is limited by technical problems and cost considerations, such as sample storage and dry-ice shipping. We aimed to develop and validate a new method to analyse itraconazole, posaconazole and voriconazole in plasma spotted on dry sample spot devices (DSSDs) and to quantify them by an HPLC system. Extraction from DSSDs was done using n-hexane/ethyl acetate and ammonia solution. Samples were analysed using HPLC with mass spectrometry (HPLC-MS). Accuracy and precision were assayed by inter- and intra-day validation. The stability of triazoles in plasma spotted on DSSDs was investigated at room temperature for 1 month. The method was compared with a validated standard HPLC method for quantification of triazoles in human plasma. Mean inter- and intra-day accuracy and precision were <15% for all compounds. Triazoles were stable for 2 weeks at room temperature. The method was linear (r(2) > 0.999) in the range 0.031-8 mg/L for itraconazole and posaconazole, and 0.058-15 mg/L for voriconazole. High sensitivity was observed; limits of detection were 0.008, 0.004 and 0.007 mg/L for itraconazole, posaconazole and voriconazole, respectively. A high degree of correlation (r(2) > 0.94) was obtained between the DSSD method and the standard method of analysis. The method that we developed and validated to quantify triazoles in human plasma spotted on DSSDs is accurate and precise. It overcomes problems related to plasma sample storage and shipment, allowing TDM to be performed in a cheaper and safer manner.
Triazole induced drought tolerance in horse chestnut (Aesculus hippocastanum).
Percival, Glynn C; Noviss, Kelly
2008-11-01
We determined the influence of the triazole derivatives paclobutrazol, penconazole, epixiconazole, propiconazole and myclobutanil on the drought tolerance and post drought recovery of container-grown horse chestnut (Aesculus hippocastanum L.) saplings. Myclobutanil neither conferred drought resistance, as assessed by its effects on a number of physiological and biochemical parameters, nor affected growth parameters measured after recovery from drought. Chlorophyll fluorescence (F(v)/F(m)), photosynthetic rates, total foliar chlorophyll and carotenoid concentrations, foliar proline concentration and superoxide dismutase and catalase activities were consistently higher and leaf necrosis and cellular electrolyte leakage was lower at the end of a 3-week drought in trees treated with paclobutrazol, penconazole, epixiconazole or propiconazole than in control trees. Twelve weeks after drought treatment, leaf area and shoot, root and total plant dry masses were greater in triazole-treated trees than in control trees with the exception of those treated with myclobutanil. In a separate study, trees were subjected to a 2-week drought and then sprayed with paclobutrazol, penconazole, epixiconazole, propiconazole or myclobutanil. Chlorophyll fluorescence, photosynthetic rate, foliar chlorophyll concentration and catalase activity over the following 12 weeks were 20 to 50% higher in triazole-treated trees than in control trees. At the end of the 12-week recovery period, leaf area and shoot, root and total plant dry masses were higher in triazole-treated trees than in control trees, with the exception of trees treated with myclobutanil. Application of triazole derivatives, with the exception of myclobutanil, enhanced tolerance to prolonged drought and, when applied after a 2-week drought, hastened recovery from drought. The magnitude of treatment effects was in the order epixiconazole approximately propiconazole > penconazole > paclobutrazol > myclobutanil.
Tala, Srinivasa R; Singh, Anamika; Lensing, Cody J; Schnell, Sathya M; Freeman, Katie T; Rocca, James R; Haskell-Luevano, Carrie
2018-05-16
The melanocortin system is involved in the regulation of complex physiological functions, including energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. The five melanocortin receptors that belong to the superfamily of G protein-coupled receptors (GPCRs) are regulated by endogenously expressed agonists and antagonists. The aim of this study was to explore the potential of replacing the disulfide bridge in chimeric AGRP-melanocortin peptide Tyr-c[Cys-His-d-Phe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH 2 (1) with 1,2,3-triazole moieties. A series of 1,2,3-triazole-bridged peptidomimetics were designed, synthesized, and pharmacologically evaluated at the mouse melanocortin receptors. The ligands possessed nanomolar to micromolar agonist cAMP signaling potency. A key finding was that the disulfide bond in peptide 1 can be replaced with the monotriazole ring with minimal effect on the functional activity at the melanocortin receptors. The 1,5-disubstituted triazole-bridged peptide 6 showed equipotent functional activity at the mMC3R and modest 5-fold decreased agonist potency at the mMC4R compared to those of 1. Interestingly, the 1,4- and 1,5-disubstituted isomers of the triazole ring resulted in different selectivities at the receptor subtypes, indicating subtle structural features that may be exploited in the generation of selective melanocortin ligands. Introducing cyclic and acyclic bis-triazole moieties into chimeric AGRP template 1 generally decreased agonist activity. These results will be useful for the further design of neuronal chemical probes for the melanocortin receptors as well as in other receptor systems.
Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected ...
Toxicogenomic analysis of five environmental chemicals was performed to investigate the ability of genomics to predict toxicity, categorize chemicals, and elucidate mechanisms of toxicity. Three triazole antifungals (myclobutanil, propiconazole, and triadimefon) and two perfluori...
Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected ...
Significant rate accelerated synthesis of glycosyl azides and glycosyl 1,2,3-triazole conjugates.
Kumar, Rishi; Maulik, Prakas R; Misra, Anup Kumar
2008-10-01
An efficient and significantly rapid access of a series of glycosyl azides and glycosyl 1,2,3-triazole conjugates is reported using modified one-pot reaction conditions. In both cases yields were excellent and single diastereomers were obtained.
NASA Astrophysics Data System (ADS)
Meng, Shuang; Zhao, Yanying; Xue, Jiadan; Zheng, Xuming
2018-02-01
In the paper, diverse tautomers of 3-amino-1,2,4-triazole (3AT) in solid and polar solvent have been explored by FT-IR, FT-Raman and 488 nm Raman experiments combing with quantum chemical theoretical calculation using PCM solvent model and normal mode analysis. The vibrational spectra prefer the 3-amino-1,2,4-2H-triazole (2H-3AT) dimer in solid, while in a polar solvent 3AT is apt to the 3-amino-1,2,4-2H-triazole (2H-3AT) monomer. The significant wavenumber difference and Raman intensity patterns in solid and different solvents are induced by hydrogen bond perturbation along > NH ⋯ N ≤ hydrogen bonds on five-membered N-heterocyclic ring. The ground state proton transfer reaction mechanism along the five-membered N-heterocyclic ring is supported by intermolecular hydrogen bonding between 3AT and protonic solvent molecules.
Diaquabis{5-carboxy-2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-imidazole-4-carboxylato}manganese(II)
Ding, De-Gang; Tong, Yan
2010-01-01
In the title compound, [Mn(C8H6N5O4)2(H2O)2], the MnII ion is situated on an inversion center and is six-coordinated by two N and two O atoms from two L ligands (HL = 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-imidazole-4,5-dicarboxylic acid) and two water molecules in a distorted octahedral geometry. In ligand L, the imidazole and triazole rings form a dihedral angle of 74.25 (8)°. Molecules are assembled into a three-dimensional structure via intermolecular O—H⋯O, O—H⋯N and N—H⋯N hydrogen-bonds, and π–π interactions with a short distance of 3.665 (2) Å between the centroids of the imidazole and triazole rings of neighbouring molecules. PMID:21579014
Ünver, Yasemin; Deniz, Sadik; Çelik, Fatih; Akar, Zeynep; Küçük, Murat; Sancak, Kemal
2016-01-01
Compound 2 was synthesized by reacting CS 2 /KOH with compound 1. The treatment of compound 2 with hydrazine hydrate produced compound 3. Then, compound 3 was converted to Schiff bases (4a-d) by the handling with several aromatic aldehydes. The treatment of triazole compounds 4a-d containing Schiff base with morpholine gave compounds 5a-d. All compounds were tested for their antioxidant and antimicrobial activities. The antioxidant test results of DPPH• radical scavenging and ferric reducing/antioxidant power methods showed good antioxidant activity. The triazole-thiol (3) was the most active, and the effect of the substituent type of the thiophene ring on the activity was same for both Schiff bases (4a-d) and Mannich bases (5a-d). Among the newly synthesized triazole derivatives, the Schiff base 4d and the Mannich base 5d carrying nitro substituent on the thiophene ring showed promising antibacterial and antifungal activity, with lower MIC values than the standard antibacterial ampicillin.
NASA Astrophysics Data System (ADS)
Bharty, M. K.; Paswan, S.; Dani, R. K.; Singh, N. K.; Sharma, V. K.; Kharwar, R. N.; Butcher, R. J.
2017-02-01
Syntheses of a polymeric Cd(II) complex, [Cd(mptt)2]n (1), a trinuclear Ni(II) complex, [Ni3(μ-mptt)4(μ-H2O)2(H2O)2(ttfa)2]·3H2O (2) and a mononuclear Ni(II) complex [Ni(mptt)2(en)2] (3) have been performed using the ligand 5-methyl-4-phenyl-1,2,4-triazole-3-thione (Hmptt) and nickel(II)/cadmium(II) salts {ttfa = thenoyltrifluroacetonate). The ligand and the complexes have been characterized by various physicochemical methods in addition to their single crystal X-ray structure. The Cd centre in complex 1 adopts a distorted tetrahedral geometry with one sulfur atom and two mptt ligands provide three nitrogen atoms from three triazole units. The sulfur atom of the ligand binds covalently and overall the ligand acts as uninigative N,S/N,N bidentate moiety. The polymeric structure of complex 1 results from the N atoms of the neighboring triazole units coordinating with the Cd(II) centre. The three Ni(II) centres in the trinuclear Ni(II) complex 2 form a linear arrangement and all have six coordinated arrangements. The middle Ni(II) binds with four deprotonated triazole ring nitrogens and two water molecules form two bridges. The terminal Ni(II) centres bind through two thenoyl oxygens, two triazole nitrogens and water molecules that formed bridges with the middle Ni centre. In complex 3, the nickel(II) centre is covalently bonded through two deprotonated triazole ring nitrogens from two ligand moieties and other four sites are occupied by four nitrogens from two bidentate en ligands. Thermogravimetric analyses (TGA) of the complexes indicated for NiO as the final residue. The bioefficacy of the ligand and complexes 2 and 3 have been examined against the growth of bacteria to evaluate their anti-microbial potential. Complex 2 showed high antibacterial activity as compared to the ligand and complex 3. Complexes 1, 2 and 3 are fluorescent materials with maximum emissions at 425, 421 and 396 nm at an excitation wavelength of 323, 348 and 322 nm, respectively.
3-nitro-1,2,4-triazol-5-one: A less sensitive explosive
Lee, Kien-Yin; Coburn, M.D.
1987-01-30
A less sensitive explosive, 3-nitro-1,2,4-triazol-5-one. The compound 3-nitro--1,2,4-triazol-5-one (NTO) has a crystal density of 1.93 g/cm/sup 3/ and calculated detonation velocity and pressure equivalent to those of RDX. It can be prepared in high yield from inexpensive starting materials in a safe synthesis. Results from initial small-scale sensitivity tests indicate that NTO is less sensitive than RDX and HMX in all respects. A 4.13 cm diameter, unconfined plate-dent test at 92% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation. 3 tabs.
3-nitro-1,2,4-triazol-5-one, a less sensitive explosive
Lee, Kien-Yin; Coburn, Michael D.
1988-01-01
A less sensitive explosive, 3-nitro-1,2,4-triazol-5-one. The compound 3-nitro-1,2,4-triazol-5-one (NTO) has a crystal density of 1.93 g/cm.sup.3 and calculated detonation velocity and pressure equivalent to those of RDX. It can be prepared in high yield from inexpensive starting materials in a safe synthesis. Results from initial small-scale sensitivity tests indicate that NTO is less sensitive than RDX and HMX in all respects. A 4.13 cm diameter, unconfined plate-dent test at 92% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation.
AN IN SILICO INVESTIGATION OF THE ENANTIOSELECTIVE METABOLISM RATES OF TRIAZOLE FUGICIDES
The objective of this work is to use in silico methods such as ab initio quantum and classical force-field methods to explore and develop an understanding for the enantioselective metabolism rates experimentally observed in the triazole fungicide bromuconazole. This directed stud...
Triazole containing compounds are used extensively in both agriculture and medicine for the control of fungal infections. Recently, emphasis has been placed on the potential adverse effects of these compounds within mammalian systems. Triadimefon is a common agricultural fungici...
The mode of action for the reproductive toxicity of triazole antifungals have been previously characterized by an observed increased in serum testosterone, hepatotoxicity, and reduced insemination and fertility indices. In order to refine our mechanistic understanding of these m...
Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...
Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...
Preparation of 1,1'-dinitro-3,3'-azo-1,2,4-triazole
Lee, Kien-Yin
1986-01-01
A new high density composition of matter, 1,1'-dinitro-3,3'-azo-1,2,4-triazole, has been synthesized using inexpensive, commonly available compounds. This compound has been found to be an explosive, and its use as a propellant is anticipated.
Triazoles are a class of fungicides widely used in both pharmaceutical and agricultural applications. These compounds elicit a variety of toxic effects including disruption of normal metabolic processes such as steroidogenesis. Metabolomics is used to measure dynamic changes in e...
Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives.
Petrova, Krasimira T; Potewar, Taterao M; Correia-da-Silva, Paula; Barros, M Teresa; Calhelha, Ricardo C; Ćiric, Ana; Soković, Marina; Ferreira, Isabel C F R
2015-11-19
A library of 1-(1',2,3,3',4,4',6-hepta-O-acetyl-6'-deoxy-sucros-6'-yl)-1,2,3-triazoles have been investigated for their antibacterial, antifungal and cytotoxic activities. Most of the target compounds showed good inhibitory activity against a variety of clinically and food contaminant important microbial pathogens. In particular, 1-(1',2,3,3',4,4',6-hepta-O-acetyl-6'-deoxy-sucros-6'-yl)-4-(4-pentylphenyl)-1,2,3-triazole (5) was highly active against all the tested bacteria with minimal inhibitory concentrations (MICs) ranging between 1.1 and 4.4 µM and bactericidal concentrations (MBCs) from 2.2 and 8.4 µM. The compound 1-(1',2,3,3',4,4',6-hepta-O-acetyl-6'-deoxy-sucros-6'-yl)-4-(4-bromophenyl)-1,2,3-triazole (3) showed antifungal activity with MICs from 0.6 to 4.8 µM and minimal fungicidal concentrations (MFCs) ranging between 1.2 and 8.9 µM. Furthermore, some of the compounds possessed moderate cytotoxicity against human breast, lung, cervical and hepatocellular carcinoma cell lines, without showing toxicity for non-tumor liver cells. The above mentioned derivatives represent promising leads for the development of new generation of sugar-triazole antifungal agents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhen, Xu; Cheng, Guangbin; Yang, Hongwei; Zhang, Jiaheng; Shreeve, Jean'ne M
2018-05-15
3-Nitro-4-(5-nitro-1,2,4-triazol-3-yl)furazan (2), N,N'-bis(trinitroethyl)-3,5'-diamino-4-(1,2,4-triazol-3-yl)furazan (3), N,N'-bis(trinitroethyl)-3,5'-dinitramino-4-(1,2,4-triazol-3-yl)furazan (4) and eighteen nitrogen-rich salts (5a, 5b,5d⁓5i, 5g-1, 6a⁓6i) were designed and synthesized. These 4-(1,2,4-triazole-5-yl)furazan derivatives were fully characterized by IR and NMR spectra, elemental analysis, and differential scanning calorimetry (DSC). The solid-state structures of 2, 5d, 5e, 5h, 5g-1, 6g, and 6i were confirmed via single crystal X-ray analysis. Detonation performance (detonation velocities and pressures) of these energetic compounds was evaluated and the impact and friction sensitivities were measured using standard BAM technology. Some of the compounds, e.g., 2 (D: 9152 m s-1, P = 37.1 GPa) and 4 (D: 9355 m s-1, P = 40.1 GPa) exhibit excellent detonation performance, which are comparable to the highly explosive benchmarks such as RDX (D: 8795 m s-1, P = 34.9 GPa) and HMX (D: 9144 m s-1, P = 39.2 GPa). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Yao-Jia; Luo, Yang-Hui; Wang, Jing-Wen; Chen, Chen; Sun, Bai-Wang
2018-02-01
Three salts: 3-amino-1,2,4-triazolinium (1+) hydrogen oxalate (1), 3-amino-1,2, 4-triazolinium (1+) hydrogen malonate (2), 3-amino-1,2,4-triazolinium (1+) hydrogen succinate (3) and one co-crystal: 3-amino-1,2,4-triazole-adipic acid (4) have been prepared and characterized by differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), IR, Raman, and single-crystal X-ray diffraction. Wherein, supramolecular motif in salts 1, 3 and co-crystal 4 were dominant by triazole-acid and amino-acid heterosynthon, while salt 2 dominant by amino-triazole homosynthon in addition to triazole-acid heterosynthon, which attribute to the intermolecular hydrogen interactions within hydrogen malonate anion. These results have a close relationship with the ΔpKa between 3-ATZ and alkyl acids, we found that the ΔpKa is grate than 6.9, the formation of salt will be expected, while the formation of co-crystal usually with the ΔpKa less than 6.75. It is interesting that salts 2 and 3 show the phenomenon of proton transfer after melt, which lead to the stepwise sublimation of the two components. The differences between salts and co-crystal were also revealed by the solid-state vibrational spectroscopy (IR and Raman), Hirshfeld surface analysis and UV spectra.
Screening the efficient biological prospects of triazole allied mixed ligand metal complexes
NASA Astrophysics Data System (ADS)
Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan
2017-12-01
Triazole appended mixed ligand complexes (1-8) of the general formula [ML (bpy/phen)2]Cl2, where M = Cu(II), Co(II), Ni(II) and Zn(II), L = triazole appended Schiff base (E)sbnd N-(4-nitrobenzylidene)-1H-1,2,4-triazol-3-amine and bpy/phen = 2,2‧-bipyridine/1,10-phenanthroline, have been synthesized. The design and synthesis of this elaborate ligand has been performed with the aim of increasing stability and conjugation of 1,2,4 triazole, whose Schiff base derivatives are known as biologically active compounds thereby exploring their DNA binding affinity and other biological applications. The compounds have been comprehensively characterized by elemental analysis, spectroscopic methods (IR, UV-Vis, EPR, 1H and 13C NMR spectroscopy), ESI mass spectrometry and magnetic susceptibility measurements. The complexes were found to exhibit octahedral geometry. The complexes 1-8 were subjected to DNA binding techniques evaluated using UV-Vis absorption, CV, CD, Fluorescence spectroscopy and hydrodynamic measurements. Complex 5 showed a Kb value of 3.9 × 105 M-1. The DNA damaging efficacy for the complexes was observed to be high compared to the ligand. The antimicrobial screening of the compounds against bacterial and fungal strains indicates that the complexes possess excellent antimicrobial activity than the ligand. The overall biological activity of the complexes with phen as a co-ligand possessed superior potential than the ligand.
Behl, Gautam; Sikka, Manisha; Chhikara, Aruna; Chopra, Madhu
2014-02-15
Click chemistry has found wide application in drug discovery, bioconjugation reactions, polymer chemistry and synthesis of amphiphilic materials with pharmaceutical and biomedical applications. Triazole substitution via a click reaction alters photophysical properties of coumarin. Both coumarin and triazole moieties participate in π-π stacking interactions. Hence it should be possible to prepare fluorescent self-assembly systems by conjugation of coumarin to poly (ethylene glycol) (PEG) via click reactions exhibiting hydrophilic, hydrophobic and π-π stacking interactions. Moreover, the materials can be suitable platforms to assess fluorescence modulation effect of triazole substitution on coumarins. PEG supported coumarin conjugates were synthesized and the fluorescence modulation effect of the formation of triazole on coumarin was assessed. Their aggregation properties were studied by surface tension measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), fluorescence and (1)H NMR spectroscopy. The conjugates were found to form nanoaggregates in the size range of 100-120 nm with a negative free energy of micellization (~-27 kJ mol(-1)) confirming aggregation and self-assembly. The Quantum yield of 4-methyl-7-propargylcoumarin (7P4MC) was enhanced after triazole formation with azide functionalized PEG (methoxy-PEG350 azide). The conjugates were found to exhibit π-π stacking interactions in addition to hydrophilic and hydrophobic interactions. They were found to be biocompatible with human pancreatic cancer cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Fang, Yuyu; Li, Caixia; Wu, Lei; Bai, Bing; Li, Xing; Jia, Yiming; Feng, Wen; Yuan, Lihua
2015-09-07
A novel non-symmetric pillar[5]arene bearing triazole-linked 8-oxyquinolines at one rim was synthesized and demonstrated as a sequential fluorescence sensor for thorium(iv) followed by fluoride ions with high sensitivity and selectivity.
Trans-Bromuconazole is a chiral chemical representative of a class of triazole-derivatives known to inhibit specific fungal cytochrome P450 (CYP) reactions. Kinetic measurements and delineation of metabolic pathways for triazole chemicals within in vitro hepatic microsomes are ne...
METABOLOMIC EVALUATION OF RAT LIVER AND TESTIS TO CHARACTERIZE THE TOXICITY OF TRIAZOLE FUNGICIDES
The effects of two triazole fungicides, myclobutanil and triadimefon, on endogenous rat metabolite profiles in blood serum, liver, and testis was assessed using proton nuclear magnetic resonance (1H-NMR) spectroscopy. Adult male Sprague-Dawley rats were dosed daily by gavage for...
Najahi, Ennaji; Sudor, Jan; Chabchoub, Fakher; Nepveu, Françoise; Zribi, Fethi; Duval, Romain
2010-12-03
In this paper we present the room temperature synthesis of a novel serie of 1,4-disubstituted-1,2,3-triazoles 4a-l by employing the (3+2) cycloaddition reaction of pyrimidinones containing alkyne functions with different model azides in the presence of copper sulphate and sodium ascorbate. To obtain the final triazoles, we also synthesized the major precursors 6-amino-5-cyano-1,4-disubstituted-2(1H)-pyrimidinones 3a-r from ethyl 2,2-dicyanovinylcarbamate derivatives 2a-c and various primary aromatic amines containing an alkyne group. The triazoles were prepared in good to very good yields.
Mo, Jun-Ming; Ma, Yang-Guang; Cheng, Ying
2009-12-07
2-(2-Alkoxycarbonyl-1-arylamino-1-propenyl)benzimidazolium and 5-(2-alkoxycarbonyl-1-arylamino-1-propenyl)triazolium salts were synthesized in good yields from the reaction of benzimidazole and triazole carbenes with ketenimines. Upon treatment with a base, both salts were converted into novel 1,3-dipoles which underwent [3+2] cycloaddition reactions with electron-deficient alkynes and allenes to produce benzimidazole-spiro-pyrroles or triazole-spiro-pyrroles. This work provides novel synthons for the construction of multifunctional spiro-pyrrole derivatives that are not easy accessible by other synthetic methods and are potentially amenable to further transformations.
Triazole-linked DNA as a primer surrogate in the synthesis of first-strand cDNA.
Fujino, Tomoko; Yasumoto, Ken-ichi; Yamazaki, Naomi; Hasome, Ai; Sogawa, Kazuhiro; Isobe, Hiroyuki
2011-11-04
A phosphate-eliminated nonnatural oligonucleotide serves as a primer surrogate in reverse transcription reaction of mRNA. Despite of the nonnatural triazole linkages in the surrogate, the reverse transcriptase effectively elongated cDNA sequences on the 3'-downstream of the primer by transcription of the complementary sequence of mRNA. A structure-activity comparison with the reference natural oligonucleotides shows the superior priming activity of the surrogate containing triazole-linkages. The nonnatural linkages also protect the transcribed cDNA from digestion reactions with 5'-exonuclease and enable us to remove noise transcripts of unknown origins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sumrra, Sajjad H; Chohan, Zahid H
2013-12-01
The condensation reaction of 3,5-diamino-1,2,4-triazole with methoxy-, chloro-, bromo-, iodo- and nitro-substituted 2-hydroxybenzaldehydes formed triazole Schiff bases (L(1))-(L(6)). The synthesized ligands have been characterized through physical, spectral and analytical data. Furthermore, the reaction of synthesized Schiff bases with the oxovanadium(IV) sulphate in (1:2) (metal:ligand) molar ratio afforded the oxovanadium(IV) complexes (1)-(6). All the complexes were non-electrolytic and showed a square-pyramidal geometry. The synthesized compounds have been screened for in-vitro antibacterial, antifungal and brine shrimp bioassay. The bioactivity data showed the complexes to be more active than the original Schiff bases.
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) is an important disease of small grains and is caused mainly by members of the Fusarium graminearum species complex (FGSC). Barley growers in Brazil rely on fungicides, especially triazoles, to suppress the disease and limit mycotoxin contamination of grain. Information on...
3-Benzylsulfanyl-1H-1,2,4-triazol-5-amine
Zhang, Shuai; Liu, Pei-Jiang; Ma, Dong-Sheng; Hou, Guang-Feng
2012-01-01
In the title molecule, C9H10N4S, the dihedral angle between the benzene and triazole rings is 81.05 (5)°. In the crystal, N—H⋯N hydrogen bonds link the molecules into infinite zigzag chains along [010]. PMID:22259582
Kinetic analysis of xenobiotic metabolism using in vitro hepatic microsomes are needed for predictive in vivo physiological modeling. Recently, much emphasis has been placed on the adverse effects of triazole fungicides in mammalian steroid metabolism. In vitro metabolism of the ...
What is the study?
Conazoles are triazole- or imidazole-containing fungicides that are used in agriculture and medicine. Conazoles can induce follicular cell adenomas of the thyroid in rats after chronic bioassay. The goal of this study was to identify pathways and network...
The 1,2,4-triazole fungicides (i.e., conazoles) are potent cytochrome P450 (CYP) modulators and have been used extensively in agriculture and medicine. Recently, emphasis has been placed on the potential adverse effects of these compounds on mammalian steroid biosynthesis and en...
The objective of this work is to use the Exposure Related Dose Estimating Model (ERDEM) and quantitative structure-activity relationship (QSAR) models to develop an assessment tool for human exposure assessment to triazole fungicides. A dermal exposure route is used for the physi...
THE IN VITRO PHASE I METABOLISM OF THE TRIAZOLE FUNGICIDE BROMUCONAZOLE AND ITS FOUR ENANTIOMERS
The triazole fungicide bromuconazole contains two chiral centers and exists as two diastereomers, each with two enantiomers. It has been widely used as a mixture of its diastereomers on food products. Here we report on the in vitro metabolism of the individual and combined dias...
A facile and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles using click chemistry
The reaction of α-tosyloxy ketones, sodium azide and terminal alkynes in presence of copper(I) in aqueous polyethylene glycol afforded regioselectively 1,4-disubstituted 1,2,3-triazoles in good yield at ambient temperature. The one-pot exclusive formation of 1,4-disubstituted 1,2...
Lopes, Susana M M; Novais, Juliana S; Costa, Dora C S; Castro, Helena C; Figueiredo, Agnes Marie S; Ferreira, Vitor F; Pinho E Melo, Teresa M V D; da Silva, Fernando de Carvalho
2018-01-01
The generation and reactivity of 3-triazolyl-nitrosoalkenes are reported for the first time. The study showed that hetero-Diels-Alder reaction of these heterodienes is an interesting synthetic strategy to functionalized 1,2,3-triazoles, including 1,2,3-triazolyl-pyrroles, 1,2,3-triazolyl-dipyrromethanes and 1,2,3-triazolyl-indoles. The evaluation of the antibacterial profile against Gram-positive and Gram-negative strains revealed the new 5,5'-diethyldipyrromethane bearing a side chain incorporating a triazole and oxime moieties. The antibacterial profile detected was within the Clinical and Laboratory Standard Institute (CLSI) range and against important Staphylococcus species including Methicillin-resistant strain (S. aureus ATCC 25923, S. epidermidis ATCC 12228 and S. simulans ATCC 27851 and MRSA). Interestingly, this new 1,2,3-triazole presented hemocompatibility and low in silico toxicity profile similar to antibiotics current in use. It also has an usual antibiofilm activity against MRSA, which reinforced its potential as a new antibacterial prototype. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajasekar, Mahalingam; Rabert, Gabriel Amalan; Manivannan, Paramasivam
2016-06-01
In this investigation, pot culture experiment was carried out to estimate the ameliorating effect of triazole compounds, namely Triadimefon (TDM), Tebuconazole (TBZ), and Propiconazole (PCZ) on drought stress, photosynthetic pigments, and biochemical constituents of Zea mays L. (Maize). From 30 days after sowing (DAS), the plants were subjected to 4 days interval drought (DID) stress and drought with TDM at 15 mg l-1, TBZ at 10 mg l-1, and PCZ at 15 mg l-1. Irrigation at 1-day interval was kept as control. Irrigation performed on alternative day. The plant samples were collected on 40, 50, and 60 DAS and separated into root, stem, and leaf for estimating the photosynthetic pigments and biochemical constituents. Drought and drought with triazole compounds treatment increased the biochemical glycine betaine content, whereas the protein and the pigments contents chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and anthocyanin decreased when compared to control. The triazole treatment mitigated the adverse effects of drought stress by increasing the biochemical potentials and paved the way to overcome drought stress in corn plant.
NASA Astrophysics Data System (ADS)
Rao, K. S.; Chaudhary, A. K.; Yehya, F.; Kumar, A. Sudheer
2015-08-01
We report a comparative study of acoustic fingerprints of nitromethane, nitrobenzene and some nitro rich triazole derivatives using pulsed photoacoustic technique. UV 266 nm wavelength i.e. Fourth harmonic of Q-switched Nd: YAG laser having pulse duration 7 ns and 10 Hz repetition rate is employed to record the time resolved PA spectrum. The PA fingerprint is produced due to absorption of incident UV light by molecule itself and photo dissociation of nitromethane and nitrobenzene at room temperature while in case of triazole it is attributed to the combination of thermal and photo-dissociation process. The entire dissociation process follows the root of cleavage of C-NO2 bond to produce free NO, NO2 and other by product gases due to π∗ ← n excitation. In addition, we have studied the thermal stability criteria of nitro rich triazoles based on the quality factor of acoustic resonance frequencies of the PA cavity. We have also studied the effect of data acquisition time to ascertain the decay behavior of HEMs samples.
Rao, K S; Chaudhary, A K; Yehya, F; Kumar, A Sudheer
2015-08-05
We report a comparative study of acoustic fingerprints of nitromethane, nitrobenzene and some nitro rich triazole derivatives using pulsed photoacoustic technique. UV 266 nm wavelength i.e. Fourth harmonic of Q-switched Nd: YAG laser having pulse duration 7 ns and 10 Hz repetition rate is employed to record the time resolved PA spectrum. The PA fingerprint is produced due to absorption of incident UV light by molecule itself and photo dissociation of nitromethane and nitrobenzene at room temperature while in case of triazole it is attributed to the combination of thermal and photo-dissociation process. The entire dissociation process follows the root of cleavage of C-NO₂ bond to produce free NO, NO₂ and other by product gases due to π(∗)←n excitation. In addition, we have studied the thermal stability criteria of nitro rich triazoles based on the quality factor of acoustic resonance frequencies of the PA cavity. We have also studied the effect of data acquisition time to ascertain the decay behavior of HEMs samples. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Wu, Xiang Xia; Guo, Jian-Hua; Huo, Jian-Zhong; Ding, Bin
2017-01-01
In this work a flexible multi-dentate 1-(4-aminobenzyl)-1,2,4-triazole (abtz) ligand has been employed, two novel triazole-Cu(II) coordination polymers {[Cu(abtz)2(Br)2]·(H2O)2}n (1) and {[Cu(abtz)2]·(SiF6)·(H2O)2}n (2) have been isolated under solvo-thermal conditions. 1 is a 2D neutral CuII coordination polymer while 2 is 2D cation micro-porous CuII coordination polymer with the channel dimensionalities of 11.852(1) Å × 11.852(1) Å (metal-metal distances). Variable-temperature magnetic susceptibility data of 1 and 2 have been recorded in the 2-300 K temperature range indicating weak anti-ferromagnetic interactions. Further absorption properties of anion pollutants for 2 also have been investigated. 2 presents the novel example of cationic triazole-copper(II) coordination framework for effectively capturing anion pollutants Cr2O72- in the water solutions and selectively capturing Congo Red in the methanol solutions.
Nara, Hiroshi; Kaieda, Akira; Sato, Kenjiro; Naito, Takako; Mototani, Hideyuki; Oki, Hideyuki; Yamamoto, Yoshio; Kuno, Haruhiko; Santou, Takashi; Kanzaki, Naoyuki; Terauchi, Jun; Uchikawa, Osamu; Kori, Masakuni
2017-01-26
On the basis of a superposition study of X-ray crystal structures of complexes of quinazoline derivative 1 and triazole derivative 2 with matrix metalloproteinase (MMP)-13 catalytic domain, a novel series of fused pyrimidine compounds which possess a 1,2,4-triazol-3-yl group as a zinc binding group (ZBG) was designed. Among the herein described and evaluated compounds, 31f exhibited excellent potency for MMP-13 (IC 50 = 0.036 nM) and selectivities (greater than 1,500-fold) over other MMPs (MMP-1, -2, -3, -7, -8, -9, -10, and -14) and tumor necrosis factor-α converting enzyme (TACE). Furthermore, the inhibitor was shown to protect bovine nasal cartilage explants against degradation induced by interleukin-1 and oncostatin M. In this article, we report the discovery of extremely potent, highly selective, and orally bioavailable fused pyrimidine derivatives that possess a 1,2,4-triazol-3-yl group as a novel ZBG for selective MMP-13 inhibition.
Neutral and anionic duality of 1,2,4-triazole α-amino acid scaffold in 1D coordination polymers
NASA Astrophysics Data System (ADS)
Naik, Anil D.; Dîrtu, Marinela M.; Garcia, Yann
2012-03-01
A tiny supramolecular synthon, 4H-1,2,4-triazol-4-yl acetic acid (HGlytrz) which is bifunctional by design having an electronic asymmetry and conformational flexibility has been introduced to synthesize iron(II) complexes. Having 1,2,4-triazole or carboxylic extremities on the same framework HGlytrz could display dual functionality by acting as a neutral as well as anionic ligand based on the possibility of deprotonation of carboxylic group. Four new iron(II) HGlytrz complexes with ClO4- ( 1), NO3- ( 2), BF4- ( 3) and CF3SO3- ( 4) anions were prepared. Formulation of their composition which is complicated due to ligand deprotonation is discussed. Unlike its ester protected counterpart ethyl-4H-1,2,4-triazol-4-yl-acetate ( αGlytrz) which show hysteretic room temperature spin crossover, 1- 4 remain in the high-spin state as revealed by 57Mössbauer spectroscopy. Prospects of such 1D coordination polymers with dangling unbounded carboxylic entities in the realm of self-assembled monolayer (SAM) are discussed.
Tang, Tao; Qian, Kun; Shi, Tianyu; Wang, Fang; Li, Jianqiang; Cao, Yongsong
2010-11-08
A preconcentration technique known as cloud point extraction was developed for the determination of trace levels of triazole fungicides tricyclazole, triadimefon, tebuconazole and diniconazole in environmental waters. The triazole fungicides were extracted and preconcentrated using polyethylene glycol 600 monooleate (PEG600MO) as a low toxic and environmentally benign nonionic surfactant, and determined by high performance liquid chromatography/ultraviolet detection (HPLC-UV). The extraction conditions were optimized for the four triazole fungicides as follows: 2.0 wt% PEG600MO, 2.5 wt% Na(2)SO(4), equilibration at 45°C for 10 min, and centrifugation at 2000 rpm (533 × g) for 5 min. The triazole fungicides were well separated on a reversed-phase kromasil ODS C(18) column (250 mm × 4.6 mm, 5 μm) with gradient elution at ambient temperature and detected at 225 nm. The calibration range was 0.05-20 μg L(-1) for tricyclazole and 0.5-20 μg L(-1) for the other three classes of analytes with the correlation coefficients over 0.9992. Preconcentration factors were higher than 60-fold for the four selected fungicides. The limits of detection were 6.8-34.5 ng L(-1) (S/N=3) and the recoveries were 82.0-96.0% with the relative standard deviations of 2.8-7.8%. Copyright © 2010 Elsevier B.V. All rights reserved.
Montgomery, Andrew P; Skropeta, Danielle; Yu, Haibo
2017-10-31
Human β-galactoside α-2,6-sialyltransferase I (ST6Gal I) catalyses the synthesis of sialylated glycoconjugates. Overexpression of ST6Gal I is observed in many cancers, where it promotes metastasis through altered cell surface sialylation. A wide range of sialyltransferase inhibitors have been developed, with analogues structurally similar to the transition state exhibiting the highest inhibitory activity. To improve synthetic accessibility and pharmacokinetics of previously reported inhibitors, the replacement of the charged phosphodiester linker with a potential neutral isostere such as a carbamate or a 1,2,3-triazole has been investigated. Extensive molecular dynamics simulations have demonstrated that compounds with the alternate linkers could maintain key interactions with the human ST6Gal I active site, demonstrating the potential of a carbamate or a 1,2,3-triazole as a phosphodiester isostere. Free energy perturbation calculations provided energetic evidence suggesting that the carbamate and 1,2,3-triazole were slightly more favourable than the phosphodiester. Further exploration with free energy component, quasi-harmonic and cluster analysis suggested that there is an enthalpy-entropy compensation accounting for the replacement of the flexible charged phosphodiester with a neutral and rigid isostere. Overall, these simulations provide a strong rationale for the use of a carbamate or 1,2,3-triazole as a phosphodiester isostere in the development of novel inhibitors of human ST6Gal I.
Thillainayagam, Mahalakshmi; Malathi, Kullappan; Ramaiah, Sudha
2017-11-27
The structural motifs of chalcones, flavones, and triazoles with varied substitutions have been studied for the antimalarial activity. In this study, 25 novel derivatives of chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage are docked with Plasmodium falciparum dihydroorotate dehydrogenase to establish their inhibitory activity against Plasmodium falciparum. The best binding conformation of the ligands at the catalytic site of dihydroorotate dehydrogenase are selected to characterize the best bound ligand using the best consensus score and the number of hydrogen bond interactions. The ligand namely (2E)-3-(4-{[1-(3-chloro-4-fluorophenyl)-1H-1, 2, 3-triazol-4-yl]methoxy}-3-methoxyphenyl-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one, is one the among the five best docked ligands, which interacts with the protein through nine hydrogen bonds and with a consensus score of five. To refine and confirm the docking study results, the stability of complexes is verified using Molecular Dynamics Simulations, Molecular Mechanics /Poisson-Boltzmann Surface Area free binding energy analysis, and per residue contribution for the binding energy. The study implies that the best docked Plasmodium falciparum dihydroorotate dehydrogenase-ligand complex is having high negative binding energy, most stable, compact, and rigid with nine hydrogen bonds. The study provides insight for the optimization of chalcone and flavone hybrids with 1, 2, 3-triazole linkage as potent inhibitors.
Interaction of Humic Acids with Organic Toxicants
NASA Astrophysics Data System (ADS)
Tchaikovskaya, O. N.; Yudina, N. V.; Maltseva, E. V.; Nechaev, L. V.; Svetlichnyi, V. A.
2016-08-01
Interaction of humic acids with polyaromatic hydrocarbons (PAH) (naphthalene and anthracene) and triazole series fungicides (cyproconazole (CC) and tebuconazole (TC)) is investigated by the method of fluorescence quenching depending on the concentration of substances in solutions and their structural features. Humic acids were modified by mechanochemical activation in a planetary mill. The complex character of intermolecular interactions between PAH and fungicides with humic acids, including donor-acceptor and hydrophobic binding, is established. Thermodynamically stable conformations of biocide molecules were estimated using ChemOffice CS Chem3D 8.0 by methods of molecular mechanics (MM2) and molecular dynamics. Biocide molecules with pH 7 are in energetically favorable position when the benzene and triazole rings are almost parallel to each other. After acidification of solutions to pH 4.5, the CC molecule retains the geometry for which donor-acceptor interactions are possible: the benzene ring in the molecule represents the electron donor, and triazole is the acceptor. In this case, the electron density in CC is redistributed easier, which is explained by a smaller number of carbon atoms between the triazole and benzene rings, unlike TC. As a result, the TC triazole ring is protonated to a greater degree, acquiring a positive charge, and enters into donoracceptor interactions with humic acid (HA) samples. The above-indicated bond types allow HA to participate actively in sorption processes and to provide their interaction with biocides and PAH and hence, to act as detoxifying agents for recultivation of the polluted environment.
Gu, Shaojin; Xu, Hui; Zhang, Na; Chen, Wanzhi
2010-07-05
Imidazolium salts bearing triazole groups are synthesized via a copper catalyzed click reaction, and the silver, palladium, and platinum complexes of their N-heterocyclic carbenes are studied. [Ag(4)(L1)(4)](PF(6))(4), [Pd(L1)Cl](PF(6)), [Pt(L1)Cl](PF(6)) (L1=3-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1-(pyrimidin-2-yl)-1H-imidazolylidene), [Pd(2)(L2)(2)Cl(2)](PF(6))(2), and [Pd(L2)(2)](PF(6))(2) (L2=1-butyl-3-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methyl)imidazolylidene) have been synthesized and fully characterized by NMR, elemental analysis, and X-ray crystallography. The silver complex [Ag(4)(L1)(4)](PF(6))(4) consists of a Ag(4) zigzag chain. The complexes [Pd(L1)Cl](PF(6)) and [Pt(L1)Cl](PF(6)), containing a nonsymmetrical NCN' pincer ligand, are square planar with a chloride trans to the carbene donor. [Pd(2)(L2)(2)Cl(2)](PF(6))(2) consists of two palladium centers with CN(2)Cl coordination mode, whereas the palladium in [Pd(L2)(2)](PF(6))(2) is surrounded by two carbene and two triazole groups with two uncoordinated pyridines. The palladium compounds are highly active for Suzuki-Miyaura cross coupling reactions of aryl bromides and 1,1-dibromo-1-alkenes in neat water under an air atmosphere.
Inhibition of rat and human steroidogenesis by triazole antifungals.
Goetz, Amber K; Rockett, John C; Ren, Hongzu; Thillainadarajah, Inthirany; Dix, David J
2009-12-01
Environmental chemicals that alter steroid production could interfere with male reproductive development and function. Three agricultural antifungal triazoles that are known to modulate expression of cytochrome P450 (CYP) genes and enzymatic activities were tested for effects on steroidogenesis using rat in vivo (triadimefon), rat in vitro (myclobutanil and triadimefon), and human in vitro (myclobutanil, propiconazole, and triadimefon) model systems. Hormone production was measured in testis organ cultures from untreated adult and neonatal rats, following in vitro exposure to 1, 10, or 100 muM of myclobutanil or triadimefon. Myclobutanil and triadimefon reduced media levels of testosterone by 40-68% in the adult and neonatal testis culture, and altered steroid production in a manner that indicated CYP17-hydroxylase/17,20 lyase (CYP17A1) inhibition at the highest concentration tested. Rat to human comparison was explored using the H295R (human adrenal adenocarcinoma) cell line. Following 48 h exposure to myclobutanil, propiconazole, or triadimefon at 1, 3, 10, 30, or 100 muM, there was an overall decrease in estradiol, progesterone, and testosterone by all three triazoles. These data indicate that myclobutanil, propiconazole, and triadimefon are weak inhibitors of testosterone production in vitro. However, in vivo exposure of rats to triazoles resulted in increased serum and intra-testicular testosterone levels. This discordance could be due to higher concentrations of triazoles tested in vitro, and differences within an in vitro model system lacking hepatic metabolism and neuroendocrine control.
Silva-Ortiz, Aylin Viviana; Bratoeff, Eugene; Ramírez-Apan, Teresa; Heuze, Yvonne; Sánchez, Araceli; Soriano, Juan; Cabeza, Marisa
2015-12-15
Testosterone (T) plays a crucial role in prostate growth. In androgen-dependent tissues T is reduced to dihydrotestosterone (DHT) because of the presence of the 5α-reductase enzyme. This androgen is more active than T, since it has a higher affinity for the androgen receptor (AR). When this mechanism is altered, androgen-dependent diseases, including prostate cancer, could result. The aim of this study was to synthesize several 16-dehydropregnenolone acetate derivatives containing a triazole ring at C-21 and a linear or alicyclic ester moiety at C-3 of the steroidal skeleton. These steroids were designed as potential inhibitors of the activity of both types (1 and 2) of 5α-reductase. The cytotoxic activity of these compounds was also evaluated on a panel of PC-3, MCF7, and SK-LU-1 human cancer cell lines. The results from this study showed that with the exception of steroids 20-oxo-21-(1H-1,2,4-triazole-1-yl)pregna-5,16-dien-3β-yl-propionate and 20-oxo-21-(1H-1,2,4-triazole-1-yl)pregna-5,16-dien-3β-yl-pentanoate, the compounds exhibit a lower inhibitory activity for both isoenzymes of 5α-reductase than finasteride. Furthermore the 3β-hydroxy-21-(1H-1,2,4-triazole-1-yl)pregna-5,16-dien-20-one and 20-oxo-21-(1H-1,2,4-triazole-1-yl)pregna-5,16-dien-3β-yl-acetate derivatives display 80% cytotoxic activity on the SK-LU-1 cell line. These results also indicated that the triazole derivatives, which have a hydroxyl or acetoxy group at C-3, could have an anticancer effect, whereas the derivatives with a alicyclic ester group at C-3 do not show biological activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Junior, Eduardo F C; Guimarães, Carlos F R C; Franco, Lucas L; Alves, Ricardo J; Kato, Kelly C; Martins, Helen R; de Souza Filho, José D; Bemquerer, Marcelo P; Munhoz, Victor H O; Resende, Jarbas M; Verly, Rodrigo M
2017-08-01
This work proposes a strategy that uses solid-phase peptide synthesis associated with copper(I)-catalyzed azide alkyne cycloaddition reaction to promote the glycosylation of an antimicrobial peptide (HSP1) containing a carboxyamidated C-terminus (HSP1-NH 2 ). Two glycotriazole-peptides, namely [p-Glc-trz-G 1 ]HSP1-NH 2 and [p-GlcNAc-trz-G 1 ]HSP1-NH 2 , were prepared using per-O-acetylated azide derivatives of glucose and N-acetylglucosamine in the presence of copper(II) sulfate pentahydrate (CuSO 4 ·5H 2 O) and sodium ascorbate as a reducing agent. In order to investigate the synergistic action of the carbohydrate motif linked to the triazole-peptide structure, a triazole derivative [trz-G 1 ]HSP1-NH 2 was also prepared. A set of biophysical approaches such as DLS, Zeta Potential, SPR and carboxyfluorescein leakage from phospholipid vesicles confirmed higher membrane disruption and lytic activities as well as stronger peptide-LUVs interactions for the glycotriazole-peptides when compared to HSP1-NH 2 and to its triazole derivative, which is in accordance with the performed biological assays: whereas HSP1-NH 2 presents relatively low and [trz-G 1 ]HSP1-NH 2 just moderate fungicidal activity, the glycotriazole-peptides are significantly more effective antifungal agents. In addition, the glycotriazole-peptides and the triazole derivative present strong inhibition effects on ergosterol biosynthesis in Candida albicans, when compared to HSP1-NH 2 alone. In conclusion, the increased fungicidal activity of the glycotriazole-peptides seems to be the result of (A) more pronounced membrane-disruptive properties, which is related to the presence of a saccharide ring, together with (B) the inhibition of ergosterol biosynthesis, which seems to be related to the presence of both the monosaccharide and the triazole rings.
Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity.
Lv, Xuan; Pan, Liumeng; Wang, Jiaying; Lu, Liping; Yan, Weilin; Zhu, Yanye; Xu, Yiwen; Guo, Ming; Zhuang, Shulin
2017-03-01
Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC 50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC 50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R 2 between 0.83 and 0.97, p < 0.001). Our results indicated that the risk assessment of triazole pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 180.480 - Fenbuconazole; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... residues of the fungicide fenbuconazole, alpha-[2-(4-chlorophenyl)- ethyl]-alpha-phenyl-3-(1H-1,2,4-triazole)- 1-propanenitrile, and its metabolites RH-9129, cis-5-(4-chlorophenyl)- dihydro-3-phenyl-3-(1H-1...- (1H-1,2,4-triazole-1-ylmethyl)-2-3 H- furanone, expressed as fenbuconazole in or on the following...
Conazoles are triazole- or imidazole-containing fungicides that are used in agriculture and medicine. Conazoles can induce follicular cell adenomas of the thyroid in rats after chronic bioassay. The goal of this study was to identify pathways and networks of genes that were assoc...
Ring Expansion and Rearrangements of Rhodium(II) Azavinyl Carbenes
Selander, Nicklas; Worrell, Brady T.
2013-01-01
An efficient, regioselective and convergent method for the ring expansion and rearrangement of 1-sulfonyl-1,2,3-triazoles under rhodium(II)-catalyzed conditions is described. These denitrogenative reactions form substituted enaminone and olefin-based products, which in the former case can be further functionalized to unique products rendering the sulfonyl triazole traceless. PMID:23161725
Müller, Thomas J J; Lessing, Timo; van Mark, Hauke
2018-05-04
Substituted 1H-1,2,3-triazol-4-yl-pyrrolo[2,3-b]pyridines are efficiently prepared by a one-pot coupling-cyclization-desilylation-CuAAC-sequence in the sense of a consecutive three-component fashion. The key feature of this novel de novo formation of azole and triazole anellation is the sequentially Pd/Cu-catalyzed process employing tri(iso-propyl)silylbutadiyne (TIPS-butadiyne) as a four-carbon building block. In addition, the sequence can be expanded in a four-component fashion also employing the in situ formation of the require azides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Zhenyu; Cao, Yuan; Zhan, Peng; Pannecouque, Christophe; Balzarini, Jan; Clercq, Erik De; Shen, Yuemao; Liu, Xinyong
2013-11-01
A series of novel 1,2,4-triazole thioacetanilide derivatives has been designed, synthesized and evaluated for their anti-HIV activities in MT-4 cells. Half of these compounds showed moderate to potent activities against wild-type HIV-1 with an EC50 ranging from 38.0 μM to 4.08 µM. Among them, 2-(4-(2-fluorobenzyl)-5-isopropyl-4H-1,2,4-triazol- 3-ylthio)-N-(2-nitrophenyl)acetamide 7d was identified as the most promising compound (EC50 = 4.26 µM, SI = 49). However, no compound was active against HIV-2. The preliminary structure-activity relationships among the newly synthesized congeners are discussed.
Parida, Pravat Kumar; Sau, Abhijit; Ghosh, Tamashree; Jana, Kuladip; Biswas, Kaushik; Raha, Sanghamitra; Misra, Anup Kumar
2014-08-15
A series of glycosyl triazol linked 18β-glycyrrhetinic acid (GA) derivatives have been synthesized using 1,3-dipolar cycloaddition reaction of per-O-acetylated glycosyl azide derivatives (4a-h) with propargyl ester of 18β-glycyrrhetinic acid (GA) (2 and 3) following the concept of 'Click chemistry'. The synthesized triazole derivatives were de-O-acetylated to furnish compounds (7a-h and 8a-c) with free hydroxyl groups in the carbohydrate moieties, which were evaluated for their anticancer potential against human cervical cancer cells (HeLa) and normal kidney epithelial (NKE) cells. GA (1), compound 7d, compound 7g and compound 8c showed promising anticancer activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Karrouchi, K; Chemlal, L; Taoufik, J; Cherrah, Y; Radi, S; El Abbes Faouzi, M; Ansar, M
2016-11-01
A series of Schiff bases of 4-amino-1,2,4-triazole derivatives containing pyrazole (5a-h) were synthesized from condensation of 4-amino-5-(5-methyl-1H-pyrazol-3-yl)-4H-1,2,4-triazole-3-thiol (3) derivative with various aromatic aldehydes (4a-h). The structures of the synthesized compounds were elucidated by IR, 1 H NMR, 13 C NMR, and mass spectrometry. All the synthesized compounds (5a-h) were screened for their in vivo analgesic and in vitro antioxidant activities revealing significant analgesic and antioxidant properties. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Aouad, Mohamed R
2014-11-18
A series of Schiff and Mannich bases derived from 4-amino-5-(3-fluoro-phenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione were synthesized. The alkylation of 4-phenyl-5-(3-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione with propargyl bromide afforded the corresponding thiopropargylated derivative which upon treatment with the appropriate secondary amines in the presence of CuCl2 furnished the desired acetylenic Mannich bases. The synthesized compounds were characterized on the basis of their spectral (IR, 1H- and 13C-NMR) data and evaluated for their biological activities. Some of the compounds were found to exhibit significant antimicrobial activity.
Synthesis of C-glycosyl-bis-1,2,3-triazole derivatives from 3,4,6-tri-O-acetyl-D-glucal.
Shamim, Anwar; Souza, Frederico B; Trossini, Gustavo H G; Gatti, Fernando M; Stefani, Hélio A
2015-08-01
We have developed an efficient, CuI-catalyzed, microwave-assisted method for the synthesis of bis-1,2,3-triazole derivatives starting from a 3,4,6-tri-O-acetyl-D-glucal-derived mesylate. This mesylate was obtained from 3,4,6-tri-O-acetyl-D-glucal through C-glycosidation, deprotection of acetate groups to alcohols, and selective mesylation of the primary alcohol. This mesylate moiety was then converted to an azide through a microwave-assisted method with good yield. The azide, once synthesized, was then treated with different terminal alkynes in the presence of CuI to synthesize various bis-triazoles in high yields and short reaction times.
NTO-Picryl Constitutional Isomers—A DFT Study
NASA Astrophysics Data System (ADS)
Türker, Lemi; Çelik Bayar, Çağlar
2012-01-01
The quantum chemical properties and the detonation performance of some new explosives, 5-nitro-4-picryl-2,4-dihydro-3H-1,2,4-triazol-3-one (class A) and 5-nitro-2-picryl-2,4-dihydro-3H-1,2,4-triazol-3-one (class B), and their constitutional isomers have been investigated theoretically using the density functional theory (DFT) 6-31G(d,p) method. All of the constitutional isomers were found to be more sensitive than 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and TNT but more insensitive than RDX and HMX. Their detonation performance is higher than that of NTO and TNT and all except two had lower detonation performance than RDX and HMX.
Kaushik, C P; Luxmi, Raj; Singh, Dharmendra; Kumar, Ashwani
2017-02-01
Twenty ester-linked 1,4-disubstituted 1,2,3-triazoles having a furyl/thienyl moiety have been synthesized from heteroaryl prop-2-yn-1-yl carboxylate and aromatic azides via a Cu(I) catalyzed 1,3-dipolar cycloaddition. All the synthesized compounds were characterized by FTIR, [Formula: see text]H NMR, [Formula: see text]C NMR spectroscopy and HRMS. Synthesized triazoles were tested in vitro for antimicrobial evaluation against Gram-negative bacteria-Escherichia coli, Enterobacter aerogenes and Klebsiella pneumoniae; Gram-positive bacteria-Staphylococcus aureus and two fungal strains-Candida albicans and Aspergillus niger, reflecting moderate to good activity. The structure of compound 6f was also confirmed by X-ray crystallography (CCDC 1469326).
Zhang, Jian-Wei; Hu, Man-Cheng; Li, Shu-Ni; Jiang, Yu-Cheng; Zhai, Quan-Guo
2017-01-17
The synthetic design of new porous open-framework materials with pre-designed pore properties for desired applications such as gas adsorption and separation remains challenging. We proposed one such class of materials, rod metal-organic frameworks (rod MOFs), which can be tuned by using rod secondary building units (rod SBUs) with different geometrical and chemical features. Our approach takes advantage of the readily accessible metal-triazolate 1-D motifs as rod SBUs to combine with dicarboxylate ligands to prepare target rod MOFs. Herein we report three such metal-triazolate-dicarboxylate frameworks (SNNU-21, -22 and -23). During the formation of these three MOFs, Cd or Zn ions are firstly connected by 1,2,4-triazole through the N1,N2,N4-mode to form 1-D metal-organic ribbon-like rod SBUs, which further joint four adjacent rod SBUs via eight BDC linkers to give 3-D microporous frameworks. However, tuned by the different NH 2 groups from metal-triazolate rod SBUs, different space groups, pore sizes and shapes are observed for SNNU-21-23. All of these rod MOFs show not only remarkable CO 2 uptake capacity, but also high CO 2 over CH 4 and C 2 -hydrocarbons over CH 4 selectivity under ambient conditions. Specially, SNNU-23 exhibits a very high isosteric heat of adsorption (Q st ) for C 2 H 2 (62.2 kJ mol -1 ), which outperforms the values of all MOF materials reported to date including the famous MOF-74-Co.
NASA Astrophysics Data System (ADS)
Maji, Krishnendu; Haldar, Debasish
2017-10-01
We report a new synthetic aromatic ε-amino acid containing a triazole moiety with antimicrobial potential against Gram-positive, Gram-negative and pathogenic bacteria including Vibrio cholerae. Structure-property relationship studies revealed that all the functional groups are essential to enhance the antimicrobial activity. The 1-(2-aminophenyl)-1H-1,2,3-triazole-4-carboxylic acid was synthesized by click chemistry. From X-ray crystallography, the amino acid adopts a kink-like structure where the phenyl and triazole rings are perpendicular to each other and the amine and acid groups maintain an angle of 60°. The agar diffusion test shows that the amino acid has significant antibacterial activity. The liquid culture test exhibits that the minimum inhibitory concentration (MIC) value for Bacillus subtilis and Vibrio cholerae is 59.5 µg ml-1. FE-SEM experiments were performed to study the morphological changes of bacterial shape after treatment with compound 1. The antimicrobial activity of the amino acid was further studied by DNA binding and degradation study, protein binding, dye-binding assay and morphological analysis. Moreover, the amino acid does not have any harmful effect on eukaryotes.
Novel 3-Nitro-1H-1,2,4-triazole-based Amides and Sulfonamides as Potential anti-Trypanosomal Agents
Papadopoulou, Maria V.; Bloomer, William D.; Rosenzweig, Howard S.; Chatelain, Eric; Kaiser, Marcel; Wilkinson, Shane R.; McKenzie, Caroline; Ioset, Jean-Robert
2012-01-01
A series of novel 3-nitro-1H-1,2,4-triazole-(and in some cases 2-nitro-1H-imidazole)-based amides and sulfonamides were characterized for their in vitro anti-trypanosomal and antileishmanial activities as well as mammalian toxicity. Out of 36 compounds tested, 29 (mostly 3-nitro-1H-1,2,4-triazoles) displayed significant activity against T. cruzi intracellular amastigotes (IC50 ranging from 28 nM to 3.72 μM) without concomitant toxicity to L6 host cells (selectivity 66 to 2782). Twenty three of these active compounds were more potent (up to 58 fold) than the reference drug benznidazole, tested in parallel. In addition, 9 nitrotriazoles which were moderately active (0.5 μM ≤ IC50 < 6.0 μM) against T. b. rhodesiense trypomastigotes, were 5 to 31 fold more active against bloodstream-form T. b. brucei trypomastigotes engineered to overexpress NADH-dependent nitroreductase (TbNTR). Finally, 3 nitrotriazoles displayed a moderate activity against the axenic form of Leishmania donovani. Therefore, 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides are potent anti-trypanosomal agents. PMID:22550999
Najafi, Zahra; Mahdavi, Mohammad; Saeedi, Mina; Karimpour-Razkenari, Elahe; Asatouri, Raymond; Vafadarnejad, Fahimeh; Moghadam, Farshad Homayouni; Khanavi, Mahnaz; Sharifzadeh, Mohammad; Akbarzadeh, Tahmineh
2017-01-05
A new series of tacrine-1,2,3-triazole hybrids were designed, synthesized, and evaluated as potent dual cholinesterase inhibitors. Most of synthesized compounds showed good in vitro inhibitory activities toward both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among them, 7-chloro-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,2,3,4-tetrahydroacridin-9-amine (5l) was found to be the most potent anti-AChE derivative (IC 50 = 0.521 μM) and N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,2,3,4-tetrahydroacridin-9-amine (5j) demonstrated the best anti-BChE activity (IC 50 = 0.055 μM). In vivo studies of compound 5l in Morris water maze task confirmed memory improvement in scopolamine-induced impairment. Also, molecular modeling and kinetic studies showed that compounds 5l and 5j bound simultaneously to the peripheral anionic site (PAS) and catalytic sites (CS) of the AChE and BChE. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Efficient Synthesis and Bioactivity of Novel Triazole Derivatives.
Hu, Boyang; Zhao, Hanqing; Chen, Zili; Xu, Chen; Zhao, Jianzhuang; Zhao, Wenting
2018-03-21
Triazole pesticides are organic nitrogen-containing heterocyclic compounds, which contain 1,2,3-triazole ring. In order to develop potential glucosamine-6-phosphate synthase (GlmS) inhibitor fungicides, forty compounds of triazole derivatives were synthesized in an efficient way, thirty nine of them were new compounds. The structures of all the compounds were confirmed by high resolution mass spectrometer (HRMS), ¹H-NMR and 13 C-NMR. The fungicidal activities results based on means of mycelium growth rate method indicated that some of the compounds exhibited good fungicidal activities against P. CapasiciLeonian , Sclerotinia sclerotiorum (Lib.) de Bary, Pyricularia oryzae Cav. and Fusarium oxysporum Schl. F.sp. vasinfectum (Atk.) Snyd. & Hans. at the concentration of 50 µg/mL, especially the inhibitory rates of compounds 1-d and 1-f were over 80%. At the same time, the preliminary studies based on the Elson-Morgan method indicated that the compounds exhibited some inhibitory activity toward glucosamine-6-phosphate synthase (GlmS). These compounds will be further studied as potential antifungal lead compounds. The structure-activity relationships (SAR) were discussed in terms of the effects of the substituents on both the benzene and the sugar ring.
Krzmarzick, Mark J; Khatiwada, Raju; Olivares, Christopher I; Abrell, Leif; Sierra-Alvarez, Reyes; Chorover, Jon; Field, James A
2015-05-05
Insensitive munitions (IM) are a new class of explosives that are increasingly being adopted by the military. The ability of soil microbial communities to degrade IMs is relatively unknown. In this study, microbial communities from a wide range of soils were tested in microcosms for their ability to degrade the IM, 3-nitro-1,2,4-triazol-5-one (NTO). All seven soil inocula tested were able to readily reduce NTO to 3-amino-1,2,4-triazol-5-one (ATO) via 3-hydroxyamino-1,2,4-triazol-5-one (HTO), under anaerobic conditions with H2 as an electron donor. Numerous other electron donors were shown to be suitable for NTO-reducing bacteria. The addition of a small amount of yeast extract (10 mg/L) was critical to diminish lag times and increased the biotransformation rate of NTO in nearly all cases indicating yeast extract provided important nutrients for NTO-reducing bacteria. The main biotransformation product, ATO, was degradable only in aerobic conditions, as evidenced by a rise in the inorganic nitrogen species nitrite and nitrate, indicative of nitrogen-mineralization. NTO was nonbiodegradable in aerobic microcosms with all soil inocula.
Tada, S; Hatano, M; Nakayama, Y; Volrath, S; Guyer, D; Ward, E; Ohta, D
1995-01-01
Imidazoleglycerolphosphate dehydratase (IGPD; EC 4.2.1.19), which is involved in the histidine biosynthetic pathway of Arabidopsis thaliana and wheat (Triticum aestivum), has been expressed in insect cells using the baculovirus expression vector system. N-terminal amino acid sequencing indicated that recombinant IGPDs (rIGPDs) were produced as mature forms via nonspecific proteolytic cleavages in the putative transit peptide region. The wheat rIGPD contained one Mn atom per subunit, and the Mn was involved in the assembly of the subunits to form active IGPDs. Protein-blotting analysis, using antibodies raised against the wheat rIGPD, indicated that IGPD was located in the chloroplasts of wheat. The rIGPDs of Arabidopsis and wheat, which were 86% identical in their primary structures deduced from the cDNAs, exhibited similar properties in terms of the molecular mass, pH optimum, and the Km for the substrate, imidazoleglycerolphosphate. However, the nonselective herbicides 3-amino-1,2,4-triazole and a newly synthesized triazole [(1R*, 3R*)-[3-hydroxy-3-(2H-[1,2,4]triazole-3-yl)-cyclohexyl]- phosphonic acid], inhibited Arabidopsis and wheat IGPDs in a mixed-type and a competitive manner, respectively. PMID:7480319
New cancer cells apoptosis agents: Fluorinated aza-heterocycles
NASA Astrophysics Data System (ADS)
Prima, D. O.; Baev, D. S.; Vorontsova, E. V.; Frolova, T. S.; Bagryanskaya, I. Yu.; Slizhov, Yu. G.; Tolstikova, T. G.; Makarov, A. Yu.; Zibarev, A. V.
2017-09-01
Fluorinated benzo-fused 1,3-diazoles, 1,2,3-triazoles, 1,2,5-thia/selenadiazoles and 1,4-diazines were synthesized and tried for cytotoxicity towards the Hep2 (laryngeal epidermoid carcinoma) cells. The diazoles, triazoles and selenadiazoles were cytotoxic with IC50 = 2.2-26.4 µM and induced the cells apoptosis at concentrations C = 1-25 µM. At the same time, they were nontoxic towards normal cells. Due to this, these scaffolds were used in the computer-aided molecular design of new antitumor agents. Particularly, novel 1,2,3-triazole and 1,3-diazole derivatives for the binding site of the PAS domain of the transcription factor HIF were designed and some of them synthesized for further study. Overall, new anticancer agents featuring apoptotic activity are suggested.
Connell, Timothy U; Hayne, David J; Ackermann, Uwe; Tochon-Danguy, Henri J; White, Jonathan M; Donnelly, Paul S
2014-04-01
New 1,4-substituted pyridyl-1,2,3-triazole ligands with pendent phenyl isothiocyanate functional groups linked to the heterocycle through a short methylene or longer polyethylene glycol spacers were prepared and conjugated to a peptide containing the arginine-glycine-aspartic acid peptide motif. Rhenium and technetium carbonyl complexes, [M(CO)3 L(x) (py)](+) (where M = Re(I) or (99m) Tc(I) ; L(x) = 1,4-substituted pyridyl-1,2,3-triazole ligands and py = pyridine) were prepared. One rhenium complex has been characterized by X-ray crystallography, and the luminescent properties of [M(CO)3 L(x) (py)](+) are reported. Copyright © 2013 John Wiley & Sons, Ltd.
40 CFR 721.10077 - 3H-1,2,4-Triazol-3-one, 1,2-dihydro-.
Code of Federal Regulations, 2010 CFR
2010-07-01
...- or full-face). (ii) Hazard communication program. Requirements as specified in § 721.72 (g)(1)(ix... significant new uses subject to reporting. (1) The chemical substance identified as 3H-1,2,4-triazol-3-one, 1,2-dihydro- (PMNs P-06-1 and P-06-166; CAS No. 930-33-6) is subject to reporting under this section...
Nallagangula, Madhu; Namitharan, Kayambu
2017-07-07
First simultaneous generation and utilization of both copper-triazole and -ketenimine intermediates in copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions is achieved for the one-pot synthesis of triazolopyrimidines via a novel copper-catalyzed multicomponent cascade of sulfonyl azides, alkynes, and azirines. Significantly, the reaction proceeds under very mild conditions in good yields.
ERIC Educational Resources Information Center
Sharpless, William D.; Peng Wu; Hansen, Trond Vidar; Lindberg, James G.
2005-01-01
The click chemistry uses only the most reliable reactions to build complex molecules from olefins, electrophiles and heteroatom linkers. A variation on Huisgen's azide-alkyne 1,2,3-triazole synthesis, the addition of the copper (I), the premium example of the click reaction, catalyst strongly activates terminal acetylenes towards the 1,3-dipole in…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
...]-(2-fluorophenyl)-[alpha]- (4-fluorophenyl)-1 H-1,2,4-triazole-1-ethanol], including its metabolites...-fluorophenyl)-1 H-1,2,4-triazole-1-ethanol], including its metabolites and degradates, in or on African tree... saflufenacil, including its metabolites and degradates, in or on grass, forage at 15 ppm; grass, hay at 20 ppm...
THERMALLY STABLE PERFLUORINATED POLYMERS
structure to cyclic product from perfluoroglutaronitrile and N2H4, opening of this cyclic product with polymerization to poly(N2-imidoyl perfluoroglutar ...Work on the 1,2,4-triazole polymer system, in which these heterocyclic groups are connected by perfluoroalkylene chains, included assignment of...hydrazidine), and synthesis of poly( perfluoropropylene - 1,2,4- triazole) both from the poly(imidoyl hydrazidine) and directly from the original cyclic
Gonzaga, Daniel Tadeu Gomes; Ferreira, Leonardo Braga Gomes; Moreira Maramaldo Costa, Thadeu Estevam; von Ranke, Natalia Lidmar; Anastácio Furtado Pacheco, Paulo; Sposito Simões, Ana Paula; Arruda, Juliana Carvalho; Dantas, Luiza Pereira; de Freitas, Hércules Rezende; de Melo Reis, Ricardo Augusto; Penido, Carmen; Bello, Murilo Lamim; Castro, Helena Carla; Rodrigues, Carlos Rangel; Ferreira, Vitor Francisco; Faria, Robson Xavier; da Silva, Fernando de Carvalho
2017-10-20
Fifty-one 1,2,3-triazole derivatives were synthesized and evaluated with respect to P2X7 receptor (P2X7R) activity and its associated pore. These triazoles were screened in vitro for dye uptake assay and its cytotoxicity against mammalian cell types. Seven 1,2,3-triazole derivatives (5e, 6e, 8h, 9d, 9i, 11, and 12) potently blocked P2X7 receptor pore formation in vitro (J774.G8 cells and peritoneal macrophages). All blockers displayed IC 50 value inferior to 500 nM, and they have low toxicity in either cell types. These seven selected triazoles inhibited P2X7R mediated interleukin-1 (IL-1β) release. In particular, compound 9d was the most potent P2X7R blocker. Additionally, in mouse acute models of inflammatory responses induced by ATP or carrageenan administration in the paw, compound 9d promoted a potent blocking response. Similarly, 9d also reduced mouse LPS-induced pleurisy cellularity. In silico predictions indicate this molecule appropriate to develop an anti-inflammatory agent when it was compared to commercial analogs. Electrophysiological studies suggest a competitive mechanism of action of 9d to block P2X7 receptor. Molecular docking was performed on the ATP binding site in order to observe the preferential interaction pose, indicating that binding mode of the 9d is by interacting its 1,2,3-triazole and ether moiety with positively charged residues and with its chlorobenzene moiety orientated toward the apolar end of the ATP binding site which are mainly composed by the Ile170, Trp167 and Leu309 residues from α subunit. These results highlight 9d derivative as a drug candidate with potential therapeutic application based on P2X7 receptor blockade. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Häring, Marleen; Rodríguez-López, Julio; Grijalvo, Santiago; Tautz, Markus; Eritja, Ramón; Martín, Víctor S; Díaz Díaz, David
2018-02-20
In this work, we demonstrated that the simple substitution of the 1,2,4-triazole moiety in 5-(4H-1,2,4-triazol-4-yl)isophthalic acid (5-TIA) by the 1H-1,2,3-triazol-5-yl unit enables the preparation of a hydrogelator (click-TIA). In sharp contrast to 5-TIA, its isostere click-TIA undergoes self-assembly in water upon sonication, leading to the formation of stable supramolecular viscoelastic hydrogels with a critical gelation concentration of 6 g/L. Hydrogels made of click-TIA as well as hybrid hydrogels made of the mixture click-TIA + 5-TIA (molar ratio 1:0.2) were used to compare different properties of the materials (i.e., rheological properties, thermal properties, mechanical stability, morphology). In terms of toxicity, neither click-TIA nor 5-TIA showed cytotoxic effects on cellular viability of HeLa cells up to 2.3 × 10 -3 g/L when compared to untreated cells incubated with DMSO. Furthermore, the hydrogels were used for the encapsulation and in vitro controlled release of oxytetracycline that followed first-order kinetics. For the hydrogel made of click-TIA, a maximum drug release of ∼60% was reached after ∼8 h within a pH range between 6.5 and 10. However, the release rate was reduced to approximately half of its value at pH values between 1.2 and 5.0, whereas the use of hybrid hydrogels made of click-TIA + 5-TIA allowed to reduce the original rate at pH ≤ 6.5.
Mohammadi, Faezeh; Dehghan, Parvin; Nekoeian, Shahram; Hashemi, Seyed Jamal
2016-01-01
Background: In recent years, triazole-resistant environmental isolates of Aspergillus fumigatus have emerged in Europe and Asia. Azole resistance has been reported in patients who are treated with long-term azole therapy or exposure of the fungus spores to the azole fungicides used in agriculture. To date, a wide range of mutations in A. fumigatus have been described conferring azole-resistance, which commonly involves modifications in the cyp51A gene. We investigated antifungal susceptibility pattern of environmental isolates of A. fumigatus. Materials and Methods: In this study, 170 environmental samples collected from indoors surfaces of three hospitals in Iran. It was used β-tubulin gene to confirm the all of A. fumigatus isolates, which was identified by conventional methods. Furthermore, the antifungal susceptibility of itraconazole, voriconazole, and posaconazole was investigated using broth microdilution test, according to European Committee on Antimicrobial Susceptibility testing reference method. Results: From a total of 158 environmental molds fungi obtained from the hospitals, 58 isolates were identified as A. fumigatus by amplification of expected size of β-tubulin gene (~500 bp). In this study, in vitro antifungal susceptibility testing has shown that there were not high minimum inhibitory concentration values of triazole antifungals in all of the 58 environmental isolates of A. fumigatus. Conclusion: Our findings demonstrated that there was not azole-resistant among environmental isolates of A. fumigatus. Medical triazoles compounds have structural similarity with triazole fungicide compounds in agriculture, therefore, resistance development through exposure to triazole fungicide compounds in the environment is important but it sounds there is not a serious health problem in drug resistance in environmental isolates in Iran. PMID:27656605
NASA Astrophysics Data System (ADS)
Li, Jianling; Ding, Guohua; Niu, Yanyan; Wu, Luyong; Feng, Huajie; He, Wenying
2018-07-01
5-Methyl-2-phenyl-2H-1,2,3-triazole-4-carboxylic acid (MPTC), a newly synthesized compound, was explored to study the structural properties and theoretical spectra by using GaussView5.0 program package and the time dependent density functional theory (TD DFT). The calculated quantum chemical values suggested that it is easy for MPTC to lose electron with weak electron accepting ability. And the results of experimental measurements on fluorescence and absorption spectra were consistent with that of the calculated spectra in great degree. In addition, MPTC was successfully used and synthesized a novel rhodamine B derivative RMPTC containing 1,2,3-triazole unit. It is found that there is special chromogenic response of RMPTC to Hg2+ ions in N, N-dimethylformamide (DMF)-H2O (v/v = 1/1, Tris-HCl, pH 7.4) with the triazole appended colorless chemosensor turned to pink and enabled naked-eye detection. The fluorescence signal for RMPTC-Hg2+ system was not affected by other coexisting metal ions. The 1:2 stoichiometric structure of RMPTC and Hg2+ is confirmed using a Job's plot estimation and TD DFT calculations. The corresponding "off-on" fluorescence mechanism of RMPTC binding to Hg2+ which were ascribed to Hg2+ inducing the ring-opened rhodamine B moiety were proposed. This study was an advancement for the application of 1,2,3-triazole compound in photophysical chemistry field and provides guidance for exploring simple and high-selectivity Hg2+ probes in aqueous solutions under physiological conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong, Esther de, E-mail: Esther.de.Jong@rivm.nl; Laboratory for Health Protection Research, National Institute for Public Health and the Environment; Barenys, Marta
2011-06-01
The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds, flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known inmore » vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays.« less
de Jong, Esther; Barenys, Marta; Hermsen, Sanne A B; Verhoef, Aart; Ossendorp, Bernadette C; Bessems, Jos G M; Piersma, Aldert H
2011-06-01
The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds,(1) flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known in vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays. Copyright © 2011 Elsevier Inc. All rights reserved.
3-Methylthio-4-phenyl-5-phenylamino-1,2,4-triazole hexabromotellurate:X-ray and computational study
NASA Astrophysics Data System (ADS)
Fizer, Maksym; Slivka, Mikhailo; Mariychuk, Ruslan; Baumer, Vjacheslav; Lendel, Vasil
2018-06-01
The structure of a newly synthesized 3-methylthio-4-phenyl-5-phenylamino-1,2,4-triazole 1 and its hexabromotellurate salt 2 was investigated. The X-ray diffraction study of 2 gives the insight on the different interaction types in the crystal. The DFT calculations were used for the comprehensive study of the intramolecular and intermolecular forces that are present in the title 3-methylthio-4-phenyl-5-phenylamino-1,2,4-triazole hexabromotellurate. The presence of three different aromatic moieties in the investigated compounds cause π-π stacking interactions which were studied through the Hirshfeld surface analysis and with the discrimination of weak interaction types by filling color to a reduced density gradient (RDG) function isosurface. The RDG in the crystalline state was calculated upon experimental molecular geometry by partitions of the crystal to QM part that was calculated at M06-L/6-311G(d,p) level, and the semi-empirical QM part that was modeled with the PM7 method in QM/MM-like manner. The reactivity of 3-methylthio-4-phenyl-5-phenylamino-1,2,4-triazole and its protonated form was also discussed in terms of conceptual DFT theory and it shows the tendency of sulfur to be the most active center in an electrophilic and radical attack, whereas the site for nucleophilic substitution is medium dependent and not an unequivocal. NICS(1) index was used for the analysis of aromaticity of three different cyclic moieties. The present study insights the changes in the structure of a polyfunctional substituted triazole upon its protonation and explains these changes with the analysis of weak interactions.
Miszczyk, Patrycja; Wieczorek, Dorota; Gałęzowska, Joanna; Dziuk, Błażej; Wietrzyk, Joanna; Chmielewska, Ewa
2017-02-08
The reaction of diethyl phosphite with triethyl orthoformate and a primary amine followed by hydrolysis is presented, and the reaction was suitable for the preparation of (aminomethylene)bisphosphonates. 3-Amino-1,2,4-triazole was chosen as an interesting substrate for this reaction because it possesses multiple groups that can serve as the amino component in the reaction-namely, the side-chain and triazole amines. This substrate readily forms 1,2,4-triazolyl-3-yl-aminomethylenebisphosphonic acid (compound 1 ) as a major product, along with N -ethylated bisphosphonates as side products. The in vitro antiproliferative effects of the synthesized aminomethylenebisphosphonic acids against J774E macrophages were determined. These compounds exhibit similar activity to zoledronic acid and higher activity than incadronic acid.
Ali, Gassan Q; El-Hiti, Gamal A; Tomi, Ivan Hameed R; Haddad, Raghad; Al-Qaisi, Alaa J; Yousif, Emad
2016-12-09
Series of 4-(4-substituted benzylideneamino)-5-(3,4,5-trimethoxyphenyl)-4 H -1,2,4-triazole-3-thiols were synthesized and their structures were confirmed. The synthesized Schiff bases were used as photostabilizers for polystyrene against photodegradation. Polystyrene polymeric films containing synthesized Schiff bases (0.5% by weight) were irradiated (λ max = 365 nm and light intensity = 6.43 × 10 -9 ein·dm -3 ·s -1 ) at room temperature. The photostabilization effect of 1,2,4-triazole-3-thiols Schiff bases was determined using various methods. All the additives used enhanced the photostability of polystyrene films against irradiation compared with the result obtained in the absence of Schiff base. The Schiff bases can act as photostabilizers for polystyrene through the direct absorption of UV radiation and/or radical scavengers.
NASA Astrophysics Data System (ADS)
Zacharias, Adway Ouseph; Varghese, Anitha; Akshaya, K. B.; Savitha, M. S.; George, Louis
2018-04-01
A novel triazole derivative 1-(1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethylidene) thiosemicarbazide was synthesized and subjected to density functional theory (DFT) studies employing B3LYP/6-31+G(d,p) basis set. Characterization was done by FT-IR, Raman, mass, 1H NMR and 13C NMR spectroscopic analyses. The stability of the molecule was evaluated from NBO studies. Delocalization of electron charge density and hyper-conjugative interactions were accountable for the stability of the molecule. The dipole moment (μ), mean polarizabilty (△α) and first order hyperpolarizability (β) of the molecule were calculated. Molecular electrostatic potential studies, HOMO-LUMO and thermodynamic properties were also determined. HOMO and LUMO energies were experimentally determined by Cyclic Voltammetry.
Saeedi, Mina; Safavi, Maliheh; Karimpour-Razkenari, Elahe; Mahdavi, Mohammad; Edraki, Najmeh; Moghadam, Farshad Homayouni; Khanavi, Mahnaz; Akbarzadeh, Tahmineh
2017-02-01
In this work, novel chromenones linked to 1,2,3-triazole ring system were synthesized and evaluated for their anti-ChE activity. Among them, N-((1-(2-chlorobenzyl)-1H-1,2,3-triazol-5-yl)methyl)-8-methoxy-2-oxo-2H-chromene-3-carboxamide (6m) showed good anti-acetylcholinesterase activity (IC 50 =15.42μM). Also, compound 6m demonstrated neuroprotective effect against H 2 O 2 -induced cell death in PC12 neurons, however, it showed no beta-secretase (BACE1) inhibitory activity. Docking and kinetic studies separately confirmed dual binding activity of compound 6m since it targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Copyright © 2016 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... 0.15 ppm; and crop group 18 non-grass animal feed (forage, fodder, straw, and hay): Alfalfa, forage...-ethyl (ethyl- alpha-2-dichloro-5-[-4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1 H -1,2,4-triazol-1-yl...-dichloro-5-[-4- difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1 H -1,2,4-triazol-1-yl]-4...
Ionic Liquids as Energetic Materials
2007-03-01
triazolium halide that can be synthesized from the electrophilic fluorination and quaternization of the amino-substituted triazole. Metathesis with a...silver salt such as silver nitrate forms the nitrate salt. By electrophilic difluoroamination of 1 -alkyl-3-nitro- 1,2,4-triazole, 1,4-dialkyl-3-nitro...nonaromatic salts (1-7) described in Table 1. The presence of small amounts of fluorine in the substituent arm contributes to the thermal stability and has
Fu, Nina; Wang, Suiliang; Zhang, Yuqian; Zhang, Caixia; Yang, Dongliang; Weng, Lixing; Zhao, Baomin; Wang, Lianhui
2017-08-18
Candida is an important opportunistic human fungal pathogen. The cis-2-dodecenoic acid (BDSF) showing in vitro activity of against C. albicans growth, germ-tube germination and biofilm formation has been a potential inhibitor for Candida and other fungi. In this study, facile synthetic strategies toward a novel family of BDSF analogue, 1-alkyl-1H-1,2,3-triazole-4-carboxylic acids (ATCs) was developed. The straightforward synthetic method including converting the commercial available alkyl bromide to alkyl azide, consequently with a typical click chemistry method, copper(II) sulfate and sodium ascorbate as catalyst in water to furnish ATCs with mild to good yields. According to antifungal assay, 1-decyl-4,5-dihydro-1H-1,2,3-triazole-4-carboxylic acid (5d) showed antifungal capability slightly better than BDSF. The 1,2,3-triazole unit played a crucial role for the bioactivity of ATCs was also confirmed when compared with two alkyl-aromatic carboxylic acids. Given its simplicity, high antifungal activity, and wide availability of compounds with halide atoms on the end part of the alkyl chains, the method can be extended to develop more excellent ATC drugs for accomplishing the challenges in future antifungal applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ren, Keyu; Zhang, Wenlin; Cao, Shurui; Wang, Guomin; Zhou, Zhiqin
2018-05-06
Carbon-based Fe₃O₄ nanocomposites (C/Fe₃O₄ NCs) were synthesized by a simple one-step hydrothermal method using waste pomelo peels as the carbon precursors. The characterization results showed that they had good structures and physicochemical properties. The prepared C/Fe₃O₄ NCs could be applied as excellent and recyclable adsorbents for magnetic solid phase extraction (MSPE) of 11 triazole fungicides in fruit samples. In the MSPE procedure, several parameters including the amount of adsorbents, extraction time, the type and volume of desorption solvent, and desorption time were optimized in detail. Under the optimized conditions, the good linearity ( R ² > 0.9916), the limits of detection (LOD), and quantification (LOQ) were obtained in the range of 1⁻100, 0.12⁻0.55, and 0.39⁻1.85 μg/kg for 11 pesticides, respectively. Lastly, the proposed MSPE method was successfully applied to analyze triazole fungicides in real apple, pear, orange, peach, and banana samples with recoveries in the range of 82.1% to 109.9% and relative standard deviations (RSDs) below 8.4%. Therefore, the C/Fe₃O₄ NCs based MSPE method has a great potential for isolating and pre-concentrating trace levels of triazole fungicides in fruits.
Thermo-reversible supramolecular hydrogels of trehalose-type diblock methylcellulose analogues.
Yamagami, Mao; Kamitakahara, Hiroshi; Yoshinaga, Arata; Takano, Toshiyuki
2018-03-01
This paper describes the design and synthesis of new trehalose-type diblock methylcellulose analogues with nonionic, cationic, and anionic cellobiosyl segments, namely 1-(tri-O-methyl-cellulosyl)-4-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (1), 1-(tri-O-methyl-cellulosyl)-4-[(6-amino-6-deoxy-β-d-glucopyranosyl)-(1→4)- 6-amino-6-deoxy-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (2), and 4-(tri-O-methyl-cellulosyloxymethyl)-1-[β-d-glucopyranuronosyl-(1→4)-β-d-glucopyranuronosyl]-1H-1,2,3-triazole (3), respectively. Aqueous solutions of all of the 1,2,3-triazole-linked diblock methylcellulose analogues possessed higher surface activities than that of industrially produced methylcellulose and exhibited lower critical solution temperatures, that allowed the formation of thermoresponsive supramolecular hydrogels at close to human body temperature. Supramolecular structures of thermo-reversible hydrogels based on compounds 1, 2, and 3 were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Detailed structure-property-function relationships of compounds 1, 2, and 3 were discussed. Not only nonionic hydrophilic segment but also ionic hydrophilic segments of diblock methylcellulose analogues were valid for the formation of thermo-reversible supramolecular hydrogels based on end-functionalized methylcellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Fengnian; She, Yongxin; Zhang, Chao; Cao, Xiaolin; Wang, Shanshan; Zheng, Lufei; Jin, Maojun; Shao, Hua; Jin, Fen; Wang, Jing
2017-10-01
A selective analytical method for the simultaneous determination of 20 triazole fungicides and plant growth regulators in cucumber samples was developed using solid-phase extraction with specific molecularly imprinted polymers (MIPs) as adsorbents. The MIPs were successfully prepared by precipitation polymerization using triadimefon as the template molecule, methacrylic acid as the functional monomer, trimethylolpropane trimethacrylate as the crosslinker, and acetonitrile as the porogen. The performance and recognition mechanism for both the MIPs and non-molecularly imprinted polymers were evaluated using adsorption isotherms and adsorption kinetics. Liquid chromatography-tandem quadrupole mass spectrometry was used to identify and quantify the target analytes. The solid-phase extraction using the MIPs was rapid, convenient, and efficient for extraction and enrichment of the 20 triazole pesticides from cucumber samples. The recoveries obtained at three concentration levels (1, 2, and 10μgL -1 ) ranged from 82.3% to 117.6% with relative standard deviations of less than 11.8% (n=5) for all analytes. The limits of detection for the 20 triazole pesticides were all less than 0.4μgL -1 , and were sufficient to meet international standards. Copyright © 2017 Elsevier B.V. All rights reserved.
A two-dimensional Zn coordination polymer with a three-dimensional supra-molecular architecture.
Liu, Fuhong; Ding, Yan; Li, Qiuyu; Zhang, Liping
2017-10-01
The title compound, poly[bis-{μ 2 -4,4'-bis-[(1,2,4-triazol-1-yl)meth-yl]biphenyl-κ 2 N 4 : N 4' }bis-(nitrato-κ O )zinc(II)], [Zn(NO 3 ) 2 (C 18 H 16 N 6 ) 2 ] n , is a two-dimensional zinc coordination polymer constructed from 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Zn II cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligands, forming a distorted octa-hedral {ZnN 4 O 2 } coordination geometry. The linear 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligand links two Zn II cations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C-H⋯O, C-H⋯N, C-H⋯π and π-π stacking inter-actions, resulting in a three-dimensional supra-molecular architecture.
The synthesis, antifungal and apoptotic effects of triazole-oxadiazoles against Candida species.
Çavuşoğlu, Betül Kaya; Yurttaş, Leyla; Cantürk, Zerrin
2018-01-20
In search of potent and safe antifungal agents, herein, we report the synthesis, characterization and biological activities of triazole-oxadiazole compounds. The structural verification of the molecules was carried out by 1 H NMR, 13 C NMR and mass spectral data. The in vitro antifungal and apoptotic activity were investigated against C. albicans, C. parapsilosis, C. krusei and C. glabrata. The compounds namely N-(4-nitrophenyl)-2-[(5-(2-((4-methyl-4H-1,2,4-triazol-3-yl)thio)ethyl)-1,3,4-oxadiazol-2-yl)thio]acetamide (4e) and N-(6-fluorobenzothiazol-2-yl)-2-[(5-(2-((4-methyl-4H-1,2,4-triazol-3-yl)thio)ethyl)-1,3,4-oxadiazol-2-yl)thio]acetamide (4i) were detected as the most potent compounds against C. albicans and C. glabrata (MIC 90 = 62.5 μg/mL). According to studies on their mechanism of action, it was confirmed that compound 4i has apoptotic effect on four Candida via Annexin V-PI with flow cytometry. The MTT assay revealed that all compounds were determined to be non-toxic against healthy cells in the tested concentrations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Karaseva, I. N.; Karasev, M. O.; Nechaeva, O. N.; Kurbatova, S. V.
2018-07-01
The dependence of the chromatographic retention of 1,2,4-triazine and 1,2,4-triazole derivatives from water-acetonitrile solutions over octadecyl silica on the structure of sorbate molecules is studied. The effect the physicochemical parameters and topology of heterocycle molecules have on the retention characteristics under RP HPLC conditions is analyzed.
2009-11-30
cations were obtained and isolated with a diverse group of azolate anions including nitro- substituted benzotriazolate, benzimidazolate , 1,2,4-triazolate... benzimidazolate , or benzotrizolate) have received much less attention than those containing azolium cations, although more results are now starting to...phosphonium cations combined with energetically-substituted tetrazolate, triazolate, imidazolate, benzimidazolate , and benzotriazolate anions (Figure
Free-radical cyclizations onto differently substituted 1,2,3-triazoles installed in sugar templates.
Marco-Contelles, J; Rodríguez-Fernández, M
2001-06-01
The synthesis and manipulation of differently substituted 1,2,3-triazoles (7-11 and 12-16) installed in sugar templates gave compounds 29-34 and 44-50, after reaction with tributyltin hydride or tris(trimethylsilyl)silane. Following standard procedures compound 44 was transformed into piperidinose derivative 54. These compounds are chiral, useful building blocks for the synthesis of glycosidase inhibitors of the fused-azole piperidinose type.
2-[(3-Propylsulfanyl-5-p-tolyl-4H-1,2,4-triazol-4-yl)iminomethyl]phenol
Wang, Wei; Liu, Qing-lei; Xu, Chao; Wu, Wen-peng; Gao, Yan
2011-01-01
In the title molecule, C19H20N4OS, the two benzene rings form dihedral angles of 16.2 (1) and 12.0 (1)°, respectively, with the central triazole ring. In the crystal, intermolecular O—H⋯N hydrogen bonds link molecules into chains in the [010] direction. PMID:22058906
Crystal structure of 3-(adamantan-1-yl)-4-(4-chloro-phen-yl)-1H-1,2,4-triazole-5(4H)-thione.
Al-Wabli, Reem I; El-Emam, Ali A; Alroqi, Obaid S; Chidan Kumar, C S; Fun, Hoong-Kun
2015-02-01
The title compound, C18H20ClN3S, is a functionalized triazoline-3-thione derivative. The benzene ring is almost perpendic-ular to the planar 1,2,4-triazole ring [maximum deviation = 0.007 (1) Å] with a dihedral angle of 89.61 (5)° between them and there is an adamantane substituent at the 3-position of the triazole-thione ring. In the crystal, N-H⋯S hydrogen-bonding inter-actions link the mol-ecules into chains extending along the c-axis direction. The crystal packing is further stabilized by weak C-H⋯π inter-actions that link adjacent chains into a two-dimensional structure in the bc plane. The crystal studied was an inversion twin with a 0.50 (3):0.50 (3) domain ratio.
Pace, Jennifer R; DeBerardinis, Albert M; Sail, Vibhavari; Tacheva-Grigorova, Silvia K; Chan, Kelly A; Tran, Raymond; Raccuia, Daniel S; Wechsler-Reya, Robert J; Hadden, M Kyle
2016-04-28
Itraconazole (ITZ) is an FDA-approved member of the triazole class of antifungal agents. Two recent drug repurposing screens identified ITZ as a promising anticancer chemotherapeutic that inhibits both the angiogenesis and hedgehog (Hh) signaling pathways. We have synthesized and evaluated first- and second-generation ITZ analogues for their anti-Hh and antiangiogenic activities to probe more fully the structural requirements for these anticancer properties. Our overall results suggest that the triazole functionality is required for ITZ-mediated inhibition of angiogenesis but that it is not essential for inhibition of Hh signaling. The synthesis and evaluation of stereochemically defined des-triazole ITZ analogues also provides key information as to the optimal configuration around the dioxolane ring of the ITZ scaffold. Finally, the results from our studies suggest that two distinct cellular mechanisms of action govern the anticancer properties of the ITZ scaffold.
Richard, Thomas; Weidhaas, Jennifer
2014-09-15
Defense agencies are increasingly using insensitive munitions (IM) in place of explosives such as 2,4,6-trinitrotoluene. In this study simultaneous aerobic degradation of the IMX-101 formulation constituents 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ) was observed and degradation products were examined. Degradation products over four days of incubation included: nitrourea, 1,2-dihydro-3H-1,2,4-triazol-3-one, and 2,4-dinitrophenol. The enrichment culture maximum specific growth rate of 0.12h(-1) and half saturation constant of 288 mg L(-1) during degradation of IMX-101 as a sole nitrogen source suggest that enrichment culture growth kinetics may closely relate to those of other explosive and nitroaromatic compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Kostyuchenko, Anastasia S; L.Yurpalov, Vyacheslav; Kurowska, Aleksandra; Domagala, Wojciech; Pron, Adam
2014-01-01
Summary A new synthetic approach towards the preparation of functionalised, soluble, donor–acceptor (DA) alkylbithiophene derivatives of oxadiazole, thiadiazole and triazole is reported. Taking advantage of the Fiesselmann reaction, reactive bithiophene synthons having alkyl or alkoxy substituents at designated positions are prepared. Following a synthetic strategy, featuring the bottom-up approach, sequential structural elements are built, starting from a simple thiophene compound, until the target molecule is obtained, all in good yield. Supplementing the well established methods of oxadiazole and thiadiazole synthesis, efficient ring closure reaction affording a 4H-1,2,4-triazole unit is presented. All target ambipolar compounds display strong photoluminescence with measured quantum yields up to 0.59. Modification of the demonstrated synthetic routes may be exploited for the preparation of longer, specifically functionalised oligothiophenes, coupled to other heteroaromatic cores. PMID:25161716
Kostyuchenko, Anastasia S; L Yurpalov, Vyacheslav; Kurowska, Aleksandra; Domagala, Wojciech; Pron, Adam; Fisyuk, Alexander S
2014-01-01
A new synthetic approach towards the preparation of functionalised, soluble, donor-acceptor (DA) alkylbithiophene derivatives of oxadiazole, thiadiazole and triazole is reported. Taking advantage of the Fiesselmann reaction, reactive bithiophene synthons having alkyl or alkoxy substituents at designated positions are prepared. Following a synthetic strategy, featuring the bottom-up approach, sequential structural elements are built, starting from a simple thiophene compound, until the target molecule is obtained, all in good yield. Supplementing the well established methods of oxadiazole and thiadiazole synthesis, efficient ring closure reaction affording a 4H-1,2,4-triazole unit is presented. All target ambipolar compounds display strong photoluminescence with measured quantum yields up to 0.59. Modification of the demonstrated synthetic routes may be exploited for the preparation of longer, specifically functionalised oligothiophenes, coupled to other heteroaromatic cores.
Synthesis and luminescence properties of iridium(III) azide- and triazole-bisterpyridine complexes.
Goldstein, Daniel C; Peterson, Joshua R; Cheng, Yuen Yap; Clady, Raphael G C; Schmidt, Timothy W; Thordarson, Pall
2013-07-26
We describe here the synthesis of azide-functionalised iridium(III) bisterpyridines using the "chemistry on the complex" strategy. The resulting azide-complexes are then used in the copper(I)-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition "click chemistry" reaction to from the corresponding triazole-functionalised iridium(III) bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III) bisterpyridines, but this effect can be reversed by the addition of copper(II) sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III) bisterpyridines can be functionalized for use in "click chemistry" facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.
Hettne, Kristina M; Boorsma, André; van Dartel, Dorien A M; Goeman, Jelle J; de Jong, Esther; Piersma, Aldert H; Stierum, Rob H; Kleinjans, Jos C; Kors, Jan A
2013-01-29
Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values < 0.05) of the next-gen TM-derived gene sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect.
2013-01-01
Background Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. Methods We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values < 0.05) of the next-gen TM-derived gene sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. Results Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. Conclusions Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect. PMID:23356878
Llona-Minguez, Sabin; Häggblad, Maria; Martens, Ulf; Throup, Adam; Loseva, Olga; Jemth, Ann-Sofie; Lundgren, Bo; Scobie, Martin; Helleday, Thomas
2017-08-15
A high-throughput screening campaign using a commercial compound library (ChemBridge DiverSET) revealed diverse chemotypes as inhibitors of the human dCTP pyrophosphatase 1 (dCTPase). Triazole, triazolopyrimidine, triazinoindole, quinoline hydrazone and arylpiperazine hits were clustered, confirmed by IC 50 determinations, and their preliminary structure-activity-relationships (SAR) and ligand efficiency scores are discussed in this letter. Copyright © 2017. Published by Elsevier Ltd.
Garau, Margarita; Pereiro, Jr., Manolo; del Palacio, Amalia
2003-01-01
The in vitro activity of the new triazole albaconazole (UR-9825) in comparison with those of flucytosine, fluconazole, ketoconazole, itraconazole, and voriconazole against 70 strains of Malassezia spp. was determined by a microdilution method using a colorimetric indicator for metabolic activity. Albaconazole showed an in vitro profile similar to those of the different antifungals tested (MIC ≤ 0.06 μg/ml for all the strains). PMID:12821494
Tropiano, Manuel; Kenwright, Alan M; Faulkner, Stephen
2015-04-07
Lanthanide complexes of azidophenacyl DO3A are effective substrates for click reactions with ethyne derivatives, giving rise to aryl triazole appended lanthanide complexes, in which the aryl triazole acts as an effective sensitising chromophore for lanthanide luminescence. They also undergo click chemistry with propargylDO3A derivatives, giving rise to heterometallic complexes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Identification of 1-Aryl-1H-1,2,3-triazoles as Potential New Antiretroviral Agents.
Gonzaga, Daniel T G; Souza, Thiago M L; Andrade, Viviane M M; Ferreira, Vitor F; de C da Silva, Fernando
2018-01-01
Low molecular weight 1-Aryl-1H-1,2,3-triazoles are endowed with various types of biological activities, such as against cancer, HIV and bacteria. Despite the existence of six different classes of antiretroviral drugs in clinical use, HIV/AIDS continue to be an on growing public health problem. In the present study, we synthesized and evaluated thirty 1-Aryl-1H-1,2,3-triazoles against HIV replication. The compounds were prepared by Huisgen 1,3-dipolar cycloaddition protocol catalyzed by Cu(I) between aryl azides and propargylic alcohol followed by further esterification and etherification from a nucleophilic substitution with acid chlorides or alkyl bromides in good yields. The compounds were submitted to the inhibition of HIV replication and evaluation of their cytotoxicity. Initially, the compounds were screened at 10 µM and the most active were further evaluated in order to obtain some pharmacological parameters. Thirty molecules were evaluated, six were selected - because they inhibited more than 80% HIV replication. We further showed that two of these compounds are 8-times more potent, and less cytotoxic, than nevirapine, an antiretroviral drug in clinical use. We identified very simple triazoles with promissing antiretroviral activities that led to the development of new drugs against AIDS. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Synthesis and leishmanicidal activity of eugenol derivatives bearing 1,2,3-triazole functionalities.
Teixeira, Róbson Ricardo; Gazolla, Poliana Aparecida Rodrigues; da Silva, Adalberto Manoel; Borsodi, Maria Paula Gonçalves; Bergmann, Bartira Rossi; Ferreira, Rafaela Salgado; Vaz, Boniek Gontijo; Vasconcelos, Géssica Adriana; Lima, Wallace Pacienza
2018-02-25
In this paper, it is described the synthesis and the evaluation of the leishmanicidal activity of twenty-six eugenol derivatives bearing 1,2,3-triazole functionalities. The evaluation of the compounds on promastigotes of Leishmania amazonensis (WHOM/BR/75/Josefa) showed that eugenol derivatives present leishmanicidal activities with varying degrees of effectiveness. The most active compound, namely 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-methylbenzyl)-1H-1,2,3-triazole (7k) (IC 50 = 7.4 ± 0.8 μmol L -1 ), also targeted Leishmania parasites inside peritoneal macrophages (IC 50 = 1.6 μmol L -1 ) without interfering with cell viability. The cytotoxicity of 7k against macrophage cells presented IC 50 of 211.9 μmol L -1 and the selective index was equal to 132.5. Under similar conditions, compound 7k was more effective than glucantime and pentamidine, two drugs currently in the clinic. In addition, theoretical calculations showed that this compound also presents most physicochemical and pharmacokinetic properties within the ranges expected for orally available drugs. It is believed that eugenol bearing 1,2,3-triazole functionalities may represent a scaffold to be explored toward the development of new agents to treat leishmaniasis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Zhang, Jiaheng; Dharavath, Srinivas; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M
2016-06-22
Molecular modification of known explosives is considered to be an efficient route to design new energetic materials. A new family of energetic salts based on the 3,5-bis(dinitromethyl)-1,2,4-triazole monoanion and dianion were controllably synthesized by using 1-diamino-2,2-dinitroethene as a precursor. X-ray structure determination of monohydrazinium 3,5-bis(dinitromethyl)-1,2,4-triazolate (5) and monoammonium (6) and diammonium 3,5-bis(dinitromethyl)-1,2,4-triazolate hydrate (8·H2O) further confirmed the structures of these anions. In addition, as supported by X-ray data, in the monoanion system, the roving proton on the ring nitrogen rather than on the gem-dinitro carbon results in extensive hydrogen-bonding interactions and higher packing coefficients. Interestingly, 5 and 6 possess the highest calculated crystal densities, 1.965 and 1.957 g cm(-3) at 150 K, for hydrazinium and ammonium energetic salts, respectively. Energetic evaluation indicates that 5 (detonation velocity vD = 9086 m s(-1); detonation pressure P = 38.7 GPa) and 6 (vD, 9271 m s(-1); P = 41.0 GPa) exhibit great detonation properties, superior to those of current highly explosive benchmarks, such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX).
Ren, Keyu; Zhang, Wenlin; Cao, Shurui; Wang, Guomin; Zhou, Zhiqin
2018-01-01
Carbon-based Fe3O4 nanocomposites (C/Fe3O4 NCs) were synthesized by a simple one-step hydrothermal method using waste pomelo peels as the carbon precursors. The characterization results showed that they had good structures and physicochemical properties. The prepared C/Fe3O4 NCs could be applied as excellent and recyclable adsorbents for magnetic solid phase extraction (MSPE) of 11 triazole fungicides in fruit samples. In the MSPE procedure, several parameters including the amount of adsorbents, extraction time, the type and volume of desorption solvent, and desorption time were optimized in detail. Under the optimized conditions, the good linearity (R2 > 0.9916), the limits of detection (LOD), and quantification (LOQ) were obtained in the range of 1–100, 0.12–0.55, and 0.39–1.85 μg/kg for 11 pesticides, respectively. Lastly, the proposed MSPE method was successfully applied to analyze triazole fungicides in real apple, pear, orange, peach, and banana samples with recoveries in the range of 82.1% to 109.9% and relative standard deviations (RSDs) below 8.4%. Therefore, the C/Fe3O4 NCs based MSPE method has a great potential for isolating and pre-concentrating trace levels of triazole fungicides in fruits. PMID:29734765
Anderson, Christopher B; Elliott, Anastasia B S; Lewis, James E M; McAdam, C John; Gordon, Keith C; Crowley, James D
2012-12-28
The syntheses of the 4-n-propyl and 4-phenyl substituted fac-Re(CO)(3) complexes of the tridentate "click" ligand (2,6-bis(4-substituted-1,2,3-triazol-1-ylmethyl)pyridine) are described. The complexes were obtained by refluxing methanol solutions of [Re(CO)(5)Cl], AgPF(6) and either the 4-propyl or 4-phenyl substituted ligand for 16 h. The ligands and the two rhenium(I) complexes were characterised by elemental analysis, HR-ESMS, ATR-IR, (1)H and (13)C NMR spectroscopy and the molecular structures of both complexes were confirmed by X-ray crystallography. The electronic structure of the fac-Re(CO)(3) "click" complexes was probed using UV-Vis, Raman and emission spectroscopy, cyclic voltammetry and DFT calculations. Altering the electronic nature of the ligand's substituent, from aromatic to alkyl, had little effect on the absorption/emission maxima and electrochemical properties of the complexes indicating that the 1,2,3-triazole unit may insulate the metal centre from the electronic modification at the ligands' periphery. Both Re(I) complexes were found to be weakly emitting with short excited state lifetimes. The electrochemistry of the complexes is defined by quasi-reversible Re oxidation and irreversible triazole-based ligand reduction processes.
Yamauchi, John G.; Gomez, Kimberly; Grimster, Neil; Dufouil, Mikael; Nemecz, Ákos; Fotsing, Joseph R.; Ho, Kwok-Yiu; Talley, Todd T.; Sharpless, K. Barry; Fokin, Valery V.
2012-01-01
The acetylcholine-binding proteins (AChBPs), which serve as structural surrogates for the extracellular domain of nicotinic acetylcholine receptors (nAChRs), were used as reaction templates for in situ click-chemistry reactions to generate a congeneric series of triazoles from azide and alkyne building blocks. The catalysis of in situ azide-alkyne cycloaddition reactions at a dynamic subunit interface facilitated the synthesis of potentially selective compounds for nAChRs. We investigated compound sets generated in situ with soluble AChBP templates through pharmacological characterization with α7 and α4β2 nAChRs and 5-hydroxytryptamine type 3A receptors. Analysis of activity differences between the triazole 1,5-syn- and 1,4-anti-isomers showed a preference for the 1,4-anti-triazole regioisomers among nAChRs. To improve nAChR subtype selectivity, the highest-potency building block for α7 nAChRs, i.e., 3α-azido-N-methylammonium tropane, was used for additional in situ reactions with a mutated Aplysia californica AChBP that was made to resemble the ligand-binding domain of the α7 nAChR. Fourteen of 50 possible triazole products were identified, and their corresponding tertiary analogs were synthesized. Pharmacological assays revealed that the mutated binding protein template provided enhanced selectivity of ligands through in situ reactions. Discrete trends in pharmacological profiles were evident, with most compounds emerging as α7 nAChR agonists and α4β2 nAChR antagonists. Triazoles bearing quaternary tropanes and aromatic groups were most potent for α7 nAChRs. Pharmacological characterization of the in situ reaction products established that click-chemistry synthesis with surrogate receptor templates offered novel extensions of fragment-based drug design that were applicable to multisubunit ion channels. PMID:22784805
Sagatova, Alia A; Keniya, Mikhail V; Tyndall, Joel D A; Monk, Brian C
2018-03-01
Fungal infections frequently affect immunodeficient individuals and are estimated to kill 1.35 million people per annum. Azole antifungals target the membrane-bound cytochrome P450 monooxygenase lanosterol 14α-demethylase (CYP51; Erg11p). Mutations in CYP51 can render the widely used triazole drugs less effective. The Candida albicans CYP51 mutation G464S and the double mutation Y132F G464S (Y140F and G464S by Saccharomyces cerevisiae numbering) as well as the CYP51A G54E/R/W mutations of Aspergillus fumigatus (G73E/R/W by S. cerevisiae numbering) have been reproduced in a recombinant C-terminal hexahistidine-tagged version of S. cerevisiae CYP51 (ScErg11p6×His). Phenotypes and X-ray crystal structures were determined for the mutant enzymes. Liquid microdilution assays showed that the G464S mutation in ScErg11p6×His conferred no difference in the susceptibility of yeast to triazole drugs but in combination with the Y140F mutation gave a 4-fold reduction in susceptibility to the short-tailed triazole fluconazole. The ScErg11p6×His Y140F G464S mutant was unstable during purification and was not crystallized. The ScErg11p6×His G73E/R/W mutations conferred increased susceptibly to all triazoles tested in liquid microdilution assays. High-resolution X-ray crystal structures reveal two different conformations of the ligand itraconazole, including a previously unseen conformation, as well as interactions between the tail of this triazole and the E/W73 residue. This study shows that S. cerevisiae CYP51 adequately represents some but not all mutations in CYP51s of pathogenic fungi. Insight into the molecular mechanisms of resistance mutations in CYP51 will assist the development of inhibitors that will overcome antifungal resistance. Copyright © 2018 American Society for Microbiology.
Nath, Mala; Sulaxna; Song, Xueqing; Eng, George; Kumar, Ashok
2008-09-01
Some di- and triorganotin(IV) triazolates of general formula, R(4-n)SnLn (where n=2; R=Me, n-Bu and Ph; n=1; R=Me, n-Pr, n-Bu and Ph and HL=4-amino-3-methyl-1,2,4-triazole-5-thiol (HL-1); and 4-amino-3-ethyl-1,2,4-triazole-5-thiol (HL-2)) were synthesized by the reaction of R(4-n)SnCln with sodium salt of HL-1 and HL-2. The bonding and coordination behavior in these derivatives have been discussed on the basis of IR and 119Sn Mössbauer spectroscopic studies in the solid state. Their coordination behavior in solution is discussed by multinuclear (1H, 13C and 119Sn) NMR spectral studies. The IR and 119Sn Mössbauer spectroscopic studies indicate that the ligands, HL-1 and HL-2 act as a monoanionic bidentate ligand, coordinating through Sexo- and Nring. The distorted skew trapezoidal-bipyramidal and distorted trigonal bipyramidal geometries have been proposed for R2SnL2 and R3SnL, respectively, in the solid state. In vitro antimicrobial screening of some of the newly synthesized derivatives and of some di- and triorganotin(IV) derivatives of 3-amino-1,2,4-triazole-5-thiol (HL-3) and 5-amino-3H-1,3,4-thiadiazole-2-thiol (HL-4) along with two standard drugs such as fluconazole and ciprofloxacin have been carried out against the bacteria, viz. Staphylococcus aureus and Escherichia coli, and against some fungi, viz. Aspergillus fumigatus, Candida albicans, Candida albicans (ATCC 10231), Candida krusei (GO3) and Candida glabrata (HO5) by the filter paper disc method. The studied organotin(IV) compounds show mild antifungal activity as compared to that of fluconazole, however, they show almost insignificant activity against the studied Gram-positive (Staphylococcus aureas) and Gram-negative (Escherichia coli) bacteria as compared to that of standard drug, ciprofloxacin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chun-Jing; Pang, Hai-Jun; Tang, Qun
2010-12-15
Three 3D compounds based on octamolybdate clusters and various Cu{sup I}/Cu{sup II}-bis(triazole) motifs, [Cu{sup I}{sub 2}btb][{beta}-Mo{sub 8}O{sub 26}]{sub 0.5} (1), [Cu{sup I}{sub 2}btpe][{beta}-Mo{sub 8}O{sub 26}]{sub 0.5} (2), and [Cu{sup II}(btpe){sub 2}][{beta}-Mo{sub 8}O{sub 26}]{sub 0.5} (3) [btb=1,4-bis(1,2,4-triazol-1-yl)butane, btpe=1,5-bis(1,2,4-triazol-1-yl)pentane], were isolated via tuning flexible ligand spacer length and metal coordination preferences. In 1, the copper(I)-btb motif is a one-dimensional (1D) chain which is further linked by hexadentate {beta}-[Mo{sub 8}O{sub 26}]{sup 4-} clusters via coordinating to Cu{sup I} cations giving a 3D structure. In 2, the copper(I)-btpe motif exhibits a 'stairs'-like [Cu{sup I}{sub 2}btpe]{sup 2+} sheet, and the tetradentate {beta}-[Mo{sub 8}O{sub 26}]{sup 4-}more » clusters interact with two neighboring [Cu{sup I}{sub 2}btpe]{sup 2+} sheets constructing a 3D framework. In 3, the copper(II)-btpe motif possesses a novel (2D{yields}3D) interdigitated structure, which is further connected by the tetradentate {beta}-[Mo{sub 8}O{sub 26}]{sup 4-} clusters forming a 3D framework. The thermal stability and luminescent properties of 1-3 are investigated in the solid state. -- Graphical abstract: Three 3D compounds based on {beta}-[Mo{sub 8}O{sub 26}]{sup 4-} clusters with different Cu{sup I}/Cu{sup II}-bis(triazole) motifs were synthesized by regularly tuning flexible ligand spacer length and metal coordination preferences. Display Omitted« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Juan-Juan; Xu, Xia; Jiang, Ning
2015-03-15
Solvothermal reactions of metal salts, 3-amino-1,2,4-triazole-5-carboxylic acid (H{sub 2}atzc) and ammonium oxalate in different temperature produced two metal azolate frameworks, namely, [Cu{sub 3}(atzc){sub 2}(atz)(ox)]·1.5H{sub 2}O (1) and [Co{sub 5}(atz){sub 4}(ox){sub 3}(HCOO){sub 2}]·DMF (2) (H{sub 2}atzc=3-amino-1,2,4-triazole-5-carboxylic acid, Hatz=3-amino-1,2,4-triazole, and ox=oxalate), in which the atzc precusor was in situ decarboxylated. Structural determination reveals that 1 contains [Cu{sub 3}(atzc){sub 2}(atz)]{sup 2−} layers of mixed μ{sub 4}-atzc and μ{sub 3}-atz ligands, which are pillared by ox{sup 2−} groups to form a 3D porous framework. Compound 2 contains 2D layers with basic spindle-shaped decanuclear units, which extended by ox{sup 2−} and formates to form 3Dmore » porous framework. Gas adsorption investigation revealed that two kinds of frameworks exhibited selective CO{sub 2} over N{sub 2} sorption. Moreover, activated 2 shows H{sub 2} storage capacity. Additionally, magnetic properties of both the compounds have been investigated. - Graphical abstract: Solvothermal reactions of metal salts, 3-amino-1,2,4-triazole-5-carboxylate and oxalate produced two metal azolate frameworks, which could store gas molecules, especially H{sub 2} due to small pores. in situ decarboxylation of precursor was observed. - Highlights: • Two MAFs were synthesized via in situ decarboxylation of H{sub 2}atzc. • Both activated frameworks exhibited selective CO{sub 2} over N{sub 2} sorption. • Activated 2 could adsorb H{sub 2}, which makes it promising candidates for gas storage.« less
In Vitro Activities of Four Novel Triazoles against Scedosporium spp.
Carrillo, A. J.; Guarro, J.
2001-01-01
In order to develop new approaches to the treatment of the severe and usually fatal infections caused by Scedosporium spp., the in vitro antifungal activities of four novel triazoles (posaconazole, ravuconazole, voriconazole, and UR-9825) and some current antifungals (amphotericin B, ketoconazole, itraconazole, and nystatin) were determined. The latter group was clearly ineffective against the two species tested. The four new antifungals showed activity against Scedosporium apiospermum, and UR-9825 and voriconazole were active against S. prolificans. PMID:11408242
Chemical Preparation Laboratory IND Candidate Compounds.
1986-01-21
filtered. The filtrate was neutralized with hydrochloric acid (3.2 L) and the resulting precipitate was collected by filtration. The product was dried...lit. 242-244-) 1.2.4-Triazole-3-carboxylic acid (4)9: 5-Amino-l,2,4-triazole-3- carboxylic acid (1 Kg, 7.8 mol) was dissolved in hot hydrochloric acid ...300 mL), cooled in an ice bath, and adjusted to pH 1 with con- centrated hydrochloric acid (25 mL). The resulting oil started to crystal- lize and the
Li, Yi-Jin; Li, Xue; Zhang, Shao-Xiao; Zhao, Yu-Long; Liu, Qun
2015-07-25
A novel copper-catalyzed [3+2] cycloaddition reaction of secondary amines with α-diazo compounds has been developed via a cross-dehydrogenative coupling process. The reaction involves a sequential aerobic oxidation/[3+2] cycloaddition/oxidative aromatization procedure and provides an efficient method for the construction of 1,2,3-triazoles in a single step in an atom-economic manner from readily available starting materials under very mild conditions.
Nano-interconnection for microelectronics and polymers with benzo-triazole
NASA Technical Reports Server (NTRS)
Park, Yeonjoon; Choi, Sang H.; Noh, Hyunpil; Kuk, Young
2006-01-01
Benzo-Triazole (BTA) is considered as an important bridging material that can connect an organic polymer to the metal electrode on silicon wafers as a part of the microelectronics fabrication technology. We report a detailed process of surface induced 3-D polymerization of BTA on the Cu electrode material which was measured with the Ultraviolet Photoemission Spectroscopy (UPS), X-ray Photoemission Spectroscopy (XPS), and Scanning Tunneling Microscope (STM). The electric utilization of shield and chain polymerization of BTA on Cu surface is contemplated in this study.
A toxicological study of 1,2,4-triazole-5-one
DOE Office of Scientific and Technical Information (OSTI.GOV)
London, J.
1988-12-01
The acute oral LD/sub 50/ values for 1,2,4-triazole-5-one (TO) are greater than 5g/kg. According to classical guidelines, the material would be considered only slightly toxic or practically nontoxic in both rats and mice. The sensitization study in the guinea pig did not show TO to have potential sensitizing effects. Skin application studies on the rabbit demonstrated it was cutaneously nonirritating. This material was also nonirritating in the rabbit eye application studies. 4 refs., 1 tab.
Yang, Yuan; Zhou, Ming-Bo; Ouyang, Xuan-Hui; Pi, Rui; Song, Ren-Jie; Li, Jin-Heng
2015-05-26
A rhodium(III)-catalyzed [3+2]/[5+2] annulation of 4-aryl 1-tosyl-1,2,3-triazoles with internal alkynes is presented. This transformation provides straightforward access to indeno[1,7-cd]azepine architectures through a sequence involving the formation of a rhodium(III) azavinyl carbene, dual C(sp(2))-H functionalization, and [3+2]/[5+2] annulation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Potential antimicrobial agents from triazole-functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones.
Bollu, Rajitha; Banu, Saleha; Bantu, Rajashaker; Reddy, A Gopi; Nagarapu, Lingaiah; Sirisha, K; Kumar, C Ganesh; Gunda, Shravan Kumar; Shaik, Kamal
2017-12-01
A series of substituted triazole functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones were synthesized by employing click chemistry and further characterized based on 1 H NMR, 13 C NMR, IR and mass spectral studies. All the synthesized derivatives were screened for their in vitro antimicrobial activities. Further, molecular docking studies were accomplished to explore the binding interactions between 1,2,3-triazol-4-yl-2H-benzo[b][1,4]oxazin-3(4H)-one and the active site of Staphylococcus aureus (CrtM) dehydrosqualene synthase (PDB ID: 2ZCS). These docking studies revealed that the synthesized derivatives showed high binding energies and strong H-bond interactions with the dehydrosqualene synthase validating the observed antimicrobial activity data. Based on antimicrobial activity and docking studies, the compounds 9c, 9d and 9e were identified as promising antimicrobial leads. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ashok, Dongamanti; Gundu, Srinivas; Aamate, Vikas Kumar; Devulapally, Mohan Gandhi; Bathini, Raju; Manga, Vijjulatha
2018-04-01
The present study demonstrated the synthesis of new series of coumarin-1,2,3-triazole hybrids under microwave irradiation method. Several dimers of coumarin based 1,2,3-triazole derivatives were synthesized and their antimycobacterial and antimicrobial activities were investigated. The antimycobacterial activity screening results revealed that compounds 6i and 6j were the most active against Mycobacterium tuberculosis H37Rv strain. The active compounds were further evaluated for cytotoxicity with HEK cell lines and exhibited less % of inhibition. The same synthetic hybrids were evaluated for their antimicrobial activity against various bacterial strains and fungal strains and compounds 6e, 6h, 6i and 6j were found to be the most promising antimicrobial potent molecules. Furthermore, the active compounds against Mycobacterium tuberculosis were evaluated for their molecular docking studies against pantothenate synthetase (PS) enzyme of MTB and the docking results are in well agreement with the antitubercular evaluation results.
Wang, Peng; Liu, Donghui; Jiang, Shuren; Xu, Yangguang; Zhou, Zhiqiang
2008-10-01
The amylose-tris(3,5-dimethylphenylcarbamate) chiral stationary phase was synthesized and used to separate the enantiomers of triazole pesticides by high-performance liquid chromatography. The mobile phase was n-hexane-isopropanol applying a flow rate of 1.0 mL/min. Six triazole pesticides were enantioselectively separated. Myclobutanil, paclobutrazol, tebuconazole, and uniconazole obtained complete separation with the resolution factors of 5.73, 2.99, 1.72, and 2.07, respectively, and imazalil and diniconazole obtained partial separation with the resolution factors of 0.79 and 0.77 under the optimized conditions. The effect of the content of isopropanol as well as column temperature on the separation was investigated. A circular dichroism detector was used to identify the enantiomers and determine the elution orders. The results showed the low temperature was good for the chiral separation except for diniconazole. The thermodynamic parameters calculated based on linear Van't Hoff plots showed the chiral separations were controlled by enthalpy.
Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids.
Remenar, Julius F; Morissette, Sherry L; Peterson, Matthew L; Moulton, Brian; MacPhee, J Michael; Guzmán, Héctor R; Almarsson, Orn
2003-07-16
Cocrystals of the poorly soluble antifungal drug cis-itraconazole (1) with 1,4-dicarboxylic acids have been prepared. The crystal structure of the succinic acid cocrystal with 1 was determined to be a trimer by single-crystal X-ray. The trimer is comprised of two molecules of 1 oriented in antiparallel fashion to form a pocket with a triazole at either end. The extended succinic acid molecule fills the pocket, bridging the triazole groups through hydrogen-bonding interactions rather than interacting with the more basic piperazine nitrogens. The solubility and dissolution rate of some of the cocrystals are approximately the same as those of the amorphous drug in the commercial formulation and are much higher than those for the crystalline free base. The results suggest that cocrystals of drug molecules have the possibility of achieving the higher oral bioavailability common for amorphous forms of water-insoluble drugs while maintaining the long-term chemical and physical stability that crystal forms provide.
Siddiqui, Nadeem; Ahsan, Waquar
2010-04-01
Various 3-[4-(substituted phenyl)-1,3-thiazol-2-ylamino]-4-(substituted phenyl)-4,5-dihydro-1H-1,2,4-triazole-5-thiones (7a-t) were designed keeping in view the structural requirements suggested in the pharmacophore model for anticonvulsant activity. Thiazole and triazole moieties being anticonvulsants were clubbed together to get the titled compounds and their in vivo anticonvulsant screening were performed by two most adopted seizure models, maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (scPTZ). Two compounds 7d and 7f showed significant anticonvulsant activity in both the screens with ED(50) values 23.9 mg/kg and 13.4 mg/kg respectively in MES screen and 178.6 mg/kg and 81.6 mg/kg respectively in scPTZ test. They displayed a wide margin of safety with Protective index (PI), median hypnotic dose (HD(50)) and median lethal dose (LD(50)) much higher than the standard drugs. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saavedra, J.A.; Palta, J.P.; Stang, E.J.
Uniconazole (UCZ) is an effective growth suppressant of the group of triazoles. Triazoles have been used as fungicides (inhibiting sterol biosynthesis) or plant growth regulators (inhibiting gibberellin biosynthesis). Some reports suggest that triazoles can help to alleviate some environmental stresses, including SO{sub 2}, drought, and low and high temperatures. Using soil drench or foliar spray procedure the authors investigated the influence of UCZ 95-500 mg L{sup {minus}1} on freezing tolerance of leaf tissue. Freezing tolerance was evaluated 1-10 days following UCZ treatment by using electrolyte leakage method. They also measured internode length, chlorophyll content, and the size of palisade layermore » on treated leaves. The highest UCZ rate (500 mg L{sup {minus}1}) did not cause injury to the plants. Chlorophyll content and length of palisade cells increased by 30 and 14%, respectively, in the treated leaves. The internode length was suppressed in 22% by UCZ. Thus UCZ was effective in dwarfing the plants. However, no dramatic effects were found on the freezing stress resistance in both potato species.« less
Blincoe, William D; Rodriguez-Granillo, Agustina; Saurí, Josep; Pierson, Nicholas A; Joyce, Leo A; Mangion, Ian; Sheng, Huaming
2018-04-01
Benzoic acid/ester/amide derivatives are common moieties in pharmaceutical compounds and present a challenge in positional isomer identification by traditional tandem mass spectrometric analysis. A method is presented for exploiting the gas-phase neighboring group participation (NGP) effect to differentiate ortho-substituted benzoic acid/ester derivatives with high resolution mass spectrometry (HRMS 1 ). Significant water/alcohol loss (>30% abundance in MS 1 spectra) was observed for ortho-substituted nucleophilic groups; these fragment peaks are not observable for the corresponding para and meta-substituted analogs. Experiments were also extended to the analysis of two intermediates in the synthesis of suvorexant (Belsomra) with additional analysis conducted with nuclear magnetic resonance (NMR), density functional theory (DFT), and ion mobility spectrometry-mass spectrometry (IMS-MS) studies. Significant water/alcohol loss was also observed for 1-substituted 1, 2, 3-triazoles but not for the isomeric 2-substituted 1, 2, 3-triazole analogs. IMS-MS, NMR, and DFT studies were conducted to show that the preferred orientation of the 2-substituted triazole rotamer was away from the electrophilic center of the reaction, whereas the 1-subtituted triazole was oriented in close proximity to the center. Abundance of NGP product was determined to be a product of three factors: (1) proton affinity of the nucleophilic group; (2) steric impact of the nucleophile; and (3) proximity of the nucleophile to carboxylic acid/ester functional groups. Graphical Abstract ᅟ.
Uliassi, Elisa; Piazzi, Lorna; Belluti, Federica; Mazzanti, Andrea; Kaiser, Marcel; Brun, Reto; Moraes, Carolina B; Freitas-Junior, Lucio H; Gul, Sheraz; Kuzikov, Maria; Ellinger, Bernhard; Borsari, Chiara; Costi, Maria Paola; Bolognesi, Maria Laura
2018-04-06
Protozoan infections caused by Plasmodium, Leishmania, and Trypanosoma spp. contribute significantly to the burden of infectious diseases worldwide, causing severe morbidity and mortality. The inadequacy of available treatments calls for cost- and time-effective drug discovery endeavors. To this end, we envisaged the triazole linkage of privileged structures as an effective drug design strategy to generate a focused library of high-quality compounds. The versatility of this approach was combined with the feasibility of a phenotypic assay, integrated with early ADME-tox profiling. Thus, an 18-membered library was efficiently assembled via Huisgen cycloaddition of phenothiazine, biphenyl, and phenylpiperazine scaffolds. The resulting 18 compounds were then tested against seven parasite strains, and counter-screened for selectivity against two mammalian cell lines. In parallel, hERG and cytochrome P450 (CYP) inhibition, and mitochondrial toxicity were assessed. Remarkably, 10-((1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-5-yl)methyl)-10H-phenothiazine (7) and 10-(3-(1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-4-yl)propyl)-10H-phenothiazine (12) showed respective IC 50 values of 1.8 and 1.9 μg mL -1 against T. cruzi, together with optimal selectivity. In particular, compound 7 showed a promising ADME-tox profile. Thus, hit 7 might be progressed as an antichagasic lead. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Madeira, Camila L.; Field, Jim A.; Simonich, Michael T.; Tanguay, Robert L.; Chorover, Jon; Sierra-Alvarez, Reyes
2018-01-01
The insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) was recently approved by the U.S. Army to replace cyclotrimethylene trinitramine (RDX) in conventional explosives. As its use becomes widespread, concern about the potential toxicity of NTO increases. NTO can undergo microbial reduction to 3-amino-1,2,4-triazol-5-one (ATO), which is recalcitrant in waterlogged soils. In this study, the acute toxicity of NTO and ATO towards various organisms, including microorganisms (i.e., methanogenic archaea, aerobic heterotrophs, and Aliivibrio fischeri (Microtox assay)), the microcrustacean Daphnia magna (ATO only), and zebrafish embryos (Danio rerio), was assessed. NTO was notably more inhibitory to methanogens than ATO (IC50=1.2 mM, >62.8 mM, respectively). NTO and ATO did not cause noteworthy inhibition on aerobic heterotrophs even at the highest concentrations tested (32.0 mM). High concentrations of both NTO and ATO were required to inhibit A. fischeri (IC20 = 19.2, 22.4 mM, respectively). D. magna was sensitive to ATO (LC50= 0.27 mM). Exposure of zebrafish embryos to NTO or ATO (750 µM) did not cause lethal or developmental effects (22 endpoints tested). However, both compounds led to swimming behavior abnormalities at low concentrations (7.5 µM). The results indicate that the reductive biotransformation of NTO could enhance or lower its toxicity according to the target organism. PMID:28992572
NASA Astrophysics Data System (ADS)
Blincoe, William D.; Rodriguez-Granillo, Agustina; Saurí, Josep; Pierson, Nicholas A.; Joyce, Leo A.; Mangion, Ian; Sheng, Huaming
2018-02-01
Benzoic acid/ester/amide derivatives are common moieties in pharmaceutical compounds and present a challenge in positional isomer identification by traditional tandem mass spectrometric analysis. A method is presented for exploiting the gas-phase neighboring group participation (NGP) effect to differentiate ortho-substituted benzoic acid/ester derivatives with high resolution mass spectrometry (HRMS1). Significant water/alcohol loss (>30% abundance in MS1 spectra) was observed for ortho-substituted nucleophilic groups; these fragment peaks are not observable for the corresponding para and meta-substituted analogs. Experiments were also extended to the analysis of two intermediates in the synthesis of suvorexant (Belsomra) with additional analysis conducted with nuclear magnetic resonance (NMR), density functional theory (DFT), and ion mobility spectrometry-mass spectrometry (IMS-MS) studies. Significant water/alcohol loss was also observed for 1-substituted 1, 2, 3-triazoles but not for the isomeric 2-substituted 1, 2, 3-triazole analogs. IMS-MS, NMR, and DFT studies were conducted to show that the preferred orientation of the 2-substituted triazole rotamer was away from the electrophilic center of the reaction, whereas the 1-subtituted triazole was oriented in close proximity to the center. Abundance of NGP product was determined to be a product of three factors: (1) proton affinity of the nucleophilic group; (2) steric impact of the nucleophile; and (3) proximity of the nucleophile to carboxylic acid/ester functional groups. [Figure not available: see fulltext.
Giofrè, Salvatore V; Romeo, Roberto; Carnovale, Caterina; Mancuso, Raffaella; Cirmi, Santa; Navarra, Michele; Garozzo, Adriana; Chiacchio, Maria A
2015-03-24
A novel series of C-nucleosides, featuring the presence of a 1,2,3-triazole ring linked to an isoxazolidine system, has been designed as mimetics of the pyrimidine nucleobases. An antiproliferative effect was observed for compounds 17a and 17b: the growth inhibitory effect reaches the 50% in HepG2 and HT-29 cells and increases up to 56% in the SH-SY5Y cell line after 72 h of incubation at a 100 µM concentration.
Schmidt, Magnus S; Götz, Kathrin H; Koch, Wolfgang; Grimm, Tanja; Ringwald, Markus
2016-04-29
Three different building blocks have been synthesised and used for the synthesis of linear triazole linked pseudo oligosaccharides with copper(I)-catalysed cycloaddition (CuAAC). Ethynylferrocene has been used as analytical probe to improve the UV/Vis properties and HPLC methods have been used and optimised for the analysis of the pseudo oligosaccharides. The smallest ones have been isolated and characterised by analytical HPLC, NMR, ESI-MS and elemental analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Run; Jiang, Yu; Tang, Xiang-Ying; Shi, Min
2016-04-11
New rhodium(II)-catalyzed or thermally induced intramolecular alkoxy group migration of N-sulfonyl-1,2,3-triazoles has been developed, affording divergent synthesis of 1,2-dihydroisoquinoline and 1-indanone derivatives according to different conditions. N-Sulfonyl keteneimine is the key intermediate for the synthesis of dihydroisoquinoline, whereas the aza-vinyl carbene intermediate results in the formation of 1-indanone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Insensitive High-Performance Replacements for RDX in Explosive and Propellant Formulations
2007-03-16
1) was prepared in good yield and purity from 3,4,5- triamino-1,2,4-triazole (guanazine) and picric acid (eq. 1, see experimental). C2H6N6...g (5 mmol) of 3,4,5-triamino-1,2,4-triazole (prepared as described in the literature [6]) was added 1.15 g of picric acid (1 wt.% in H2O from...hydrobromic acid in MeOH. A white solid precipitated, was filtered off and washed with a saturated solution of sodium carbonate in cold water. It was
Capilla, Javier; Ortoneda, Montserrat; Pastor, Francisco Javier; Guarro, Josep
2001-01-01
We used a modified reference microdilution method (the M-38P method) to evaluate the in vitro activities of the new triazole UR-9825 in comparison with those of amphotericin B against 77 strains of opportunistic filamentous fungi. UR-9825 was clearly more active than amphotericin B against all fungi except Fusarium solani and Scytalidium spp. Notably, UR-9825 had low MICs for Aspergillus fumigatus and Paecilomyces lilacinus (MICs at which 90% of isolates are inhibited, 0.125 μg/ml for both species). PMID:11502542
Zuo, Yang; Yang, Sheng-Gang; Luo, Yan-Ping; Tan, Ying; Hao, Ge-Fei; Wu, Qiong-You; Xi, Zhen; Yang, Guang-Fu
2013-06-01
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2a-z were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with K(i) values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with K(i) value of 0.06 μM against mtPPO, comparable to (K(i)=0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (K(i)=0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 gai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 gai/ha, whereas they are susceptible to sulfentrazone even at 75 gai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dahmani, R.; Ben Yaghlane, S.; Boughdiri, S.; Mogren Al-Mogren, M.; Prakash, M.; Hochlaf, M.
2018-03-01
At present, we investigate the structures, the stability, the bonding and the spectroscopy of the Zn2 +-triazole complexes (Zn2 +-Tz), which are subunits of triazolate based porous materials and Zn-enzymes. This theoretical work is performed using ab initio methods and density functional theory (DFT) where dispersion correction is included. Through these benchmarks, we establish the ability and reliability of M05-2X + D3 and PBE0 + D3 functionals for the correct description of Zn2 +-Tz bond since these DFTs lead to close agreement with post Hartree-Fock methods. Therefore, M05-2X + D3 and PBE0 + D3 functionals are recommended for the characterization of larger organometallic complexes formed by Zn and N-rich linkers. For Zn2 +-Tz, we found two stable σ-type complexes: (i) a planar structure where Zn2 + links to unprotonated nitrogen and (ii) an out-of-plane cluster where carbon interacts with Zn2 +. The most stable isomers consist on a coordinated covalent bond between the lone pair of unprotonated nitrogen and the vacant 4 s orbital of Zn2 +. The roles of covalent interactions within these complexes are discussed after vibrational, NBO, NPA charges and orbital analyses. The bonding is dominated by charge transfer from Zn2 + to Tz and intramolecular charge transfer, which plays a vital role for the catalytic activity of these complexes. These findings are important to understand, at the microscopic level, the structure and the bonding within triazolate based macromolecular porous materials and Zn-enzymes.
Brandão, Geraldo Célio; Rocha Missias, Franciele C; Arantes, Lucas Miquéias; Soares, Luciana Ferreira; Roy, Kuldeep K; Doerksen, Robert J; Braga de Oliveira, Alaide; Pereira, Guilherme Rocha
2018-02-10
Lapachol is an abundant prenyl naphthoquinone occurring in Brazilian Bignoniaceae that was clinically used, in former times, as an antimalarial drug, despite its moderate effect. Aiming to search for potentially better antimalarials, a series of 1,2,3-triazole derivatives was synthesized by chemical modification of lapachol. Alkylation of the hydroxyl group gave its propargyl ether which, via copper-catalyzed cycloaddition (CuAAC) click chemistry with different organic azides, afforded 17 naphthoquinonolyl triazole derivatives. All the synthetic compounds were evaluated for their in vitro activity against chloroquine resistant Plasmodium falciparum (W2) and for cytotoxicity to HepG2 cells. Compounds containing the naphthoquinolyl triazole moieties showed higher antimalarial activity than lapachol (IC 50 123.5 μM) and selectivity index (SI) values in the range of 4.5-197.7. Molecular docking simulations of lapachol, atovaquone and all the newly synthesized compounds were carried out for interactions with PfDHODH, a mitochondrial enzyme of the parasite respiratory chain that is essential for de novo pyrimidine biosynthesis. Docking of the naphthoquinonolyl triazole derivatives to PfDHODH yielded scores between -9.375 and -14.55 units, compared to -9.137 for lapachol and -12.95 for atovaquone and disclosed the derivative 17 as a lead compound. Therefore, the study results show the enhancement of DHODH binding affinity correlated with improvement of SI values and in vitro activities of the lapachol derivatives. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Gaber, Mohamed; El-Ghamry, Hoda A; Fathalla, Shaimaa K; Mansour, Mohammed A
2018-02-01
A novel series of Zn 2+ , Cd 2+ and UO 2 2+ complexes of ligands namely 1-[(5-mercapto-1H-1,2,4-triazole-3-ylimino) methyl]naphthalene-2-ol (HL 1 ) and [(1H-1,2,4-triazole-3-ylimino) methyl] naphthalene-2-ol (HL 2 ) have been prepared and characterized by different analytical and spectral techniques. The stoichiometry, stereochemistry, conductivity measurements and mode of bonding of the complexes have been elucidated. Accurate comparison of the IR spectra of the ligands with their metal chelates proved the involvement of nitrogen atoms of the azomethine group and/or triazole ring in chelation in addition to the deprotonated hydroxyl oxygen. The UV-Vis and molar conductance data supported the octahedral geometry for the metal complexes. TGA technique has been used to study the thermal decomposition way of the metal complexes and the thermo kinetic parameters were estimated. Valuable information is obtained from calculations of molecular parameters using the molecular modeling techniques. The interaction between the metal complexes and CT-DNA has been studied from which the binding constants (k b ) were calculated. The Schiff bases and their metal chelates have shown potent antimicrobial, antioxidant and antitumor activities. The antitumor activities of the compounds have been tested in vitro against HEPG2 cell line and in silico by the molecular docking analysis with the VEGFR-2 receptor responsible for angiogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Khanage, Shantaram Gajanan; Mohite, Popat Baban; Pandhare, Ramdas Bhanudas; Raju, S. Appala
2014-01-01
Purpose: An efficient technique has been developed for microwave assisted synthesis of 1-[5-(substituted aryl)-1H-pyrazol-3-yl]-3,5-diphenyl-1H-1,2,4-triazole as antinociceptive and antimicrobial agents. Methods: The desired compounds (S1-S10) were synthesized by the microwave irradiation via cyclization of formerly synthesized chalcones of 3,5-diphenyl-1H-1,2,4-triazole and hydrazine hydrate in mild acidic condition. All newly synthesized compounds were subjected to study their antinociceptive and antimicrobial activity. The analgesic potential of compounds was tested by acetic acid induced writhing response and hot plate method. The MIC values for antimicrobial activity were premeditated by liquid broth method. Results: The compounds S1, S2, S4, S6 and S10 were found to be excellent peripherally acting analgesic agents when tested on mice by acetic acid induced writhing method and compounds S3, S6 and S1 at dose level of 100 mg/kg were exhibited superior centrally acting antinociceptive activity when tested by Eddy’s hot plate method. In antimicrobial activity compound S10 found to be broad spectrum antibacterial agent at MIC value of 15.62 µg/ml and compound S6 was exhibited antifungal potential at 15.62 µg/mL on both fungal strains. Conclusion: Some novel pyrazoles clubbed with 1,2,4-triazole derivatives were synthesized and evaluated as possible antimicrobial, centrally and peripherally acting analgesics. PMID:24511473
Madeira, Camila L; Field, Jim A; Simonich, Michael T; Tanguay, Robert L; Chorover, Jon; Sierra-Alvarez, Reyes
2018-02-05
The insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) was recently approved by the U.S. Army to replace cyclotrimethylene trinitramine (RDX) in conventional explosives. As its use becomes widespread, concern about the potential toxicity of NTO increases. NTO can undergo microbial reduction to 3-amino-1,2,4-triazol-5-one (ATO), which is recalcitrant in waterlogged soils. In this study, the acute toxicity of NTO and ATO towards various organisms, including microorganisms (i.e., methanogenic archaea, aerobic heterotrophs, and Aliivibrio fischeri (Microtox assay)), the microcrustacean Daphnia magna (ATO only), and zebrafish embryos (Danio rerio), was assessed. NTO was notably more inhibitory to methanogens than ATO (IC 50 =1.2mM,>62.8mM, respectively). NTO and ATO did not cause noteworthy inhibition on aerobic heterotrophs even at the highest concentrations tested (32.0mM). High concentrations of both NTO and ATO were required to inhibit A. fischeri (IC 20 =19.2, 22.4mM, respectively). D. magna was sensitive to ATO (LC 50 =0.27mM). Exposure of zebrafish embryos to NTO or ATO (750μM) did not cause lethal or developmental effects (22 endpoints tested). However, both compounds led to swimming behavior abnormalities at low concentrations (7.5μM). The results indicate that the reductive biotransformation of NTO could enhance or lower its toxicity according to the target organism. Copyright © 2017 Elsevier B.V. All rights reserved.
Towards high conductivity in anion-exchange membranes for alkaline fuel cells.
Li, Nanwen; Guiver, Michael D; Binder, Wolfgang H
2013-08-01
Quaternized poly(2,6-dimethylphenylene oxide) materials (PPOs) containing clicked 1,2,3-triazoles were first prepared through Cu(I) -catalyzed "click chemistry" to improve the anion transport in anion-exchange membranes (AEMs). Clicked 1,2,3-triazoles incorporated into AEMs provided more sites to form efficient and continuous hydrogen-bond networks between the water/hydroxide and the triazole for anion transport. Higher water uptake was observed for these triazole membranes. Thus, the membranes showed an impressive enhancement of the hydroxide diffusion coefficient and, therefore, the anion conductivities. The recorded hydroxide conductivity was 27.8-62 mS cm(-1) at 20 °C in water, which was several times higher than that of a typical PPO-based AEM (TMA-20) derived from trimethylamine (5 mS cm(-1) ). Even at reduced relative humidity, the clicked membrane showed superior conductivity to a trimethylamine-based membrane. Moreover, similar alkaline stabilities at 80 °C in 1 M NaOH were observed for the clicked and non-clicked membranes. The performance of a H2 /O2 single cell assembled with a clicked AEM was much improved compared to that of a non-clicked TMA-20 membrane. The peak power density achieved for an alkaline fuel cell with the synthesized membrane 1a(20) was 188.7 mW cm(-2) at 50 °C. These results indicated that clicked AEM could be a viable strategy for improving the performance of alkaline fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bello-Vieda, Nestor J; Murcia, Ricardo A; Muñoz-Castro, Alvaro; Macías, Mario A; Hurtado, John J
2017-11-10
The reaction of isophthaloyl dichloride with 1 H -1,2,4-triazole afforded the new ligand 1,3-phenylenebis(1,2,4-triazole-1-yl)methanone ( 1 ). A series of Co(II), Cu(II), Zn(II) and Ni(II) complexes were synthesized using 1 and then characterized by melting point analysis, elemental analysis, theoretical calculations, thermogravimetric analysis, X-ray powder diffraction, nuclear magnetic resonance, infrared and Raman spectroscopy. Experimental and computational studies predict the formation of coordination polymers (CPs). The cobalt and copper CPs and zinc(II) complex were found to be good initiators for the ring-opening polymerization of ε-caprolactone (CL) under solvent-free conditions. ¹H-NMR analysis showed that the obtained polymers of CL were mainly linear and had terminal hydroxymethylene groups. Differential scanning calorimetry showed that the obtained polycaprolactones had high crystallinity, and TGA showed that they had decomposition temperatures above 400 °C. These results provide insight and guidance for the design of metal complexes with potential applications in the polymerization of CL.
Li, Qing; Sun, Xueqi; Gu, Guodong
2018-01-01
Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains. PMID:29597269
Li, Qing; Sun, Xueqi; Gu, Guodong; Guo, Zhanyong
2018-03-28
Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating "click reaction" with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC 50 < 0.01 mg mL -1 ) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.
Giroud, Maude; Kuhn, Bernd; Saint-Auret, Sarah; Kuratli, Christoph; Martin, Rainer E; Schuler, Franz; Diederich, François; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Haap, Wolfgang
2018-04-26
Macrocyclic inhibitors of rhodesain (RD), a parasitic cysteine protease and drug target for the treatment of human African trypanosomiasis, have shown low metabolic stability at the macrocyclic ether bridge. A series of acyclic dipeptidyl nitriles was developed using structure-based design (PDB ID: 6EX8 ). The selectivity against the closely related cysteine protease human cathepsin L (hCatL) was substantially improved, up to 507-fold. In the S2 pocket, 3,4-dichlorophenylalanine residues provided high trypanocidal activities. In the S3 pocket, aromatic residues provided enhanced selectivity against hCatL. RD inhibition ( K i values) and in vitro cell-growth of Trypanosoma brucei rhodesiense (IC 50 values) were measured in the nanomolar range. Triazole-based ligands, obtained by a safe, gram-scale flow production of ethyl 1 H-1,2,3-triazole-4-carboxylate, showed excellent metabolic stability in human liver microsomes and in vivo half-lives of up to 1.53 h in mice. When orally administered to infected mice, parasitaemia was reduced but without complete removal of the parasites.
NASA Astrophysics Data System (ADS)
Gumber, Khushbu; Sidhu, Anjali; Kaur, Robinpreet
2017-04-01
Novel magnesium 1,2,4-triazole-1-carbodithioates were sonochemically synthesized as water-dispersable nanoparticles owing to their water insolubility. The two-step reaction protocol was followed to synthesize the novel triazole ligand system for complexation with magnesium metal due to its low biological toxicity. Different concentrations of Poly Vinyl Pyrrolidine were used to stabilize and standardise the size of nanoparticles, which were characterised by TEM analysis. UV-Visible and infrared spectroscopies were used to analyse the metal ligand interaction, and CHNS analysis was used to propose the structure of the metal complex. The spore germination inhibition technique was used to evaluate the antifungal potential of synthesized nano-complexes against two phytopathogenic test fungi viz . A. alternata and F. moniliforme. The nanoparticles had inflicted moderate in vitro inhibition of fungal growth, which was comparable to standard fungicide Indofil M-45. The in silico toxicity of the compounds was made using the Toxtree analysis software that indicated the compounds belong to class III group of toxicity, which was same as that of commercial standards of DTC.
NASA Astrophysics Data System (ADS)
Guennoun, L.; El jastimi, J.; Guédira, F.; Marakchi, K.; Kabbaj, O. K.; El Hajji, A.; Zaydoun, S.
2011-01-01
The 3,5-diamino-1,2,4-triazole (guanazole) was investigated by vibrational spectroscopy and quantum methods. The solid phase FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm -1 and 3600-50 cm -1 respectively, and the band assignments were supported by deuteration effects. The results of energy calculations have shown that the most stable form is 1H-3,5-diamino-1,2,4-triazole under C 1 symmetry. For this form, the molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated by the ab initio/HF and DFT/B3LYP methods using 6-31G* basis set. The calculated geometrical parameters of the guanazole molecule using B3LYP methodology are in good agreement with the previously reported X-ray data, and the scaled vibrational wave number values are in good agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PEDs) using VEDA 4 program.
Wu, Yue; Jiang, Zhensheng; Li, Zhihong; Gu, Jing; You, Qi-Dong; Zhang, Xiaojin
2018-06-01
As a gene associated with anemia, the erythropoiesis gene is physiologically expressed under hypoxia regulated by hypoxia-inducing factor-α (HIF-α). Thus, stabilizing HIF-α is a potent strategy to stimulate the expression and secretion of erythropoiesis. In this study we applied click chemistry to the discovery of HIF prolyl hydroxylase 2 (HIF-PHD2) inhibitors for the first time and a series of triazole compounds showed preferable inhibitory activity in fluorescence polarization assay. Of particular note was the orally active HIF-PHD inhibitor 15i (IC50 = 62.23 nM), which was almost ten times more active than the phase III drug FG-4592 (IC50 = 591.4 nM). Furthermore, it can upregulate the hemoglobin of cisplatin induced anemia mice (120 g/L) to normal levels (160 g/L) with no apparent toxicity observed in vivo. These results confirm that triazole compound 15i is a promising candidate for the treatment of renal anemia.
Weïwer, Michel; Chen, Chi-Chang; Kemp, Melissa M.; Linhardt, Robert J.
2013-01-01
α-Sialic acid azide 1 has been used as a substrate for the efficient preparation of 1,2,3-triazole derivatives of sialic acid using the copper-catalyzed azide-alkyne Huisgen cycloaddition (“click chemistry”). Our approach is to generate non-natural N-glycosides of sialic acid that are resistant to neuraminidase catalyzed hydrolysis as opposed to the natural O-glycosides. These N-glycosides would act as neuraminidase inhibitors to prevent the release of new virions. As a preliminary study, a small library of 1,2,3-triazole-linked sialic acid derivatives has been synthesized in 71-89% yield. A disaccharide mimic of sialic acid has also been prepared using the α-sialic acid azide 1 and a C-8 propargyl sialic acid acceptor in 68% yield. A model sialic acid coated dendrimer was also synthesized from a per-propargylated pentaerythritol acceptor. These novel sialic acid derivatives were then evaluated as potential neuraminidase inhibitors using a 96-well plate fluorescence assay; micromolar IC50 values were observed, comparable to the known sialidase inhibitor Neu5Ac2en. PMID:24223493
Abolghasemi, Mir Mahdi; Habibiyan, Rahim; Jaymand, Mehdi; Piryaei, Marzieh
2018-02-14
A nanostructured star-shaped polythiophene dendrimer was prepared and used as a fiber coating for headspace solid phase microextraction of selected triazolic pesticides (tebuconazole, hexaconazole, penconazole, diniconazole, difenoconazole, triticonazole) from water samples. The dendrimer with its large surface area was characterized by thermogravimetric analysis, UV-Vis spectroscopy and field emission scanning electron microscopy. It was placed on a stainless steel wire for use in SPME. The experimental conditions for fiber coating, extraction, stirring rate, ionic strength, pH value, desorption temperature and time were optimized. Following thermal desorption, the pesticides were quantified by GC-MS. Under optimum conditions, the repeatability (RSD) for one fiber (for n = 3) ranges from 4.3 to 5.6%. The detection limits are between 8 and 12 pg mL -1 . The method is fast, inexpensive (in terms of equipment), and the fiber has high thermal stability. Graphical abstract Schematic presentation of a nanostructured star-shaped polythiophene dendrimer for use in headspace solid phase microextraction of the triazolic pesticides (tebuconazole, hexaconazole, penconazole, diniconazole, difenoconazole, triticonazole). They were then quantified by gas chromatography-mass spectrometry.
Triazole inhibitors of Cryptosporidium parvum inosine 5′-monophosphate dehydrogenase
Maurya, Sushil K.; Gollapalli, Deviprasad R.; Kirubakaran, Sivapriya; Zhang, Minjia; Johnson, Corey R.; Benjamin, Nicole N.; Hedstrom, Lizbeth; Cuny, Gregory D.
2010-01-01
Cryptosporidium parvum is an important human pathogen and potential bioterrorism agent. This protozoan parasite cannot salvage guanine or guanosine and therefore relies on inosine 5′-monophosphate dehydrogenase (IMPDH) for biosynthesis of guanine nucleotides and hence for survival. Since C. parvum IMPDH is highly divergent from the host counterpart, selective inhibitors could potentially be used to treat cryptosporidiosis with minimal effects on its mammalian host. A series of 1,2,3-triazole containing ether CpIMPDH inhibitors are described. A structure-activity relationship study revealed that a small alkyl group on the alpha-position of the ether was required with the (R)-enantiomer significantly more active than the (S)-enantiomer. Electron-withdrawing groups in the 3- and/or 4-positions of the pendent phenyl ring were best and conversion of the quinoline containing inhibitors to quinoline-N-oxides retained inhibitory activity both in the presence and absence of bovine serum albumin. The 1,2,3-triazole CpIMPDH inhibitors provide new tools for elucidating the role of IMPDH in C. parvum and may serve as potential therapeutics for treating cryptosporidiosis. PMID:19624136
Barton, H A; Tang, J; Sey, Y M; Stanko, J P; Murrell, R N; Rockett, J C; Dix, D J
2006-09-01
Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil was metabolized more rapidly than triadimefon, which is consistent with metabolism of the n-butyl side-chain in the former and the t-butyl group in the latter compound. Human and rat CYP2C and CYP3A enzymes were the most active. Metabolism was similar in microsomes prepared from livers of control and low-dose rats. High-dose (115 mg kg-1 day-1 of triadimefon or 150 mg kg-1 day-1 of myclobutanil) rats showed increased liver weight, induction of total CYP, and increased metabolism of the two triazoles, though the apparent Km appeared unchanged relative to the control. These data identify CYP enzymes important for the metabolization of these two triazoles. Estimated hepatic clearances suggest that CYP induction may have limited impact in vivo.
Bergamini, Luca; Voliani, Valerio; Cappello, Valentina; Nifosì, Riccardo; Corni, Stefano
2015-08-28
In a recent study by Voliani et al. [Small, 2011, 7, 3271], the electromagnetic field enhancement in the vicinity of the gold nanoparticle surface has been exploited to achieve photocontrolled release of a molecular cargo conjugated to the nanoparticles via 1,2,3-triazole, a photocleavable moiety. The aim of the present study is to investigate the mechanism of the photorelease by characterizing the nanoparticle aggregation status within the cells and simulating the electric field enhancement in a range of experimentally realistic geometries, such as single Au nanoparticles, dimers, trimers and random aggregates. Two plasmon-enhanced processes are examined for triazole photocleavage, i.e. three-photon excitation and third-harmonic-generation (one-photon) excitation. Taking into account the absorption cross sections of the triazole, we conclude that the latter mechanism is more efficient, and provides a photocleavage rate that explains the experimental findings. Moreover, we determine which aggregate geometries are required to maximize the field enhancement, and the dependence of such enhancement on the excitation wavelength. Our results provide design principles for maximizing the multiphoton molecular photorelease by such functionalized gold nanoparticles.
El-Emam, Ali A; Al-Tuwaijri, Hanaa M; Al-Abdullah, Ebtehal S; Chidan Kumar, C S; Fun, Hoong-Kun
2014-01-01
In the title compound, C26H37N5OS, the piperazine ring adopts a chair conformation. The triazole ring forms dihedral angles of 67.85 (9) and 59.41 (9)° with the piperazine and benzene rings, respectively, resulting in an approximate V-shaped conformation for the mol-ecule. An intra-molecular C-H⋯O hydrogen bond generates an S(6) ring motif. The crystal structure features C-H⋯π inter-actions, producing a two-dimensional supramolecular architecture.
Singh, Pradeep Kumar; Kathuria, Shallu
2015-01-01
We compared EUCAST and CLSI antifungal susceptibility testing (AFST) methods for triazoles and amphotericin B against 124 clinical Mucorales isolates. The EUCAST method yielded MIC values 1- to 3-fold dilutions higher than those of the CLSI method for amphotericin B. The essential agreements between the two methods for triazoles were high, i.e., 99.1% (voriconazole), 98.3% (isavuconazole), and 87% (posaconazole), whereas it was significantly lower for amphotericin B (66.1%). Strategies for harmonization of the two methods for Mucorales AFST are warranted. PMID:26438489
Fei, Xiang; Zavorka, Megan E; Malik, Guillaume; Connelly, Christopher M; MacDonald, Richard G; Berkowitz, David B
2017-08-18
A generalized strategy is presented for the rapid assembly of a set of bivalent ligands with a variety of linking functionalities from a common monomer. Herein, an array of phosphatase-inert mannose-6-phosphonate-presenting ligands for the cation-independent-mannose 6-phosphate receptor (CI-MPR) is constructed. Receptor binding affinity varies with linking functionality-the simple amide and 1,5-triazole(tetrazole) being preferred over the 1,4-triazole. This approach is expected to find application across chemical biology, particularly in glycoscience, wherein multivalency often governs molecular recognition.
2015-11-01
New Co-Crystals,” Crystal Growth & Design, Vol. 9, No. 3, pp. 1531-1537, 2009. 2 Landenberger, K., Matzger, A., “ Cocrystal Engineering of a...Y., Li, H., Zhou, Y., Zhou, J., Geo, T., Zhang, H., Jiang, G., “Toward Low- Sensitive and High-Energetic Cocrystal 1: Evaluation of the Power and the...Safety of Observed Energetic Cocrystals ,” CrystEngComm, 15, 4003-4014, 2013. 4 Levinthal, M.L., “Propellant Made With Cocrystals of
Li, Yun; Zhang, Qingyu; Du, Qiucheng; Zhai, Hongbin
2016-08-19
A Rh(II)-catalyzed dearomative intramolecular [3 + 2] dipolar cycloaddition involving the indolic C2-C3 carbon-carbon double bond has been developed. The reaction was launched from the triazole moiety within the substrate and proceeded efficiently under mild conditions. A wide range of functional groups could be tolerated. These features render the current reaction a highly useful tool for the synthesis of polycyclic indole alkaloids, as showcased by a rapid assembly of the core structure of Aspidosperma and the related alkaloids.
Reed, Carson W; McGowan, Kevin M; Spearing, Paul K; Stansley, Branden J; Roenfanz, Hanna F; Engers, Darren W; Rodriguez, Alice L; Engelberg, Eileen M; Luscombe, Vincent B; Loch, Matthew T; Remke, Daniel H; Rook, Jerri M; Blobaum, Anna L; Conn, P Jeffrey; Niswender, Colleen M; Lindsley, Craig W
2017-12-14
Herein, we report the structure-activity relationships within a series of mGlu 7 NAMs based on an N -(2-(1 H -1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamide core with excellent CNS penetration ( K p 1.9-5.8 and K p,uu 0.4-1.4). Analogues in this series displayed steep SAR. Of these, VU6010608 ( 11a ) emerged with robust efficacy in blocking high frequency stimulated long-term potentiation in electrophysiology studies.
Nguyen Van, Tai; Hospital, Audrey; Lionne, Corinne; Jordheim, Lars P; Dumontet, Charles; Périgaud, Christian; Chaloin, Laurent
2016-01-01
Summary A series of seventeen β-hydroxyphosphonate ribonucleoside analogues containing 4-substituted-1,2,3-triazoles was synthesized and fully characterized. Such compounds were designed as potential inhibitors of the cytosolic 5’-nucleotidase II (cN-II), an enzyme involved in the regulation of purine nucleotide pools. NMR and molecular modelling studies showed that a few derivatives adopted similar structural features to IMP or GMP. Five derivatives were identified as modest inhibitors with 53 to 64% of cN-II inhibition at 1 mM. PMID:27559400
González-Olvera, Rodrigo; Espinoza-Vázquez, Araceli; Negrón-Silva, Guillermo E; Palomar-Pardavé, Manuel E; Romero-Romo, Mario A; Santillan, Rosa
2013-12-06
A series of new mono-1,2,3-triazole derivatives of pyrimidine nucleobases were synthesized by one-pot copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between N-1-propargyluracil and thymine, sodium azide and several benzyl halides. The desired heterocyclic compounds were obtained in good yields and characterized by NMR, IR, and high resolution mass spectrometry. These compounds were investigated as corrosion inhibitors for steel in 1 M HCl solution, using electrochemical impedance spectroscopy (EIS) technique. The results indicate that these heterocyclic compounds are promising acidic corrosion inhibitors for steel.
Synthesis, structure and in vitro cytostatic activity of ferrocene-Cinchona hybrids.
Kocsis, László; Szabó, Ildikó; Bősze, Szilvia; Jernei, Tamás; Hudecz, Ferenc; Csámpai, Antal
2016-02-01
Exploring copper(I)- and ruthenium(II)-catalyzed azide-alkyne cycloadditions and a Sonogashira protocol, novel cytostatic ferrocene-cinchona hybrids were synthetized displaying significant in vitro activity on HepG-2 and HT-29 cells. Preliminary SAR studies disclosed that compounds incorporating linkers with 1,2,3-triazole and chalchone residues can be considered as promising lead structures. According to the best of our knowledge this is the first letter on the incorporation of ferrocene nucleus in the reputed cinchona family via triazole and chalcone linkers with established pharmaceutical profile. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Lin; Sun, Ge; Bi, Xihe
2016-11-07
The first cyclization reaction between vinyl azides and N-sulfonyl-1,2,3-triazoles is reported. A Rh/Ag binary metal catalyst system proved to be necessary for the successful cyclization. By varying the structure of vinyl azides, such reaction allows the divergent synthesis of pyrroles and 2H-pyrazines. The cyclization reactions feature a broad substrate scope, good functional group tolerance, high reaction efficiency, and good to high product yields. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kosikowska, Urszula; Andrzejczuk, Sylwia; Plech, Tomasz; Malm, Anna
2016-10-01
Haemophilus parainfluenzae and Haemophilus influenzae, upper respiratory tract microbiota representatives, are able to colonize natural and artificial surfaces as biofilm. The aim of the present study was to assay the effect of ten 1,2,4-triazole-ciprofloxacin hybrids on planktonic or biofilm-forming haemophili cells in vitro under stationary conditions on the basis of MICs (minimal inhibitory concentrations) and MBICs (minimal biofilm inhibitory concentrations). In addition, anti-adhesive properties of these compounds were examined. The reference strains of H. parainfluenzae and H. influenzae were included. The broth microdilution microtiter plate (MTP) method with twofold dilution of the compounds, or ciprofloxacin (reference agent) in 96-well polystyrene microplates, was used. The optical density (OD) reading was made spectrophotometrically at a wavelength of 570 nm (OD570) both to measure bacterial growth and to detect biofilm-forming cells under the same conditions with 0.1% crystal violet. The following values of parameters were estimated for 1,2,4-triazole-ciprofloxacin hybrids - MIC = 0.03-15.63 mg/L, MBIC = 0.03-15.63 mg/L, MBIC/MIC = 0.125-8, depending on the compound, and for ciprofloxacin - MIC = 0.03-0.06 mg/L, MBIC = 0.03-0.12 mg/L, MBIC/MIC = 1-2. The observed strong anti-adhesive properties (95-100% inhibition) of the tested compounds were reversible during long-term incubation at subinhibitory concentrations. Thus, 1,2,4-triazole-ciprofloxacin hybrids may be considered as starting compounds for designing improved agents not only against planktonic but also against biofilm-forming Haemophilus spp. cells. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Iatta, Roberta; Nuccio, Federica; Immediato, Davide; Mosca, Adriana; De Carlo, Carmela; Miragliotta, Giuseppe; Parisi, Antonio; Crescenzo, Giuseppe; Otranto, Domenico
2016-01-01
Aspergillus section Nigri includes species of interest for animal and human health, although studies on species distribution are limited to human cases. Data on the antifungal susceptibilities and the molecular mechanism of triazole resistance in strains belonging to this section are scant. Forty-two black Aspergillus strains from human patients (16 isolates), animals (14 isolates), and the environment (12 isolates) were molecularly characterized and their in vitro triazole susceptibilities investigated. Aspergillus tubingensis was isolated from humans, animals, and environmental settings, whereas Aspergillus awamori and Aspergillus niger were isolated exclusively from humans. Phylogenetic analyses of β-tubulin and calmodulin gene sequences were concordant in differentiating A. tubingensis from A. awamori and A. niger. Voriconazole and posaconazole (PSZ) were the most active triazoles. One A. tubingensis strain was resistant to itraconazole and PSZ and one A. niger strain to PSZ. Sequence analysis of the cyp51A gene revealed different sequence types within a species, and A. tubingensis strains were also phylogenetically distinct from A. awamori/A. niger strains according to the strain origin and susceptibility profile. Genetic analysis of the cyp51A sequences suggests that two nonsynonymous mutations resulting in amino acid substitutions in the CYP51A protein (changes of L to R at position 21 [L21R] and of Q to R at position 228 [Q228R]) might be involved in azole resistance. Though azole resistance in black Aspergillus isolates from animals and rural environments does not represent a threat to public health in Southern Italy, the use of triazoles in the clinical setting needs to better monitored. The cyp51A sequence is useful for the molecular identification of black Aspergillus, and point mutations in protein sequences could be responsible for azole resistance phenomena. PMID:27413191
Chohan, Zahid H; Sumrra, Sajjad H; Youssoufi, Moulay H; Hadda, Taibi B
2010-07-01
A new series of oxovanadium(IV) complexes have been designed and synthesized with a new class of triazole Schiff bases derived from the reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde and acetyl pyridine-2-carboxaldehyde, respectively. Physical (magnetic susceptibility, molar conductance), spectral (IR, (1)H NMR, (13)C NMR, mass and electronic) and analytical data have established the structures of these synthesized Schiff bases and their oxovanadium(IV) complexes. The Schiff bases, predominantly act as bidentate and coordinate with the vanadium(IV) metal to give a stoichiometric ratio of 1:2 [M:L], forming a general formulae, [M(L-H)(2)] and [M(L)(2)]SO(4) where L = (L(1))-(L(4)) and M = VO(IV) of these complexes in a square-pyramidal geometry. In order to evaluate the biological activity of Schiff bases and to assess the role of vanadium(IV) metal on biological activity, the triazole Schiff bases and their oxovanadium(IV) complexes have been studied for in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, Salmonella typhi) and two Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacterial strains, in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glaberata. The simple Schiff bases showed weaker to significant activity against one or more bacterial and fungal strains. In most of the cases higher activity was exhibited upon coordination with vanadium(IV) metal. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Gilandoust, Maryam; Harsha, Kachigere B; Mohan, Chakrabhavi Dhananjaya; Raquib, Ainiah Rushdiana; Rangappa, Shobith; Pandey, Vijay; Lobie, Peter E; Basappa; Rangappa, Kanchugarakoppal S
2018-05-09
Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) is essential for physiological functions of tissues and neovasculature. VEGFR signaling is associated with the progression of pathological angiogenesis in various types of malignancies, making it an attractive therapeutic target in cancer treatment. In the present work, we report the synthesis of 1,4-disubstituted 1,2,3-triazoles and 1,2,4-triazolo[1, 5-a]pyrimidine derivatives via copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and screened for their anticancer activity against MCF7 cells. We identified 1-(2'-ethoxy-4'-fluoro-[1,1'-biphenyl]-4-yl)-4-phenyl-1H-1,2,3-triazole (EFT) as lead cytotoxic agent against MCF7 cell lines with an IC 50 value of 1.69 µM. Further evaluation revealed that EFT induces cytotoxicity on Ishikawa, MDA-MB-231 and BT474 cells with IC 50 values of 1.97, 4.81 and 4.08 µM respectively. However, EFT did not induce cytotoxicity in normal lung epithelial (BEAS-2B) cells. Previous reports suggested that 1,2,3-triazoles are the inhibitors of VEGFR1 and therefore, we evaluated the effect of EFT on the expression of VEGFR1. The results demonstrated that EFT downregulates the expression of VEGFR1 in MCF7 cells. In summary, we identified a potent cytotoxic agent that imparts its antiproliferative activity by targeting VEGFR1 in breast cancer cells. The novel compound could serve as a lead structure in developing VEGFR1 inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Cheng; Zhou, Wei; Yu, Junfeng; Zhang, Lan; Wang, Ni
2012-01-01
To optimize the conditions for the preparation of the organometallic precursor fac-[¹⁸⁸ReCO₃(H₂O)₃]⁺ and to synthesize the radiolabeling compounds of tricarbonyl rhenium. 1,2,3-Triazole analogs were synthesized by click chemistry and labeled with fac-[ReCO₃(H₂O)₃]Br and fac-[¹⁸⁸ReCO₃(H₂O)₃]⁺. The aim was to improve the methods for the synthesis of ¹⁸⁸Re-labeled radiopharmaceuticals for therapy. With potassium boranocarbonate as the CO source and ammonia borane as the reducing agent, fac-[¹⁸⁸ReCO₃(H₂O)₃]⁺ was synthesized, and the click chemistry method was used to prepare the tricarbonyl rhenium complex. At the optimal reaction condition (the amounts of K₂[H₃BCO₂] and BH₃·NH₃ are 5 and 5 mg, respectively; reaction temperature is 75°C; and reaction time is 15 min), the radiochemical yields were 90%, and the labeling yield of bis(pyridin-2-ylmethyl) amine with fac-[¹⁸⁸ReCO₃(H₂O)₃]⁺ was more than 99% in 1 h at 75°C; the conjugation yields of triazole analog obtained by click chemistry with 'cold' and 'radio' tricarbonyl rhenium were more than 80%. The organometallic precursor fac-[¹⁸⁸ReCO₃(H₂O)₃]⁺ was prepared under optimal reaction conditions with a yield of 90%, and the triazole analogs synthesized by click chemistry were suitable ligands for tricarbonyl rhenium.
Walczak, Sylwia; Nowicka, Anna; Kubacka, Dorota; Fac, Kaja; Wanat, Przemyslaw; Mroczek, Seweryn; Kowalska, Joanna
2017-01-01
The significant biological role of the mRNA 5′ cap in translation initiation makes it an interesting subject for chemical modifications aimed at producing useful tools for the selective modulation of intercellular processes and development of novel therapeutic interventions. However, traditional approaches to the chemical synthesis of cap analogues are time-consuming and labour-intensive, which impedes the development of novel compounds and their applications. Here, we explore a different approach for synthesizing 5′ cap mimics, making use of click chemistry (CuAAC) to combine two mononucleotide units and yield a novel class of dinucleotide cap analogues containing a triazole ring within the oligophosphate chain. As a result, we synthesized a library of 36 mRNA cap analogues differing in the location of the triazole ring, the polyphosphate chain length, and the type of linkers joining the phosphate and the triazole moieties. After biochemical evaluation, we identified two analogues that, when incorporated into mRNA, produced transcripts translated with efficiency similar to compounds unmodified in the oligophosphate bridge obtained by traditional synthesis. Moreover, we demonstrated that the triazole-modified cap structures can be generated at the RNA 5′ end using two alternative capping strategies: either the typical co-transcriptional approach, or a new post-transcriptional approach based on CuAAC. Our findings open new possibilities for developing chemically modified mRNAs for research and therapeutic applications, including RNA-based vaccinations. PMID:28451173
Li, Na; Zhao, Pengxiang; Igartua, María E; Rapakousiou, Amalia; Salmon, Lionel; Moya, Sergio; Ruiz, Jaime; Astruc, Didier
2014-11-03
Monofunctional triazoles linked to ferrocene, ferricenium, or coumarin (Cou), easily synthesized by copper-catalyzed azide alkyne (CuAAC) "click" reactions between the corresponding functional azides and (trimethylsilyl)acetylene followed by silyl group deprotection, provide a variety of convenient neutral ligands for the stabilization of functional gold nanoparticles (AuNPs) in polar organic solvents. These triazole (trz)-AuNPs are very useful toward a variety of applications to synthesis, sensing, and catalysis. Both ferrocenyl (Fc) and isostructural ferricenium linked triazoles give rise to AuNP stabilization, although by different synthetic routes. Indeed, the first direct synthesis and stabilization of AuNPs by ferricenium are obtained by the reduction of HAuCl4 upon reaction with a ferrocene derivative, AuNP stabilization resulting from a synergy between electrostatic and coordination effects. The ferricenium/ferrocene trz-AuNP redox couple is fully reversible, as shown by cyclic voltammograms that were recorded with both redox forms. These trz-AuNPs are stable for weeks in various polar solvents, but at the same time, the advantage of trz-AuNPs is the easy substitution of neutral trz ligands by thiols and other ligands, giving rise to applications. Indeed, this ligand substitution of trz at the AuNP surface yields a stable Fc-terminated nanogold-cored dendrimer upon reaction with a Fc-terminated thiol dendron, substitution of Cou-linked trz with cysteine, homocysteine, and glutathione provides remarkably efficient biothiol sensing, and a ferricenium-linked trz-AuNP catalyst is effective for NaBH4 reduction of 4-nitrophenol to 4-aminophenol. In this catalytic example, the additional electrostatic AuNP stabilization modulates the reaction rate and induction time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Cai-Xia; Zhang, Jian-Guo, E-mail: zjgbit@bit.edu.cn; Yin, Xin
2015-03-15
A series of zero- to two-dimensional Cd(II) coordination compounds have been synthesized by the reaction of Cd(II) salts and 3-hydrazino-4-amino-1,2,4-triazole di-hydrochloride (HATr·2HCl). [CdCl{sub 2}(HATr){sub 2}] (1) and [Cd{sub 2}Cl{sub 4}(HATr){sub 2}(H{sub 2}O){sub 2}] (2) have discrete mononuclear and binuclear structures, respectively. [Cd(HATr){sub 2}(ClO{sub 4}){sub 2}]{sub n} (3) presents polymeric 1-D chain and [Cd{sub 2}(NO{sub 3}){sub 2}Cl{sub 2}(HATr){sub 2}]{sub n} (4) shows 2-D frameworks. All Cd(II) ions exhibit distorted octahedral configurations in 1–3, whilst both hexa and heptacoordinated Cd(II) are formed in 4. The HATr ligands adopt chelating coordinated mode in 1, while tri-dentate bridging–chelating mode in 2–4. The chloride ionmore » is a mono-coordinated ligand in 1 and 2, but it bridges two adjacent metal ions in 4. Furthermore, thermal behaviors have been investigated and the results reveal that all complexes have good thermal stability. The impact sensitivity test indicates that complex 3 is sensitive to impact stimuli. - Graphical abstract: Four Cd(II) complexes based on 3-hydrazino-4-amino-1,2,4-triazole ligands exhibit diverse structures from mononuclear to 2D networks. - Highlights: • Cd(II) complexes containing 3-hydrazino-4-amino-1,2,4-triazole ligands. • Mononuclear, binuclear, 1-D and 2-D structures. • Good thermal stability. • Thermal decomposition kinetics.« less
3,3-Dimethyl-1-[5-(1H-1,2,4-triazol-1-ylmethyl)-1,3,4-thiadiazol-2-ylsulfanyl]butan-2-one
Wei, Qing-Li; He, Fu-Jin; Li, Fang; Bi, Sai
2008-01-01
In the molecule of the title compound, C11H15N5OS2, the thiadiazole and triazole rings are not coplanar, the dihedral angle formed by their mean planes being 59.9 (2)°. The exocyclic S atom, and the methylene, carbonyl, tert-butyl and one methyl carbon form an approximately planar zigzag chain, which makes a dihedral angle of 74.6 (1)° with the thiadiazole ring. PMID:21201440
NASA Astrophysics Data System (ADS)
Taheri, Elmira; Mirjafary, Zohreh; Saeidian, Hamid
2018-04-01
The novel hydroxymethylated 1,4-disubstituted-1,2,3-triazole-based sulfonamides were synthesized in excellent yields and high regioselectivity via a one-pot, two-step, three-component reaction of N-propargylsulfonamides, sodium azide, and epoxide derivatives under green conditions. Green and mild reaction condition, commercially readily available and inexpensive starting materials, wide scope and easy work-up are the key features of the present method. The Li+ and Na+ ion affinities of the model structure have been also investigated by density functional theory (DFT) studies to find the applicability of these products as ligand in coordination chemistry.
Jlalia, Ibtissem; Beauvineau, Claire; Beauvière, Sophie; Onen, Esra; Aufort, Marie; Beauvineau, Aymeric; Khaba, Eihab; Herscovici, Jean; Meganem, Faouzi; Girard, Christian
2010-04-28
This article deal with the parallel synthesis of a 96 product-sized library using a polymer-based copper catalyst that we developed which can be easily separated from the products by simple filtration. This gave us the opportunity to use this catalyst in an automated chemical synthesis station (Chemspeed ASW-2000). Studies and results about the preparation of the catalyst, its use in different solvent systems, its recycling capabilities and its scope and limitations in the synthesis of this library will be addressed. The synthesis of the triazole library and the very good results obtained will finally be discussed.
Mesenzani, Ornella; Massarotti, Alberto; Giustiniano, Mariateresa; Pirali, Tracey; Bevilacqua, Valentina; Caldarelli, Antonio; Canonico, Pierluigi; Sorba, Giovanni; Novellino, Ettore; Genazzani, Armando A; Tron, Gian Cesare
2011-01-15
In the chalcone scaffold, it is thought that the double bond is an important structural linker but it is likely not essential for the interaction with tubulin. Yet, it may be a potential site of metabolic degradation and interaction with biological nucleophiles. In this letter, we have replaced this olefinic portion of chalcones with two metabolically stable and chemically inert heterocyclic rings, namely triazole or tetrazole. Yet, our biologic data suggest that, unlike in other antitubulinic structures, the olephinic ring might not be merely a structural linker. Copyright © 2010 Elsevier Ltd. All rights reserved.
Chowdhary, Anuradha; Singh, Pradeep Kumar; Kathuria, Shallu; Hagen, Ferry; Meis, Jacques F
2015-12-01
We compared EUCAST and CLSI antifungal susceptibility testing (AFST) methods for triazoles and amphotericin B against 124 clinical Mucorales isolates. The EUCAST method yielded MIC values 1- to 3-fold dilutions higher than those of the CLSI method for amphotericin B. The essential agreements between the two methods for triazoles were high, i.e., 99.1% (voriconazole), 98.3% (isavuconazole), and 87% (posaconazole), whereas it was significantly lower for amphotericin B (66.1%). Strategies for harmonization of the two methods for Mucorales AFST are warranted. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
El-Sayed, Weal A; Abdel Megeid, Randa E; Abbas, Hebat-Allah S
2011-07-01
New 1-[(tetrazol-5-yl)methyl]indole derivatives, their acyclic nucleoside analogs and the corresponding glycoside derivatives were synthesized. Furthermore, the [)(1,2,4-triazol-3-yl)methyl])-2H-tetrazole derivative as well as the corresponding thioglucoside were prepared. The synthesized compounds were tested for their antimicrobial activity against Aspergillus Niger, Penicillium sp, Candida albican, Bacillus subtilis, Streptococcus lacti, Escherichia coli, Pseudomonas sp., and streptomyces sp. Compounds 3, 5 and 19b exhibited potent antibacterial activity and compounds 4, 5 and 10 exhibited high activities against the tested fungi compared with fusidic acid.
Shang, Hai; Wang, Yuanhao; Tian, Yu; Feng, Juan; Tang, Yefeng
2014-05-26
The first rhodium(II)-catalyzed aza-[4+3] cycloadditions of 1-sulfonyl 1,2,3-triazoles with 1,3-dienes have been developed, and enable the efficient synthesis of highly functionalized 2,5-dihydroazepines from readily available precursors. In some cases, the reaction pathway could divert to formal aza-[3+2] cycloadditions, thus leading to 2,3-dihydropyrroles. In this context, the titled reaction represents a capable tool for the divergent synthesis of two types of synthetically valuable aza-heterocycles from common rhodium(II) iminocarbene intermediates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Shuling; Yuan, Jintao; Zhang, Yi; Gao, Shufang; Gan, Ying; Han, Meng; Chen, Yuewen; Zhou, Qiaoqiao; Shi, Jiahua
2017-06-01
Sodium-glucose cotransporter 2 (SGLT2) is a promising target for diabetes therapy. We aimed to develop computational approaches to identify structural features for more potential SGLT2 inhibitors. In this work, 46 triazole derivatives as SGLT2 inhibitors were studied using a combination of several approaches, including hologram quantitative structure-activity relationships (HQSAR), topomer comparative molecular field analysis (CoMFA), homology modeling, and molecular docking. HQSAR and topomer CoMFA were used to construct models. Molecular docking was conducted to investigate the interaction of triazole derivatives and homology modeling of SGLT2, as well as to validate the results of the HQSAR and topomer CoMFA models. The most effective HQSAR and topomer CoMFA models exhibited noncross-validated correlation coefficients of 0.928 and 0.891 for the training set, respectively. External predictions were made successfully on a test set and then compared with previously reported models. The graphical results of HQSAR and topomer CoMFA were proven to be consistent with the binding mode of the inhibitors and SGLT2 from molecular docking. The models and docking provided important insights into the design of potent inhibitors for SGLT2.
NASA Astrophysics Data System (ADS)
Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.
2015-03-01
The Schiff's base derived from condensation of s-triazole (4-amino-5-mercapto-3-methyl-S-triazole) with pyridine-2-aldehyde and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements. The IR spectral data suggest that the ligand coordinate in a tridentate manner (SNN) via the one thiol (SH), one pyridine ring and the azomethine (Cdbnd N) groups. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coats-Redfern, Horowitz-Metzger (HM), and Piloyan-Novikova (PN). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. The biological activity of these compounds against various fungi has been investigated.
Chou, Chih-Hung; Chen, Ying-Yu; Rajagopal, Basker; Tu, Hsiu-Chung; Chen, Kuan-Lin; Wang, Sheng-Fu; Liang, Chien-Fu; Tyan, Yu-Chang; Lin, Po-Chiao
2016-03-04
A rapid growth in synthetic methods for the preparation of diverse organic molecules using N-sulfonyl-1,2,3-triazoles is of great interest in organic synthesis. Transition metals are generally used to activate the α-imino diazo intermediates. Metal-free methods have not been studied in detail, but can be a good complement to transition metal catalysis in the mild reaction conditions. We herein report a novel method for the preparation of 2,3-dihydroquinolin-4-imine and chroman-4-imine analogs from their corresponding N-sulfonyl-1,2,3-triazoles in the absence of metal catalysts. To achieve intramolecular annulation, the introduction of an electron-donating group is required at the meta position of N-sulfonyl-1,2,3-triazole methyl anilines. The inclusion of tailored substituents on the aniline moieties and nitrogen atoms enhances the nucleophilicity of the phenyl π-electrons, thus allowing them to undergo a Friedel-Crafts-type reaction with the highly electrophilic ketenimines. This metal-free method was carefully optimized to generate a variety of dihydroquinolin-4-imines and chroman-4-imines in moderate-to-good yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ji, Dan; Lu, JunRui; Lu, BoWei; Xin, ChunWei; Mu, JiangBei; Li, JianFa; Peng, ChunYong; Bao, XiuRong
2013-04-01
A series of 3-S-β-d-glucosides-4-arylideneamino-5-aryl-1,2,4-triazoles were rationally designed and synthesized according to the principle of superposition of bioactive substructures by the combination of 1,2,4-triazole, Schiff base and glucosides. The structures of the target compounds have been characterized by (1)H NMR, (13)C NMR, IR, MS and HRMS. All the newly synthesized compounds have been evaluated for their antimicrobial activities in vitro against Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 8099) as well as Monilia albican (ATCC 10231). The bioactive assay showed that most of the tested compounds displayed variable inhibitory effects on the growth of the Gram-positive bacterial strain (Staphylococcus aureus), Gram-negative bacterial strains (Escherichia coli) and fungal strains (Monilia albican). All the target compounds exhibited better antifungal activity than antibacterial activity. Especially, compounds 6b, 6c, 6f, 6j, 6k and 6l showed excellent activity against fungus Monilia albican with MIC values of 16 μg/mL. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cetin, Adnan; Korkmaz, Adem; Kaya, Esin
2018-02-01
A conjugated polyschiff base (poly(N-thieno[3,2-b]thiophen-2-yl)methylene)-1H-1,2,4-triazol-5-amine) poly(TTMA)) was synthesized by condensation polymerization between thieno[3,2-b]thiophene-2,5-dicarboxaldehyde and 3,5-diamino-1,2,4-triazole. The poly(TTMA) was characterized by FT-IR, 1H NMR, 13C NMR spectra and thermal analysis. The number average molecular weight (Mn) and polydispersity index of the poly(TTMA) were determined by gel permeation chromatography (GPC). In addition, the optical properties of the poly(TTMA) solutions were investigated at different molarities. The band gap Eg value of the poly(TTMA) decreased with the increasing molarity. The absorption band edge values of the poly(TTMA) decreased as the molarity increased. The average transmittance values of the poly(TTMA) increased with the increasing molarity and the highest values of molar extinction coefficient also were found in the near ultraviolet region. Its values decreased with the increasing molarity. These results showed that the poly(TTMA) can be used for the fabrication of many optoelectronic devices due to its suitable optical properties and low optical band gap.
Tan, Wenqiang; Zhang, Jingjing; Luan, Fang; Wei, Lijie; Li, Qing; Dong, Fang; Guo, Zhanyong
2017-08-01
1,2,3-Triazolium-functionalized starch derivative was obtained by straightforward quaternization of the synthesized starch derivative bearing 1,2,3-triazole with benzyl bromide by combining the robust attributes of cuprous-catalyzed azide-alkyne cycloaddition. These novel starch derivatives were characterized by FTIR, UV-vis, 1 H NMR, 13 C NMR, and elemental analysis. Their antifungal activities against Colletotrichum lagenarium, Watermelon fusarium, and Phomopsis asparagi were investigated by hypha measurement in vitro. The fungicidal assessment revealed that compared with starch and starch derivative bearing 1,2,3-triazole with inhibitory indices of below 15% at 1.0mg/mL, 1,2,3-triazolium-functionalized starch derivative had superior antifungal activity with inhibitory rates of over 60%. Especially, the best inhibitory index of 1,2,3-triazolium-functionalized starch derivative against Colletotrichum lagenarium attained 90% above at 1.0mg/mL. The results obviously showed that quaternization of 1,2,3-triazole with benzyl bromide could effectively enhance antifungal activity of the synthesized starch derivatives. The synthetic strategy described here could be utilized for the development of starch as novel antifungal biomaterial. Copyright © 2017 Elsevier B.V. All rights reserved.
Metal based new triazoles: Their synthesis, characterization and antibacterial/antifungal activities
NASA Astrophysics Data System (ADS)
Sumrra, Sajjad H.; Chohan, Zahid H.
2012-12-01
A series of new triazoles and their oxovanadium(IV) complexes have been synthesized, characterized and evaluated for antibacterial/antifungal properties. The new Schiff bases ligands (L1)-(L5) were prepared by the condensation reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde, 2-acetyl pyridine and 2-methoxy benzaldehyde. The structures of the ligands have been established on the basis of their physical, spectral (IR, 1H and 13C NMR and mass spectrometry) and elemental analytical data. The prepared ligands were used to synthesize their oxovanadium(IV) complexes (1)-(5) which were also characterized by their physical, spectral and analytical data and proposed to have a square pyramidal geometry. The ligands and their complexes were screened for in vitro antibacterial activity against six bacterial species such as, Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus, and Bacillus subtilis and for in vitro antifungal activity against six fungal strains, Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glabrata. Cytotoxic nature of the compounds was also reported using brine shrimp bioassay method against Artemia salina.
Filimonov, Valeriy O; Dianova, Lidia N; Galata, Kristina A; Beryozkina, Tetyana V; Novikov, Mikhail S; Berseneva, Vera S; Eltsov, Oleg S; Lebedev, Albert T; Slepukhin, Pavel A; Bakulev, Vasiliy A
2017-04-21
High yield solvent-base-controlled, transition metal-free synthesis of 4,5-functionalized 1,2,3-thiadiazoles and 1,2,3-triazoles from 2-cyanothioacetamides and sulfonyl azides is described. Under diazo transfer conditions in the presence of a base in an aprotic solvent 2-cyanothioacetamides operating as C-C-S building blocks produce 5-amino-4-cyano-1,2,3-thiadiazoles exclusively. The use of alkoxide/alcohol system completely switches the reaction course due to the change of one of the reaction centers in the 2-cyanothioacetamide (C-C-N building block) resulting in the formation of 5-sulfonamido-1,2,3-triazole-4-carbothioamide sodium salts as the only products. The latter serve as good precursors for 5-amino-1,2,3-thiadiazole-4-carboximidamides, the products of Cornforth-type rearrangement occurring in neutral protic medium or under acid conditions. According to DFT calculations (B3LYP/6-311+G(d,p)) the rearrangement proceeds via intermediate formation of a diazo compound, and can be catalyzed by acids via the protonation of oxygen atom of the sulfonamide group.
Formagio, Anelise S Nazari; Tonin, Lilian T Düsman; Foglio, Mary Ann; Madjarof, Christiana; de Carvalho, João Ernesto; da Costa, Willian Ferreira; Cardoso, Flávia P; Sarragiotto, Maria Helena
2008-11-15
Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.
Jin, Xiaohong; Xu, Yan; Yang, Xuhong; Chen, Xiuling; Wu, Minghu; Guan, Jianguo; Feng, Lianshun
2017-01-01
A new class of ethylene/propylene-1H-1,2,3-triazole-4-methylene-tethered isatincoumarin hybrids 8a-j, integrating three anti-tuberculosis pharmacophores coumarin, isatin and 1,2,3- triazole was designed and synthesized. These hybrids were assessed for their in vitro anti-TB activity against MTB H37Rv and MDRTB, as well as anti-bacterial activity against Gram-positive and Gram-negative strains, and cytotoxicity in VERO cell line. The results showed that all hybrids with acceptable cytotoxicity (CC50: 64-512 µg/mL) exhibited weak to moderate anti-microbial activity. The most active hybrid 8i with MIC of 50 µg/mL against MTB H37Rv and MDR-TB, also has excellent cytotoxicity profile (CC50: 128 µg/mL). The resistance index of hybrid 8i was 1, indicating that hybrid 8i has no cross-resistance with the first-line anti-TB agent. Thus, hybrid 8i could act as a lead for further optimization. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Obchoei, Sumalee; Saeeng, Rungnapha; Wongkham, Chaisiri; Wongkham, Sopit
2016-11-01
The treatment of cholangiocarcinoma (CCA) is still ineffective and the search for a novel treatment is needed. In this study, eight novel mono-triazole glycosides (W1-W8) were synthesized and tested for their anticancer activities in CCA cell lines. The anti-proliferation effect and the underlying mechanisms of the triazole glycosides were explored. Viable cells were determined using the MTT test. Among glycosides tested, W4 and W5 exhibited the most potent anticancer activity in a dose- and time-dependent fashion. Flow cytometry and wstern blot analysis revealed that W4 and W5 induced G 0 /G 1 phase cell-cycle arrest through down-regulation of cyclin D1, cyclin E and induction of cyclin-dependent kinase inhibitors, p27 and p21 protein expression. Annexin V/propidium iodide (PI) staining demonstrated that W4 and W5 also induced apoptotic cells in a dose-dependent manner via caspase signaling cascade. Together, these findings imply that the novel synthetic glycosides might be a promising anticancer agent for CCA. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
2017-01-01
Three series of biarylpyrazole imidazole and triazoles are described, which vary in the linker between the biaryl pyrazole and imidazole/triazole group. The imidazole and triazole series with the short −CH2– linker displayed promising antimycobacterial activity, with the imidazole–CH2– series (7) showing low MIC values (6.25–25 μg/mL), which was also influenced by lipophilicity. Extending the linker to −C(O)NH(CH2)2– resulted in a loss of antimycobacterial activity. The binding affinity of the compounds with CYP121A1 was determined by UV–visible optical titrations with KD values of 2.63, 35.6, and 290 μM, respectively, for the tightest binding compounds 7e, 8b, and 13d from their respective series. Both binding affinity assays and docking studies of the CYP121A1 inhibitors suggest type II indirect binding through interstitial water molecules, with key binding residues Thr77, Val78, Val82, Val83, Met86, Ser237, Gln385, and Arg386, comparable with the binding interactions observed with fluconazole and the natural substrate dicyclotyrosine. PMID:29185746
González-Calderón, Davir; Mejía-Dionicio, María G; Morales-Reza, Marco A; Aguirre-de Paz, José G; Ramírez-Villalva, Alejandra; Morales-Rodríguez, Macario; Fuentes-Benítes, Aydeé; González-Romero, Carlos
2016-12-01
The first report of 1'-homo-N-1,2,3-triazol-bicyclic carbonucleosides (7a and 7b) is described herein. Azide-enolate (3+2) cycloaddition afforded the synthesis of this novel type of compound. Antifungal activity was evaluated in vitro against four filamentous fungi (Aspergillus fumigatus, Trichosporon cutaneum, Rhizopus oryzae and Mucor hiemalis) as well as nine species of Candida spp. as yeast specimens. These pre-clinical studies suggest that compounds 7a and 7b are promising candidates for complementary biological studies due to their good activity against Candida spp. Copyright © 2016 Elsevier Inc. All rights reserved.
El-Sagheer, Afaf H.; Sanzone, A. Pia; Gao, Rachel; Tavassoli, Ali; Brown, Tom
2011-01-01
A triazole mimic of a DNA phosphodiester linkage has been produced by templated chemical ligation of oligonucleotides functionalized with 5′-azide and 3′-alkyne. The individual azide and alkyne oligonucleotides were synthesized by standard phosphoramidite methods and assembled using a straightforward ligation procedure. This highly efficient chemical equivalent of enzymatic DNA ligation has been used to assemble a 300-mer from three 100-mer oligonucleotides, demonstrating the total chemical synthesis of very long oligonucleotides. The base sequences of the DNA strands containing this artificial linkage were copied during PCR with high fidelity and a gene containing the triazole linker was functional in Escherichia coli. PMID:21709264
Ghodsi, Mohammadi Ziarani; Shakiba Nahad, Monireh; Lashgari, Negar; Alireza, Badiei
2015-01-01
Octakis(1-propyl-1H-1,2,3-triazole-4-yl(methyl 2-chlorobenzoate))octasilsesquioxanes as functionalized silsesquioxanes were synthesized via click reaction (copper-catalyzed Huisgen 1,3-dipolar cycloaddition reaction) between azidemoiety functionalized silsesquioxane and prop-2-ynyl 2-chlorobenzoate. The latter one was synthesized via the condensation reaction of propargyl alcohol and 2-chlorobenzoyl chloride in the presence of SBA-Pr-NH(2) (Santa Barbara Amorphous type material) as a nano basic catalyst. This approach provides a simple and convenient route to efficiently functionalize a wide range of new structures on the surface of silsesquioxanes.
NASA Astrophysics Data System (ADS)
Costa, Bárbara B. A.; Souza, Paula D. C.; Gontijo, Rafael N.; Jardim, Guilherme A. M.; Moreira, Roberto L.; da Silva, Eufrânio N.; Cury, Luiz A.
2018-03-01
Photoluminescence and phosphorescence emissions of solid-state phenazine films were investigated in steady-state experimental conditions. Important discrepancies were observed for blended films where a host optically inert matrix was introduced to disperse the probe molecules. A vibronic spin-orbit phosphorescent emission clearly appeared, while for the films solely composed by the probe molecules, the phosphorescence broadened and presented a structureless shape, shifted to longer wavelengths. Further Arrhenius behavior analysis on the photoluminescent and phosphorescent emissions on temperature, corroborated the direct and reverse intersystem crossing interplay between singlet and triplet states. Molecular aggregation is responsible for the deterioration of non-blended triazole films phosphorescence.
Cyclodextrin-modified MEKC for enantioseparation of hexaconazole, penconazole, and myclobutanil.
Wan Ibrahim, Wan Aini; Hermawan, Dadan; Sanagi, M Marsin; Aboul-Enein, Hassan Y
2009-02-01
A CD-modified micellar EKC (CD-MEKC) method with 2-hydroxypropyl-gamma-CD (HP-gamma-CD) as chiral selector for the enantioseparation of three chiral triazole fungicides, namely hexaconazole, penconazole, and myclobutanil, is reported for the first time. Simultaneous enantioseparation of the three triazole fungicides was successfully achieved using a CD-MEKC system containing 40 mM HP-gamma-CD and 50 mM SDS in 25 mM phosphate buffer (pH 3.0) solution with resolutions (R(s)) greater than 1.60, peak efficiencies (N) greater than 200,000 for all enantiomers and an analysis time within 15 min compared to 36 min as previously reported using sulfated-beta-CD.
Bhat, Bilal A; Reddy, P Bhaskar; Agrawal, Satyam Kumar; Saxena, A K; Kumar, H M Sampath; Qazi, G N
2008-10-01
A series of 4beta-[(4-substituted)-1,2,3-triazol-1-yl] podophyllotoxin congeners have been designed and synthesized with significant regioselectivity by employing Cu(I) catalyzed 1,3-dipolar cycloaddition reaction of C4beta-azido podophyllotoxin and C4beta-azido-4'-O-demethyl podophyllotoxin with N-prop-2-yn-1-ylanilines. These compounds were evaluated for anticancer activity against a panel of seven human cancer cell lines. It was interesting to note that all the compounds exhibited promising activity especially against SF-295 (CNS), HCT-15 (colon) and 502713 (colon) cell lines. Compound 11e was found to be the most promising in this study.
Towards the identification and quantification of candidate metabolites of tebuconazole fungicide.
NASA Astrophysics Data System (ADS)
El Azhari, Najoi; Dermou, Eftychia; Botteri, Lucio; Lucini, Luigi; Karas, Panagiotis; Karpouzas, Dimitris; Tsiamis, George; Martin-Laurent, Fabrice; Trevisan, Marco; Rossi, Riccardo; Ferrari, Federico
2017-04-01
Tebuconazole belongs to the family of triazole fungicides, used for crop protection and human health applications. In the environment, the dissipation of the parent molecule leads to the formation of metabolites that are of unknown identity or toxicity. In order to identify and determine the putative identity of those metabolites and their po- tential toxicity, a quadrupole time-of-flight (Q-TOF) approach is often used. Q-SAR ap- proaches help to predict their toxicity by comparing them to a known database of mole- cules with known properties. All together the information on the candidate by-products may help to select relevant sub-set of metabolites for further quantification by LC or GC coupled with MS. It is thereby possible to select putative toxic compounds for further quanti- fication using chemical analysis. Previous work allowed the identification of potential metabolites of tebuconazole. Triazole, triazolyl acetic acid and p-chlorophenol were suspected to result from the decomposition of tebuconazole. Tebuconazole degradation kinetics was followed for 125 days by quanti- fying the dissipation of the parent molecule and the emergence of the three candidate metabolites by LC/MS for tebuconazole, triazol and triazolyl acetate and by GC/MS for p- chlorophenol. The data allowed the proposition of several metabolic pathways.
Wang, Chun; Wu, Qiuhua; Wu, Chunxia; Wang, Zhi
2011-01-15
A simple, rapid and environmentally friendly method has been developed for the determination of four triazole fungicides (myclobutanil, tebuconazole, triadimenol, hexaconazole) in water samples by dispersion-solidification liquid-liquid microextraction coupled with high performance liquid chromatography-diode array detection. Several variables that affect the extraction efficiencies, including the type and volume of the extraction solvent and dispersive solvent, extraction time, effect of pH and salt addition, were investigated and optimized. Under the optimum conditions, the proposed method is sensitive and shows a good linearity within a range of 0.5-200 ng mL(-1), with the correlation coefficients (r) varying from 0.9992 to 0.9998. High enrichment factors were achieved ranging from 190 to 450. The recoveries of the target analytes from water samples at spiking levels of 1.0, 5.0 and 50.0 ng mL(-1) were between 84.8% and 110.2%. The limits of detection (LODs) for the analytes were ranged in 0.06-0.1 ng mL(-1), and the relative standard deviations (RSD) varied from 3.9% to 5.7%. The proposed method has been successfully applied for the determination of the triazole fungicides in real water samples. Copyright © 2010 Elsevier B.V. All rights reserved.
Di Pietro, Ornella; Alencar, Nelson; Esteban, Gerard; Viayna, Elisabet; Szałaj, Natalia; Vázquez, Javier; Juárez-Jiménez, Jordi; Sola, Irene; Pérez, Belén; Solé, Montse; Unzeta, Mercedes; Muñoz-Torrero, Diego; Luque, F Javier
2016-10-15
Different azides and alkynes have been coupled via Cu-catalyzed 1,3-dipolar Huisgen cycloaddition to afford a novel family of N 1 - and C 5 -substituted 1,2,3-triazole derivatives that feature the propargylamine group typical of irreversible MAO-B inhibitors at the C4-side chain of the triazole ring. All the synthesized compounds were evaluated against human MAO-A and MAO-B. Structure-activity relationships and molecular modeling were utilized to gain insight into the structural and chemical features that enhance the binding affinity and selectivity between the two enzyme isoforms. Several lead compounds, in terms of potency (submicromolar to low micromolar range), MAO-B selective recognition, and brain permeability, were identified. One of these leads (MAO-B IC 50 of 3.54μM, selectivity MAO-A/MAO-B index of 27.7) was further subjected to reversibility and time-dependence inhibition studies, which disclosed a slow and irreversible inhibition of human MAO-B. Overall, the results support the suitability of the 4-triazolylalkyl propargylamine scaffold for exploring the design of multipotent anti-Alzheimer compounds endowed with irreversible MAO-B inhibitory activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kennedy, Zachary C.; Barrett, Christopher A.; Warner, Marvin G.
2017-03-01
Azides on the periphery of nanodiamond materials (ND) are of great utility because they have been shown to undergo Cu-catalyzed and Cu-free cycloaddition reactions with structurally diverse alkynes, affording particles tailored for applications in biology and materials science. However, current methods employed to access ND featuring azide groups typically require either harsh pretreatment procedures or multiple synthesis steps and use surface linking groups that may be susceptible to undesirable cleavage. Here in this paper we demonstrate an alternative single-step approach to producing linker-free, azide-functionalized ND. Our method was applied to low-cost, detonation-derived ND powders where surface carbonyl groups undergo silver-mediatedmore » decarboxylation and radical substitution with azide. ND with directly grafted azide groups were then treated with a variety of aliphatic, aromatic, and fluorescent alkynes to afford 1-(ND)-4-substituted-1,2,3-triazole materials under standard copper-catalyzed cycloaddition conditions. Surface modification steps were verified by characteristic infrared absorptions and elemental analyses. High loadings of triazole surface groups (up to 0.85 mmol g –1) were obtained as determined from thermogravimetric analysis. The azidation procedure disclosed is envisioned to become a valuable initial transformation in numerous future applications of ND.« less
Triazolophostins: a library of novel and potent agonists of IP3 receptors.
Vibhute, Amol M; Konieczny, Vera; Taylor, Colin W; Sureshan, Kana M
2015-06-28
IP3 receptors are channels that mediate the release of Ca(2+) from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of synthetic conditions for each analog. Such lengthy one-at-a-time syntheses limit access to AdA analogs. We have addressed this problem by synthesizing a library of triazole-based AdA analogs, triazolophostins, by employing click chemistry. An advanced intermediate having all the necessary phosphates and a β-azide at the anomeric position was reacted with various alkynes under Cu(i) catalysis to yield triazoles, which upon deprotection gave triazolophostins. All eleven triazolophostins synthesized are more potent than IP3 and some are equipotent with AdA in functional analyses of IP3 receptors. We show that a triazole ring can replace adenine without compromising the potency of AdA and provide facile routes to novel AdA analogs.
Biodegradation mechanism of 1H-1,2,4-triazole by a newly isolated strain Shinella sp. NJUST26
Wu, Haobo; Shen, Jinyou; Wu, Ruiqin; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; Wang, Lianjun
2016-01-01
The highly recalcitrant 1H-1,2,4-triazole (TZ) is widely used in the synthesis of agricultural pesticide and considered to be an environmental pollutant. In this study, a novel strain NJUST26 capable of utilizing TZ as the sole carbon and nitrogen source, was isolated from TZ-contaminated soil, and identified as Shinella sp. The biodegradation assays suggested that optimal temperature and pH for TZ degradation by NJUST26 were 30 °C and 6–7, respectively. With the increase of initial TZ concentration from 100 to 320 mg L−1, the maximum volumetric degradation rate increased from 29.06 to 82.96 mg L−1 d−1, indicating high tolerance of NJUST26 towards TZ. TZ biodegradation could be accelerated through the addition of glucose, sucrose and yeast extract at relatively low dosage. The main metabolites, including 1,2-dihydro-3H-1,2,4-triazol-3-one (DHTO), semicarbazide and urea were identified. Based on these results, biodegradation pathway of TZ by NJUST26 was proposed, i.e., TZ was firstly oxidized to DHTO, and then the cleavage of DHTO ring occurred to generate N-hydrazonomethyl-formamide, which could be further degraded to biodegradable semicarbazide and urea. PMID:27436634
NASA Astrophysics Data System (ADS)
Meng, Lingkun; Liu, Kang; Liang, Chen; Guo, Xiaolei; Han, Xu; Ren, Siyuan; Ma, Dingxuan; Li, Guanghua; Shi, Zhan; Feng, Shouhua
2018-02-01
By using a triazol-functionalized tricarboxylate, three novel metal coordination polymers, namely, [Zn2L(OH)]·0.5H2O (1), [Co2L(OH)(H2O)]·5.5H2O (2), [Cu2(HL)] (3) L = [5-(3-(4-carboxyphenyl)-5-methyl-4H-1,2,4-triazol-4-yl)isophthalate] were synthesized under hydrothermal reactions. All the compounds were characterized by element analysis, IR spectroscopy, thermogravimetric analysis, power X-ray diffrcation and single-crystal X-ray diffrcation. Structural analysis reveals that compounds 1 and 2 have 3D networks with flu topologies where rigid trizaol-functionalized ligands as 4-connected nodes and Zn4(COO)6 or Co4(COO)6 clusters serves as 8-connected secondary building units. Compound 3 has 3D network with pcu topology where Cu4(COO)4 clusters serve as 6-connected secondary building units. Gas adsorption studies reveal that desolvated compoud 1 exhibits high H2 absorption capacity at 77 K and highly selective separation abilities of CO2 and C3H8 over CH4 at room temperature. The results suggest that 1 has potential application in gas storage and separation. In addition, the magnetic properties of compound 2 were also investigated.
Yehye, Wageeh A; Abdul Rahman, Noorsaadah; Saad, Omar; Ariffin, Azhar; Abd Hamid, Sharifah Bee; Alhadi, Abeer A; Kadir, Farkaad A; Yaeghoobi, Marzieh; Matlob, Abdulsalam A
2016-06-28
A new series of multipotent antioxidants (MPAOs), namely Schiff base-1,2,4-triazoles attached to the oxygen-derived free radical scavenging moiety butylated hydroxytoluene (BHT) were designed and subsequently synthesized. The structure-activity relationship (SAR) of the designed antioxidants was established alongside the prediction of activity spectra for substances (PASS). The antioxidant activities of the synthesized compounds 4-10 were tested by the DPPH bioassay. The synthesized compounds 4-10 inhibited stable DPPH free radicals at a level that is 10(-4) M more than the well-known standard antioxidant BHT. Compounds 8-10 with para-substituents were less active than compounds 4 and 5 with trimethoxy substituents compared to those with a second BHT moiety (compounds 6 and 7). With an IC50 of 46.13 ± 0.31 µM, compound 6 exhibited the most promising in vitro inhibition at 89%. Therefore, novel MPAOs containing active triazole rings, thioethers, Schiff bases, and BHT moieties are suggested as potential antioxidants for inhibiting oxidative stress processes and scavenging free radicals, hence, this combination of functions is anticipated to play a vital role in repairing cellular damage, preventing various human diseases and in medical therapeutic applications.
Tamura, Kei; Inoue, Kaoru; Takahashi, Miwa; Matsuo, Saori; Irie, Kaoru; Kodama, Yukio; Gamo, Toshie; Ozawa, Shogo; Yoshida, Midori
2015-04-01
We clarified the involvement of constitutive androstane receptor (CAR) in triazole-induced liver hypertrophy and tumorigenesis using CAR-knockout (CARKO) mice. Seven-week-old male CARKO and wild-type (WT) mice were treated with 200 ppm cyproconazole (Cypro), 1500 ppm tebuconazole (Teb), or 200 ppm fluconazole (Flu) in the diet for 27 weeks after initiation by diethylnitrosamine (DEN). At weeks 4 (without DEN) and 13 (with DEN), WT mice in all treatment groups and CARKO mice in Teb group revealed liver hypertrophy with mainly Cyp2b10 and following Cyp3a11 inductions in the liver. Teb also induced Cyp4a10 in both genotypes. Cypro induced slight and duration-dependent liver hypertrophy in CARKO mice. At week 27, Cypro and Teb significantly increased eosinophilic altered foci and/or adenomas in WT mice. These proliferating lesions were clearly reduced in CARKO mice administered both compounds. The eosinophilic adenomas caused by Flu decreased in CARKO mice. The present study indicates that CAR is the main mediator of liver hypertrophy induced by Cypro and Flu, but not Teb. In contrast, CAR played a crucial role in liver tumor development induced by all three triazoles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Conner, Kip P.; Vennam, Preethi; Woods, Caleb M.; Krzyaniak, Matthew D.; Bowman, Michael K.; Atkins, William M.
2012-01-01
In comparison to imidazole (IMZ) and 1,2,4-triazole (1,2,4-TRZ) the isosteric 1,2,3-triazole (1,2,3-TRZ) is unrepresented among CYP inhibitors. This is surprising because 1,2,3-TRZs are easily obtained via ‘click’ chemistry. To understand this underrepresentation of 1,2,3-TRZs among CYP inhibitors, thermodynamic and DFT computational studies were performed with unsusbstituted IMZ, 1,2,4-TRZ, and 1,2,3-TRZ. The results indicate that the lower affinity of 1,2,3-TRZ for the heme iron includes a large unfavorable entropy term likely originating in solvent – 1,2,3-TRZ interactions; the difference is not solely due to differences in the enthalpy of heme – ligand interactions. In addition, the 1,2,3-TRZ fragment was incorporated into a well-established CYP3A4 substrate and mechanism based inactivator, 17-α-ethynylestradiol (17EE), via click chemistry. This derivative, 17-click, yielded optical spectra consistent with low spin ferric heme iron (type II) in contrast to 17EE, which yields a high spin complex (type I). Furthermore, the rate of CYP3A4-mediated metabolism of 17-click was comparable to 17EE, and with different regioselectivity. Surprisingly, CW EPR and HYSCORE EPR spectroscopy indicate that the 17-click does not displace water from the 6th axial ligand position of CYP3A4 as expected for a type II ligand. We propose a binding model where 17-click pendant 1,2,3-TRZ hydrogen bonds with the 6th axial water ligand. The results demonstrate the potential for 1,2,3-TRZ to form metabolically labile water-bridged low spin heme complexes, consistent with recent evidence that nitrogenous type II ligands of CYPs can be efficiently metabolized. The specific case of [CYP3A4•17-click] highlights the risk of interpreting CYP-ligand complex structure on the basis of optical spectra. PMID:22809252
NASA Astrophysics Data System (ADS)
Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan
2018-04-01
Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).
Iatta, Roberta; Nuccio, Federica; Immediato, Davide; Mosca, Adriana; De Carlo, Carmela; Miragliotta, Giuseppe; Parisi, Antonio; Crescenzo, Giuseppe; Otranto, Domenico; Cafarchia, Claudia
2016-09-01
Aspergillus section Nigri includes species of interest for animal and human health, although studies on species distribution are limited to human cases. Data on the antifungal susceptibilities and the molecular mechanism of triazole resistance in strains belonging to this section are scant. Forty-two black Aspergillus strains from human patients (16 isolates), animals (14 isolates), and the environment (12 isolates) were molecularly characterized and their in vitro triazole susceptibilities investigated. Aspergillus tubingensis was isolated from humans, animals, and environmental settings, whereas Aspergillus awamori and Aspergillus niger were isolated exclusively from humans. Phylogenetic analyses of β-tubulin and calmodulin gene sequences were concordant in differentiating A. tubingensis from A. awamori and A. niger Voriconazole and posaconazole (PSZ) were the most active triazoles. One A. tubingensis strain was resistant to itraconazole and PSZ and one A. niger strain to PSZ. Sequence analysis of the cyp51A gene revealed different sequence types within a species, and A. tubingensis strains were also phylogenetically distinct from A. awamori/A. niger strains according to the strain origin and susceptibility profile. Genetic analysis of the cyp51A sequences suggests that two nonsynonymous mutations resulting in amino acid substitutions in the CYP51A protein (changes of L to R at position 21 [L21R] and of Q to R at position 228 [Q228R]) might be involved in azole resistance. Though azole resistance in black Aspergillus isolates from animals and rural environments does not represent a threat to public health in Southern Italy, the use of triazoles in the clinical setting needs to better monitored. The cyp51A sequence is useful for the molecular identification of black Aspergillus, and point mutations in protein sequences could be responsible for azole resistance phenomena. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Heo, Sang Taek; Tatara, Alexander M; Jiménez-Ortigosa, Cristina; Jiang, Ying; Lewis, Russell E; Tarrand, Jeffrey; Tverdek, Frank; Albert, Nathaniel D; Verweij, Paul E; Meis, Jacques F; Mikos, Antonios G; Perlin, David S; Kontoyiannis, Dimitrios P
2017-07-15
Azole-resistant aspergillosis in high-risk patients with hematological malignancy or hematopoietic stem cell transplantation (HSCT) is a cause of concern. We examined changes over time in triazole minimum inhibitory concentrations (MICs) of 290 sequential Aspergillus isolates recovered from respiratory sources during 1999-2002 (before introduction of the Aspergillus-potent triazoles voriconazole and posaconazole) and 2003-2015 at MD Anderson Cancer Center. We also tested for polymorphisms in ergosterol biosynthetic genes (cyp51A, erg3C, erg1) in the 37 Aspergillus fumigatus isolates isolated from both periods that had non-wild-type (WT) MICs. For the 107 patients with hematologic cancer and/or HSCT with invasive pulmonary aspergillosis, we correlated in vitro susceptibility with 42-day mortality. Non-WT MICs were found in 37 (13%) isolates and was only low level (MIC <8 mg/L) in all isolates. Higher-triazole MICs were more frequent in the second period and were Aspergillus-species specific, and only encountered in A. fumigatus. No polymorphisms in cyp51A, erg3C, erg1 genes were identified. There was no correlation between in vitro MICs with 42-day mortality in patients with invasive pulmonary aspergillosis, irrespective of antifungal treatment. Asian race (odds ratio [OR], 20.9; 95% confidence interval [CI], 2.5-173.5; P = .005) and azole exposure in the prior 3 months (OR, 9.6; 95% CI, 1.9-48.5; P = .006) were associated with azole resistance. Non-WT azole MICs in Aspergillus are increasing and this is associated with prior azole exposure in patients with hematologic cancer or HSCT. However, no correlation of MIC with outcome of aspergillosis was found in our patient cohort. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Nabili, Mojtaba; Shokohi, Tahereh; Moazeni, Maryam; Khodavaisy, Sadegh; Aliyali, Masoud; Badiee, Parisa; Zarrinfar, Hossein; Hagen, Ferry; Badali, Hamid
2016-06-01
Triazole antifungal agents are the mainstay of aspergillosis treatment. As highlighted in numerous studies, the global increase in the prevalence of triazole resistance could hamper the management of aspergillosis. In the present three-year study, 513 samples (213 clinical and 300 environmental samples) from 10 provinces of Iran were processed and screened in terms of azole resistance (4 and 1 mg l-1 of itraconazole and voriconazole, respectively), using selective plates. Overall, 150 A. fumigatus isolates (71 clinical and 79 environmental isolates) were detected. The isolates were confirmed by partial sequencing of the β-tubulin gene. Afterwards, in vitro antifungal susceptibility tests against triazole agents were performed, based on the Clinical and Laboratory Standards Institute (CLSI) M38-A2 document. The CYP51A gene was sequenced in order to detect mutations. The MIC of itraconazole against 10 (6.6 %) strains, including clinical (n=3, 4.2 %) and environmental (n=7, 8.8 %) strains, was higher than the breakpoint and epidemiological cut-off value. Based on the findings, the prevalence of azole-resistant A. fumigatus in Iran has increased remarkablyfrom 3.3 % to 6.6 % in comparison with earlier epidemiological research. Among resistant isolates, TR34/L98H mutations in the CYP51A gene were the most prevalent (n=8, 80 %), whereas other point mutations (F46Y, G54W, Y121F, G138C, M172V, F219C, M220I, D255E, T289F, G432C and G448S mutations) were not detected. Although the number of patients affected by azole-resistant A. fumigatus isolates was limited, strict supervision of clinical azole-resistant A. fumigatus isolates and persistent environmental screening of azole resistance are vital to the development of approaches for the management of azole resistance in human pathogenic fungi.
Zhao, Ying Jiao; Tan, Gloria; Teng, Monica; Tee, Caroline; Tan, Ban Hock; Ong, Benjamin; Lim, Boon Peng; Chai, Louis Yi Ann
2015-01-01
Invasive fungal infections (IFIs) are associated with high mortality rates and large economic burdens. Triazole prophylaxis is used for at-risk patients with hematological malignancies or stem cell transplants. We evaluated both the efficacy and the cost-effectiveness of triazole prophylaxis. A network meta-analysis (NMA) of randomized controlled trials (RCTs) evaluating fluconazole, itraconazole capsule and solution, posaconazole, and voriconazole was conducted. The outcomes of interest included the incidences of IFIs and deaths. This was coupled with a cost-effectiveness analysis from patient perspective over a lifetime horizon. Probabilities of transitions between health states were derived from the NMA. Resource use and costs were obtained from the Singapore health care institution. Data on 5,505 participants in 21 RCTs were included. Other than itraconazole capsule, all triazole antifungals were effective in reducing IFIs. Posaconazole was better than fluconazole (odds ratio [OR], 0.35 [95% confidence interval [CI], 0.16 to 0.73]) and itraconazole capsule (OR, 0.25 [95% CI, 0.06 to 0.97]), but not voriconazole (OR, 1.31 [95% CI, 0.43 to 4.01]), in preventing IFIs. Posaconazole significantly reduced all-cause deaths, compared to placebo, fluconazole, and itraconazole solution (OR, 0.49 to 0.54 [95% CI, 0.28 to 0.88]). The incremental cost-effectiveness ratio for itraconazole solution was lower than that for posaconazole (Singapore dollars [SGD] 12,546 versus SGD 26,817 per IFI avoided and SGD 5,844 versus SGD 12,423 per LY saved) for transplant patients. For leukemia patients, itraconazole solution was the dominant strategy. Voriconazole was dominated by posaconazole. All triazole antifungals except itraconazole capsule were effective in preventing IFIs. Posaconazole was more efficacious in reducing IFIs and all-cause deaths than were fluconazole and itraconazole. Both itraconazole solution and posaconazole were cost-effective in the Singapore health care setting. PMID:26525782
NASA Astrophysics Data System (ADS)
Gatfaoui, Sofian; Issaoui, Noureddine; Mezni, Ali; Bardak, Fehmi; Roisnel, Thierry; Atac, Ahmet; Marouani, Houda
2017-12-01
The novel inorganic-organic hybrid material 1H-1,2,4-triazole-4-ium trioxonitrate (TAN) have been elaborated and crystallized to the monoclinic system with space group P21/c and the lattice parameters obtained are a = 8.8517(15) Å, b = 8.3791(15) Å, c = 7.1060(11) Å, β = 103.776(7)°, V = 511.89(15) Å3 and Z = 4. In order to enhance (TAN) on the applied plan, biophysicochemical characterization of the title compound have been obtained with experimentally and theoretically. The crystal structure exposed substantial hydrogen bonding stuck between the protonated 1,2,4-triazole ring and the nitrate forming thus sheets parallel to the plans (-1 0 1). The three-dimensional supramolecular network is formed through the π … π interactions involving heterocyclic rings in these sheets. Assessment of intermolecular contacts in the crystal arrangement was quantified by Hirshfeld surface analysis and interactions were analyzed by orbital NBO and topological AIM approaches. This compound was also investigated by means of infrared spectroscopy, electrical conductivity, thermal analysis TG-DTA, and DSC. Moreover, the antioxidant properties of TAN were determined via the DPPH radical scavenging, the ABTS radical scavenging, hydroxyl radical scavenging, and ferric reducing power (FRP). Obtained results confirm the functionality of antioxidant potency of TAN. The molecular structure and vibrational spectral analysis of TAN have been reported by using density functional theory calculations at B3LYP/6-311++G(d,p) level of theory. Molecular docking behaviors of TAN along with well-known triazole antifungal agents (fluconazole, itraconazole, posaconazole, and voriconazole) with saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) were investigated. The potent of TAN as an inhibitor was discussed on the basis of noncovalent interaction profile. Furthermore, protonic conduction of this compound has been intentional in the temperature range of 295-373 K.
Zhao, Ying Jiao; Khoo, Ai Leng; Tan, Gloria; Teng, Monica; Tee, Caroline; Tan, Ban Hock; Ong, Benjamin; Lim, Boon Peng; Chai, Louis Yi Ann
2016-01-01
Invasive fungal infections (IFIs) are associated with high mortality rates and large economic burdens. Triazole prophylaxis is used for at-risk patients with hematological malignancies or stem cell transplants. We evaluated both the efficacy and the cost-effectiveness of triazole prophylaxis. A network meta-analysis (NMA) of randomized controlled trials (RCTs) evaluating fluconazole, itraconazole capsule and solution, posaconazole, and voriconazole was conducted. The outcomes of interest included the incidences of IFIs and deaths. This was coupled with a cost-effectiveness analysis from patient perspective over a lifetime horizon. Probabilities of transitions between health states were derived from the NMA. Resource use and costs were obtained from the Singapore health care institution. Data on 5,505 participants in 21 RCTs were included. Other than itraconazole capsule, all triazole antifungals were effective in reducing IFIs. Posaconazole was better than fluconazole (odds ratio [OR], 0.35 [95% confidence interval [CI], 0.16 to 0.73]) and itraconazole capsule (OR, 0.25 [95% CI, 0.06 to 0.97]), but not voriconazole (OR, 1.31 [95% CI, 0.43 to 4.01]), in preventing IFIs. Posaconazole significantly reduced all-cause deaths, compared to placebo, fluconazole, and itraconazole solution (OR, 0.49 to 0.54 [95% CI, 0.28 to 0.88]). The incremental cost-effectiveness ratio for itraconazole solution was lower than that for posaconazole (Singapore dollars [SGD] 12,546 versus SGD 26,817 per IFI avoided and SGD 5,844 versus SGD 12,423 per LY saved) for transplant patients. For leukemia patients, itraconazole solution was the dominant strategy. Voriconazole was dominated by posaconazole. All triazole antifungals except itraconazole capsule were effective in preventing IFIs. Posaconazole was more efficacious in reducing IFIs and all-cause deaths than were fluconazole and itraconazole. Both itraconazole solution and posaconazole were cost-effective in the Singapore health care setting. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Selective, tunable O 2 binding in cobalt(II)–triazolate/pyrazolate metal–organic frameworks
Xiao, Dianne J.; Gonzalez, Miguel I.; Darago, Lucy E.; ...
2016-05-16
Here, the air-free reaction of CoCl 2 with 1,3,5-tri(1H- 1,2,3-triazol-5-yl)benzene (H 3BTTri) in N,N-dimethylformamide (DMF) and methanol leads to the formation of Co- BTTri (Co 3[(Co 4Cl) 3(BTTri) 8] 2·DMF), a sodalite-type metal-organic framework. Desolvation of this material generates coordinatively unsaturated low-spin cobalt(II) centers that exhibit a strong preference for binding O 2 over N 2, with isosteric heats of adsorption (Q st) of -34(1) and -12(1) kJ/ mol, respectively. The low-spin (S = 1/2) electronic configuration of the metal centers in the desolvated framework is supported by structural, magnetic susceptibility, and computational studies. A single-crystal X-ray structure determination revealsmore » that O 2 binds end-on to each framework cobalt center in a 1:1 ratio with a Co-O 2 bond distance of 1.973(6) Å. Replacement of one of the triazolate linkers with a more electron-donating pyrazolate group leads to the isostructural framework Co-BDTriP (Co 3[(Co 4Cl) 3(BDTriP) 8] 2·DMF; H 3BDTriP = 5,5'-(5-(1H-pyrazol-4-yl)-1,3-phenylene)bis(1H-1,2,3-triazole)), which demonstrates markedly higher yet still fully reversible O 2 affinities (Q st = -47(1) kJ/mol at low loadings). Electronic structure calculations suggest that the O 2 adducts in Co-BTTri are best described as cobalt(II)-dioxygen species with partial electron transfer, while the stronger binding sites in Co-BDTriP form cobalt(III)-superoxo moieties. The stability, selectivity, and high O 2 adsorption capacity of these materials render them promising new adsorbents for air separation processes.« less
A density-functional theory investigation of 3-nitro-1,2,4-triazole-5-one dimers and crystal
NASA Astrophysics Data System (ADS)
Xiao, He-Ming; Ju, Xue-Hai; Xu, Li-Na; Fang, Guo-Yong
2004-12-01
Density-functional method with different basis sets was applied to the study of the highly efficient and low sensitive explosive 3-nitro-1,2,4-triazole-5-one (NTO) in both gaseous dimer and its bulk state. The binding energies have been corrected for the basis set superposition errors. Six stable dimers (II-VII) were located. The corrected binding energy of the most stable dimer VII is predicted to be -53.66 kJ/mol at the B3LYP/6-311++G** level. It was found that the structures of the more stable dimers (V-VII) are through the hydrogen bonding interaction between the carbonyl oxygen and the azole hydrogen of 3-nitro-1,2,4-triazole-5-one. The changes of Gibbs free energies (ΔG) in the processes from the monomer to the dimers at 298.15 K are 8.51, 0.90, 0.35, -8.74, -10.67, and -11.06 kJ/mol for dimers from II to VII, respectively. Dimers V-VII, possessing cyclic structures, can be spontaneously produced from the isolated monomer at room temperature. The lattice energy is -156.14 kJ/mol, and this value becomes to -150.43 kJ/mol when a 50% correction of the basis set superposition error was adopted. The frontier bands are quite flat. Judged from the value of band gap of 4.0 eV, it may be predicted that 3-nitro-1,2,4-triazole-5-one is an insulator. Most atoms in NTO, with the exception of C5 atom and the nitro atoms, make up the upper valence bands. In contrast, the lower conduction bands mainly consist of the nitro N and O atoms. The population of the C-NO2 bond is much less than those of the other bonds and the detonation may be initiated by the breakdown of this bond.
A density-functional theory investigation of 3-nitro-1,2,4-triazole-5-one dimers and crystal.
Xiao, He-Ming; Ju, Xue-Hai; Xu, Li-Na; Fang, Guo-Yong
2004-12-22
Density-functional method with different basis sets was applied to the study of the highly efficient and low sensitive explosive 3-nitro-1,2,4-triazole-5-one (NTO) in both gaseous dimer and its bulk state. The binding energies have been corrected for the basis set superposition errors. Six stable dimers (II-VII) were located. The corrected binding energy of the most stable dimer VII is predicted to be -53.66 kJ/mol at the B3LYP/6-311++G(**) level. It was found that the structures of the more stable dimers (V-VII) are through the hydrogen bonding interaction between the carbonyl oxygen and the azole hydrogen of 3-nitro-1,2,4-triazole-5-one. The changes of Gibbs free energies (DeltaG) in the processes from the monomer to the dimers at 298.15 K are 8.51, 0.90, 0.35, -8.74, -10.67, and -11.06 kJ/mol for dimers from II to VII, respectively. Dimers V-VII, possessing cyclic structures, can be spontaneously produced from the isolated monomer at room temperature. The lattice energy is -156.14 kJ/mol, and this value becomes to -150.43 kJ/mol when a 50% correction of the basis set superposition error was adopted. The frontier bands are quite flat. Judged from the value of band gap of 4.0 eV, it may be predicted that 3-nitro-1,2,4-triazole-5-one is an insulator. Most atoms in NTO, with the exception of C(5) atom and the nitro atoms, make up the upper valence bands. In contrast, the lower conduction bands mainly consist of the nitro N and O atoms. The population of the C-NO(2) bond is much less than those of the other bonds and the detonation may be initiated by the breakdown of this bond. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Yan, Juan-zhi; Lu, Li-ping; Zhu, Miao-li; Feng, Si-si
2018-06-01
Four manganese (II) compounds are obtained by the reaction of manganese salts, triazole-derivatives and auxiliary reagents in aqueous solution or mix-solvents by routine or hydrothermal reactions. X-ray crystal structure analyses reveal that a neutral 0D compound [Mn(Hmctrz)2(H2O)2] (1) (H2mctrz = 1H-1,2,4-triazole-3-carboxylic acid) displays a centro-symmetric mononuclear octahedral entity with two Hmctrz- anions and two water molecules; two neutral 2D clusters [Mn(Hdctrz)(H2O)2]n (2) (H3dctrz = 1H-1,2,4-triazole-3,5-dicarboxylic acid) and [Mn2(pbtrz)(btca)]n·4nH2O (3) (pbtrz = 1,3-bis(1,2,4-triazol-1-yl)-propane&H4btca = benzene-1,2,4,5-tetracarboxylic acid) possess layer structures with Hdctrz2- linkers (2) and Mn(II)-pbtrz-Mn(II) building blocks periodically extended by μ-btca4- connectors (3); [Mn(pbtrz)]n·nOAc·nOH (4) shows a 3D diamond-shaped cationic framework with the anion void volume of 49.2%. Nitrogenous bases are used as the auxiliary ligand in compound 3 and the temple ligand in compounds 1, 2, and 4. Compounds 1-4 show antiferromagnetic coupling that has been fitted by different models with the molecular field approximate with D = - 0.129(1) cm-1 for 1, J = - 0.354(4) cm-1 for 2 and J = - 0.696(6) cm-1 for 3, respectively. The magnetic differences can be related to different superexchange interactions transmitted by the crystal lattice and/or the zero field splitting (ZFS) of the 6A1g single-ion states of 1 and the syn-anti-COO- of 2 as well as the mixed magnetic bridges of μ1-O and μ-pbtrz-μ-COO- of 3.
Insua, Ignacio; Alvarado, Mario; Masaguer, Christian F; Iglesias, Alba; Brea, José; Loza, María I; Carro, Laura
2013-10-15
A series of new 1,4-disubstituted triazoles was prepared from appropriate arylacetylenes and aminoalkylazides using click chemistry methodology. These compounds were evaluated as potential ligands on several subtypes of dopamine receptors in in vitro competition assays, showing high affinity for dopamine D3 receptors, lower affinity for D2 and D4, and no affinity for the D1 receptors. Compound 18 displayed the highest affinity at the D3 receptor with a Ki value of 2.7 nM, selectivity over D2 (70-fold) and D4 (200-fold), and behaviour as a competitive antagonist in the low nanomolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.
2-({4-[4-(1H-Benzimidazol-2-yl)phenyl]-1H-1,2,3-triazol-1-yl}methoxy)ethanol
Ouahrouch, Abdelaaziz; Taourirte, Moha; Lazrek, Hassan B.; Bats, Jan W.; Engels, Joachim W.
2012-01-01
In the title molecule, C18H17N5O2, the dihedral angle between the benzene plane and the benzimidazole plane is 19.8 (1)° and the angle between the benzene plane and the triazole plane is 16.7 (1)°. In the crystal, molecules are connected by O—H⋯N hydrogen bonds, forming zigzag chains along the c-axis direction. The chains are connected by bifurcated N—H⋯(N,N) hydrogen bonds into layers parallel to (100). These layers are connected along the a-axis direction by weak C—H⋯O contacts, forming a three-dimensional network. PMID:22719663
Brushett, Fikile R; Thorum, Matthew S; Lioutas, Nicholas S; Naughton, Matthew S; Tornow, Claire; Jhong, Huei-Ru Molly; Gewirth, Andrew A; Kenis, Paul J A
2010-09-08
The performance of a novel carbon-supported copper complex of 3,5-diamino-1,2,4-triazole (Cu-tri/C) is investigated as a cathode material using an alkaline microfluidic H(2)/O(2) fuel cell. The absolute Cu-tri/C cathode performance is comparable to that of a Pt/C cathode. Furthermore, at a commercially relevant potential, the measured mass activity of an unoptimized Cu-tri/C-based cathode was significantly greater than that of similar Pt/C- and Ag/C-based cathodes. Accelerated cathode durability studies suggested multiple degradation regimes at various time scales. Further enhancements in performance and durability may be realized by optimizing catalyst and electrode preparation procedures.
1981-09-01
No other nucleoside product was detected. 26 When 4 was subjected to hydrogenation 3 7 with Pd/C (10%), a mixture of products was obtained even after...prolonged reduction. O2N N 02JC> ______H2 N A 3 PtO 2 0 Bz • + SzO 08 45 BOBz 3 NaOEt NH 3 O2N N N2H4H 2N N N NNN No O NO ON 6 7 The major product was...1,2,4-triazole. The minor product was found to be 3-amino-l-(2,3,3-tri-O-benzovl- 8-D-ribofuranosyl)-l,2,4-triazole (5, BJ-91120). In an effort to improve
Nithinchandra; Kalluraya, B; Aamir, S; Shabaraya, A R
2012-08-01
A novel series of 1-substituted aminomethyl-3-[1-(4-isobutylphenyl)ethyl]-4-(3-aryl-4-sydnonylidene) amino-1,2,4-triazol-5-thiones (9), was prepared from the 3-[1-(4-isobutylphenyl)ethyl]-4-(3-aryl-4-sydnonylidene) amino 5-mercapto-1,2,4-triazoles (8) by aminomethylation with formaldehyde and secondary amine. The structures of Schiff bases (8) and Mannich bases (9) were characterized on the basis of IR, NMR, mass spectra1 data and elemental analysis. The newly synthesized compounds were screened for their anti-inflammatory and analgesic activities. Mannich bases (9) carrying piperidine and morpholine residues showed promising anti-inflammatory and analgesic activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Bekircan, Olcay; Bektas, Hakan
2008-09-10
Ethyl imidate hydrochlorides 1 were prepared by passing HCl gas through solutions of substituted benzyl cyanides and absolute ethanol. Ethoxycarbonylhydrazones 2 were synthesized from the reaction of compounds 1 with ethyl carbazate. Treatment of 2 with hydrazine hydrate leads to the formation of substituted 4-amino-4,5-dihydro-1H-1,2,4-triazole-5-ones 3. Isatin and 5-chloroisatin were added to 3 to form Schiff bases 4 and N-Mannich bases 5 of these compounds were synthesized by reacting with formaldehyde and piperidine. Their chemical structures were confirmed by means of IR, (1)H- and (13)C-NMR data and by elemental analysis.
Bahoussi, Rawia Imane; Djafri, Ahmed; Djafri, Ayada
2017-01-01
In the title compound, C18H20N4O3S, the 1,2,4-triazole ring is twisted with respect to the mean plane of quinoline moiety at 65.24 (4)°. In the crystal, molecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming the three-dimensional supramolecular packing. π–π stacking between the quinoline ring systems of neighbouring molecules is also observed, the centroid-to-centroid distance being 3.6169 (6) Å. Hirshfeld surface (HS) analyses were performed. PMID:28217336
Crowley, James D; Bandeen, Pauline H
2010-01-14
A one pot, multicomponent CuAAC reaction has been exploited for the safe generation of alkyl, benzyl or aryl linked polydentate pyridyl-1,2,3-triazole ligands from their corresponding halides, sodium azide and alkynes in excellent yields. The ligands have been fully characterised by elemental analysis, HR-ESMS, IR, (1)H and (13)C NMR and in two cases the structures were confirmed by X-ray crystallography. Additionally, we have examined the Ag(I) coordination chemistry of these ligands and found, using HR-ESMS, (1)H NMR, and X-ray crystallography, that both discrete and polymeric metallosupramolecular architectures can be formed.
Fletcher, James T.; Reilly, Jacquelline E.
2012-01-01
This study examined whether commercially available diazonium salts could be used as efficient aromatic azide precursors in one-pot multi-step click transformations. Seven different diazonium salts, including Fast Red RC, Fast Blue B, Fast Corinth V and Variamine Blue B were surveyed under aqueous click reaction conditions of CuSO4/Na ascorbate catalyst with 1:1 t-BuOH:H2O solvent. Two-step tandem reactions with terminal alkyne and diyne co-reactants led to 1,2,3-triazole products in 66%-88% yields, while three-step tandem reactions with trimethylsilyl-protected alkyne and diyne co-reactants led to 1,2,3-triazole products in 61%-78% yields. PMID:22368306
Venugopala, Katharigatta N; Dharma Rao, G B; Bhandary, Subhrajyoti; Pillay, Melendhran; Chopra, Deepak; Aldhubiab, Bandar E; Attimarad, Mahesh; Alwassil, Osama Ibrahim; Harsha, Sree; Mlisana, Koleka
2016-01-01
The novel (1-(4-aryl)-1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives were synthesized by the click reaction of the dihydropyrimidinones, bearing a terminal alkynyl group, with various substituted aryl azides at room temperature using a catalytic amount of Cu(OAc)2 and sodium ascorbate in a 1:2 ratio of acetone and water as a solvent. The newly synthesized compounds were characterized by a number of spectroscopic techniques, such as infrared, liquid chromatography-mass spectrometry, 1H, and 13C nuclear magnetic resonance along with single crystal X-ray diffraction. The current procedure for the synthesis of 1,2,3-triazole hybrids with dihydropyrimidinones is appropriate for the synthesis of a library of analogs 7a-l and the method accessible here is operationally simple and has excellent yields. The title compounds 7a-l were evaluated for their in vitro antitubercular activity against H37RV and multidrug-resistant strains of Mycobacterium tuberculosis by resazurin microplate assay plate method and it was found that compound 7d was promising against H37RV and multidrug-resistant strains of M. tuberculosis at 10 and 15 μg/mL, respectively. PMID:27601885
Venugopala, Katharigatta N; Dharma Rao, G B; Bhandary, Subhrajyoti; Pillay, Melendhran; Chopra, Deepak; Aldhubiab, Bandar E; Attimarad, Mahesh; Alwassil, Osama Ibrahim; Harsha, Sree; Mlisana, Koleka
2016-01-01
The novel (1-(4-aryl)-1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives were synthesized by the click reaction of the dihydropyrimidinones, bearing a terminal alkynyl group, with various substituted aryl azides at room temperature using a catalytic amount of Cu(OAc)2 and sodium ascorbate in a 1:2 ratio of acetone and water as a solvent. The newly synthesized compounds were characterized by a number of spectroscopic techniques, such as infrared, liquid chromatography-mass spectrometry, (1)H, and (13)C nuclear magnetic resonance along with single crystal X-ray diffraction. The current procedure for the synthesis of 1,2,3-triazole hybrids with dihydropyrimidinones is appropriate for the synthesis of a library of analogs 7a-l and the method accessible here is operationally simple and has excellent yields. The title compounds 7a-l were evaluated for their in vitro antitubercular activity against H37RV and multidrug-resistant strains of Mycobacterium tuberculosis by resazurin microplate assay plate method and it was found that compound 7d was promising against H37RV and multidrug-resistant strains of M. tuberculosis at 10 and 15 μg/mL, respectively.
NASA Astrophysics Data System (ADS)
Sumrra, Sajjad H.; Mushtaq, Fazila; Khalid, Muhammad; Raza, Muhammad Asam; Nazar, Muhammad Faizan; Ali, Bakhat; Braga, Ataualpa A. C.
2018-02-01
Biologically active triazole Schiff base ligand (L) and metal complexes [Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] are reported herein. The ligand acted as tridentate and coordinated towards metallic ions via azomethine-N, triazolic-N moiety and deprotonated-O of phenyl substituents in an octahedral manner. These compounds were characterized by physical, spectral and analytical analysis. The synthesized ligand and metal complexes were screened for antibacterial pathogens against Chromohalobacter salexigens, Chromohalobacter israelensi, Halomonas halofila and Halomonas salina, antifungal bioassay against Aspergillus niger and Aspergellus flavin, antioxidant (DPPH, phosphomolybdate) and also for enzyme inhibition [butyrylcholinesterase (BChE) and acetylcholinesterase (AChE)] studies. The results of these activities indicated the ligand to possess potential activity which significantly increased upon chelation. Moreover, vibrational bands, frontier molecular orbitals (FMOs) and natural bond analysis (NBO) of ligand (1) were carried out through density functional theory (DFT) with B3lYP/6-311 ++G (d,p) approach. While, UV-Vis analysis was performed by time dependent TD-DFT with B3lYP/6-311 ++G (d,p) method. NBO analysis revealed that investigated compound (L) contains enormous molecular stability owing to hyper conjugative interactions. Theoretical spectroscopic findings showed good agreement to experimental spectroscopic data. Global reactivity descriptors were calculated using the energies of FMOs which indicated compound (L) might be bioactive. These parameters confirmed the charge transfer phenomenon and reasonable correspondence with experimental bioactivity results.
Ertas, Merve; Sahin, Zafer; Berk, Barkin; Yurttas, Leyla; Biltekin, Sevde N; Demirayak, Seref
2018-04-01
Drugs used in breast cancer treatments target the suppression of estrogen biosynthesis. During this suppression, the main goal is to inhibit the aromatase enzyme that is responsible for the cyclization and structuring of estrogens either with steroid or non-steroidal-type inhibitors. Non-steroidal derivatives generally have a planar aromatic structure attached to the triazole ring system in their structures, which inhibits hydroxylation reactions during aromatization by coordinating the heme group. Bioisosteric replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase the selectivity for aromatase enzyme inhibition. In this study, pyridine-substituted thiazolylphenol derivatives, which are non-steroidal triazole bioisosteres, were synthesized using the Hantzsch method, and physical analysis and structural determination studies were performed. The IC 50 values of the compounds were determined by a fluorescence-based aromatase inhibition assay. Then, their antiproliferative activities on the MCF7 and HEK 293 cell lines were evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, the crystal structure of human placental aromatase was subjected to a series of docking experiments to identify the possible interactions between the most active structure and the active site. Lastly, an in silico technique was performed to analyze and predict the drug-likeness, molecular and ADME properties of the synthesized molecules. © 2018 Deutsche Pharmazeutische Gesellschaft.
Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles.
Wentrup, Curt
2017-03-08
Flash vacuum pyrolysis (FVP) of azides is an extremely valuable method of generating nitrenes and studying their thermal rearrangements. The nitrenes can in many cases be isolated in low-temperature matrices and observed spectroscopically. NH and methyl, alkyl, aralkyl, vinyl, cyano, aryl and N-heteroaryl, acyl, carbamoyl, alkoxycarbonyl, imidoyl, boryl, silyl, phosphonyl, and sulfonyl nitrenes are included. FVP of triazoloazines generates diazomethylazines and azinylcarbenes, which often rearrange to the energetically more stable arylnitrenes. N 2 elimination from monocyclic 1,2,3-triazoles can generate iminocarbenes, 1H-azirines, ketenimines, and cyclization products, and 1,2,4-triazoles are precursors of nitrile ylides. Benzotriazoles are preparatively useful precursors of cyanocyclopentadienes, carbazoles, and aza-analogues. FVP of 5-aryltetrazoles can result in double N 2 elimination with formation of arylcarbenes or of heteroarylcarbenes, which again rearrange to arylnitrenes. Many 5-substituted and 2,5-disubstituted tetrazoles are excellent precursors of nitrile imines (propargylic, allenic, or carbenic), which are isolable at low temperatures in some cases (e.g., aryl- and silylnitrile imines) or rearrange to carbodiimides. 1,5-Disubstituted tetrazoles are precursors of imidoylnitrenes, which also rearrange to carbodiimides or add intramolecularly to aryl substituents to yield indazoles and related compounds. Where relevant for the mechanistic understanding, pyrolysis under flow conditions or in solution or the solid state will be mentioned. Results of photolysis reactions and computational chemistry complementing the FVP results will also be mentioned in several places.
Novel Triazole-Quinoline Derivatives as Selective Dual Binding Site Acetylcholinesterase Inhibitors.
Mantoani, Susimaire P; Chierrito, Talita P C; Vilela, Adriana F L; Cardoso, Carmen L; Martínez, Ana; Carvalho, Ivone
2016-02-05
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. Currently, the only strategy for palliative treatment of AD is to inhibit acetylcholinesterase (AChE) in order to increase the concentration of acetylcholine in the synaptic cleft. Evidence indicates that AChE also interacts with the β-amyloid (Aβ) protein, acting as a chaperone and increasing the number and neurotoxicity of Aβ fibrils. It is known that AChE has two binding sites: the peripheral site, responsible for the interactions with Aβ, and the catalytic site, related with acetylcholine hydrolysis. In this work, we reported the synthesis and biological evaluation of a library of new tacrine-donepezil hybrids, as a potential dual binding site AChE inhibitor, containing a triazole-quinoline system. The synthesis of hybrids was performed in four steps using the click chemistry strategy. These compounds were evaluated as hAChE and hBChE inhibitors, and some derivatives showed IC50 values in the micro-molar range and were remarkably selective towards hAChE. Kinetic assays and molecular modeling studies confirm that these compounds block both catalytic and peripheral AChE sites. These results are quite interesting since the triazole-quinoline system is a new structural scaffold for AChE inhibitors. Furthermore, the synthetic approach is very efficient for the preparation of target compounds, allowing a further fruitful new chemical library optimization.
Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus*
Soares da Costa, Tatiana P.; Tieu, William; Yap, Min Y.; Pendini, Nicole R.; Polyak, Steven W.; Sejer Pedersen, Daniel; Morona, Renato; Turnidge, John D.; Wallace, John C.; Wilce, Matthew C. J.; Booker, Grant W.; Abell, Andrew D.
2012-01-01
There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class. PMID:22437830
Selective inhibition of biotin protein ligase from Staphylococcus aureus.
Soares da Costa, Tatiana P; Tieu, William; Yap, Min Y; Pendini, Nicole R; Polyak, Steven W; Sejer Pedersen, Daniel; Morona, Renato; Turnidge, John D; Wallace, John C; Wilce, Matthew C J; Booker, Grant W; Abell, Andrew D
2012-05-18
There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (K(i) 90 nM) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class.
NASA Astrophysics Data System (ADS)
Conradie, J.; Conradie, M. M.; Tawfiq, K. M.; Al-Jeboori, M. J.; Coles, S. J.; Wilson, C.; Potgieter, J. H.
2018-06-01
The syntheses, characterizations and structures of three novel dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II), [M(L)2Cl2], complexes (metal = Mn, Co and Ni) are presented. In the solid state the molecules are arranged in infinite hydrogen-bonded 3D supramolecular structures, further stabilized by weak intermolecular π…π interactions. The DFT results for all the different spin states and isomers of dichloro(bis{2-[1-phenyl-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) complexes, [M(L1)2Cl2], support experimental measurements, namely that (i) d5 [Mn(L1)2Cl2] is high spin with S = 5/2; (ii) d7 [Co(L1)2Cl2] has a spin state of S = 3/2, (iii) d8 [Ni(L1)2Cl2] has a spin state of S = 1; and (iv) for all [M(L1)2Cl2] and [M(L)2Cl2] complexes, with M = Mn, Co and Ni, the cis-cis-trans and the trans-trans-trans isomers, with the pyridyl groups trans to each other, have the lowest energy.
Salunkhe, Varsha P; Sawant, Indu S; Banerjee, Kaushik; Wadkar, Pallavi N; Sawant, Sanjay D
2015-12-23
Disease management in vineyards with fungicides sometimes results in undesirable residue accumulations in grapes at harvest. Bioaugmentation of the grape fructosphere can be a useful approach for enhancing the degradation rate and reducing the residues to safe levels. This paper reports the in vitro and in vivo biodegradation of three triazole fungicides commonly used in Indian vineyards, by Bacillus strains, namely, DR-39, CS-126, TL-171, and TS-204, which were earlier found to enhance the dissipation rate of profenophos and carbendazim. The strains utilized the triazoles as carbon source and enhanced their in vitro rate of degradation. Myclobutanil, tetraconazole, and flusilazole were applied in separate vineyard plots at field doses of 0.40 g L(-1), 0.75 mL L(-1), and 0.125 mL L(-1), respectively. Residue analysis of field samples from the treated fields reflected 87.38 and >99% degradations of myclobutanil and tetraconazole, respectively, by the strain DR-39, and 90.82% degradation of flusilazole by the strain CS-126 after 15-20 days of treatment. In the respective controls, the corresponding percent degradations were 72.07, 58.88, and 54.28, respectively. These Bacillus strains could also simultaneously degrade the residues of profenofos, carbendazim, and tetraconazole on the grape berries and can be useful in multiclass pesticide residue biodegradation.
Qiu, Jing; Dai, Shouhui; Zheng, Chuangmu; Yang, Shuming; Chai, Tingting; Bie, Mei
2011-07-01
This study used chiral columns packed with 3-μm and 5-μm particles to comparatively separate enantiomers of 9 triazole fungicides, and Lux Cellulose-1 columns with chiral stationary phase of cellulose-tris-(3,5-dimethylphenylcarbamate) were used on reverse-phase high-performance liquid chromatography with flow rates of 0.3 and 1.0 mL min(-1) for 3-μm and 5-μm columns, respectively. The (+)-enantiomers of hexaconazole (1), tetraconazole (4), myclobutanil (7), fenbuconazole (8) and the (-)-enantiomers of flutriafol (2), diniconazole (3), epoxiconazole (5), penconazole (6), triadimefon (9) were firstly eluted from both columns, the elution orders identified with an optical rotation detector didn't change with variety of column particles and mobile phases (acetronitrile/water and methanol/water). The plots of natural logarithms of the selectivity factors (ln α) for all fungicides except penconazole (6) versus the inverse of temperature (1/T) were linear in range of 5-40°C. The thermodynamic parameters (ΔH°, ΔS°, ΔΔH° and ΔΔS°) were calculated using Van't Hoff equations to understand the thermosynamic driving forces for enantioseparation. This work will be very helpful to obtain good enantiomeric separation and establish more efficient analytical method for triazole fungicides. Chirality, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.
Hirose, Tomoyasu; Maita, Nobuo; Gouda, Hiroaki; Koseki, Jun; Yamamoto, Tsuyoshi; Sugawara, Akihiro; Nakano, Hirofumi; Hirono, Shuichi; Shiomi, Kazuro; Watanabe, Takeshi; Taniguchi, Hisaaki; Sharpless, K. Barry; Ōmura, Satoshi; Sunazuka, Toshiaki
2013-01-01
The Huisgen cycloaddition of azides and alkynes, accelerated by target biomolecules, termed “in situ click chemistry,” has been successfully exploited to discover highly potent enzyme inhibitors. We have previously reported a specific Serratia marcescens chitinase B (SmChiB)-templated syn-triazole inhibitor generated in situ from an azide-bearing inhibitor and an alkyne fragment. Several in situ click chemistry studies have been reported. Although some mechanistic evidence has been obtained, such as X-ray analysis of [protein]–[“click ligand”] complexes, indicating that proteins act as both mold and template between unique pairs of azide and alkyne fragments, to date, observations have been based solely on “postclick” structural information. Here, we describe crystal structures of SmChiB complexed with an azide ligand and an O-allyl oxime fragment as a mimic of a click partner, revealing a mechanism for accelerating syn-triazole formation, which allows generation of its own distinct inhibitor. We have also performed density functional theory calculations based on the X-ray structure to explore the acceleration of the Huisgen cycloaddition by SmChiB. The density functional theory calculations reasonably support that SmChiB plays a role by the cage effect during the pretranslation and posttranslation states of selective syn-triazole click formation. PMID:24043811
Leite, Débora Inácio; Fontes, Fábio de Vasconcellos; Bastos, Monica Macedo; Hoelz, Lucas Villas Boas; Bianco, Maria da Conceição Avelino Dias; de Oliveira, Andressa Paula; da Silva, Patricia Bernardino; da Silva, Cristiane França; Batista, Denise da Gama Jean; da Gama, Aline Nefertiti Silva; Peres, Raiza Brandão; Villar, Jose Daniel Figueroa; Soeiro, Maria de Nazaré Correia; Boechat, Nubia
2018-05-09
Chagas disease has spread throughout the world mainly because of the migration of infected individuals. In Brazil, only benznidazole (Bnz) is used; however, it is toxic and not active in the chronic phase, and cases of resistance are described. This work aimed at the synthesis and the trypanocidal evaluation in vitro and in vivo of six new Bnz analogues (3-8). They were designed by exploring the bioisosteric substitution between the amide group contained in Bnz and the 1,2,3-triazole ring. All the compounds were synthesized in good yields. With the exception of compound 7, the in vitro biological evaluation shows that all Bnz analogues were active against the amastigote form, whereas only compounds 3, 4, 5, and 8 were active against trypomastigote. Compounds 4 and 5 showed the most promising activities in vitro against the form of trypomastigote, being more active than Bnz. In vivo evaluation of compounds, 3-8 showed lower potency and higher toxicity than Bnz. Although the 1,2,3-triazole ring has been described in the literature as an amide bioisostere, its substitution here has reduced the activity of the compounds and made them more toxic. Thus, further molecular optimization could provide novel therapeutic agents for Chagas' disease. © 2018 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Swain, Jitendriya; Kamalraj, M.; Surya Prakash Rao, H.; Mishra, Ashok K.
2015-02-01
This work focuses on the membrane perturbation, solubilisation and thermotropic phase transition process of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) MLVs induced by a glucose-triazole-hydrogenated cardanol conjugate (GTHCC). GTHCC is a recently introduced non toxic sugar derivative. Differential scanning calorimetry (DSC) and fluorescence molecular probe based techniques have been used to understand the concentration dependent membrane perturbation, solubilisation and thermotropic phase transition process of DPPC MLVs. The phase transition temperature of DPPC MLVs decreases with increase in mol% of GTHCC. At higher concentration above 10 mol%, GTHCC was significantly perturbed the membrane organization. The intrinsic fluorescence of GTHCC is also found to be sensitive towards phase behaviour and changes in membrane organization of DPPC MLVs.
Yu, Jipan; Jin, Yunhe; Zhang, Hao; Yang, Xiaobo; Fu, Hua
2013-12-02
A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines with N-(alkylidene)-4H-1,2,4-triazol-4-amines. The procedure occurs by cleavage of the N-N bond in the N-(alkylidene)-4H-1,2,4-triazol-4-amines and activation of an aryl C-H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition-metal-catalyzed C-H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, Yong-Qiang; Tian, Yuan; Li, Na; Liu, Sui-Jun
2018-06-01
Two isomorphous metal-organic frameworks (MOFs) {[M2(μ3-OH)(trz)(sdba)(H2O)]·3H2O}∞ (M = Ni for 1, Zn for 2, Htrz = 1,2,4-triazole, H2sdba = 4,4‧-sulfonyldibenzoate) were obtained under the same reaction condition. Both of complexes present a three dimensional 8-c framework with whc1 topology based on M4-(μ3-OH) units. Moreover, the magnetic properties of 1 and anion sensing of 2 were investigated. The magnetic study show that the domain antiferromagnetic interactions exist in 1. However, complex 2 can be considered as a promising chemical sensor for detecting PO43barby means of fluorescence enhancement among various anions in aqueous solutions.
Chohan, Zahid H; Sumrra, Sajjad H
2012-04-01
A new series of biologically active thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes have been synthesized and characterized on the basis of physical (m.p., magnetic susceptibility and conductivity), spectral (IR, ¹H and ¹³C NMR, electronic and mass spectrometry) and microanalytical data. All the Schiff base ligands and their oxovanadium(IV) complexes have been subjected to in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella enterica serover typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains and, for in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glabrata. Brine shrimp bioassay was also carried out to check the cytotoxic nature of these compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Andrew R.; Ghiviriga, Ion; Abboud, Khalil A.
This report outlines the investigation of the iClick mechanism between gold(I)-azides and gold(I)-acetylides to yield digold triazolates. Isolation of digold triazolate complexes offer compelling support for the role of two copper(I) ions in CuAAC. In addition, a kinetic investigation reveals the reaction is first order in both Au(I)-N 3 and Au(I)-C≡C-R equivalent to C-R, thus second order overall. A Hammett plot with a ρ = 1.02(5) signifies electron-withdrawing groups accelerate the cycloaddition by facilitating the coordination of the second gold ion in a π-complex. Rate inhibition by the addition of free triphenylphosphine to the reaction indicates that ligand dissociation ismore » a prerequisite for the reaction. The mechanistic conclusions mirror those proposed for the CuAAC reaction.« less
Liu, Jie; Liu, Qin; Yang, Xue; Xu, Shengtao; Zhang, Hengyuan; Bai, Renren; Yao, Hequan; Jiang, Jieyun; Shen, Mingqin; Wu, Xiaoming; Xu, Jinyi
2013-12-15
A series of novel 1,2,4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives were designed and synthesized to develop new angiotensin II subtype 2 (AT2) receptor agonists as novel antihypertensive candidates. It was found that 14f (IC50=0.4 nM) and 15e (IC50=5.0 nM) displayed potent AT2 receptor affinity and selectivity in binding assays. Biological evaluation in vivo suggested that 14f is obviously superior to that of reference drug losartan in RHRs, and meanwhile, 14f has no significant impact on heart rate. The interesting activities of these compounds may make them promising candidates as antihypertensive agents. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hoyt, Nathan; Brunell, Marla; Kroeck, Karl; Hable, Mike; Crouse, Lee; O'Neill, Art; Bannon, Desmond I
2013-11-01
The U.S. Department of Defense is using the chemicals 2,4-dinitroanisole (DNAN) and 3-nitro-1, 2,4-triazol-5-one (NTO) in new munitions development. In a screen for biomarkers of exposure, these compounds were measured in urine and blood of male rhesus monkeys after oral doses. NTO peaked at 4 h, with urinary concentrations at least 100-fold higher than that of blood or serum while 4-dinitrophenol (DNP), a metabolite of DNAN, appeared in blood at concentrations 10- to 20-fold higher than the parent compound. For human exposure monitoring, urine is optimal for NTO while the metabolite DNP in blood is best for DNAN.
Vasconcelos, Stanley N S; Fornari, Evelin; Caracelli, Ignez; Stefani, Hélio A
2017-11-01
The Ugi multicomponent reaction has been used as an important synthetic route to obtain compounds with potential biological activity. We present the rapid and efficient synthesis of [Formula: see text]-amino-1,3-dicarbonyl compounds in moderate to good yields via Ugi flow chemistry reactions performed with a continuous flow reactor. Such [Formula: see text]-amino-1,3-dicarbonyl compounds can act as precursors for the production of [Formula: see text]-amino acids via hydrolysis of the ethyl ester group as well as building blocks for the synthesis of novel compounds with the 1,2,3-triazole ring. The [Formula: see text]-amino acid derivatives of the Ugi flow chemistry reaction products were then used for dipeptide synthesis.
Khatiwada, Raju; Abrell, Leif; Li, Guangbin; Root, Robert A; Sierra-Alvarez, Reyes; Field, James A; Chorover, Jon
2018-05-05
The emerging insensitive munitions compound (IMC) 3-nitro-1,2,4-triazole-5-one (NTO) is currently being used to replace conventional explosives such as 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), but the environmental fate of this increasingly widespread IMC remains poorly understood. Upon release from unexploded solid phase ordinances, NTO exhibits high aqueous solubility and, hence, potential mobilization to groundwater. Adsorption and abiotic transformation at metal oxide surfaces are possible mechanisms for natural attenuation. Here, the reactions at ferrihydrite and birnessite surfaces of NTO and its biotransformation product, 3-amino-1, 2, 4-triazol-5-one (ATO), were studied in stirred batch reactor systems at controlled pH (7.0). The study was carried out at metal oxide solid to solution ratios (SSR) of 0.15, 1.5 and 15 g kg -1 . The samples were collected at various time intervals up to 3 h after reaction initiation, and analyzed using HPLC with photodiode array and mass spectrometric detection. We found no detectable adsorption or transformation of NTO upon reaction with birnessite, whereas ATO was highly susceptible to oxidation by the same mineral, showing nearly complete transformation within 5 min at 15 g kg -1 SSR to urea, CO 2(g) and N 2(g) . The mean surface-area-normalized pseudo-first order rate constant (k) for ATO oxidation by birnessite across all SSRs was 0.05 ± 0.022 h -1 m -2 , and oxidation kinetics were independent of dissolved O 2 concentration. Both NTO and ATO were resistant to oxidation by ferrihydrite. However, NTO showed partial removal from solution upon reaction with ferrihydrite at 0.15 and 1.5 g kg -1 SSR and complete loss at 15 g kg -1 SSR due to strong adsorption. Conversely, ATO adsorption to ferrihydrite was much weaker than that measured for NTO. Copyright © 2018. Published by Elsevier Ltd.
In Situ Synthesis of Lipid Membranes
NASA Astrophysics Data System (ADS)
Devaraj, N. K.
2017-07-01
We have a strong interest in applying covalent coupling reactions to the formation and modification of lipid membranes. We have utilized chemoselective reactions, such as copper-catalyzed triazole formation or the native chemical ligation.
40 CFR 180.630 - Flusilazole; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-fluorophenyl)methylsilyl]methyl]-1H-1,2,4-triazole) in connection with use of the pesticide under Section 18... following table. Commodity Parts per million Expiration/revocation date Soybean, aspirated grain fractions 2...
40 CFR 180.536 - Triazamate; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... the combined residues of triazamate (RH-7988) ethyl(3-tert-butyl-1-dimethylcarbamoyl-1H-1,2,4-triazol...
40 CFR 180.536 - Triazamate; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... the combined residues of triazamate (RH-7988) ethyl(3-tert-butyl-1-dimethylcarbamoyl-1H-1,2,4-triazol...
Bennett, John M; Shapiro, Jonathan D; Choinski, Krystina N; Mei, Yingbin; Aulita, Sky M; Dominguez, Giovanny M; Majireck, Max M
2018-01-03
Decomposition of N-tosyl-1,2,3-triazoles with rhodium(II) acetate dimer in the presence of alcohols forms synthetically versatile N-(2-alkoxyvinyl)sulfonamides, which react under a variety of conditions to afford useful N- and O-containing compounds. Acid-catalyzed addition of alcohols or thiols to N-(2-alkoxyvinyl)sulfonamide-containing phthalans provides access to ketals and thioketals, respectively. Selective reduction of the vinyl group in N-(2-alkoxyvinyl)sulfonamide-containing phthalans via hydrogenation yields the corresponding phthalan in good yield, whereas reduction with sodium bis(2-methoxyethoxy)aluminumhydride generates a ring-opened phenethylamine analogue. Because the N-(2-alkoxyvinyl)sulfonamide functional group is synthetically versatile, but often hydrolytically unstable, this protocol emphasizes key techniques in preparing, handling, and reacting these pivotal substrates in several useful transformations.
NASA Astrophysics Data System (ADS)
De Cola, Luisa; Barigelletti, Francesco; Balzani, Vincenzo; Hage, Ronald; Haasnoot, Jaap G.; Reedijk, Jan; Vos, Johannes G.
1991-04-01
The luminescence and photochemical properties of the two isomeric heterobimetallic [(bpy) 2Ru(bpt)Os(bpy) 2] 3+ and [(bpy) 2Os(bpt)Ru(bpy) 2] 3+ complexes have been investigated (bpy=2,2'-pyridine; bpt -=3,5-bis(pyridin-2-yl)-1,2,4-triazolate ion). The properties of the two isomeric compounds are compared with those of the corresponding dinuclear homometallic inert and exhibit luminescence only from the Os-based component. Excitation in the Ru-based component is followed by ≈ 100% efficient energy transfer to the Os-based component. The energy-transfer mechanism is briefly discussed. The one-electron oxidation products (which contain Os in the 3+ oxidation state) are not luminescent because of the presence of a low-energy intervalence transfer level.
Monoglycoconjugated phthalocyanines: effect of sugar and linkage on photodynamic activity.
Lafont, Dominique; Zorlu, Yunus; Savoie, Huguette; Albrieux, Florian; Ahsen, Vefa; Boyle, Ross W; Dumoulin, Fabienne
2013-09-01
Click chemistry can be advantageously used to graft carbohydrates on phthalocyanines which are potent photosensitisers, but the effect of the presence of triazole moieties on photodynamic efficiency was not investigated systematically to date. The nature and linkage of the sugar were investigated in order to define structure-activity relationships. Two sets of monoglycoconjugated water-soluble phthalocyanines have been designed and their photodynamic activity and uptake investigated in HT-29 human colon adenocarcinoma cells. Carbohydrates: galactose, mannose or lactose were grafted onto Zn(II) phthalocyanines either by glycosylation or by click reaction. The triazole linkage formed by click conjugation lowered the biological efficiency for mannose and galactose, compared to classical glycosylation grafting. The mannose conjugate formed by glycosylation was the most photodynamically active, without correlation with the photosensitiser cell uptake. Copyright © 2012 Elsevier B.V. All rights reserved.
Sujith, K V; Rao, Jyothi N; Shetty, Prashanth; Kalluraya, Balakrishna
2009-09-01
A series of 4-[(4-aryl)methylidene]amino-2-(substituted-4-ylmethyl)-5-{1-[4-(2-methylpropyl)phenyl]ethyl}-2,4-dihydro-3H-1,2,4-triazole-3-thione (6) were synthesized from an arylpropionic acid namely, ibuprofen by a three-component Mannich reaction. Aminomethylation of 4-[(4-aryl)methylidene]amino-5-{1-[4-(2-methylpropyl)phenyl] ethyl}-4H-1,2,4-triazole-3-thiol (5) with formaldehyde and a secondary amine furnished this novel series of Mannich bases (6). Both Schiff bases (5) and Mannich bases (6) were well characterized on the basis of IR, NMR, mass spectral data and elemental analysis. They were screened for their anti-inflammatory, analgesic, antibacterial and antifungal activities. Some of the Mannich bases (6) carrying morpholino and N-methylpiperazino residues were found to be promising anti-inflammatory and analgesic agents.
Investigation of biological effects of some Mannich Bases containing Bis-1,2,4- Triazole.
Parlak, A E; Celik, S; Karatepe, M; Turkoglu, S; Alayunt, N O; Dastan, S D; Ulas, M; Sandal, S; Tekin, S; Koparir, M
2016-06-30
In this study, the effects of Mannich bases containing bis-1,2,4-triazole on the levels of in vivo malondialdehyde (MDA) and antioxidant vitamins (A, E, C) were examined in serum, livers and kidneys of rats. DA and vitamin (A, E, C) levels were determined by high performance liquid chromatography (HPLC). Antioxidant effect was investigated by determining the MDA levels in Saccharomyces cerevisiae cells as in vitro. Furthermore, the antitumor effects of compounds were investigated against MCF-7 human breast cancer cells. Interrelations of results among control and compound groups were evaluated using SPSS statistical software package. As a result, some of the compounds showed effective biological activity when compared to control conditions. The test compounds used in this study may be effective for utilization in the selection and design of model compounds for further studies.
Rao, Yerrabelly Jayaprakash; Sowjanya, Thummala; Thirupathi, Gogula; Murthy, Nandula Yadagiri Sreenivasa; Kotapalli, Sudha Sravanti
2018-06-04
A series of new flavone/isoxazole fused heterocycles 5a-f and flavone/1,2,3-triazole/benzimidazole hybrid heterocycles compounds 7a-t were synthesized via an intramolecular cyclization and Cu(I)-catalyzed click 1,3-dipolar cycloaddition. The products were evaluated for their antiproliferative activity against human breast cancer cell line (MCF-7) using sulforhodamine B assay (SRB) and antimycobacterial activity using turbidometric assay. The majority of the tested compounds exhibited antiproliferative activity and antimycobacterial activity. Compounds 7l, 7q and 7r showed moderate antiproliferative activity with IC50 values 17.9, 14.2, 19.1 [Formula: see text], respectively, and compound 5a showed moderate antimycobacterial activity with 41.7% of inhibition at 30 [Formula: see text] concentration.
Weak cooperativity in selected iron(II) 1D coordination polymers
NASA Astrophysics Data System (ADS)
Dîrtu, Marinela M.; Gillard, Damien; Naik, Anil D.; Rotaru, Aurelian; Garcia, Yann
2012-03-01
The spin crossover behaviour of a new class of FeII coordination polymers [Fe(phtptrz)3]I2 ( 1), [Fe(phtptrz)3](ReO4)2•CH3OH ( 2) and [Fe(phtptrz)3]TaF7•6H2O ( 3) based on a novel ligand 4-(3' -N-phtalimido-propyl)-1,2,4-triazole (phtptrz), were investigated by temperature dependent 57Fe Mössbauer spectroscopy and magnetic susceptibility measurements. The adverse effect of bulky substituent on 1,2,4-triazole, favorable supramolecular interactions and influence of increasing anion size on spin crossover profile is discussed. 1 and 2 show thermally induced spin conversions of gradual and incomplete nature with associated thermochromism, and transition temperatures T1/2 ~ 163 K and 137 K, respectively. A spin state crossover is also identified for 3.
Triazoles inhibit cholesterol export from lysosomes by binding to NPC1.
Trinh, Michael N; Lu, Feiran; Li, Xiaochun; Das, Akash; Liang, Qiren; De Brabander, Jef K; Brown, Michael S; Goldstein, Joseph L
2017-01-03
Niemann-Pick C1 (NPC1), a membrane protein of lysosomes, is required for the export of cholesterol derived from receptor-mediated endocytosis of LDL. Lysosomal cholesterol export is reportedly inhibited by itraconazole, a triazole that is used as an antifungal drug [Xu et al. (2010) Proc Natl Acad Sci USA 107:4764-4769]. Here we show that posaconazole, another triazole, also blocks cholesterol export from lysosomes. We prepared P-X, a photoactivatable cross-linking derivative of posaconazole. P-X cross-linked to NPC1 when added to intact cells. Cross-linking was inhibited by itraconazole but not by ketoconazole, an imidazole that does not block cholesterol export. Cross-linking of P-X was also blocked by U18666A, a compound that has been shown to bind to NPC1 and inhibit cholesterol export. P-X also cross-linked to purified NPC1 that was incorporated into lipid bilayer nanodiscs. In this in vitro system, cross-linking of P-X was inhibited by itraconazole, but not by U18666A. P-X cross-linking was not prevented by deletion of the N-terminal domain of NPC1, which contains the initial binding site for cholesterol. In contrast, P-X cross-linking was reduced when NPC1 contained a point mutation (P691S) in its putative sterol-sensing domain. We hypothesize that the sterol-sensing domain has a binding site that can accommodate structurally different ligands.
Wang, Tsang-Hsiu; Chu, Hsing-Yu; Wang, I-Teng
2014-10-15
The methyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate (C11H11N3O2) has been studied by theoretically methods. The structure of this compound is optimized by density functional theory (DFT), the second-order Møller-Plesset perturbation theory (MP2) and G3 theory (G3(MP2)) levels. Our calculation results are in very good agreement with experimental values. Compared to a perfect pentagonal structure, the geometrical structures of C11H11N3O2 show a little distortion of 1,2,3-triazole ring due to the highly electronegativity of substitution groups. In addition, dipole moment and frontier molecular orbitals (FMOs) of the C11H11N3O2 are calculated as well. Because of solvent effect, the HOMO-LUMO energy gap in methanol is predicted to be smaller than in gas phase by 0.367eV. The simulated UV-vis spectra are investigated by time-dependent density functional theory (TD-DFT), and two obviously absorption features have been predicted. These two absorption features are located between 170nm and 210nm, which is in ultraviolet C range. Moreover, the UV absorption features in methanol are predicted to be more intense than in gas phase; besides, the red shift is predicted in methanol as well. Copyright © 2014 Elsevier B.V. All rights reserved.
Ma, Shuping; Yuan, Xucan; Zhao, Pengfei; Sun, Hong; Ye, Xiu; Liang, Ning; Zhao, Longshan
2017-08-01
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction before ultra-high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid-phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid-liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0-400 (tebuconazole, diniconazole, and hexaconazole) and 4.0-800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5-1.1 and 1.8-4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hanif, Muhammad; Chohan, Zahid H.
2013-03-01
A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.
NASA Astrophysics Data System (ADS)
Al-Tamimi, Abdul-Malek S.
2016-09-01
Density functional theory has been implemented to study the electronic structure, molecular properties and vibrational spectra of 3-(adamantan-1-yl)-4-(4-chlorophenyl)-1H-1,2,4-triazole-5(4H)-thione, a novel 1,2,4-triazole-5(4H)-thione derivative. Hydrogen bonded dimer of the title molecule has been studied using B3LYP, M06-2X and X3LYP functionals at 6-311++ G(d,p) level of theory. The intermolecular hydrogen bonding has been studied using NBO analysis of the dimer. Bader's AIM theory was also used to evaluate the strength as well as the hydrogen bonding characteristics. Experimental FT-IR and FT-Raman spectra of the title molecule were related with the spectral data obtained with DFT/B3LYP method. The 1H NMR chemical shifts of the title molecule were calculated by the GIAO method and compared with experimental results. Dipole moment, polarizability (α), first order static hyperpolarizability (β) along with molecular electrostatic potential surface have been calculated. Frequency-dependent first hyperpolarizabilities, β(-2ω;ω,ω) and β(-ω;ω,0) have also been evaluated to study the non-linear optical behavior of the title compound. UV-Vis spectrum of the title molecule was recorded and TD-DFT method has been used to calculate six lowest excited states and the corresponding excitation energies.
Madeira, Camila L; Speet, Samuel A; Nieto, Cristina A; Abrell, Leif; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A
2017-01-01
Insensitive munitions, such as 3-nitro-1,2,4-triazol-5-one (NTO), are being considered by the U.S. Army as replacements for conventional explosives. Environmental emissions of NTO are expected to increase as its use becomes widespread; but only a few studies have considered the remediation of NTO-contaminated sites. In this study, sequential anaerobic-aerobic biodegradation of NTO was investigated in bioreactors using soil as inoculum. Batch bioassays confirmed microbial reduction of NTO under anaerobic conditions to 3-amino-1,2,4-triazol-5-one (ATO) using pyruvate as electron-donating cosubstrate. However, ATO biodegradation was only observed after the redox condition was switched to aerobic. This study also demonstrated that the high-rate removal of NTO in contaminated water can be attained in a continuous-flow aerated bioreactor. The reactor was first fed ATO as sole energy and nitrogen source prior to NTO addition. After few days, ATO was removed in a sustained fashion by 100%. When NTO was introduced together with electron-donor (pyruvate), NTO degradation increased progressively, reaching a removal efficiency of 93.5%. Mineralization of NTO was evidenced by the partial release of inorganic nitrogen species in the effluent, and lack of ATO accumulation. A plausible hypothesis for these findings is that NTO reduction occurred in anaerobic zones of the biofilm whereas ATO was mineralized in the bulk aerobic zones of the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Madeira, Camila L.; Speet, Samuel A.; Nieto, Cristina A.; Abrell, Leif; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A.
2017-01-01
Insensitive munitions, such as 3-nitro-1,2,4-triazol-5-one (NTO), are being considered by the U.S. Army as replacements for conventional explosives. Environmental emissions of NTO are expected to increase as its use becomes widespread; but only a few studies have considered the remediation of NTO-contaminated sites. In this study, sequential anaerobic-aerobic biodegradation of NTO was investigated in bioreactors using soil as inoculum. Batch bioassays confirmed microbial reduction of NTO under anaerobic conditions to 3-amino-1,2,4-triazol-5-one (ATO) using pyruvate as electron-donating cosubstrate. However, ATO biodegradation was only observed after the redox condition was switched to aerobic. This study also demonstrated that the high-rate removal of NTO in contaminated water can be attained in a continuous-flow aerated bioreactor. The reactor was first fed ATO as sole energy and nitrogen source prior to NTO addition. After few days, ATO was removed in a sustained fashion by 100%. When NTO was introduced together with electron-donor (pyruvate), NTO degradation increased progressively, reaching a removal efficiency of 93.5%. Mineralization of NTO was evidenced by the partial release of inorganic nitrogen species in the effluent and lack of ATO accumulation. A plausible hypothesis for these findings is that NTO reduction occurred in anaerobic zones of the biofilm whereas ATO was mineralized in the bulk aerobic zones of the reactor. PMID:27750172
NASA Astrophysics Data System (ADS)
Chui, Tin Ki
This thesis described the development of a new type of branched peptidomimetics using a class of previously reported triazole-containing peptidomimetics as the structural motif. The propensity of these new branched peptiomimetics in being an organogelator, forming supramolecular assemblies and recognizing anions and biomolecules was investigated. The quest began with the preparation of two different series of branched peptidomimetics, namely 69-K-aa3 (aa = V or L) and 70-B-aa3. The former series made use of the flexible L-lysine (K) as the branching unit while the latter series was composed of the relatively rigid 3,5-diminobenzoate (B). In each series, the peptidomimetic arms were composed of solely valine (V) or leucine (L). The effects of the identity of the amino acids and the branching units on the gelation and self-assembling properties of these branched bis(tripeptidomimetic)s were investigated. The 69-K-aa3 series was found to exhibit poor solubility in common organic solvents yet it was able to form strong and stable gels in aromatic solvents. The 70-B-aa3 series, on the other hand, was a poor organogelator despite its excellent solubility. Morphological studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the ability of the former to form a hyperbranched 3D network whereas the latter was only capable of forming isolated spherical lumps. Nevertheless, the latter displayed the ability in forming supramolecular polymers as shown from viscometric studies. Solution-to-gel transition temperature measurement of the gels formed by the 69-K-aa3 series and association constants determination by 1H NMR titration experiments for the supramolecular polymerization of the 70-B-aa3 series both suggested that peptidomimetic arms comprised of valine performed better than those made up of leucine in terms of association strength, and such a difference was attributed to the bulkier nature of the leucine side chain. In order to obtain a clearer picture on the mode of association of these two series of branched peptidomimetics, the length of the tripeptidomimetic arms was truncated to a dipeptide, and the amino acid, valine, was used for further studies. Both the two new candidates, 88-K-V2 and 89-B-V2, were shown to dimerize in chloroform as shown from vapor pressure osmometry (VPO) studies. 1H NMR titration experiments indicated a better dimerization strength for the latter candidate due to the intermolecular pi-pi interactions offered by its benzene ring in addition to the intermolecular hydrogen bonding by the amides and triazole units. H/D exchange and 2D NMR experiments, and molecular modeling revealed that 88-K-V2 dimerized through the formation of antiparallel beta-strands whereas formation of parallel beta-strands took place in 89-B-V2. Compound 88-K-V2 was found to form 1:1 complexes with chloride (Ka 640 M-1) and monobasic diethyl phosphate (DEP) ion (Ka 810 M-1) in chloroform. Interestingly, 89-B-V 2 was shown to form the usual 1:1 complex with the former ion (Ka 970 M-1) while forming an unexpected 2:1 complex with the latter with positive cooperativity. It was observed that both the amides and triazole protons were involved in anion-binding. In the 88-K-V2-DEP complex, the host formed a helix-like structure that wrapped around the anion located at the center of the complex as determined by 2D NMR and molecular modeling studies. Finally, further structural modification of 88-K-V2 gave a water-soluble nucleotide-binding tweezer 93-K-R2·4TFA . This tweezer consisted of four arginines (R), two triazole units, two pyrene probes and a small hydrophilic ethanolamine tail. Fluorescence study showed that this tweezer was able to form 1:1 complexes with different nucleotides in water with similar binding strength regardless of the number of phosphate groups present in the nucleotides. Moleular modeling suggested that such a charge-independent binding behavior was due to the similar number of hydrogen bonds involved in the binding between the nucleotide phosphate moiety and the tweezer amides, triazole protons and guanidinium groups. In summary, this thesis reported a new class of branched peptidomimetics that were constructed from conventional peptide and non-classical triazole linkages. The resulting peptidomimetics exhibited very rich supramolecular chemistry, ranging from gel formation, self-association, host.guest complexation and anion recognition. All these properties were due to the presence of multiple hydrogen bonding units in the form of amide and triazole units along the tweezer backbone. Through hydrogen bonding interaction with various guest molecules, the multiple-arm architecture could fold itself into a complementary conformation that could bind to the guest molecules in a much more efficient manner.
NASA Astrophysics Data System (ADS)
Demirbaş, Ümit; Akyüz, Duygu; Akçay, Hakkı Türker; Koca, Atıf; Bekircan, Olcay; Kantekin, Halit
2018-03-01
In the present study novel tetra 4-(4-fluorophenyl)-5-(4-methoxyphenyl)-4H-1,2,4-triazole-3-thio substituted non-peripherally metal free (4), zinc(II) (5), lead (II) (6) and copper(II) (7) phthalocyanines were synthesized. The obtained novel compounds were characterized by a combination of FT-IR, 1H NMR, UV-Vis and MALDI-TOF techniques. The redox properties of the complexes have been investigated via cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemistry. The compounds displayed ring-based, reversible and/or quasi-reversible reduction and oxidation processes and aggregation of the complexes influenced the redox character of the processes. The color changes during the redox processes of metallo phthalocyanine were recorded by in-situ spectroelectrochemical measurements. In situ UV-vis spectroelectrochemical measurements, which was associated with color change of the complexes, showed their applicability in the fields of the electrochemical technologies.
Imperio, Daniela; Pirali, Tracey; Galli, Ubaldina; Pagliai, Francesca; Cafici, Laura; Canonico, Pier Luigi; Sorba, Giovanni; Genazzani, Armando A; Tron, Gian Cesare
2007-11-01
Steganacin and podophyllotoxin are two naturally occurring lignans first isolated from plant sources, which share the capability to disrupt tubulin assembly. Although not strictly essential for its activity, the lactone ring on both structures represents Achilles' heel, as it is a potential site of metabolic degradation and epimerization on its C2 carbon brings about a significant loss in potency. In the present manuscript, we have used the ruthenium-catalyzed [3+2] azide-alkyne cycloaddition, a click-chemistry reaction, to replace the lactone ring with a 1,5-disubstituted triazole in few synthetic steps. The compounds were cytotoxic, although to a lesser degree compared to podophyllotoxin, while retaining antitubulin activity. The present structures might therefore represent a good platform for the fast generation of metabolically stable compounds with few stereogenic centers that might be of value from a medicinal chemistry point of view.
Fun, Hoong-Kun; Ooi, Chin Wei; Chandrakantha, B; Isloor, Arun M; Shetty, Prakash
2012-01-01
In the title compound, C(24)H(20)BrF(2)N(3)O(3)S, the triazole ring (r.m.s. deviation = 0.0107 Å) makes dihedral angles of 28.18 (14), 63.76 (14) and 77.01 (18)°, respectively, with the trimeth-oxy-, bromo-, and difluoro-substituted benzene rings. The C atoms of the meta meth-oxy groups are roughly coplanar with their ring [displacements = -0.289 (4) and 0.083 (7) Å], whereas the C atom of the para group is displaced [1.117 (3) Å]. In the crystal, inversion dimers linked by two pairs of C-H⋯O hydrogen bonds occur. The ring motif of the two hydrogen bonds to their symmetry-generated O-atom acceptors is R(2) (2)(8).
Tuning zinc coordination architectures by benzenedicarboxylate position isomers and bis(triazole)
NASA Astrophysics Data System (ADS)
Peng, Yan-fen; Li, Ke; Zhao, Shan; Han, Shan-shan; Li, Bao-long; Li, Hai-Yan
2015-08-01
Three position isomers 1,2-, 1,3-, 1,4-benzenedicarboxylate and 1,4-bis(1,2,4-triazol-4-yl)benzene were used to assembly zinc(II) coordination polymers {[Zn2(btx)0.5(1,2-bdc)2(H2O)]·H2O}n (1), {[Zn(btx)(1,3-bdc)]·2H2O·(DMF)}n (2) and {[Zn(btx)(1,4-bdc)]·3H2O}n (3). 1 is a (3,4,4,4)-connected two-dimensional network with point symbol (42·6)(44·62)(43·62·8)(42·6·103). 2 shows a two-dimensional (4,4) network. 3 exhibits a 5-fold interpenetrated three-dimensional diamondoid network. The structural versatility shows that the structures of coordination polymers can be tuned by the position isomers ligands. The luminescence and thermal stability were investigated.
Blaschke-Hellmessen, R
1996-01-01
Preliminary own results suggest, that the Etest (produced by AB BIODISK, Solna, Sweden) performed on casitone medium meets the requirements of a routine test of yeast susceptibility to fluconazole and itraconazole. Testing of 46 clinical yeast isolates, of 5 strains of Exophiala dermatitidis and 4 strains of algae of the genus Prototheca revealed species-, genus- and strain-specific variations of the susceptibility to fluconazole and itraconazole. Candida glabrata was less susceptible to both triazoles than the other Candida species with exception of Candida krusei. Exophiala dermatitidis was highly susceptible to itraconazole. Prototheca wickerhamii and P. zopfii were resistant to both triazoles. Casitone medium is most appropriate for the determination of susceptibility to fluconazole and itraconazole by the Etest. The results of the Etest were comparable with those of a breakpoint test (microdilution method).
"Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis.
Li, Na; Zhao, Pengxiang; Liu, Na; Echeverria, María; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier
2014-07-01
A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a β-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luque, F; Fernandez-Ramos, C; Entrala, E; Rosales, M J; Salas, M C; Navarro, J; Sánchez-Moreno, M
2000-12-01
Six compounds, all newly synthesized triazole-pyrimidine derivatives that proved inhibitory of in in vitro growth of epimastigotes in Trypanosoma cruzi and of promastigotes of Leishmania donovani and Phytomonas staheli, were studied to investigate their toxic effects. As a biological model, the plant trypanosome P. staheli, which causes sudden wilt in the oil palm and Hartrot in the coconut palm, was used. The six compounds markedly inhibited macromolecule synthesis (nucleic acids and proteins) by the parasite. The cells treated with these compounds present severe damage in their ultrastructure-intense 'vacuolization, and appearance of lysosomes as well as other residual bodies. The mitochondrial section appeared larger in size. with a swollen matrix. In addition, these compounds changed the excretion of end metabolites, primarily affecting ethanol and acetate excretion, possibly by directly influencing certain enzymes (alcohol dehydrogenase and acetate synthetase) or their synthesis. 2000 Elsevier Science Ltd.
Molinelli, Alejandro R; Rose, Charles H
2016-01-01
Voriconazole and posaconazole are triazole antifungal compounds used in the treatment of fungal infections. Therapeutic drug monitoring of both compounds is recommended in order to guide drug dosing to achieve optimal blood concentrations. In this chapter we describe an HPLC-ESI-MS/MS method for the quantification of both compounds in human plasma or serum following a simple specimen preparation procedure. Specimen preparation consists of protein precipitation using methanol and acetonitrile followed by a cleanup step that involves filtration through a cellulose acetate membrane. The specimen is then injected into an HPLC-ESI-MS/MS equipped with a C18 column and separated over an acetonitrile gradient. Quantification of the drugs in the specimen is achieved by comparing the response of the unknown specimen to that of the calibrators in the standard curve using multiple reaction monitoring.
Au-iClick mirrors the mechanism of copper catalyzed azide–alkyne cycloaddition (CuAAC)
Powers, Andrew R.; Ghiviriga, Ion; Abboud, Khalil A.; ...
2015-07-20
This report outlines the investigation of the iClick mechanism between gold(I)-azides and gold(I)-acetylides to yield digold triazolates. Isolation of digold triazolate complexes offer compelling support for the role of two copper(I) ions in CuAAC. In addition, a kinetic investigation reveals the reaction is first order in both Au(I)-N 3 and Au(I)-C≡C-R equivalent to C-R, thus second order overall. A Hammett plot with a ρ = 1.02(5) signifies electron-withdrawing groups accelerate the cycloaddition by facilitating the coordination of the second gold ion in a π-complex. Rate inhibition by the addition of free triphenylphosphine to the reaction indicates that ligand dissociation ismore » a prerequisite for the reaction. The mechanistic conclusions mirror those proposed for the CuAAC reaction.« less
New Human CD22/Siglec-2 Ligands with a Triazole Glycoside.
Prescher, Horst; Schweizer, Astrid; Kuhfeldt, Elena; Nitschke, Lars; Brossmer, Reinhard
2017-07-04
CD22 is a member of the Siglec family. Considerable attention has been drawn to the design and synthesis of new Siglec ligands to explore target biology and innovative therapies. In particular, CD22-ligand-targeted nanoparticles with therapeutic functions have proved successful in preclinical settings for blood cancers, autoimmune diseases, and tolerance induction. Here we report the design, synthesis and affinity evaluation of a new class of Siglec ligands: namely sialic acid derivatives with a triazole moiety replacing the natural glycoside oxygen atom. In addition, we describe important and surprising differences in binding to CD22 expressed at the cell surface for compounds with distinct valences. The new class of compounds might serve as a template for the design of ligands for other members of the Siglec family and next-generation CD22-ligand-based targeted therapies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan
2016-06-15
In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
Devender, Nalmala; Gunjan, Sarika; Chhabra, Stuti; Singh, Kartikey; Pasam, Venkata Reddy; Shukla, Sanjeev K; Sharma, Abhisheak; Jaiswal, Swati; Singh, Sunil Kumar; Kumar, Yogesh; Lal, Jawahar; Trivedi, Arun Kumar; Tripathi, Renu; Tripathi, Rama Pati
2016-02-15
In a quest to discover new drugs, we have synthesized a series of novel β-amino alcohol grafted 1,2,3-triazoles and screened them for their in vitro antiplasmodial and in vivo antimalarial activity. Among them, compounds 16 and 25 showed potent activity against chloroquine-sensitive (Pf3D7) strain with IC50 of 0.87 and 0.3 μM respectively, while compounds 7 and 13 exhibited better activity in vitro than the reference drug against chloroquine-resistance strain (PfK1) with IC50 of 0.5 μM each. Compound 25 showed 86.8% in vivo antimalarial efficacy with favorable pharmacokinetic parameters. Mechanistic studies divulged that potent compounds significantly boosted p53 protein levels to exhibit the antimalarial activity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Graybill, John R.; Bocanegra, Rosie; Najvar, Laura K.; Loebenberg, David; Luther, Mike F.
1998-01-01
Outbred ICR mice were immune suppressed either with hydrocortisone or with 5-fluorouracil and were infected intranasally with Aspergillus fumigatus. Beginning 3 days before infection some groups of mice were given recombinant human granulocyte colony-stimulating factor (G-CSF), SCH56592 (an antifungal triazole), or both. Corticosteroid-pretreated mice responded to SCH56592 and had reduced counts in lung tissue and prolonged survival. In these mice, G-CSF strongly antagonized the antifungal activity of SCH56592. Animals treated with both agents developed large lung abscesses with polymorphonuclear leukocytes and large amounts of Aspergillus. In contrast, mice made neutropenic with 5-fluorouracil and then infected with A. fumigatus conidia benefited from either G-CSF or triazoles, and the effect of the combination was additive rather than antagonistic. Host predisposing factors contribute in different ways to the outcome of growth factor therapy in aspergillosis. PMID:9756743
NASA Astrophysics Data System (ADS)
Nandi, Debkumar; Taher, Abu; Ul Islam, Rafique; Siwal, Samarjeet; Choudhary, Meenakshi; Mallick, Kaushik
2016-11-01
The composite framework of graphitic carbon nitride (gCN) supported copper nanoparticle can act as a high-performance photoreactor for the synthesis of 1,2,3-triazole derivatives under light irradiation in the absence of alkaline condition. The photoactivity of gCN originates from an electron transition from the valence band to the conduction band, in the presence of photon energy, and the hot electron acts as a scavenger of the terminal proton of the alkyne molecule to facilitate the formation of copper acetanilide complex. In this study, we have performed the experiment under a different photonic environment, including dark condition, and in the presence and absence of base. A comparative study was also executed using Cu-TiO2 system, as a reference material, in the support of our proposed mechanism. The recycling performance and the photocorrosion effect of the catalyst have also been reported in this study.
NASA Astrophysics Data System (ADS)
Abu-Melha, Sraa
2012-10-01
The reactions of 2-phenyl-4-arylmethylene-2-oxazolin-5-ones (1a, b) and 2-phenyl-4-arylazo-2-oxazolin-5-ones (8a, b) with p-aminoazobenzene derivatives (2a-c) gave the corresponding imidazolone derivatives (4a-f) and triazole derivatives (10a-f), respectively. Also, the reaction of 1a with o-aminophenol to give the imidazolone derivative 5 was studied. The reaction of 1a with 2,4-dinitrophenylhydrazine gave the corresponding 1,2,4-triazine derivatives 14a-c, respectively. The newly synthesized compounds were screened for their antibacterial activity against Gram-positive (Bacillus subtilis and Bacillus thuringiensis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and in vitro antifungal potential against Fusarium oxysporum and Botrytis fabae fungal strains. The results revealed that the investigated compounds exhibited antibacterial and a significant antifungal activity.
Triazole-based Zn²⁺-specific molecular marker for fluorescence bioimaging.
Sinha, Sougata; Mukherjee, Trinetra; Mathew, Jomon; Mukhopadhyay, Subhra K; Ghosh, Subrata
2014-04-25
Fluorescence bioimaging potential, both in vitro and in vivo, of a yellow emissive triazole-based molecular marker has been investigated and demonstrated. Three different kinds of cells, viz Bacillus thuringiensis, Candida albicans, and Techoma stans pollen grains were used to investigate the intracellular zinc imaging potential of 1 (in vitro studies). Fluorescence imaging of translocation of zinc through the stem of small herb, Peperomia pellucida, having transparent stem proved in vivo bioimaging capability of 1. This approach will enable in screening cell permeability and biostability of a newly developed probe. Similarly, the current method for detection and localization of zinc in Gram seed sprouts could be an easy and potential alternative of the existing analytical methods to investigate the efficiency of various strategies applied for increasing zinc-content in cereal crops. The probe-zinc ensemble has efficiently been applied for detecting phosphate-based biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Toxicokinetic Model Development for the Insensitive Munitions Component 3-Nitro-1,2,4-Triazol-5-One.
Sweeney, Lisa M; Phillips, Elizabeth A; Goodwin, Michelle R; Bannon, Desmond I
2015-01-01
3-Nitro-1,2,4-triazol-5-one (NTO) is a component of insensitive munitions that are potential replacements for conventional explosives. Toxicokinetic data can aid in the interpretation of toxicity studies and interspecies extrapolation, but only limited data on the toxicokinetics and metabolism of NTO are available. To supplement these limited data, further in vivo studies of NTO in rats were conducted and blood concentrations were measured, tissue distribution of NTO was estimated using an in silico method, and physiologically based pharmacokinetic models of the disposition of NTO in rats and macaques were developed and extrapolated to humans. The model predictions can be used to extrapolate from designated points of departure identified from rat toxicology studies to provide a scientific basis for estimates of acceptable human exposure levels for NTO. © The Author(s) 2015.
Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against Trypanosoma cruzi.
Brand, Stephen; Ko, Eun Jung; Viayna, Elisabet; Thompson, Stephen; Spinks, Daniel; Thomas, Michael; Sandberg, Lars; Francisco, Amanda F; Jayawardhana, Shiromani; Smith, Victoria C; Jansen, Chimed; De Rycker, Manu; Thomas, John; MacLean, Lorna; Osuna-Cabello, Maria; Riley, Jennifer; Scullion, Paul; Stojanovski, Laste; Simeons, Frederick R C; Epemolu, Ola; Shishikura, Yoko; Crouch, Sabrinia D; Bakshi, Tania S; Nixon, Christopher J; Reid, Iain H; Hill, Alan P; Underwood, Tim Z; Hindley, Sean J; Robinson, Sharon A; Kelly, John M; Fiandor, Jose M; Wyatt, Paul G; Marco, Maria; Miles, Timothy J; Read, Kevin D; Gilbert, Ian H
2017-09-14
Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is the most common cause of cardiac-related deaths in endemic regions of Latin America. There is an urgent need for new safer treatments because current standard therapeutic options, benznidazole and nifurtimox, have significant side effects and are only effective in the acute phase of the infection with limited efficacy in the chronic phase. Phenotypic high content screening against the intracellular parasite in infected VERO cells was used to identify a novel hit series of 5-amino-1,2,3-triazole-4-carboxamides (ATC). Optimization of the ATC series gave improvements in potency, aqueous solubility, and metabolic stability, which combined to give significant improvements in oral exposure. Mitigation of a potential Ames and hERG liability ultimately led to two promising compounds, one of which demonstrated significant suppression of parasite burden in a mouse model of Chagas' disease.
NASA Astrophysics Data System (ADS)
Abosadiya, Hamza M.; Anouar, El Hassane; Abusaadiya, Salima M.; Hasbullah, Siti Aishah; Yamin, Bohari M.
2018-01-01
A simple efficient method for synthesis of some new 1,2,4-Triazole and Triazolidin derivatives namely, 5-(4-methoxyphenyl)-2-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (1a), (2-chlorophenyl)(3,3-dimethyl-1-phenyl-5-thioxo-1,2,4-triazolidin-4-yl)methanone (1b) and (2-iodophenyl)(3,3-dimethyl-1-phenyl-5-thioxo-1,2,4-triazolidin-4-yl)methanone (1c) have been synthesized in high yields from the reaction of carbonoyl isothiocyanate with phenyl hydrazine. The final products were characterized by FT-IR, 1H and 13C NMR spectroscopic techniques. X-ray crystallographic studies showed that 1a crystallized in triclinic crystal system with space group Pī, while both 1b and 1c crystallized in orthorhombic crystal system with space group Pna21. The asymmetric unit of 1a consists two crystallographically independent molecules, while only one molecule in asymmetric unit for both 1b and 1c compounds. All molecules possess Csbnd H ….S intramolecular hydrogen bonds which formed a pseudo-six-membered ring. Experimental results have been confirmed by the state-of-art density functional theory (DFT) in gas and solvent phase by using five different hybrid functionals B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0 combined with 6-311++G(d, p) basis set. The experimental data are relatively well produced, and relatively good correlations are obtained between the predicted and experimental data.
Kun, Sándor; Begum, Jaida; Kyriakis, Efthimios; Stamati, Evgenia C V; Barkas, Thomas A; Szennyes, Eszter; Bokor, Éva; Szabó, Katalin E; Stravodimos, George A; Sipos, Ádám; Docsa, Tibor; Gergely, Pál; Moffatt, Colin; Patraskaki, Myrto S; Kokolaki, Maria C; Gkerdi, Alkistis; Skamnaki, Vassiliki T; Leonidas, Demetres D; Somsák, László; Hayes, Joseph M
2018-03-10
3-(β-d-Glucopyranosyl)-5-substituted-1,2,4-triazoles have been revealed as an effective scaffold for the development of potent glycogen phosphorylase (GP) inhibitors but with the potency very sensitive to the nature of the alkyl/aryl 5-substituent (Kun et al., Eur. J. Med. Chem. 2014, 76, 567). For a training set of these ligands, quantum mechanics-polarized ligand docking (QM-PLD) demonstrated good potential to identify larger differences in potencies (predictive index PI = 0.82) and potent inhibitors with K i 's < 10 μM (AU-ROC = 0.86). Accordingly, in silico screening of 2335 new analogues exploiting the ZINC docking database was performed and nine predicted candidates selected for synthesis. The compounds were prepared in O-perbenzoylated forms by either ring transformation of 5-β-d-glucopyranosyl tetrazole by N-benzyl-arenecarboximidoyl chlorides, ring closure of C-(β-d-glucopyranosyl)formamidrazone with aroyl chlorides, or that of N-(β-d-glucopyranosylcarbonyl)arenethiocarboxamides by hydrazine, followed by deprotections. Kinetics experiments against rabbit muscle GPb (rmGPb) and human liver GPa (hlGPa) revealed five compounds as potent low μM inhibitors with three of these on the submicromolar range for rmGPa. X-ray crystallographic analysis sourced the potency to a combination of favorable interactions from the 1,2,4-triazole and suitable aryl substituents in the GP catalytic site. The compounds also revealed promising calculated pharmacokinetic profiles. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Lee, Kijae; Pham, Van Chung; Choi, Min Ji; Kim, Kyung Ju; Lee, Kyung-Tae; Han, Seong-Gu; Yu, Yeon Gyu; Lee, Jae Yeol
2013-01-01
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase that catalyzes the conversion of prostaglandin PGH(2) to PGE(2) and represents a novel target for therapeutic treatment of inflammatory disorders. It is essential to identify mPGES-1 inhibitor with novel scaffold as new hit or lead compound for the purpose of the next-generation anti-inflammatory drugs. Herein we report the discovery of sulfonamido-1,2,3-triazole-4,5-dicarboxylic derivatives as a novel class of mPGES-1 inhibitors identified through fragment-based virtual screening and in vitro assays on the inhibitory activity of the actual compounds. 1-[2-(N-Phenylbenzenesulfonamido)ethyl]-1H-1,2,3-triazole-4,5-dicarboxylic acid (6f) inhibits human mPGES-1 (IC(50) of 1.1 μM) with high selectivity (ca.1000-fold) over both COX-1 and COX-2 in a cell-free assay. In addition, the activity of compound 6f was again tested at 10 μM concentration in presence of 0.1% Triton X-100 and found to be reduced to 1/4 of its original activity without this detergent. Compared to the complete loss of activity of nuisance inhibitor with the detergent, therefore, compound 6f would be regarded as a partial nuisance inhibitor of mPGES-1 with a novel scaffold for the optimal design of more potent mPGES-1 inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hanif, Muhammad; Chohan, Zahid H
2013-03-01
A new series of three biologically active triazole derived Schiff base ligands L(1)-L(3) have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Hequn; Flick, Burkhard; Rietjens, Ivonne M C M; Louisse, Jochem; Schneider, Steffen; van Ravenzwaay, Bennard
2016-05-01
The mouse embryonic stem D3 (ES-D3) cell differentiation assay is based on the morphometric measurement of cardiomyocyte differentiation and is a promising tool to detect developmental toxicity of compounds. The BeWo transport model, consisting of BeWo b30 cells grown on transwell inserts and mimicking the placental barrier, is useful to determine relative placental transport velocities of compounds. We have previously demonstrated the usefulness of the ES-D3 cell differentiation assay in combination with the in vitro BeWo transport model to predict the relative in vivo developmental toxicity potencies of a set of reference azole compounds. To further evaluate this combined in vitro toxicokinetic and toxicodynamic approach, we combined ES-D3 cell differentiation data of six novel triazoles with relative transport rates obtained from the BeWo model and compared the obtained ranking to the developmental toxicity ranking as derived from in vivo data. The data show that the combined in vitro approach provided a correct prediction for in vivo developmental toxicity, whereas the ES-D3 cell differentiation assay as stand-alone did not. In conclusion, we have validated the combined in vitro approach for developmental toxicity, which we have previously developed with a set of reference azoles, for a set of six novel triazoles. We suggest that this combined model, which takes both toxicodynamic and toxicokinetic aspects into account, should be further validated for other chemical classes of developmental toxicants.
van der Elst, Kim C. M.; Span, Lambert F. R.; van Hateren, Kai; Vermeulen, Karin M.; van der Werf, Tjip S.; Greijdanus, Ben; Kosterink, Jos G. W.; Uges, Donald R. A.
2013-01-01
Invasive aspergillosis and candidemia are important causes of morbidity and mortality in immunocompromised and critically ill patients. The triazoles voriconazole, fluconazole, and posaconazole are widely used for the treatment and prophylaxis of these fungal infections. Due to the variability of the pharmacokinetics of the triazoles among and within individual patients, therapeutic drug monitoring is important for optimizing the efficacy and safety of antifungal treatment. A dried blood spot (DBS) analysis was developed and was clinically validated for voriconazole, fluconazole, and posaconazole in 28 patients. Furthermore, a questionnaire was administered to evaluate the patients' opinions of the sampling method. The DBS analytical method showed linearity over the concentration range measured for all triazoles. Results for accuracy and precision were within accepted ranges; samples were stable at room temperature for at least 12 days; and different hematocrit values and blood spot volumes had no significant influence. The ratio of the drug concentration in DBS samples to that in plasma was 1.0 for voriconazole and fluconazole and 0.9 for posaconazole. Sixty percent of the patients preferred DBS analysis as a sampling method; 15% preferred venous blood sampling; and 25% had no preferred method. There was significantly less perception of pain with the DBS sampling method (P = 0.021). In conclusion, DBS analysis is a reliable alternative to venous blood sampling and can be used for therapeutic drug monitoring of voriconazole, fluconazole, and posaconazole. Patients were satisfied with DBS sampling and had less pain than with venous sampling. Most patients preferred DBS sampling to venous blood sampling. PMID:23896473
Nitrogen-rich salts of 5,5‧-bistetrazole-1,1‧-diolate: Syntheses, structures and properties
NASA Astrophysics Data System (ADS)
Yang, Ting; Zhang, Jian-Guo; Zhang, Zhi-Bin; Gozin, Michael
2018-03-01
A series of new nitrogen-rich energetic salts containing 1H,1‧H-[5,5‧-bitetrazole]-1,1‧-diol (BTO) anion and ethane-1,2-diaminium (1), 1-amino-1H-1,2,3-triazol-3-ium (2), 4-amino-4H-1,2,4-triazol-1-ium (3) and 4,5-diamino-4H-1,2,4-triazol-1-ium (4) cations were synthesized by direct salt formation or by metathesis strategy. The structures of energetic salts 1-4 were comprehensively characterized by elemental analysis, mass spectrometry, IR and NMR spectroscopies and by X-ray crystallography. DSC and TGA methods were used to study thermal properties of these salts. Additionally, the non-isothermal kinetic parameters and thermodynamic parameters were calculated by utilizing the Kissinger's and Ozawa-Doyle's methods. The enthalpies of formation for all target compounds in this study were calculated, and their sensitivity to mechanical impact and friction was tested according to BAM guidelines. We found these new energetic salts exhibit good thermal stability and have typical decomposition temperatures above 230 °C, except for the salt 2. All our salts have highly-positive enthalpies of formation (311.1-473.6 kJ mol-1) and are insensitive to impact and friction stimuli (>40 J, 120 N). With a high nitrogen-rich content, high enthalpy of formation, good thermostability and very low sensitivity to impact, some of these new salts may have a potential for application in the field of environmentally friendly insensitive energetic materials.
A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study.
Paul Friedman, Katie; Papineni, Sabitha; Marty, M Sue; Yi, Kun Don; Goetz, Amber K; Rasoulpour, Reza J; Kwiatkowski, Pat; Wolf, Douglas C; Blacker, Ann M; Peffer, Richard C
2016-10-01
The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3-5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products' registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information.
A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study
Paul Friedman, Katie; Papineni, Sabitha; Marty, M. Sue; Yi, Kun Don; Goetz, Amber K.; Rasoulpour, Reza J.; Kwiatkowski, Pat; Wolf, Douglas C.; Blacker, Ann M.; Peffer, Richard C.
2016-01-01
Abstract The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3–5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products’ registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information. PMID:27347635
Yi, Jian-Hua; Zhao, Feng-Qi; Gao, Hong-Xu; Xu, Si-Yu; Wang, Min-Chang; Hu, Rong-Zu
2008-05-01
A new high nitrogen compound hydrazine 3-nitro-1,2,4-triazol-5-one complex (HNTO) was prepared by the reaction of 3-nitro-1,2,4-triazol-5-one with hydrazine hydrate, and its structure was characterized by means of organic elemental analyzer, FT-IR, XRD, (13)C NMR and (15)N NMR. The non-isothermal reaction kinetics of the main exothermic decomposition reaction of HNTO was investigated by means of DSC. The thermodynamic properties of HNTO were calculated. The results showed that the formation of HNTO is achieved by proton transfer of N(4) atom, and it makes a higher nitrogen content and lower acidity. The reaction mechanism of HNTO is classified as nucleation and growth, and the mechanism function is Avramo-Erofeev equation with n=2/5. The kinetic parameters of the reaction are E(a)=195.29 kJ mol(-1), lg(A (s(-1)))=19.37, respectively. The kinetic equation can be expressed as: d(alpha)/d(t) = 10(18.97)(1 - alpha)[-ln(1 - alpha)](3/5) e(-2.35 x 10(4)/T). The safety performances of HNTO were carried out. The critical temperature of thermal explosion are 464.26 and 474.37 K, the adiabatic time-to-explosion is 262s, the impact sensitivity H(50)=45.7 cm, the friction sensitivity P=20% and the electrostatic spark sensitivity E(50)>5.4J (no ignition). It shows that HNTO has an insensitive nature as RDX and NTO, etc.
Vibhute, Amol M.; Konieczny, Vera; Taylor, Colin W.
2015-01-01
IP3 receptors are channels that mediate the release of Ca2+ from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of synthetic conditions for each analog. Such lengthy one-at-a-time syntheses limit access to AdA analogs. We have addressed this problem by synthesizing a library of triazole-based AdA analogs, triazolophostins, by employing click chemistry. An advanced intermediate having all the necessary phosphates and a β-azide at the anomeric position was reacted with various alkynes under Cu(i) catalysis to yield triazoles, which upon deprotection gave triazolophostins. All eleven triazolophostins synthesized are more potent than IP3 and some are equipotent with AdA in functional analyses of IP3 receptors. We show that a triazole ring can replace adenine without compromising the potency of AdA and provide facile routes to novel AdA analogs. PMID:25869535
Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong
2016-06-01
Rapamycin, a potent antifungal antibiotic, was approved as immunosuppressant, and lately its derivatives have been developed into mTOR targeting anticancer drugs. Structure modification was performed at the C-42 position of rapamycin, and a novel series of rapamycin triazole hybrids (4a-d, 5a-e, 8a-e, and 9a-e) was facilely synthesized via Huisgen's reaction. The anticancer activity of these compounds was evaluated against the Caski, H1299, MGC-803, and H460 human cancer cell lines. Some of the derivatives (8a-e, 9a-e) appeared to have stronger activity than that of rapamycin; however, 4a-d and 5a-e failed to show potential anticancer activity. Compound 9e with a (2,4-dichlorophenylamino)methyl moiety on the triazole ring was the most active anticancer compound, which showed IC50 values of 6.05 (Caski), 7.89 (H1299), 25.88 (MGC-803), and 8.60 μM (H460). In addition, research on the mechanism showed that 9e was able to cause cell morphological changes and to induce apoptosis in the Caski cell line. Most importantly, 9e can decrease the phosphorylation of mTOR and of its downstream key proteins, S6 and P70S6K1, indicating that 9e can effectively inhibit the mTOR signaling pathway. Thus, it may have the potential to become a new mTOR inhibitor against various cancers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Wenjing; Chu, Taiwei
2015-10-15
The bioactivity of nitroimidazole in Tc-99m-labeled 2-nitroimidazole, a traditional solid tumor hypoxia-imaging agent for single photon emission computed tomography (SPECT), is reduced by the presence of large ligand and metallic radionuclide, exhibiting lower tumor-to-nontumor ratios. In an effort to solve this general problem, a pretargeting strategy based on click chemistry (strain-promoted cyclooctyne-azide cycloaddition) was applied. The functional click synthons were synthesized as pretargeting components: an azide group linked to 2-nitroimidazole (2NIM-Az) serves for tumor hypoxia-targeting and azadibenzocyclooctyne conjugated with monoamine monoamide dithiol ligand (AM) functions as radiolabeling and binding group to azides in vivo. 2NIM-triazole-MAMA was obtained from in vitro click reaction with a reaction rate constant of 0.98M(-1)s(-1). AM and 2NIM-triazole-MAMA were radiolabeled with Tc-99m. The hypoxia-pretargeting biodistribution was studied in Kunming mice bearing S180 tumor; (99m)Tc-AM and (99m)Tc-triazole-2NIM were used as blank control and conventional control. Compared to the control groups, the pretargeting experiment exhibits the best radio-uptake and retention in tumor, with higher tumor-to-muscle and tumor-to-blood ratios (up to 8.55 and 1.44 at 8h post-(99m)Tc-complex-injection, respectively). To some extent, the pretargeting strategy protects the bioactivity of nitroimidazole and therefore provides an innovative approach for the development of tumor hypoxia-SPECT imaging agents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Choi, Alex Wing-Tat; Yim, Vicki Man-Wai; Liu, Hua-Wei; Lo, Kenneth Kam-Wing
2014-07-28
We report the development of a series of rhenium(I) polypyridine complexes appended with an electron-rich diaminoaromatic moiety as phosphorogenic sensors for nitric oxide (NO). The diamine complexes [Re(N^N)(CO)3 (py-DA)][PF6 ] (py-DA=3-(N-(2-amino-5-methoxyphenyl)aminomethyl)pyridine; N^N=1,10-phenanthroline (phen) (1 a), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4 -phen) (2 a), 4,7-diphenyl-1,10-phenanthroline (Ph2 -phen) (3 a)) have been synthesized and characterized. In contrast to common rhenium(I) diimines, these diamine complexes were very weakly emissive due to quenching of the triplet metal-to-ligand charge-transfer ((3) MLCT) emission by the diaminoaromatic moiety through photoinduced electron transfer (PET). Upon treatment with NO, the complexes were converted into the triazole derivatives [Re(N^N)(CO)3 (py-triazole)][PF6 ] (py-triazole=3-((6-methoxybenzotriazol-1-yl)methyl)pyridine; N^N=phen (1 b), Me4 -phen (2 b), Ph2 -phen (3 b)), resulting in significant emission enhancement (I/I0 ≈60). The diamine complexes exhibited high reaction selectivity to NO, and their emission intensity was found to be independent on pH. Also, these complexes were effectively internalized by HeLa cells and RAW264.7 macrophages with negligible cytotoxicity. Additionally, the use of complex 3 a as an intracellular phosphorogenic sensor for NO has been demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR 180.619 - Epoxiconazole; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... residues of the fungicide epoxiconazole [(rel-1-[[(2R,3S)-3-(2-chlorophenyl)-2-(4-fluorophenyl)oxiranyl]methyl]-1H-1,2,4-triazole]) in or on the following commodities: Commodity Parts per million Banana* 0.5...
A Reflection on the Fate of Chiral 1,2,4-Triazole Fungicides in Biological Systems
In biological systems, stereoisomers of chiral compounds can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination) and pharmacodynamics (physiological effects). Pharmacokinetic processes (i.e., what the body does to the chemical)...
Yang, Jiale; Fan, Chen; Kong, Dandan; Tang, Gang; Zhang, Wenbing; Dong, Hongqiang; Liang, You; Wang, Deng; Cao, Yongsong
2018-02-01
Five novel ionic liquids (ILs), 1,3-dibutylimidazolium bromide [BBMIm][Br], 1-pentyl-3-butylimidazolium bromide [BPMIm][Br], 1-hexyl-3-butylimidazolium bromide [BHMIm][Br], 1,1'-(butane-1,4-diyl)bis(3-butylimidazolium) bromide [C 4 (BMIm) 2 ][Br 2 ], and 1,1'-(butane-1,4-diyl)bis(3-methylimidazolium) bromide [C 4 (MIm) 2 ][Br 2 ], were prepared and used in situ to react with bis(trifluoromethane)sulfonamide lithium salt to extract the myclobutanil, tebuconazole, cyproconazole, and prothioconazole from water samples. The results showed that mono-cationic ILs had much better recovery than dicationic ILs, and mono-imidazolium IL bearing butyl groups at N-1 and N-3 sites had the best recovery. When the length of the alkyl substituent group was more than four carbons at N-3 site, the recovery decreased with increase of alkyl chain length of 1-butylimidazolium IL. The extraction efficiency order of triazoles from high to low was [BBMIm][Br], [BPMIm][Br], [BHMIm][Br], [BMIm][Br] (1-butyl-3-methylimidazolium bromide), [C 4 (BMIm) 2 ]Br 2 , [C 4 (MIm) 2 ]Br 2 . An in situ ionic liquid dispersive liquid-liquid microextraction combined with ultrasmall superparamagnetic Fe 3 O 4 was established as a pretreatment method for enrichment of triazole fungicides in water samples by using the synthetic [BBMIm][Br] as the cationic IL and used to detect analytes followed by high-performance liquid chromatography. Under the optimized conditions, the proposed method showed a good linearity within a range of 5-250 μg L -1 , with the determination coefficient (r 2 ) varying from 0.998 to 0.999. High mean enrichment factors were achieved ranging from 187 to 323, and the recoveries of the target analytes from real water samples at spiking levels of 10.0, 20.0, and 50.0 μg L -1 were between 70.1% and 115.0%. The limits of detection for the analytes were 0.74-1.44 μg L -1 , and the intra-day relative standard deviations varied from 5.23% to 8.65%. The proposed method can be further applied to analyze and monitor pesticides in other related samples. Graphical Abstract The scheme of the in-situ DLLME method for the determination of triazoles using the imidazolium-based ionic liquids.
Jia, Chenhui; Li, Yuchuan; Zhang, Shujuan; Fei, Teng; Pang, Siping
2018-03-01
In general, the greater the number of directly linked nitrogen atoms in a molecule, the better its energetic performance, while the stability will be accordingly lower. But 1,1'-azobis-1,2,3-triazole (1) and 4,4'-azobis-1,2,4-triazole (2) show remarkable properties, such as high enthalpies of formation, high melting points, and relatively high stabilities. In order to rationalize this unexpected behavior of the two compounds, it is necessary to study their thermal decompositions and pyrolyses. Although a great deal of research has been focused on the synthesis and characterization of energetic materials with 1 and 2 as the backbone, a complete report on their fundamental thermodynamic parameters and thermal decomposition properties has not been published. Thermogravimetric-differential scanning calorimetry were used to obtain the thermal decomposition data of the title compounds. Kissinger and Ozawa-Doyle methods, the two selected non-isothermal methods, are presented for analysis of the solid-state kinetic data. Pyrolysis-gas chromatography/mass spectrometry was used to study the pyrolysis process of the title compounds. The DSC curves show that the thermal decompositions of 1 and 2 are at different heating rates involved a single exothermic process. The TG curves provide insight into the total weight losses from the compounds associated with this process. At different pyrolysis temperatures, the compositions and types of the pyrolysis products differ greatly and the pyrolysis reaction at 500 °C is more thorough than 400 °C. Apparent activation energies (E) and pre-exponential factors (lnA/s -1 ) are 291.4 kJ mol -1 and 75.53 for 1; 396.2 kJ mol -1 and 80.98 for 2 (Kissinger). The values of E are 284.5 kJ mol -1 for 1 and 386.1 kJ mol -1 for 2 (Ozawa-Doyle). The critical temperature of thermal explosion (T b ) is evaluated as 187.01 °C for 1 and 282.78 °C for 2. The title compounds were broken into small fragment ions under the pyrolysis conditions, which then might undergo a multitude of collisions and numerous other reactions, resulting in the formation of C 2 N 2 (m/z 52), etc., before being analyzed by the GC/MS system.
Mechanistic insights related to the design and construction of lithium single ion conductors
NASA Astrophysics Data System (ADS)
Spahlinger, Gregory
Lithium single ion conductors are a class of electrolytes, typically designed for lithium ion batteries, with the potential to improve the performance of these batteries. The benefits of single ion conductors arise out of the fact that their immobile anions are not capable of concentrating near the anode of the battery, causing an increase in resistance as the battery is discharged. Unfortunately lithium single ion conductors suffer severe drawbacks in their conductivity which have been attributed to diverse causes. Because of the low success rate of single ion conductors in the literature and previous work in the Baker group, I have chosen to investigate mechanistic questions related to the design and construction of these materials, without engineering new materials. An attractive design strategy for the screening of immobile anion moieties for single ion conductors would be the use of the copper catalyzed alkyne azide (CUAAC) "click" reaction in order to efficiently introduce anions onto a polymer or nanoparticle support in a way that is efficient and tunable. A variable added by this strategy would be the presence of a 1,2,3-triazole moiety which is without any significant precedent in the lithium ion electrolyte literature. In order to assess the impact of the triazole in on the conductivity of an electrolyte a series of model compounds were synthesized containing a variable number of triazoles in an otherwise poly(ethylene glycol) like oligomer chain. The model compounds were subjected to differential scanning calorimetry, electrochemical impedance spectroscopy, and in one case single crystal X-ray diffraction, and solvent shells were modeled for lithium with and without triazoles using ab initio quantum chemistry calculations. It was concluded that the triazole is not significantly stronger than an ether oxygen as a ligand in the electrolytes, however the triazole has a substantial dipole which exerts some deleterious effects on the conductivity, leading to an increase in the Arrhenius activation energy for the process. These effects are balanced by an increase in the pre-exponential factor which leads to "compensation behavior" due to the dependence of that quantity on the dipole density in the material. The observed effect is one of a lower conductivity for the model compounds relative to poly(ethylene glycol)dimethyl ether 500 at room temperature, which converges to roughly the same conductivity around 80 °C. In synthetic studies, attempts were made to synthesize N-triflylpropanesultam (TPS) a five membered heterocycle whose nucleophilic ring opening would yield a desirable anion for use in single ion conductors. TPS proved to be significantly more difficult to open than expected, which prompted a computational study. In order to study the nucleofugality of polyatomic anionic leaving groups derived from oxygen and nitrogen, a contingent of 19 methylating agents consisting of amines or alcohols activated with carbonyl or sulfonyl substituents has been examined via ab initio calculations. Gas phase activation energies for alkylation of ammonia, and gas phase methyl cation affinitys were calculated. It was found that polyatomic anionic leaving groups derived from nitrogen will have higher activation energies for Menshutkin (SN2) alkylation even when they have similar methyl cation affinities. This inherent deficit in the nucleofugality of nitrogen derived leaving groups appears to be a result of the way bond cleavage is synchronized with bond formation to the incoming ammonia nucleophile. Additionally the second sulfonyl group present in a sulfonimide appears to be less effective at activating nitrogen due to a preference for tetrahedral geometries at nitrogen in the transition states of sulfonamide groups. Optimal delocalization of electron density is therefore frustrated due to the symmetry of the leaving group.
40 CFR 180.629 - Flutriafol; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of flutriafol, [(±)-α-(2-fluorophenyl)-α-(4-fluorophenyl)-1H-1,2,4-triazole-1-ethanol], including its... Goat, liver 0.02 Grain, aspirated fractions 2.2 Hog, liver 0.02 Horse, liver 0.02 Sheep, liver 0.02...
40 CFR 180.600 - Propoxycarbazone; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... combined residues of the herbicide propoxycarbazone methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1... herbicide propoxycarbazone methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1,2,4-triazol-1-yl)carbonyl...
40 CFR 180.600 - Propoxycarbazone; tolerances for residues
Code of Federal Regulations, 2012 CFR
2012-07-01
... combined residues of the herbicide propoxycarbazone methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1... herbicide propoxycarbazone methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1,2,4-triazol-1-yl)carbonyl...
40 CFR 180.600 - Propoxycarbazone; tolerances for residues
Code of Federal Regulations, 2010 CFR
2010-07-01
... combined residues of the herbicide propoxycarbazone methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1... herbicide propoxycarbazone methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1,2,4-triazol-1-yl)carbonyl...
40 CFR 180.600 - Propoxycarbazone; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... combined residues of the herbicide propoxycarbazone methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1... herbicide propoxycarbazone methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1,2,4-triazol-1-yl)carbonyl...
40 CFR 180.600 - Propoxycarbazone; tolerances for residues
Code of Federal Regulations, 2011 CFR
2011-07-01
... combined residues of the herbicide propoxycarbazone methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1... herbicide propoxycarbazone methyl 2-[[[(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1,2,4-triazol-1-yl)carbonyl...
RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING TOXICITIES OF TRIAZOLE FUNGICIDES
Conazole fungicides are widely used both agriculturally for the protection of crops, and pharmaceutically in the treatment of topical and systemic infections. Heavy usage has created concern over the impact these compounds may have through environmental exposure to humans and ot...
Shi, Jun-yan; Xu, Ying-chun; Shi, Yi; Lü, Huo-xiang; Liu, Yong; Zhao, Wang-sheng; Chen, Dong-mei; Xi, Li-yan; Zhou, Xin; Wang, He; Guo, Li-na
2010-10-01
During recent years, the incidence of serious infections caused by opportunistic fungi has increased dramatically due to alterations of the immune status of patients with hematological diseases, malignant tumors, transplantations and so forth. Unfortunately, the wide use of triazole antifungal agents to treat these infections has lead to the emergence of Aspergillus spp. resistant to triazoles. The present study was to assess the in vitro activities of five antifungal agents (voriconazole, itraconazole, posaconazole, amphotericin B and caspofungin) against different kinds of Aspergillus spp. that are commonly encountered in the clinical setting. The agar-based Etest MIC method was employed. One hundred and seven strains of Aspergillus spp. (5 species) were collected and prepared according to Etest Technique Manuel. Etest MICs were determined with RPMI agar containing 2% glucose and were read after incubation for 48 hours at 35°C. MIC(50), MIC(90) and MIC range were acquired by Whonet 5.4 software. The MIC(90) of caspofungin against A. fumigatus, A. flavus and A. nidulans was 0.094 µg/ml whereas the MIC(90) against A. niger was 0.19 µg/ml. For these four species, the MIC(90) of caspofungin was the lowest among the five antifungal agents. For A. terrus, the MIC(90) of posaconazole was the lowest. For A. fumigatus and A. flavus, the MIC(90) in order of increasing was caspofungin, posaconazole, voriconazole, itraconazole, and amphotericin B. The MIC of amphotericin B against A. terrus was higher than 32 µg/ml in all 7 strains tested. The in vitro antifungal susceptibility test shows the new drug caspofungin, which is a kind of echinocandins, has good activity against the five species of Aspergillus spp. and all the triazoles tested have better in vitro activity than traditional amphotericin B.
Sui, Guoqing; Zhang, Wen; Zhou, Kun; Li, Yulin; Zhang, Bingyu; Xu, Dan; Zou, Yong; Zhou, Wenming
2017-01-01
As a part of our continuing research on amine derivative antifungal agents, 19 novel target compounds containing 1,2,4-triazole and tertiary amine moieties were designed and synthesized, and their in vitro antifungal activities against six phytopathogenic fungi (Magnaporthe grisea, Alternaria solani, Fusarium solani, Curvularia lunata, A. alternata, F. graminearum) were assayed. All target compounds were elucidated by means of 1 H-NMR, 13 C-NMR, high resolution (HR)-MS, and IR analysis. The results showed that most of the derivatives exhibited obvious activity against each of the fungi at 50 µg/mL. Among them, compounds 7f, l, and o displayed excellent activity against A. solani with median effective concentration values (EC 50 ) of 2.88, 8.20, and 1.92 µg/mL. 7o in particular was superior to tebuconazole (EC 50 =2.03 µg/mL), a commercial fungicide. Furthermore, compounds 7j, k, and m also showed good activity against F. graminearum with EC 50 values of 11.60, 5.14, and 16.24 µg/mL, and the value of 7k was extremely close to that of tebuconazole (EC 50 =3.13 µg/mL). The preliminary analysis of the structure-activity relationship (SAR) demonstrated that combination of the active structure of 1,2,4-triazole with the tertiary amine group containing benzene rings effectively increased the antifungal activities. Generally, introducing halogen atoms obviously improved activities against most of the test fungi to varying degrees, while the presence of OMe decreased the activities. Thus, the results strongly indicate that the newly synthesized derivatives should be lead compounds for the development of novel antifungal agents for the effective control of phytopathogenic fungi.
Eike, David M; Maginn, Edward J
2006-04-28
A method recently developed to rigorously determine solid-liquid equilibrium using a free-energy-based analysis has been extended to analyze multiatom molecular systems. This method is based on using a pseudosupercritical transformation path to reversibly transform between solid and liquid phases. Integration along this path yields the free energy difference at a single state point, which can then be used to determine the free energy difference as a function of temperature and therefore locate the coexistence temperature at a fixed pressure. The primary extension reported here is the introduction of an external potential field capable of inducing center of mass order along with secondary orientational order for molecules. The method is used to calculate the melting point of 1-H-1,2,4-triazole and benzene. Despite the fact that the triazole model gives accurate bulk densities for the liquid and crystal phases, it is found to do a poor job of reproducing the experimental crystal structure and heat of fusion. Consequently, it yields a melting point that is 100 K lower than the experimental value. On the other hand, the benzene model has been parametrized extensively to match a wide range of properties and yields a melting point that is only 20 K lower than the experimental value. Previous work in which a simple "direct heating" method was used actually found that the melting point of the benzene model was 50 K higher than the experimental value. This demonstrates the importance of using proper free energy methods to compute phase behavior. It also shows that the melting point is a very sensitive measure of force field quality that should be considered in parametrization efforts. The method described here provides a relatively simple approach for computing melting points of molecular systems.
Mao, Wenfu; Schuler, Mary A; Berenbaum, May R
2017-03-07
Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera , detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.
Mao, Wenfu; Schuler, Mary A.; Berenbaum, May R.
2017-01-01
Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera, detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food. PMID:28193870
NASA Astrophysics Data System (ADS)
Jurado, Anna; Pau Serra, Maria; Díaz-Cruz, M. Silvia; Vázquez-Suñé, Enric; Pujades, Estanislao; Barceló, Damià
2016-04-01
This work presents the occurrence and fate of selected personal care products (PCPs) in the urban river-groundwater interface. To this end, urban groundwater and river samples were collected in Sant Adrià del Besòs (NE of Spain) and a total of 16 PCPs were analyzed including benzophenone derivatives, camphor derivatives, p-aminobenzoic acid derivatives, triazoles and parabens in three different campaigns (from May 2010 to July 2014). These compounds reach the aquifer through the recharge of River Besòs that receives large amounts of effluents from waste water treatment plants. Results shown that most of compounds were not or barely detected (maximum concentrations around 30 ng/L) in groundwater samples during the different sampling campaigns. Only two triazoles, named as benzotriazole (BZT) and methyl benzotriazol (MeBZT) were found at high concentrations in groundwater samples (maximum concentration around 2000 ng/L). The fate of PCPs in the aquifer was assessed using mixing analysis considering the temporal variability of the River Besòs. Overall, measured groundwater concentrations were significantly much lower than those estimated by the mixing of the river water. This observation suggested that most of the PCPs are naturally removed when river water infiltrates the aquifer. However, some compounds were more persistent in the aquifer. These compounds were in descending order: the triazoles MeBZT and BZT followed by the camphor derivative 4MBC. The measured concentrations allowed us to assess the environmental risk posed by the selected UV-Fs (e.g. benzophenone derivatives) in the river-groundwater samples. Hazard Quotients (HQs) for diferent aquatic species were calculated in order to characterise the ecotoxicity potential of the studied compounds in the river-groundwater interface. HQ values will be presented and discussed in the presentation.
Shrestha, Stal; Singh, Prachi; Cortes-Salva, Michelle Y; Jenko, Kimberly J; Ikawa, Masamichi; Kim, Min-Jeong; Kobayashi, Masato; Morse, Cheryl L; Gladding, Robert L; Liow, Jeih-San; Zoghbi, Sami S; Fujita, Masahiro; Innis, Robert B; Pike, Victor W
2018-06-13
In our preceding paper (Part 1), we identified three 1,5-bis-diaryl-1,2,4-triazole-based compounds that merited evaluation as potential positron emission tomography (PET) radioligands for selectively imaging cyclooxygenase-1 (COX-1) in monkey and human brain, namely, 1,5-bis(4-methoxyphenyl)-3-(alkoxy)-1 H-1,2,4-triazoles bearing a 3-methoxy (PS1), a 3-(2,2,2-trifluoroethoxy) (PS13), or a 3-fluoromethoxy substituent (PS2). PS1 and PS13 were labeled from phenol precursors by O- 11 C-methylation with [ 11 C]iodomethane and PS2 by O- 18 F-fluoroalkylation with [ 2 H 2 , 18 F]fluorobromomethane. Here, we evaluated these PET radioligands in monkey. All three radioligands gave moderately high uptake in brain, although [ 2 H 2 , 18 F]PS2 also showed undesirable radioactivity uptake in skull. [ 11 C]PS13 was selected for further evaluation, mainly based on more favorable brain kinetics than [ 11 C]PS1. Pharmacological preblock experiments showed that about 55% of the radioactivity uptake in brain was specifically bound to COX-1. An index of enzyme density, V T , was well identified from serial brain scans and from the concentrations of parent radioligand in arterial plasma. In addition, V T values were stable within 80 min, suggesting that brain uptake was not contaminated by radiometabolites. [ 11 C]PS13 successfully images and quantifies COX-1 in monkey brain, and merits further investigation for imaging COX-1 in monkey models of neuroinflammation and in healthy human subjects.
Willger, Sven D.; Beckmann, Nicola; Blosser, Sara J.; Cornish, Elizabeth J.; Mazurie, Aurelien; Grahl, Nora; Haas, Hubertus; Cramer, Robert A.
2011-01-01
Sterol regulatory element binding proteins (SREBPs) are a class of basic helix-loop-helix transcription factors that regulate diverse cellular responses in eukaryotes. Adding to the recognized importance of SREBPs in human health, SREBPs in the human fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus are required for fungal virulence and susceptibility to triazole antifungal drugs. To date, the exact mechanism(s) behind the role of SREBP in these observed phenotypes is not clear. Here, we report that A. fumigatus SREBP, SrbA, mediates regulation of iron acquisition in response to hypoxia and low iron conditions. To further define SrbA's role in iron acquisition in relation to previously studied fungal regulators of iron metabolism, SreA and HapX, a series of mutants were generated in the ΔsrbA background. These data suggest that SrbA is activated independently of SreA and HapX in response to iron limitation, but that HapX mRNA induction is partially dependent on SrbA. Intriguingly, exogenous addition of high iron or genetic deletion of sreA in the ΔsrbA background was able to partially rescue the hypoxia growth, triazole drug susceptibility, and decrease in ergosterol content phenotypes of ΔsrbA. Thus, we conclude that the fungal SREBP, SrbA, is critical for coordinating genes involved in iron acquisition and ergosterol biosynthesis under hypoxia and low iron conditions found at sites of human fungal infections. These results support a role for SREBP–mediated iron regulation in fungal virulence, and they lay a foundation for further exploration of SREBP's role in iron homeostasis in other eukaryotes. PMID:22144905
Singh, Durg Vijay; Agarwal, Shikha; Kesharwani, Rajesh Kumar; Misra, Krishna
2012-08-01
Isoproturon is the only herbicide that can control Phalaris minor, a competitive weed of wheat that developed resistance in 1992. Resistance against isoproturon was reported to be due to a mutation in the psbA gene that encodes the isoproturon-binding D1 protein. Previously in our laboratory, a triazole derivative of isoproturon (TDI) was synthesized and found to be active against both susceptible and resistant biotypes at 0.5 kg/ha but has shown poor specificity. In the present study, both susceptible D1((S)), resistant D1((R)) and D2 proteins of the PS-II reaction center of P. minor have been modeled and simulated, selecting the crystal structure of PS-II from Thermosynechococcus elongatus (2AXT.pdb) as template. Loop regions were refined, and the complete reaction center D1/D2 was simulated with GROMACS in lipid (1-palmitoyl-2-oleoylglycero-3-phosphoglycerol, POPG) environment along with ligands and cofactor. Both S and R models were energy minimized using steepest decent equilibrated with isotropic pressure coupling and temperature coupling using a Berendsen protocol, and subjected to 1,000 ps of MD simulation. As a result of MD simulation, the best model obtained in lipid environment had five chlorophylls, two plastoquinones, two phenophytins and a bicarbonate ion along with cofactor Fe and oxygen evolving center (OEC). The triazole derivative of isoproturon was used as lead molecule for docking. The best worked out conformation of TDI was chosen for receptor-based de novo ligand design. In silico designed molecules were screened and, as a result, only those molecules that show higher docking and binding energies in comparison to isoproturon and its triazole derivative were proposed for synthesis in order to get more potent, non-resistant and more selective TDI analogs.
Leonardi, Matthew J; Topka, Michael R; Dinolfo, Peter H
2012-12-17
Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reactivity was successfully employed to synthesize three donor-acceptor energy transfer (EnT) arrays that contain one (Dyad), three (Tetrad) and four (Pentad) 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) donors connected to a Zn-tetraphenylporphyrin acceptor via 1,2,3-triazole linkages. The photophysical properties of the three arrays, along with individual donor and acceptor chromophores, were investigated by UV-vis absorption and emission spectroscopy, fluorescence lifetimes, and density functional theory (DFT) electronic structure modeling. Comparison of the UV-vis absorption spectra and frontier molecular orbitals from DFT calculations of the three arrays with ZnTPP, ZnTTrzlP, and Trzl-BODIPY shows that the electronic structure of the chromophores is essentially unperturbed by the 1,2,3-triazole linkage. Time-dependent DFT (TDDFT) calculations on the Dyad reproduce the absorption spectra in THF and show no evidence of excited state mixing of the donor and acceptor. The BODIPY singlet excited state emission is significantly quenched in all three arrays, consistent with EnT to the porphyrin core, with efficiencies of 95.8, 97.5, and 97.2% for the Dyad, Tetrad, and Pentad, respectively. Fluorescence excitation spectra of the three arrays, measured at the porphyrin emission, mirror the absorption profile of both the porphyrin and BODIPY chromophores and are consistent with the Förster resonance energy transfer (FRET) mechanism. Applying Förster theory to the spectroscopic data of the chromophores gives EnT efficiency estimates that are in close agreement with experimental values, suggesting that the through-space mechanism plays a dominant role in the three arrays.
Quinn, M J; Bannon, D I; Jackovitz, A M; Hanna, T L; Shiflett, A A; Johnson, M S
2014-01-01
The explosive 3-nitro-1,2,4-triazol-5-one (NTO) is an insensitive formulation developed to replace high energetics that are susceptible to accidental detonation from heat, shock, and impact. Although studies have shown NTO to be nontoxic at acute exposures, recent subacute and subchronic tests have demonstrated effects on testes and subsequent sperm production in rats. This study assessed endocrine disruption as a potential mechanism for these reproductive effects via the Hershberger and uterotrophic bioassays. These assays are 2 of the US Environmental Protection Agency's tier 1 in vivo screens for the Endocrine Disruptor Screening Program that measure differences in androgen- and estrogen-sensitive tissue weights in castrated and ovariectomized rats. The gonadectomized rats were orally exposed to NTO in a corn oil vehicle at doses of 250, 500, or 1000 mg/kg body weight (bw)/d for 10 and 3 days for the Hershberger and uterotrophic assays, respectively, according to standard protocols. Male rats also received testosterone (0.2 mg/kg/d, subcutaneous) and antiandrogenic flutamide (3mg/kg/d, oral) as negative and positive controls, and females received 17 α-ethynyl estradiol (0.3 µg/d, subcutaneous) as positive controls. 3-Nitro-1,2,4-triazol-5-one caused neither a decrease in androgen-sensitive male reproductive selected tissue (seminal vesicles with fluid/without fluid, glans penis, Cowper gland, ventral prostrate, and levator ani-bulbocavernosus) weights nor a change in uterine weights. The results of this study provide no evidence to suggest that NTO acts like an estrogenic or antiandrogenic endocrine disruptor in rats at these doses. © The Author(s) 2014.
Wakabayashi, Hiroyuki; Abe, Shigeru; Teraguchi, Susumu; Hayasawa, Hirotoshi; Yamaguchi, Hideyo
1998-01-01
The effects of bovine lactoferrin (LF) or the LF-derived antimicrobial peptide lactoferricin B (LFcin B) on the growth of Candida albicans hyphae, including those of three azole-resistant strains, were investigated by a crystal violet staining method. The hyphae of two highly azole-resistant strains were more susceptible to inhibition by LF or LFcin B than the azole-susceptible strains tested. One moderately azole-resistant strain was defective in the formation of hyphae and showed a susceptibility to LF greater than that of the susceptible strains but a susceptibility to LFcin B similar to that of the susceptible strains. The highly azole-resistant strain TIMM3317 showed trailing growth in the presence of fluconazole or itraconazole, while the extent of growth was reduced by the addition of LF or LFcin B at a sub-MIC. Thus, the addition of LF or LFcin B at a sub-MIC resulted in a substantial decrease in the MICs of fluconazole and itraconazole for two highly azole-resistant strains; e.g., the MIC of fluconazole for TIMM3317 was shifted from >256 to 0.25 μg/ml by LF, but the MICs were not decreased for the susceptible strains. The combination effects observed with triazoles and LF-related compounds in the case of the two highly azole-resistant strains were confirmed to be synergistic by the fractional inhibitory concentration index. These results demonstrate that for some azole-resistant C. albicans strains, LF-related compounds combined with triazoles can inhibit the growth of hyphae, an important form of this organism in pathogenesis. PMID:9660988
NASA Astrophysics Data System (ADS)
Nassar, Mostafa Y.; Aly, Hisham M.; Abdelrahman, Ehab A.; Moustafa, Moustafa E.
2017-09-01
Six novel Co(II) and Ni(II)-triazole Schiff base complexes have been successfully synthesized by refluxing the prepared triazole Schiff bases with CoCl2·6H2O or NiCl2·6H2O. The Schiff base ligands were prepared through condensation of 3-R-4-amino-5-hydrazino-1,2,4-triazole with dibenzoylmethane [Rdbnd H, CH3, and CH2CH3; namely, L1, L2, and L3, respectively]. The prepared Co(II) and Ni(II) complexes have been identified using elemental analysis, FT-IR, UV-Vis, magnetic moment, conductivity, and thermal analysis. On the basis of the conductance results, it was concluded that all the prepared complexes are nonelectrolytes. Interestingly, the prepared Co(II) and Ni(II) complexes were employed as precursors for producing of Co3O4 and NiO nanoparticles, respectively. The produced nanostructures have been identified by XRD, HR-TEM, FT-IR and UV-Vis spectra. The produced nanoparticles revealed good photocatalytic activity for the degradation of methylene blue dye under UV illumination in presence of hydrogen peroxide. The percent of degradation was estimated to be 55.71% in 420.0 min and 90.43% in 360.0 min for Co3O4 and NiO, respectively. Moreover, the synthesized complexes, nano-sized Co3O4, and NiO products have been examined, employing modified Bauer- Kirby method, for antifungal (Candida albicans and Aspergillus flavus) and antibacterial (Staphylococcus aureus and Escherichia coli) activities.
Mandalapu, Dhanaraju; Saini, Karan S; Gupta, Sonal; Sharma, Vikas; Yaseen Malik, Mohd; Chaturvedi, Swati; Bala, Veenu; Hamidullah; Thakur, Subhadra; Maikhuri, Jagdamba P; Wahajuddin, Muhammad; Konwar, Rituraj; Gupta, Gopal; Sharma, Vishnu Lal
2016-09-01
The anti-cancer property of curcumin, an active component of turmeric, is limited due to its poor solubility, stability and bioavailability. To enhance its efficacy, we designed a novel series of twenty-four monocarbonyl curcumin analogue-1,2,3-triazole conjugates and evaluated their anti-cancer activity towards endocrine related cancers. The new compounds (17-40) were synthesized through CuAAC click reaction and SAR analysis carried out. Out of these all, compound 17 showed most significant anti-cancer activity against prostate cancer cells with IC50 values of 8.8μM and 9.5μM in PC-3 and DU-145 cells, respectively. Another compound 26 showed significant anti-cancer activity against breast cancer cells with IC50 of 6μM, 10μM and 6.4μM in MCF-7, MDA-MB-231 and 4T1 cells, respectively while maintaining low toxicity towards non-cancer originated cell line, HEK-293. Compounds 17 and 26 arrested cell cycle and induced mitochondria-mediated apoptosis in cancer cells. Further, both of these compounds significantly down-regulated cell proliferation marker (PCNA), inhibited activation of cell survival protein (Akt phosphorylation), upregulated pro-apoptotic protein (Bax) and down-regulated anti-apoptotic protein (Bcl-2) in their respective cell lines. In addition, in vitro stability, solubility and plasma binding studies of the compounds 17 and 26 showed them to be metabolically stable. Thus, this study identified two new curcumin monocarbonyl-1,2,3-triazole conjugate compounds with more potent activity than curcumin against breast and prostate cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...
SERS and DFT study of copper surfaces coated with corrosion inhibitor
Muniz-Miranda, Francesco; Caporali, Stefano
2014-01-01
Summary Azole derivatives are common inhibitors of copper corrosion due to the chemical adsorption occurring on the metal surface that gives rise to a protective film. In particular, 1,2,4-triazole performs comparable to benzotriazole, which is much more widely used, but is by no means an environmentally friendly agent. In this study, we have analyzed the adsorption of 1,2,4-triazole on copper by taking advantage of the surface-enhanced Raman scattering (SERS) effect, which highlights the vibrational features of organic ligand monolayers adhering to rough surfaces of some metals such as gold, silver and copper. To ensure the necessary SERS activation, a roughening procedure was implemented on the copper substrates, resulting in nanoscale surface structures, as evidenced by microscopic investigation. To obtain sufficient information on the molecule–metal interaction and the formation of an anticorrosive thin film, the SERS spectra were interpreted with the aid of theoretical calculations based on the density functional theory (DFT) approach. PMID:25671144
Uzgören-Baran, Ayşe; Tel, Banu Cahide; Sarıgöl, Deniz; Oztürk, Elif İnci; Kazkayası, Inci; Okay, Gürol; Ertan, Mevlüt; Tozkoparan, Birsen
2012-11-01
In an effort to establish new candidates with improved analgesic and anti-inflammatory activities and lower ulcerogenic risk, a series of thiazolo[3,2-b]-1,2,4-triazole-5(6H)-one derivatives of ibuprofen were synthesized. All compounds were evaluated for their in vivo anti-inflammatory and analgesic activities in mice. Furthermore, the ulcerogenic risks of the compounds were determined. In general, none of the compounds represent a risk for developing stomach injury as much as observed in the reference drugs ibuprofen and indomethacin. The compounds carrying a 3-phenyl-2-propenylidene (1a), (biphenyl-4-yl)methylidene (1f) and (1-methylpyrrol-2-yl)methylidene (1n) at the 6th position of the fused ring have been evaluated as potential analgesic/anti-inflammatory agents without a gastrointestinal side effect. These new compounds, therefore, deserve further attention to develop new lead drugs. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Hao, Xiu-Li; Ma, Yuan-Yuan; Zang, Hong-Ying; Wang, Yong-Hui; Li, Yang-Guang; Wang, En-Bo
2015-02-23
A new cationic triazole-based metal-organic framework encapsulating Keggin-type polyoxometalates, with the molecular formula [Co(BBPTZ)3][HPMo12O40]⋅24 H2O [compound 1; BBPTZ = 4,4'-bis(1,2,4-triazol-1-ylmethyl)biphenyl] is hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. The structure of compound 1 contains a non-interpenetrated 3D CdSO4 (cds)-type framework with two types of channels that are interconnected with each other; straight channels that are occupied by the Keggin-type POM anions, and wavelike channels that contain lattice water molecules. The catalytic activity of compound 1 in the oxidative desulfurization reaction indicates that it is not only an effective and size-selective heterogeneous catalyst, but it also exhibits distinct structural stability in the catalytic reaction system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tappan, Bryce C.; Bowden, Patrick R.; Lichthardt, Joseph P.; Schmitt, Matthew M.; Hill, Larry G.
2018-04-01
Two energetic materials identified for relatively high energy, but little to no response to impact, spark or friction stimuli are 3-nitro-1,2,4-triazole-5-one (NTO), and 3,3' diamino-4,4'-azoxyfurazan (DAAF). More of an outlier in performance versus sensitivity, DAAF illustrates insensitivity by small-scale sensitivity tests, yet has a failure diameter estimated to be 1.25 mm and a short run length to detonation. Because of this unusual behavior, DAAF is an ideal material to formulate with NTO to obtain tailored shock sensitivity and critical diameter, with detonation velocities and pressures higher than PBX 9502. Here, we present detonation properties of Kel-F® bonded formulations with ratios of 20-70 wt.-% DAAF added to NTO. All formulations were evaluated for detonation velocity, aluminum flyer acceleration at jump-off, and via the cylinder expansion test.
Baranek, Austin; Song, Han Byul; McBride, Mathew; Finnegan, Patricia; Bowman, Christopher N.
2016-01-01
Bulk photopolymerization of a library of synthesized multifunctional azides and alkynes was carried out toward developing structure–property relationships for CuAAC-based polymer networks. Multifunctional azides and alkynes were formulated with a copper catalyst and a photoinitiator, cured, and analyzed for their mechanical properties. Material properties such as the glass transition temperatures (Tg) show a strong dependence on monomer structure with Tg values ranging from 41 to 90 °C for the series of CuAAC monomers synthesized in this study. Compared to the triazoles, analogous thioether-based polymer networks exhibit a 45–49 °C lower Tg whereas analogous monomers composed of ethers in place of carbamates exhibit a 40 °C lower Tg. Here, the formation of the triazole moiety during the polymerization represents a critical component in dictating the material properties of the ultimate polymer network where material properties such as the rubbery modulus, cross-link density, and Tg all exhibit strong dependence on polymerization conversion, monomer composition, and structure postgelation. PMID:27867223
Haider, Saqlain; Alam, M Sarwar; Hamid, Hinna; Shafi, Syed; Nargotra, Amit; Mahajan, Priya; Nazreen, Syed; Kalle, Arunasree M; Kharbanda, Chetna; Ali, Yakub; Alam, Aftab; Panda, Amulya K
2013-01-01
A library of novel bis-heterocycles containing benzoxazolinone based 1,2,3-triazoles has been synthesized using click chemistry approach. The compound 3f exhibited potent selective COX-2 inhibition of 59.48% in comparison to standard drug celecoxib (66.36% inhibition). The compound 3i showed significant (p < 0.001, 50.95%), TNF-α inhibitory activity as compared to indomethacin (p < 0.001, 64.01%). The results of the carrageenan induced hind paw oedema showed that compounds 3a, 3f, 3i, 3o, and 3e exhibited potent anti-inflammatory activity in comparison to Indomethacin. The molecular docking studies revealed that 3i exhibits strong inhibitory effect due to the extra stability of the complex because of an extra π-π bond. The histopathology report showed that none of the compounds caused gastric ulceration. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Shafi, Syed; Alam, Mohammad Mahboob; Mulakayala, Naveen; Mulakayala, Chaitanya; Vanaja, G; Kalle, Arunasree M; Pallu, Reddanna; Alam, M S
2012-03-01
A focused library of novel bis-heterocycles encompassing 2-mercapto benzothiazole and 1,2,3-triazoles were synthesized using click chemistry approach. The synthesized compounds have been tested for their anti-inflammatory activity by using biochemical cyclooxygenase (COX) activity assays and carrageenan-induced hind paw edema. Among the tested compounds, compound 4d demonstrated a potent selective COX-2 inhibition with COX-2/COX-1 ratio of 0.44. Results from carrageenan-induced hind paw edema showed that compounds 4a, 4d, 4e and 4f posses significant anti-inflammatory activity as compared to the standard drug Ibuprofen. The compounds showing significant activity were further subjected to anti-nociceptive activity by writhing test. These four compounds have shown comparable activity with the standard Ibuprofen. Further ulcerogenic studies shows that none of these compounds causing gastric ulceration. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Shan; Zheng, Tian-Rui; Shi, Lu-Lu; Li, Ke; Li, Bao-Long; Li, Hai-Yan
2017-09-01
Two intriguing coordination polymers [Cu2(OH)(mbtx)(sip)(H2O)2]n (1) and {[Cu3(OH)2(mbtx)(nip)2]·H2O}n (2) were synthesized by the hydrothermal method and characterized by elementary analysis, IR, PXRD, diffuse reflectance spectra and single-crystal X-ray diffraction (mbtx = 1,3-bis(1,2,4-triazol-4-yl)benzene, sip = sulfoisophthalate, nip = 5-nitroisophthalate). 1 shows an unusual 3-connected 2D network based on the dimeric hydroxy-copper(II) cluster [Cu2(μ-OH)] with the point symbol of 63. 2 exhibits an unusual 3D network based on 1D hydroxyl-copper(II) chains [Cu3(OH)2]n. 1 and 2 are highly efficient and universal photocatalysts for the degradation of the organic dyes such as methyl orange (MO), methylene blue (MB) and rhodamine B (RhB) under UV irradiation. The photocatalytic mechanism was supposed.
NASA Astrophysics Data System (ADS)
Wang, Xiao-xiao; Li, Zuo-xi; Yu, Baoyi; Van Hecke, Kristof; Cui, Guang-hua
2015-10-01
Three metal-organic coordination polymers containing rigid bis(triazole) ligand, namely, [Zn1.5(btb)(nbta)(H2O)]n (1), {[Zn(btb)(3-nph)]·(H2O)}n (2) and [Zn(btb)(4-nph)]n (3) (btb = 4,4‧-bis(1,2,4-triazolyl-1-yl)-biphenyl, 3-H2nph = 3-nitrophthalic acid, H3nbta = 5-nitro-1,2,3-benzenetricarboxylic acid, and 4-H2nph = 4-nitrophthalic acid) were synthesized under hydrothermal conditions and structurally characterized by X-ray single-crystal diffraction. Complex 1 possesses an interesting 3D coordination framework with a rarely binodal (4,4)-connected frl topological structure. Complexes 2 and 3 exhibit similiar 2D (4,4) grid layers with different point symbol (44 · 64) in 2 and (44 · 62) in 3. Furthermore, thermal stability of these compounds has been discussed. Complexes 1-3 exhibit strong solid-state fluorescence at room temperature in solid state.
NASA Astrophysics Data System (ADS)
Panda, Deepanjan; Saha, Puja; Das, Tania; Dash, Jyotirmayee
2017-07-01
The development of small molecules is essential to modulate the cellular functions of biological targets in living system. Target Guided Synthesis (TGS) approaches have been used for the identification of potent small molecules for biological targets. We herein demonstrate an innovative example of TGS using DNA nano-templates that promote Huisgen cycloaddition from an array of azide and alkyne fragments. A G-quadruplex and a control duplex DNA nano-template have been prepared by assembling the DNA structures on gold-coated magnetic nanoparticles. The DNA nano-templates facilitate the regioselective formation of 1,4-substituted triazole products, which are easily isolated by magnetic decantation. The G-quadruplex nano-template can be easily recovered and reused for five reaction cycles. The major triazole product, generated by the G-quadruplex inhibits c-MYC expression by directly targeting the c-MYC promoter G-quadruplex. This work highlights that the nano-TGS approach may serve as a valuable strategy to generate target-selective ligands for drug discovery.
Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur
2014-08-07
Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.
NASA Astrophysics Data System (ADS)
Naik, Anil D.; Railliet, Antoine P.; Dîrtu, Marinela M.; Garcia, Yann
2012-03-01
With a new bis-azole molecular fragment ( Htt) bearing 1,2,4-triazole and tetrazole, a mononuclear complex [Fe(tt)2(H2O)4]·2H2O ( 1), a trinuclear complex [Fe3(tt)6(H2O)6]·2H2O ( 2) and a 1D coordination polymer [Fe(tt)(Htt)2]BF4·2CH3OH ( 3) were obtained by varying reaction conditions. Htt acts either as an anionic or neutral ligand depending upon the reaction medium and pH. Thermal variation of spin states of 1- 3 were investigated in the range 77-300 K by 57Fe Mössbauer spectroscopy. 1 totally remains in high-spin state over the entire temperature range whereas no spin crossover was evidenced in 2. Nearly 1:1 high-spin and low-spin population ratio is found in 3, which remains constant over the entire temperature range investigated.
Chohan, Zahid H; Sumrra, Sajjad H
2010-10-01
A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds.
Kumar, Rakesh; Singh, Govindra; Todaro, Louis J; Yang, Lijia; Zajc, Barbara
2015-02-07
A highly modular approach to N-substituted 4-(1-fluorovinyl)triazoles is described. In situ desilylation and Cu-catalyzed ligation reaction of TMS-protected α-fluoropropargyl benzothiazole sulfone with aryl, alkyl, and metallocenyl azides furnished second-generation Julia-Kocienski reagents in good to excellent yields. Condensation reactions of these reagents with aldehydes can be tuned to yield E or Z-alkenes selectively. Under mild conditions with DBU as the base, reactions of aldehydes furnished E-alkenes as the major isomer. On the other hand, in condensation reactions with LHMDS as the base and in appropriate solvents, both aldehydes and ketones reacted to yield fluoroalkenes with Z-selectivity. Stereochemical assignment of E/Z olefins obtained in the reaction of a ketone with two Julia reagents was performed via X-ray crystallographic analysis and comparisons of NMR data. The method allows efficient and ready diversification of the N1-substituent and substituents at the double bond.
Ichikawa, T; Kitazaki, T; Matsushita, Y; Yamada, M; Hayashi, R; Yamaguchi, M; Kiyota, Y; Okonogi, K; Itoh, K
2001-09-01
1-[(1R,2R)-2-(2,4-Difluorophenyl)-2-hydroxy-1-methyl-3-(1H-1,2,4-triazol-1-yl)propyl]-3-[4-(1H-1-tetrazolyl)phenyl]-2-imidazolidinone (1: TAK-456) was selected as a candidate for clinical trials, but since its water-solubility was insufficient for an injectable formulation, the quaternary triazolium salts 2 were designed as water-soluble prodrugs. Among the prodrugs prepared, 4-acetoxymethyl-1-[(2R,3R)-2-(2,4-difluorophenyl)-2-hydroxy-3-[2-oxo-3-[4-(1H-1-terazolyl)phenyl]-1-imidazolidinyl]butyl]-1H-1,2,4-triazolium chloride (2a: TAK-457) was selected as an injectable candidate for clinical trials based on the results of evaluations on solubility, stability, hemolytic effect and in vivo antifungal activities.
Lu, Li; Lv, Feng; Cao, Bo; He, Xujun; Liu, Tianjun
2014-01-03
Saccharide-substituted zinc phthalocyanines, [2,9(10),16(17),23(24)-tetrakis((1-(β-D-glucose-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato]zinc(II) and [2,9(10), 16(17),23(24)-tetrakis((1-(β-D-lactose-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato] zinc(II), were evaluated as novel near infrared fluorescence agents. Their interaction with bovine serum albumin was investigated by fluorescence and circular dichroism spectroscopy and isothermal titration calorimetry. Near infrared imaging for sentinel lymph nodes in vivo was performed using nude mice as models. Results show that saccharide- substituted zinc phthalocyanines have favourable water solubility, good optical stability and high emission ability in the near infrared region. The interaction of lactose-substituted phthalocyanine with bovine serum albumin displays obvious differences to that of glucose- substituted phthalocyanine. Moreover, lactose-substituted phthalocyanine possesses obvious imaging effects for sentinel lymph nodes in vivo.
El Malah, Tamer; Ciesielski, Artur; Piot, Luc; Troyanov, Sergey I; Mueller, Uwe; Weidner, Steffen; Samorì, Paolo; Hecht, Stefan
2012-01-21
Efficient Cu-catalyzed 1,3-dipolar cycloaddition reactions have been used to prepare two series of three regioisomers of G-1 and G-2 poly(triazole-pyridine) dendrons. The G-1 and G-2 dendrons consist of branched yet conformationally pre-organized 2,6-bis(phenyl/pyridyl-1,2,3-triazol-4-yl)pyridine (BPTP) monomeric and trimeric cores, respectively, carrying one focal and either two or four peripheral alkyl side chains. In the solid state, the conformation and supramolecular organization were studied by means of a single crystal X-ray structure analysis of one derivative. At the liquid-solid interface, the self-assembly behavior was investigated by scanning tunneling microscopy (STM) on graphite surfaces. Based on the observed supramolecular organization, it appears that the subtle balance between conformational preferences inherent in the dendritic backbone on the one side and the adsorption and packing of the alkyl side chains on the graphite substrate on the other side dictate the overall structure formation in 2D.
The oxidative stress response of myclobutanil and cyproconazole on Tetrahymena thermophila.
Huang, Ai-Guo; Tu, Xiao; Liu, Lei; Wang, Gao-Xue; Ling, Fei
2016-01-01
Using Tetrahymena thermophila as experimental models, the oxidative stress of triazole fungicides myclobutanil (MYC) and cyproconazole (CYP) was investigated. Results showed that 24-h EC50 values for MYC and CYP were 16.67 (13.37-19.65) and 20.44 (18.85-21.96) mg/L, respectively; 48-h EC50 values for MYC and CYP were 14.31 (13.13-15.42) and 18.76 (17.09-20.31) mg/L, respectively. Reactive oxygen species was significantly induced and cytotoxicity was caused by MYC and CYP by increasing propidium iodide (PI) fluorescence. Damage of regular wrinkles and appearing of small holes on the cell surface were observed by SEM. Furthermore, MYC and CYP also caused notable changes in enzyme activities and mRNA levels. Overall, the present study points out that MYC and CYP lead to oxidative stress on T. thermophila. The information presented in this study will provide insights into the mechanism of triazoles-induced oxidative stress on T. thermophila. Copyright © 2015 Elsevier B.V. All rights reserved.
Mahata, Denial; Jana, Malabendu; Jana, Arundhuti; Mukherjee, Abhishek; Mondal, Nibendu; Saha, Tilak; Sen, Subhajit; Nando, Golok B.; Mukhopadhyay, Chinmay K.; Chakraborty, Ranadhir; Mandal, Santi M.
2017-01-01
Lignin, one of the most abundant renewable feedstock, is used to develop a biocompatible hydrogel as anti-infective ointment. A hydrophilic polyoxazoline chain is grafted through ring opening polymerization, possess homogeneous spherical nanoparticles of 10–15 nm. The copolymer was covalently modified with triazole moiety to fortify the antimicrobial and antibiofilm activities. The hydrogel was capable of down regulating the expression level of IL-1β in LPS induced macrophage cells, and to cause significant reduction of iNOS production. It supported cellular anti-inflammatory activity which was confirmed with luciferase assay, western blot, and NF-κB analysis. This novel lignin-based hydrogel tested in-vivo has shown the abilities to prevent infection of burn wound, aid healing, and an anti-inflammatory dressing material. The hydrogel reported here provides a new material platform to introduce a cost-effective and efficient ointment option after undertaking further work to look at its use in the area of clinical practice. PMID:28401944
New Thiazolyl-triazole Schiff Bases: Synthesis and Evaluation of the Anti-Candida Potential.
Stana, Anca; Enache, Alexandra; Vodnar, Dan Cristian; Nastasă, Cristina; Benedec, Daniela; Ionuț, Ioana; Login, Cezar; Marc, Gabriel; Oniga, Ovidiu; Tiperciuc, Brîndușa
2016-11-22
In the context of the dangerous phenomenon of fungal resistance to the available therapies, we present here the chemical synthesis of a new series of thiazolyl-triazole Schiff bases B1 - B15 , which were in vitro assessed for their anti- Candida potential. Compound B10 was found to be more potent against Candida spp. when compared with the reference drugs Fluconazole and Ketoconazole. A docking study of the newly synthesized Schiff bases was performed, and results showed good binding affinity in the active site of co-crystallized Itraconazole-lanosterol 14α-demethylase isolated from Saccharomyces cerevisiae . An in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) study was done in order to predict some pharmacokinetic and pharmacotoxicological properties. The Schiff bases showed good drug-like properties. The results of in vitro anti- Candida activity, a docking study and ADMET prediction revealed that the newly synthesized compounds have potential anti- Candida activity and evidenced the most active derivative, B10 , which can be further optimized as a lead compound.
Kumar, Rakesh; Singh, Govindra; Todaro, Louis J.; Yang, Lijia; Zajc, Barbara
2016-01-01
A highly modular approach to N-substituted 4-(1-fluorovinyl)triazoles is described. In situ desilylation and Cu-catalyzed ligation reaction of TMS-protected α-fluoropropargyl benzothiazole sulfone with aryl, alkyl, and metallocenyl azides furnished second-generation Julia-Kocienski reagents in good to excellent yields. Condensation reactions of these reagents with aldehydes can be tuned to yield E or Z-alkenes selectively. Under mild conditions with DBU as base, reactions of aldehydes furnished E-alkenes as the major isomer. On the other hand, in condensations with LHMDS as base and in appropriate solvents, both aldehydes and ketones reacted to yield fluoroalkenes with Z-selectivity. Stereochemical assignment to E/Z olefins obtained in the reaction of a ketone with two Julia reagents was performed via X-ray crystallographic analysis and comparisons of NMR data. The method allows efficient and ready diversification of N1-substituent and substituents at the double bond. PMID:25491086
Tenne, M; Metz, S; Wagenblast, G; Münster, Ingo; Strassner, T
2015-05-14
Neutral cyclometalated platinum(ii) N-heterocyclic carbene complexes [Pt(C^C*)(O^O)] with C^C* ligands based on 1-phenyl-1,2,4-triazol-5-ylidene and 4-phenyl-1,2,4-triazol-5-ylidene, as well as acetylacetonato (O^O = acac) and 1,3-bis(2,4,6-trimethylphenyl)propan-1,3-dionato (O^O = mesacac) ancillary ligands were synthesized and characterized. All complexes are emissive at room temperature in a poly(methyl methacrylate) (PMMA) matrix with emission maxima in the blue region of the spectrum. High quantum efficiencies and short decay times were observed for all complexes with mesacac ancillary ligands. The sterically demanding mesityl groups of the mesacac ligand effectively prevent molecular stacking. The emission behavior of these emitters is in general independent of the position of the nitrogen in the backbone of the N-heterocyclic carbene (NHC) unit and a variety of substituents in 4-position of the phenyl unit, meta to the cyclometalating bond.
Synthesis and antifungal evaluation of (1,2,3-triazol-4-yl)methyl nicotinate chitosan.
Qin, Yukun; Liu, Song; Xing, Ronge; Li, Kecheng; Yu, Huahua; Li, Pengcheng
2013-10-01
With an aim to discover novel chitosan derivatives with significant activities against crop-threatening fungi, (1,2,3-triazol-4-yl)methyl nicotinate chitosan (TAMNCS) was prepared via azide-alkyne click reaction. Its structure was characterized by FT-IR, (1)H NMR, elemental analysis, DSC, and SEM. In vitro antifungal properties of TAMNCS against Rhizoctonia solani Kühn (R. solani), Stemphylium solani weber (S. solani), and Alternaria porri (A. porri) were studied at the concentrations ranged from 0.25 mg/mL to 1.0 mg/mL. Experiments conducted displayed the derivative had obviously enhanced antifungal activity after chemical modification compared with original chitosan. Moreover, it was shown that TAMNCS can 94.2% inhibit growth of A. porri at 1.0 mg/mL, while dose at which the fungicide triadimefon had lower inhibitory index (62.2%). The primary antifungal results described here indicate this derivative may be a promising candidate as an antifungal agent. Copyright © 2013 Elsevier B.V. All rights reserved.
Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...
A regioselective Huisgen reaction inside a Keplerate polyoxomolybdate nanoreactor.
Besson, Claire; Schmitz, Sebastian; Capella, Kimberly M; Kopilevich, Sivil; Weinstock, Ira A; Kögerler, Paul
2012-09-07
A 1,3-dipolar cycloaddition reaction taking place quantitatively between propiolic acid "guests" and azide functions previously attached to binding sites within the cavity of a {Mo(132)}-type Keplerate reproducibly gives a 2 : 1 ratio of 1,4- and 1,5-triazoles.
Conazoles comprise a class of fungicides used in agriculture and as pharmaceutical products. The fungicidal properties of conazoles are due to their inhibition of ergosterol biosynthesis. Certain conazoles are tumorigenic in rodents; both propiconazole and triadimefon are hepatot...
There are very little data on the bioaccumulation and biotransformation of current-use pesticides (CUPs) despite the fact that such data are critical in assessing their fate and potential toxic effects in aquatic organisms. To help address this issue, juvenile rainbow trout (Onco...
Conazoles are triazole compounds, many of which are in wide use as agricultural and medicinal fungicides. Opportunities exist for them to contaminate the environment and, since they are all chiral molecules, they are apt to be degraded enantioselectively by indigenous microbes. T...
Triazole containing compounds have been used for decades as agricultural and medicinal fungicides. Recently, emphasis has been placed on the potential adverse effects of these compounds within mammalian systems and an effort has been made to understand their toxic mode of action...
A self-healing PDMS polymer with solvatochromic properties.
Jia, Xiao-Yong; Mei, Jin-Feng; Lai, Jian-Cheng; Li, Cheng-Hui; You, Xiao-Zeng
2015-05-28
Coordination bonds are effective for constructing functional self-healing materials due to their tunable bond strength and metal-ion-induced functionalities. In this work, we incorporate a cobalt(II) triazole complex into a polydimethylsiloxane (PDMS) matrix. The resulting polymers show solvatochromic behaviour as well as self-healing properties.
Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity; i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has...
40 CFR Appendix I to Part 192 - Listed Constituents
Code of Federal Regulations, 2012 CFR
2012-07-01
... (Propanedinitrile) Melphalan (L-Phenylalanine, 4-[bis(2-chloroethyl)aminol]-) Mercury and compounds, N.O.S. Mercury...) Amitrole (lH-1,2,4-Triazol-3-amine) Ammonium vanadate (Vanadic acid, ammonium salt) Aniline (Benzenamine...[N,N-dimethyl-]) Azaserine (L-Serine, diazoacetate (ester)) Barium and compounds, N.O.S. Barium...
40 CFR Appendix I to Part 192 - Listed Constituents
Code of Federal Regulations, 2014 CFR
2014-07-01
... (Propanedinitrile) Melphalan (L-Phenylalanine, 4-[bis(2-chloroethyl)aminol]-) Mercury and compounds, N.O.S. Mercury...) Amitrole (lH-1,2,4-Triazol-3-amine) Ammonium vanadate (Vanadic acid, ammonium salt) Aniline (Benzenamine...[N,N-dimethyl-]) Azaserine (L-Serine, diazoacetate (ester)) Barium and compounds, N.O.S. Barium...
40 CFR Appendix I to Part 192 - Listed Constituents
Code of Federal Regulations, 2013 CFR
2013-07-01
... (Propanedinitrile) Melphalan (L-Phenylalanine, 4-[bis(2-chloroethyl)aminol]-) Mercury and compounds, N.O.S. Mercury...) Amitrole (lH-1,2,4-Triazol-3-amine) Ammonium vanadate (Vanadic acid, ammonium salt) Aniline (Benzenamine...[N,N-dimethyl-]) Azaserine (L-Serine, diazoacetate (ester)) Barium and compounds, N.O.S. Barium...
Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study (Allen et al. 2006) under...
Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...
Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...
EFFECT OF CONAZOLE FUNGICIDES ON REPRODUCTIVE DEVELOPMENT IN THE FEMALE RAT
Three triazole fungicides were evaluated for effects on female rat reproductive development. Rats were exposed via feed to propiconazole (P) (100, 500, or 2500 ppm), myclobutanil (M) (100, 500, or 2000 ppm), or triadimefon (T) (100, 500, or 1800 ppm) from gestation day 6 to postn...
NASA Astrophysics Data System (ADS)
Ranga Prabhath, Malaviarachchige Rabel
Owing to superior energy efficiency, Light Emitting Diode (OLED) technology has become considerably commercialised over the last decade. Innovations in this field have been spurred along by the discovery of new molecules with good stability and high emission intensity, followed through by intense engineering efforts. Emissive transition metal complexes are potent molecular emitters as a result of their high quantum efficiencies related to facile intersystem crossing (ISC) between excited-state manifolds (efficient spin orbit coupling (SOC)) and resultant efficient emission from the triplet state (phosphorescence). These also allow rational tuning of the emission wavelengths. Tuning of the ground and excited state energies, and thus emission wavelength of these complexes can be achieved by subtle structural changes in the organic ligands. Pyridyl-triazole ligands have started receiving increasing attention in recent years as strong field ligands that are relatively straightforward to synthesise. In this study we explore the emission tunability of a newly synthesised series of 5-subsituted-Pyridyl-1,2,3-triazole-based ligands and their Pt(II) complexes. Studies have shown, substitution at the triazole moiety is less effective in achieving emission tunability. Alternatively we carried out the substitution at the 5th position of the pyridine ring with a wide range of electronically diverse, donor-acceptor groups (-N(CH3)2, -H, -CHO, -CHC(CN)2). The target ligands were approached through the serial application of the Sonogashira carbon-carbon coupling and the Sharpless copper-catalyzed Huisgen’s 1,3-dipolarcycloaddition procedures. As a result, coarse tunability of excimer emission was observed in thin-films, generating blue-(486 nm), green-(541 nm), orange-(601 nm) and red-(625 nm) luminescence respectively. This “turned-on” substituent effect was accounted for metallophilic Pt—Pt interaction-induced aggregates in the solid state. Excited state calculations reveal that the solid state emission is associated with 1MMLCT transitions. Lifetime measurements revealed the existence of two decay processes: one being fluorescence and the other process, either phosphorescence or delayed fluorescence. Further a linear-relationship between the Hammett parameters of the substituents and emission wavelengths was established. This allows a reliable emission predictability for any given substituent of 5-substituted pyridyl-1,2,3-triazole platinum complexes. In conclusion, we show a new approach in achieving coarse emission tunability in pyridyl-1,2,3-triazole based platinum complexes via subtle changes in the molecular structure and the importance of metallophilic interactions in the process. During the second phase of the study, the scope was broadened to examine the effects of heterocyclic nitrogens in the ligand skeleton. Fifteen different combinations of azole-azine linked ligand systems were synthesized, by systematically increasing the number of nitrogens and changing the ring position of the nitrogens in the skeleton. Later, the homoleptic platinum complexes of the respective ligands were synthesised, and the photo-physical characteristics were studied. The above mentioned changes in the ligand structure resulted in a 264 nm emission tunability, in the thin films of the complexes. Theoretical studies on the complexes revealed that based on the structure of the ligand, different metallophilic stacking behaviours and different origins of emission (fluorescence and phosphorescence) can result, which in turn give rise to tunable emission wavelengths.
An important component of assessing risk is defining the exposure of a chemical stressor to a target organism. Often the chemical stressor is assumed to be a single compound even when it is comprised of different stereoisomers (e.g., pyrethroids and 1,2,4-triazole fungicides), w...
Vasconcelos, Stanley N S; Shamim, Anwar; Ali, Bakhat; de Oliveira, Isadora M; Stefani, Hélio A
2016-05-01
1,2,3-Triazol tyrosines were synthesized from tyrosine alkynes that were in turn prepared via Sonogashira cross-coupling reaction. The tyrosine alkynes were subjected to click-chemistry reaction conditions leading to the corresponding 3-(1,2,3-triazolyl)-tyrosines in yields ranging from moderate to good.
The microbial transformation of triadimefon, an agricultural fungicide of the 1,2,4-triazole class, was followed over several months under aerobic conditions in 3 different soil types to observe rates and products of transformation as well as enantiomer fractions of parent and pr...
Conazoles are triazole- or imidazole-containing fungicides used in agriculture and medicine. Using transcriptomic analysis of rat thyroid tissues exposed to either tumorigenic or non-tumorigenic structurally related conazoles, we identified new findings on thyroid gene expressio...
Jiang, Tianyu; Yang, Xiaofeng; Yang, Xingye; Yuan, Mingliang; Zhang, Tianchao; Zhang, Huateng; Li, Minyong
2016-06-21
Two series of novel coelenterazine analogues (alkynes and triazoles) with imidazopyrazinone C-6 extended substitution have been designed and synthesized successfully for the extension of bioluminescent substrates. After extensive evaluation, some compounds display excellent bioluminescence properties compared with DeepBlueC in cellulo, thus becoming potential molecules for bioluminescence techniques.
Genotoxicity Assessment of an Energetic Propellant Compound, 3-nitro-1,2,4-triazol-5-one (NTO)
2011-01-01
Aldrich (St. Louis, MO). For the chromosome aberration test, phenobarbital /-naphthoflavone-induced rat hepatic S9 fraction was purchased fromMolecular... Phenobarbital /- naphthoflavone induced rat liver homogenate (S-9 fraction) and the cofactor pool. A range finding test was conducted to determine the toxicity of
This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...
The exposure of humans and ecologically important species to environmental chemicals typically occurs at unknown concentrations and for uncertain durations. Exposure becomes an internal dose when the chemical crosses the body barrier. Characterizing internal dose is important for...
Conazoles are fungicides that are used in agriculture and medicine. Conazoles can induce follicular cell adenomas of the thyroid in rats after chronic bioassay and are considered to pose a hazard to humans. Pathways and networks of genes that were associated with thyroid cancer w...
The present study was designed to identify the underlying molecular mechanism for the induction of mouse liver tumors by conazoles. CD-1 mice were treated with the tumor producing conazoles, triadimefon (1800, 500, or 100 ppm), or propiconazole (2500, 500, or 100 ppm), or the non...
INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL
1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...
Conazoles are a class of azole based fungicides used in agriculture and as pharmaceutical products. They have a common mode of antifungal action through inhibition of ergosterol biosynthesis. Some members of this class have been shown to be hepatotoxic and will induce mouse hepa...
Conazoles are a class of fungicides used as pharmaceutical and agricultural agents. In chronic bioassays in rats, triadimefon was hepatotoxic and induced follicular cell adenomas in the thyroid gland, whereas, propiconazole and myclobutanil were hepatotoxic but had no effect on t...
THERMALLY STABLE PERFLUORINATED POLYMERS
this system has been found which involves addition of perfluoroalkyl - dihydrazides to perfluoroalkyldinitriles in a highly polar solvent. Inactivation...formation of an intermediate poly( perfluorodiacyl hydrazine) from the reaction of perfluorodiacyl chlorides with perfluoroalkyldihydrazides ....Work on the poly( perfluoroalkylene -1,2,4,4H-triazole system has been continued with the objectives of increasing the polymer molecular weights
ERIC Educational Resources Information Center
Mendes, Desiree E.; Schoffstall, Allen M.
2011-01-01
This undergraduate organic laboratory experiment consists of three different reactions occurring in the same flask: a cycloaddition reaction, preceded by decarboxylation and nucleophilic substitution reactions. The decarboxylation and cycloaddition reactions occur using identical Cu(I) catalyst and conditions. Orange, lemon, and other citrus fruit…
Hernández-Vázquez, Eduardo; Chávez-Riveros, Alejandra; Romo-Pérez, Adriana; Ramírez-Apán, María Teresa; Chávez-Blanco, Alma D; Morales-Bárcenas, Rocío; Dueñas-González, Alfonso; Miranda, Luis D
2018-05-17
Cancer continues to be a worldwide health problem. Certain macrocyclic molecules have become attractive therapeutic alternatives for this disease because of their efficacy and, frequently, their novel mechanisms of action. Herein, we report the synthesis of a series of 20-, 21-, and 22-membered macrocycles containing triazole and bis(aryl ether) moieties. The compounds were prepared by a multicomponent approach from readily available commercial substrates. Notably, some of the compounds displayed interesting cytotoxicity against cancer (PC-3) and breast (MCF-7) cell lines, especially those bearing an aliphatic or a trifluoromethyl substituent on the N-phenyl moiety (IC 50 <13 μm). Additionally, some of the compounds were able to induce apoptosis relative to the solvent control; in particular, (Z)-N-cyclohexyl-7-oxo-6-[4-(trifluoromethyl)phenyl]-1 1 H-3,10-dioxa-6-aza-1(4,1)-triazola-4(1,3),9(1,4)-dibenzenacyclotridecaphane-5-carboxamide (12 f) was the most potent in this regard (22.7 % of apoptosis). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai
2016-05-15
A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stereoselective synthesis of novel thioglycosyl heterocycles
NASA Astrophysics Data System (ADS)
El Ashry, El Sayed H.; Awad, Laila F.; Al Moaty, Mohamed N. Abd; Ghabbour, Hazem A.; Barakat, Assem
2018-01-01
In this work, the synthesis of novel 1,2,4-triazole thioglycoside heterocycles 4, 5, and 8 were achieved by the reaction of 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranose (2) and galactopyranose (3) with 4-((4-arylidene)amino)-5-methyl-1,2,4-triazole-3-thiol derivatives 1 and 6 in the presence of boron trifluoride etherate (BF3·Et2O) as a promoter under nitrogen in CH2Cl2. Exclusive β-stereoselectivity of the formed glycosidic bond was confirmed by X-ray analysis of 4 as well as its spectral data. Different stereoselectivities were observed when the acceptor 9, having an ortho phenolic OH group, was coupled with the donors 2 or 3, under the same reaction conditions. Similarly, treatment of a mixture of 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (16) and the thiol acceptors 1 and 15 afforded the β-thioribofuranosides 17 and 18, respectively. The β-stereoselectivity of the reaction was confirmed by 1H, 13C, 1Hsbnd 1H 2D, and 1Hsbnd 13C 2D NMR spectral analysis.
Abuo-Rahma, Gamal El-Din A A; Abdel-Aziz, Mohamed; Farag, Nahla A; Kaoud, Tamer S
2014-08-18
A novel series of 1,2,4-triazole derivatives were synthesized and confirmed with different spectroscopic techniques. The prepared compounds exhibited remarkable anti-inflammatory activity comparable to that of indomethacin and celecoxib after 3 h. The tested compounds exhibited very low incidence of gastric ulceration compared to indomethacin. Most of the newly developed compounds showed excellent selectivity towards human COX-2 with selectivity indices (COX-1 IC50/COX-2 IC50) ranged from 62.5 to 2127. Docking studies results revealed that the highly selective tested compounds 6h and 6j showed lower CDOCKER energies, which means that they require less energy for proper interaction with the enzyme. The additional H-bonds with the oxygen of the amide and/or H of NH of the amide with the amino acid residues may be responsible for the higher binding affinity of this group of compounds towards COX-2. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Guodong; Mahmood, Asif; Tang, Ailing; Chen, Fan; Zhou, Erjun
2018-01-01
Three new diketopyrrolopyrrole based compounds with Acceptor-Donor-Acceptor-Donor-Acceptor (A-D-A-D-A) skeletons were designed and synthesized through varying the electron-deficient core from diphenylquinoxaline (DP-Qx), thieno[3,4-c]pyrrole-4,6-dione (DP-TPD) to 2-dodecyl-6,7-diphenyl-2H-[1,2,3]triazole[4,5-g]quinoxaline (DP-TQx). We have calculated and studied the effect of central acceptor units on electronic, optical and non-optical properties. As well as, we have predicted the charge transport properties. Results indicate that change of central acceptor unit remarkably affects the molecular electronic, optical and non-optical properties. And the molecular band gap and UV/vis adsorption spectra are significantly changed. It should be noted that Compound 3 with 2-dodecyl-6,7-diphenyl-2H-[1,2,3]triazole[4,5-g]quinoxaline as core show superior non-optical properties as compare to other compounds. Our study here indicate that inserting the strong electron-deficient moieties improves intramolecular charge transfer (ICT) and charge transport properties dramatically.
Jiaranaikulwanitch, Jutamas; Govitrapong, Piyarat; Fokin, Valery V.; Vajragupta, Opa
2013-01-01
Efforts to discover new drugs for Alzheimer’s disease emphasizing multiple targets was conducted seeking to inhibit amyloid oligomer formation and to prevent radical formation. The tryptoline and tryptamine cores of BACE1 inhibitors previously identified by virtual screening were modified in silico for additional modes of action. These core structures were readily linked to different side chains using 1,2,3-triazole rings as bridges by copper catalyzed azide-alkyne cycloaddition reactions. Three compounds among the sixteen designed compounds exerted multifunctional activities including β-secretase inhibitory action, anti-amyloid aggregation, metal chelating and antioxidant effects at micromolar levels. The neuroprotective effects of the multifunctional compounds 6h, 12c and 12h on Aβ1–42 induced neuronal cell death at 1 μM were significantly greater than those of the potent single target compound, BACE1 inhibitor IV and were comparable to curcumin. The observed synergistic effect resulting from the reduction of the Aβ1–42 neurotoxicity cascade substantiates the validity of our multifunctional strategy in drug discovery for Alzheimer’s disease. PMID:22781443
Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus.
Gonçalves, Sarah Santos; Souza, Ana Carolina Remondi; Chowdhary, Anuradha; Meis, Jacques F; Colombo, Arnaldo Lopes
2016-04-01
The significant increase in the use of antifungal agents, both for the treatment of candidiasis and invasive aspergillosis and as azole fungicides in agricultural crop protection has resulted in the emergence of resistant clinical isolates, particularly to triazoles and echinocandins. Notably, among isolates that were primarily sensitive to fluconazole such as Candida parapsilosis and Candida tropicalis have witnessed an emerging resistance development. Also for echinocandins, the occurrence of Candida isolates with lower susceptibility to these drugs has been reported, which is possibly due to its broad clinical use. Triazole resistance among Aspergillus fumigatus and other Aspergillus species is commonly found in European and Asian countries. Specific mutations are associated with azole resistance in A. fumigatus and these mutations are now reported globally from six continents. Therefore, we highlight the need to conduct antifungal resistance surveillance studies using clinical isolates of Candida and Aspergillus in different geographical regions and monitoring of the infection rates in distinct population groups for early detection of resistance to these drugs and implementation of efficient policies for infection control and treatment. © 2016 Blackwell Verlag GmbH.
Ni, Xin-long; Zeng, Xi; Redshaw, Carl; Yamato, Takehiko
2011-07-15
A ratiometric fluorescent receptor with a C(3) symmetric structure based on a pyrene-linked triazole-modified homooxacalix[3]arene (L) was synthesized and characterized. This system exhibited an interesting ratiometric detection signal output for targeting cations and anions through switching the excimer emission of pyrene from the "on-off" to the "off-on" type in neutral solution. (1)H NMR titration results suggested that the Zn(2+) center of receptor L·Zn(2+) provided an excellent pathway of organizing anion binding groups for optimal host-guest interactions. It is thus believed that this receptor has potential application in sensing, detection, and recognition of both Zn(2+) and H(2)PO(4)(-) ions with different optical signals. In addition, the fluorescence emission changes by the inputs of Zn(2+) and H(2)PO(4)(-) ions can be viewed as a combinational R-S latch logic circuit at the molecular level.
Two new luminescent Zn(II) compounds constructed from guanazole and aromatic polycarboxylate ligands
NASA Astrophysics Data System (ADS)
Zhao, Haixiang; Dong, Yanli; Liu, Haiping
2016-02-01
Two new Zn(II) compounds, namely [(CH3)2NH2]2n[Zn3(bpt)2(datrz)2]n (1) and [(CH3)2NH2)]n[Zn2(bptc)(datrz)]n·n(H2O) (2) (H3bpt = biphenyl-3,4‧,5-tricarboxylic acid, H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, Hdatrz = 3,5-diamino-1,2,4-triazole), have been obtained by the self-assemble reactions of Zn(NO3)2, 3,5-diamino-1,2,4-triazole, aromatic polycarboxylate ligands under solvothermal conditions. Single crystal X-ray structural analyses reveal that both compounds display three-dimensional (3D) frameworks. Compound 1 features a trinodal (3, 4, 6)-connected topological network with the point symbol of {4.62}2{4.64.8}{46.64.85}. Compound 2 displays a binodal (4, 6)-connected topological network with the point symbol of {32.62.72}{34.42.64.75}. In addition, the thermal stabilities and luminescent properties of compounds 1 and 2 were also investigated in the solid state at room temperature.
Lee, Juhyen; Choi, Eun Jung; Kim, Inwon; Lee, Minhe; Satheeshkumar, Chinnadurai; Song, Changsik
2017-01-01
Tuning the sensing properties of spiropyrans (SPs), which are one of the photochromic molecules useful for colorimetric sensing, is important for efficient analysis, but their synthetic modification is not always simple. Herein, we introduce an alkyne-functionalized SP, the modification of which would be easily achieved via Cu-catalyzed azide-alkyne cycloaddition (“click reaction”). The alkyne-SP was conjugated with a bis(triethylene glycol)-benzyl group (EG-BtSP) or a simple benzyl group (BtSP), forming a triazole linkage from the click reaction. The effects of auxiliary groups to SP were tested on metal-ion sensing and cyanide detection. We found that EG-BtSP was more Ca2+-sensitive than BtSP in acetonitrile, which were thoroughly examined by a continuous variation method (Job plot) and UV-VIS titrations, followed by non-linear regression analysis. Although both SPs showed similar, selective responses to cyanide in a water/acetonitrile co-solvent, only EG-BtSP showed a dramatic color change when fabricated on paper, highlighting the important contributions of the auxiliary groups. PMID:28783127
Ratiometric Fluorescence Azide-Alkyne Cycloaddition for Live Mammalian Cell Imaging.
Fu, Hongxia; Li, Yanru; Sun, Lingbo; He, Pan; Duan, Xinrui
2015-11-17
Click chemistry with metabolic labeling has been widely used for selectively imaging biomacromolecules in cells. The first example of azide-alkyne cycloaddition for ratiometric fluorescent imaging of live cells is reported. The precursor of the azido fluorophore (cresyl violet) has a fluorescence emission peak at 620 nm. The electron-rich nitrogen of the azido group blue-shifts the emission peak to 566 nm. When the click reaction occurs, an emission peak appears at 620 nm due to the lower electronic density of the newly formed triazole ring, which allows us to ratiometrically record fluorescence signals. This emission shift was applied to ratiometric imaging of propargylcholine- and dibenzocyclooctyne-labeled human breast cancer cells MCF-7 under laser confocal microscopy. Two typical triazole compounds were isolated for photophysical parameter measurements. The emission spectra presented a fluorescence emission peak around 620 nm for both click products. The results further confirmed the emission wavelength change was the result of azide-alkyne cycloaddition reaction. Since nearly all biomolecules can be metabolically labeled by reported alkyne-functionalized derivatives of native metabolites, our method can be readily applied to image these biomacromolecules.
Adsorption Mechanism of 4-Amino-5-mercapto-1,2,4-triazole as Flotation Reagent on Chalcopyrite.
Yin, Zhigang; Hu, Yuehua; Sun, Wei; Zhang, Chenyang; He, Jianyong; Xu, Zhijie; Zou, Jingxiang; Guan, Changping; Zhang, Chenhu; Guan, Qingjun; Lin, Shangyong; Khoso, Sultan Ahmed
2018-04-03
A novel compound 4-amino-5-mercapto-1,2,4-triazole was first synthesized, and its selective adsorption mechanism on the surface of chalcopyrite was comprehensively investigated using UV-vis spectra, zeta-potential, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy measurements (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and first principles calculations. The experimental and computational results consistently demonstrated that AMT would chemisorb onto the chalcopyrite surface by the formation of a five-membered chelate ring. The first principles periodic calculations further indicated that AMT would prefer to adsorb onto Cu rather than Fe due to the more negative adsorption energy of AMT on Cu in the chalcopyrite (001) surface, which was further confirmed by the coordination reaction energies of AMT-Cu and AMT-Fe based on the simplified cluster models at a higher accuracy level (UB3LYP/Def2-TZVP). The bench-scale results indicated that the selective index improved significantly when using AMT as a chalcopyrite depressant in Cu-Mo flotation separation.
Ashok, Dongamanti; Gundu, Srinivas; Aamate, Vikas Kumar; Devulapally, Mohan Gandhi
2018-04-18
A new series of triheterocycles containing indole-benzimidazole-based 1,2,3-triazole hybrids have been synthesized in good yields via a microwave-assisted click reaction. All the compounds were characterized by IR, [Formula: see text] NMR, [Formula: see text] NMR and mass spectroscopy and were evaluated for their in vitro antitubercular activity against the Mycobacterium tuberculosis H37Rv strain. Compounds 4b, 4h and 4i displayed highly potent antitubercular activity with MIC 3.125-6.25 [Formula: see text]. The antioxidant potential was evaluated using 2,2-diphenyl-1-picryl hydrazine and [Formula: see text] radical scavenging activity, and compounds 4e,4f and 4g showed excellent radical scavenging activity with [Formula: see text] values in the range of 08.50-10.05 [Formula: see text]. Furthermore, the compounds were evaluated for antimicrobial activity against numerous bacterial and fungal strains, and compounds 4b, 4c and 4h were found to be the most promising potential antimicrobial molecules with MIC 3.125-6.25 [Formula: see text].
Liquid/Liquid Interfacial Synthesis of a Click Nanosheet.
Rapakousiou, Amalia; Sakamoto, Ryota; Shiotsuki, Ryo; Matsuoka, Ryota; Nakajima, Ukyo; Pal, Tigmansu; Shimada, Rintaro; Hossain, Amran; Masunaga, Hiroyasu; Horike, Satoshi; Kitagawa, Yasutaka; Sasaki, Sono; Kato, Kenichi; Ozawa, Takeaki; Astruc, Didier; Nishihara, Hiroshi
2017-06-22
A liquid/liquid interfacial synthesis is employed, for the first time, to synthesize a covalent two-dimensional polymer nanosheet. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) between a three-way terminal alkyne and azide at a water/dichloromethane interface generates a 1,2,3-triazole-linked nanosheet. The resultant nanosheet, with a flat and smooth texture, has a maximum domain size of 20 μm and minimum thickness of 5.3 nm. The starting monomers in the organic phase and the copper catalyst in the aqueous phase can only meet at the liquid/liquid interface as a two-dimensional reaction space; this allows them to form the two-dimensional polymer. The robust triazole linkage generated by irreversible covalent-bond formation allows the nanosheet to resist hydrolysis under both acidic and alkaline conditions, and to endure pyrolysis up to more than 300 °C. The coordination ability of the triazolyl group enables the nanosheet to act as a reservoir for metal ions, with an affinity order of Pd 2+ >Au 3+ >Cu 2+ . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mondal, Tanmoy; Lavanya, A V S; Mallick, Akash; Dadmala, Tulshiram L; Kumbhare, Ravindra M; Bhadra, Utpal; Bhadra, Manika Pal
2017-06-01
Apoptosis is an important phenomenon in multi cellular organisms for maintaining tissue homeostasis and embryonic development. Defect in apoptosis leads to a number of disorders like- autoimmune disorder, immunodeficiency and cancer. 21-22 nucleotides containing micro RNAs (miRNAs/miRs) function as a crucial regulator of apoptosis alike other cellular pathways. Recently, small molecules have been identified as a potent inducer of apoptosis. In this study, we have identified novel Triazole linked 2-phenyl benzoxazole derivatives (13j and 13h) as a negative regulator of apoptosis inhibiting micro RNAs (miR-2, miR-13 and miR-14) in a well established in vivo model Drosophila melanogaster where the process of apoptosis is very similar to human apoptosis. These compounds inhibit miR-2, miR-13 and miR-14 activity at their target sites, which induce an increased caspase activity, and in turn influence the caspase dependent apoptotic pathway. These two compounds also increase the mitochondrial reactive oxygen species (ROS) level to trigger apoptotic cell death.
Saeed, Aamer; Larik, Fayaz Ali; Channar, Pervaiz Ali; Mehfooz, Haroon; Ashraf, Mohammad Haseeb; Abbas, Qamar; Hassan, Mubashir; Seo, Sung-Yum
2017-11-01
In this study, some new azomethine-triazole hybrids 5a-5l derived from N-benzoyl-L-phenylalanine were synthesized and characterized. The synthesized compounds showed first-rate, urease inhibition, and compounds 5c and 5e were found to be most effective inhibitors with 0.0137 ± 0.00082 μm and 0.0183 ± 0.00068 μm, respectively (thiourea 15.151 ± 1.27 μm). The kinetic mechanism of urease inhibition revealed the compounds 5c and 5e to be non-competitive inhibitors, whereas compounds 5d and 5j were found to be of mixed-type inhibitors. Docking studies also indicated better interaction patterns with urease enzyme. The results of enzyme inhibition, kinetic mechanism and molecular docking suggest that these compounds can serve as lead compounds in the design of more effective urease inhibitors. © 2017 John Wiley & Sons A/S.