Sample records for trickling filter process

  1. Trickling Filters. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Richwine, Reynold D.

    The textual material for a unit on trickling filters is presented in this student manual. Topic areas discussed include: (1) trickling filter process components (preliminary treatment, media, underdrain system, distribution system, ventilation, and secondary clarifier); (2) operational modes (standard rate filters, high rate filters, roughing…

  2. Fate of dissolved organic nitrogen in two stage trickling filter process.

    PubMed

    Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak

    2012-10-15

    Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Trickling Filters. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Richwine, Reynold D.

    This instructor's guide contains materials needed for teaching a two-lesson unit on trickling filters. These materials include: (1) an overview of the two lessons; (2) lesson plans; (3) lecture outline (keyed to a set of slides accompanying the unit); (4) overhead transparency masters; (5) student worksheet (with answers); and (6) two copies of a…

  4. Metropolitan Spokane Region Water Resources Study. Appendix H. Volume 1. Plan Formulation and Evaluation

    DTIC Science & Technology

    1976-01-01

    Trickling Filter Fairchild A.F.B. Trickling Filter Town of Medical Lake Lagoon Town of Fairfield Lagoon Town of Millwood Activated Sludge (Extended Aeration...sewer system is subject to high levels of in- filtration. The treatment plant has ice problems in winter, trickling filter spreading arm clogging...lagoons. There is need of a routine effluent quan- tity/quality monitoring program. Tekoa. The trickling filter plant is poorly maintained to the point

  5. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter.

    PubMed

    Kornaros, M; Lyberatos, G

    2006-08-10

    The aim of this work was to assess the effectiveness of a biological trickling filter for the treatment of wastewaters produced by a company manufacturing organic dyes and varnishes. The combined wastewater effluent was fed to a pilot-scale trickling filter in two feeding modes, continuously and as a sequencing batch reactor (SBR). The biodegradability of the diluted wastewaters that were subjected to physicochemical treatment, using Ca(OH)(2) and FeSO(4), was initially studied using a continuously operated trickling filter. The system efficiency ranged up to 60-70% for a hydraulic loading of 1.1 m(3)/m(2)day and up to 80-85% for a hydraulic loading 0.6 m(3)/m(2)day. A stable chemical oxygen demand (COD) removal efficiency of 60-70% was achieved even in the case of undiluted wastewater at a hydraulic loading of 1.1 m(3)/m(2)day. The effectiveness of biological treatment of a mixture of the company's main wastewater streams was also examined. The microorganisms developed in the trickling filter were able to efficiently remove COD levels up to 36,000 mg/L, under aerobic conditions at pH values between 5.5 and 8.0. Depending on the operating conditions of the system, about 30-60% of the total COD removal was attributed to air stripping caused by the air supply at the bottom of the filter, whereas the rest of the COD was clearly removed through biological action. The proposed biological treatment process based on a trickling filter, which was operated either continuously or even better in an SBR mode, appears as a promising pretreatment step for coping with dye manufacturing wastewaters in terms of removing a significant portion of the organic content.

  6. The Trickling Filter/Solids Contact Process: Application to Army Wastewater Plants

    DTIC Science & Technology

    1988-08-01

    technology (activated sludge and rotating biological contactors [RBC]). 3 7 For the study, the plant was to be sized at 10 mgd. Electricity purchased from...Project Costs* Estimated Cost** ($K) Trickling Rotating Filter/Solids Activated Biological Item Contact Sludge Contactor Preliminary treatment 1100 1100...basins 4500 - Rotating biological contactor reactors - 4520 Flocculator clarifiers 2000 - - Conventional secondary clarifiers 1770 1500 Dual-media

  7. Detection of Legionella-contaminated aerosols in the vicinity of a bio-trickling filter of a breeding sow facility - A pilot study.

    PubMed

    Walser, Sandra M; Brenner, Bernhard; Wunderlich, Anika; Tuschak, Christian; Huber, Stefanie; Kolb, Stefanie; Niessner, Reinhard; Seidel, Michael; Höller, Christiane; Herr, Caroline E W

    2017-01-01

    The urbanization of agricultural areas results in a reduction of distances between residential buildings and livestock farms. In the public debate, livestock farming is increasingly criticized due to environmental disturbance and odor nuisance originating from such facilities. One method to reduce odor and ammonia is by exhaust air treatment, for example, by biological exhaust air purification processes with bio-trickling filters filled with tap water. Higher temperatures in the summer time and the generation of biofilms are ideal growth conditions for Legionella. However, there are no studies on the presence of Legionella in the water of bio-trickling filters and the release of Legionella-containing aerosols. Therefore, the aim of this study was to investigate Legionella in wash water and emitted bioaerosols of a bio-trickling filter system of a breeding sow facility. For this purpose, measurements were carried out using a cyclone sampler. In addition, samples of wash water were taken. Legionella were not found by culture methods. However, using molecular biological methods, Legionella spp. could be detected in wash water as well as in bioaerosol samples. With antibody-based methods, Legionella pneumophila were identified. Further studies are needed to investigate the environmental health relevance of Legionella-containing aerosols emitted by such exhaust air purification systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. PERFORMANCE OF TRICKLING FILTER PLANTS: RELIABILITY, STABILITY, VARIABILITY

    EPA Science Inventory

    Effluent quality variability from trickling filters was examined in this study by statistically analyzing daily effluent BOD5 and suspended solids data from 11 treatment plants. Summary statistics (mean, standard deviation, etc.) were examined to determine the general characteris...

  9. METHODS FOR IMPROVEMENT OF TRICKLING FILTER PLANT PERFORMANCE. PART II. CHEMICAL ADDITION

    EPA Science Inventory

    An experimental program to explore potential methods for removing phosphorus and generally enhancing trickling filter plant performance was conducted at the Mason Farm Wastewater Treatment Plant, Chapel Hill, North Carolina. Preliminary investigations included jar testing with se...

  10. Biotreatment of Petrochemical Wastewater: A Case Study from Northern Tunisia.

    PubMed

    Jemli, Meryem; Zaghden, Hatem; Rezgi, Fatma; Kchaou, Sonia; Aloui, Fathi; Sayadi, Sami

    2017-03-01

      A full-scale study has been conducted to assess the bioaugmentation efficiency of trickling filter process to treat petrochemical wastewater from a lubricant industry recycling waste oils. During 45 weeks, the organic loading rate (OLR) in the trickling filter was increased stepwise from 0.9 to 4 kg of chemical oxygen demand (COD)/(m3·day) at the end of the upgrading period as the flow rate (FR) reached the value of 30 m3/day. The removal, obtained in terms of percentage, for COD ranged from 60 to 84.5 and greater than 98 for total n-alkane (TNA), while those of total kjeldahl nitrogen (TKN) and total phosphor (TP) were about 32 and 55, respectively. The analytical profile index (API) of trickling biofilm has confirmed that 5 strains are closely related to Acinobacter junii, Stenotrophomonas maltophilia, Vibrio vulnificus, Vibrio metschnikovi, Pseudomona slulzeri and Trichosporon spp2.

  11. Trickling filter for urea and bio-waste processing - dynamic modelling of nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Zhukov, Anton; Hauslage, Jens; Tertilt, Gerin; Bornemann, Gerhild

    Mankind’s exploration of the solar system requires reliable Life Support Systems (LSS) enabling long duration manned space missions. In the absence of frequent resupply missions, closure of the LSS will play a very important role and its maximisation will to a large extent drive the selection of appropriate LSS architectures. One of the significant issues on the way to full closure is to effectively utilise biological wastes such as urine, inedible biomass etc. A very promising concept of biological waste reprocessing is the use of trickling filters which are currently being developed and investigated by DLR, Cologne, Germany. The concept is called Combined Regenerative Organic-Food Production (C.R.O.P.) and is based on the microbiological treatment of biological wastes and reprocessing them into aqueous fertilizer which can directly be used in a greenhouse for food production. Numerous experiments have been and are being conducted by DLR in order to fully understand and characterize the process. The human space exploration group of the Technical University of Munich (TUM) in cooperation with DLR has started to establish a dynamic model of the trickling filter system to be able to assess its performance on the LSS level. In the first development stage the model covers the nitrogen cycle enabling to simulate urine processing. This paper describes briefly the C.R.O.P. concept and the status of the trickling filter model development. The model is based on enzyme-catalyzed reaction kinetics for the fundamental microbiological reaction chain and is created in MATLAB. Verification and correlation of the developed model with experiment results has been performed. Several predictive studies for batch sequencing behavior have been performed, demonstrating a good capability of C.R.O.P. concept to be used in closed LSS. Achieved results are critically discussed and way forward is presented.

  12. Effect of organic nitrogen concentration on the efficiency of trickling filters

    NASA Astrophysics Data System (ADS)

    Kopeć, Łukasz; Drewnowski, Jakub; Fernandez-Morales, F. J.

    2018-02-01

    The study was conducted in Poland at six selected wastewater treatment plants (WWTP) based on the trickling filters Bioclere® technology. The aim of the study was to find the relationship between the influent organic nitrogen concentration and the purification efficiency expressed as effluent COD concentration. In the tests performed, the COD to BOD5 relationship was close to 2 and the ratio of BOD5 to TN was lower than 4. The research indicated that this specific chemical composition of raw wastewater causes appearance of filamentous bacteria on the surface of trickling filter filling and strongly affect the effluent quality.

  13. Advanced Trickling Filters. Training Module 2.112.4.77.

    ERIC Educational Resources Information Center

    Layton, Ronald F.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation and maintenance of a trickling filter wastewater treatment plant. Included are objectives, instructor guides, student handouts and transparency masters. This is the third level of a three module series and considers…

  14. Basic Trickling Filters. Training Module 2.110.2.77.

    ERIC Educational Resources Information Center

    Layton, Ronald F.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation and maintenance of a trickling filter wastewater treatment system. Included are objectives, instructor guides, student handouts and transparency masters. This is the first level of a three module series and considers the…

  15. Intermediate Trickling Filters. Training Module 2.111.3.77.

    ERIC Educational Resources Information Center

    Layton, Ronald F.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation and maintenance of a trickling filter wastewater treatment plant. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series and considers types…

  16. Particle size distribution in effluent of trickling filters and in humus tanks.

    PubMed

    Schubert, W; Günthert, F W

    2001-11-01

    Particles and aggregates from trickling filters must be eliminated from wastewater. Usually this happens through sedimentation in humus tanks. Investigations to characterize these solids by way of particle size measurements, image analysis and particle charge measurements (zeta potential) are made within the scope of Research Center for Science and Technology "Fundamentals of Aerobic biological wastewater treatment" (SFB 411). The particle size measuring results given within this report were obtained at the Ingolstadt wastewater treatment plant, Germany, which served as an example. They have been confirmed by similar results from other facilities. Particles flushed out from trickling filters will be partially destroyed on their way to the humus tank. A large amount of small particles is to be found there. On average 90% of the particles are smaller than 30 microm. Particle size plays a decisive role in the sedimentation behaviour of solids. Small particles need sedimentation times that cannot be provided in settling tanks. As a result they cause turbidity in the final effluent. Therefore quality of sewage discharge suffers, and there are hardly advantages of the fixed film reactor treatment compared to the activated sludge process regarding sedimentation behaviour.

  17. Rain events and their effect on effluent quality studied at a full scale activated sludge treatment plant.

    PubMed

    Wilén, B M; Lumley, D; Mattsson, A; Mino, T

    2006-01-01

    The effect of rain events on effluent quality dynamics was studied at a full scale activated sludge wastewater treatment plant which has a process solution incorporating pre-denitrification in activated sludge with post-nitrification in trickling filters. The incoming wastewater flow varies significantly due to a combined sewer system. Changed flow conditions have an impact on the whole treatment process since the recirculation to the trickling filters is set by the hydraulic limitations of the secondary settlers. Apart from causing different hydraulic conditions in the plant, increased flow due to rain or snow-melting, changes the properties of the incoming wastewater which affects process performance and effluent quality, especially the particle removal efficiency. A comprehensive set of on-line and laboratory data were collected and analysed to assess the impact of rain events on the plant performance.

  18. The determination of nonylphenol and its precursors in a trickling filter wastewater treatment process.

    PubMed

    Petrie, Bruce; McAdam, Ewan J; Whelan, Mick J; Lester, John N; Cartmell, Elise

    2013-04-01

    An ultra performance liquid chromatography method coupled to a triple quadrupole mass spectrometer was developed to determine nonylphenol and 15 of its possible precursors (nonylphenol ethoxylates and nonylphenol carboxylates) in aqueous and particulate wastewater matrices. Final effluent method detection limits for all compounds ranged from 1.4 to 17.4 ng l(-1) in aqueous phases and from 1.4 to 39.4 ng g(-1) in particulate phases of samples. The method was used to measure the performance of a trickling filter wastewater treatment works, which are not routinely monitored despite their extensive usage. Relatively good removals of nonylphenol were observed over the biological secondary treatment process, accounting for a 53 % reduction. However, only an 8 % reduction in total nonylphenolic compound load was observed. This was explained by a shortening in ethoxylate chain length which initiated production of shorter polyethoxylates ranging from 1 to 4 ethoxylate units in length in final effluents. Modelling the possible impact of trickling filter discharge demonstrated that the nonylphenol environmental quality standard may be exceeded in receiving waters with low dilution ratios. In addition, there is a possibility that the EQS can be exceeded several kilometres downstream of the mixing zone due to the biotransformation of readily degradable short-chained precursors. This accentuates the need to monitor 'non-priority' parent compounds in wastewater treatment works since monitoring nonylphenol alone can give a false indication of process performance. It is thus recommended that future process performance monitoring and optimisation is undertaken using the full suite of nonylphenolic moieties which this method can facilitate.

  19. Use of shredded tire chips and tire crumbs as packing media in trickling filter systems for landfill leachate treatment.

    PubMed

    Mondal, B; Warith, M A

    2008-08-01

    Scrap tire stockpiles are breeding grounds for pests, mosquitoes and west Nile viruses and, thereby, become a potential health risk. This experimental study was carried out in six stages to determine the suitability of shredded tire materials in a trickling filter system to treat landfill leachate. Biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and NH3-N removals were obtained in the range of 81 to 96%, 76 to 90% and 15 to 68%, respectively. The removal of organics appears to be largely related to total dissolved solids reduction in leachate. A sudden increase, from time to time, in organic content of effluent could be attributed to biomass sloughing and clogging in the trickling filters. However, tire crumbs exhibited more consistent organics removal throughout the experimental program. Due to the high surface area of shredded tire chips and crumbs, a layer of biomass, 1-2 mm thick, was attached to them and was sloughed off at an interval of 21 days. Apart from that, as shredded tires are comparatively cheaper than any other usable packing material, tire chips and tire crumbs appeared to be quite promising as packing media in trickling filters for landfill leachate treatment.

  20. Determination of dairy wastewater treatability by bio-trickling filter packed with lava rocks - case study PEGAH dairy factory.

    PubMed

    Mehrdadi, N; Bidhendi, G R Nabi; Shokouhi, M

    2012-01-01

    This paper investigates the effectiveness of a biological trickling filter for the treatment of wastewaters produced by a company manufacturing dairy products. First a bio-trickling column with a height of 150 cm was packed with lava rocks from north mountain of Tehran. It operates with the recirculation of liquid through the packing. In order to startup the pilot scale, steady state condition was gained by pumping activated sludge and dairy wastewater for 23 days. Afterwards, dairy wastewater was added to liquid tank for treatment. Hydraulic retention time (HRT) of treatment decreases from 5 days to 1 day then at HRT of 12, 8, 7, 6 and 4 h. Results show that the average chemical oxygen demand (COD) decreased from 2,750 to 98 mg/L at HRT of 7 h and efficiency of TKN removal was more than 70%. The microorganisms developed in the bio-trickling filter were able to efficiently remove COD levels up to 2,750 mg/L, under aerobic conditions at pH values between 6.8 and 7.2 under low temperature condition between 10 and 13 °C.

  1. Adequate model complexity for scenario analysis of VOC stripping in a trickling filter.

    PubMed

    Vanhooren, H; Verbrugge, T; Boeije, G; Demey, D; Vanrolleghem, P A

    2001-01-01

    Two models describing the stripping of volatile organic contaminants (VOCs) in an industrial trickling filter system are developed. The aim of the models is to investigate the effect of different operating conditions (VOC loads and air flow rates) on the efficiency of VOC stripping and the resulting concentrations in the gas and liquid phases. The first model uses the same principles as the steady-state non-equilibrium activated sludge model Simple Treat, in combination with an existing biofilm model. The second model is a simple mass balance based model only incorporating air and liquid and thus neglecting biofilm effects. In a first approach, the first model was incorporated in a five-layer hydrodynamic model of the trickling filter, using the carrier material design specifications for porosity, water hold-up and specific surface area. A tracer test with lithium was used to validate this approach, and the gas mixing in the filters was studied using continuous CO2 and O2 measurements. With the tracer test results, the biodegradation model was adapted, and it became clear that biodegradation and adsorption to solids can be neglected. On this basis, a simple dynamic mass balance model was built. Simulations with this model reveal that changing the air flow rate in the trickling filter system has little effect on the VOC stripping efficiency at steady state. However, immediately after an air flow rate change, quite high flux and concentration peaks of VOCs can be expected. These phenomena are of major importance for the design of an off-gas treatment facility.

  2. Biological Filters.

    ERIC Educational Resources Information Center

    Klemetson, S. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. The review is concerned with biological filters, and it covers: (1) trickling filters; (2) rotating biological contractors; and (3) miscellaneous reactors. A list of 14 references is also presented. (HM)

  3. Process Control Manual for Aerobic Biological Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This Environmental Protection Agency (EPA) publication is an operations manual for activated sludge and trickling filter wastewater treatment facilities. The stated purpose of the manual is to provide an on-the-job reference for operators of these two types of treatment plants. The overall objective of the manual is to aid the operator in…

  4. Design and performance of a trickling air biofilter for chlorobenzene and o-dichlorobenzene vapors.

    PubMed Central

    Oh, Y S; Bartha, R

    1994-01-01

    From contaminated industrial sludge, two stable multistrain microbial enrichments (consortia) that were capable of rapidly utilizing chlorobenzene and o-dichlorobenzene, respectively, were obtained. These consortia were characterized as to their species composition, tolerance range, and activity maxima in order to establish and maintain the required operational parameters during their use in biofilters for the removal of chlorobenzene contaminants from air. The consortia were immobilized on a porous perlite support packed into filter columns. Metered airstreams containing the contaminant vapors were partially humidified and passed through these columns. The vapor concentrations prior to and after biofiltration were measured by gas chromatography. Liquid was circulated concurrently with the air, and the device was operated in the trickling air biofilter mode. The experimental arrangement allowed the independent variation of liquid flow, airflow, and solvent vapor concentrations. Bench-scale trickling air biofilters removed monochlorobenzene, o-dichlorobenzene, and their mixtures at rates of up to 300 g of solvent vapor h(-1) m(-3) filter volume. High liquid recirculation rates and automated pH control were critical for stable filtration performance. When the accumulating NaCl was periodically diluted, the trickling air biofilters continued to remove chlorobenzenes for several months with no loss of activity. The demonstrated high performance and stability of the described trickling air biofilters favor their use in industrial-scale air pollution control. PMID:8085815

  5. Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas

    USGS Publications Warehouse

    Lee, C.J.; Rasmussen, T.J.

    2006-01-01

    Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value < 0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000??m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value = 0.03), caffeine (p-value = 0.01), and tris(2-butoxyethyl) phosphate (p-value < 0.01) than those collected downstream from more rural watersheds.

  6. Test Plan for Methanotrophic Bioreactor at Savannah River Site-TNX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, C.J.

    1994-10-04

    The primary purpose of this project is to demonstrate the feasibility and practicality of operating a methanotrophic mobile trickle filter bioreactor (MMB) unit to effectively reduce or eliminate trichloroethylene (TCE) and associated hydrocarbons from contaminated groundwater. The two-column trickle filter system can process 1.67 gallons per minute (gpm) of contaminated groundwater. During this project, the pilot system will evaluate, optimize, and demonstrate methanotrophic treatment technology (MTT). The mobile system will receive a 1--4% methane to air mixture for stimulating the methanotrophic TCE degrading bacteria, thereby increasing the rates of degradation of these contaminants. This project will also evaluate the efficacymore » of different bacteria for degrading TCE for use in the system at the laboratory-scale sample groundwater monitoring wells at TNX and set up the system for continued operation. The trickle filter system may be used to inexpensively treat other small-scale organic waste streams at SRS after the initial start-up. The MTT was demonstrated as an effective and efficient method of degrading TCE in the laboratory and during a field-scale in situ demonstration for degrading TCE in a groundwater plume at SRS. The methanotrophic bacteria increase significantly in population numbers and in the production of methane monooxygenase (MMO), an extremely powerful oxidizer. MMO was demonstrated as effective in oxidizing TCE and other recalcitrant compounds in laboratory studies. In the presence of MMO, TCE is oxidized to TCE-epoxide, which breaks down spontaneously into simple, easily degraded, daughter compounds. The system will receive a 1--4% methane to air mixture, which will effectively grow and maintain the methanotrophic bacteria that will degrade TCE. This demonstration will have broad applications to bioremediating contaminated groundwater systems where in situ bioremediation is not practical.« less

  7. Treatment of table olive washing water using trickling filters, constructed wetlands and electrooxidation.

    PubMed

    Tatoulis, Triantafyllos; Stefanakis, Alexandros; Frontistis, Zacharias; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Mantzavinos, Dionissios; Vayenas, Dimitrios V

    2017-01-01

    The production of table olives is a significant economic activity in Mediterranean countries. Table olive processing generates large volumes of rinsing water that are characterized by high organic matter and phenol contents. Due to these characteristics, a combination of more than one technology is imperative to ensure efficient treatment with low operational cost. Previously, biological filters were combined with electrooxidation to treat table olive washing water. Although this combination was successful in reducing pollutant loads, its cost could be further reduced. Constructed wetlands could be an eligible treatment method for integrated table olive washing water treatment as they have proved tolerant to high organic matter and phenol loads. Two pilot-scale horizontal subsurface constructed wetlands, one planted and one unplanted, were combined with a biological filter and electrooxidation over a boron-doped diamond anode to treat table olive washing water. In the biological filter inlet, chemical oxygen demand (COD) concentrations ranged from 5500 to 15,000 mg/L, while mean COD influent concentration in the constructed wetlands was 2800 mg/L. The wetlands proved to be an efficient intermediate treatment stage, since COD removal levels for the planted unit reached 99 % (mean 70 %), while the unplanted unit presented removal rates of around 65 %. Moreover, the concentration of phenols in the effluent was typically below 100 mg/L. The integrated trickling filter-constructed wetland-electrooxidation treatment system examined here could mineralize and decolorize table olive washing water and fully remove its phenolic content.

  8. Protection of biomass from snail overgrazing in a trickling filter using sponge media as a biomass carrier: down-flow hanging sponge system.

    PubMed

    Onodera, Takashi; Syutsubo, Kazuaki; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Mizuochi, Motoyuki; Harada, Hideki

    2015-01-01

    This study investigated down-flow hanging sponge (DHS) technology as a promising trickling filter (TF) using sponge media as a biomass carrier with an emphasis on protection of the biomass against macrofauna overgrazing. A pilot-scale DHS reactor fed with low-strength municipal sewage was operated under ambient temperature conditions for 1 year at a sewage treatment plant in Bangkok, Thailand. The results showed that snails (macrofauna) were present on the surface of the sponge media, but could not enter into it, because the sponge media with smaller pores physically protected the biomass from the snails. As a result, the sponge media maintained a dense biomass, with an average value of 22.3 gVSS/L sponge (58.1 gTSS/L sponge) on day 370. The snails could graze biomass on the surface of the sponge media. The DHS reactor process performance was also successful. The DHS reactor requires neither chemical treatments nor specific operations such as flooding for snail control. Overall, the results of this study indicate that the DHS reactor is able to protect biomass from snail overgrazing.

  9. Life cycle assessment comparison of activated sludge, trickling filter, and high-rate anaerobic-aerobic digestion (HRAAD).

    PubMed

    Postacchini, Leonardo; Lamichhane, Krishna M; Furukawa, Dennis; Babcock, Roger W; Ciarapica, F E; Cooney, Michael J

    2016-01-01

    This paper conducts a comparative assessment of the environmental impacts of three methods of treating primary clarifier effluent in wastewater treatment plants (WWTPs) through life cycle assessment methodology. The three technologies, activated sludge (AS), high rate anaerobic-aerobic digestion (HRAAD), and trickling filter (TF), were assessed for treatment of wastewater possessing average values of biochemical oxygen demand and total suspended solids of 90 mg L(-1) and 70 mg L(-1), respectively. The operational requirements to process the municipal wastewater to effluent that meets USEPA regulations have been calculated. The data for the AS system were collected from the East Honolulu WWTP (Hawaii, USA) while data for the HRAAD system were collected from a demonstration-scale system at the same plant. The data for the TF system were estimated from published literature. Two different assessment methods have been used in this study: IMPACT 2002+ and TRACI 2. The results show that TF had the smallest environmental impacts and that AS had the largest, while HRAAD was in between the two but with much reduced impacts compared with AS. Additionally, the study shows that lower sludge production is the greatest advantage of HRAAD for reducing environmental impacts compared with AS.

  10. Cold climate performance analysis of on-site domestic wastewater treatment systems.

    PubMed

    Williamson, Eric

    2010-06-01

    Household on-site septic systems with secondary wastewater treatment in Anchorage, Alaska, were sampled and analyzed for performance parameters during the winter to spring months. System types included intermittent dosing sand filters (ISF), three types of recirculating trickling filters (RTF), and suspended-growth aeration tanks. Total nitrogen from the trickling filter and aeration tank effluent was fairly uniform, at approximately 30 mg/L. Total suspended solids (TSS) means were mostly less than 15 mg/L. The 5-day biochemical oxygen demand (BODs) showed considerable variability, with means ranging from 9.2 mg/ L for ISFs up to 39.5 mg/L for one type of RTF, even though this type has shown excellent results in several test programs. The data suggested that effluent temperature within the sample range had almost no effect on effluent concentrations of BOD5 or TSS and only a small effect on the removal of total nitrogen. Non-climatic factors were probably of equal importance to treatment results.

  11. The application of moving bed biofilm reactor to denitrification process after trickling filters.

    PubMed

    Kopec, Lukasz; Drewnowski, Jakub; Kopec, Adam

    2016-12-01

    The paper presents research of a prototype moving bed biofilm reactor (MBBR). The device was used for the post-denitrification process and was installed at the end of a technological system consisting of a septic tank and two trickling filters. The concentrations of suspended biomass and biomass attached on the EvU Perl moving bed surface were determined. The impact of the external organic carbon concentration on the denitrification rate and efficiency of total nitrogen removal was also examined. The study showed that the greater part of the biomass was in the suspended form and only 6% of the total biomass was attached to the surface of the moving bed. Abrasion forces between carriers of the moving bed caused the fast stripping of attached microorganisms and formation of flocs. Thanks to immobilization of a small amount of biomass, the MBBR was less prone to leaching of the biomass and the occurrence of scum and swelling sludge. It was revealed that the maximum rate of denitrification was an average of 0.73 gN-NO 3 /gDM·d (DM: dry matter), and was achieved when the reactor was maintained in external organic carbon concentration exceeding 300 mgO 2 /dm 3 chemical oxygen demand. The reactor proved to be an effective device enabling the increase of total nitrogen removal from 53.5% to 86.0%.

  12. Safety and the Human Factor.

    ERIC Educational Resources Information Center

    Smith, Ann

    1982-01-01

    Discusses four elements of safety programs: (1) safety training; (2) safety inspections; (3) accident investigations; and (4) protective safety equipment. Also discusses safety considerations in water/wastewater treatment facilities focusing on falls, drowning hazards, trickling filters, confined space entry, collection/distribution system safety,…

  13. Biofiltration of solvent vapors from air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Young-sook.

    1993-01-01

    For various industrial solvent vapors, biofiltration promises to offer a cost-effective emission control technology. Exploiting the full potential of this technology will help attain the goals of the Clean Air Act Amendments of 1990. Concentrating on large volumes of volatile industrial solvents, stable multicomponent microbial enrichments capable of growing a mineral medium with solvent vapors as their only source of carbon and energy were obtained from soil and sewage sludge. These consortia were immobilized on an optimized porous solid support (ground peat moss and perlite). The biofilter material was packed in glass columns connected to an array of pumps andmore » flow meters that allowed the independent variation of superficial velocity and solvent vapor concentrations. In various experiments, single solvents, such as methanol, butanol, acetonitrile, hexane and nitrobenzene, and solvent mixtures, such as benzene-toluene-xylene (BTX) and chlorobenzene-o-dichlorobenzene (CB/DCB) were biofiltered with rates ranging from 15 to334 g solvent removed per m[sup 3] filter volume /h. Pressure drops were low to moderate (0-10 mmHg/m) and with periodic replacement of moisture, the biofiltration activity could be maintained for a period of several months. The experimental data on methanol biofiltration were subjected to mathematical analysis and modeling by the group of Dr. Baltzis at NJIT for a better understanding and a possible scale up of solvent vapor biofilters. In the case of chlorobenzenes and nitrobenzene, the biofilter columns had to be operated with water recirculation in a trickling filter mode. To prevent inactivation of the trickling filter by acidity during CB/DCB removal, pH control was necessary, and the removal rate of CB/DCB was strongly influenced by the flow rate of the recyling water. Nitrobenzene removal in a trickling filter did not require pH control, since the nitro group was reduced and volatilized as ammonia.« less

  14. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part II--Management and operating issues.

    PubMed

    Sweeney, D G; O'Brien, M J; Cromar, N J; Fallowfield, H J

    2005-01-01

    Bolivar Wastewater Treatment Plant (WWTP) was originally commissioned with trickling filter secondary treatment, followed by waste stabilisation pond (WSP) treatment and marine discharge. In 1999, a dissolved air flotation/filtration (DAFF) plant was commissioned to treat a portion of the WSP effluent for horticultural reuse. In 2001, the trickling filters were replaced with activated sludge treatment. A shift in WSP ecology became evident soon after this time, characterised by a statistically significant reduction in algal counts in the pond effluent, and increased variability in algal counts and occasional population crashes in the ponds. While the photosynthetic capacity of the WSPs has been reduced, the concomitant reduction in organic loading has meant that the WSPs have not become overloaded. As a result of the improvement in water quality leaving the ponds, significant cost savings and improved product water quality have been realised in the subsequent DAFF treatment stage. A number of operating issues have arisen from the change, however, including the re-emergence of a midge fly nuisance at the site. Control of midge flies using chemical spraying has negated the cost savings realised in the DAFF treatment stage. While biomanipulation of the WSP may provide a less aggressive method of midge control, this case demonstrates the difficulty of predicting in advance all ramifications of a retrospective process change.

  15. Sludge stabilization through aerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, R.B.; Smith, D.G.; Bennett, E.R.

    1979-10-01

    The aerobic digestion process with certain modifications is evaluated as an alternative for sludge processing capable of developing a product with characteristics required for land application. Environmental conditions, including temperature, solids concentration, and digestion time, that affect the aerobic digestion of a mixed primary sludge-trickling filter humus are investigated. Variations in these parameters that influence the characteristics of digested sludge are determined, and the parameters are optimized to: provide the maximum rate of volatile solids reduction; develop a stable, nonodorous product sludge; and provide the maximum rate of oxidation of the nitrogenous material present in the feed sludge. (3 diagrams,more » 9 graphs, 15 references, 3 tables)« less

  16. 40 CFR 35.2030 - Facilities planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2030 Facilities planning. (a... ponds, trickling filters, oxidation ditches, or overland-flow land treatment; and for unsewered portions... a schedule the State accepts and such schedule is inserted as a special condition of the grant...

  17. Transformation of molecular weight distributions of dissolved organic carbon and UV-absorbing compounds at full-scale wastewater-treatment plants.

    PubMed

    Esparza-Soto, Mario; Fox, Peter; Westerhoff, Paul

    2006-03-01

    The molecular-weight distribution (MWD) of wastewater dissolved-organic carbon (DOC) was determined in samples from seven full-scale wastewater-treatment plants (WWTPs) that use different biological treatments (air activated sludge [air-AS], pure-oxygen AS [O2-AS], and trickling filters). The research objective was to determine how different biological treatments influenced the MWD of wastewater DOC. Primary sedimentation effluent DOC from most of the WWTPs exhibited a skewed distribution toward the low-molecular-weight fraction (MWF) (40 to 50%, < 0.5 K Daltons [KDa]). The Air-AS effluent DOC exhibited a centrally clustered distribution, with the majority of DOC in the intermediate MWF (0.5 to 3 KDa). The O2-AS effluent DOC exhibited a skewed distribution toward the high MWF (> 3 KDa). The removal of DOC by air- and O2-AS bacteria followed trends predicted by a macromolecule degradation model. Trickling-filter effluent DOC exhibited a skewed distribution toward the high MWF (50% DOC, > 3 KDa).

  18. [Reduction of livestock-associated methicillin-resistant staphylococcus aureus (LA-MRSA) in the exhaust air of two piggeries by a bio-trickling filter and a biological three-step air cleaning system].

    PubMed

    Clauss, Marcus; Schulz, Jochen; Stratmann-Selke, Janin; Decius, Maja; Hartung, Jörg

    2013-01-01

    "Livestock-associated" Methicillin-resistent Staphylococcus aureus (LA-MRSA) are frequently found in the air of piggeries, are emitted into the ambient air of the piggeries and may also drift into residential areas or surrounding animal husbandries.. In order to reduce emissions from animal houses such as odour, gases and dust different biological air cleaning systems are commercially available. In this study the retention efficiencies for the culturable LA-MRSA of a bio-trickling filter and a combined three step system, both installed at two different piggeries, were investigated. Raw gas concentrations for LA-MRSA of 2.1 x 10(2) cfu/m3 (biotrickling filter) and 3.9 x 10(2) cfu/m3 (three step system) were found. The clean gas concentrations were in each case approximately one power of ten lower. Both systems were able to reduce the number of investigated bacteria in the air of piggeries on average about 90%. The investigated systems can contribute to protect nearby residents. However, considerable fluctuations of the emissions can occur.

  19. Controlled biomass formation and kinetics of toluene degradation in a bioscrubber and in a reactor with a periodically moved trickle-bed.

    PubMed

    Wübker, S M; Laurenzis, A; Werner, U; Friedrich, C

    1997-08-20

    The kinetics of degradation of toluene from a model waste gas and of biomass formation were examined in a bioscrubber operated under different nutrient limitations with a mixed culture. The applicability of the kinetics of continuous cultivation of the mixed culture was examined for a special trickle-bed reactor with a periodically moved filter bed. The efficiency of toluene elimination of the bioscrubber was 50 to 57% and depended on the toluene mass transfer as evident from a constant productivity of 0.026 g dry cell weight/L . h over the dilution rate. Under potassium limitation the biomass productivity was reduced by 60% to 0.011 g dry cell weight/L . h at a dilution rate of 0.013/h. Conversely, at low dilution rates the specific toluene degradation rates increased. Excess biomass in a trickle-bed reactor causes reduction of interfacial area and mass transfer, and increase in pressure drop. To avoid these disadvantages, the trickle-bed was moved periodically and biomass was removed with outflowing medium. The concentration of steady state biomass fixed on polyamide beads decreased hyperbolically with the dilution rate. Also, the efficiency of toluene degradation decreased from 72 to 56% with increasing dilution rate while the productivity increased. Potassium limitation generally caused a reduction in biomass, productivity, and yield while the specific degradation increased with dilution rate. This allowed the application of the principles of the chemostat to the trickle-bed reactor described here, for toluene degradation from waste gases. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 686-692, 1997.

  20. 40 CFR 35.2036 - Design/build project grants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2036 Design/build...) project grant provided that: (1) The proposed treatment works has an estimated total cost of $8 million or less; (2) The proposed treatment works is an aerated lagoon, trickling filter, waste stabilization pond...

  1. Trust in direct leaders and top leaders: A trickle-up model.

    PubMed

    Fulmer, C Ashley; Ostroff, Cheri

    2017-04-01

    Low levels of employee trust in top leaders pose challenges to organizations with respect to retention, performance, and profits. This research examines how trust in top leaders can be fostered through the relationships individuals have with their direct leaders. We propose a trickle-up model whereby trust in direct leaders exerts an upward influence on trust in top leaders. Drawing on the group value model, we predict that direct leaders' procedural justice serves as the key mechanism in facilitating the trickle-up process. Further, this process should be particularly strong for employees high on vertical collectivism, and the trickled-up trust in top leaders should exert a stronger impact on employees' overall performance in the organization than trust in direct leaders. Multiphase and multisource data from 336 individuals support these hypotheses. The findings advance our understanding of trust and leadership by highlighting that trust in leaders at different levels does not form independently and that trust in leaders trickles up across hierarchical levels. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility

    PubMed Central

    Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988

  3. Diversity of microbial communities correlated to physiochemical parameters in a digestion basin of a zero-discharge mariculture system.

    PubMed

    Cytryn, Eddie; Gelfand, Ilya; Barak, Yoram; van Rijn, Jaap; Minz, Dror

    2003-01-01

    Bacterial community structure and physiochemical parameters were examined in a sedimentation basin of a zero-discharge mariculture system. The system consisted of an intensively stocked fish basin from which water was recirculated through two separate treatment loops. Surface water from the basin was pumped over a trickling filter in one loop while bottom-water was recirculated through a sedimentation basin followed by a fluidized bed reactor in the other. Ammonia oxidation to nitrate in the trickling filter and organic matter digestion together with nitrate reduction in the sedimentation basin and fluidized bed reactor, allowed zero-discharge operation of the system. Relatively high concentrations of oxygen, nitrate, sulphate and organic matter detected simultaneously in the digestion basin suggested the potential for a wide range of microbially-mediated transformation processes. In this study, physiochemical parameters were correlated to bacterial diversity and distribution in horizontal and vertical profiles within this basin in an effort to obtain a basic understanding of the chemical and microbial processes in this system. Chemical activity and microbial diversity, the latter measured by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR) amplified 16S rDNA fragments, were higher in the sludge layer than in the overlying aqueous layer of the basin. Chemical parameters in sludge samples close to the basin inlet suggested enhanced microbial activity relative to other sampling areas with evidence of both nitrate and sulphate reduction. Four of the nine DGGE bands identified in this zone were affiliated with the Bacteroidetes phylum. Detected sequences closely related to sequences of organisms involved in the sulphur cycle included Desulfovibrio, Dethiosulfovibrio and apparent sulphur oxidizers from the gamma-proteobacteria. In addition, a number of sequences from the beta and alpha-proteobacteria were identified.

  4. Nitrogen Removal in Cold Regions Trickling Filter Systems.

    DTIC Science & Technology

    1986-02-01

    Laboratory Internal Report 850 (unpublished). Ruffler, P.J., W.C. Boyle and J. Kleinschmidt (1981) Short term acute bio- assays to evaluate amonia ...for balance of test period. ,.5..-.’- -. . 381 S- . - - " 5-" -’.5- ~~38 :. Table A3. CREEL pilot studies; amonia data. Amouia concentration (gL

  5. Performance of system consisting of vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of rural wastewater.

    PubMed

    Zhang, Yi; Cheng, Yan; Yang, Chunping; Luo, Wei; Zeng, Guangming; Lu, Li

    2015-10-01

    In order to improve nitrogen removal for rural wastewater, a novel two-stage hybrid system, consisting of a vertical flow trickling filter (VFTF) and a horizontal flow multi-soil-layering (HFMSL) bioreactor was developed. The performance of the apparatus was observed under various carbon-nitrogen ratios and water spraying frequencies separately. The maximum removal efficiency of total nitrogen (TN) for the hybrid system was 92.8% while the removal rates of CODCr, ammonium (NH4(+)-N), and total phosphorus (TP) were 94.1%, 96.1%, 92.0% respectively, and the corresponding effluent concentrations were 3.61, 21.20, 1.91, and 0.33 mg L(-1). The horizontal flow mode for MSL led the system to denitrifying satisfactorily as it ensured relatively long hydraulic retention time (HRT), ideal anoxic condition and adequate organic substrates supply. Also, higher water spraying frequency benefited intermittent feeding system for pollutants removal. Shock loading test indicated that the hybrid system could operate well even at hydraulic shock loadings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Nitrogen and Phosphorus Removal from Wastewater Treatment Plant Effluent via Bacterial Sulfate Reduction in an Anoxic Bioreactor Packed with Wood and Iron

    PubMed Central

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko

    2014-01-01

    We investigated the removal of nitrogen and phosphate from the effluent of a sewage treatment plant over a long-term operation in bioreactors packed with different combinations of wood and iron, with a trickling filter packed with foam ceramics for nitrification. The average nitrification rate in the trickling filter was 0.17 kg N/m3∙day and remained at 0.11 kg N/m3∙day even when the water temperature was below 15 °C. The denitrification and phosphate removal rates in the bioreactor packed with aspen wood and iron were higher than those in the bioreactor packed with cedar chips and iron. The bioreactor packed with aspen wood and iron continued to remove nitrate and phosphate for >1200 days of operation. The nitrate removal activity of a biofilm attached to the aspen wood from the bioreactor after 784 days of operation was 0.42 g NO3-N/kg dry weight wood∙ day. There was no increase in the amount of dissolved organic matter in the outflow from the bioreactors. PMID:25247426

  7. Performance of double-layer biofilter packed with coal fly ash ceramic granules in treating highly polluted river water.

    PubMed

    Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu

    2012-09-01

    To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam.

    PubMed

    Fernández, Maikel; Ramírez, Martín; Gómez, José Manuel; Cantero, Domingo

    2014-01-15

    Biogas biodesulfurization by an anoxic biotrickling filter packed with open pore polyurethane foam at the laboratory scale (packed volume 2.4L) has been studied. The biotrickling system was operated for 620 days with biogas supplied continuously and two nitrate feeding regimes were tested (manual and programmed). Biomass immobilization was carried out under the manual nitrate feeding regime and a study was then carried out on the effects on removal efficiency of the following parameters: nitrate source, H2S inlet load, nitrate concentration, sulfate accumulation, temperature, pH and trickling liquid velocity. The effect of increased H2S inlet load was studied under the programmed nitrate feeding regime. The results show that a removal efficiency of 99% can be obtained when working under the following conditions: inlet loads below 130gSm(-3)h(-1), a programmed nitrate feeding system, temperature of 30°C, sulfate concentration below 33gL(-1), a pH between 7.3 and 7.5, and a trickling liquid velocity higher than 4.6mh(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control

    PubMed Central

    Gabriel, David; Deshusses, Marc A.

    2003-01-01

    Biological treatment is a promising alternative to conventional air-pollution control methods, but thus far biotreatment processes for odor control have always required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chemical scrubber to a biological trickling filter and showed that effective treatment of hydrogen sulfide (H2S) in the converted scrubber was possible even at gas contact times as low as 1.6 s. That is 8–20 times shorter than previous biotrickling filtration reports and comparable to usual contact times in chemical scrubbers. Significant removal of reduced sulfur compounds, ammonia, and volatile organic compounds present in traces in the air was also observed. Continuous operation for >8 months showed stable performance and robust behavior for H2S treatment, with pollutant-removal performance comparable to that achieved by using a chemical scrubber. Our study demonstrates that biotrickling filters can replace chemical scrubbers and be a safer, more economical technique for odor control. PMID:12740445

  10. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control.

    PubMed

    Gabriel, David; Deshusses, Marc A

    2003-05-27

    Biological treatment is a promising alternative to conventional air-pollution control methods, but thus far biotreatment processes for odor control have always required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chemical scrubber to a biological trickling filter and showed that effective treatment of hydrogen sulfide (H2S) in the converted scrubber was possible even at gas contact times as low as 1.6 s. That is 8-20 times shorter than previous biotrickling filtration reports and comparable to usual contact times in chemical scrubbers. Significant removal of reduced sulfur compounds, ammonia, and volatile organic compounds present in traces in the air was also observed. Continuous operation for >8 months showed stable performance and robust behavior for H2S treatment, with pollutant-removal performance comparable to that achieved by using a chemical scrubber. Our study demonstrates that biotrickling filters can replace chemical scrubbers and be a safer, more economical technique for odor control.

  11. [Kinetic model and simulation of the adsorption-biofilm theory for the process of biopurifying VOC waste gases].

    PubMed

    Sun, Peishi; Huang, Bing; Huang, Ruohua; Yang, Ping

    2002-05-01

    For the process of biopurifying waste gas containing VOC in low concentration by using a biological trickling filter, the related kinetic model and simulation of the new Adsorption-Biofilm theory were investigated in this study. By using the lab test data and the industrial test data, the results of contrast and validation indicated that the model had a good applicability for describing the practical bio-purification process of VOC waste gas. In the simulation study for the affection of main factor, such as the concentration of toluene in inlet gas, the gas flow and the height of biofilm-packing, a good pertinence was showed between calculated data and test dada, the interrelation coefficients were in 0.80-0.97.

  12. Wastewater Treatment Evaluation, Mather AFB, CA

    DTIC Science & Technology

    1974-06-01

    conveyed to the treatment facility is provided with secondary (biological) treatment and chlorination followed by polish- ing lagoons prior to bang...comminutor. b. Primary sedimentation (clarifier). c. Biological oxidation by trickling filter. d. Secondary sedimentation (clarifier). e. Chlorination . f...the entrance to the chlorine contact chamber. Following chlorination , the wastewater flows to the wet well of the effluent lift station from

  13. Enhanced nitrogen removal in trickling filter plants.

    PubMed

    Dai, Y; Constantinou, A; Griffiths, P

    2013-01-01

    The Beaudesert Sewage Treatment Plant (STP), originally built in 1966 and augmented in 1977, is a typical biological trickling filter (TF) STP comprising primary sedimentation tanks (PSTs), TFs and humus tanks. The plant, despite not originally being designed for nitrogen removal, has been consistently achieving over 60% total nitrogen reduction and low effluent ammonium concentration of less than 5 mg NH3-N/L. Through the return of a NO3(-)-rich stream from the humus tanks to the PSTs and maintaining an adequate sludge age within the PSTs, the current plant is achieving a substantial degree of denitrification. Further enhanced denitrification has been achieved by raising the recycle flows and maintaining an adequate solids retention time (SRT) within the PSTs. This paper describes the approach to operating a TF plant to achieve a high degree of nitrification and denitrification. The effectiveness of this approach is demonstrated through the pilot plant trial. The results from the pilot trial demonstrate a significant improvement in nitrogen removal performance whilst maximising the asset life of the existing infrastructure. This shows great potential as a retrofit option for small and rural communities with pre-existing TFs that require improvements in terms of nitrogen removal.

  14. Potential of resource recovery in UASB/trickling filter systems treating domestic sewage in developing countries.

    PubMed

    Bressani-Ribeiro, T; Brandt, E M F; Gutierrez, K G; Díaz, C A; Garcia, G B; Chernicharo, C A L

    2017-04-01

    This paper aims to present perspectives for energy (thermal and electric) and nutrient (N and S) recovery in domestic sewage treatment systems comprised of upflow anaerobic sludge blanket (UASB) reactors followed by sponge-bed trickling filters (SBTF) in developing countries. The resource recovery potential was characterized, taking into account 114 countries and a corresponding population of 968.9 million inhabitants living in the tropical world, which were grouped into three desired ranges in terms of cities' size. For each of these clusters, a technological arrangement flow-sheet was proposed, depending on their technical and economic viability from our best experience. Considering the population living in cities over 100, 000 inhabitants, the potential of energy and nutrient recovery via the sewage treatment scheme would be sufficient to generate electricity for approximately 3.2 million residents, as well as thermal energy for drying purposes that could result in a 24% volume reduction of sludge to be transported and disposed of in landfills. The results show that UASB/SBTF systems can play a very important role in the sanitation and environmental sector towards more sustainable sewage treatment plants.

  15. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.

    PubMed

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-10-15

    To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Installation Restoration Program Phase 1 - Records Search, O’Hare Air Reserve Forces Facility, Illinois

    DTIC Science & Technology

    1983-12-01

    clarifiers, activated sludge units, trickling filters, aerobic and anaerobic digesters, and various dowatering devices and recommendations for...for locations of water- bearing fractures. Additional responsibilities included drilling with mud and air rotary drilling rigs as well as bucket auger...interpretation. Also conducted earth resistivity surveys in Georgia and Alabama Piedmont Provinces for locations of water- bearing fractures. Additional

  17. Roughness and temperature effects on the filter media of a trickling filter for nitrification.

    PubMed

    Kishimoto, Naoyuki; Ohara, Tetsuya; Hinobayashi, Jouji; Hashimoto, Tsutomu

    2014-01-01

    The performance of trickling filters using two types of plastic media with the same material, the same shape and different roughness was evaluated during a temperature-decreasing period to understand the roughness and temperature effects on the filter media. Real restaurant wastewater was used for the experiments. The chemical oxygen demand (COD) removal and nitrification performance of plastic media with a rough surface (LT-15) was superior to that with a smooth surface (KT-15). Because the biomass of microorganisms attached on the LT-15 was twice that attached on the KT-15, the larger biomass attached on the LT-15 was thought to be responsible for the higher performance. During the operation, the COD loading and water temperature varied in the range from 0.37 to 1.9 kg m(-3) d(-1) and 17.0--10.0 degrees C, respectively. However, the COD removal performance was not dependent on the COD loading or water temperature. On the contrary, the COD loading and the water temperature influenced the nitrification performance. Although a nitrification efficiency of 100% was recorded at a COD loading of 0.37 kg m(-3) d(-1), it deteriorated to 17-28% at higher COD loading. Moreover, a decline in the water temperature decreased the nitrification performance. The temperature-activity coefficient for nitrification was estimated to be 1.096. Based on this value, it was inferred that the COD loading should be set at less than 0.20 kg m(-3) d(-1) for the complete nitrification of the restaurant wastewater in winter, when the water temperature usually drops to around 10 degrees C.

  18. Development of a New Design Procedure for Overland Flow System.

    DTIC Science & Technology

    1982-06-18

    reactor kinetics, a concept familiar to most environmental engi- neers. In the case of overland flow, the reactor is the soil surface where various physical...site during the entire study. Perforated plastic pipe was used to distri- bute wastewater along the top of each section, and a bed of crushed stone...particulate BOD. The soluble BOD is oxidized by microorganisms which are probably similar to the attached biomass found in trickling filters. However, some

  19. Cost Reductions for Wastewater Treatment Utilizing Water Management at Holston Army Ammunition Plant

    DTIC Science & Technology

    1976-05-01

    says that the granular carbon used is made from bituminous coal. As the waste stream pass through a bed of carbon granules, com- pounds are adsorbed to...findings of laboratory-scale reactor studies conducted at Purdue University for * Clark, Dietz and Associates. The original recommendations and cost...Pretreatment Denitrification by Submerged Anaerbbic I ilters I ~ Trickling Filters S F ,2al Clarification "•’i Pump - ~ Sludge ,Treatment Dual Media Filh:ration

  20. Water and Wastewater Characterization Survey, Williams AFB AZ

    DTIC Science & Technology

    1991-03-01

    effluent discharges. Most industrial effluent originates from the flight line operations. The WWTP includes primary sedimentation , trickling filters...final sedimentation , plug-flow chlorine contact basin, and a stabilization pond. Samples were collected at the influent and effluent of the plant...Stispcndcd Solido ~ 60) 31 pit wvithll 6.0 to 90- *1 1*0 is Totil toxic 0, plan:*’ aq (leCiitc(l at .i10 (1 R Pitt 4133. 5 (IIIL)RINE REOPENEP T1 his permit

  1. Air pollution control through biotrickling filters: a review considering operational aspects and expected performance.

    PubMed

    Schiavon, Marco; Ragazzi, Marco; Rada, Elena Cristina; Torretta, Vincenzo

    2016-12-01

    The biological removal of pollutants, especially through biotrickling filters (BTFs), has recently become attractive for the low investment and operational costs and the low secondary pollution. This paper is intended to investigate the state of the art on BTF applications. After an overview on the biodegradation process and the typical parameters involved, this paper presents the analysis of a group of 16 literature studies chosen as the references for this sector. The reference studies differ from one another by the pollutants treated (volatile organic compounds [VOC], hydrogen sulphide, nitrogen oxides and trimethylamine), the geometry and size of the BTFs, and the procedures of the tests. The reference studies are analyzed and discussed in terms of the operational conditions and the results obtained, especially with respect to the removal efficiencies (REs) and the elimination capacities (ECs) of the pollutants considered. Empty bed residence time (EBRT), pollutant loading rate, temperature, pH, oxygen availability, trickling liquid flow rate, inoculum selection and biomass control strategies revealed to be the most important operational factors influencing the removal performance of a BTF.

  2. Prevention of Freezing and other Cold Weather Problems at Wastewater Treatment Facilities.

    DTIC Science & Technology

    1985-07-01

    an Archimedes screw conveyor is used to lift grit out of the sub- merged hopper. Initially, the conveyor was exposed and froze completely every...particular facility includes two primary clarifiers (in paral- lel), Archimedes screw pumps to lift wastewater to the top of the trickling filter...gal. of oil each and it takes much time to drain these gear boxes. At the headworks, an Archimedes screw is used to [if t the grit out of a submerged

  3. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters.

    PubMed

    Kasprzyk-Hordern, Barbara; Dinsdale, Richard M; Guwy, Alan J

    2009-02-01

    A 5-month monitoring program was undertaken in South Wales in the UK to determine the fate of 55 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs (PPCPs) in two contrasting wastewater plants utilising two different wastewater treatment technologies: activated sludge and trickling filter beds. The impact of treated wastewater effluent on the quality of receiving waters was also assessed. PPCPs were found to be present at high loads reaching 10kgday(-1) in the raw sewage. Concentrations of PPCPs in raw sewage were found to correlate with their usage/consumption patterns in Wales and their metabolism. The efficiency of the removal of PPCPs was found to be strongly dependent on the technology implemented in the wastewater treatment plant (WWTP). In general, the WWTP utilising trickling filter beds resulted in, on average, less than 70% removal of all 55 PPCPs studied, while the WWTP utilising activated sludge treatment gave a much higher removal efficiency of over 85%. The monitoring programme revealed that treated wastewater effluents were the main contributors to PPCPs concentrations (up to 3kg of PPCPsday(-1)) in the rivers studied. Bearing in mind that in the cases examined here the WWTP effluents were also major contributors to rivers' flows (dilution factor for the studied rivers did not exceed 23 times) the effect of WWTP effluent on the quality of river water is significant and cannot be underestimated.

  4. A dual purpose packed-bed reactor for biogas scrubbing and methane-dependent water quality improvement applying to a wastewater treatment system consisting of UASB reactor and trickling filter.

    PubMed

    Tanaka, Yasuo

    2002-08-01

    A wastewater treatment system employing a UASB reactor in temperate regions requires biogas as a heat source for the UASB reactor during low temperature seasons. In this case, removal of H2S in the biogas by means of a scrubber before burning is necessary in order to prevent the boilers from corroding. Heating of the UASB reactor is, however, unnecessary in a warm season, and the scrubber and biogas become useless. Methane-dependent water quality improvement using the scrubber and biogas would be one way to use them efficiently during the warm season. The possible dual-purpose use of a packed-bed reactor was examined, with one of its uses being the scrubbing of biogas during the cold season and the other being the methane-dependent improvement of effluent water quality during the warm season. A bench scale packed-bed filled with plastic latticed-ring media was installed in a livestock wastewater treatment plant consisting of a UASB reactor and a trickling filter for post-treatment. The packed-bed was operated with biogas flowing at a superficial velocity of 0.14-0.39 m h(-1) and the hydraulic loading of trickling filter effluent sprayed onto the media 9.4-26.1 m3 m2 day(-1). H2S in the biogas from the UASB reactor was reduced from 1,200-2,500 ppm to less than 2 ppm by the reactor. Methane-dependent water quality improvement was examined using a laboratory scale reactor to which methane and/or air was supplied from the bottom, while plant effluent was spread from the top of the reactor. When the mixture gas of methane and air (volume ratio 1:3) was added to the reactor, biofilm grew on the surface of the media. Accompanying this growth, ammonium and phosphate in the spread water decreased, probably due to assimilation by the methane-oxidizing bacteria. Though assimilation activity dropped after the accumulation of biomass, it could be reactivated by washing out the excess biomass. Periodical backwash at a rate of more than once a week seemed to efficiently maintain the removal activity. The dark brown color of the wastewater could be also reduced in concert with methane oxidation. It seemed that methane-oxidizing bacteria degraded color-causing compounds. These results suggest that the packed-bed reactor is useful for both H2S purification of biogas and methane-dependent effluent water quality improvement.

  5. Practical experience with full-scale structured sheet media (SSM) integrated fixed-film activated sludge (IFAS) systems for nitrification.

    PubMed

    Li, Hua; Zhu, Jia; Flamming, James J; O'Connell, Jack; Shrader, Michael

    2015-01-01

    Many wastewater treatment plants in the USA, which were originally designed as secondary treatment systems with no or partial nitrification requirements, are facing increased flows, loads, and more stringent ammonia discharge limits. Plant expansion is often not cost-effective due to either high construction costs or lack of land. Under these circumstances, integrated fixed-film activated sludge (IFAS) systems using both suspended growth and biofilms that grow attached to a fixed plastic structured sheet media are found to be a viable solution for solving the challenges. Multiple plants have been retrofitted with such IFAS systems in the past few years. The system has proven to be efficient and reliable in achieving not only consistent nitrification, but also enhanced bio-chemical oxygen demand removal and sludge settling characteristics. This paper presents long-term practical experiences with the IFAS system design, operation and maintenance, and performance for three full-scale plants with distinct processes; that is, a trickling filter/solids contact process, a conventional plug flow activated sludge process and an extended aeration process.

  6. Catalyst and process development for synthesis gas conversion to isobutylene. Quarterly report, October 1, 1992--December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, R.G.; Akgerman, A.

    1993-02-01

    The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed reactors, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. The goals for the quarter include: (1) Conduct experiments using a trickle bed reactor to determine the effect of reactor type on the product distribution. (2) Use spherical pellets of silica as a support for zirconia for the purpose of increasing surface, area and performancemore » of the catalysts. (3) Conduct exploratory experiments to determine the effect of super critical drying of the catalyst on the catalyst surface area and performance. (4) Prepare a ceria/zirconia catalyst by the precipitation method.« less

  7. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    PubMed

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  8. Nickel-hydrogen battery state of charge during low rate trickle charging

    NASA Technical Reports Server (NTRS)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1995-01-01

    Battery temperature increase, due to low rate trickle charging, has been determined experimentally, using a six cell battery module in a test setup simulating the anticipated AXAF-1 prelaunch environment. Test results indicate trickle charge rates less than or equal to the self discharge rate do not increase dissipation beyond that due to the self discharge. Significant trickle charge rates (approximately C/500) result in battery temperatures only a few degrees (F) higher than those observed during periods of open circuit stand.

  9. Development of the trickle roof cooling and heating system: Experimental plan

    NASA Astrophysics Data System (ADS)

    Haves, P.; Jankovic, T.; Doderer, E.

    1982-07-01

    A passive system applicable both to retrofit and new construction was developed. This system (the trickle roof system) dissipates heat from a thin film of water flowing over the roof. A small scale trickle roof system dissipator was tested at Trinity University under a range of ambient conditions and operating configurations. The results suggest that trickle roof systems should have comparable performance to roof pond systems. Provided is a review of the trickle roof system concept, several possible configurations, and the benefits the systems can provide. Test module experiments And results are presented in detail. The requirements for full scale testing are discussed and a plan is outlined using the two identical residential scale passive test facility buildings at Trinity University, San Antonio, Texas. Full scale experimental results would be used to validate computer algorithms, provide system optimization, and produce a nationwide performance assessment and design guidelines. This would provide industry with the information necessary to determine the commerical potential of the trickle roof system.

  10. Resilience and reliability of compact vertical-flow treatment wetlands designed for tropical climates.

    PubMed

    Lombard-Latune, R; Pelus, L; Fina, N; L'Etang, F; Le Guennec, B; Molle, P

    2018-06-10

    Most of the tropical areas have sanitation problems to contend with. The French system of vertical-flow treatment wetlands (FS-VFTW) fed with raw wastewater could be a good water and sludge management solution. The purpose-adapted tropical design can reduce area requirement to below 1 m 2 /population equivalents (p.e.). The Taupinière FS-VFTW on Martinique Island was built according to this design, with one stage but with a saturated layer at the bottom of the filter and a simplified trickling filter (TF) added for further treatment to meet the high performances targeted. Unsaturated/saturated vertical-flow filters (US/S FS-VFTW) have shown improved performances on total nitrogen, carbon and suspended solids removal in temperate climates, but the performances in tropical conditions remain unknown. Here, we report on real-world-operation in the French Overseas Territories (FOT), the reliability and performances of this VFCW tropical-design. The system experienced loading conditions ranging from 30% to 165% of nominal carbonaceous biological oxygen demand (BOD 5 ), as well as tropical rainstorms that brought over 7 times the nominal hydraulic load. Over a period of 3 years, 29 campaigns collected 24-h flow-proportional samples at each treatment stage (raw wastewater, FS-VFTW outlet, TF outlet). When applied loads were close to nominal values, the US/S FS-VFTW itself guarantees 85/90/60/50% removal and 125/25/40/50 mg/L at the outlet for chemical oxygen demand (COD)/total suspended solids (TSS)/total Kjeldahl nitrogen (TKN)/total nitrogen (TN), respectively. By comparison with US/S systems in mainland France, it appears that the warmer tropical-climate temperatures facilitate both nitrification and denitrification kinetics. Performances in overload conditions confirm that the US/S FS-VFTW remains robust and reliable although COD and TKN removal are impacted, especially after strong tropical rain events. By adding a simple compact trickling filter to a US/S FS-VFTW, the treatment system delivers high-level performances (>95% removal for BOD 5 , COD, TSS and TKN) at less than 1 m 2 /p.e. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. [Elimination of volatile compounds of leaf tobacco from air emissions using biofiltration].

    PubMed

    Zagustina, N A; Misharina, T A; Vepritskiĭ, A A; Zhukov, V G; Ruzhitskiĭ, A O; Terenina, M B; Krikunova, N I; Kulikova, A K; Popov, V O

    2012-01-01

    The composition of the volatile organic compounds (VOCs) of various leaf tobacco brands and their blends has been studied. The differences in the content of nicotine, solanone, tetramethyl hexadecenol, megastigmatrienones, and other compounds, determining the specific tobacco smell, have been revealed. A microbial consortium, which is able to deodorize simulated tobacco emissions and decompose nicotine, has been formed by long-term adaptation to the VOCs of tobacco leaves in a laboratory reactor, functioning as a trickle-bed biofilter. Such a biofilter eliminates 90% of the basic toxic compound (nicotine) and odor-active compounds; the filtration efficiency does not change for tobacco brands with different VOC concentrations or in the presence of foreign substances. The main strains, isolated from the formed consortium and participating in the nicotine decomposition process, belong to the genera Pseudomonas, Bacillus, and Rhodococcus. An examination of the biofilter trickling fluid has shown full decomposition of nicotine and odor-active VOCs. The compounds, revealed in the trickling fluid, did not have any odor and were nontoxic. The obtained results make it possible to conduct scaling of the biofiltration process to eliminate odor from air emissions in the tobacco industry.

  12. Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors

    NASA Astrophysics Data System (ADS)

    Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.

    2014-12-01

    Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.

  13. Pilot-scale testing of a leachbed for anaerobic digestion of livestock residues on-farm.

    PubMed

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S

    2016-04-01

    A leachbed is a relatively simple anaerobic digester suitable for high-solids residues and on-farm applications. However, performance characteristics and optimal configuration of leachbeds are not well-understood. In this study, two 200 L pilot-scale leachbeds fed with spent straw bedding from pigs/swine (methane potential, B0 = 195-218 L CH4 kg(-1) VS fed) were used to assess the effects of leachate recirculation mode (trickling vs. flood-and-drain) on the digestion performance. Results showed comparable substrate solubilisation extents (30-45% of total chemical oxygen demand fed) and methane conversion (50% of the B0) for the trickling and flood-and-drain modes, indicating that digestion performance was insensitive to the mode of leachate flow. However, the flood-and-drain leachbed mobilised more particulates into the leachate than the trickling leachbed, an undesirable outcome, because these particulates were mostly non-biodegradable. Inoculation with solid residues from a previous leachbed (inoculum-to-substrate ratio of 0.22 on a VS basis) hastened the leachbed start-up, but methane recovery remained at 50% of the B0 regardless of the leachate recirculation mode. Post-digestion testing indicated that the leachbeds may have been limited by microbial activity/inhibition. The high residual methane potential of leachate from the trickling (residual Bo = 732 ± 7 L CH4 kg(-1) VS fed) and flood-and-drain leachbeds (582 ± 8 L CH4 kg(-1) VS fed) indicated an opportunity for further processing of leachate via a separate methanogenic step. Overall, a trickling leachbed appeared to be more favourable than the flood-and-drain leachbed for treating spent bedding at farm-scale due to easier operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics, and oxygen mass transfer.

    PubMed

    Ramakrishnan, Divakar; Curtis, Wayne R

    2004-10-20

    Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.

  15. Isolation and identification of methanethiol-utilizing bacterium CZ05 and its application in bio-trickling filter of biogas.

    PubMed

    Zhang, Chao-zheng; Zhang, Wei-jiang; Xu, Jiao

    2013-12-01

    A bacterium capable of methanethiol (MT) degradation was enriched and isolated by employing activated sewage sludge as the inoculum in a mineral medium containing MT. The isolate was identified as Paenibacillus polymyxa CZ05 through a Biolog test and 16S rDNA sequencing. This strain can utilize both organic and inorganic media and thrives at pH 4 to 9. The batch culture showed that the strain can degrade MT better in the No. 4 medium than in the No. 1 medium. A series-operating biotrickling filter with lava stone as the carrier was employed to test the application of P. polymyxa CZ05 in the removal of MT in simulated biogas. Long-term experiments showed that a high concentration of MT (60 ppm) was efficiently removed (99.5%) by the biotrickling filters at EBRT 30 s. The addition of hydrogen sulfide decreased the MT removal rate because the dissolved oxygen competed with MT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The trickle-down theory of cleaner air.

    PubMed

    Frazer, L

    2000-04-01

    The 1990 Clean Air Act Amendments prompted an increased urgency to find new ways to treat airstreams containing volatile organic compounds, which affect the nitrogen photolytic cycle and help produce ground-level ozone, hazardous air pollutants, and odorous air emissions such as hydrogen sulfide. Scientists at the New Jersey company Envirogen have adapted traditional biofiltration technology to perform airborne waste stream cleanup. Preliminary research on pollutants such as phenol, methylene chloride, benzene, and toluene indicates that Envirogen's biotrickling filter may remove an average of about 94% of total hazardous air pollutants. Scientists are working to identify microbes that will clean up more stubborn pollutants.

  17. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    PubMed

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Effects of nonpoint and selected point contaminant sources on stream-water quality and relation to land use in Johnson County, northeastern Kansas, October 2002 through June 2004

    USGS Publications Warehouse

    Lee, Casey J.; Mau, D.P.; Rasmussen, T.J.

    2005-01-01

    Water and sediment samples were collected by the U.S. Geological Survey in 12 watersheds in Johnson County, northeastern Kansas, to determine the effects of nonpoint and selected point contaminant sources on stream-water quality and their relation to varying land use. The streams studied were located in urban areas of the county (Brush, Dykes Branch, Indian, Tomahawk, and Turkey Creeks), developing areas of the county (Blue River and Mill Creek), and in more rural areas of the county (Big Bull, Captain, Cedar, Kill, and Little Bull Creeks). Two base-flow synoptic surveys (73 total samples) were conducted in 11 watersheds, a minimum of three stormflow samples were collected in each of six watersheds, and 15 streambed-sediment sites were sampled in nine watersheds from October 2002 through June 2004. Discharge from seven wastewater treatment facilities (WWTFs) were sampled during base-flow synoptic surveys. Discharge from these facilities comprised greater than 50 percent of streamflow at the farthest downstream sampling site in six of the seven watersheds during base-flow conditions. Nutrients, organic wastewater-indicator compounds, and prescription and nonprescription pharmaceutical compounds generally were found in the largest concentrations during base-flow conditions at sites at, or immediately downstream from, point-source discharges from WWTFs. Downstream from WWTF discharges streamflow conditions were generally stable, whereas nutrient and wastewater-indicator compound concentrations decreased in samples from sites farther downstream. During base-flow conditions, sites upstream from WWTF discharges had significantly larger fecal coliform and Escherichia coli densities than downstream sites. Stormflow samples had the largest suspended-sediment concentrations and indicator bacteria densities. Other than in samples from sites in proximity to WWTF discharges, stormflow samples generally had the largest nutrient concentrations in Johnson County streams. Discharge from WWTFs with trickling-filter secondary treatment processes had the largest concentrations of many potential contaminants during base-flow conditions. Samples from two of three trickling-filter WWTFs exceeded Kansas Department of Health and Environment pH- and temperature-dependent chronic aquatic-life criteria for ammonia when early-life stages of fish are present. Discharge from trickling-filter facilities generally had the most detections and largest concentrations of many organic wastewater-indicator compounds in Johnson County stream-water samples. Caffeine (stimulant), nonylphenol-diethoxylate (detergent surfactant), and tris(2-butoxyethyl) phosphate (floor polish, flame retardant, and plasticizer) were found at concentrations larger than maximum concentrations in comparable studies. Land use and seasonality affected the occurrence and magnitude of many potential water-quality contaminants originating from nonpoint sources. Base-flow samples from urban sites located upstream from WWTF discharges had larger indicator bacteria densities and wastewater-indicator compound concentrations than did base-flow samples from sites in nonurban areas. Dissolved-solids concentrations were the largest in winter stormflow samples from urban sites and likely were due to runoff from road-salt application. One sample from an urban watershed had a chloride concentration of 1,000 milligrams per liter, which exceeded the Kansas Department of Health and Environment's acute aquatic-life use criterion (860 milligrams per liter) likely due to effects from road-salt application. Pesticide concentrations were the largest in spring stormflow samples collected in nonurban watersheds. Although most wastewater-indicator compounds were found at the largest concentrations in samples from WWTF discharges, the compounds 9-10, anthraquinone (bird repellent), caffeine (stimulant), carbazole (component of coal tar, petroleum products), nonylphenol-diethoxylate (detergent surfactant),

  19. Eukaryotic Community Shift in Response to Organic Loading Rate of an Aerobic Trickling Filter (Down-Flow Hanging Sponge Reactor) Treating Domestic Sewage.

    PubMed

    Miyaoka, Yuma; Hatamoto, Masashi; Yamaguchi, Takashi; Syutsubo, Kazuaki

    2017-05-01

    In this study, changes in eukaryotic community structure and water quality were investigated in an aerobic trickling filter (down-flow hanging sponge, DHS) treating domestic sewage under different organic loading rates (OLRs). The OLR clearly influenced both sponge pore water quality and relative flagellates and ciliates (free-swimming, carnivorous, crawling, and stalked protozoa) abundances in the retained sludge. Immediately after the OLR was increased from 1.05 to 1.97 kg chemical oxygen demand (COD) m -3  day -1 , COD and NH 4 + -N treatment efficiencies both deteriorated, and relative flagellates and ciliates abundances then increased from 2-8 % to 51-65 % total cells in the middle-bottom part of the DHS reactor. In a continuous operation at a stable OLR (2.01 kg COD m -3  day -1 ), effluent water quality improved, and relative flagellates and ciliates abundances decreased to 15-46 % total cells in the middle-bottom part of the DHS reactor. This result may indicate that flagellates and ciliates preferentially graze on dispersed bacteria, thus, stabilizing effluent water quality. Additionally, to investigate eukaryotic community structure, clone libraries based on the 18S ribosomal ribonucleic acid (rRNA) gene of the retained sludge were constructed. The predominant group was Nucletmycea phylotypes, representing approximately 29-56 % total clones. Furthermore, a large proportion of the clones had <97 % sequence identity in the NCBI database. This result indicates that phylogenetically unknown eukaryotes were present in the DHS reactor. These results provide insights into eukaryotic community shift in the DHS reactor treating domestic sewage.

  20. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    PubMed Central

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  1. A hybrid regenerative water recovery system for lunar/Mars life support applications

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Edeen, Marybeth A.; Packham, Nigel J. C.

    1992-01-01

    Long-duration manned space missions will require integrated biological and physicochemical processes for recovery of resources from wastes. This paper discusses a hybrid regenerative biological and physicochemical water recovery system designed and built at NASA's Crew and Thermal Systems Division at Johnson Space Center. The system is sized for a four-person crew and consists of a two-stage, aerobic, trickling filter bioreactor; a reverse osmosis system; and a photocatalytic oxidation system. The system was designed to accommodate high organic and inorganic loadings and a low hydraulic loading. The bioreactor was designed to oxidize organics to carbon dioxide and water; the reverse osmosis system reduces inorganic content to potable quality; and the photocatalytic oxidation unit removes residual organic impurities (part per million range) and provides in situ disinfection. The design and performance of the hybrid system for producing potable/hygiene water is described. Aspects of the system such as closure, automation and integration are discussed and preliminary results presented.

  2. The trickle-down theory of cleaner air.

    PubMed Central

    Frazer, L

    2000-01-01

    The 1990 Clean Air Act Amendments prompted an increased urgency to find new ways to treat airstreams containing volatile organic compounds, which affect the nitrogen photolytic cycle and help produce ground-level ozone, hazardous air pollutants, and odorous air emissions such as hydrogen sulfide. Scientists at the New Jersey company Envirogen have adapted traditional biofiltration technology to perform airborne waste stream cleanup. Preliminary research on pollutants such as phenol, methylene chloride, benzene, and toluene indicates that Envirogen's biotrickling filter may remove an average of about 94% of total hazardous air pollutants. Scientists are working to identify microbes that will clean up more stubborn pollutants. PMID:10753107

  3. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    PubMed

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.

  4. Towards energy positive wastewater treatment plants.

    PubMed

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of inlet raw wastewater, has been calculated to 0.172 kWh/m 3 . It is thus obvious, that the proposed process can operate on an electric energy autonomous basis. Copyright © 2016. Published by Elsevier Ltd.

  5. A combined upflow anaerobic sludge bed and trickling biofilter process for the treatment of swine wastewater.

    PubMed

    Zhao, Bowei; Li, Jiangzheng; Buelna, Gerardo; Dubé, Rino; Le Bihan, Yann

    2016-01-01

    A combined upflow anaerobic sludge blanket (UASB)-trickling biofilter (TBF) process was constructed to treat swine wastewater, a typical high-strength organic wastewater with low carbon/nitrogen ratio and ammonia toxicity. The results showed that the UASB-TBF system can remarkably enhance the removal of pollutants in the swine wastewater. At an organic loading rate of 2.29 kg/m(3) d and hydraulic retention time of 48 h in the UASB, the chemical oxygen demand (COD), Suspended Solids and Total Kjeldahl Nitrogen removals of the combined process reached 83.6%, 84.1% and 41.2%, respectively. In the combined system the UASB served as a pretreatment process for COD removal while nitrification and denitrification occurred only in the TBF process. The TBF performed reasonably well at a surface hydraulic load as high as 0.12 m(3)/m(2) d. Since the ratio of influent COD to total mineral nitrogen was less than 3.23, it is reasonable to suggest that the wood chips in TBF can serve as a new carbon source for denitrification.

  6. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB)

    NASA Astrophysics Data System (ADS)

    Sarzyński, Rafał; Gąszczak, Agnieszka; Janecki, Daniel; Bartelmus, Grażyna

    2017-10-01

    The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene) was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ˜200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution) through packing (polypropylene Ralu rings) covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2). The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 - 84 gm-3 h -1), styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  7. Simultaneous fermentation and separation in an immobilized cell trickle bed reactor: Acetone-butanol-ethane (ABE) and ethanol fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, C.H.

    1989-01-01

    A novel process employing immobilized cells and in-situ product removal was studied for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum and ethanol fermentation by Saccharomyces cerevisiae. Experimental studies of ABE fermentation in a trickle bed reactor without product separation showed that solvent production could be improved by one order of magnitude compared to conventional batch fermentation. Control of effluent pH near 4.3 and feed glucose concentrations higher than 10 g/L were the necessary conditions for cell growth and solvent production. A mathematical model using an equilibrium staged model predicted efficient separation of butanol from the fermentation broth. Activity coefficients of multicomponentmore » system were estimated by Wilson's equation or the ASOG method. Inhibition by butanol and organic acids was incorporated into the kinetic expression. Experimental performance of simultaneous fermentation and separation in an immobilized cell trickle bed reactor showed that glucose conversion was improved as predicted by mathematical modeling and analysis. The effect of pH and temperature on ethanol fermentation by Saccharomyces cerevisiae was studied in free and immobilized cell reactors. Conditions for the highest glucose conversion, cell viability and least glycerol yield were determined.« less

  8. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    PubMed

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis

    PubMed Central

    Joseph, SK; Ramaswamy, K

    2013-01-01

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and Protein or Protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-Protein) and 48% (BmHAT Protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. PMID:23735679

  10. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under ...

    EPA Pesticide Factsheets

    In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and ethanol. The TBAB is composed of pelleted diatomaceous earth filter media inoculated with filamentous fungi species, which served as the principle biodegrading microorganism. The removal efficiencies of 5 ppmv of chloroform mixed with different ratios of ethanol as cometabolite (25, 50, 100, 150, and 200 ppmv) ranged between 69.9 and 80.9%. The removal efficiency, reaction rate kinetics, and the elimination capacity increased proportionately with an increase in the cometabolite concentration. The carbon recovery from the TBAB amounted to 69.6% of the total carbon input. It is postulated that the remaining carbon contributed to excess biomass yield within the system. Biomass control strategies such as starvation and stagnation were employed at different phases of the experiment. The chloroform removal kinetics provided a maximum reaction rate constant of 0.0018 s−1. The highest ratio of chemical oxygen demand (COD)removal/nitrogenutilization was observed at 14.5. This study provides significant evidence that the biodegradation of a highly chlorinated methane can be favored by cometabolism in a fungi-based TBAB. Chloroform is volatile hazardous chemical emitted from publicly owned treatment

  11. Integrated detoxification methodology of hazardous phenolic wastewaters in environmentally based trickle-bed reactors: Experimental investigation and CFD simulation.

    PubMed

    Lopes, Rodrigo J G; Almeida, Teresa S A; Quinta-Ferreira, Rosa M

    2011-05-15

    Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. DEVELOPMENT OF AEROBIC BIOFILTER DESIGN CRITERIA FOR TREATING VOCS

    EPA Science Inventory

    This paper reports preliminary results on the use of trickle bed biofilters with monolithic ceramic channelized microbial support structures for the treatment of VOCs typical of landfill leachate stripping. Toluene was used for the purpose of characterizing the trickle bed biofi...

  13. Selection criteria for wastewater treatment technologies to protect drinking water.

    PubMed

    von Sperling, M

    2000-01-01

    The protection of water bodies used as sources for drinking water is intimately linked to the adoption of adequate technologies for the treatment of the wastewater generated in the catchment area. The paper presents a general overview of the main technologies used for the treatment of domestic sewage, with a special emphasis on developing countries, and focussing on the main parameters of interest, such as BOD, coliforms and nutrients. A series of tables, figures and charts that can be used for the preliminary selection of treatment technologies is presented. The systems analysed are: stabilisation ponds, activated sludge, trickling filters, anaerobic systems and land disposal. Within each system, the main process variants are covered. Two summary tables are presented, one for quantitative analysis, including easily usable information based on per capita values (US$/cap, Watts/cap, m2 area/cap, m3 sludge/cap), and another for a qualitative comparison among the technologies, based on a one-to-five-star scoring system. The recent trend in tropical countries in the use of UASB (Upflow Anaerobic Sludge Blanket) reactors is also discussed.

  14. TREATMENT OF VOLATILE ORGANIC COMPOUNDS IN WASTE GASES USING A TRICKLING BIOFILTER SYSTEM: A MODELING APPROACH

    EPA Science Inventory

    Biofiltration represents a novel strategy for controlling VOC emissions from a variety of industrial processes. As commercial applications of these systems increase, sophisticated theoretical models will be useful in establishing design criteria for providing insights into impor...

  15. Formaldehyde removal from air by a biodegradation system.

    PubMed

    Xu, Zhongjun; Hou, Haiping

    2010-07-01

    A biodegradation system was used for the treatment of formaldehyde-polluted air. Air pressure dropped 12 mm water in the trickling biofilter during the experiment of about 4 months. In the range 20-300 mg m(-3) influent formaldehyde, this biodegradation system obtained 4.0-40.0 mg h(-1) degradation capacity, with 100%-66.7% degradation efficiency. The amount of formaldehyde degraded by the trickling biofilter was more than that by the activated sludge bioreactor below 200 mg m(-3) influent gaseous formaldehyde while the amount by the trickling biofilter was less than that by the activated sludge bioreactor over 200 mg m(-3) influent gaseous formaldehyde.

  16. A modified biotrickling filter for nitrification-denitrification in the treatment of an ammonia-contaminated air stream.

    PubMed

    Raboni, Massimo; Torretta, Vincenzo

    2016-12-01

    A conventional biotrickling filter for airborne ammonia nitrification has been modified, by converting the liquid sump into a biological denitrifying reactor. The biotrickling filter achieves an average ammonia removal efficiency of 92.4 %, with an empty bed retention time (EBRT) equal to 36 s and an average ammonia concentration of 54.7 mg Nm -3 in the raw air stream. The denitrification reactor converts ammonia into inert gas N 2 , in addition to other important advantages connected to the alkaline character of the biochemical pathway of the denitrifying bacteria. Firstly, the trickling water crossing the denitrification reactor underwent a notable pH increase from 7.3 to 8.0 which prevented the acidic inhibition of the nitrifying bacteria due to the buildup of nitric and nitrous acids. Secondly, the pH increase created the ideal conditions for the autotrophic nitrifying bacteria. The tests proved that an ammonia removal efficiency of above 90 % can be achieved with an EBRT greater than 30 s and a volumetric load lower than 200 g NH 3  m -3  day -1 . The results of the biofilm observation by using a scanning confocal laser microscope are reported together with the identification of degrading bacteria genera in the biotrickling filter. The efficiency of the plant and its excellent operational stability highlight the effectiveness of the synergistic action between the denitrification reactor and the biotrickling filter in removing airborne ammonia.

  17. "Trickle-Down" Reform: Hispanics, Higher Education, and the Excellence Movement.

    ERIC Educational Resources Information Center

    Halcon, John J.; de la Luz Reyes, Maria

    1991-01-01

    Recent excellence-in-education reform measures have created greater restrictions on the access of Hispanics to higher education. Suggests that reformers expect reform benefits to "trickle down" to minorities after first benefiting mainstream students. The idea of excellence must include that of educational equity. (CJS)

  18. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions

    EPA Science Inventory

    In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and etha...

  19. EVALUATION OF TRICKLE-BED AIR BIOFILTER PERFORMANCE FOR STYRENE REMOVAL

    EPA Science Inventory

    A pilot-scale trickle-bed air biofilter (TBAB) was evaluated for the removal of styrene from a waste gas stream. Six-millimeter (6 mm) Celite pellets (R-635) were used as the biological attachment medium. The operating parameters considered in the study included the styrene vol...

  20. Occupant Interactions and Effectiveness of Natural Ventilation Strategies in Contemporary New Housing in Scotland, UK.

    PubMed

    Sharpe, Tim; Farren, Paul; Howieson, Stirling; Tuohy, Paul; McQuillan, Jonathan

    2015-07-21

    The need to reduce carbon emissions and fuel poverty has led to increased building envelope air tightness, intended to reduce uncontrolled ventilation heat losses. Ventilation strategies in dwellings still allow the use of trickle ventilators in window frames for background ventilation. The extent to which this results in "healthy" Indoor Air Quality (IAQ) in recently constructed dwellings was a concern of regulators in Scotland. This paper describes research to explore this. First a review of literature was conducted, then data on occupant interactions with ventilation provisions (windows, doors, trickle vents) gathered through an interview-based survey of 200 recently constructed dwellings, and measurements made on a sample of 40 of these. The main measured parameter discussed here is CO2 concentration. It was concluded after the literature review that 1000 ppm absolute was a reasonable threshold to use for "adequate" ventilation. The occupant survey found that there was very little occupant interaction with the trickle ventilators e.g., in bedrooms 63% were always closed, 28% always open, and in only 9% of cases occupants intervened to make occasional adjustments. In the measured dwellings average bedroom CO2 levels of 1520 ppm during occupied (night time) hours were observed. Where windows were open the average bedroom CO2 levels were 972 ppm. With windows closed, the combination of "trickle ventilators open plus doors open" gave an average of 1021 ppm. "Trickle ventilators open" gave an average of 1571 ppm. All other combinations gave averages of 1550 to 2000 ppm. Ventilation rates and air change rates were estimated from measured CO2 levels, for all dwellings calculated ventilation rate was less than 8 L/s/p, in 42% of cases calculated air change rate was less than 0.5 ach. It was concluded that trickle ventilation as installed and used is ineffective in meeting desired ventilation rates, evidenced by high CO2 levels reported across the sampled dwellings. Potential implications of the results are discussed.

  1. Decentralized peri-urban wastewater treatment technologies assessment integrating sustainability indicators.

    PubMed

    Mena-Ulecia, Karel; Hernández, Heykel Hernández

    2015-01-01

    Selection of treatment technologies without considering the environmental, economic and social factors associated with each geographical context risks the occurrence of negative impacts that were not properly foreseen, working against the sustainable performance of the technology. The principal aim of this study was to evaluate 12 technologies for decentralized treatment of domestic wastewater applicable to peri-urban communities using sustainability approaches and, at the same time, continuing a discussion about how to address a more integrated assessment of overall sustainability. For this, a set of 13 indicators that embody the environmental, economic and social approach for the overall sustainability assessment were used by means of a target plot diagram as a tool for integrating indicators that represent a holistic analysis of the technologies. The obtained results put forward different degrees of sustainability, which led to the selection of: septic tank+land infiltration; up-flow anaerobic reactor+high rate trickling filter and septic tank+anaerobic filter as the most sustainable and attractive technologies to be applied in peri-urban communities, according to the employed indicators.

  2. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    PubMed

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  3. Potential of organic filter materials for treating greywater to achieve irrigation quality: a review.

    PubMed

    Dalahmeh, Sahar S; Hylander, Lars D; Vinnerås, Björn; Pell, Mikael; Oborn, Ingrid; Jönsson, Håkan

    2011-01-01

    The objectives of this literature review were to: (i) evaluate the impact of greywater generated in rural communities, with the emphasis on Jordanian conditions, on soil, plant and public health and assess the need for treatment of this greywater before it is used for irrigation, and (ii) assess the potential of different types of organic by-products as carrier material in different filter units for removal of pollutants from greywater. Greywater with high BOD5, COD, high concentrations of SS, fat, oil and grease and high levels of surfactants is commonly found in rural areas in Jordan. Oxygen depletion, odour emission, hydrophobic soil phenomena, plant toxicity, blockage of piping systems and microbiological health risks are common problems associated with greywater without previous treatment. Organic by-products such as wood chips, bark, peat, wheat straw and corncob may be used as carrier material in so-called mulch filters for treating wastewater and greywater from different sources. A down-flow-mode vertical filter is a common setup used in mulch filters. Wastewaters with a wide range of SS, cBOD5 and COD fed into different mulch filters have been studied. The different mulch materials achieved SS removal ranging between 51 and 91%, a BOD5 reduction range of 55-99.9%, and COD removal of 51-98%. Most types of mulches achieved a higher organic matter removal than that achieved by an ordinary septic tank. Bark, peat and wood chips filters removed organic matter better than sand and trickling filters, under similar conditions. Release of filter material and increase in COD in the effluent was reported using some mulch materials. In conclusion, some mulch materials such as bark, peat and woodchips seem to have a great potential for treatment of greywater in robust, low-tech systems. They can be expected to be resilient in dealing with variable low and high organic loads and shock loads.

  4. Advanced wastewater treatment simplified through research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souther, R.H.

    A waste water treatment plant was built based on results of a small-scale pilot plant study, conducted largely in a search for efficiency as well as economy. Results were that 98 percent carbonaceous BOD (BOD/sub C/) and nitrogenous BOD (BOD/sub N/) were removed in a simplified, low-cost, single-stage advanced treatment process surpassing even some of the most sophisticated advanced complex waste treatment methods. The single-stage process treats domestic waste alone or combined with very high amounts of textile, electroplating, chemical, food, and other processing industrial wastewater. The process removed 100 percent of the sulfides above 98 percent of NH/sub 3/-N,more » over 90 percent of COD and phenols; chromium was converted from highly toxic hexavalent CrVI to nearly nontoxic trivalent chrome (CrIII). A pH up to 12 may be tolerated if no free hydroxyl (OH) ions are present. Equalization ponds, primary settling tanks, trickling filters, extra nitrogen removal tanks, carbon columns, and chemical treatment are not required. Color removal is excellent with clear effluent suitable for recycling after chlorination to water supply lakes. The construction cost of the single-stage advanced treatment plant is surprisingly low, about /sup 1///sub 2/ to /sup 1///sub 6/ as much as most conventional ineffective complex plants. This simplified, innovative process developed in independent research at Guilford College is considered by some a breakthrough in waste treatment efficiency and economy. (MU)« less

  5. Gas treatment in trickle-bed biofilters: biomass, how much is enough?

    PubMed

    Alonso, C; Suidan, M T; Sorial, G A; Smith, F L; Biswas, P; Smith, P J; Brenner, R C

    1997-06-20

    The objective of this article is to define and validate a mathematical model that desribes the physical and biological processes occurring in a trickle-bed air biofilter for waste gas treatment. This model considers a two-phase system, quasi-steady-state processes, uniform bacterial population, and one limiting substrate. The variation of the specific surface area with bacterial growth is included in the model, and its effect on the biofilter performance is analyzed. This analysis leads to the conclusion that excessive accumulation of biomass in the reactor has a negative effect on contaminant removal efficiency. To solve this problem, excess biomass is removed via full media fluidization and backwashing of the biofilter. The backwashing technique is also incorporated in the model as a process variable. Experimental data from the biodegradation of toluene in a pilot system with four packed-bed reactors are used to validate the model. Once the model is calibrated with the estimation of the unknown parameters of the system, it is used to simulate the biofilter performance for different operating conditions. Model predictions are found to be in agreement with experimental data. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 583-594, 1997.

  6. Evaluation program for secondary spacecraft cells: Evaluation of storage methods, open circuit versus continuous trickle charge, Sonotone 3.5 ampere-hour sealed nickel-cadmium secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Thomas, R. E.

    1972-01-01

    Twenty-five cells were used in a five-year test to compare, after each successive one-year storage period, the discharge and charge characteristics of charged cells on open circuit versus that of cells on continuous trickle charge. The test procedure, instrumentation, and results are described. Based on the test results, the following recommendations were made: (1) If the user's purpose will allow a rejuvenation cycle or two after a long storage period, the open circuit regime will likely give slightly greater capacity. (2) If the user's purpose demands immediately available power following a long storage period, the trickle charge method of storage is definitely the regime to use.

  7. Comparing the dynamic performance of wastewater treatment systems: A metafrontier Malmquist productivity index approach.

    PubMed

    Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón

    2015-09-15

    The assessment of productivity change of wastewater treatment plants (WWTPs) is essential to improve the performance over time of the facilities evaluated. This study assessed and compared the productivity growth of WWTPs operating with non-homogeneous technologies. The metafrontier Malmquist productivity index (MMPI) was computed for a sample of 99 WWTPs encompassing 4 alternative technologies: activated sludge (AS), aerated lagoon (AL), trickling filter (TF) and rotating biological contactor (BD). The results indicated that, on average, WWTPs with AS and BD exhibited better performance over time than WWTPs with AL and TF. The MMPI indicates that, over the period 2007-2009, the productivity rose by 0.9% and 0.3% for AS and BD technologies, respectively, whilst for the AL and TF processes, the productivity decreased by 0.5% and 2.2%, respectively. The decomposition of the MMPI into efficiency change (EC) and technical change (TC) illustrated that EC was a positive driver of productivity change for WWTPs that use AS, whilst TC contributed positively to the productivity growth of WWTPs using AL and BD. Several policy implications to help managers make informed decisions were drawn from our empirical analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Treatment of mountain refuge wastewater by fixed and moving bed biofilm systems.

    PubMed

    Andreottola, G; Damiani, E; Foladori, P; Nardelli, P; Ragazzi, M

    2003-01-01

    Tourists visiting mountain refuges in the Alps have increased significantly in the last decade and the number of refuges and huts at high altitude too. In this research the results of an intensive monitoring of a wastewater treatment plant (WWTP) for a tourist mountain refuge located at 2,981 m a.s.l. are described. Two biofilm reactors were adopted: (a) a Moving Bed Biofilm Reactor (MBBR); (b) a submerged Fixed Bed Biofilm Reactor (FBBR). The aims of this research were: (i) the evaluation of the main parameters characterising the processes and involved in the design of the wastewater plants, in order to compare advantages and disadvantages of the two tested alternatives; (ii) the acquisition of an adequate knowledge of the problems connected with the wastewater treatment in alpine refuges. The main results have been: (i) a quick start-up of the biological reactors obtainable thanks to a pre-colonization before the transportation of the plastic carriers to the refuge at the beginning of the tourist season; (ii) low volume and area requirement; (iii) significantly higher removal efficiency compared to other fixed biomass systems, such as trickling filters, but the energy consumption is higher.

  9. Impact of exogenous organic carbon on the removal of chemicals of concern in the high rate nitrifying trickling filters.

    PubMed

    Mai, Lei; van den Akker, Ben; Du, Jun; Kookana, Rai S; Fallowfield, Howard

    2016-06-01

    The application of fixed bed high rate nitrifying trickling filters (NTFs) for the removal of track organic chemicals of concern (CoC) is less well known than their application to nutrient removal in water treatment. Particularly, the effect of exogenous organic carbon substrate (sucrose) loading on the performance of NTFs is not well understood. A laboratory-scale NTF system was operated in recirculation mode, with the objective of removing ammonia and CoC simultaneously. The efficiency of a high rate NTF for removal both of low concentration of ammonia (5 mg NH4-N L(-1)) and different concentrations of CoC in the presence of an exogenous organic carbon substrate (30 mg total organic carbon (TOC) L(-1)) was investigated. In the presence of exogenous organic carbon, the results demonstrated that the high rate NTF was able to successfully remove most of the CoCs investigated, with the removal ranging from 20.2% to 87.54%. High removal efficiencies were observed for acetaminophen (87.54%), bisphenol A (86.60%), trimethoprim (86.24%) and 17α-ethynylestradiol (80.60%). It was followed by the medium removal efficiency for N, N-diethyl-m-toluamide (61.31%) and atrazine (56.90%). In contrast, the removal of caffeine (28.43%) and benzotriazole (20.20%) was poorer in the presence of exogenous organic carbon. The removal efficiency for CoC was also compared with the results obtained in our previous study in the absence of exogenous organic carbon. The results showed that the addition of exogenous organic carbon was able to improve the removal of some of the CoC. Significant TOC percentage removals (45.68%-84.43%) and ammonia removal rate (mean value of 0.44 mg NH4-N L(-1) h(-1)) were also achieved in this study. The findings from this study provide valuable information for optimising the efficiency of high rate NTF for the removal of ammonia, CoC and TOC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nanoparticles in Constanta-North Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of organic molecules that may cause changes in the physical structure or the surface characteristic of the material.

  11. Trickling Down: Are Rural and Rural Poor Family Incomes Responsive to Regional Economic Growth? Institute for Research on Poverty, Discussion Papers No. 210-74.

    ERIC Educational Resources Information Center

    Weber, Bruce A.

    The past decade has seen a number of studies of how the poverty incidence (the percentage of families below the poverty line) of certain demographic groups changes in response to economic growth. The question of whether regional economic growth trickles down to rural and rural poor families was examined by statistically estimating the relationship…

  12. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    PubMed

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  13. Development of natural treatment system consisting of black soil and Kentucky bluegrass for the post-treatment of anaerobically digested strong wastewater.

    PubMed

    Chen, Xiaochen; Fukushi, Kensuke

    2016-03-01

    To develop a sound post-treatment process for anaerobically-digested strong wastewater, a novel natural treatment system comprising two units is put forward. The first unit, a trickling filter, provides for further reduction of biochemical oxygen demand and adjustable nitrification. The subsequent soil-plant unit aims at removing and recovering the nutrients nitrogen (N), phosphorus (P) and potassium (K). As a lab-scale feasibility study, a soil column test was conducted, in which black soil and valuable Kentucky bluegrass were integrated to treat artificial nutrient-enriched wastewater. After a long-term operation, the nitrification function was well established in the top layers, despite the need for an improved denitrification process prior to discharge. P and K were retained by the soil through distinct mechanisms. Since they either partially or totally remained in plant-available forms in the soil, indirect nutrient reuse could be achieved. As for Kentucky bluegrass, it displayed better growth status when receiving wastewater, with direct recovery of 8%, 6% and 14% of input N, P and K, respectively. Furthermore, the indispensable role of Kentucky bluegrass for better treatment performance was proved, as it enhanced the cell-specific nitrification potential of the soil nitrifying microorganisms inhabiting the rhizosphere. After further upgrade, the proposed system is expected to become a new solution for strong wastewater pollution. Copyright © 2015. Published by Elsevier B.V.

  14. Performance of a biotrickling filter for the anaerobic utilization of gas-phase methanol coupled to thiosulphate reduction and resource recovery through volatile fatty acids production.

    PubMed

    Eregowda, Tejaswini; Matanhike, Luck; Rene, Eldon R; Lens, Piet N L

    2018-04-25

    The anaerobic removal of continuously fed gas-phase methanol (2.5-30 g/m 3 .h) and the reduction of step-fed thiosulphate (1000 mg/L) was investigated in a biotrickling filter (BTF) operated for 123 d at an empty bed residence time (EBRT) of 4.6 and 2.3 min. The BTF performance during steady step-feed and special operational phases like intermittent liquid trickling in 6 and 24 h cycles and operation without pH regulation were evaluated. Performance of the BTF was not affected and nearly 100% removal of gas-phase methanol was achieved with an EC max of 21 g/m 3 .h. Besides, >99% thiosulphate reduction was achieved, in all the phases of operation. The production of sulphate, H 2 S and volatile fatty acids (VFA) was monitored and a maximum of 2500 mg/L of acetate, 200 mg/L of propionate, 150 mg/L of isovalerate and 100 mg/L isobutyrate was produced. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Distribution of trace metals (Cu, Pb, Ni, Zn) between particulate, colloidal and truly dissolved fractions in wastewater treatment.

    PubMed

    Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise

    2017-05-01

    The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nickel-hydrogen battery state of charge during low rate trickle charging

    NASA Technical Reports Server (NTRS)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1996-01-01

    The NASA AXAF-I program requires high battery state of charge at launch. Traditional approaches to providing high state of charge, during prelaunch operations, require significant battery cooling. The use of active cooling, in the AXAF-I prelaunch environment, was considered and proved to be difficult to implement and very expensive. Accordingly alternate approaches were considered. An approach utilizing adiabatic charging and low rate trickle charge, was investigated and proved successful.

  17. Does elite success trigger mass participation in table tennis? An analysis of trickle-down effects in Germany, France and Austria.

    PubMed

    Haut, Jan; Gaum, Christian

    2017-08-02

    There is a widespread belief that success at the elite level leads to increasing mass participation in sports. However, this assumption is merely supported by empirical evidence and is analyzed here for the case of table tennis. Therefore long-term data (1964-2014) on participation in Germany, France and Austria is statistically tested for effects of success by the countries' athletes at international competitions. Results indicate that no general trickle-down effect can be confirmed for table tennis in the countries observed. Rather, findings are ambivalent, as a strong positive effect was found for the Austrian case, but a paradox relation for the German case, where elite success has been accompanied by decreasing participation in the last decades. Accordingly, as an "automatic" trickle-down effect is unlikely, more specific analyses and strategies seem necessary to use elite success as a lever for the promotion of the sport.

  18. Deep Reconditioning Testing for near Earth Orbits

    NASA Technical Reports Server (NTRS)

    Betz, F. E.; Barnes, W. L.

    1984-01-01

    The problems and benefits of deep reconditioning to near Earth orbit missions with high cycle life and shallow discharge depth requirements is discussed. A simple battery level approach to deep reconditioning of nickel cadmium batteries in near Earth orbit is considered. A test plan was developed to perform deep reconditioning in direct comparison with an alternative trickle charge approach. The results demonstrate that the deep reconditioning procedure described for near Earth orbit application is inferior to the alternative of trickle charging.

  19. Odour removal with a trickling filter at a small WWTP strongly influenced by the tourism season.

    PubMed

    Patria, L; Cathelain, M; Laurens, P; Barbere, J P

    2001-01-01

    Etaples-Le Touquet's wastewater treatment plant (WWTP) is based on a coastal area of the Artois-Picardie region. The pollution load can vary from 20,000 p.e. to 60,000 p.e. over a weekend or in summer. The Collectivity and the Water Agency decided to cover and ventilate the main odour source points of the plant. The foul air was directed to a 2,500 m3/h inorganic bed biofilter (Alizair) for odour control. An odour monitoring took place during the first year of operation taking into account cold and warm seasons, high and low tourism seasons. The Alizair biofilter appeared an appropriate odour control process for small sized wastewater treatment plants, easy to operate and efficient even in areas where tourism seasons have a great impact on the pollution load arriving at the plant. The neighbourhood did not complain about odours any more and the operator was very confident with such a simple and effective system. The local Authorities and the Water Agency agreed to recommend Alizair biofilters with an autotrophic biomass adapted in the case of an old WWTP that cannot be up graded any more or for large pumping stations and wastewater storage prior treatment.

  20. Occurrence of Cryptosporidium, Giardia, and Cyclospora in influent and effluent water at wastewater treatment plants in Arizona.

    PubMed

    Kitajima, Masaaki; Haramoto, Eiji; Iker, Brandon C; Gerba, Charles P

    2014-06-15

    We investigated the occurrence of Cryptosporidium, Giardia, and Cyclospora at two wastewater treatment plants (WWTPs) in Arizona over a 12-month period, from August 2011 to July 2012. Influent and effluent wastewater samples were collected monthly, and protozoan (oo)cysts were concentrated using an electronegative filter, followed by the detection of protozoa using fluorescent microscopy (Cryptosporidium oocysts and Giardia cysts) and PCR-based methods (Cryptosporidium spp., Giardia intestinalis, and Cyclospora cayetanensis). The concentration of Giardia cysts in the influent was always higher than that of Cryptosporidium oocysts (mean concentration of 4.8-6.4×10(3) versus 7.4×10(1)-1.0×10(2)(oo)cysts/l) with no clear seasonality, and log10 reduction of Giardia cysts was significantly higher than that of Cryptosporidium oocysts for both WWTPs (P<0.05). Log10 reduction of Giardia cysts at the WWTP utilizing activated sludge was significantly higher than the other WWTP using trickling filter (P=0.014), while no statistically significant difference between the two WWTPs was observed for the log10 reduction of Cryptosporidium oocysts (P=0.207). Phylogenetic analysis revealed that G. intestinalis strains identified in wastewater belonged to two assemblages, AII and B, which are potentially infectious to humans. C. cayetanensis was also detected from both influent and effluent using a newly developed quantitative PCR, with the highest influent concentration of 1.2×10(4)copies/l. Our results demonstrated that these protozoan pathogens are prevalent in the study area and that efficacy of the conventional wastewater treatment processes at physically removing (oo)cysts is limited. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Comparison of different packing materials for the biofiltration of air toxics.

    PubMed

    Sakuma, Takeyuki; Hattori, Toshihiro; Deshusses, Marc A

    2006-11-01

    Four different biofilter packing materials (two porous ceramics, perlite, and open pore polyurethane foam) were compared for the removal of toluene vapors. The focus was on evaluating performance at relatively short gas retention time (13.5 and 27 sec). The reactors were initially operated as biotrickling filters with continuous feeding and trickling of a nutrient solution. After significant plugging of the biotrickling filter beds with biomass was observed, the operation mode was switched to biofiltration with only periodic supply of mineral nutrients. This resulted in stable conditions, which allowed detailed investigations over > 6 months. The reactor packed with cattle bone Porcelite (CBP), a ceramic material containing some macronutrients and micronutrients, exhibited the highest performance. The critical load (i.e., load at which 95% removal occurred) was 29 g m(-3) hr(-1) at a gas retention time of 13.5 sec and 66 g m(-3) hr(-1) at a gas retention time of 27 sec. After the long-term experiment, the packing materials were taken from the reactors and examined. The reactors were divided into three sections, top, middle, and bottom, to determine whether spatial differentiation of biomass occurred. The assays included a double-staining technique to count total and live microorganisms and determination of moisture, protein, and dry weight contents. Microbial community analysis was also conducted by denaturing gradient gel electrophoresis. The results showed that most reactors had a significant fraction of inactive biomass. Comparatively, the CBP biofilter held significantly higher densities of active biomass, which may be the reason for the higher toluene removal performance. The analyses suggest that favorable material properties and the nutrients slowly released by the CBP provided better environmental conditions for the process culture.

  2. A Numerical Model for Trickle Bed Reactors

    NASA Astrophysics Data System (ADS)

    Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.

    2000-12-01

    Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.

  3. High performance biological methanation in a thermophilic anaerobic trickle bed reactor.

    PubMed

    Strübing, Dietmar; Huber, Bettina; Lebuhn, Michael; Drewes, Jörg E; Koch, Konrad

    2017-12-01

    In order to enhance energy efficiency of biological methanation of CO 2 and H 2 , this study investigated the performance of a thermophilic (55°C) anaerobic trickle bed reactor (ATBR) (58.1L) at ambient pressure. With a methane production rate of up to 15.4m 3 CH4 /(m 3 trickle bed ·d) at methane concentrations above 98%, the ATBR can easily compete with the performance of other mixed culture methanation reactors. Control of pH and nutrient supply turned out to be crucial for stable operation and was affected significantly by dilution due to metabolic water production, especially during demand-orientated operation. Considering practical applications, inoculation with digested sludge, containing a diverse biocenosis, showed high adaptive capacity due to intrinsic biological diversity. However, no macroscopic biofilm formation was observed at thermophilic conditions even after 313days of operation. The applied approach illustrates the high potential of thermophilic ATBRs as a very efficient energy conversion and storage technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Design and performance of a trickle-bed bioreactor with immobilized hybridoma cells.

    PubMed

    Phillips, H A; Scharer, J M; Bols, N C; Moo-Young, M

    1992-01-01

    A trickle-bed system employing inert matrices of vermiculite or polyurethane foam packed in the downcomer section of a split-flow air-lift reactor has been developed for hybridoma culture to enhance antibody productivity. This quiescent condition favoured occlusion and allowed the cells to achieve densities twelve fold greater (12.8 x 10(6) cells/ml reactor for polyurethane foam) than in free cell suspension. The reactor was operated in a cyclic batch mode whereby defined volumes of medium were periodically withdrawn and replaced with equal volumes of fresh medium. The pH of the medium was used as the indicator of the feeding schedule. Glucose, lactate and ammonia concentrations reached a stationary value after 5 days. With vermiculite packing, a monoclonal antibody (MAb) concentration of 2.4 mg/l was achieved after 12 days. The MAb concentration declined then increased to a value of 1.8 mg/l. In the polyurethane foam average monoclonal antibody (MAb) concentrations reached a stationary value of 1.1 mg/l in the first 20 days and increased to a new stationary state value of 2.1 mg/l for the remainder of the production. MAb productivity in the trickle-bed reactor was 0.3 mg/l.d (polyurethane foam) and 0.18 mg/l.d (vermiculite) in comparison to 0.12 mg/l.d for free cell suspension. This trickle-bed system seems to be an attractive way of increasing MAb productivity in culture.

  5. The innovative moving bed biofilm reactor/solids contact reaeration process for secondary treatment of municipal wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusten, B.; McCoy, M.; Proctor, R.

    1998-07-01

    The innovative moving bed biofilm reactor/solids contact reaeration (MBBR/SCR) process has been chosen for a new wastewater treatment plant serving a population of 200,000 at Moa Point, Wellington, New Zealand. Because the MBBR/SCR combination was new, a pilot-scale demonstration project was made part of the contract. Thorough pilot tests using a wide range of organic loads under both steady and transient-flow conditions demonstrated that the MBBR/SCR process produced the required effluent quality at loads higher than used in the original design. At 3 days mean cell residence time (MCRT) in the SCR stage, a final effluent with a 5-day biochemicalmore » oxygen demand (BOD{sub 5}) of less than 10 mg/L was achieved at an organic load on the MBBR of 15 g BOD{sub 5}/m{sup 2}{center_dot}d (5.0 kg BOD{sub 5}/m{sup 3}{center_dot}d). With the same MCRT, a final effluent of less than 15 mg BOD{sub 5}/L was achieved at an organic load on the MBBR of 20 g BOD{sub 5}/m{sup 2}{center_dot}d (6.7 kg BOD{sub 5}/m{sup 3}{center_dot}d). Dynamic loading tests demonstrated that a good-quality effluent was produced with a diurnal peak-hour load on the MBBR of more than 40 g BOD{sub 5}/m{sup 2}{center_dot}d (13.3 kg BOD{sub 5}/m{sup 3}{center_dot}d). The MBBR/SCR process was more compact and significantly cheaper than a conventional trickling filter/solids contact or activated-sludge process at the Moa Point site.« less

  6. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system.

    PubMed

    Burkhardt, M; Koschack, T; Busch, G

    2015-02-01

    A new type of anaerobic trickle-bed reactor was used for biocatalytic methanation of hydrogen and carbon dioxide under mesophilic temperatures and ambient pressure in a continuous process. The conversion of gaseous substrates through immobilized hydrogenotrophic methanogenic archaea in a biofilm is a unique feature of this type of reactor. Due to the formation of a three-phase system on the carrier surface and operation as a plug flow reactor without gas recirculation, a complete reaction could be observed. With a methane concentration higher than c(CH4) = 98%, the product gas exhibits a very high quality. A specific methane production of P(CH4) = 1.49 Nm(3)/(m(3)(SV) d) was achieved at a hydraulic loading rate of LR(H2) = 6.0 Nm(3)/(m(3)(SV) d). The relation between trickle flow through the reactor and productivity could be shown. An application for methane enrichment in combination with biogas facilities as a source of carbon dioxide has also been positively proven. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Butyric Acid- and Dimethyl Disulfide-Assimilating Microorganisms in a Biofilter Treating Air Emissions from a Livestock Facility▿

    PubMed Central

    Kristiansen, Anja; Lindholst, Sabine; Feilberg, Anders; Nielsen, Per H.; Neufeld, Josh D.; Nielsen, Jeppe L.

    2011-01-01

    Biofiltration has proven an efficient tool for the elimination of volatile organic compounds (VOCs) and ammonia from livestock facilities, thereby reducing nuisance odors and ammonia emissions to the local environment. The active microbial communities comprising these filter biofilms have not been well characterized. In this study, a trickle biofilter treating air from a pig facility was investigated and proved efficient in removing carboxylic acids (>70% reduction), mainly attributed to the primary filter section within which reduced organic sulfur compounds were also depleted (up to 50%). The secondary filter eliminated several aromatic compounds: phenol (81%), p-cresol (89%), 4-ethylphenol (68%), indole (48%), and skatole (69%). The active butyric acid degrading bacterial community of an air filter sample was identified by DNA stable-isotope probing (DNA-SIP) and microautoradiography, combined with fluorescence in situ hybridization (MAR-FISH). The predominant 16S rRNA gene sequences from a clone library derived from “heavy” DNA from [13C4]butyric acid incubations were Microbacterium, Gordonia, Dietzia, Rhodococcus, Propionibacterium, and Janibacter, all from the Actinobacteria. Actinobacteria were confirmed and quantified by MAR-FISH as being the major bacterial phylum assimilating butyric acid along with several Burkholderiales-related Betaproteobacteria. The active bacterial community assimilating dimethyl disulfide (DMDS) was characterized by DNA-SIP and MAR-FISH and found to be associated with the Actinobacteria, along with a few representatives of Flavobacteria and Sphingobacteria. Interestingly, ammonia-oxidizing Betaproteobacteria were also implicated in DMDS degradation, as were fungi. Thus, multiple isotope-based methods provided complementary data, enabling high-resolution identification and quantitative assessments of odor-eliminating Actinobacteria-dominated populations of these biofilter environments. PMID:22003018

  8. Butyric acid- and dimethyl disulfide-assimilating microorganisms in a biofilter treating air emissions from a livestock facility.

    PubMed

    Kristiansen, Anja; Lindholst, Sabine; Feilberg, Anders; Nielsen, Per H; Neufeld, Josh D; Nielsen, Jeppe L

    2011-12-01

    Biofiltration has proven an efficient tool for the elimination of volatile organic compounds (VOCs) and ammonia from livestock facilities, thereby reducing nuisance odors and ammonia emissions to the local environment. The active microbial communities comprising these filter biofilms have not been well characterized. In this study, a trickle biofilter treating air from a pig facility was investigated and proved efficient in removing carboxylic acids (>70% reduction), mainly attributed to the primary filter section within which reduced organic sulfur compounds were also depleted (up to 50%). The secondary filter eliminated several aromatic compounds: phenol (81%), p-cresol (89%), 4-ethylphenol (68%), indole (48%), and skatole (69%). The active butyric acid degrading bacterial community of an air filter sample was identified by DNA stable-isotope probing (DNA-SIP) and microautoradiography, combined with fluorescence in situ hybridization (MAR-FISH). The predominant 16S rRNA gene sequences from a clone library derived from "heavy" DNA from [(13)C(4)]butyric acid incubations were Microbacterium, Gordonia, Dietzia, Rhodococcus, Propionibacterium, and Janibacter, all from the Actinobacteria. Actinobacteria were confirmed and quantified by MAR-FISH as being the major bacterial phylum assimilating butyric acid along with several Burkholderiales-related Betaproteobacteria. The active bacterial community assimilating dimethyl disulfide (DMDS) was characterized by DNA-SIP and MAR-FISH and found to be associated with the Actinobacteria, along with a few representatives of Flavobacteria and Sphingobacteria. Interestingly, ammonia-oxidizing Betaproteobacteria were also implicated in DMDS degradation, as were fungi. Thus, multiple isotope-based methods provided complementary data, enabling high-resolution identification and quantitative assessments of odor-eliminating Actinobacteria-dominated populations of these biofilter environments.

  9. Evaluation of the process performance of a down-flow hanging sponge reactor for direct treatment of domestic wastewater in Bangkok, Thailand.

    PubMed

    Miyaoka, Yuma; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Banjongproo, Pathan; Yamaguchi, Takashi; Onodera, Takashi; Okadera, Tomohiro; Syutsubo, Kazuaki

    2017-08-24

    This study assesses the performance of an aerobic trickling filter, down-flow hanging sponge (DHS) reactor, as a decentralized domestic wastewater treatment technology. Also, the characteristic eukaryotic community structure in DHS reactor was investigated. Long-term operation of a DHS reactor for direct treatment of domestic wastewater (COD = 150-170 mg/L and BOD = 60-90 mg/L) was performed under the average ambient temperature ranged from 28°C to 31°C in Bangkok, Thailand. Throughout the evaluation period of 550 days, the DHS reactor at a hydraulic retention time of 3 h showed better performance than the existing oxidation ditch process in the removal of organic carbon (COD removal rate = 80-83% and BOD removal rate = 91%), nitrogen compounds (total nitrogen removal rate = 45-51% and NH 4 + -N removal rate = 95-98%), and low excess sludge production (0.04 gTS/gCOD removed). The clone library based on the 18S ribosomal ribonucleic acid gene sequence revealed that phylogenetic diversity of 18S rRNA gene in the DHS reactor was higher than that of the present oxidation ditch process. Furthermore, the DHS reactor also demonstrated sufficient COD and NH 4 + -N removal efficiency under flow rate fluctuation conditions that simulates a small-scale treatment facility. The results show that a DHS reactor could be applied as a decentralized domestic wastewater treatment technology in tropical regions such as Bangkok, Thailand.

  10. Microbial resource management of one‐stage partial nitritation/anammox

    PubMed Central

    Vlaeminck, S. E.; De Clippeleir, H.; Verstraete, W.

    2012-01-01

    Summary About 30 full‐scale partial nitritation/anammox plants are established, treating mostly sewage sludge reject water, landfill leachate or food processing digestate. Although two‐stage and one‐stage processes each have their advantages, the one‐stage configuration is mostly applied, termed here as oxygen‐limited autotrophic nitrification/denitrification (OLAND), and is the focus of this review. The OLAND application domain is gradually expanding, with technical‐scale plants on source‐separated domestic wastewater, pre‐treated manure and sewage, and liquors from organic waste bioenergy plants. A ‘microbial resource management’ (MRM) OLAND framework was elaborated, showing how the OLAND engineer/operator (1: input) can design/steer the microbial community (2: biocatalyst) to obtain optimal functionality (3: output). In the physicochemical toolbox (1), design guidelines are provided, as well as advantages of different reactor technologies. Particularly the desirable aeration regime, feeding regime and shear forces are not clear yet. The development of OLAND trickling filters, membrane bioreactors and systems with immobilized biomass is awaited. The biocatalyst box (2) considers ‘Who’: biodiversity and its dynamic patterns, ‘What’: physiology, and ‘Where’: architecture creating substrate gradients. Particularly community dynamics and extracellular polymeric substances (EPS) still require insights. Performant OLAND (3) comprises fast start‐up (storage possibility; fast growth of anammox bacteria), process stability (endured biomass retention; stress resilience), reasonable overall costs, high nitrogen removal efficiency and a low environmental footprint. Three important OLAND challenges are elaborated in detailed frameworks, demonstrating how to maximize nitrogen removal efficiency, minimize NO and N2O emissions and obtain through OLAND a plant‐wide net energy gain from sewage treatment. PMID:22452819

  11. Full-scale treatment of wastewater from a biodiesel fuel production plant with alkali-catalyzed transesterification.

    PubMed

    De Gisi, Sabino; Galasso, Maurizio; De Feo, Giovanni

    2013-01-01

    The treatment of wastewater derived from a biodiesel fuel (BDF) production plant with alkali-catalyzed transesterification was studied at full scale. The investigated wastewater treatment plant consisted of the following phases: primary adsorption/coagulation/flocculation/sedimentation processes, biological treatment with the combination of trickling filter and activated sludge systems, secondary flocculation/sedimentation processes, and reverse osmosis (RO) system with spiral membranes. All the processes were developed in a continuous mode, while the RO experiment was performed with batch tests. Two types of BDF wastewater were considered: the first wastewater (WW1) had an average total chemical oxygen demand (COD), pH and feed flow rate of 10,850.8 mg/L, 5.9 and 2946.7 L/h, respectively, while the second wastewater (WW2) had an average total COD, pH and feed flow rate of 43,898.9 mg/L, 3.3 and 2884.6 L/h, respectively. The obtained results from the continuous tests showed a COD removal percentage of more than 90% for the two types of wastewater considered. The removal of biorefractory COD and salts was obtained with a membrane technology in order to reuse the RO permeate in the factory production cycle. The rejections percentage of soluble COD, chlorides and sulphates were 92.8%, 95.0% and 99.5%, respectively. Because the spiral membranes required a high number of washing cycles, the use of plane membranes was preferable. Finally, the RO reject material should be evaporated using the large amount of inexpensive heat present in this type of industry.

  12. Evaluation of handling and reuse approaches for the waste generated from MEA-based CO2 capture with the consideration of regulations in the UAE.

    PubMed

    Nurrokhmah, Laila; Mezher, Toufic; Abu-Zahra, Mohammad R M

    2013-01-01

    A waste slip-stream is generated from the reclaiming process of monoethanolamine (MEA) based Post-Combustion Capture (PCC). It mainly consists of MEA itself, ammonium, heat-stable salts (HSS), carbamate polymers, and water. In this study, the waste quantity and nature are characterized for Fluor's Econamine FGSM coal-fired CO2 capture base case. Waste management options, including reuse, recycling, treatment, and disposal, are investigated due to the need for a more environmentally sound handling. Regulations, economic potential, and associated costs are also evaluated. The technical, economic, and regulation assessment suggests waste reuse for NOx scrubbing. Moreover, a high thermal condition is deemed as an effective technique for waste destruction, leading to considerations of waste recycling into a coal burner or incineration. As a means of treatment, three secondary-biological processes covering Complete-Mix Activated Sludge (CMAS), oxidation ditch, and trickling filter are designed to meet the wastewater standards in the United Arab Emirates (UAE). From the economic point of view, the value of waste as a NOx scrubbing agent is 6,561,600-7,348,992 USD/year. The secondary-biological treatment cost is 0.017-0.02 USD/ton of CO2, while the cost of an on-site incinerator is 0.031 USD/ton of CO2 captured. In conclusion, secondary biological treatment is found to be the most economical option.

  13. Removal of Total Coliforms, Thermotolerant Coliforms, and Helminth Eggs in Swine Production Wastewater Treated in Anaerobic and Aerobic Reactors

    PubMed Central

    Zacarias Sylvestre, Silvia Helena; Lux Hoppe, Estevam Guilherme; de Oliveira, Roberto Alves

    2014-01-01

    The present work evaluated the performance of two treatment systems in reducing indicators of biological contamination in swine production wastewater. System I consisted of two upflow anaerobic sludge blanket (UASB) reactors, with 510 and 209 L in volume, being serially arranged. System II consisted of a UASB reactor, anaerobic filter, trickling filter, and decanter, being also organized in series, with volumes of 300, 190, 250, and 150 L, respectively. Hydraulic retention times (HRT) applied in the first UASB reactors were 40, 30, 20, and 11 h in systems I and II. The average removal efficiencies of total and thermotolerant coliforms in system I were 92.92% to 99.50% and 94.29% to 99.56%, respectively, and increased in system II to 99.45% to 99.91% and 99.52% to 99.93%, respectively. Average removal rates of helminth eggs in system I were 96.44% to 99.11%, reaching 100% as in system II. In reactor sludge, the counts of total and thermotolerant coliforms ranged between 105 and 109 MPN (100 mL)−1, while helminth eggs ranged from 0.86 to 9.27 eggs g−1 TS. PMID:24812560

  14. Reduction of Cryptosporidium, Giardia, and Fecal Indicators by Bardenpho Wastewater Treatment.

    PubMed

    Schmitz, Bradley W; Moriyama, Hitoha; Haramoto, Eiji; Kitajima, Masaaki; Sherchan, Samendra; Gerba, Charles P; Pepper, Ian L

    2018-06-19

    Increased demand for water reuse and reclamation accentuates the importance for optimal wastewater treatment to limit protozoa in effluents. Two wastewater treatment plants utilizing advanced Bardenpho were investigated over a 12-month period to determine the incidence and reduction of Cryptosporidium, Giardia, Cyclospora, and fecal indicators. Results were compared to facilities that previously operated in the same geographical area. Protozoa (oo)cysts were concentrated using an electronegative filter and subsequently detected by fluorescent microscopy and/or PCR methods. Cryptosporidium and Giardia were frequently detected in raw sewage, but Cyclospora was not detected in any wastewater samples. Facilities with Bardenpho treatment exhibited higher removals of (oo)cysts than facilities utilizing activated sludge or trickling filters. This was likely due to Bardenpho systems having increased solid wasting rates; however, this mechanism cannot be confirmed as sludge samples were not analyzed. Use of dissolved-air-flotation instead of sedimentation tanks did not result in more efficient removal of (oo)cysts. Concentrations of protozoa were compared with each other, Escherichia coli, somatic coliphage, and viruses (pepper mild mottle virus, Aichi virus 1, adenovirus, and polyomaviruses JC and BK). Although significant correlations were rare, somatic coliphage showed the highest potential as an indicator for the abundance of protozoa in wastewaters.

  15. Synthesizing Equivalence Indices for the Comparative Evaluation of Technoeconomic Efficiency of Industrial Processes at the Design/Re-engineering Level

    NASA Astrophysics Data System (ADS)

    Fotilas, P.; Batzias, A. F.

    2007-12-01

    The equivalence indices synthesized for the comparative evaluation of technoeconomic efficiency of industrial processes are of critical importance since they serve as both, (i) positive/analytic descriptors of the physicochemical nature of the process and (ii) measures of effectiveness, especially helpful for investigated competitiveness in the industrial/energy/environmental sector of the economy. In the present work, a new algorithmic procedure has been developed, which initially standardizes a real industrial process, then analyzes it as a compromise of two ideal processes, and finally synthesizes the index that can represent/reconstruct the real process as a result of the trade-off between the two ideal processes taking as parental prototypes. The same procedure makes fuzzy multicriteria ranking within a set of pre-selected industrial processes for two reasons: (a) to analyze the process most representative of the production/treatment under consideration, (b) to use the `second best' alternative as a dialectic pole in absence of the two ideal processes mentioned above. An implantation of this procedure is presented, concerning a facility of biological wastewater treatment with six alternatives: activated sludge through (i) continuous-flow incompletely-stirred tank reactors in series, (ii) a plug flow reactor with dispersion, (iii) an oxidation ditch, and biological processing through (iv) a trickling filter, (v) rotating contactors, (vi) shallow ponds. The criteria used for fuzzy (to count for uncertainty) ranking are capital cost, operating cost, environmental friendliness, reliability, flexibility, extendibility. Two complementary indices were synthesized for the (ii)-alternative ranked first and their quantitative expressions were derived, covering a variety of kinetic models as well as recycle/bypass conditions. Finally, analysis of estimating the optimal values of these indices at maximum technoeconomic efficiency is presented and the implications (expected to be) caused by exogenous and endogenous factors (e.g., environmental standards change and innovative energy savings/substitution, respectively) are discussed by means of marginal efficiency graphs.

  16. C.R.O.P. - Combined Regenerative Organic food Production: Employing the benefits of natural communities

    NASA Astrophysics Data System (ADS)

    Bornemann, Gerhild; Hauslage, Jens; Hemmersbach, Ruth; Hendrik Anken, Ralf; Moeller, Ralf; Wasser, Kai; Tonat, Tim

    The reutilization of nutrients bound in organic wastes for food crop cultivation is a central topic of BLSS (Bioregenerative Life Support System) research. The conversion of organic wastes into inorganic compounds utilizable by plants proceeds stepwise and each step is carried out by specific microorganisms with varying environmental demands. In BLSS design different steps are often allocated to different treatment units. Each unit is inoculated with selected microbial cultures and provides optimal growth conditions for these. The compartmented set-up is also often used in public wastewater treatment. But as wastewaters usually carry their decomposers with them, specified inoculates are only applied in special cases. Due to the highly variable composition of wastewater, diverse communities of microorganisms are found in treatment plants enabling these to cope with the unpredictable substrate. Although in isolated space habitats, microorganisms necessary for degradation will also be present on wastes and in wastewaters, their diversity will be limited to those species introduced into the system until launch. Therefore, it is crucial to establish a stable microbial community in the waste processing system that is capable to degrade all kinds of wastes, including micropollutants like pharmaceutical residues, before launch. The C.R.O.P. project aims at combining the utilization of liquid and solid organic wastes with soilless plant cultivation. The envisioned waste processing system is a trickling filter designed to join all required functions in one compartment thus reducing size and weight. To achieve this, the filter medium provides habitats with differing conditions so that a diverse microbial community grows as biofilm on its surface. We assume that, once established, such a quasi-natural community makes the system multifunctional with regard to the substrates that can be degraded, and stable with regard to invasion of undesirable microorganisms. Our current research focuses on the characterisation of the system’s capability to degrade different substrates like urine and plant wastes and the usability of the filtrate as fertilizer. Molecular analyses revealed a variety of different microorganisms in the filters. Future research will address the question how to introduce specialised microorganisms into the system to enable it to degrade micropollutants, and the question how to maintain these during periods of absence of their substrate.

  17. Experimental and Computational Study of the Hydrodynamics of Trickle Bed Flow Reactor Operating Under Different Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.

    2014-12-01

    Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.

  18. Assessment of UASB-DHS technology for sewage treatment: a comparative study from a sustainability perspective.

    PubMed

    Maharjan, Namita; Nomoto, Naoki; Tagawa, Tadashi; Okubo, Tsutomu; Uemura, Shigeki; Khalil, Nadeem; Hatamoto, Masashi; Yamaguchi, Takashi; Harada, Hideki

    2018-04-06

    This paper assesses the technical and economic sustainability of a combined system of an up-flow anaerobic sludge blanket (UASB)-down-flow hanging sponge (DHS) for sewage treatment. Additionally, this study compares UASB-DHS with current technologies in India like trickling filters (TF), sequencing batch reactor (SBR), moving bed biofilm reactor (MBBR), and other combinations of UASB with post-treatment systems such as final polishing ponds (FPU) and extended aeration sludge process (EASP). The sustainability of the sewage treatment plants (STPs) was evaluated using a composite indicator, which incorporated environmental, societal, and economic dimensions. In case of the individual sustainability indicator study, the results showed that UASB-FPU was the most economically sustainable system with a score of 0.512 and aeration systems such as MBBR, EASP, and SBR were environmentally sustainable, whereas UASB-DHS system was socially sustainable. However, the overall comparative analysis indicated that the UASB-DHS system scored the highest value of 2.619 on the global sustainability indicator followed by EASP and MBBR with scores of 2.322 and 2.279, respectively. The highlight of this study was that the most environmentally sustainable treatment plants were not economically and socially sustainable. Moreover, sensitivity analysis showed that five out of the seven scenarios tested, the UASB-DHS system showed good results amongst the treatment system.

  19. Bioavailability of wastewater derived dissolved organic nitrogen to green microalgae Selenastrum capricornutum, Chlamydomonas reinhardtii, and Chlorella vulgaris with/without presence of bacteria.

    PubMed

    Sun, Jingyi; Simsek, Halis

    2017-07-01

    Effluent dissolved organic nitrogen (DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits. Bioavailable DON (ABDON) is a portion of DON utilized by algae or algae+bacteria, while biodegradable DON (BDON) is a portion of DON decomposable by bacteria. ABDON and BDON in a two-stage trickling filter (TF) wastewater treatment plant was evaluated using three different microalgal species, Selenastrum capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria. Results showed that up to 80% of DON was bioavailable to algae or algae+bacteria inoculum while up to 60% of DON was biodegradable in all the samples. Results showed that C. reinhardtii and C. vulgaris can be used as a test species the same as S. capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species. Copyright © 2017. Published by Elsevier B.V.

  20. Development of a novel proton exchange membrane-free integrated MFC system with electric membrane bioreactor and air contact oxidation bed for efficient and energy-saving wastewater treatment.

    PubMed

    Gao, Changfei; Liu, Lifen; Yang, Fenglin

    2017-08-01

    A novel combined system integrating MFC and electric membrane bioreactor (EMBR) was developed, in which a quartz sand chamber (QSC) was used, replacing expensive proton exchange membrane (PEM). An air contact oxidation bed (ACOB) and embedded trickling filter (TF) with filled volcano rock, was designed to increase dissolved oxygen (DO) in cathodic EMBR to save aeration cost. Membrane fouling in EMBR was successful inhibited/reduced by the generated bioelectricity of the system. The combined system demonstrated superior effluent quality in removing chemical oxygen demand (>97%) and ammonia nitrogen (>93%) during the stable operation, and the phosphorus removal was about 50%. Dominant bacteria (Nitrosomonas sp.; Comamonas sp.; Candidatus Kuenenia) played important roles in the removal of organic matter and ammonia nitrogen. The system has good application prospects in the efficient use of water and the development of sustainable wastewater recycling technology. Copyright © 2017. Published by Elsevier Ltd.

  1. Effects of chemosignals from sad tears and postprandial plasma on appetite and food intake in humans.

    PubMed

    Oh, Tae Jung; Kim, Min Young; Park, Kyong Soo; Cho, Young Min

    2012-01-01

    Chemosignals from human body fluids may modulate biological functions in humans. The objective of this study was to examine whether chemosignals from human sad tears and postprandial plasma modulate appetite. We obtained fasting and postprandial plasma from male participants and sad tears and saline, which was trickled below the eyelids, from female volunteers. These samples were then randomly distributed to male participants to sniff with a band-aid containing 100 µl of each fluid on four consecutive days in a double-blind fashion. We checked appetite by a visual analogue scale (VAS) and food intake by measuring the consumption of a test meal. In addition, the serum levels of total testosterone and LH were measured. Twenty men (mean age 26.3±4.6 years) were enrolled in this study. They could not discriminate between the smell of fasting and postprandial plasma and the smell of sad tears and trickled saline. Appetite and the amount of food intake were not different between the groups. Although the VAS ratings of appetite correlated with the food intake upon sniffing fasting plasma, postprandial plasma, and trickled saline, there was no such correlation upon sniffing sad tears. In addition, the decrease in serum testosterone levels from the baseline was greater with sad tears than with the trickled saline (-28.6±3.3% vs. -14.0±5.2%; P = 0.019). These data suggest that chemosignals from human sad tears and postprandial plasma do not appear to reduce appetite and food intake. However, further studies are necessary to examine whether sad tears may alter the appetite-eating behavior relation.

  2. Characterization of immune response to Eimeria tenella antigens in a natural immunity model with hosts which differ serologically at the B locus of the major histocompatibility complex.

    PubMed Central

    Brake, D A; Fedor, C H; Werner, B W; Miller, T J; Taylor, R L; Clare, R A

    1997-01-01

    A model to simulate natural immunity to Eimeria tenella was developed in three chicken lines which differ at the B locus of the major histocompatibility complex. Homozygous, 1-day-old chicks of the B19B19, B24B24, or B30B30 genotype were trickle immunized by being orally fed a small infectious dose of E. tenella oocysts for 5 consecutive days. These naturally exposed birds were then challenged at different times between 5 and 24 days after the final dose, and the level of protection was assessed 6 days after challenge, using body weight gain and intestinal lesion scores. The duration of immunity in naturally exposed birds differed among the major histocompatibility complex lines. Trickle immunization of the B19B19 haplotype afforded the longest and strongest level of protection compared to the other two haplotypes tested. In addition, in vitro splenic and peripheral blood lymphocyte proliferative responses in trickle-immunized birds were measured against sporozoite, merozoite, and tissue culture-derived E. tenella parasite antigens isolated from the recently described SB-CEV-1/F7 established cell line. The lymphocytes obtained from B19B19 birds trickle immunized responded in vitro to the E. tenella-infected SB-CEV-1/F7 tissue culture-derived parasite antigen. Furthermore, antigen-specific immune responses appeared earlier in immune, challenged B19B19 birds than in their naive, challenged counterparts. The development of a model simulating natural immunization will serve as a foundation to further characterize both humoral and cell-mediated responses to E. tenella tissue culture-derived parasite antigens and to better understand host protective immune responses to avian coccidiosis. PMID:9119452

  3. Performance indicators and indices of sludge management in urban wastewater treatment plants.

    PubMed

    Silva, C; Saldanha Matos, J; Rosa, M J

    2016-12-15

    Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Microbial resource management of one-stage partial nitritation/anammox.

    PubMed

    Vlaeminck, S E; De Clippeleir, H; Verstraete, W

    2012-05-01

    About 30 full-scale partial nitritation/anammox plants are established, treating mostly sewage sludge reject water, landfill leachate or food processing digestate. Although two-stage and one-stage processes each have their advantages, the one-stage configuration is mostly applied, termed here as oxygen-limited autotrophic nitrification/denitrification (OLAND), and is the focus of this review. The OLAND application domain is gradually expanding, with technical-scale plants on source-separated domestic wastewater, pre-treated manure and sewage, and liquors from organic waste bioenergy plants. A 'microbial resource management' (MRM) OLAND framework was elaborated, showing how the OLAND engineer/operator (1: input) can design/steer the microbial community (2: biocatalyst) to obtain optimal functionality (3: output). In the physicochemical toolbox (1), design guidelines are provided, as well as advantages of different reactor technologies. Particularly the desirable aeration regime, feeding regime and shear forces are not clear yet. The development of OLAND trickling filters, membrane bioreactors and systems with immobilized biomass is awaited. The biocatalyst box (2) considers 'Who': biodiversity and its dynamic patterns, 'What': physiology, and 'Where': architecture creating substrate gradients. Particularly community dynamics and extracellular polymeric substances (EPS) still require insights. Performant OLAND (3) comprises fast start-up (storage possibility; fast growth of anammox bacteria), process stability (endured biomass retention; stress resilience), reasonable overall costs, high nitrogen removal efficiency and a low environmental footprint. Three important OLAND challenges are elaborated in detailed frameworks, demonstrating how to maximize nitrogen removal efficiency, minimize NO and N(2)O emissions and obtain through OLAND a plant-wide net energy gain from sewage treatment. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Characteristics of storage related capacity loss in Ni/H2 cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari

    1993-01-01

    The changes in the capacity, voltage and pressure profile of flight configuration Ni/H2 cells when they are stored for extended periods is examined. The Ni/H2 cells exhibit capacity fade phenomenon regardless of their design when they are stored at room temperature. Capacity loss also occurs if old cells (5 years old) are stored in a very low rate trickle charge (C/200 rate) condition. A periodic recharge technique leads to pressure rise in the cells. Conventional trickle charge (C/100 rate) helps in minimizing or eliminating the second plateau which is one of the characteristics of the capacity fade phenomenon.

  6. Novel carbon fiber cathode membrane with Fe/Mn/C/F/O elements in bio-electrochemical system (BES) to enhance wastewater treatment

    NASA Astrophysics Data System (ADS)

    Gao, Changfei; Liu, Lifen; Yang, Fenglin

    2018-03-01

    A novel conductive membrane with Fe/Mn/C/F/O elements is developed, it functions as the catalytic cathode of MFC and the antifouling filter of MBR simultaneously, in a newly designed integrated wastewater treatment system, without proton exchange membrane (PEM). The optimal conductive membrane is characterized using SEM-EDX, XRD and XPS. BET and porous structure analysis of the grounded membrane material indicate a narrow and small pore size (2-7 nm). The membrane surface is rich in Fe species (Fe - Fe2O3- Fe3O4) and manganese oxide (MnO2). Its characteristics such as excellent electro-chemical oxygen reduction reaction (ORR) activity, high clear water flux (>240 L/(m2·h)) and better antifouling filtration performance are further confirmed. The new system features bio-electrochemical system (BES) and integrates bio-filtration (trickling filter and air contact oxidation bed) and proton transfer through quartz sand chamber (QSC) which eliminates the use of expensive proton exchange membrane. The system removes chemical oxygen demand (>97.4%), ammonia nitrogen (>96.7%), total phosphorus (>98.0%) effectively, and it simultaneously generates electricity (446 mW/m3). The low cost and high performances, economic and advantageous system has good compatibility with existing wastewater treatment facilities and a wide application prospect.

  7. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, R.G.; Akgerman, A.

    1994-05-06

    Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed beforemore » isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.« less

  8. X-ray digital industrial radiography (DIR) for local liquid velocity (VLL) measurement in trickle bed reactors (TBRs): Validation of the technique

    NASA Astrophysics Data System (ADS)

    Mohd Salleh, Khairul Anuar; Rahman, Mohd Fitri Abdul; Lee, Hyoung Koo; Al Dahhan, Muthanna H.

    2014-06-01

    Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (VLL) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the VLL within TBRs.

  9. X-ray digital industrial radiography (DIR) for local liquid velocity (V(LL)) measurement in trickle bed reactors (TBRs): validation of the technique.

    PubMed

    Mohd Salleh, Khairul Anuar; Rahman, Mohd Fitri Abdul; Lee, Hyoung Koo; Al Dahhan, Muthanna H

    2014-06-01

    Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (V(LL)) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the V(LL) within TBRs.

  10. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment.

    PubMed

    Yadav, Meena K; Short, Michael D; Aryal, Rupak; Gerber, Cobus; van den Akker, Ben; Saint, Christopher P

    2017-11-01

    This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Monitoring of itaconic acid hydrogenation in a trickle bed reactor using fiber-optic coupled near-infrared spectroscopy.

    PubMed

    Wood, Joseph; Turner, Paul H

    2003-03-01

    Near-infrared (NIR) spectroscopy has been applied to determine the conversion of itaconic acid in the effluent stream of a trickle bed reactor. Hydrogenation of itaconic to methyl succinic acid was carried out, with the trickle bed operating in recycle mode. For the first time, NIR spectra of itaconic and methyl succinic acids in aqueous solution, and aqueous mixtures withdrawn from the reactor over a range of reaction times, have been recorded using a fiberoptic sampling probe. The infrared spectra displayed a clear isolated absorption band at a wavenumber of 6186 cm(-1) (wavelength 1.617 microm) resulting from the =C-H bonds of itaconic acid, which was found to decrease in intensity with increasing reaction time. The feature could be more clearly observed from plots of the first derivatives of the spectra. A partial least-squares (PLS) model was developed from the spectra of 13 reference samples and was used successfully to calculate the concentration of the two acids in the reactor effluent solution. Itaconic acid conversions of 23-29% were calculated after 360 min of reaction time. The potential of FT-NIR with fiber-optic sampling for remote monitoring of three-phase catalytic reactors and validation of catalytic reactor models is highlighted in the paper.

  12. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  13. Investigation of hydrogenation of toluene to methylcyclohexane in a trickle bed reactor by low-field nuclear magnetic resonance spectroscopy.

    PubMed

    Guthausen, Gisela; von Garnier, Agnes; Reimert, Rainer

    2009-10-01

    Low-field nuclear magnetic resonance (NMR) spectroscopy is applied to study the hydrogenation of toluene in a lab-scale reactor. A conventional benchtop NMR system was modified to achieve chemical shift resolution. After an off-line validity check of the approach, the reaction product is analyzed on-line during the process, applying chemometric data processing. The conversion of toluene to methylcyclohexane is compared with off-line gas chromatographic analysis. Both classic analytical and chemometric data processing was applied. As the results, which are obtained within a few tens of seconds, are equivalent within the experimental accuracy of both methods, low-field NMR spectroscopy was shown to provide an analytical tool for reaction characterization and immediate feedback.

  14. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor.

    PubMed

    Ramirez, M; Gómez, J M; Cantero, D; Páca, J; Halecký, M; Kozliak, E I; Sobotka, M

    2009-09-01

    A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H(2)S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO(4) (2-) accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98-99 % H(2)S removal efficiency for c of up to 66 ppmv and empty bed residence time 98 % H(2)S was achieved under steady-state conditions, over the pH range of 0.44-7.30. Despite the accumulation of acidity and SO(4) (2-) (up to 97 g/L), the system operated without inhibition.

  15. Biological production of ethanol from coal. Task 4 report, Continuous reactor studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle wasmore » particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.« less

  16. Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels.

    PubMed

    Chandran, Preethy; Das, Nilanjana

    2011-11-01

    The performance of diesel oil degradation by Candida tropicalis immobilized on various conventional matrices (sodium alginate, carboxyl methyl cellulose, chitosan) and biowaste materials (wheat bran, sawdust, peanut hull powder) was investigated using the method of entrapment and physical adsorption. The yeast species immobilized in wheat bran showed enhanced efficiency in degrading diesel oil (98%) compared to free cells culture (80%) over a period of 7 days. Copious amount of exopolysaccharides were also produced in the presence of diesel oil. The biofilm forming ability of C. tropicalis on PVC strips was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay and monitored by scanning electron microscopy and atomic force microscopy. Yeast biofilm formed on gravels showed 97% degradation of diesel oil over a period of 10 days. The potential use of the biofilms for preparing trickling filters (gravel particles), for attenuating hydrocarbons in oily liquid wastes before their disposal in the open environment is suggested and discussed. This is the first successful attempt for 'artificially' establishing hydrocarbon degrading yeast biofilm on solid substrates.

  17. Innovative conception and performance evaluation of a compact on-site treatment system.

    PubMed

    Sousa, V P; Chernicharo, C A L

    2006-01-01

    The purpose of this study was to develop a new configuration for a compact on-site treatment system, which could become an attractive alternative, from technical, economic, social and environmental viewpoints, to the technologies that are currently employed. The treatment unit consists of a cylindrical tank, where half of the volume is used as a modified septic tank and the other half is divided between an anaerobic hybrid reactor and a trickling filter. An intermittent feeding system was used, with minimum, mean and maximum flowrate settings (Qmin = 0.25l.s(-1), Qmean = 0.50l.s(-1) and Qmax = 1.00l.s(-1)), to reflect the actual operating conditions of a compact on-site treatment system serving a typical dwelling. An average 24-hour hydraulic detention time was used, corresponding to a flowrate of 750l.d(-1). High removal efficiencies and low concentrations of COD, BOD and TSS in the final effluent were achieved, even when the unit was exposed to hydraulic loading peaks during feeding periods at maximum flowrate.

  18. Waste treatment by bacterial additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, D.J.; Stigall, E.; Barth, E.

    1979-04-23

    Companies such as General Environmental Science Corp. and Polybac Corp., which market specialized bacterial cultures for treating industrial wastes, claim that the cultures improve the operation of activated-sludge, trickling-filter, and lagoon-treatment plants, and provide faster system response to startups, variable and shock loads, and cold weather. The effectiveness of the special cultures is difficult to verify and has been questioned by environmental experts, including R. L. Raymond (Suntech Inc.) and E. Barth (EPA), although E. Stigall (EPA) believes they may aid plant recovery after upsets. A study by Business Communications Co. has predicted that the market for such additives willmore » reach $50 million by 1987, from $5 million in 1979. The use of such cultures in Exxon Corp.'s 1 million gal/day activated sludge system at the Benicia, Calif., oil refinery improved the system's performance by 32Vertical Bar3<, resulted in faster unit startups and more stable operation, and reduced foaming. J. T. Baker Co. has used successfully two broad-spectrum dried additives for ammonia removal and hydrocarbon degradation at its 3 million gal/day secondary treatment plant at Phillipsburg, N.J.« less

  19. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.

    PubMed

    Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E

    2006-02-01

    A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  20. Relative Water Uptake as a Criterion for the Design of Trickle Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Communar, G.; Friedman, S. P.

    2008-12-01

    Previously derived analytical solutions to the 2- and 3-dimensional water flow problems describing trickle irrigation are not being widely used in practice because those formulations either ignore root water uptake or refer to it as a known input. In this lecture we are going to describe a new modeling approach and demonstrate its applicability for designing the geometry of trickle irrigation systems, namely the spacing between the emitters and drip lines. The major difference between our and previous modeling approaches is that we refer to the root water uptake as to the unknown solution of the problem and not as to a known input. We postulate that the solution to the steady-state water flow problem with a root sink that is acting under constant, maximum suction defines un upper bound to the relative water uptake (water use efficiency) in actual transient situations and propose to use it as a design criterion. Following previous derivations of analytical solutions we assume that the soil hydraulic conductivity increases exponentially with its matric head, which allows the linearization of the Richards equation, formulated in terms of the Kirchhoff matric flux potential. Since the transformed problem is linear, the relative water uptake for any given configuration of point or line sources and sinks can be calculated by superposition of the Green's functions of all relevant water sources and sinks. In addition to evaluating the relative water uptake, we also derived analytical expressions for the steam functions. The stream lines separating the water uptake zone from the percolating water provide insight to the dependence of the shape and extent of the actual rooting zone on the source- sink geometry and soil properties. A minimal number of just 3 system parameters: Gardner's (1958) alfa as a soil type quantifier and the depth and diameter of the pre-assumed active root zone are sufficient to characterize the interplay between capillary and gravitational effects on water flow and the competition between the processes of root water uptake and percolation. For accounting also for evaporation from the soil surface, when significant, another parameter is required, adopting the solution of Lomen and Warrick (1978).

  1. Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor.

    PubMed

    Křesinová, Zdena; Linhartová, Lucie; Filipová, Alena; Ezechiáš, Martin; Mašín, Pavel; Cajthaml, Tomáš

    2018-07-25

    The white rot fungus Pleurotus ostreatus HK 35, which is also an edible industrial mushroom commonly cultivated in farms, was tested in the degradation of typical representatives of endocrine disrupters (EDCs; bisphenol A, estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, triclosan and 4-n-nonylphenol); its degradation efficiency under model laboratory conditions was greater than 90% within 12 days and better than that of another published strain P. ostreatus 3004. A spent mushroom substrate from a local farm was tested for its applicability in various batch and trickle-bed reactors in degrading EDCs in model fortified and real communal wastewater. The reactors were tested under various regimes including a pilot-scale trickle-bed reactor, which was finally tested at a wastewater treatment plant. The result revealed that the spent substrate is an efficient biodegradation agent, where the fungus was usually able to remove about 95% of EDCs together with suppression of the estrogenic activity of the sample. The results showed the fungus was able to operate in the presence of bacterial microflora in wastewater without any substantial negative effects on the degradation abilities. Finally, a pilot-scale trickle-bed reactor was installed in a wastewater treatment plant and successfully operated for 10days, where the bioreactor was able to remove more than 76% of EDCs present in the wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].

    PubMed

    Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan

    2004-05-01

    By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.

  3. Signs of Labor

    MedlinePlus

    ... bag of waters breaks, some women feel a big rush of water. Others feel just a trickle. ... find solutions. We're empowering families with the knowledge and tools to have healthier pregnancies. By uniting ...

  4. Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.

    PubMed

    Park, C H; Okos, M R; Wankat, P C

    1989-06-05

    Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated, they could not be recovered.

  5. Trickle-Down Preferences: Preferential Conformity to High Status Peers in Fashion Choices.

    PubMed

    Galak, Jeff; Gray, Kurt; Elbert, Igor; Strohminger, Nina

    2016-01-01

    How much do our choices represent stable inner preferences versus social conformity? We examine conformity and consistency in sartorial choices surrounding a common life event of new norm exposure: relocation. A large-scale dataset of individual purchases of women's shoes (16,236 transactions) across five years and 2,007 women reveals a balance of conformity and consistency, moderated by changes in location socioeconomic status. Women conform to new local norms (i.e., average heel size) when moving to relatively higher status locations, but mostly ignore new local norms when moving to relatively lower status locations. In short, at periods of transition, it is the fashion norms of the rich that trickle down to consumers. These analyses provide the first naturalistic large-scale demonstration of the tension between psychological conformity and consistency, with real decisions in a highly visible context.

  6. Comparison between several reactors with Trametes versicolor immobilized on lignocellulosic support for the continuous treatments of hospital wastewater.

    PubMed

    Torán, J; Blánquez, P; Caminal, G

    2017-11-01

    Hospital wastewater is a major source of pharmaceutically active compounds (PhACs), which are not all removed in conventional wastewater treatment plants. White rot fungi can degrade PhACs, but their application has been limited to non-sterile conditions due to the competition with other microorganisms for growth. In this study, immobilization of Trametes versicolor on different lignocellulosic supports was studied as strategy to ensure fungal survival under continuous treatment conditions. A fluidized bed reactor and a trickling packed-bed reactor with T. versicolor immobilized on pallet wood were employed for the removal of ibuprofen, ketoprofen and naproxen. Best results were obtained with the trickling packed-bed reactor, which operated for 49days with high removal values in real hospital wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Ozone and hydrogen peroxide as strategies to control biomass in a trickling filter to treat methanol and hydrogen sulfide under acidic conditions.

    PubMed

    García-Pérez, Teresa; Le Borgne, Sylvie; Revah, Sergio

    2016-12-01

    The operation and performance of a biotrickling filter for methanol (MeOH) and hydrogen sulfide (H 2 S) removal at acid pH was studied. Excess biomass in the filter bed, causing performance loss and high pressure drop, was controlled by intermittent addition, of ozone (O 3 ) and hydrogen peroxide (H 2 O 2 ). The results showed that after adaptation to acid pH, the maximum elimination capacity (EC) reached for MeOH was 565 g m -3  h -1 (97 % RE). High MeOH loads resulted in increased biomass concentration within the support, triggering reductions in the removal efficiency (RE) for both compounds close to 50 %, and high pressure drop. At this stage, an inlet load of 150.2 ± 16.7 g m -3  h -1 of O 3 was fed by 38 days favoring biomass detachment, and EC recovery and lower pressure dropped with a maximum elimination capacity of 587 g m -3  h -1 (81 % RE) and 15.8 g m -3  h -1 (97 % RE) for MeOH and H 2 S, respectively. After O 3 addition, a rapid increase in biomass content and higher fluctuations in pressure drop were observed reducing the system performance. A second treatment with oxidants was implemented feeding a O 3 load of 4.8 ± 0.1 g m -3  h -1 for 7 days, followed by H 2 O 2 addition for 23 days, registering 607.5 g biomass  L -1 packing before and 367.5 g biomass  L -1 packing after the oxidant addition. PCR-DGGE analysis of different operating stages showed a clear change in the bacterial populations when O 3 was present while the fungal population was less affected.

  8. Electrochemical processing of carbon dioxide.

    PubMed

    Oloman, Colin; Li, Hui

    2008-01-01

    With respect to the negative role of carbon dioxide on our climate, it is clear that the time is ripe for the development of processes that convert CO(2) into useful products. The electroreduction of CO(2) is a prime candidate here, as the reaction at near-ambient conditions can yield organics such as formic acid, methanol, and methane. Recent laboratory work on the 100 A scale has shown that reduction of CO(2) to formate (HCO(2)(-)) may be carried out in a trickle-bed continuous electrochemical reactor under industrially viable conditions. Presuming the problems of cathode stability and formate crossover can be overcome, this type of reactor is proposed as the basis for a commercial operation. The viability of corresponding processes for electrosynthesis of formate salts and/or formic acid from CO(2) is examined here through conceptual flowsheets for two process options, each converting CO(2) at the rate of 100 tonnes per day.

  9. Stochastic Lotka-Volterra equations: A model of lagged diffusion of technology in an interconnected world

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anindya S.

    2016-01-01

    We present a model of technological evolution due to interaction between multiple countries and the resultant effects on the corresponding macro variables. The world consists of a set of economies where some countries are leaders and some are followers in the technology ladder. All of them potentially gain from technological breakthroughs. Applying Lotka-Volterra (LV) equations to model evolution of the technology frontier, we show that the way technology diffuses creates repercussions in the partner economies. This process captures the spill-over effects on major macro variables seen in the current highly globalized world due to trickle-down effects of technology.

  10. A Geostatistical Approach to the Trickle Irrigation Design in a Heterogeneous Soil 2. A Field Test

    NASA Astrophysics Data System (ADS)

    Russo, David

    1984-05-01

    In a heterogeneous field in which the soil water properties vary under a "deterministic" uniform trickle irrigation system, the midway soil-water pressure head hc and the yield of a crop also differ from place to place. These differences may, in turn, reduce the average (over the field) yield relative to the yield that would be obtained if the soil was uniform throughout the field. A field experiment was conducted to test the hypothesis that this yield reduction may be eliminated by using a spatially variable trickle irrigation system. Twenty-five plots (200 m2 each) were established on a 30-m2 grid. Half of each plot was equipped with a standard trickle irrigation system with constant spacing between emitters of d = 50 cm (control plots), and the other half was equipped with a trickle irrigation system for which the spacing between the emitters was selected by using the pertinent hydraulic properties (the saturated hydraulic conductivity Ks and the soil parameter α) according to the procedure of Bresler (1978) as described in paper 1 (Russo, 1983b). Values of hc measured at different times, as well as the total fruit yield Y of bell pepper (Capsicum frutescens var. "Maor"), were used to estimate the seasonal and the spatial distributions of hc and the spatial distribution of Y and their moments. The variograms of hc and Y were calculated and used to estimate their integral scales. It was found that the use of a spatially variable d relative to the use of a uniform d did not change the seasonal behavior of hc but reduced the spatial variability in hc and Y by 35% and 11%, respectively, and increased the integral scale of hc and Y by 30% and 10%, respectively, but increased the average total fruit yield by only 1.9%. The use of a spatially variable d reduced the dependence of Y on hc. This indicates that when the emitters are properly spaced, it is not the water but other factors that most influence yield. When a constant d was used, the dependence of Y of hc decreased with time. This and the relatively good agreement between the values of hc measured at the initial stages of the growing season and those calculated in paper 1 demonstrate that the concept of hc is important in the early stages of the plant's growth, when the root system is not fully developed. Both the theoretical (paper 1) and the experimental results showed that although Ks and α, as well as hc, varied considerably in the field the spatial variability of the crop yield was relatively small. This explains why the use of a spatially variable d essentially was not an improvement over the fixed d. It is suggested that this study will be considered as a methodological one, which can be adapted to solve practical problems associated with field spatial variability.

  11. Farming in a fish tank.

    PubMed

    Youth, H

    1992-01-01

    Water, fish, and vegetables are all things that most developing countries do not have enough of. There is a method of food production called aquaculture that integrates fish and vegetable growing and conserves and purifies water at the same time. A working system that grows vegetables and fish for regional supermarkets in Massachusetts is a gravity fed system. At the top of the system is a 3,000 gallon fish rearing tank that measures 12 feet in diameter. Water trickles out of the tank and fish wastes are captured which can be composted and used in farm fields. The water goes into a bio filter that contains bacteria which convert harmful ammonia generated from fish waste into beneficial nitrate. Then the water flows into 100 foot long hydroponic tanks where lettuce grows. A 1/6 horsepower pump return the purified water to the fish tank and completes the cycle. The key to success is maintaining a balance between the fish nutrients and waste and the plants nutrients and waste. The system is estimated to produce 35,000 heads of lettuce and 2 tons of fish annually which translates into $23,500. The system could be adapted to developing countries with several modifications to reduce the start up cost.

  12. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.

    PubMed

    Simsek, Halis

    2016-11-01

    Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON.

  13. Energy performance indicators of wastewater treatment: a field study with 17 Portuguese plants.

    PubMed

    Silva, Catarina; Rosa, Maria João

    2015-01-01

    The energy costs usually represent the second largest part of the running costs of a wastewater treatment plant (WWTP). It is therefore crucial to increase the energy efficiency of these infrastructures and to implement energy management systems, where quantitative performance metrics, such as performance indicators (PIs), play a key role. This paper presents energy PIs which cover the unit energy consumption, production, net use from external sources and costs, and the results used to validate them and derive their reference values. The results of a field study with 17 Portuguese WWTPs (5-year period) were consistent with the results obtained through an international literature survey on the two key parcels of the energy balance--consumption and production. The unit energy consumption showed an overall inverse relation with the volume treated, and the reference values reflect this relation for trickling filters and for activated sludge systems (conventional, with coagulation/filtration (C/F) and with nitrification and C/F). The reference values of electrical energy production were derived from the methane generation potential (converted to electrical energy) and literature data, whereas those of energy net use were obtained by the difference between the energy consumption and production.

  14. Connected motorcycle crash warning interfaces.

    DOT National Transportation Integrated Search

    2016-01-15

    Crash warning systems have been deployed in the high-end vehicle market segment for some time and are trickling down to additional motor vehicle industry segments each year. The motorcycle segment, however, has no deployed crash warning system to dat...

  15. Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors.

    PubMed

    Ullrich, Timo; Lindner, Jonas; Bär, Katharina; Mörs, Friedemann; Graf, Frank; Lemmer, Andreas

    2018-01-01

    In order to investigate the influence of pressures up to 9bar absolute on the productivity of trickle-bed reactors for biological methanation of hydrogen and carbon dioxide, experiments were carried out in a continuously operated experimental plant with three identical reactors. The pressure increase promises a longer residence time and improved mass transfer of H 2 due to higher gas partial pressures. The study covers effects of different pressures on important parameters like gas hourly space velocity, methane formation rate, conversion rates and product gas quality. The methane content of 64.13±3.81vol-% at 1.5bar could be increased up to 86.51±0.49vol-% by raising the pressure to 9bar. Methane formation rates of up to 4.28±0.26m 3 m -3 d -1 were achieved. Thus, pressure increase could significantly improve reactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Long-term storage of nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari

    1987-01-01

    Representative samples of nickel hydrogen cells for the INTELSAT program were used to evaluate the effects of prolonged storage under passive conditions such as open circuit discharged at 0 C, room temperature, and -20 C, and under quasidynamic conditions such as top-off charge and trickle charge. Cell capacity declines when cells are stored open-circuit discharged at room temperature, and a second plateau occurs in the discharge curve. Capacity loss was 47 percent for a cell with hydrogen precharge and 24.5 percent for one with no hydrogen precharge. Capacity recovery was observed following top-off charge storage of cells which had exhibited faded capacity as a result of passive storage at room temperature. Cells stored either at -20 C or on trickle charge maintained their capacity. At 0 C storage, the capacity of all three cells under tests was greater than 55 Ah (which exceeds the required minimum of 44 Ah) after 7 months.

  17. Trickle-Down Preferences: Preferential Conformity to High Status Peers in Fashion Choices

    PubMed Central

    Galak, Jeff; Gray, Kurt; Elbert, Igor; Strohminger, Nina

    2016-01-01

    How much do our choices represent stable inner preferences versus social conformity? We examine conformity and consistency in sartorial choices surrounding a common life event of new norm exposure: relocation. A large-scale dataset of individual purchases of women’s shoes (16,236 transactions) across five years and 2,007 women reveals a balance of conformity and consistency, moderated by changes in location socioeconomic status. Women conform to new local norms (i.e., average heel size) when moving to relatively higher status locations, but mostly ignore new local norms when moving to relatively lower status locations. In short, at periods of transition, it is the fashion norms of the rich that trickle down to consumers. These analyses provide the first naturalistic large-scale demonstration of the tension between psychological conformity and consistency, with real decisions in a highly visible context. PMID:27144595

  18. Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review.

    PubMed

    Wainaina, Steven; Horváth, Ilona Sárvári; Taherzadeh, Mohammad J

    2018-01-01

    An effective method for the production of value-added chemicals from food waste and lignocellulosic materials is a hybrid thermal-biological process, which involves gasification of the solid materials to syngas (primarily CO and H 2 ) followed by fermentation. This paper reviews the recent advances in this process. The special focus is on the cultivation methods that involve the use of single strains, defined mixed cultures and undefined mixed cultures for production of carboxylic acids and higher alcohols. A rate limiting step in these processes is the low mass transfer between the gas and the liquid phases. Therefore, novel techniques that can enhance the gas-liquid mass transfer including membrane- and trickle-bed bioreactors were discussed. Such bioreactors have shown promising results in increasing the volumetric mass transfer coefficient (k L a). High gas pressure also influences the mass transfer in certain batch processes, although the presence of impurities in the gas would impede the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Bioclogging in Porous Media: Preferential Flow Paths and Anomalous Transport

    NASA Astrophysics Data System (ADS)

    Holzner, M.; Carrel, M.; Morales, V.; Derlon, N.; Beltran, M. A.; Morgenroth, E.; Kaufmann, R.

    2016-12-01

    Biofilms are sessile communities of microorganisms held together by an extracellular polymeric substance that enables surface colonization. In porous media (e.g. soils, trickling filters etc.) biofilm growth has been shown to affect the hydrodynamics in a complex fashion at the pore-scale by clogging individual pores and enhancing preferential flow pathways and anomalous transport. These phenomena are a direct consequence of microbial growth and metabolism, mass transfer processes and complex flow velocity fields possibly exhibiting pronounced three-dimensional features. Despite considerable past work, however, it is not fully understood how bioclogging interacts with flow and mass transport processes in porous media. In this work we use imaging techniques to determine the flow velocities and the distribution of biofilm in a porous medium. Three-dimensional millimodels are packed with a transparent porous medium and a glucose solution to match the optical refractive index. The models are inoculated with planktonic wildtype bacteria and biofilm cultivated for 60 h under a constant flow and nutrient conditions. The pore flow velocities in the increasingly bioclogged medium are measured using 3D particle tracking velocimetry (3D-PTV). The three-dimensional spatial distribution of the biofilm within the pore space is assessed by imaging the model with X-Ray microtomography. We find that biofilm growth increases the complexity of the pore space, leading to the formation of preferential flow pathways and "dead" pore zones. The probability of persistent high and low velocity regions (within preferential paths resp. stagnant flow regions) thus increases upon biofilm growth, leading to an enhancement of anomalous transport. The structural data seems to indicate that the largest pores are not getting clogged and carry the preferential flow, whereas intricated structures develop in the smallest pores, where the flow becomes almost stagnant. These findings may be relevant for applications such as bioremediation of contaminated aquifers, groundwater injection wells for geothermal or drinking water purposes, tertiary oil recovery.

  20. Merging Technology and Emotions: Introduction to Affective Computing.

    PubMed

    Brigham, Tara J

    2017-01-01

    Affective computing technologies are designed to sense and respond based on human emotions. This technology allows a computer system to process the information gathered from various sensors to assess the emotional state of an individual. The system then offers a distinct response based on what it "felt." While this is completely unlike how most people interact with electronics today, this technology is likely to trickle into future everyday life. This column will explain what affective computing is, some of its benefits, and concerns with its adoption. It will also provide an overview of its implication in the library setting and offer selected examples of how and where it is currently being used.

  1. JP8 Reformation for Combat Vehicles

    DTIC Science & Technology

    2007-08-07

    phase (fuel), and a gas phase (hydrogen) at elevated pressures. • Trickle - bed configuration is difficult to model and scale down—not practical for...gases output from HDS reactor are used to fuel the reformer. Current Technology Status: •Integrated desulfurization/reforming system successfully

  2. The tail of two models: Impact of circularity and biomass non-homogeneity on UV disinfection of wastewater flocs.

    PubMed

    Azimi, Y; Liu, Y; Tan, T C; Allen, D G; Farnood, R R

    2017-12-01

    The effects of floc structural characteristics, i.e. shape and dense biomass distribution, were evaluated on ultraviolet (UV) disinfection resistance, represented by the tailing level of the UV dose response curve (DRC). Ellipsoid-shaped flocs of similar volume and different projected circularities were constructed in-silico and a mathematical model was developed to compare their UV DRC tailing levels (indicative of UV-resistance). It was found that floc shape can significantly influence tailing level, and rounder flocs (i.e. flocs with higher circularity) were more UV-resistant. This result was confirmed experimentally by obtaining UV DRCs of two 75-90 μm floc populations with different percentages (20% vs. 30%) of flocs with circularities higher than 0.5. The population enriched in less circular flocs (i.e. 20% flocs with circularities >0.5) had a lower tailing level (at least by 1-log) compared to the other population. The second model was developed to describe variations in UV disinfection kinetics observed in flocs with transverse vs. radial biomass non-homogeneity, indicative of biofilm-originated vs. suspended flocs. The varied-density hemispheres model and shell-core model were developed to simulate transverse and radial non-homogeneity, respectively. The UV DRCs were mathematically constructed and biofilm-originated flocs showed higher UV resistance compared to suspended flocs. The calculated UV DRCs agreed well with the experimental data collected from activated sludge and trickling filter flocs (no fitting parameters were used). These findings provide useful information in terms of designing/modifying upstream processes for reducing UV disinfection energy demand. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Carbon cycling in a zero-discharge mariculture system.

    PubMed

    Schneider, Kenneth; Sher, Yonatan; Erez, Jonathan; van Rijn, Jaap

    2011-03-01

    Interest in mariculture systems will rise in the near future due to the decreased ability of the ocean to supply the increasing demand for seafood. We present a trace study using stable carbon and nitrogen isotopes and chemical profiles of a zero-discharge mariculture system stocked with the gilthead seabream (Sparus aurata). Water quality maintenance in the system is based on two biofiltration steps. Firstly, an aerobic treatment step comprising a trickling filter in which ammonia is oxidized to nitrate. Secondly, an anaerobic step comprised of a digestion basin and a fluidized bed reactor where excess organic matter and nitrate are removed. Dissolved inorganic carbon and alkalinity values were higher in the anaerobic loop than in the aerobic loop, in agreement with the main biological processes taking place in the two treatment steps. The δ13C of the dissolved inorganic carbon (δ13C(DIC)) was depleted in 13C in the anaerobic loop as compared to the aerobic loop by 2.5-3‰. This is in agreement with the higher dissolved inorganic carbon concentrations in the anaerobic loop and the low water retention time and the chemolithotrophic activity of the aerobic loop. The δ13C and δ15N of organic matter in the mariculture system indicated that fish fed solely on feed pellets. Compared to feed pellets and particulate organic matter, the sludge in the digestion basin was enriched in 15N while δ13C was not significantly different. This latter finding points to an intensive microbial degradation of the organic matter taking place in the anaerobic treatment step of the system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Pore‐Scale Hydrodynamics in a Progressively Bioclogged Three‐Dimensional Porous Medium: 3‐D Particle Tracking Experiments and Stochastic Transport Modeling

    PubMed Central

    Carrel, M.; Dentz, M.; Derlon, N.; Morgenroth, E.

    2018-01-01

    Abstract Biofilms are ubiquitous bacterial communities that grow in various porous media including soils, trickling, and sand filters. In these environments, they play a central role in services ranging from degradation of pollutants to water purification. Biofilms dynamically change the pore structure of the medium through selective clogging of pores, a process known as bioclogging. This affects how solutes are transported and spread through the porous matrix, but the temporal changes to transport behavior during bioclogging are not well understood. To address this uncertainty, we experimentally study the hydrodynamic changes of a transparent 3‐D porous medium as it experiences progressive bioclogging. Statistical analyses of the system's hydrodynamics at four time points of bioclogging (0, 24, 36, and 48 h in the exponential growth phase) reveal exponential increases in both average and variance of the flow velocity, as well as its correlation length. Measurements for spreading, as mean‐squared displacements, are found to be non‐Fickian and more intensely superdiffusive with progressive bioclogging, indicating the formation of preferential flow pathways and stagnation zones. A gamma distribution describes well the Lagrangian velocity distributions and provides parameters that quantify changes to the flow, which evolves from a parallel pore arrangement under unclogged conditions, toward a more serial arrangement with increasing clogging. Exponentially evolving hydrodynamic metrics agree with an exponential bacterial growth phase and are used to parameterize a correlated continuous time random walk model with a stochastic velocity relaxation. The model accurately reproduces transport observations and can be used to resolve transport behavior at intermediate time points within the exponential growth phase considered. PMID:29780184

  5. Pores-scale hydrodynamics in a progressively bio-clogged three-dimensional porous medium: 3D particle tracking experiments and stochastic transport modelling

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Carrel, M.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.

    2017-12-01

    Biofilms are ubiquitous bacterial communities growing in various porous media including soils, trickling and sand filters and are relevant for applications such as the degradation of pollutants for bioremediation, waste water or drinking water production purposes. By their development, biofilms dynamically change the structure of porous media, increasing the heterogeneity of the pore network and the non-Fickian or anomalous dispersion. In this work, we use an experimental approach to investigate the influence of biofilm growth on pore scale hydrodynamics and transport processes and propose a correlated continuous time random walk model capturing these observations. We perform three-dimensional particle tracking velocimetry at four different time points from 0 to 48 hours of biofilm growth. The biofilm growth notably impacts pore-scale hydrodynamics, as shown by strong increase of the average velocity and in tailing of Lagrangian velocity probability density functions. Additionally, the spatial correlation length of the flow increases substantially. This points at the formation of preferential flow pathways and stagnation zones, which ultimately leads to an increase of anomalous transport in the porous media considered, characterized by non-Fickian scaling of mean-squared displacements and non-Gaussian distributions of the displacement probability density functions. A gamma distribution provides a remarkable approximation of the bulk and the high tail of the Lagrangian pore-scale velocity magnitude, indicating a transition from a parallel pore arrangement towards a more serial one. Finally, a correlated continuous time random walk based on a stochastic relation velocity model accurately reproduces the observations and could be used to predict transport beyond the time scales accessible to the experiment.

  6. Pore-Scale Hydrodynamics in a Progressively Bioclogged Three-Dimensional Porous Medium: 3-D Particle Tracking Experiments and Stochastic Transport Modeling

    NASA Astrophysics Data System (ADS)

    Carrel, M.; Morales, V. L.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.

    2018-03-01

    Biofilms are ubiquitous bacterial communities that grow in various porous media including soils, trickling, and sand filters. In these environments, they play a central role in services ranging from degradation of pollutants to water purification. Biofilms dynamically change the pore structure of the medium through selective clogging of pores, a process known as bioclogging. This affects how solutes are transported and spread through the porous matrix, but the temporal changes to transport behavior during bioclogging are not well understood. To address this uncertainty, we experimentally study the hydrodynamic changes of a transparent 3-D porous medium as it experiences progressive bioclogging. Statistical analyses of the system's hydrodynamics at four time points of bioclogging (0, 24, 36, and 48 h in the exponential growth phase) reveal exponential increases in both average and variance of the flow velocity, as well as its correlation length. Measurements for spreading, as mean-squared displacements, are found to be non-Fickian and more intensely superdiffusive with progressive bioclogging, indicating the formation of preferential flow pathways and stagnation zones. A gamma distribution describes well the Lagrangian velocity distributions and provides parameters that quantify changes to the flow, which evolves from a parallel pore arrangement under unclogged conditions, toward a more serial arrangement with increasing clogging. Exponentially evolving hydrodynamic metrics agree with an exponential bacterial growth phase and are used to parameterize a correlated continuous time random walk model with a stochastic velocity relaxation. The model accurately reproduces transport observations and can be used to resolve transport behavior at intermediate time points within the exponential growth phase considered.

  7. Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds.

    PubMed

    Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H

    1998-03-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.

  8. Bacterial Community Dynamics during Start-Up of a Trickle-Bed Bioreactor Degrading Aromatic Compounds

    PubMed Central

    Stoffels, Marion; Amann, Rudolf; Ludwig, Wolfgang; Hekmat, Dariusch; Schleifer, Karl-Heinz

    1998-01-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a car painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor. PMID:9501433

  9. Continuous xylanase production with Aspergillus nidulans under pyridoxine limitation using a trickle bed reactor.

    PubMed

    Müller, Michael; Prade, Rolf A; Segato, Fernando; Atiyeh, Hasan K; Wilkins, Mark R

    2015-01-01

    A trickle bed reactor (TBR) with recycle was designed and tested using Aspergillus nidulans with a pyridoxine marker and over-expressing/secreting recombinant client xylanase B (XynB). The pyridoxine marker prevented the fungus from synthesizing its own pyridoxine and fungus was unable to grow when no pyridoxine was present in the medium; however, enzyme production was unaffected. Uncontrolled mycelia growth that led to clogging of the TBR was observed when fungus without a pyridoxine marker was used for XynB production. Using the fungus with pyridoxine marker, the TBR was operated continuously for 18 days and achieved a XynB output of 41 U/ml with an influent and effluent flow rate of 0.5 ml/min and a recycle flow rate of 56 ml/min. Production yields in the TBR were 1.4 times greater than a static tray culture and between 1.1 and 67 times greater than yields for SSF enzyme production stated in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Establishment of trees and shrubs on lands disturbed by mining in the West

    Treesearch

    Ardell J. Bjugstad

    1984-01-01

    Increased research and development of cultural practices and species has assured success of establishment of trees and shrubs on lands disturbed by surface mining. Trickle irrigation and water harvesting techniques have increased survival of planted stock by 250 percent for some species.

  11. Irrigation Without Waste

    ERIC Educational Resources Information Center

    Shea, Kevin P.

    1975-01-01

    A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)

  12. Small scale recirculating vertical flow constructed wetland (RVFCW) for the treatment and reuse of wastewater.

    PubMed

    Gross, A; Sklarz, M Y; Yakirevich, A; Soares, M I M

    2008-01-01

    The quantity of freshwater available worldwide is declining, revealing a pressing need for its more efficient use. Moreover, in many developing countries and lightly populated areas, raw wastewater is discarded into the environment posing serious ecological and health problems. Unfortunately, this situation will persist unless low-cost, effective and simple technologies are brought in. The aim of this study is to present such a treatment method, a novel setup which is termed recirculating vertical flow constructed wetland (RVFCW). The RVFCW is composed of two components: (i) a three-layer bed consisting of planted organic soil over an upper layer of filtering media (i.e. tuff or beads) and a lower layer of limestone pebbles, and (ii) a reservoir located beneath the bed. Wastewater flows directly into the plant root zone and trickles down through the three-layer bed into the reservoir, allowing passive aeration. From the reservoir the water is recirculated back to the bed, several times, until the desired purification is achieved. The results obtained show that the RVFCW is an effective and convenient strategy to treat (domestic, grey and agro) wastewater for re-use in irrigation. The system performance is expected to be further improved once current optimization experiments and mathematical modeling studies are concluded. IWA Publishing 2008.

  13. Optimization of Enterobacter cloacae (KU923381) for diesel oil degradation using response surface methodology (RSM).

    PubMed

    Ramasamy, Sugumar; Arumugam, Arumugam; Chandran, Preethy

    2017-02-01

    Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R 2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.

  14. Heterotrophic nitrogen removal in Bacillus sp. K5: involvement of a novel hydroxylamine oxidase.

    PubMed

    Yang, Yunlong; Lin, Ershu; Huang, Shaobin

    2017-12-01

    An aerobic denitrifying bacterium isolated from a bio-trickling filter treating NOx, Bacillus sp. K5, is able to convert ammonium to nitrite, in which hydroxylamine oxidase (HAO) plays a critical role. In the present study, the performance for simultaneous nitrification and denitrification was investigated with batch experiments and an HAO was purified by an anion-exchange and gel-filtration chromatography from strain K5. The purified HAO's molecular mass was determined by SDS-PAGE and its activity by measuring the change in the concentration of ferricyanide, the electron acceptor. Results showed that as much as 87.8 mg L -1 ammonium-N was removed without nitrite accumulation within 24 hours in the sodium citrate medium at C/N of 15. The HAO isolated from the strain K5 was approximately 71 KDa. With hydroxylamine (NH 2 OH) as a substrate and potassium ferricyanide as an electron acceptor, the enzyme was capable of oxidizing NH 2 OH to nitrite in vitro when the pH varied from 7 to 9 and temperature ranged from 25 °C to 40 °C. This is the first time that an HAO has been purified from the Bacillus genus, and the findings revealed that it is distinctive in its molecular mass and enzyme properties.

  15. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part I--water quality issues.

    PubMed

    Cromar, N J; Sweeney, D G; O'Brien, M J; Fallowfield, H J

    2005-01-01

    This paper describes changes in effluent quality occurring before and after an upgrade to the Bolivar Wastewater Treatment Plant in South Australia. Trickling filters (TF) were replaced with an activated sludge (AS) plant, prior to tertiary treatment using waste stabilisation ponds (WSPs). The water quality in the WSPs following the upgrade was significantly improved. Reductions in total and soluble BOD, COD, TKN, suspended solids and organic nitrogen were recorded and the predominant form of inorganic nitrogen changed from NH(4)-N to NO(2)/NO(3)-N. The reduction in ammonium and potentially toxic free ammonia removed a control upon the growth of zooplankton, which may have contributed to decreases in algal biomass in the final ponds and consequently lower dissolved oxygen. Additionally, changes in inorganic nitrogen speciation contributed to a slightly elevated pH which reduced numbers of faecal coliforms in WSPs. The AS pretreated influent recorded significantly lower inorganic molar N:P ratio (10-4:1) compared to those fed with TF effluent (17-13:1). Algae within the WSPs may now be nitrogen limited, a condition which may favour the growth of nitrogen-fixing cyanobacteria. The decrease in algal biomass and in dissolved oxygen levels may enhance sedimentary denitrification, further driving the system towards nitrogen limitation.

  16. Challenging a trickle-down view of climate change on agriculture and groundwater

    USDA-ARS?s Scientific Manuscript database

    Global climate change is largely viewed as affecting ecohydrology of the Earth’s surface, but various studies are showing deeper effects on groundwater. Agricultural systems may be studied at the land surface and into the root zone with deeper effects of water and chemical movement to groundwater. ...

  17. Create Great School Climate

    ERIC Educational Resources Information Center

    Vail, Kathleen

    2005-01-01

    A teacher's attitude--whether good or bad--trickles down to the students. According to Tom Carroll, who serves in the capacity of president of the National Commission on Teaching and America's Future, there is no teacher shortage but a horrendous turnover and attrition problem. Teachers who are leaving are constantly being replaced. The conditions…

  18. Mathematics Problems from Ancient Egyptian Papyri

    ERIC Educational Resources Information Center

    Howard, Christopher A.

    2009-01-01

    Most high school mathematics teachers completed a mathematics history course in college, and many of them likely found it intriguing. Unfortunately, very few of them find the time to allow much, if any, mathematics history to trickle into their instruction. However, if mathematics history is taught effectively, students can see the connections…

  19. Immune effector mechanisms against schistosomiasis: looking for a chink in the parasite's armour

    PubMed Central

    Wilson, R Alan; Coulson, Patricia S

    2009-01-01

    A recombinant antigen vaccine against Schistosoma mansoni remains elusive, in part because the parasite deploys complex defensive and offensive strategies to combat immune attack. Nevertheless, research on rodent and primate models has shown that schistosomes can be defeated when appropriate responses are elicited. Acquired protection appears to involve protracted inhibition of larval migration or key molecular processes at the adult surfaces, not rapid cytolytic killing mechanisms. A successful vaccine will likely require a cocktail of antigens rather than a single recombinant protein. In addition, ways need to be found of keeping the immune system on permanent alert, either to achieve adequate inhibition of protein function in adults, or because a trickle of incoming parasites does not amplify the secondary response. PMID:19717340

  20. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans.

    PubMed

    Hekmat, D; Bauer, R; Fricke, J

    2003-12-01

    An optimized repeated-fed-batch fermentation process for the synthesis of dihydroxyacetone (DHA) from glycerol utilizing Gluconobacter oxydans is presented. Cleaning, sterilization, and inoculation procedures could be reduced significantly compared to the conventional fed-batch process. A stringent requirement was that the product concentration was kept below a critical threshold level at all times in order to avoid irreversible product inhibition of the cells. On the basis of experimentally validated model calculations, a threshold value of about 60 kg x m(-3) DHA was obtained. The innovative bioreactor system consisted of a stirred tank reactor combined with a packed trickle-bed column. In the packed column, active cells could be retained by in situ immobilization on a hydrophilized Ralu-ring carrier material. Within 17 days, the productivity of the process could be increased by 75% to about 2.8 kg x m(-3) h(-1). However, it was observed that the maximum achievable productivity had not been reached yet.

  1. Active disturbance rejection controller for chemical reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However themore » resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.« less

  2. FURTHER EVALUATION OF TRICKLE BED BIOFILTER PERFORMANCE AS A FUNCTION OF LADING, RESIDENCE TIME, AND BIOMASS CONTROL

    EPA Science Inventory

    The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical engineered control of VOCs in effluent air streams. rickle bed air biofilters (TBABS) are especially applicable for treating VOCs at high loadings. or long term...

  3. Toward a Performance of Possibilities: Resisting Gendered (In)justice

    ERIC Educational Resources Information Center

    Winn, Maisha T.; Jackson, Chelsea A.

    2011-01-01

    In the twenty-first century the United States incarcerates more of its citizens than any other country. While the numbers of incarcerated males far outnumber incarcerated women, there are still great concerns about the growing female prison population. This fixation with incarceration and building prisons has trickled down to America's children as…

  4. Self Modeling: Expanding the Theories of Learning

    ERIC Educational Resources Information Center

    Dowrick, Peter W.

    2012-01-01

    Self modeling (SM) offers a unique expansion of learning theory. For several decades, a steady trickle of empirical studies has reported consistent evidence for the efficacy of SM as a procedure for positive behavior change across physical, social, educational, and diagnostic variations. SM became accepted as an extreme case of model similarity;…

  5. Protect-your-prostate message delivered on Parliament Hill

    PubMed Central

    Gray, C

    1998-01-01

    In March Charlotte Gray attended a luncheon on Parliament Hill where a message on prostate cancer was served along with the meatballs. Thirty MPs attended the event, and organizer Ted White hopes the prevention message delivered by Dr. Martin Gleave will eventually trickle down to politicians in other levels of government. PMID:9614828

  6. Trickle down Technology: Tech Lessons Learned from Higher Ed

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2010-01-01

    Care has to be taken when relating technology's use in college and university lecture halls to the way it's applied in K-12 classrooms. Differences in pedagogy, learning styles, and even attendance can impact the way the respective students in the two environments consume technology, which in turn impacts the technology's effectiveness as a…

  7. Mobile Chatting Behaviour of Arts and Science College Students

    ERIC Educational Resources Information Center

    Ramakrishnan, N.; Priya, J. Johnsi

    2016-01-01

    Mobile connectivity is the order of the day. Personas irrespective of their socio-economic status possess mobile device either basic or advanced android or windows or IOS. The chat applications have become popular with younger generation. It has started trickling down to children below the age of eighteen. The behaviour has influenced the aged…

  8. Child Care and the Economy

    ERIC Educational Resources Information Center

    Karolak, Eric

    2009-01-01

    Unemployment has topped 7% nationally and economists predict it will approach 10% by 2010. Child care programs experience a trickle-down effect: when businesses cut back hours or lay people off, parents cut back child care hours or pull children from programs. "We're seeing more and more families lose their child care assistance and have nowhere…

  9. Cool Tools, Tough Times: Maintaining a Focus on Technology Infusion

    ERIC Educational Resources Information Center

    Britten, Jody S.; Clausen, Jon M.

    2009-01-01

    Nationwide the effects of the current economic situation are trickling down to impact our schools. School transportation options are narrowing, the housing market is impacting property taxes, and efforts in technology are at a stand still (Bobkoff, 2009; Hopkinson, 2009; Mummolo, 2008). Simultaneously there is a need for schools to meet society's…

  10. Investigation of flow dynamics of liquid phase in a pilot-scale trickle bed reactor using radiotracer technique.

    PubMed

    Pant, H J; Sharma, V K

    2016-10-01

    A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei.

    PubMed

    Devarapalli, Mamatha; Atiyeh, Hasan K; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2016-06-01

    An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors.

    PubMed

    Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2013-04-01

    Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Continuous aryl alcohol oxidase production under growth-limited conditions using a trickle bed reactor.

    PubMed

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Prade, Rolf A; Müller, Michael; Wilkins, Mark R

    2018-05-01

    An A. nidulans strain with a pyridoxine marker was used for continuous production of aryl alcohol oxidase (AAO) in a trickle bed reactor (TBR). Modified medium with reduced zinc, no copper, and 5 g/L ascorbic acid that reduced melanin production and increased AAO productivity under growth limited conditions was used. Two air flow rates, 0.11 L/min (0.1 vvm) and 1.1 L/min (1.0 vvm) were tested. More melanin formation and reduced protein productivity were observed with air flow rate of 1.1 L/min. Three random packings were used as support for the fungus inside the TBR column, two of which were hydrophobic and one which was hydrophilic, and three different dilution rates were tested. The use of GEA BCN 030 hydrophobic packing resulted in greater AAO yield and productivity than the other packings. Increasing dilution rates favored melanin formation and citric, lactic and succinic acid accumulation, which decreased AAO yield and productivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Controlled ecological life support systems; Proceedings of Workshop II of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Smernoff, D. T. (Editor)

    1987-01-01

    The present conference on the development status of Controlled Ecological Life Support Systems (CELSSs) discusses food production and gas exchange with the Spirulina blue-green alga, biomass recycling for greater energy efficiency in algal culture CELSSs, algal proteins for food processing in a CELSS, a CELSS with photosynthetic N2-fixing cyanobacteria, the NASA CELSS program, and vapor compression ditillation and membrane technology for water revitalization. Also discussed are a fundamental study of CELSS gas monitoring, the application of catalytic wet oxidation to CELSS, a large-scale perspective on ecosystems, Japanese CELSS research activities, the use of potatoes in bioregenerative life-support, wheat production in controlled environments, and a trickle water and feeding system in plant culture.

  15. Shrub and tree establishment on coal spoils in northern High Plains - USA

    Treesearch

    Ardell J. Bjugstad

    1984-01-01

    Trickle irrigation, during establishment, increased survival two fold for seven species of shrubs and trees planted on coal mine spoil in the semiarid area of northeastern Wyoming, USA. Increased survival of irrigated plants persisted for five years after initiation of this study, which included two growing and winter seasons after cessation of irrigation. Species...

  16. Standardization from below: Science and Technology Standards and Educational Software

    ERIC Educational Resources Information Center

    Fleischmann, Kenneth R.

    2007-01-01

    Education in the United States is becoming increasingly standardized, with the standards being initiated at the national level and then trickling down to the state level and finally the local level. Yet, this top-down approach to educational standards carries with it significant limitations, such as loss of local autonomy and restrictions on the…

  17. Water scarcity and urban forest management: introduction

    Treesearch

    E. Gregory McPherson; Robert Prince

    2013-01-01

    Between 1997 and 2009 a serious drought affected much of Australia. Whether reasoned or unintentional, water policy decisions closed the tap, turning much of the urban forest’s lifeline into a trickle. Green infrastructure became brown infrastructure, exposing its standing as a low priority relative to other consumptive sources. To share new solutions to water scarcity...

  18. Can Education Equality Trickle-Down to Economic Growth? The Case of Korea

    ERIC Educational Resources Information Center

    Ilon, Lynn

    2011-01-01

    Education equality is generally neglected in the literature that investigates education's contribution to economic growth. This paper examines the case of Korea where economic growth, education equality (as measured by years of schooling), and educational quality have all been on the rise for many decades. Using time series data on schooling for…

  19. Electronic filters, signal conversion apparatus, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Morley, Jr., Robert E. (Inventor); Engebretson, A. Maynard (Inventor); Engel, George L. (Inventor); Sullivan, Thomas J. (Inventor)

    1994-01-01

    An electronic filter for filtering an electrical signal. Signal processing circuitry therein includes a logarithmic filter having a series of filter stages with inputs and outputs in cascade and respective circuits associated with the filter stages for storing electrical representations of filter parameters. The filter stages include circuits for respectively adding the electrical representations of the filter parameters to the electrical signal to be filtered thereby producing a set of filter sum signals. At least one of the filter stages includes circuitry for producing a filter signal in substantially logarithmic form at its output by combining a filter sum signal for that filter stage with a signal from an output of another filter stage. The signal processing circuitry produces an intermediate output signal, and a multiplexer connected to the signal processing circuit multiplexes the intermediate output signal with the electrical signal to be filtered so that the logarithmic filter operates as both a logarithmic prefilter and a logarithmic postfilter. Other electronic filters, signal conversion apparatus, electroacoustic systems, hearing aids and methods are also disclosed.

  20. Visualization of flow during cleaning process on a liquid nanofibrous filter

    NASA Astrophysics Data System (ADS)

    Bílek, P.

    2017-10-01

    This paper deals with visualization of flow during cleaning process on a nanofibrous filter. Cleaning of a filter is very important part of the filtration process which extends lifetime of the filter and improve filtration properties. Cleaning is carried out on flat-sheet filters, where particles are deposited on the filter surface and form a filtration cake. The cleaning process dislodges the deposited filtration cake, which is loose from the membrane surface to the retentate flow. The blocked pores in the filter are opened again and hydrodynamic properties are restored. The presented optical method enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. The local concentration of solid particles is possible to estimate and achieve new information about the cleaning process. In the article is described the cleaning process on nanofibrous membranes for waste water treatment. The hydrodynamic data were compared to the images of the cleaning process.

  1. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    PubMed

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  2. Non-linear Post Processing Image Enhancement

    NASA Technical Reports Server (NTRS)

    Hunt, Shawn; Lopez, Alex; Torres, Angel

    1997-01-01

    A non-linear filter for image post processing based on the feedforward Neural Network topology is presented. This study was undertaken to investigate the usefulness of "smart" filters in image post processing. The filter has shown to be useful in recovering high frequencies, such as those lost during the JPEG compression-decompression process. The filtered images have a higher signal to noise ratio, and a higher perceived image quality. Simulation studies comparing the proposed filter with the optimum mean square non-linear filter, showing examples of the high frequency recovery, and the statistical properties of the filter are given,

  3. Hepa filter dissolution process

    DOEpatents

    Brewer, Ken N.; Murphy, James A.

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  4. Contraction of Spawning Areas in the Baksan River and Pollution of Superficial Water of Adjacent Territories

    NASA Astrophysics Data System (ADS)

    Vinokurov, S. F.; Gurbanov, A. G.; Bogatikov, O. A.; Karamurzov, B. S.; Gazeev, V. M.; Shevchenko, A. V.; Sychkova, V. A.; Dolov, S. M.; Dudarov, Z. I.

    2018-02-01

    Geochemical study of water samples taken from the Malyi Mukulan and Bol'shoi Mukulan creeks and watercourses and trickling from the pile dike of tailing pond no. 3(1) of the Tyrnyauz tungsten-molybdenum plant has been carried out. Estimation of the degree of their polluting effect on the Baksan River was made.

  5. The Regular Education Initiative as Reagan-Bush Education Policy: A Trickle-Down Theory of Education of the Hard-to-Reach.

    ERIC Educational Resources Information Center

    Kauffman, James M.

    1989-01-01

    The paper discusses the Regular Education Initiative as a conceptual revolution, as a political strategy, and as a flawed policy initiative. It argues that the REI focuses on a small number of highly emotional issues, such as integration, nonlabeling, efficiency, and excellence, which distract attention from deeper analysis. (Author/JDD)

  6. The Regular Education Initiative as Reagan-Bush Education Policy: A Trickle-Down Theory of Education of the Hard-To-Teach.

    ERIC Educational Resources Information Center

    Kauffman, James M.

    Proposals for restructuring and integration of special and general education, known as the regular education initiative (REI), represent a revolution in the basic concepts related to the education of handicapped students that have provided the foundation of special education for over a century. Education policy, as presented by Presidents Reagan…

  7. Lifelong Learning: The Value of an Industrial Internship for a Graduate Student Education

    ERIC Educational Resources Information Center

    Honda, Gregory S.; Pazmino, Jorge H.; Hickman, Daniel A.; Varma, Arvind

    2015-01-01

    A chemical engineering PhD student from Purdue University completed an internship at The Dow Chemical Company, evaluating the effect of scale on the hydrodynamics of a trickle bed reactor. A unique aspect of this work was that it arose from an ongoing collaboration, so that the project was within the scope of the graduate student's thesis. This…

  8. Liquid-Nitrogen Test for Blocked Tubes

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.

    1984-01-01

    Nondestructive test identifies obstructed tube in array of parallel tubes. Trickle of liquid nitrogen allowed to flow through tube array until array accumulates substantial formation of frost from moisture in air. Flow stopped and warm air introduced into inlet manifold to heat tubes in array. Tubes still frosted after others defrosted identified as obstructed tubes. Applications include inspection of flow systems having parallel legs.

  9. Rethinking Literacy: Reading in the Common-Core Era

    ERIC Educational Resources Information Center

    Education Week, 2012

    2012-01-01

    The Common Core State Standards aren't exactly new; it's been two years since most states adopted them. But it took those two years for the standards to trickle down from abstraction to daily practice, from a sheaf of papers in a state capital into a lesson plan on a teacher's desk. Now they're reshaping reading instruction in significant ways.…

  10. Trickle-Down Accountability: How Middle School Teachers Engage Students in Data Use

    ERIC Educational Resources Information Center

    Marsh, Julie A.; Farrell, Caitlin C.; Bertrand, Melanie

    2016-01-01

    Despite a growing body of research on data use in education, there has been relatively little focus on the role of students. This article begins to fill this gap by exploring teacher and administrator reports on engaging students in data use at six middle schools. Even though teachers expressed a belief that involving students in data use would…

  11. Cyber Bullying: Examining Curriculum and Policy in Eastern North Carolina High Schools; A Qualitative Case Study

    ERIC Educational Resources Information Center

    Yancey, Michael

    2017-01-01

    Cyber bullying is the use of technology to harassment another person. Most acts of cyber bullying begin at home but the extent of these acts trickle into schools and disrupt learning opportunities. This new form of behavior leaves school districts unsure of how to respond while balancing legal and ethical responsibilities. This study analyzed…

  12. Education, Income Distribution and Intergenerational Mobility: Findings from Field Data

    ERIC Educational Resources Information Center

    Mohanty, Alekha Chandra

    2016-01-01

    The prevalence of widespread poverty and the increasing inequality in income distribution across nations point to the failure of the trickle-down theory. The long-held faith in the growth of income as the sole policy instrument to achieve the national objective of growth with equity has been put to the test. The increasing numbers of the poor,…

  13. The effect of hydraulic retention time in onsite wastewater treatment and removal of pharmaceuticals, hormones and phenolic utility substances.

    PubMed

    Ejhed, H; Fång, J; Hansen, K; Graae, L; Rahmberg, M; Magnér, J; Dorgeloh, E; Plaza, G

    2018-03-15

    Micropollutants such as pharmaceuticals, hormones and phenolic utility chemicals in sewage water are considered to be an emerging problem because of increased use and observed adverse effects in the environment. The study provides knowledge on the removal efficiency of micropollutants with a range of physical and chemical properties in three commercially available onsite wastewater treatment facilities (OWTFs), tested on influent wastewater collected from 2500 person equivalents in Bildchen, Germany. A longer hydraulic retention time would in theory be expected to have a positive effect, and this study presents results for three different OWTFs in full-scale comparable tests under natural conditions. A range of 24 different pharmaceuticals, five phenols and three hormones were analyzed. Flow-proportional consecutive sampling was performed in order to determine the removal efficiency. Twenty-eight substances were detected in the effluent wastewater out of 32 substances included. Average effluent concentrations of Simvastatin, Estrone, Estradiol and Ethinylestradiol were above the indicative critical-effect concentration of pharmacological effect on fish in all facilities. Average effluent concentrations of both Diclofenac and Estradiol were higher than the Environmental Quality Standards applied in Sweden (190-240 times and 9-35 times respectively). The removal efficiency of micropollutants was high for substances with high logK ow , which enhance the adsorption and removal with sludge. Low removal was observed for substances with low logK ow and acidic characteristics, and for substances with stabilizing elements of the chemical structure. Facilities that use activated sludge processes removed hormones more efficiently than facilities using trickling filter treatment technique. Moreover, longer hydraulic retention time increased the removal of pharmaceuticals, hormones, turbidity and total nitrogen. Removal of Caffeine, Ibuprofen, Estrone, Naproxen and Estradiol, was strongly correlated to the sludge and particles removal. Thus, the efficiency of the tested OWTFs could be improved by adjusting the technical methods and increasing the hydraulic retention time. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. HEPA filter dissolution process

    DOEpatents

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  15. Electronic filters, repeated signal charge conversion apparatus, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Morley, Jr., Robert E. (Inventor); Engebretson, A. Maynard (Inventor); Engel, George L. (Inventor); Sullivan, Thomas J. (Inventor)

    1993-01-01

    An electronic filter for filtering an electrical signal. Signal processing circuitry therein includes a logarithmic filter having a series of filter stages with inputs and outputs in cascade and respective circuits associated with the filter stages for storing electrical representations of filter parameters. The filter stages include circuits for respectively adding the electrical representations of the filter parameters to the electrical signal to be filtered thereby producing a set of filter sum signals. At least one of the filter stages includes circuitry for producing a filter signal in substantially logarithmic form at its output by combining a filter sum signal for that filter stage with a signal from an output of another filter stage. The signal processing circuitry produces an intermediate output signal, and a multiplexer connected to the signal processing circuit multiplexes the intermediate output signal with the electrical signal to be filtered so that the logarithmic filter operates as both a logarithmic prefilter and a logarithmic postfilter. Other electronic filters, signal conversion apparatus, electroacoustic systems, hearing aids and methods are also disclosed.

  16. Writing filter processes for the SAGA editor, appendix G

    NASA Technical Reports Server (NTRS)

    Kirslis, Peter A.

    1985-01-01

    The SAGA editor provides a mechanism by which separate processes can be invoked during an editing session to traverse portions of the parse tree being edited. These processes, termed filter processes, read, analyze, and possibly transform the parse tree, returning the result to the editor. By defining new commands with the editor's user defined command facility, which invoke filter processes, authors of filter can provide complex operations as simple commands. A tree plotter, pretty printer, and Pascal tree transformation program were already written using this facility. The filter processes are introduced, parse tree structure is described and the library interface made available to the programmer. Also discussed is how to compile and run filter processes. Examples are presented to illustrate aspect of each of these areas.

  17. Adaptive marginal median filter for colour images.

    PubMed

    Morillas, Samuel; Gregori, Valentín; Sapena, Almanzor

    2011-01-01

    This paper describes a new filter for impulse noise reduction in colour images which is aimed at improving the noise reduction capability of the classical vector median filter. The filter is inspired by the application of a vector marginal median filtering process over a selected group of pixels in each filtering window. This selection, which is based on the vector median, along with the application of the marginal median operation constitutes an adaptive process that leads to a more robust filter design. Also, the proposed method is able to process colour images without introducing colour artifacts. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter.

  18. Much Ado about Babies, Murky Bathwater, and Trickle-Down Politics: A Reply to Kauffman. Commentary.

    ERIC Educational Resources Information Center

    Goetz, Lori

    1990-01-01

    In response to Kauffman (EC 221 675), the article challenges the following: that the Regular Education Initiative (REI) is a Reagan-Bush plot to cut the costs of special education; that REI is value-driven with placement as the only consideration; and that REI is intended to do away with special education and strengthen regular education. (DB)

  19. Civil Society in Nigeria: Reasons for Ineffectiveness

    DTIC Science & Technology

    2015-03-01

    experiencing the trickle-down benefits that Smith foretells of an essentially laissez - faire regulatory market system. Any economic surplus is quickly...ENDURING ENGINE OF TRUST EROSION ...53 1. Leadership and Policymaking in a Trust-Deficit Environment ....55 2. The Niger Delta: Corruption and...from the participation of opposing sides in free and fair elections.11 Democratic governance is seen as an ideal that incorporates a regime, the

  20. Keller's Personalized System of Instruction: Was It a Fleeting Fancy or Is There a Revival on the Horizon?

    ERIC Educational Resources Information Center

    Eyre, Heidi L.

    2007-01-01

    Keller's Personalized System of Instruction dominated the literature in the teaching of psychology and behavior analysis in the 1970s and 1980s. After this brief flourish of interest, PSI research trickled off to a nearly imperceptible stream in the 1990s. However, with the increasing availability and ease of use of computers and the internet,…

  1. A High Performance Biofilter for VOC Emission Control.

    PubMed

    Wu, G; Conti, B; Leroux, A; Brzezinski, R; Viel, G; Heitz, M

    1999-02-01

    Biofiltration is a cleaning technique for waste air contaminated with some organic compounds. The advantages of the conventional biofilter over other biological systems are a high-superficial area best suited for the treatment of some compounds with poor water solubility, ease of operation, and low operating costs. It has crucial disadvantages, however; for example, it is not suitable to treat waste gases with high VOC concentrations and it has poor control of reaction conditions. To improve on these problems and to build a high-performance biofilter, three structured peat media and two trickling systems have been introduced in this study. The influences of media size and composition have been investigated experimentally. Peat bead blended with 30% (w/w) certain mineral material with a good binding capacity has advantages over other packing materials, for example, suitable size to prevent blockage due to microbial growth, strong buffering capacity to neutralize acidic substances in the system, and a pH range of 7.0-7.2 suitable for the growth of bacteria. Dropwise trickling system offers an effective measure to easily control the moisture content of the bed and the reaction conditions (pH, nutrient) and to partially remove excess biomass produced during the metabolic processes of microorganisms. The influence of nutrient supplementation has also been investigated in this study, which has revealed that the biological system was in a condition of nutrient limitation instead of carbon limitation. The biofilters built in our laboratory were used to treat waste gas contaminated with toluene in a concentration range of 1 to 3.2 g/m 3 and at the specific gas flow rate of 24 to120 m 3 /m 2 .hr. Under the conditions employed, a high elimination capacity (135 g/m 3 .hr) was obtained in the biofilter packed with peat beads (blended with 30% of the mineral material), and no blockage problem was observed in an experimental period of 2-3 months.

  2. Effect of loading types on performance characteristics of a trickle-bed bioreactor and biofilter during styrene/acetone vapor biofiltration.

    PubMed

    Halecky, Martin; Paca, Jan; Kozliak, Evguenii; Jones, Kim

    2016-07-02

    A 2:1 (w/w) mixture of styrene (STY) and acetone (AC) was subjected to lab-scale biofiltration under varied loading in both a trickle bed reactor (TBR) and biofilter (BF) to investigate substrate interactions and determine the limits of biofiltration efficiency of typical binary air pollutant mixtures containing both hydrophobic and polar components. A comparison of the STY/AC mixture degradation in the TBR and BF revealed higher pollutant removal efficiencies and degradation rates in the TBR, with the pollutant concentrations increasing up to the overloading limit. The maximum styrene degradation rates were 12 and 8 gc m(-3) h(-1) for the TBR and BF, respectively. However, the order of performance switched in favor of the BF when the loading was conducted by increasing air flow rate while keeping the inlet styrene concentration (Cin) constant in contrast to loading by increasing Cin. This switch may be due to a drastic difference in the effective surface area between these two reactors, so the biofilter becomes the reactor of choice when the rate-limiting step switches from biochemical processes to mass transfer by changing the loading mode. The presence of acetone in the mixture decreased the efficiency of styrene degradation and its degradation rate at high loadings. When the overloading was lifted by lowering the pollutant inlet concentrations, short-term back-stripping of both substrates in both reactors into the outlet air was observed, with a subsequent gradual recovery taking several hours and days in the BF and TBR, respectively. Removal of excess biomass from the TBR significantly improved the reactor performance. Identification of the cultivable strains, which was performed on Day 763 of continuous operation, showed the presence of 7 G(-) bacteria, 2 G(+) bacteria and 4 fungi. Flies and larvae of Lycoriella nigripes survived half a year of the biofilter operation by feeding on the biofilm resulting in the maintenance of a nearly constant pressure drop.

  3. cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vardon, Derek R.; Rorrer, Nicholas A.; Salvachúa, Davinia

    cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid -- the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstratesmore » bioreactor production of muconate at 34.5 g L-1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1-9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical counterpart, thereby demonstrating a path towards bio-based nylon production via muconic acid.« less

  4. Evaluation of the Effect of the Volume Throughput and Maximum Flux of Low-Surface-Tension Fluids on Bacterial Penetration of 0.2 Micron-Rated Filters during Process-Specific Filter Validation Testing.

    PubMed

    Folmsbee, Martha

    2015-01-01

    Approximately 97% of filter validation tests result in the demonstration of absolute retention of the test bacteria, and thus sterile filter validation failure is rare. However, while Brevundimonas diminuta (B. diminuta) penetration of sterilizing-grade filters is rarely detected, the observation that some fluids (such as vaccines and liposomal fluids) may lead to an increased incidence of bacterial penetration of sterilizing-grade filters by B. diminuta has been reported. The goal of the following analysis was to identify important drivers of filter validation failure in these rare cases. The identification of these drivers will hopefully serve the purpose of assisting in the design of commercial sterile filtration processes with a low risk of filter validation failure for vaccine, liposomal, and related fluids. Filter validation data for low-surface-tension fluids was collected and evaluated with regard to the effect of bacterial load (CFU/cm(2)), bacterial load rate (CFU/min/cm(2)), volume throughput (mL/cm(2)), and maximum filter flux (mL/min/cm(2)) on bacterial penetration. The data set (∼1162 individual filtrations) included all instances of process-specific filter validation failures performed at Pall Corporation, including those using other filter media, but did not include all successful retentive filter validation bacterial challenges. It was neither practical nor necessary to include all filter validation successes worldwide (Pall Corporation) to achieve the goals of this analysis. The percentage of failed filtration events for the selected total master data set was 27% (310/1162). Because it is heavily weighted with penetration events, this percentage is considerably higher than the actual rate of failed filter validations, but, as such, facilitated a close examination of the conditions that lead to filter validation failure. In agreement with our previous reports, two of the significant drivers of bacterial penetration identified were the total bacterial load and the bacterial load rate. In addition to these parameters, another three possible drivers of failure were also identified: volume throughput, maximum filter flux, and pressure. Of the data for which volume throughput information was available, 24% (249/1038) of the filtrations resulted in penetration. However, for the volume throughput range of 680-2260 mL/cm(2), only 9 out of 205 bacterial challenges (∼4%) resulted in penetration. Of the data for which flux information was available, 22% (212/946) resulted in bacterial penetration. However, in the maximum filter flux range from 7 to 18 mL/min/cm(2), only one out of 121 filtrations (0.6%) resulted in penetration. A slight increase in filter failure was observed in filter bacterial challenges with a differential pressure greater than 30 psid. When designing a commercial process for the sterile filtration of a low-surface-tension fluid (or any other potentially high-risk fluid), targeting the volume throughput range of 680-2260 mL/cm(2) or flux range of 7-18 mL/min/cm(2), and maintaining the differential pressure below 30 psid, could significantly decrease the risk of validation filter failure. However, it is important to keep in mind that these are general trends described in this study and some test fluids may not conform to the general trends described here. Ultimately, it is important to evaluate both filterability and bacterial retention of the test fluid under proposed process conditions prior to finalizing the manufacturing process to ensure successful process-specific filter validation of low-surface-tension fluids. An overwhelming majority of process-specific filter validation (qualification) tests result in the demonstration of absolute retention of test bacteria by sterilizing-grade membrane filters. As such, process-specific filter validation failure is rare. However, while bacterial penetration of sterilizing-grade filters during process-specific filter validation is rarely detected, some fluids (such as vaccines and liposomal fluids) have been associated with an increased incidence of bacterial penetration. The goal of the following analysis was to identify important drivers of process-specific filter validation failure. The identification of these drivers will possibly serve to assist in the design of commercial sterile filtration processes with a low risk of filter validation failure. Filter validation data for low-surface-tension fluids was collected and evaluated with regard to bacterial concentration and rates, as well as filtered fluid volume and rate (Pall Corporation). The master data set (∼1160 individual filtrations) included all recorded instances of process-specific filter validation failures but did not include all successful filter validation bacterial challenge tests. This allowed for a close examination of the conditions that lead to process-specific filter validation failure. As previously reported, two significant drivers of bacterial penetration were identified: the total bacterial load (the total number of bacteria per filter) and the bacterial load rate (the rate at which bacteria were applied to the filter). In addition to these parameters, another three possible drivers of failure were also identified: volumetric throughput, filter flux, and pressure. When designing a commercial process for the sterile filtration of a low-surface-tension fluid (or any other penetrative-risk fluid), targeting the identified bacterial challenge loads, volume throughput, and corresponding flux rates could decrease, and possibly eliminate, the risk of validation filter failure. However, it is important to keep in mind that these are general trends described in this study and some test fluids may not conform to the general trends described here. Ultimately, it is important to evaluate both filterability and bacterial retention of the test fluid under proposed process conditions prior to finalizing the manufacturing process to ensure successful filter validation of low-surface-tension fluids. © PDA, Inc. 2015.

  5. Method of treating contaminated HEPA filter media in pulp process

    DOEpatents

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  6. A superior edge preserving filter with a systematic analysis

    NASA Technical Reports Server (NTRS)

    Holladay, Kenneth W.; Rickman, Doug

    1991-01-01

    A new, adaptive, edge preserving filter for use in image processing is presented. It had superior performance when compared to other filters. Termed the contiguous K-average, it aggregates pixels by examining all pixels contiguous to an existing cluster and adding the pixel closest to the mean of the existing cluster. The process is iterated until K pixels were accumulated. Rather than simply compare the visual results of processing with this operator to other filters, some approaches were developed which allow quantitative evaluation of how well and filter performs. Particular attention is given to the standard deviation of noise within a feature and the stability of imagery under iterative processing. Demonstrations illustrate the performance of several filters to discriminate against noise and retain edges, the effect of filtering as a preprocessing step, and the utility of the contiguous K-average filter when used with remote sensing data.

  7. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    PubMed

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Conversion of Small Algal Oil Sample to JP-8

    DTIC Science & Technology

    2012-01-01

    cracking of Algal Oil to SPK Hydroprocessing Lab Plant uop Nitrogen Hydrogen Product ., __ Small Scale Lab Hydprocessing plant - Down flow trickle ... bed configuration - Capable of retaining 25 cc of catalyst bed Meter UOP ·CONFIDENTIAL File Number The catalytic deoxygenation stage of the...content which combined with the samples acidity, is a challenge to reactor metallurgy. None the less, an attempt was made to convert this sample to

  9. From a Trickle to a Flood: Active Attacks on Several Mix Types

    DTIC Science & Technology

    2002-01-01

    out potential weaknesses in existing designs, and suggest improvements. 1 Introduction Many modern anonymity systems are based on mixes. Chaum first...Enhancing Technologies: Proceedings of the International Workshop on the Design Issues in Anonymity and Observability, pages 10–29, July 2000. 2. David ... Chaum . Untraceable electronic mail, return addresses and digital pseudonyms. Communications of the ACM, 24(2):84–88, 1981. 3. L. Cottrell. Mixmaster

  10. Rebuilding New Orleans after Katrina, part 2.

    PubMed

    Soltau, Eleanor

    2006-01-01

    Hurricane Katrina occurred on August 29, 2005, followed by Hurricane Rita on September 24, with destruction extending along the Gulf Coast to Beaumont, Texas. Reentry into New Orleans began in mid to late September last year and occurred in stages, with the least devastated areas being gradually reopened first. People began trickling back in until the city was finally fully opened in December except for the Ninth Ward and East New Orleans.

  11. Adaptive Filtering Using Recurrent Neural Networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.

    2005-01-01

    A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.

  12. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer.

    PubMed

    van Groenestijn, J W; Geelhoed, J S; Goorissen, H P; Meesters, K P M; Stams, A J M; Claassen, P A M

    2009-04-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73 degrees C. The volumetric productivity was 22 mmol H2/(L filterbed h). Acetic acid and lactic acid were the main by-products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono- and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out-competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non-sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics.

  13. Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air.

    PubMed

    Weber, F J; Hartmans, S

    1996-04-05

    Removal of organic compounds like toluene from waste gases with a trickle-bed reactor can result in clogging of the reactor due to the formation of an excessive amount of biomass. We therefore limited the amount of nutrients available for growth, to prevent clogging of the reactor. As a consequence of this nutrient limitation a lower removal rate was observed. However, when a fungal culture was used to inoculate the reactor, the toluene removal rate under nutrient limiting conditions was higher. Over a period of 375 days, an average removal rate of 27 g C/(m(3) h) was obtained with the reactor inoculated with the fungal culture. From the carbon balance over the reactor and the nitrogen availability it was concluded that, under these nutrient-limited conditions, large amounts of carbohydrates are probably formed. We also studied the application of a NaOH wash to remove excess biomass, as a method to prevent clogging. Under these conditions an average toluene removal rate of 35 g C/(m(3) h) was obtained. After about 50 days there was no net increase in the biomass content of the reactor. The amount of biomass which was formed in the reactor equaled the amount removed by the NaOH wash.

  14. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.

    PubMed

    Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim

    2015-01-01

    Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.

  15. The discrete prolate spheroidal filter as a digital signal processing tool

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.; Breakall, J. K.; Karawas, G. K.

    1983-01-01

    The discrete prolate spheriodall (DPS) filter is one of the glass of nonrecursive finite impulse response (FIR) filters. The DPS filter is superior to other filters in this class in that it has maximum energy concentration in the frequency passband and minimum ringing in the time domain. A mathematical development of the DPS filter properties is given, along with information required to construct the filter. The properties of this filter were compared with those of the more commonly used filters of the same class. Use of the DPS filter allows for particularly meaningful statements of data time/frequency resolution cell values. The filter forms an especially useful tool for digital signal processing.

  16. Bioaugmentation of rapid sand filters by microbiome priming with a nitrifying consortium will optimize production of drinking water from groundwater.

    PubMed

    Albers, Christian Nyrop; Ellegaard-Jensen, Lea; Hansen, Lars Hestbjerg; Sørensen, Sebastian R

    2018-02-01

    Ammonium oxidation to nitrite and then to nitrate (nitrification) is a key process in many waterworks treating groundwater to make it potable. In rapid sand filters, nitrifying microbial communities may evolve naturally from groundwater bacteria entering the filters. However, in new filters this may take several months, and in some cases the nitrification process is never sufficiently rapid to be efficient or is only performed partially, with nitrite as an undesired end product. The present study reports the first successful priming of nitrification in a rapid sand filter treating groundwater. It is shown that nitrifying communities could be enriched by microbiomes from well-functioning rapid sand filters in waterworks and that the enriched nitrifying consortium could be used to inoculate fresh filters, significantly shortening the time taken for the nitrification process to start. The key nitrifiers in the enrichment were different from those in the well-functioning filter, but similar to those that initiated the nitrification process in fresh filters without inoculation. Whether or not the nitrification was primed with the enriched nitrifying consortium, the bacteria performing the nitrification process during start-up appeared to be slowly outcompeted by Nitrospira, the dominant nitrifying bacterium in well-functioning rapid sand filters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Optimization of nonlinear, non-Gaussian Bayesian filtering for diagnosis and prognosis of monotonic degradation processes

    NASA Astrophysics Data System (ADS)

    Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.

    2018-05-01

    The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.

  18. Symmetric Phase Only Filtering for Improved DPIV Data Processing

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2006-01-01

    The standard approach in Digital Particle Image Velocimetry (DPIV) data processing is to use Fast Fourier Transforms to obtain the cross-correlation of two single exposure subregions, where the location of the cross-correlation peak is representative of the most probable particle displacement across the subregion. This standard DPIV processing technique is analogous to Matched Spatial Filtering, a technique commonly used in optical correlators to perform the crosscorrelation operation. Phase only filtering is a well known variation of Matched Spatial Filtering, which when used to process DPIV image data yields correlation peaks which are narrower and up to an order of magnitude larger than those obtained using traditional DPIV processing. In addition to possessing desirable correlation plane features, phase only filters also provide superior performance in the presence of DC noise in the correlation subregion. When DPIV image subregions contaminated with surface flare light or high background noise levels are processed using phase only filters, the correlation peak pertaining only to the particle displacement is readily detected above any signal stemming from the DC objects. Tedious image masking or background image subtraction are not required. Both theoretical and experimental analyses of the signal-to-noise ratio performance of the filter functions are presented. In addition, a new Symmetric Phase Only Filtering (SPOF) technique, which is a variation on the traditional phase only filtering technique, is described and demonstrated. The SPOF technique exceeds the performance of the traditionally accepted phase only filtering techniques and is easily implemented in standard DPIV FFT based correlation processing with no significant computational performance penalty. An "Automatic" SPOF algorithm is presented which determines when the SPOF is able to provide better signal to noise results than traditional PIV processing. The SPOF based optical correlation processing approach is presented as a new paradigm for more robust cross-correlation processing of low signal-to-noise ratio DPIV image data."

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobo, R.; Revah, S.; Viveros-Garcia, T.

    An analysis of the local processes occurring in a trickle-bed bioreactor (TBB) with a first-order bioreaction shows that the identification of the TBB operating regime requires knowledge of the substrate concentration in the liquid phase. If the substrate liquid concentration is close to 0, the rate-controlling step is mass transfer at the gas-liquid interface; when it is close to the value in equilibrium with the gas phase, the controlling step is the phenomena occurring in the biofilm, CS{sub 2} removal rate data obtained in a TBB with a Thiobacilii consortia biofilm are analyzed to obtain the mass transfer and kineticmore » parameters, and to show that the bioreactor operates in a regime mainly controlled by mass transfer. A TBB model with two experimentally determined parameters is developed and used to show how the bioreactor size depends on the rate-limiting step, the absorption factor, the substrate fractional conversion, and on the gas and liquid contact pattern. Under certain conditions, the TBB size is independent of the flowing phases` contact pattern. The model effectively describes substrate gas and liquid concentration data for mass transfer and biodegradation rate controlled processes.« less

  20. Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors

    NASA Astrophysics Data System (ADS)

    Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu

    2000-12-01

    New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.

  1. Identification of a Class of Filtered Poisson Processes.

    DTIC Science & Technology

    1981-01-01

    LD-A135 371 IDENTIFICATION OF A CLASS OF FILERED POISSON PROCESSES I AU) NORTH CAROLINA UNIV AT CHAPEL HIL DEPT 0F STATISTICS D DE RRUC ET AL 1981...STNO&IO$ !tt ~ 4.s " . , ".7" -L N ~ TITLE :IDENTIFICATION OF A CLASS OF FILTERED POISSON PROCESSES Authors : DE BRUCQ Denis - GUALTIEROTTI Antonio...filtered Poisson processes is intro- duced : the amplitude has a law which is spherically invariant and the filter is real, linear and causal. It is shown

  2. Falling through the Cracks: Critical Transitions in the Latina/o Educational Pipeline. 2006 Latina/o Education Summit Report. CSRC Research Report. Number 7

    ERIC Educational Resources Information Center

    Huber, Lindsay Perez; Huidor, Ofelia; Malagon, Maria C.; Sanchez, Gloria; Solorzano, Daniel G.

    2006-01-01

    This report has explores the research literature on Latina/o students throughout the four segments of the educational pipeline: K-12, community college, undergraduate, and graduate. The Latina/o educational pipeline does not ensure a smooth flow of students from one end of the conduit to the other, but a broken trickle of fewer and fewer students…

  3. ? filtering for stochastic systems driven by Poisson processes

    NASA Astrophysics Data System (ADS)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  4. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    PubMed

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary to fixed window length conventional filters. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform

    DTIC Science & Technology

    2018-01-01

    ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a

  6. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.

    PubMed

    Kim, Jeremie S; Senol Cali, Damla; Xin, Hongyi; Lee, Donghyuk; Ghose, Saugata; Alser, Mohammed; Hassan, Hasan; Ergin, Oguz; Alkan, Can; Mutlu, Onur

    2018-05-09

    Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be applied to any read mapper. We hope that our results provide inspiration for new works to design other bioinformatics algorithms that take advantage of emerging technologies and new processing paradigms, such as processing-in-memory using 3D-stacked memory devices.

  7. Adaptive filtering in biological signal processing.

    PubMed

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed.

  8. Development of Na Adaptive Filter to Estimate the Percentage of Body Fat Based on Anthropometric Measures

    NASA Astrophysics Data System (ADS)

    do Lago, Naydson Emmerson S. P.; Kardec Barros, Allan; Sousa, Nilviane Pires S.; Junior, Carlos Magno S.; Oliveira, Guilherme; Guimares Polisel, Camila; Eder Carvalho Santana, Ewaldo

    2018-01-01

    This study aims to develop an algorithm of an adaptive filter to determine the percentage of body fat based on the use of anthropometric indicators in adolescents. Measurements such as body mass, height and waist circumference were collected for a better analysis. The development of this filter was based on the Wiener filter, used to produce an estimate of a random process. The Wiener filter minimizes the mean square error between the estimated random process and the desired process. The LMS algorithm was also studied for the development of the filter because it is important due to its simplicity and facility of computation. Excellent results were obtained with the filter developed, being these results analyzed and compared with the data collected.

  9. Wet particle source identification and reduction using a new filter cleaning process

    NASA Astrophysics Data System (ADS)

    Umeda, Toru; Morita, Akihiko; Shimizu, Hideki; Tsuzuki, Shuichi

    2014-03-01

    Wet particle reduction during filter installation and start-up aligns closely with initiatives to reduce both chemical consumption and preventative maintenance time. The present study focuses on the effects of filter materials cleanliness on wet particle defectivity through evaluation of filters that have been treated with a new enhanced cleaning process focused on organic compounds reduction. Little difference in filter performance is observed between the two filter types at a size detection threshold of 60 nm, while clear differences are observed at that of 26 nm. It can be suggested that organic compounds can be identified as a potential source of wet particles. Pall recommends filters that have been treated with the special cleaning process for applications with a critical defect size of less than 60 nm. Standard filter products are capable to satisfy wet particle defect performance criteria in less critical lithography applications.

  10. Catalytic biofilms on structured packing for the production of glycolic acid.

    PubMed

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2013-02-01

    While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

  11. Signal Processing for Time-Series Functions on a Graph

    DTIC Science & Technology

    2018-02-01

    as filtering to functions supported on graphs. These methods can be applied to scalar functions with a domain that can be described by a fixed...classical signal processing such as filtering to account for the graph domain. This work essentially divides into 2 basic approaches: graph Laplcian...based filtering and weighted adjacency matrix-based filtering . In Shuman et al.,11 and elaborated in Bronstein et al.,13 filtering operators are

  12. Improving the Response of Accelerometers for Automotive Applications by Using LMS Adaptive Filters: Part II

    PubMed Central

    Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg Y.; Fernández, Eduardo

    2010-01-01

    In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate. PMID:22315579

  13. Optimization of the cleaning process on a pilot filtration setup for waste water treatment accompanied by flow visualization

    NASA Astrophysics Data System (ADS)

    Bílek, Petr; Hrůza, Jakub

    2018-06-01

    This paper deals with an optimization of the cleaning process on a liquid flat-sheet filter accompanied by visualization of the inlet side of a filter. The cleaning process has a crucial impact on the hydrodynamic properties of flat-sheet filters. Cleaning methods avoid depositing of particles on the filter surface and forming a filtration cake. Visualization significantly helps to optimize the cleaning methods, because it brings new overall view on the filtration process in time. The optical method, described in the article, enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. Visualization is a strong tool for investigation of the processes on filters in details and it is also possible to determine concentration of particles after an image analysis. The impact of air flow rate, inverse pressure drop and duration on the cleaning mechanism is investigated in the article. Images of the cleaning process are compared to the hydrodynamic data. The tests are carried out on a pilot filtration setup for waste water treatment.

  14. Stable Kalman filters for processing clock measurement data

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Gibbs, B. P.; Vandergraft, J. S.

    1989-01-01

    Kalman filters have been used for some time to process clock measurement data. Due to instabilities in the standard Kalman filter algorithms, the results have been unreliable and difficult to obtain. During the past several years, stable forms of the Kalman filter have been developed, implemented, and used in many diverse applications. These algorithms, while algebraically equivalent to the standard Kalman filter, exhibit excellent numerical properties. Two of these stable algorithms, the Upper triangular-Diagonal (UD) filter and the Square Root Information Filter (SRIF), have been implemented to replace the standard Kalman filter used to process data from the Deep Space Network (DSN) hydrogen maser clocks. The data are time offsets between the clocks in the DSN, the timescale at the National Institute of Standards and Technology (NIST), and two geographically intermediate clocks. The measurements are made by using the GPS navigation satellites in mutual view between clocks. The filter programs allow the user to easily modify the clock models, the GPS satellite dependent biases, and the random noise levels in order to compare different modeling assumptions. The results of this study show the usefulness of such software for processing clock data. The UD filter is indeed a stable, efficient, and flexible method for obtaining optimal estimates of clock offsets, offset rates, and drift rates. A brief overview of the UD filter is also given.

  15. SkyMapper Filter Set: Design and Fabrication of Large-Scale Optical Filters

    NASA Astrophysics Data System (ADS)

    Bessell, Michael; Bloxham, Gabe; Schmidt, Brian; Keller, Stefan; Tisserand, Patrick; Francis, Paul

    2011-07-01

    The SkyMapper Southern Sky Survey will be conducted from Siding Spring Observatory with u, v, g, r, i, and z filters that comprise glued glass combination filters with dimensions of 309 × 309 × 15 mm. In this article we discuss the rationale for our bandpasses and physical characteristics of the filter set. The u, v, g, and z filters are entirely glass filters, which provide highly uniform bandpasses across the complete filter aperture. The i filter uses glass with a short-wave pass coating, and the r filter is a complete dielectric filter. We describe the process by which the filters were constructed, including the processes used to obtain uniform dielectric coatings and optimized narrowband antireflection coatings, as well as the technique of gluing the large glass pieces together after coating using UV transparent epoxy cement. The measured passbands, including extinction and CCD QE, are presented.

  16. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    USGS Publications Warehouse

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the remaining samples were archived. Biological characteristics were determined by using an in-vitro bioassay to determine total estrogenicity in water samples and a caged fish study to determine characteristics of fish from experiments that exposed fish to wastewater effluent in 2009. St. Cloud State University deployed and processed caged fathead minnows at 13 stream sites during September 2009 for the caged fish study. Measured fish data included length, weight, body condition factor, and vitellogenin concentrations.

  17. Counterinsurgency Theoretical and Practical Principles

    DTIC Science & Technology

    2012-09-01

    reserve forces should spread out to a point where “only a few men will be left to provide the core for self-defense units.”25 Heavy installations...counterinsurgency tactics to transform a trickle of FLN sympathizers and recruits into a torrent .” Ill will as a result of the operations created an atmosphere...1) hiring men for public works directly benefiting their village; (2) hiring men for public works in the interests of the administration and the

  18. Rapid Response Concentration-Controlled Desorption of Activated Carbon to Dampen Concentration Fluctuations

    DTIC Science & Technology

    2007-01-01

    Behavior of trickle - bed air biofilter for toluene removal: Effect of non-use periods. Environ. Prog. 2005, 24, 155-161. (3) Martin, F. J.; Loehr, R. C...dampen the fluctuation in acetone concentration at high concentrations. The effect of inlet concentration and empty bed contact time (EBCT) on dampening...oxidizer. The MSA-SST system is a fixed- bed system that rapidly controls the power that heats the adsorbent/adsorbate, resulting in controlled

  19. The Design of a Polymorphous Cognitive Agent Architecture (PCAA)

    DTIC Science & Technology

    2008-05-01

    tree, and search agents may search the tree for documents or clusters, depositing pheromones on the way down the tree. 46 19 The quality of SODAS...location in the lattice is a node, connected to its neighbors by links, and agents roam across the lattice, depositing pheromones . 49 21 A possible FPGA...provided by swarming, and also figure out a way for learning in ACT-R to trickle down to swarming computations, e.g., through the pheromones . Integration

  20. Poverty and power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, J.

    1974-07-01

    The percent of total annual income spent on energy by US poor income status families is 19.89%. in comparison upper-middle income families spend 5.95% of total annual income on energy. Governmental policy can either emphasize the needs of corporations or the needs of people. The trickle down concept of social welfare, which actually lines the wallets of middle class pickpockets, must be replaced by a policy that does not forever doom the poor to second-class citizenship. (1 table)

  1. Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement

    NASA Astrophysics Data System (ADS)

    Rao, B. Tirumala; Dehuri, S.; Dileep, M.; Vindhya, A.

    In this modern era, image transmission and processing plays a major role. It would be impossible to retrieve information from satellite and medical images without the help of image processing techniques. Edge enhancement is an image processing step that enhances the edge contrast of an image or video in an attempt to improve its acutance. Edges are the representations of the discontinuities of image intensity functions. For processing these discontinuities in an image, a good edge enhancement technique is essential. The proposed work uses a new idea for edge enhancement using hybridized smoothening filters and we introduce a promising technique of obtaining best hybrid filter using swarm algorithms (Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)) to search for an optimal sequence of filters from among a set of rather simple, representative image processing filters. This paper deals with the analysis of the swarm intelligence techniques through the combination of hybrid filters generated by these algorithms for image edge enhancement.

  2. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    NASA Astrophysics Data System (ADS)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  3. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.« less

  4. Pilot-scale tests of HEME and HEPA dissolution process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qureshi, Z.H.; Strege, D.K.

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsedmore » with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.« less

  5. FILTSoft: A computational tool for microstrip planar filter design

    NASA Astrophysics Data System (ADS)

    Elsayed, M. H.; Abidin, Z. Z.; Dahlan, S. H.; Cholan N., A.; Ngu, Xavier T. I.; Majid, H. A.

    2017-09-01

    Filters are key component of any communication system to control spectrum and suppress interferences. Designing a filter involves long process as well as good understanding of the basic hardware technology. Hence this paper introduces an automated design tool based on Matlab-GUI, called the FILTSoft (acronym for Filter Design Software) to ease the process. FILTSoft is a user friendly filter design tool to aid, guide and expedite calculations from lumped elements level to microstrip structure. Users just have to provide the required filter specifications as well as the material description. FILTSoft will calculate and display the lumped element details, the planar filter structure, and the expected filter's response. An example of a lowpass filter design was calculated using FILTSoft and the results were validated through prototype measurement for comparison purposes.

  6. An adaptive spatio-temporal Gaussian filter for processing cardiac optical mapping data.

    PubMed

    Pollnow, S; Pilia, N; Schwaderlapp, G; Loewe, A; Dössel, O; Lenis, G

    2018-06-04

    Optical mapping is widely used as a tool to investigate cardiac electrophysiology in ex vivo preparations. Digital filtering of fluorescence-optical data is an important requirement for robust subsequent data analysis and still a challenge when processing data acquired from thin mammalian myocardium. Therefore, we propose and investigate the use of an adaptive spatio-temporal Gaussian filter for processing optical mapping signals from these kinds of tissue usually having low signal-to-noise ratio (SNR). We demonstrate how filtering parameters can be chosen automatically without additional user input. For systematic comparison of this filter with standard filtering methods from the literature, we generated synthetic signals representing optical recordings from atrial myocardium of a rat heart with varying SNR. Furthermore, all filter methods were applied to experimental data from an ex vivo setup. Our developed filter outperformed the other filter methods regarding local activation time detection at SNRs smaller than 3 dB which are typical noise ratios expected in these signals. At higher SNRs, the proposed filter performed slightly worse than the methods from literature. In conclusion, the proposed adaptive spatio-temporal Gaussian filter is an appropriate tool for investigating fluorescence-optical data with low SNR. The spatio-temporal filter parameters were automatically adapted in contrast to the other investigated filters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Real time microcontroller implementation of an adaptive myoelectric filter.

    PubMed

    Bagwell, P J; Chappell, P H

    1995-03-01

    This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.

  8. New Methods for Analysis of Spatial Distribution and Coaggregation of Microbial Populations in Complex Biofilms

    PubMed Central

    Almstrand, Robert; Daims, Holger; Persson, Frank; Sörensson, Fred

    2013-01-01

    In biofilms, microbial activities form gradients of substrates and electron acceptors, creating a complex landscape of microhabitats, often resulting in structured localization of the microbial populations present. To understand the dynamic interplay between and within these populations, quantitative measurements and statistical analysis of their localization patterns within the biofilms are necessary, and adequate automated tools for such analyses are needed. We have designed and applied new methods for fluorescence in situ hybridization (FISH) and digital image analysis of directionally dependent (anisotropic) multispecies biofilms. A sequential-FISH approach allowed multiple populations to be detected in a biofilm sample. This was combined with an automated tool for vertical-distribution analysis by generating in silico biofilm slices and the recently developed Inflate algorithm for coaggregation analysis of microbial populations in anisotropic biofilms. As a proof of principle, we show distinct stratification patterns of the ammonia oxidizers Nitrosomonas oligotropha subclusters I and II and the nitrite oxidizer Nitrospira sublineage I in three different types of wastewater biofilms, suggesting niche differentiation between the N. oligotropha subclusters, which could explain their coexistence in the same biofilms. Coaggregation analysis showed that N. oligotropha subcluster II aggregated closer to Nitrospira than did N. oligotropha subcluster I in a pilot plant nitrifying trickling filter (NTF) and a moving-bed biofilm reactor (MBBR), but not in a full-scale NTF, indicating important ecophysiological differences between these phylogenetically closely related subclusters. By using high-resolution quantitative methods applicable to any multispecies biofilm in general, the ecological interactions of these complex ecosystems can be understood in more detail. PMID:23892743

  9. Temporal and spatial variation in pharmaceutical concentrations in an urban river system

    USGS Publications Warehouse

    Burns, Emily E.; Carter, Laura J.; Kolpin, Dana W.; Thomas-Oates, Jane; Boxall, Alistair B.A.

    2018-01-01

    Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse.

  10. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    PubMed

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  11. Quantum filtering for multiple diffusive and Poissonian measurements

    NASA Astrophysics Data System (ADS)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2015-09-01

    We provide a rigorous derivation of a quantum filter for the case of multiple measurements being made on a quantum system. We consider a class of measurement processes which are functions of bosonic field operators, including combinations of diffusive and Poissonian processes. This covers the standard cases from quantum optics, where homodyne detection may be described as a diffusive process and photon counting may be described as a Poissonian process. We obtain a necessary and sufficient condition for any pair of such measurements taken at different output channels to satisfy a commutation relationship. Then, we derive a general, multiple-measurement quantum filter as an extension of a single-measurement quantum filter. As an application we explicitly obtain the quantum filter corresponding to homodyne detection and photon counting at the output ports of a beam splitter.

  12. Low-pass parabolic FFT filter for airborne and satellite lidar signal processing.

    PubMed

    Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian

    2015-10-14

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing.

  13. Noise removal in extended depth of field microscope images through nonlinear signal processing.

    PubMed

    Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J

    2013-04-01

    Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.

  14. Application of analytical redundancy management to Shuttle crafts. [computerized simulation of microelectronic implementation

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Tabak, D.

    1979-01-01

    The study involves the bank of filters approach to analytical redundancy management since this is amenable to microelectronic implementation. Attention is given to a study of the UD factorized filter to determine if it gives more accurate estimates than the standard Kalman filter when data processing word size is reduced. It is reported that, as the word size is reduced, the effect of modeling error dominates the filter performance of the two filters. However, the UD filter is shown to maintain a slight advantage in tracking performance. It is concluded that because of the UD filter's stability in the serial processing mode, it remains the leading candidate for microelectronic implementation.

  15. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  16. Coated x-ray filters

    DOEpatents

    Steinmeyer, P.A.

    1992-11-24

    A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers. 4 figs.

  17. Coated x-ray filters

    DOEpatents

    Steinmeyer, Peter A.

    1992-11-24

    A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers.

  18. Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth

    NASA Technical Reports Server (NTRS)

    Takano, T.; Inada, K.; Takanashi, J.

    1987-01-01

    Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space stations. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12 hr dark may be needed for plant growth.

  19. Evaluation of Metals Release from Oxidation of Fly Ash during Dredging of the Emory River, TN

    DTIC Science & Technology

    2011-08-01

    from an oil -free source (trickle flow, 2-5 bubbles per second) to provide some turbulent flow and to maintain dissolved oxygen levels. More rigorous...larval and (b) juvenile Pimephales promelas. ERDC/EL TR-11-9 79 five juvenile fish and was rigorously aerated from an oil -free source to...epithelial width. In contrast, juvenile pike from a reference lake had significantly thicker gill filaments compared to those exposed to Key Lake uranium

  20. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  1. Spin-on bottom antireflective coating defect reduction by proper filter selection and process optimization

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Kidd, Brian; Mesawich, Michael; Stevens, Don, Jr.; Gotlinsky, Barry

    2003-06-01

    A design of experiment (DOE) was implemented to show the effects of various point of use filters on the coat process. The DOE takes into account the filter media, pore size, and pumping means, such as dispense pressure, time, and spin speed. The coating was executed on a TEL Mark 8 coat track, with an IDI M450 pump, and PALL 16 stack Falcon filters. A KLA 2112 set at 0.69 μm pixel size was used to scan the wafers to detect and identify the defects. The process found for DUV42P to maintain a low defect coating irrespective of the filter or pore size is a high start pressure, low end pressure, low dispense time, and high dispense speed. The IDI M450 pump has the capability to compensate for bubble type defects by venting the defects out of the filter before the defects are in the dispense line and the variable dispense rate allows the material in the dispense line to slow down at the end of dispense and not create microbubbles in the dispense line or tip. Also the differential pressure sensor will alarm if the pressure differential across the filter increases over a user-determined setpoint. The pleat design allows more surface area in the same footprint to reduce the differential pressure across the filter and transport defects to the vent tube. The correct low defect coating process will maximize the advantage of reducing filter pore size or changing the filter media.

  2. A simulation to study the feasibility of improving the temporal resolution of LAGEOS geodynamic solutions by using a sequential process noise filter

    NASA Technical Reports Server (NTRS)

    Hartman, Brian Davis

    1995-01-01

    A key drawback to estimating geodetic and geodynamic parameters over time based on satellite laser ranging (SLR) observations is the inability to accurately model all the forces acting on the satellite. Errors associated with the observations and the measurement model can detract from the estimates as well. These 'model errors' corrupt the solutions obtained from the satellite orbit determination process. Dynamical models for satellite motion utilize known geophysical parameters to mathematically detail the forces acting on the satellite. However, these parameters, while estimated as constants, vary over time. These temporal variations must be accounted for in some fashion to maintain meaningful solutions. The primary goal of this study is to analyze the feasibility of using a sequential process noise filter for estimating geodynamic parameters over time from the Laser Geodynamics Satellite (LAGEOS) SLR data. This evaluation is achieved by first simulating a sequence of realistic LAGEOS laser ranging observations. These observations are generated using models with known temporal variations in several geodynamic parameters (along track drag and the J(sub 2), J(sub 3), J(sub 4), and J(sub 5) geopotential coefficients). A standard (non-stochastic) filter and a stochastic process noise filter are then utilized to estimate the model parameters from the simulated observations. The standard non-stochastic filter estimates these parameters as constants over consecutive fixed time intervals. Thus, the resulting solutions contain constant estimates of parameters that vary in time which limits the temporal resolution and accuracy of the solution. The stochastic process noise filter estimates these parameters as correlated process noise variables. As a result, the stochastic process noise filter has the potential to estimate the temporal variations more accurately since the constraint of estimating the parameters as constants is eliminated. A comparison of the temporal resolution of solutions obtained from standard sequential filtering methods and process noise sequential filtering methods shows that the accuracy is significantly improved using process noise. The results show that the positional accuracy of the orbit is improved as well. The temporal resolution of the resulting solutions are detailed, and conclusions drawn about the results. Benefits and drawbacks of using process noise filtering in this type of scenario are also identified.

  3. Seeing the unseen: Complete volcano deformation fields by recursive filtering of satellite radar interferograms

    NASA Astrophysics Data System (ADS)

    Gonzalez, Pablo J.

    2017-04-01

    Automatic interferometric processing of satellite radar data has emerged as a solution to the increasing amount of acquired SAR data. Automatic SAR and InSAR processing ranges from focusing raw echoes to the computation of displacement time series using large stacks of co-registered radar images. However, this type of interferometric processing approach demands the pre-described or adaptive selection of multiple processing parameters. One of the interferometric processing steps that much strongly influences the final results (displacement maps) is the interferometric phase filtering. There are a large number of phase filtering methods, however the "so-called" Goldstein filtering method is the most popular [Goldstein and Werner, 1998; Baran et al., 2003]. The Goldstein filter needs basically two parameters, the size of the window filter and a parameter to indicate the filter smoothing intensity. The modified Goldstein method removes the need to select the smoothing parameter based on the local interferometric coherence level, but still requires to specify the dimension of the filtering window. An optimal filtered phase quality usually requires careful selection of those parameters. Therefore, there is an strong need to develop automatic filtering methods to adapt for automatic processing, while maximizing filtered phase quality. Here, in this paper, I present a recursive adaptive phase filtering algorithm for accurate estimation of differential interferometric ground deformation and local coherence measurements. The proposed filter is based upon the modified Goldstein filter [Baran et al., 2003]. This filtering method improves the quality of the interferograms by performing a recursive iteration using variable (cascade) kernel sizes, and improving the coherence estimation by locally defringing the interferometric phase. The method has been tested using simulations and real cases relevant to the characteristics of the Sentinel-1 mission. Here, I present real examples from C-band interferograms showing strong and weak deformation gradients, with moderate baselines ( 100-200 m) and variable temporal baselines of 70 and 190 days over variable vegetated volcanoes (Mt. Etna, Hawaii and Nyragongo-Nyamulagira). The differential phase of those examples show intense localized volcano deformation and also vast areas of small differential phase variation. The proposed method outperforms the classical Goldstein and modified Goldstein filters by preserving subtle phase variations where the deformation fringe rate is high, and effectively suppressing phase noise in smoothly phase variation regions. Finally, this method also has the additional advantage of not requiring input parameters, except for the maximum filtering kernel size. References: Baran, I., Stewart, M.P., Kampes, B.M., Perski, Z., Lilly, P., (2003) A modification to the Goldstein radar interferogram filter. IEEE Transactions on Geoscience and Remote Sensing, vol. 41, No. 9., doi:10.1109/TGRS.2003.817212 Goldstein, R.M., Werner, C.L. (1998) Radar interferogram filtering for geophysical applications, Geophysical Research Letters, vol. 25, No. 21, 4035-4038, doi:10.1029/1998GL900033

  4. A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers

    PubMed Central

    Liu, Zhuowei; Chen, Shuxin; Wu, Hao; He, Renke; Hao, Lin

    2018-01-01

    In multi-target tracking, the outliers-corrupted process and measurement noises can reduce the performance of the probability hypothesis density (PHD) filter severely. To solve the problem, this paper proposed a novel PHD filter, called Student’s t mixture PHD (STM-PHD) filter. The proposed filter models the heavy-tailed process noise and measurement noise as a Student’s t distribution as well as approximates the multi-target intensity as a mixture of Student’s t components to be propagated in time. Then, a closed PHD recursion is obtained based on Student’s t approximation. Our approach can make full use of the heavy-tailed characteristic of a Student’s t distribution to handle the situations with heavy-tailed process and the measurement noises. The simulation results verify that the proposed filter can overcome the negative effect generated by outliers and maintain a good tracking accuracy in the simultaneous presence of process and measurement outliers. PMID:29617348

  5. Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Lappschies, Marc; Görtz, Björn; Ristau, Detlev

    2006-03-01

    Methods for the manufacture of rugate filters by the ion-beam-sputtering process are presented. The first approach gives an example of a digitized version of a continuous-layer notch filter. This method allows the comparison of the basic theory of interference coatings containing thin layers with practical results. For the other methods, a movable zone target is employed to fabricate graded and gradual rugate filters. The examples demonstrate the potential of broadband optical monitoring in conjunction with the ion-beam-sputtering process. First-characterization results indicate that these types of filter may exhibit higher laser-induced damage-threshold values than those of classical filters.

  6. In situ magnetic resonance measurement of conversion, hydrodynamics and mass transfer during single- and two-phase flow in fixed-bed reactors.

    PubMed

    Gladden, L F; Alexander, P; Britton, M M; Mantle, M D; Sederman, A J; Yuen, E H L

    2003-01-01

    In recent years there has been increasing interest in applying magnetic resonance (MR) techniques in areas of engineering and chemical technology. The science that underpins many of these applications is the physics and chemistry of transport and reaction processes in porous materials. Key to the exploitation of MR methods will be our ability to demonstrate that MR yields information that cannot be obtained using conventional measurement techniques in engineering research. This article describes two case studies that highlight the power of MR to give new insights to chemical engineers. First, we demonstrate the application of MR techniques to explore both mass transfer and chemical conversion in situ within a fixed bed of catalyst, and we then use these data to identify the rate-controlling step of the chemical conversion. Second, we implement a rapid imaging technique to study the stability of the gas-liquid distribution in the low- and high-interaction two-phase flow regimes in a trickle-bed reactor.

  7. Memory Metals

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under contract to NASA during preparations for the space station, Memry Technologies Inc. investigated shape memory effect (SME). SME is a characteristic of certain metal alloys that can change shape in response to temperature variations. In the late 1980s and early 1990s, Memry used its NASA-acquired expertise to produce a line of home and industrial safety products, and refined the technology in the mid-1990s. Among the new products they developed are three MemrySafe units which prevent scalding from faucets. Each system contains a small valve that reacts to temperature, not pressure. When the water reaches dangerous temperatures, the unit reduces the flow to a trickle; when the scalding temperature subsides, the unit restores normal flow. Other products are the FIRECHEK 2 and 4, heat-activated shutoff valves for industrial process lines, which sense excessive heat and cut off pneumatic pressure. The newest of these products is Memry's Demand Management Water Heater which shifts the electricity requirement from peak to off-peak demands, conserving energy and money.

  8. An omnipotent Li-ion battery charger with multimode control and polarity reversible techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiann-Jong; Ku, Yi-Tsen; Yang, Hong-Yi; Hwang, Yuh-Shyan; Yu, Cheng-Chieh

    2016-07-01

    The omnipotent Li-ion battery charger with multimode control and polarity reversible techniques is presented in this article. The proposed chip is fabricated with TSMC 0.35μm 2P4M complementary metal-oxide- semiconductor processes, and the chip area including pads is 1.5 × 1.5 mm2. The structure of the omnipotent charger combines three charging modes and polarity reversible techniques, which adapt to any Li-ion batteries. The three reversible Li-ion battery charging modes, including trickle-current charging, large-current charging and constant-voltage charging, can charge in matching polarities or opposite polarities. The proposed circuit has a maximum charging current of 300 mA and the input voltage of the proposed circuit is set to 4.5 V. The maximum efficiency of the proposed charger is about 91% and its average efficiency is 74.8%. The omnipotent charger can precisely provide the charging current to the battery.

  9. Stabilization of Softwood-Derived Pyrolysis Oils for Continuous Bio-oil Hydroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olarte, Mariefel V.; Zacher, Alan H.; Padmaperuma, Asanga B.

    The use of fast pyrolysis as a potential renewable liquid transportation fuel alternative to crude oil depends on successful catalytic upgrading to produce a refinery-ready product with oxygen content and qualities (i.e. specific functional group or compound content) that is compatible with the product’s proposed insertion point. Catalytic upgrading of bio-oil requires high temperature and pressure, while similar to crude oil hydrotreating, is not as straightforward for the thermally unstable pyrolysis oil. For years, a two-temperature zone, downflow trickle bed reactor was the state-of-the art for continuous operation. However, pressure excursion due to plug formation still occurred, typically at themore » high temperature transition zone, leading to a process shutdown within 140 h. Recently, a bio-oil pre-treatment process, together with a robust commercial catalyst, was found to be enabling the continuous operation of the two-zone hydroprocessing system. Here, we report the results on pre-treating bio-oil at 413 K and 8.4 MPa of flowing H2 (500 L H2/L bio-oil, 0.5 L bio-oil/L catalyst bed) and the attempts to characterize this oil product to understand the chemistry which enabled the long-term processing of bio-oil.« less

  10. Development of a tritium recovery system from CANDU tritium removal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consistsmore » of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)« less

  11. Linear-phase delay filters for ultra-low-power signal processing in neural recording implants.

    PubMed

    Gosselin, Benoit; Sawan, Mohamad; Kerherve, Eric

    2010-06-01

    We present the design and implementation of linear-phase delay filters for ultra-low-power signal processing in neural recording implants. We use these filters as low-distortion delay elements along with an automatic biopotential detector to perform integral waveform extraction and efficient power management. The presented delay elements are realized employing continuous-time OTA-C filters featuring 9th-order equiripple transfer functions with constant group delay. Such analog delay enables processing neural waveforms with reduced overhead compared to a digital delay since it does not requires sampling and digitization. It uses an allpass transfer function for achieving wider constant-delay bandwidth than all-pole does. Two filters realizations are compared for implementing the delay element: the Cascaded structure and the Inverse follow-the-leader feedback filter. Their respective strengths and drawbacks are assessed by modeling parasitics and non-idealities of OTAs, and by transistor-level simulations. A budget of 200 nA is used in both filters. Experimental measurements with the chosen filter topology are presented and discussed.

  12. Impact of axial velocity and transmembrane pressure (TMP) on ARP filter performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    2016-02-29

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. One potential method for increasing filter flux is to adjust the axial velocity andmore » transmembrane pressure (TMP). SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity and transmembrane pressure on crossflow filter flux. The objective of the testing was to determine whether increasing the axial velocity at the ARP could produce a significant increase in filter flux. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity and TMP, and measuring filter flux as a function of time.« less

  13. Improving the quality of reconstructed X-ray CT images of polymer gel dosimeters: zero-scan coupled with adaptive mean filtering.

    PubMed

    Kakakhel, M B; Jirasek, A; Johnston, H; Kairn, T; Trapp, J V

    2017-03-01

    This study evaluated the feasibility of combining the 'zero-scan' (ZS) X-ray computed tomography (CT) based polymer gel dosimeter (PGD) readout with adaptive mean (AM) filtering for improving the signal to noise ratio (SNR), and to compare these results with available average scan (AS) X-ray CT readout techniques. NIPAM PGD were manufactured, irradiated with 6 MV photons, CT imaged and processed in Matlab. AM filter for two iterations, with 3 × 3 and 5 × 5 pixels (kernel size), was used in two scenarios (a) the CT images were subjected to AM filtering (pre-processing) and these were further employed to generate AS and ZS gel images, and (b) the AS and ZS images were first reconstructed from the CT images and then AM filtering was carried out (post-processing). SNR was computed in an ROI of 30 × 30 for different pre and post processing cases. Results showed that the ZS technique combined with AM filtering resulted in improved SNR. Using the previously-recommended 25 images for reconstruction the ZS pre-processed protocol can give an increase of 44% and 80% in SNR for 3 × 3 and 5 × 5 kernel sizes respectively. However, post processing using both techniques and filter sizes introduced blur and a reduction in the spatial resolution. Based on this work, it is possible to recommend that the ZS method may be combined with pre-processed AM filtering using appropriate kernel size, to produce a large increase in the SNR of the reconstructed PGD images.

  14. A Low Cost Structurally Optimized Design for Diverse Filter Types

    PubMed Central

    Kazmi, Majida; Aziz, Arshad; Akhtar, Pervez; Ikram, Nassar

    2016-01-01

    A wide range of image processing applications deploys two dimensional (2D)-filters for performing diversified tasks such as image enhancement, edge detection, noise suppression, multi scale decomposition and compression etc. All of these tasks require multiple type of 2D-filters simultaneously to acquire the desired results. The resource hungry conventional approach is not a viable option for implementing these computationally intensive 2D-filters especially in a resource constraint environment. Thus it calls for optimized solutions. Mostly the optimization of these filters are based on exploiting structural properties. A common shortcoming of all previously reported optimized approaches is their restricted applicability only for a specific filter type. These narrow scoped solutions completely disregard the versatility attribute of advanced image processing applications and in turn offset their effectiveness while implementing a complete application. This paper presents an efficient framework which exploits the structural properties of 2D-filters for effectually reducing its computational cost along with an added advantage of versatility for supporting diverse filter types. A composite symmetric filter structure is introduced which exploits the identities of quadrant and circular T-symmetries in two distinct filter regions simultaneously. These T-symmetries effectually reduce the number of filter coefficients and consequently its multipliers count. The proposed framework at the same time empowers this composite filter structure with additional capabilities of realizing all of its Ψ-symmetry based subtypes and also its special asymmetric filters case. The two-fold optimized framework thus reduces filter computational cost up to 75% as compared to the conventional approach as well as its versatility attribute not only supports diverse filter types but also offers further cost reduction via resource sharing for sequential implementation of diversified image processing applications especially in a constraint environment. PMID:27832133

  15. Software-defined microwave photonic filter with high reconfigurable resolution

    PubMed Central

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2016-01-01

    Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability. PMID:27759062

  16. Spacecraft attitude determination using a second-order nonlinear filter

    NASA Technical Reports Server (NTRS)

    Vathsal, S.

    1987-01-01

    The stringent attitude determination accuracy and faster slew maneuver requirements demanded by present-day spacecraft control systems motivate the development of recursive nonlinear filters for attitude estimation. This paper presents the second-order filter development for the estimation of attitude quaternion using three-axis gyro and star tracker measurement data. Performance comparisons have been made by computer simulation of system models and filter mechanization. It is shown that the second-order filter consistently performs better than the extended Kalman filter when the performance index of the root sum square estimation error of the quaternion vector is compared. The second-order filter identifies the gyro drift rates faster than the extended Kalman filter. The uniqueness of this algorithm is the online generation of the time-varying process and measurement noise covariance matrices, derived as a function or the process and measurement nonlinearity, respectively.

  17. Software-defined microwave photonic filter with high reconfigurable resolution.

    PubMed

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2016-10-19

    Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability.

  18. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Bioremediation of trace organic compounds found in precious metals refineries' wastewaters: a review of potential options.

    PubMed

    Barbosa, V L; Tandlich, R; Burgess, J E

    2007-07-01

    Platinum group metal (PGM) refining processes produce large quantities of wastewater, which is contaminated with the compounds that make up the solvents/extractants mixtures used in the process. These compounds often include solvesso, beta-hydroxyxime, amines, amides and methyl isobutyl ketone. A process to clean up PGM refinery wastewaters so that they could be re-used in the refining process would greatly contribute to continual water storage problems and to cost reduction for the industry. Based on the concept that organic compounds that are produced biologically can be destroyed biologically, the use of biological processes for the treatment of organic compounds in other types of waste stream has been favoured in recent years, owing to their low cost and environmental acceptability. This review examines the available biotechnologies and their effectiveness for treating compounds likely to be contained in precious metal extraction process wastewaters. The processes examined include: biofilters, fluidized bed reactors, trickle-bed bioreactors, bioscrubbers, two-phase partitioning bioreactors, membrane bioreactors and activated sludge. Although all processes examined showed adequate to excellent removal of organic compounds from various gaseous and fewer liquid waste streams, there was a variation in their effectiveness. Variations in performance of laboratory-scale biological processes are probably due to the inherent change in the microbial population composition due to selection pressure, environmental conditions and the time allowed for adaptation to the organic compounds. However, if these factors are disregarded, it can be established that activated sludge and membrane bioreactors are the most promising processes for use in the treatment of PGM refinery wastewaters.

  20. The Time-Domain Matched Filter and the Spectral-Domain Matched Filter in 1-Dimensional NMR Spectroscopy.

    PubMed

    Spencer, Richard G

    2010-09-01

    A type of "matched filter" (MF), used extensively in the processing of one-dimensional spectra, is defined by multiplication of a free-induction decay (FID) by a decaying exponential with the same time constant as that of the FID. This maximizes, in a sense to be defined, the signal-to-noise ratio (SNR) in the spectrum obtained after Fourier transformation. However, a different entity known also as the matched filter was introduced by van Vleck in the context of pulse detection in the 1940's and has become widely integrated into signal processing practice. These two types of matched filters appear to be quite distinct. In the NMR case, the "filter", that is, the exponential multiplication, is defined by the characteristics of, and applied to, a time domain signal in order to achieve improved SNR in the spectral domain. In signal processing, the filter is defined by the characteristics of a signal in the spectral domain, and applied in order to improve the SNR in the temporal (pulse) domain. We reconcile these two distinct implementations of the matched filter, demonstrating that the NMR "matched filter" is a special case of the matched filter more rigorously defined in the signal processing literature. In addition, two limitations in the use of the MF are highlighted. First, application of the MF distorts resonance ratios as defined by amplitudes, although not as defined by areas. Second, the MF maximizes SNR with respect to resonance amplitude, while intensities are often more appropriately defined by areas. Maximizing the SNR with respect to area requires a somewhat different approach to matched filtering.

  1. Effect of biogenic fermentation impurities on lactic acid hydrogenation to propylene glycol.

    PubMed

    Zhang, Zhigang; Jackson, James E; Miller, Dennis J

    2008-09-01

    The effect of residual impurities from glucose fermentation to lactic acid (LA) on subsequent ruthenium-catalyzed hydrogenation of LA to propylene glycol (PG) is examined. Whereas refined LA feed exhibits stable conversion to PG over carbon-supported ruthenium catalyst in a trickle bed reactor, partially refined LA from fermentation shows a steep decline in PG production over short (<40 h) reaction times followed by a further slow decay in performance. Addition of model impurities to refined LA has varying effects: organic acids, sugars, or inorganic salts have little effect on conversion; alanine, a model amino acid, results in a strong but reversible decline in conversion via competitive adsorption between alanine and LA on the Ru surface. The sulfur-containing amino acids cysteine and methionine irreversibly poison the catalyst for LA conversion. Addition of 0.1 wt% albumin as a model protein leads to slow decline in rate, consistent with pore plugging or combined pore plugging and poisoning of the Ru surface. This study points to the need for integrated design and operation of biological processes and chemical processes in the biorefinery in order to make efficient conversion schemes viable.

  2. Acousto-Optic Tunable Filter for Time-Domain Processing of Ultra-Short Optical Pulses,

    DTIC Science & Technology

    The application of acousto - optic tunable filters for shaping of ultra-fast pulses in the time domain is analyzed and demonstrated. With the rapid...advance of acousto - optic tunable filter (AOTF) technology, the opportunity for sophisticated signal processing capabilities arises. AOTFs offer unique

  3. Effects of antimicrobial treatment on fiberglass-acrylic filters.

    PubMed

    Cecchini, C; Verdenelli, M C; Orpianesi, C; Dadea, G M; Cresci, A

    2004-01-01

    The aims of the present study were to: (i) analyse a group of antimicrobial agents and to select the most active against test microbial strains; (ii) test the effect of the antimicrobial treatment on air filters in order to reduce microbial colonization. Different kinds of antimicrobial agents were analysed to assess their compatibility with the production process of air filter media. The minimal inhibitory concentration for each antimicrobial agent was determined against a defined list of microbial strains, and an antimicrobial activity assay of filter prototypes was developed to determine the most active agent among the compatible antimicrobials. Then, the most active was chosen and added directly to the filter during the production process. The microbial colonization of treated and untreated filter media was assessed at different working times for different incubation times by stereomicroscope and scanning electron microscope analysis. Some of the antimicrobial agents analysed were more active against microbial test strains and compatible with the production process of the filter media. Filter sections analysis of treated filter media showed a significantly lower microbial colonization than those untreated, a reduction of species both in density and varieties and of the presence of bacteria and fungal hyphae with reproductive structures. This study demonstrated the ability of antimicrobial treatments to inhibit the growth of micro-organisms in filter media and subsequently to increase indoor air quality (IAQ), highlighting the value of adding antimicrobials to filter media. To make a contribution to solving the problem of microbial contamination of air filters, by demonstrating the efficacy of incorporating antimicrobial agents in the filter media to improve IAQ and health.

  4. Switching non-local vector median filter

    NASA Astrophysics Data System (ADS)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2016-04-01

    This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.

  5. The Ability to Process Abstract Information.

    DTIC Science & Technology

    1983-09-01

    Responses Associated with Stress . .. 8 2. Filter Theories: A. Broadbent’s filter model . . . . 12 B. Treisaman’s attentuation model . . . 12 3... model has been proposed by Schneider and Shiffrin (1977) and Shiffrin and Schneider (1977). Unlike Broadbent’s filter models Schneider and Shiffrin...allows for processing to take place only on the input "selected". This filter model is shown in Figure 2A. According to this theory, any information

  6. Filtering with Marked Point Process Observations via Poisson Chaos Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei, E-mail: wsun@mathstat.concordia.ca; Zeng Yong, E-mail: zengy@umkc.edu; Zhang Shu, E-mail: zhangshuisme@hotmail.com

    2013-06-15

    We study a general filtering problem with marked point process observations. The motivation comes from modeling financial ultra-high frequency data. First, we rigorously derive the unnormalized filtering equation with marked point process observations under mild assumptions, especially relaxing the bounded condition of stochastic intensity. Then, we derive the Poisson chaos expansion for the unnormalized filter. Based on the chaos expansion, we establish the uniqueness of solutions of the unnormalized filtering equation. Moreover, we derive the Poisson chaos expansion for the unnormalized filter density under additional conditions. To explore the computational advantage, we further construct a new consistent recursive numerical schememore » based on the truncation of the chaos density expansion for a simple case. The new algorithm divides the computations into those containing solely system coefficients and those including the observations, and assign the former off-line.« less

  7. An Adaptive Kalman Filter using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  8. Laboratory-scale integrated ARP filter test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    2016-03-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. There is a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. This task attempted to simulate the entire ARP process, including multiple batches (5), washing, chemical cleaning, andmore » blending the feed with heels and recycle streams. The objective of the tests was to determine whether one of these processes is causing excessive fouling of the crossflow or secondary filter. The authors conducted the tests with feed solutions containing 6.6 M sodium Salt Batch 6 simulant supernate with no MST.« less

  9. Using quantum filters to process images of diffuse axonal injury

    NASA Astrophysics Data System (ADS)

    Pineda Osorio, Mateo

    2014-06-01

    Some images corresponding to a diffuse axonal injury (DAI) are processed using several quantum filters such as Hermite Weibull and Morse. Diffuse axonal injury is a particular, common and severe case of traumatic brain injury (TBI). DAI involves global damage on microscopic scale of brain tissue and causes serious neurologic abnormalities. New imaging techniques provide excellent images showing cellular damages related to DAI. Said images can be processed with quantum filters, which accomplish high resolutions of dendritic and axonal structures both in normal and pathological state. Using the Laplacian operators from the new quantum filters, excellent edge detectors for neurofiber resolution are obtained. Image quantum processing of DAI images is made using computer algebra, specifically Maple. Quantum filter plugins construction is proposed as a future research line, which can incorporated to the ImageJ software package, making its use simpler for medical personnel.

  10. Investigation of optical current transformer signal processing method based on an improved Kalman algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan

    2018-01-01

    This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.

  11. Adaptive filtering of GOCE-derived gravity gradients of the disturbing potential in the context of the space-wise approach

    NASA Astrophysics Data System (ADS)

    Piretzidis, Dimitrios; Sideris, Michael G.

    2017-09-01

    Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63-84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10-30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.

  12. Apparatus and process for microbial detection and enumeration

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Grana, D. (Inventor)

    1982-01-01

    An apparatus and process for detecting and enumerating specific microorganisms from large volume samples containing small numbers of the microorganisms is presented. The large volume samples are filtered through a membrane filter to concentrate the microorganisms. The filter is positioned between two absorbent pads and previously moistened with a growth medium for the microorganisms. A pair of electrodes are disposed against the filter and the pad electrode filter assembly is retained within a petri dish by retainer ring. The cover is positioned on base of petri dish and sealed at the edges by a parafilm seal prior to being electrically connected via connectors to a strip chart recorder for detecting and enumerating the microorganisms collected on filter.

  13. On pads and filters: Processing strong-motion data

    USGS Publications Warehouse

    Boore, D.M.

    2005-01-01

    Processing of strong-motion data in many cases can be as straightforward as filtering the acceleration time series and integrating to obtain velocity and displacement. To avoid the introduction of spurious low-frequency noise in quantities derived from the filtered accelerations, however, care must be taken to append zero pads of adequate length to the beginning and end of the segment of recorded data. These padded sections of the filtered acceleration need to be retained when deriving velocities, displacements, Fourier spectra, and response spectra. In addition, these padded and filtered sections should also be included in the time series used in the dynamic analysis of structures and soils to ensure compatibility with the filtered accelerations.

  14. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction.

    PubMed

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A; García, Juan

    2013-01-15

    Active nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min(-1) and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min(-1), respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T(r)=0.098 g(Ni) min mL(-1). After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T(r)=0.098 g(Ni) min mL(-1), attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The role of aluminum in slow sand filtration.

    PubMed

    Weber-Shirk, Monroe L; Chan, Kwok Loon

    2007-03-01

    Engineering enhancement of slow sand filtration has been an enigma in large part because the mechanisms responsible for particle removal have not been well characterized. The presumed role of biological processes in the filter ripening process nearly precluded the possibility of enhancing filter performance since interventions to enhance biological activity would have required decreasing the quality of the influent water. In previous work, we documented that an acid soluble polymer controls filter performance. The new understanding that particle removal is controlled in large part by physical chemical mechanisms has expanded the possibilities of engineering slow sand filter performance. Herein, we explore the role of naturally occurring aluminum as a ripening agent for slow sand filters and the possibility of using a low dose of alum to improve filter performance or to ripen slow sand filters.

  16. EFFECT OF LOADING DUST TYPE ON THE FILTRATION EFFICIENCY OF ELECTROSTATICALLY CHARGED FILTERS

    EPA Science Inventory

    The paper gives results of an evaluation of the effect of loading dust type on the filtration efficiency of electrostatically charged filters. Three types of filters were evaluated: a rigid-cell filter charged using an electrodynamic spinning process, a pleated-panel filter cha...

  17. An Adaptive Kalman Filter Using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  18. Electronic filters, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor); Zheng, Baohua (Inventor)

    1991-01-01

    An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a filtered signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the filtered signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems, and methods of operating them are also disclosed.

  19. Selection vector filter framework

    NASA Astrophysics Data System (ADS)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  20. Optical implementation of the synthetic discriminant function

    NASA Astrophysics Data System (ADS)

    Butler, S.; Riggins, J.

    1984-10-01

    Much attention is focused on the use of coherent optical pattern recognition (OPR) using matched spatial filters for robotics and intelligent systems. The OPR problem consists of three aspects -- information input, information processing, and information output. This paper discusses the information processing aspect which consists of choosing a filter to provide robust correlation with high efficiency. The filter should ideally be invariant to image shift, rotation and scale, provide a reasonable signal-to-noise (S/N) ratio and allow high throughput efficiency. The physical implementation of a spatial matched filter involves many choices. These include the use of conventional holograms or computer-generated holograms (CGH) and utilizing absorption or phase materials. Conventional holograms inherently modify the reference image by non-uniform emphasis of spatial frequencies. Proper use of film nonlinearity provides improved filter performance by emphasizing frequency ranges crucial to target discrimination. In the case of a CGH, the emphasis of the reference magnitude and phase can be controlled independently of the continuous tone or binary writing processes. This paper describes computer simulation and optical implementation of a geometrical shape and a Synthetic Discriminant Function (SDF) matched filter. The authors chose the binary Allebach-Keegan (AK) CGH algorithm to produce actual filters. The performances of these filters were measured to verify the simulation results. This paper provides a brief summary of the matched filter theory, the SDF, CGH algorithms, Phase-Only-Filtering, simulation procedures, and results.

  1. In-line Kevlar filters for microfiltration of transuranic-containing liquid streams.

    PubMed

    Gonzales, G J; Beddingfield, D H; Lieberman, J L; Curtis, J M; Ficklin, A C

    1992-06-01

    The Department of Energy Rocky Flats Plant has numerous ongoing efforts to minimize the generation of residue and waste and to improve safety and health. Spent polypropylene liquid filters held for plutonium recovery, known as "residue," or as transuranic mixed waste contribute to storage capacity problems and create radiation safety and health considerations. An in-line process-liquid filter made of Kevlar polymer fiber has been evaluated for its potential to: (1) minimize filter residue, (2) recover economically viable quantities of plutonium, (3) minimize liquid storage tank and process-stream radioactivity, and (4) reduce potential personnel radiation exposure associated with these sources. Kevlar filters were rated to less than or equal to 1 mu nominal filtration and are capable of reducing undissolved plutonium particles to more than 10 times below the economic discard limit, however produced high back-pressures and are not yet acid resistant. Kevlar filters performed independent of loaded particles serving as a sieve. Polypropylene filters removed molybdenum particles at efficiencies equal to Kevlar filters only after loading molybdenum during recirculation events. Kevlars' high-efficiency microfiltration of process-liquid streams for the removal of actinides has the potential to reduce personnel radiation exposure by a factor of 6 or greater, while simultaneously achieving a reduction in the generation of filter residue and waste by a factor of 7. Insoluble plutonium may be recoverable from Kevlar filters by incineration.

  2. EMG prediction from Motor Cortical Recordings via a Non-Negative Point Process Filter

    PubMed Central

    Nazarpour, Kianoush; Ethier, Christian; Paninski, Liam; Rebesco, James M.; Miall, R. Chris; Miller, Lee E.

    2012-01-01

    A constrained point process filtering mechanism for prediction of electromyogram (EMG) signals from multi-channel neural spike recordings is proposed here. Filters from the Kalman family are inherently sub-optimal in dealing with non-Gaussian observations, or a state evolution that deviates from the Gaussianity assumption. To address these limitations, we modeled the non-Gaussian neural spike train observations by using a generalized linear model (GLM) that encapsulates covariates of neural activity, including the neurons’ own spiking history, concurrent ensemble activity, and extrinsic covariates (EMG signals). In order to predict the envelopes of EMGs, we reformulated the Kalman filter (KF) in an optimization framework and utilized a non-negativity constraint. This structure characterizes the non-linear correspondence between neural activity and EMG signals reasonably. The EMGs were recorded from twelve forearm and hand muscles of a behaving monkey during a grip-force task. For the case of limited training data, the constrained point process filter improved the prediction accuracy when compared to a conventional Wiener cascade filter (a linear causal filter followed by a static non-linearity) for different bin sizes and delays between input spikes and EMG output. For longer training data sets, results of the proposed filter and that of the Wiener cascade filter were comparable. PMID:21659018

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodiummore » aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.« less

  4. An optimal filter for short photoplethysmogram signals

    PubMed Central

    Liang, Yongbo; Elgendi, Mohamed; Chen, Zhencheng; Ward, Rabab

    2018-01-01

    A photoplethysmogram (PPG) contains a wealth of cardiovascular system information, and with the development of wearable technology, it has become the basic technique for evaluating cardiovascular health and detecting diseases. However, due to the varying environments in which wearable devices are used and, consequently, their varying susceptibility to noise interference, effective processing of PPG signals is challenging. Thus, the aim of this study was to determine the optimal filter and filter order to be used for PPG signal processing to make the systolic and diastolic waves more salient in the filtered PPG signal using the skewness quality index. Nine types of filters with 10 different orders were used to filter 219 (2.1s) short PPG signals. The signals were divided into three categories by PPG experts according to their noise levels: excellent, acceptable, or unfit. Results show that the Chebyshev II filter can improve the PPG signal quality more effectively than other types of filters and that the optimal order for the Chebyshev II filter is the 4th order. PMID:29714722

  5. Complex noise suppression using a sparse representation and 3D filtering of images

    NASA Astrophysics Data System (ADS)

    Kravchenko, V. F.; Ponomaryov, V. I.; Pustovoit, V. I.; Palacios-Enriquez, A.

    2017-08-01

    A novel method for the filtering of images corrupted by complex noise composed of randomly distributed impulses and additive Gaussian noise has been substantiated for the first time. The method consists of three main stages: the detection and filtering of pixels corrupted by impulsive noise, the subsequent image processing to suppress the additive noise based on 3D filtering and a sparse representation of signals in a basis of wavelets, and the concluding image processing procedure to clean the final image of the errors emerged at the previous stages. A physical interpretation of the filtering method under complex noise conditions is given. A filtering block diagram has been developed in accordance with the novel approach. Simulations of the novel image filtering method have shown an advantage of the proposed filtering scheme in terms of generally recognized criteria, such as the structural similarity index measure and the peak signal-to-noise ratio, and when visually comparing the filtered images.

  6. INTERIOR VIEW OF FILTER WHEEL MACHINE USED TO FILTER OUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FILTER WHEEL MACHINE USED TO FILTER OUT AND SEPARATE BICARBONATE FROM AMMONIONATED BRINE. DISCHARGE FROM STRIPPER COLUMNS (SOLVAY COLUMNS). - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  7. INTERIOR VIEW OF FILTER/DRYERS USED TO FILTER OUT AND SEPARATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FILTER/DRYERS USED TO FILTER OUT AND SEPARATE BICARBONATE FROM AMMONIONATED BRINE. DISCHARGE FROM STRIPPER COLUMNS (SOLVAY COLUMNS). - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  8. FILTER TREATMENT

    DOEpatents

    Sutton, J.B.; Torrey, J.V.P.

    1958-08-26

    A process is described for reconditioning fused alumina filters which have become clogged by the accretion of bismuth phosphate in the filter pores, The method consists in contacting such filters with faming sulfuric acid, and maintaining such contact for a substantial period of time.

  9. Information theoretic methods for image processing algorithm optimization

    NASA Astrophysics Data System (ADS)

    Prokushkin, Sergey F.; Galil, Erez

    2015-01-01

    Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).

  10. 40 CFR 1065.390 - PM balance verifications and weighing process verification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... days before weighing any filter. (2) Zero and span the balance within 12 h before weighing any filter. (3) Verify that the mass determination of reference filters before and after a filter weighing... reference PM sample media (e.g., filters) before and after a weighing session. A weighing session may be as...

  11. 40 CFR 1065.390 - PM balance verifications and weighing process verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... days before weighing any filter. (2) Zero and span the balance within 12 h before weighing any filter. (3) Verify that the mass determination of reference filters before and after a filter weighing... reference PM sample media (e.g., filters) before and after a weighing session. A weighing session may be as...

  12. 40 CFR 1065.390 - PM balance verifications and weighing process verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... days before weighing any filter. (2) Zero and span the balance within 12 h before weighing any filter. (3) Verify that the mass determination of reference filters before and after a filter weighing... reference PM sample media (e.g., filters) before and after a weighing session. A weighing session may be as...

  13. 40 CFR 1065.390 - PM balance verifications and weighing process verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... days before weighing any filter. (2) Zero and span the balance within 12 h before weighing any filter. (3) Verify that the mass determination of reference filters before and after a filter weighing... reference PM sample media (e.g., filters) before and after a weighing session. A weighing session may be as...

  14. 40 CFR 1065.390 - PM balance verifications and weighing process verification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... days before weighing any filter. (2) Zero and span the balance within 12 h before weighing any filter. (3) Verify that the mass determination of reference filters before and after a filter weighing... weighing session by weighing reference PM sample media (e.g., filters) before and after a weighing session...

  15. A Novel Adaptive H∞ Filtering Method with Delay Compensation for the Transfer Alignment of Strapdown Inertial Navigation Systems.

    PubMed

    Lyu, Weiwei; Cheng, Xianghong

    2017-11-28

    Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method.

  16. Belavkin filter for mixture of quadrature and photon counting process with some control techniques

    NASA Astrophysics Data System (ADS)

    Garg, Naman; Parthasarathy, Harish; Upadhyay, D. K.

    2018-03-01

    The Belavkin filter for the H-P Schrödinger equation is derived when the measurement process consists of a mixture of quantum Brownian motions and conservation/Poisson process. Higher-order powers of the measurement noise differentials appear in the Belavkin dynamics. For simulation, we use a second-order truncation. Control of the Belavkin filtered state by infinitesimal unitary operators is achieved in order to reduce the noise effects in the Belavkin filter equation. This is carried out along the lines of Luc Bouten. Various optimization criteria for control are described like state tracking and Lindblad noise removal.

  17. Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stermer, D.L.; Gale, L.G.

    1989-03-01

    Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less

  18. An improved filter elution and cell culture assay procedure for evaluating public groundwater systems for culturable enteroviruses.

    PubMed

    Dahling, Daniel R

    2002-01-01

    Large-scale virus studies of groundwater systems require practical and sensitive procedures for both sample processing and viral assay. Filter adsorption-elution procedures have traditionally been used to process large-volume water samples for viruses. In this study, five filter elution procedures using cartridge filters were evaluated for their effectiveness in processing samples. Of the five procedures tested, the third method, which incorporated two separate beef extract elutions (one being an overnight filter immersion in beef extract), recovered 95% of seeded poliovirus compared with recoveries of 36 to 70% for the other methods. For viral enumeration, an expanded roller bottle quantal assay was evaluated using seeded poliovirus. This cytopathic-based method was considerably more sensitive than the standard plaque assay method. The roller bottle system was more economical than the plaque assay for the evaluation of comparable samples. Using roller bottles required less time and manipulation than the plaque procedure and greatly facilitated the examination of large numbers of samples. The combination of the improved filter elution procedure and the roller bottle assay for viral analysis makes large-scale virus studies of groundwater systems practical. This procedure was subsequently field tested during a groundwater study in which large-volume samples (exceeding 800 L) were processed through the filters.

  19. Performance evaluation of an asynchronous multisensor track fusion filter

    NASA Astrophysics Data System (ADS)

    Alouani, Ali T.; Gray, John E.; McCabe, D. H.

    2003-08-01

    Recently the authors developed a new filter that uses data generated by asynchronous sensors to produce a state estimate that is optimal in the minimum mean square sense. The solution accounts for communications delay between sensors platform and fusion center. It also deals with out of sequence data as well as latent data by processing the information in a batch-like manner. This paper compares, using simulated targets and Monte Carlo simulations, the performance of the filter to the optimal sequential processing approach. It was found that the new asynchronous Multisensor track fusion filter (AMSTFF) performance is identical to that of the extended sequential Kalman filter (SEKF), while the new filter updates its track at a much lower rate than the SEKF.

  20. Reducing bottom anti-reflective coating (BARC) defects: optimizing and decoupling the filtration and dispense process

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Martin, Gary; Simmons, Sean; Batchelder, Traci

    2006-03-01

    Semiconductor device manufacturing is one of the cleanest manufacturing operations that can be found in the world today. It has to be that way; a particle on a wafer today can kill an entire device, which raises the costs, and therefore reduces the profits, of the manufacturing company in two ways: it must produce extra wafers to make up for the lost die, and it has less product to sell. In today's state-of-the-art fab, everything is filtered to the lowest pore size available. This practice is fairly easy for gases because a gas molecule is very small compared to the pore size of the filter. Filtering liquids, especially photochemicals such as photoresists and BARCs, can be much harder because the molecules that form the polymers used to manufacture the photochemicals are approaching the filter pore size. As a result, filters may plug up, filtration rates may drop, pressure drops across the filter may increase, or a filter may degrade. These conditions can then cause polymer shearing, microbubble formation, gel particle formation, and BARC chemical changes to occur before the BARC reaches the wafer. To investigate these possible interactions, an Entegris(R) IntelliGen(R) pump was installed on a TEL Mk8 TM track to see if the filtration process would have an effect on the BARC chemistry and coating defects. Various BARC chemicals such as DUV112 and DUV42P were pumped through various filter media having a variety of pore sizes at different filtration rates to investigate the interaction between the dispense process and the filtration process. The IntelliGen2 pump has the capability to filter the BARC independent of the dispense process. By using a designed experiment to look at various parameters such as dispense rate, filtration rate, and dispense volume, the effects of the complete pump system can be learned, and appropriate conditions can be applied to yield the cleanest BARC coating process. Results indicate that filtration rate and filter pore size play a dramatic role in the defect density on a coated wafer with the actual dispense properties such as dispense wafer speed and dispense time playing a lesser role.

  1. MANTECH Project Book, 1992

    DTIC Science & Technology

    1992-01-01

    RUGATE FILTER PROCESS AND PRODUCTION ................ 111 MANUFACTURING SCIENCE FOR TITANIUM ALUMINIDE COMPOSITE ENGINE STRU CTURES...rejection and mission filters , anti-reflection coatings, and dichroic layers which can have demanding optical requirements. Rugate m coatings can be used to...SCIENCE RUGATE FILTER PROCESS AND PRODUCTION CONTRACT NUMBER: F33615-86-C-5059STATEMENT OF NEED Achieving the optical performance specifications for

  2. Leonardite char adsorbents

    DOEpatents

    Knudson, Curtis L.

    1993-01-01

    A process of preparing lignite (low rank) coal filter material, suitable for use in lieu of more expensive activated carbon filter materials, is disclosed. The process comprises size reducing Leonardite coal material to a suitable filtering effective size, and thereafter heating the size reduced Leonardite preferably to at least 750.degree. C. in the presence of a flow of an inert gas.

  3. Leonardite char adsorbents

    DOEpatents

    Knudson, C.L.

    1993-10-19

    A process of preparing lignite (low rank) coal filter material, suitable for use in lieu of more expensive activated carbon filter materials, is disclosed. The process comprises size reducing Leonardite coal material to a suitable filtering effective size, and thereafter heating the size reduced Leonardite preferably to at least 750 C in the presence of a flow of an inert gas. 1 figure.

  4. Using the spatial filtering process to evaluate the nonbreeding range of Rusty Blackbird Euphagus carolinus

    Treesearch

    Paul Hamel; Esra Ozdenrol

    2008-01-01

    During the nonbreeding period, Rusty Blackbird (Euphagus carolinus) occurs predominantly in forested wetland habitats in the southeastern U.S. We used spatial filtering of Christmas Bird Count data to identify areas within the nonbreeding range where the species occurs at higher than expected probability. Spatial filtering is an epidemiological modeling process...

  5. Software Would Largely Automate Design of Kalman Filter

    NASA Technical Reports Server (NTRS)

    Chuang, Jason C. H.; Negast, William J.

    2005-01-01

    Embedded Navigation Filter Automatic Designer (ENFAD) is a computer program being developed to automate the most difficult tasks in designing embedded software to implement a Kalman filter in a navigation system. The most difficult tasks are selection of error states of the filter and tuning of filter parameters, which are timeconsuming trial-and-error tasks that require expertise and rarely yield optimum results. An optimum selection of error states and filter parameters depends on navigation-sensor and vehicle characteristics, and on filter processing time. ENFAD would include a simulation module that would incorporate all possible error states with respect to a given set of vehicle and sensor characteristics. The first of two iterative optimization loops would vary the selection of error states until the best filter performance was achieved in Monte Carlo simulations. For a fixed selection of error states, the second loop would vary the filter parameter values until an optimal performance value was obtained. Design constraints would be satisfied in the optimization loops. Users would supply vehicle and sensor test data that would be used to refine digital models in ENFAD. Filter processing time and filter accuracy would be computed by ENFAD.

  6. The trickle before the torrent-diffraction data from X-ray lasers.

    PubMed

    Maia, Filipe R N C; Hajdu, Janos

    2016-08-01

    Today Scientific Data launched a collection of publications describing data from X-ray free-electron lasers under the theme 'Structural Biology Applications of X-ray Lasers'. The papers cover data on nanocrystals, single virus particles, isolated cell organelles, and living cells. All data are deposited with the Coherent X-ray Imaging Data Bank (CXIDB) and available to the scientific community to develop ideas, tools and procedures to meet challenges with the expected torrents of data from new X-ray lasers, capable of producing billion exposures per day.

  7. Fast Equalization for Large Lithium Ion Batteries

    DTIC Science & Technology

    2008-09-01

    Lithium - ion batteries use an electrolyte that is flammable if exposed to high temperatures. Slight differences between the series-connected cells in a LiIon battery pack can produce imbalances in the cell voltages, and this greatly reduces the charge capacity. These batteries cannot be trickle charged like a lead acid battery because this would slightly overcharge some cells and would cause these cells to ignite. There are different methods used to ensure that the cells of a battery pack are not overcharged. The targeted equalizer (EQU) described here can

  8. An approach of point cloud denoising based on improved bilateral filtering

    NASA Astrophysics Data System (ADS)

    Zheng, Zeling; Jia, Songmin; Zhang, Guoliang; Li, Xiuzhi; Zhang, Xiangyin

    2018-04-01

    An omnidirectional mobile platform is designed for building point cloud based on an improved filtering algorithm which is employed to handle the depth image. First, the mobile platform can move flexibly and the control interface is convenient to control. Then, because the traditional bilateral filtering algorithm is time-consuming and inefficient, a novel method is proposed which called local bilateral filtering (LBF). LBF is applied to process depth image obtained by the Kinect sensor. The results show that the effect of removing noise is improved comparing with the bilateral filtering. In the condition of off-line, the color images and processed images are used to build point clouds. Finally, experimental results demonstrate that our method improves the speed of processing time of depth image and the effect of point cloud which has been built.

  9. Filter Leaf. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Wooley, John F.

    In the operation of vacuum filters and belt filters, it is desirable to evaluate the performance of different types of filter media and conditioning processes. The filter leaf test, which is used to evaluate these items, is described. Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1…

  10. Automating "Word of Mouth" to Recommend Classes to Students: An Application of Social Information Filtering Algorithms

    ERIC Educational Resources Information Center

    Booker, Queen Esther

    2009-01-01

    An approach used to tackle the problem of helping online students find the classes they want and need is a filtering technique called "social information filtering," a general approach to personalized information filtering. Social information filtering essentially automates the process of "word-of-mouth" recommendations: items are recommended to a…

  11. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sweepings Air filters Electroplating bath filters Wastewater filter media Wood pallets Disposable clothing... cartridge filters Paper hand towels B. Exempt Nickel or Chromium-Bearing Materials when Generated by Any... Nickel, chromium, and iron catalysts Nickel-cadmium and nickel-iron batteries Filter cake from wet...

  12. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sweepings Air filters Electroplating bath filters Wastewater filter media Wood pallets Disposable clothing... cartridge filters Paper hand towels B. Exempt Nickel or Chromium-Bearing Materials when Generated by Any... Nickel, chromium, and iron catalysts Nickel-cadmium and nickel-iron batteries Filter cake from wet...

  13. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sweepings Air filters Electroplating bath filters Wastewater filter media Wood pallets Disposable clothing... cartridge filters Paper hand towels B. Exempt Nickel or Chromium-Bearing Materials when Generated by Any... Nickel, chromium, and iron catalysts Nickel-cadmium and nickel-iron batteries Filter cake from wet...

  14. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sweepings Air filters Electroplating bath filters Wastewater filter media Wood pallets Disposable clothing... cartridge filters Paper hand towels B. Exempt Nickel or Chromium-Bearing Materials when Generated by Any... Nickel, chromium, and iron catalysts Nickel-cadmium and nickel-iron batteries Filter cake from wet...

  15. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sweepings Air filters Electroplating bath filters Wastewater filter media Wood pallets Disposable clothing... cartridge filters Paper hand towels B. Exempt Nickel or Chromium-Bearing Materials when Generated by Any... Nickel, chromium, and iron catalysts Nickel-cadmium and nickel-iron batteries Filter cake from wet...

  16. A generalized adaptive mathematical morphological filter for LIDAR data

    NASA Astrophysics Data System (ADS)

    Cui, Zheng

    Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.

  17. Pozzolanic filtration/solidification of radionuclides in nuclear reactor cooling water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Englehardt, J.D.; Peng, C.

    1995-12-31

    Laboratory studies to investigate the feasibility of one- and two-step processes for precipitation/coprecipitating radionuclides from nuclear reactor cooling water, filtering with pozzolanic filter aid, and solidifying, are reported in this paper. In the one-step process, ferrocyanide salt and excess lime are added ahead of the filter, and the resulting filter cake solidifies by a pozzolanic reaction. The two-step process involves addition of solidifying agents subsequent to filtration. It was found that high surface area diatomaceous synthetic calcium silicate powders, sold commercially as functional fillers and carriers, adsorb nickel isotopes from solution at neutral and slightly basic pH. Addition of themore » silicates to cooling water allowed removal of the tested metal isotopes (nickel, iron, manganese, cobalt, and cesium) simultaneously at neutral to slightly basic pH. Lime to diatomite ratio was the most influential characteristic of composition on final strength tested, with higher lime ratios giving higher strength. Diatomaceous earth filter aids manufactured without sodium fluxes exhibited higher pozzolanic activity. Pozzolanic filter cake solidified with sodium silicate and a ratio of 0.45 parts lime to 1 part diatomite had compressive strength ranging from 470 to 595 psi at a 90% confidence level. Leachability indices of all tested metals in the solidified waste were acceptable. In light of the typical requirement of removing iron and desirability of control over process pH, a two-step process involving addition of Portland cement to the filter cake may be most generally applicable.« less

  18. Spectral analysis and filtering techniques in digital spatial data processing

    USGS Publications Warehouse

    Pan, Jeng-Jong

    1989-01-01

    A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, D.

    The Savannah River Site (SRS) Actinide Removal Process has been processing salt waste since 2008. This process includes a filtration step in the 512-S facility. Initial operations included the addition, or strike, of monosodium titanate (MST) to remove soluble actinides and strontium. The added MST and any entrained sludge solids were then separated from the supernate by cross flow filtration. During this time, the filter operations have, on many occasions, been the bottleneck process limiting the rate of salt processing. Recently, 512-S- has started operations utilizing “No-MST” where the MST actinide removal strike was not performed and the supernate wasmore » simply pre-filtered prior to Cs removal processing. Direct filtration of decanted tank supernate, as demonstrated in 512-S, is the proposed method of operation for the Hanford Low Activity Waste Pretreatment System (LAWPS) facility. Processing decanted supernate without MST solids has been demonstrated for cross flow filtration to provide a significant improvement in production with the SRS Salt Batches 8 and 9 feed chemistries. The average filtration rate for the first 512-S batch processing cycle using No-MST has increased filtrate production by over 35% of the historical average. The increase was sustained for more than double the amount of filtrate batches processed before cleaning of the filter was necessary. While there are differences in the design of the 512-S and Hanford filter systems, the 512-S system should provide a reasonable indication of LAWPS filter performance with similar feed properties. Based on the data from the 512-S facility and with favorable feed properties, the LAWPS filter, as currently sized at over twice the size of the 512-S filter (532 square feet filtration area versus 235 square feet), has the potential to provide sustained filtrate production at the upper range of the planned LAWPS production rate of 17 gpm.« less

  20. Hardware Implementation of a Bilateral Subtraction Filter

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Watson, Robert; Villalpando, Carlos; Goldberg, Steven

    2009-01-01

    A bilateral subtraction filter has been implemented as a hardware module in the form of a field-programmable gate array (FPGA). In general, a bilateral subtraction filter is a key subsystem of a high-quality stereoscopic machine vision system that utilizes images that are large and/or dense. Bilateral subtraction filters have been implemented in software on general-purpose computers, but the processing speeds attainable in this way even on computers containing the fastest processors are insufficient for real-time applications. The present FPGA bilateral subtraction filter is intended to accelerate processing to real-time speed and to be a prototype of a link in a stereoscopic-machine- vision processing chain, now under development, that would process large and/or dense images in real time and would be implemented in an FPGA. In terms that are necessarily oversimplified for the sake of brevity, a bilateral subtraction filter is a smoothing, edge-preserving filter for suppressing low-frequency noise. The filter operation amounts to replacing the value for each pixel with a weighted average of the values of that pixel and the neighboring pixels in a predefined neighborhood or window (e.g., a 9 9 window). The filter weights depend partly on pixel values and partly on the window size. The present FPGA implementation of a bilateral subtraction filter utilizes a 9 9 window. This implementation was designed to take advantage of the ability to do many of the component computations in parallel pipelines to enable processing of image data at the rate at which they are generated. The filter can be considered to be divided into the following parts (see figure): a) An image pixel pipeline with a 9 9- pixel window generator, b) An array of processing elements; c) An adder tree; d) A smoothing-and-delaying unit; and e) A subtraction unit. After each 9 9 window is created, the affected pixel data are fed to the processing elements. Each processing element is fed the pixel value for its position in the window as well as the pixel value for the central pixel of the window. The absolute difference between these two pixel values is calculated and used as an address in a lookup table. Each processing element has a lookup table, unique for its position in the window, containing the weight coefficients for the Gaussian function for that position. The pixel value is multiplied by the weight, and the outputs of the processing element are the weight and pixel-value weight product. The products and weights are fed to the adder tree. The sum of the products and the sum of the weights are fed to the divider, which computes the sum of products the sum of weights. The output of the divider is denoted the bilateral smoothed image. The smoothing function is a simple weighted average computed over a 3 3 subwindow centered in the 9 9 window. After smoothing, the image is delayed by an additional amount of time needed to match the processing time for computing the bilateral smoothed image. The bilateral smoothed image is then subtracted from the 3 3 smoothed image to produce the final output. The prototype filter as implemented in a commercially available FPGA processes one pixel per clock cycle. Operation at a clock speed of 66 MHz has been demonstrated, and results of a static timing analysis have been interpreted as suggesting that the clock speed could be increased to as much as 100 MHz.

  1. Heat source reconstruction from noisy temperature fields using a gradient anisotropic diffusion filter

    NASA Astrophysics Data System (ADS)

    Beitone, C.; Balandraud, X.; Delpueyo, D.; Grédiac, M.

    2017-01-01

    This paper presents a post-processing technique for noisy temperature maps based on a gradient anisotropic diffusion (GAD) filter in the context of heat source reconstruction. The aim is to reconstruct heat source maps from temperature maps measured using infrared (IR) thermography. Synthetic temperature fields corrupted by added noise are first considered. The GAD filter, which relies on a diffusion process, is optimized to retrieve as well as possible a heat source concentration in a two-dimensional plate. The influence of the dimensions and the intensity of the heat source concentration are discussed. The results obtained are also compared with two other types of filters: averaging filter and Gaussian derivative filter. The second part of this study presents an application for experimental temperature maps measured with an IR camera. The results demonstrate the relevancy of the GAD filter in extracting heat sources from noisy temperature fields.

  2. Temporal and spatial variation in pharmaceutical concentrations in an urban river system.

    PubMed

    Burns, Emily E; Carter, Laura J; Kolpin, Dana W; Thomas-Oates, Jane; Boxall, Alistair B A

    2018-06-15

    Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review.

    PubMed

    Ting, Yien Fang; Praveena, Sarva Mangala

    2017-04-01

    Steroid estrogens, such as estrone (E 1 ), 17β-estradiol (E 2 ), estriol (E 3 ), and 17α-ethinylestradiol (EE 2 ), are natural and synthetic hormones released into the environment through incomplete sewage discharge. This review focuses on the sources of steroid estrogens in wastewater treatment plants (WWTPs). The mechanisms and fate of steroid estrogens throughout the entire wastewater treatment system are also discussed, and relevant information on regulatory aspects is given. Municipal, pharmaceutical industry, and hospitals are the main sources of steroid estrogens that enter WWTPs. A typical WWTP comprises primary, secondary, and tertiary treatment units. Sorption and biodegradation are the main mechanisms for removal of steroid estrogens from WWTPs. The fate of steroid estrogens in WWTPs depends on the types of wastewater treatment systems. Steroid estrogens in the primary treatment unit are removed by sorption onto primary sludge, followed by sorption onto micro-flocs and biodegradation by microbes in the secondary treatment unit. Tertiary treatment employs nitrification, chlorination, or UV disinfection to improve the quality of the secondary effluent. Activated sludge treatment systems for steroid estrogens exhibit a removal efficiency of up to 100%, which is higher than that of the trickling filter treatment system (up to 75%). Moreover, the removal efficiency of advance treatment systems exceeds 90%. Regulatory aspects related to steroid estrogens are established, especially in the European Union. Japan is the only Asian country that implements a screening program and is actively involved in endocrine disruptor testing and assessment. This review improves our understanding of steroid estrogens in WWTPs, proposes main areas to be improved, and provides current knowledge on steroid estrogens in WWTPs for sustainable development.

  4. Removal of trace organic contaminants from domestic wastewater: A meta-analysis comparison of sewage treatment technologies.

    PubMed

    Melvin, Steven D; Leusch, Frederic D L

    2016-01-01

    Trace organic contaminants (TrOCs), such as endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs), represent global threats to aquatic animals and ecosystems. A major source of TrOCs in the aquatic environment is via the discharge of treated sewage, so there is an urgent need to evaluate the comparative efficiencies of the most widely used sewage treatment technologies as regards elimination of these compounds from wastewater. To address this need, 976 published articles were compiled focusing on estimates of removal (%) for 20 common environmental TrOCs, from five major sewage treatment technologies: conventional activated sludge (CAS), oxidation ditch (OD), membrane bioreactor (MBR), ponds and constructed wetlands (PCW), and trickling biological filters (TBF). A quantitative meta-analysis was performed to compare standardized relative removal efficiencies (SREs) of the compounds amongst these technologies, and where possible potential sources of heterogeneity were considered (e.g., flow rates and chemical sorption potential). The results indicate that the most widely used CAS treatment and the less common TBF provide comparatively poor overall removal of common organic micropollutants. Membrane bioreactors appear to be capable of achieving the greatest overall removal efficiencies, but the sustainability and economic viability of this option has been questioned. Treatment with OD systems may be more economical while still achieving comparatively high removal efficiencies, and the analysis revealed OD to be the best option for targeting highly potent estrogenic EDCs. This study offers a unique global assessment of TrOC removal via leading sewage treatment technologies, and is an important step in the identification of effective options for treating municipal sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. HybridICE® filter: ice separation in freeze desalination of mine waste waters.

    PubMed

    Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M

    2014-01-01

    Freeze desalination is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze desalination process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow.

  6. Experimental investigation of the effect of inlet particle properties on the capture efficiency in an exhaust particulate filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Sandeep; Rothamer, David; Zelenyuk, Alla

    The impact of inlet particle properties on the filtration performance of clean and particulate matter (PM) laden cordierite filter samples was evaluated using PM generated by a spark-ignition direct-injection (SIDI) engine fuelled with tier II EEE certification gasoline. Prior to the filtration experiments, a scanning mobility particle spectrometer (SMPS) was used to measure the electrical-mobility based particle size distribution (PSD) in the SIDI exhaust from distinct engine operating conditions. An advanced aerosol characterization system that comprised of a centrifugal particle mass analyser (CPMA), a differential mobility analyser (DMA), and a single particle mass spectrometer (SPLAT II) was used to obtainmore » additional information on the SIDI particulate, including particle composition, mass, and dynamic shape factors (DSFs) in the transition () and free-molecular () flow regimes. During the filtration experiments, real-time measurements of PSDs upstream and downstream of the filter sample were used to estimate the filtration performance and the total trapped mass within the filter using an integrated particle size distribution method. The filter loading process was paused multiple times to evaluate the filtration performance in the partially loaded state. The change in vacuum aerodynamic diameter () distribution of mass-selected particles was examined for flow through the filter to identify whether preferential capture of particles of certain shapes occurred in the filter. The filter was also probed using different inlet PSDs to understand their impact on particle capture within the filter sample. Results from the filtration experiment suggest that pausing the filter loading process and subsequently performing the filter probing experiments did not impact the overall evolution of filtration performance. Within the present distribution of particle sizes, filter efficiency was independent of particle shape potentially due to the diffusion-dominant filtration process. Particle mobility diameter and trapped mass within the filter appeared to be the dominant parameters that impacted filter performance.« less

  7. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    PubMed

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  8. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    PubMed Central

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-01-01

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336

  9. Union operation image processing of data cubes separately processed by different objective filters and its application to void analysis in an all-solid-state lithium-ion battery.

    PubMed

    Yamamoto, Yuta; Iriyama, Yasutoshi; Muto, Shunsuke

    2016-04-01

    In this article, we propose a smart image-analysis method suitable for extracting target features with hierarchical dimension from original data. The method was applied to three-dimensional volume data of an all-solid lithium-ion battery obtained by the automated sequential sample milling and imaging process using a focused ion beam/scanning electron microscope to investigate the spatial configuration of voids inside the battery. To automatically fully extract the shape and location of the voids, three types of filters were consecutively applied: a median blur filter to extract relatively larger voids, a morphological opening operation filter for small dot-shaped voids and a morphological closing operation filter for small voids with concave contrasts. Three data cubes separately processed by the above-mentioned filters were integrated by a union operation to the final unified volume data, which confirmed the correct extraction of the voids over the entire dimension contained in the original data. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Iterative dip-steering median filter

    NASA Astrophysics Data System (ADS)

    Huo, Shoudong; Zhu, Weihong; Shi, Taikun

    2017-09-01

    Seismic data are always contaminated with high noise components, which present processing challenges especially for signal preservation and its true amplitude response. This paper deals with an extension of the conventional median filter, which is widely used in random noise attenuation. It is known that the standard median filter works well with laterally aligned coherent events but cannot handle steep events, especially events with conflicting dips. In this paper, an iterative dip-steering median filter is proposed for the attenuation of random noise in the presence of multiple dips. The filter first identifies the dominant dips inside an optimized processing window by a Fourier-radial transform in the frequency-wavenumber domain. The optimum size of the processing window depends on the intensity of random noise that needs to be attenuated and the amount of signal to be preserved. It then applies median filter along the dominant dip and retains the signals. Iterations are adopted to process the residual signals along the remaining dominant dips in a descending sequence, until all signals have been retained. The method is tested by both synthetic and field data gathers and also compared with the commonly used f-k least squares de-noising and f-x deconvolution.

  11. Software for biomedical engineering signal processing laboratory experiments.

    PubMed

    Tompkins, Willis J; Wilson, J

    2009-01-01

    In the early 1990's we developed a special computer program called UW DigiScope to provide a mechanism for anyone interested in biomedical digital signal processing to study the field without requiring any other instrument except a personal computer. There are many digital filtering and pattern recognition algorithms used in processing biomedical signals. In general, students have very limited opportunity to have hands-on access to the mechanisms of digital signal processing. In a typical course, the filters are designed non-interactively, which does not provide the student with significant understanding of the design constraints of such filters nor their actual performance characteristics. UW DigiScope 3.0 is the first major update since version 2.0 was released in 1994. This paper provides details on how the new version based on MATLAB! works with signals, including the filter design tool that is the programming interface between UW DigiScope and processing algorithms.

  12. Time-correlated gust loads using matched filter theory and random process theory - A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    This paper describes and illustrates two ways of performing time-correlated gust-load calculations. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  13. Time-correlated gust loads using Matched-Filter Theory and Random-Process Theory: A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    Two ways of performing time-correlated gust-load calculations are described and illustrated. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  14. MST Filterability Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M. R.; Burket, P. R.; Duignan, M. R.

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRRmore » was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO 2, and NaNO 3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.« less

  15. A Clear Vision.

    ERIC Educational Resources Information Center

    Fawcett, Paul

    2000-01-01

    Explores the process of keeping pool water safe and healthful through careful planning of filter purchases and replacement. Deciding when filters need replacing, the type of filter required, and installation planning are discussed. (GR)

  16. A Novel Adaptive H∞ Filtering Method with Delay Compensation for the Transfer Alignment of Strapdown Inertial Navigation Systems

    PubMed Central

    Lyu, Weiwei

    2017-01-01

    Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method. PMID:29182592

  17. Simulation on Soot Oxidation with NO2 and O2 in a Diesel Particulate Filter

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Satake, Shingo; Yamashita, Hiroshi; Obuchi, Akira; Uchisawa, Junko

    Although diesel engines have an advantage of low fuel consumption in comparison with gasoline engines, exhaust gas has more particulate matters (PM) including soot. As one of the key technologies, a diesel particulate filter (DPF) has been developed to reduce PM. When the exhaust gas passes its porous filter wall, the soot particles are trapped. However, the filter would readily be plugged with particles, and the accumulated particles must be removed to prevent filter clogging and a rise in backpressure, which is called filter regeneration process. In this study, we have simulated the flow in the wall-flow DPF using the lattice Boltzmann method. Filters of different length, porosity, and pore size are used. The soot oxidation for filter regeneration process is considered. Especially, the effect of NO2 on the soot oxidation is examined. The reaction rate has been determined by previous experimental data. Results show that, the flow along the filter monolith is roughly uniform, and the large pressure drop across the filter wall is observed. The soot oxidation rate becomes ten times larger when NO2 is added. These are useful information to construct the future regeneration system.

  18. A Study Into the Effects of Kalman Filtered Noise in Advanced Guidance Laws of Missile Navigation

    DTIC Science & Technology

    2014-03-01

    Kalman filtering algorithm is a highly effective linear state estimator . Known as the workhorse of estimation , the discrete time Kalman filter uses ...15]. At any discrete time 1k  the state estimate can be determined by (3.7). A Kalman filter estimates the state using the process described in...acceleration is calculated using Kalman filter outputs. It is not available to the Kalman filter for

  19. Filters for Submillimeter Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1986-01-01

    New manufacturing process produces filters strong, yet have small, precise dimensions and smooth surface finish essential for dichroic filtering at submillimeter wavelengths. Many filters, each one essentially wafer containing fine metal grid made at same time. Stacked square wires plated, fused, and etched to form arrays of holes. Grid of nickel and tin held in brass ring. Wall thickness, thickness of filter (hole depth) and lateral hole dimensions all depend upon operating frequency and filter characteristics.

  20. Virtual experiment of optical spatial filtering in Matlab environment

    NASA Astrophysics Data System (ADS)

    Ji, Yunjing; Wang, Chunyong; Song, Yang; Lai, Jiancheng; Wang, Qinghua; Qi, Jing; Shen, Zhonghua

    2017-08-01

    The principle of spatial filtering experiment has been introduced, and the computer simulation platform with graphical user interface (GUI) has been made out in Matlab environment. Using it various filtering processes for different input image or different filtering purpose will be completed accurately, and filtering effect can be observed clearly with adjusting experimental parameters. The physical nature of the optical spatial filtering can be showed vividly, and so experimental teaching effect will be promoted.

  1. Amplitude image processing by diffractive optics.

    PubMed

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F

    2016-02-22

    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  2. An Improved Strong Tracking Cubature Kalman Filter for GPS/INS Integrated Navigation Systems.

    PubMed

    Feng, Kaiqiang; Li, Jie; Zhang, Xi; Zhang, Xiaoming; Shen, Chong; Cao, Huiliang; Yang, Yanyu; Liu, Jun

    2018-06-12

    The cubature Kalman filter (CKF) is widely used in the application of GPS/INS integrated navigation systems. However, its performance may decline in accuracy and even diverge in the presence of process uncertainties. To solve the problem, a new algorithm named improved strong tracking seventh-degree spherical simplex-radial cubature Kalman filter (IST-7thSSRCKF) is proposed in this paper. In the proposed algorithm, the effect of process uncertainty is mitigated by using the improved strong tracking Kalman filter technique, in which the hypothesis testing method is adopted to identify the process uncertainty and the prior state estimate covariance in the CKF is further modified online according to the change in vehicle dynamics. In addition, a new seventh-degree spherical simplex-radial rule is employed to further improve the estimation accuracy of the strong tracking cubature Kalman filter. In this way, the proposed comprehensive algorithm integrates the advantage of 7thSSRCKF’s high accuracy and strong tracking filter’s strong robustness against process uncertainties. The GPS/INS integrated navigation problem with significant dynamic model errors is utilized to validate the performance of proposed IST-7thSSRCKF. Results demonstrate that the improved strong tracking cubature Kalman filter can achieve higher accuracy than the existing CKF and ST-CKF, and is more robust for the GPS/INS integrated navigation system.

  3. Analysis of Video-Based Microscopic Particle Trajectories Using Kalman Filtering

    PubMed Central

    Wu, Pei-Hsun; Agarwal, Ashutosh; Hess, Henry; Khargonekar, Pramod P.; Tseng, Yiider

    2010-01-01

    Abstract The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes. PMID:20550894

  4. Wiener Chaos and Nonlinear Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lototsky, S.V.

    2006-11-15

    The paper discusses two algorithms for solving the Zakai equation in the time-homogeneous diffusion filtering model with possible correlation between the state process and the observation noise. Both algorithms rely on the Cameron-Martin version of the Wiener chaos expansion, so that the approximate filter is a finite linear combination of the chaos elements generated by the observation process. The coefficients in the expansion depend only on the deterministic dynamics of the state and observation processes. For real-time applications, computing the coefficients in advance improves the performance of the algorithms in comparison with most other existing methods of nonlinear filtering. Themore » paper summarizes the main existing results about these Wiener chaos algorithms and resolves some open questions concerning the convergence of the algorithms in the noise-correlated setting. The presentation includes the necessary background on the Wiener chaos and optimal nonlinear filtering.« less

  5. Cryptosporidium: Prevention - Immunocompromised Persons

    MedlinePlus

    ... Facilities, & Nursing Homes Dialysis A Guide to Water Filters A Guide to Commercially-Bottled Water and Other ... water, or filtering your water with certain home filters. Processed carbonated (bubbly) drinks in cans or bottles ...

  6. Target Information Processing: A Joint Decision and Estimation Approach

    DTIC Science & Technology

    2012-03-29

    ground targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important...targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important

  7. Digital image processing for photo-reconnaissance applications

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1972-01-01

    Digital image-processing techniques developed for processing pictures from NASA space vehicles are analyzed in terms of enhancement, quantitative restoration, and information extraction. Digital filtering, and the action of a high frequency filter in the real and Fourier domain are discussed along with color and brightness.

  8. 40 CFR Appendix Xi to Part 266 - Lead-Bearing Materials That May be Processed in Exempt Lead Smelters

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... analyses Acid filters Baghouse bags Clothing (e.g., coveralls, aprons, shoes, hats, gloves) Sweepings Air filter bags and cartridges Respiratory cartridge filters Shop abrasives Stacking boards Waste shipping... pallets Water treatment sludges, filter cakes, residues, and solids Emission control dusts, sludges...

  9. 40 CFR Appendix Xi to Part 266 - Lead-Bearing Materials That May be Processed in Exempt Lead Smelters

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... analyses Acid filters Baghouse bags Clothing (e.g., coveralls, aprons, shoes, hats, gloves) Sweepings Air filter bags and cartridges Respiratory cartridge filters Shop abrasives Stacking boards Waste shipping... pallets Water treatment sludges, filter cakes, residues, and solids Emission control dusts, sludges...

  10. 40 CFR Appendix Xi to Part 266 - Lead-Bearing Materials That May be Processed in Exempt Lead Smelters

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... analyses Acid filters Baghouse bags Clothing (e.g., coveralls, aprons, shoes, hats, gloves) Sweepings Air filter bags and cartridges Respiratory cartridge filters Shop abrasives Stacking boards Waste shipping... pallets Water treatment sludges, filter cakes, residues, and solids Emission control dusts, sludges...

  11. 40 CFR Appendix Xi to Part 266 - Lead-Bearing Materials That May be Processed in Exempt Lead Smelters

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analyses Acid filters Baghouse bags Clothing (e.g., coveralls, aprons, shoes, hats, gloves) Sweepings Air filter bags and cartridges Respiratory cartridge filters Shop abrasives Stacking boards Waste shipping... pallets Water treatment sludges, filter cakes, residues, and solids Emission control dusts, sludges...

  12. 40 CFR Appendix Xi to Part 266 - Lead-Bearing Materials That May be Processed in Exempt Lead Smelters

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... analyses Acid filters Baghouse bags Clothing (e.g., coveralls, aprons, shoes, hats, gloves) Sweepings Air filter bags and cartridges Respiratory cartridge filters Shop abrasives Stacking boards Waste shipping... pallets Water treatment sludges, filter cakes, residues, and solids Emission control dusts, sludges...

  13. Doppler Processing with Ultra-Wideband (UWB) Radar Revisited

    DTIC Science & Technology

    2018-01-01

    grating lobes as compared to the conventional Doppler processing counterpart. 15. SUBJECT TERMS Doppler radar, UWB radar, matched filter , ambiguity...maps by the matched filter method, illustrating the radar data support in (a) the frequency-slow time domain and (b) the ρ-u domain. The samples...example, obtained by the matched filter method, for a 1.2-s CPI centered at t = 1.5 s

  14. Are Local Filters Blind to Provenance? Ant Seed Predation Suppresses Exotic Plants More than Natives

    PubMed Central

    Pearson, Dean E.; Icasatti, Nadia S.; Hierro, Jose L.; Bird, Benjamin J.

    2014-01-01

    The question of whether species’ origins influence invasion outcomes has been a point of substantial debate in invasion ecology. Theoretically, colonization outcomes can be predicted based on how species’ traits interact with community filters, a process presumably blind to species’ origins. Yet, exotic plant introductions commonly result in monospecific plant densities not commonly seen in native assemblages, suggesting that exotic species may respond to community filters differently than natives. Here, we tested whether exotic and native species differed in their responses to a local community filter by examining how ant seed predation affected recruitment of eighteen native and exotic plant species in central Argentina. Ant seed predation proved to be an important local filter that strongly suppressed plant recruitment, but ants suppressed exotic recruitment far more than natives (89% of exotic species vs. 22% of natives). Seed size predicted ant impacts on recruitment independent of origins, with ant preference for smaller seeds resulting in smaller seeded plant species being heavily suppressed. The disproportionate effects of provenance arose because exotics had generally smaller seeds than natives. Exotics also exhibited greater emergence and earlier peak emergence than natives in the absence of ants. However, when ants had access to seeds, these potential advantages of exotics were negated due to the filtering bias against exotics. The differences in traits we observed between exotics and natives suggest that higher-order introduction filters or regional processes preselected for certain exotic traits that then interacted with the local seed predation filter. Our results suggest that the interactions between local filters and species traits can predict invasion outcomes, but understanding the role of provenance will require quantifying filtering processes at multiple hierarchical scales and evaluating interactions between filters. PMID:25099535

  15. The Development of a Microbial Challenge Test with Acholeplasma laidlawii To Rate Mycoplasma-Retentive Filters by Filter Manufacturers.

    PubMed

    Folmsbee, Martha; Lentine, Kerry Roche; Wright, Christine; Haake, Gerhard; Mcburnie, Leesa; Ashtekar, Dilip; Beck, Brian; Hutchison, Nick; Okhio-Seaman, Laura; Potts, Barbara; Pawar, Vinayak; Windsor, Helena

    2014-01-01

    Mycoplasma are bacteria that can penetrate 0.2 and 0.22 μm rated sterilizing-grade filters and even some 0.1 μm rated filters. Primary applications for mycoplasma filtration include large scale mammalian and bacterial cell culture media and serum filtration. The Parenteral Drug Association recognized the absence of standard industry test parameters for testing and classifying 0.1 μm rated filters for mycoplasma clearance and formed a task force to formulate consensus test parameters. The task force established some test parameters by common agreement, based upon general industry practices, without the need for additional testing. However, the culture medium and incubation conditions, for generating test mycoplasma cells, varied from filter company to filter company and was recognized as a serious gap by the task force. Standardization of the culture medium and incubation conditions required collaborative testing in both commercial filter company laboratories and in an Independent laboratory (Table I). The use of consensus test parameters will facilitate the ultimate cross-industry goal of standardization of 0.1 μm filter claims for mycoplasma clearance. However, it is still important to recognize filter performance will depend on the actual conditions of use. Therefore end users should consider, using a risk-based approach, whether process-specific evaluation of filter performance may be warranted for their application. Mycoplasma are small bacteria that have the ability to penetrate sterilizing-grade filters. Filtration of large-scale mammalian and bacterial cell culture media is an example of an industry process where effective filtration of mycoplasma is required. The Parenteral Drug Association recognized the absence of industry standard test parameters for evaluating mycoplasma clearance filters by filter manufacturers and formed a task force to formulate such a consensus among manufacturers. The use of standardized test parameters by filter manufacturers, including the preparation of the culture broth, will facilitate the end user's evaluation of the mycoplasma clearance claims provided by filter vendors. However, it is still important to recognize filter performance will depend on the actual conditions of use; therefore end users should consider, using a risk-based approach, whether process-specific evaluation of filter performance may be warranted for their application. © PDA, Inc. 2014.

  16. 18. Process area room. Incinerator to the left. Filter boxes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Process area room. Incinerator to the left. Filter boxes on the right. Looking north towards change room. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  17. Design and Experiment of Electrooculogram (EOG) System and Its Application to Control Mobile Robot

    NASA Astrophysics Data System (ADS)

    Sanjaya, W. S. M.; Anggraeni, D.; Multajam, R.; Subkhi, M. N.; Muttaqien, I.

    2017-03-01

    In this paper, we design and investigate a biological signal detection of eye movements (Electrooculogram). To detect a signal of Electrooculogram (EOG) used 4 instrument amplifier process; differential instrumentation amplifier, High Pass Filter (HPF) with 3 stage filters, Low Pass Filter (LPF) with 3 stage filters and Level Shifter circuit. The total of amplifying is 1000 times of gain, with frequency range 0.5-30 Hz. IC OP-Amp OP07 was used for all amplifying process. EOG signal will be read as analog input for Arduino microprocessor, and will interfaced with serial communication to PC Monitor using Processing® software. The result of this research show a differences value of eye movements. Differences signal of EOG have been applied to navigation control of the mobile robot. In this research, all communication process using Bluetooth HC-05.

  18. Noise reduction techniques for Bayer-matrix images

    NASA Astrophysics Data System (ADS)

    Kalevo, Ossi; Rantanen, Henry

    2002-04-01

    In this paper, some arrangements to apply Noise Reduction (NR) techniques for images captured by a single sensor digital camera are studied. Usually, the NR filter processes full three-color component image data. This requires that raw Bayer-matrix image data, available from the image sensor, is first interpolated by using Color Filter Array Interpolation (CFAI) method. Another choice is that the raw Bayer-matrix image data is processed directly. The advantages and disadvantages of both processing orders, before (pre-) CFAI and after (post-) CFAI, are studied with linear, multi-stage median, multistage median hybrid and median-rational filters .The comparison is based on the quality of the output image, the processing power requirements and the amount of memory needed. Also the solution, which improves preservation of details in the NR filtering before the CFAI, is proposed.

  19. An ultrasensitive bio-surrogate for nanoporous filter membrane performance metrology directed towards contamination control in microlithography applications

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan; Mish, Barbara; Qiu, Jian; Singh, Amarnauth; Varanasi, Rao; Bedford, Eilidh; Smith, Martin

    2016-03-01

    Contamination tolerances in semiconductor manufacturing processes have changed dramatically in the past two decades, reaching below 20 nm according to the guidelines of the International Technology Roadmap for Semiconductors. The move to narrower line widths drives the need for innovative filtration technologies that can achieve higher particle/contaminant removal performance resulting in cleaner process fluids. Nanoporous filter membrane metrology tools that have been the workhorse over the past decade are also now reaching limits. For example, nanoparticle (NP) challenge testing is commonly applied for assessing particle retention performance of filter membranes. Factors such as high NP size dispersity, low NP detection sensitivity, and high NP particle-filter affinity impose challenges in characterizing the next generation of nanoporous filter membranes. We report a novel bio-surrogate, 5 nm DNA-dendrimer conjugate for evaluating particle retention performance of nanoporous filter membranes. A technique capable of single molecule detection is employed to detect sparse concentration of conjugate in filter permeate, providing >1000- fold higher detection sensitivity than any existing 5 nm-sized particle enumeration technique. This bio-surrogate also offers narrow size distribution, high stability and chemical tunability. This bio-surrogate can discriminate various sub-15 nm pore-rated nanoporous filter membranes based on their particle retention performance. Due to high bio-surrogate detection sensitivity, a lower challenge concentration of bio-surrogate (as compared to other NPs of this size) can be used for filter testing, providing a better representation of customer applications. This new method should provide better understanding of the next generation filter membranes for removing defect-causing contaminants from lithography processes.

  20. Study of gas-liquid flow in model porous media for heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Francois, Marie; Bodiguel, Hugues; Guillot, Pierre; Laboratory of the Future Team

    2015-11-01

    Heterogeneous catalysis of chemical reactions involving a gas and a liquid phase is usually achieved in fixed bed reactors. Four hydrodynamic regimes have been observed. They depend on the total flow rate and the ratio between liquid and gas flow rate. Flow properties in these regimes influence transfer rates. Rather few attempts to access local characterization have been proposed yet, though these seem to be necessary to better describe the physical mechanisms involved. In this work, we propose to mimic slices of reactor by using two-dimensional porous media. We have developed a two-dimensional system that is transparent to allow the direct observation of the flow and the phase distribution. While varying the total flow rate and the gas/liquid flow rate ratio, we observe two hydrodynamic regimes: at low flow rate, the gaseous phase is continuous (trickle flow), while it is discontinuous at higher flow rate (pulsed flow). Thanks to some image analysis techniques, we are able to quantify the local apparent liquid saturation in the system. Its fluctuations in time are characteristic of the transition between the two regimes: at low liquid flow rates, they are negligible since the liquid/gas interface is fixed, whereas at higher flow rates we observe an alternation between liquid and gas. This transition between trickle to pulsed flow is in relative good agreement with the existing state of art. However, we report in the pulsed regime important flow heterogeneities at the scale of a few pores. These heterogeneities are likely to have a strong influence on mass transfers. We acknowledge the support of Solvay.

  1. Human domination of the biosphere: Rapid discharge of the earth-space battery foretells the future of humankind

    PubMed Central

    Schramski, John R.; Gattie, David K.; Brown, James H.

    2015-01-01

    Earth is a chemical battery where, over evolutionary time with a trickle-charge of photosynthesis using solar energy, billions of tons of living biomass were stored in forests and other ecosystems and in vast reserves of fossil fuels. In just the last few hundred years, humans extracted exploitable energy from these living and fossilized biomass fuels to build the modern industrial-technological-informational economy, to grow our population to more than 7 billion, and to transform the biogeochemical cycles and biodiversity of the earth. This rapid discharge of the earth’s store of organic energy fuels the human domination of the biosphere, including conversion of natural habitats to agricultural fields and the resulting loss of native species, emission of carbon dioxide and the resulting climate and sea level change, and use of supplemental nuclear, hydro, wind, and solar energy sources. The laws of thermodynamics governing the trickle-charge and rapid discharge of the earth’s battery are universal and absolute; the earth is only temporarily poised a quantifiable distance from the thermodynamic equilibrium of outer space. Although this distance from equilibrium is comprised of all energy types, most critical for humans is the store of living biomass. With the rapid depletion of this chemical energy, the earth is shifting back toward the inhospitable equilibrium of outer space with fundamental ramifications for the biosphere and humanity. Because there is no substitute or replacement energy for living biomass, the remaining distance from equilibrium that will be required to support human life is unknown. PMID:26178196

  2. Human domination of the biosphere: Rapid discharge of the earth-space battery foretells the future of humankind.

    PubMed

    Schramski, John R; Gattie, David K; Brown, James H

    2015-08-04

    Earth is a chemical battery where, over evolutionary time with a trickle-charge of photosynthesis using solar energy, billions of tons of living biomass were stored in forests and other ecosystems and in vast reserves of fossil fuels. In just the last few hundred years, humans extracted exploitable energy from these living and fossilized biomass fuels to build the modern industrial-technological-informational economy, to grow our population to more than 7 billion, and to transform the biogeochemical cycles and biodiversity of the earth. This rapid discharge of the earth's store of organic energy fuels the human domination of the biosphere, including conversion of natural habitats to agricultural fields and the resulting loss of native species, emission of carbon dioxide and the resulting climate and sea level change, and use of supplemental nuclear, hydro, wind, and solar energy sources. The laws of thermodynamics governing the trickle-charge and rapid discharge of the earth's battery are universal and absolute; the earth is only temporarily poised a quantifiable distance from the thermodynamic equilibrium of outer space. Although this distance from equilibrium is comprised of all energy types, most critical for humans is the store of living biomass. With the rapid depletion of this chemical energy, the earth is shifting back toward the inhospitable equilibrium of outer space with fundamental ramifications for the biosphere and humanity. Because there is no substitute or replacement energy for living biomass, the remaining distance from equilibrium that will be required to support human life is unknown.

  3. Quantum image median filtering in the spatial domain

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Liu, Xiande; Xiao, Hong

    2018-03-01

    Spatial filtering is one principal tool used in image processing for a broad spectrum of applications. Median filtering has become a prominent representation of spatial filtering because its performance in noise reduction is excellent. Although filtering of quantum images in the frequency domain has been described in the literature, and there is a one-to-one correspondence between linear spatial filters and filters in the frequency domain, median filtering is a nonlinear process that cannot be achieved in the frequency domain. We therefore investigated the spatial filtering of quantum image, focusing on the design method of the quantum median filter and applications in image de-noising. To this end, first, we presented the quantum circuits for three basic modules (i.e., Cycle Shift, Comparator, and Swap), and then, we design two composite modules (i.e., Sort and Median Calculation). We next constructed a complete quantum circuit that implements the median filtering task and present the results of several simulation experiments on some grayscale images with different noise patterns. Although experimental results show that the proposed scheme has almost the same noise suppression capacity as its classical counterpart, the complexity analysis shows that the proposed scheme can reduce the computational complexity of the classical median filter from the exponential function of image size n to the second-order polynomial function of image size n, so that the classical method can be speeded up.

  4. The modulation transfer function and signal-to-noise ratio of different digital filters: a technical approach.

    PubMed

    Brüllmann, D D; d'Hoedt, B

    2011-05-01

    The aim of this study was to illustrate the influence of digital filters on the signal-to-noise ratio (SNR) and modulation transfer function (MTF) of digital images. The article will address image pre-processing that may be beneficial for the production of clinically useful digital radiographs with lower radiation dose. Three filters, an arithmetic mean filter, a median filter and a Gaussian filter (standard deviation (SD) = 0.4), with kernel sizes of 3 × 3 pixels and 5 × 5 pixels were tested. Synthetic images with exactly increasing amounts of Gaussian noise were created to gather linear regression of SNR before and after application of digital filters. Artificial stripe patterns with defined amounts of line pairs per millimetre were used to calculate MTF before and after the application of the digital filters. The Gaussian filter with a 5 × 5 kernel size caused the highest noise suppression (SNR increased from 2.22, measured in the synthetic image, to 11.31 in the filtered image). The smallest noise reduction was found with the 3 × 3 median filter. The application of the median filters resulted in no changes in MTF at the different resolutions but did result in the deletion of smaller structures. The 5 × 5 Gaussian filter and the 5 × 5 arithmetic mean filter showed the strongest changes of MTF. The application of digital filters can improve the SNR of a digital sensor; however, MTF can be adversely affected. As such, imaging systems should not be judged solely on their quoted spatial resolutions because pre-processing may influence image quality.

  5. Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines

    NASA Astrophysics Data System (ADS)

    Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž

    2017-05-01

    This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was proposed • The efficiency of the new method was demonstrated by spectral analyses and calculations of rate-of-heat-release traces

  6. Approach to in-process tool wear monitoring in drilling: Application of Kalman filter theory

    NASA Astrophysics Data System (ADS)

    He, Ning; Zhang, Youzhen; Pan, Liangxian

    1993-05-01

    The two parameters often used in adaptive control, tool wear and wear rate, are the important factors affecting machinability. In this paper, it is attempted to use the modern cybernetics to solve the in-process tool wear monitoring problem by applying the Kalman filter theory to monitor drill wear quantitatively. Based on the experimental results, a dynamic model, a measuring model and a measurement conversion model suitable for Kalman filter are established. It is proved that the monitoring system possesses complete observability but does not possess complete controllability. A discriminant for selecting the characteristic parameters is put forward. The thrust force Fz is selected as the characteristic parameter in monitoring the tool wear by this discriminant. The in-process Kalman filter drill wear monitoring system composed of force sensor microphotography and microcomputer is well established. The results obtained by the Kalman filter, the common indirect measuring method and the real drill wear measured by the aid of microphotography are compared. The result shows that the Kalman filter has high precision of measurement and the real time requirement can be satisfied.

  7. Development of adsorptive hybrid filters to enable two-step purification of biologics

    PubMed Central

    Peck, Michael; Voloshin, Alexei M.; Moreno, Angela M.; Tan, Zhijun; Hester, Jonathan; Borys, Michael C.; Li, Zheng Jian

    2017-01-01

    ABSTRACT Recent progress in mammalian cell culture process has resulted in significantly increased product titers, but also a substantial increase in process- and product-related impurities. Due to the diverse physicochemical properties of these impurities, there is constant need for new technologies that offer higher productivity and improved economics without sacrificing the process robustness required to meet final drug substance specifications. Here, we examined the use of new synthetic adsorptive hybrid filters (AHF) modified with the high binding capacity of quaternary amine (Emphaze™ AEX) and salt-tolerant biomimetic (Emphaze™ ST-AEX) ligands for clearance of process-related impurities like host cell protein (HCP), residual DNA, and virus. The potential to remove soluble aggregates was also examined. Our aim was to develop a mechanistic understanding of the interactions governing adsorptive removal of impurities during filtration by evaluating the effect of various filter types, feed streams, and process conditions on impurity removal. The ionic capacity of these filters was measured and correlated with their ability to remove impurities for multiple molecules. The ionic capacity of AHF significantly exceeded that of traditional adsorptive depth filters (ADF) by 40% for the Emphaze™ AEX and by 700% for the Emphaze™ ST-AEX, providing substantially higher reduction of soluble anionic impurities, including DNA, HCPs and model virus. Nevertheless, we determined that ADF with filter aid provided additional hydrophobic functionality that resulted in removal of higher molecular weight species than AHF. Implementing AHF demonstrated improved process-related impurity removal and viral clearance after Protein A chromatography and enabled a two-step purification process. The consequences of enhanced process performance are far reaching because it allows the downstream polishing train to be restructured and simplified, and chromatographic purity standards to be met with a reduced number of chromatographic steps. PMID:27929735

  8. Approximation of optimal filter for Ornstein-Uhlenbeck process with quantised discrete-time observation

    NASA Astrophysics Data System (ADS)

    Bania, Piotr; Baranowski, Jerzy

    2018-02-01

    Quantisation of signals is a ubiquitous property of digital processing. In many cases, it introduces significant difficulties in state estimation and in consequence control. Popular approaches either do not address properly the problem of system disturbances or lead to biased estimates. Our intention was to find a method for state estimation for stochastic systems with quantised and discrete observation, that is free of the mentioned drawbacks. We have formulated a general form of the optimal filter derived by a solution of Fokker-Planck equation. We then propose the approximation method based on Galerkin projections. We illustrate the approach for the Ornstein-Uhlenbeck process, and derive analytic formulae for the approximated optimal filter, also extending the results for the variant with control. Operation is illustrated with numerical experiments and compared with classical discrete-continuous Kalman filter. Results of comparison are substantially in favour of our approach, with over 20 times lower mean squared error. The proposed filter is especially effective for signal amplitudes comparable to the quantisation thresholds. Additionally, it was observed that for high order of approximation, state estimate is very close to the true process value. The results open the possibilities of further analysis, especially for more complex processes.

  9. GPU Acceleration of DSP for Communication Receivers.

    PubMed

    Gunther, Jake; Gunther, Hyrum; Moon, Todd

    2017-09-01

    Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.

  10. On selecting satellite conjunction filter parameters

    NASA Astrophysics Data System (ADS)

    Alfano, Salvatore; Finkleman, David

    2014-06-01

    This paper extends concepts of signal detection theory to predict the performance of conjunction screening techniques and guiding the selection of keepout and screening thresholds. The most efficient way to identify satellites likely to collide is to employ filters to identify orbiting pairs that should not come close enough over a prescribed time period to be considered hazardous. Such pairings can then be eliminated from further computation to accelerate overall processing time. Approximations inherent in filtering techniques include screening using only unperturbed Newtonian two body astrodynamics and uncertainties in orbit elements. Therefore, every filtering process is vulnerable to including objects that are not threats and excluding some that are threats, Type I and Type II errors. The approach in this paper guides selection of the best operating point for the filters suited to a user's tolerance for false alarms and unwarned threats. We demonstrate the approach using three archetypal filters with an initial three-day span, select filter parameters based on performance, and then test those parameters using eight historical snapshots of the space catalog. This work provides a mechanism for selecting filter parameters but the choices depend on the circumstances.

  11. Adaptive nonlinear L2 and L3 filters for speckled image processing

    NASA Astrophysics Data System (ADS)

    Lukin, Vladimir V.; Melnik, Vladimir P.; Chemerovsky, Victor I.; Astola, Jaakko T.

    1997-04-01

    Here we propose adaptive nonlinear filters based on calculation and analysis of two or three order statistics in a scanning window. They are designed for processing images corrupted by severe speckle noise with non-symmetrical. (Rayleigh or one-side exponential) distribution laws; impulsive noise can be also present. The proposed filtering algorithms provide trade-off between impulsive noise can be also present. The proposed filtering algorithms provide trade-off between efficient speckle noise suppression, robustness, good edge/detail preservation, low computational complexity, preservation of average level for homogeneous regions of images. Quantitative evaluations of the characteristics of the proposed filter are presented as well as the results of the application to real synthetic aperture radar and ultrasound medical images.

  12. Antibacterial performance of nano polypropylene filter media containing nano-TiO2 and clay particles

    NASA Astrophysics Data System (ADS)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham; Semnani, Dariush

    2015-10-01

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO2 were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO2 nanoparticles.

  13. Adaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller.

    PubMed

    Lin, Chih-Min; Yang, Ming-Shu; Chao, Fei; Hu, Xiao-Min; Zhang, Jun

    2016-10-01

    This paper aims to propose an efficient network and applies it as an adaptive filter for the signal processing problems. An adaptive filter is proposed using a novel interval type-2 fuzzy cerebellar model articulation controller (T2FCMAC). The T2FCMAC realizes an interval type-2 fuzzy logic system based on the structure of the CMAC. Due to the better ability of handling uncertainties, type-2 fuzzy sets can solve some complicated problems with outstanding effectiveness than type-1 fuzzy sets. In addition, the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so that the convergence of the filtering error can be guaranteed. In order to demonstrate the performance of the proposed adaptive T2FCMAC filter, it is tested in signal processing applications, including a nonlinear channel equalization system, a time-varying channel equalization system, and an adaptive noise cancellation system. The advantages of the proposed filter over the other adaptive filters are verified through simulations.

  14. Input filter compensation for switching regulators

    NASA Technical Reports Server (NTRS)

    Kelkar, S. S.; Lee, F. C.

    1983-01-01

    A novel input filter compensation scheme for a buck regulator that eliminates the interaction between the input filter output impedance and the regulator control loop is presented. The scheme is implemented using a feedforward loop that senses the input filter state variables and uses this information to modulate the duty cycle signal. The feedforward design process presented is seen to be straightforward and the feedforward easy to implement. Extensive experimental data supported by analytical results show that significant performance improvement is achieved with the use of feedforward in the following performance categories: loop stability, audiosusceptibility, output impedance and transient response. The use of feedforward results in isolating the switching regulator from its power source thus eliminating all interaction between the regulator and equipment upstream. In addition the use of feedforward removes some of the input filter design constraints and makes the input filter design process simpler thus making it possible to optimize the input filter. The concept of feedforward compensation can also be extended to other types of switching regulators.

  15. A robust nonlinear filter for image restoration.

    PubMed

    Koivunen, V

    1995-01-01

    A class of nonlinear regression filters based on robust estimation theory is introduced. The goal of the filtering is to recover a high-quality image from degraded observations. Models for desired image structures and contaminating processes are employed, but deviations from strict assumptions are allowed since the assumptions on signal and noise are typically only approximately true. The robustness of filters is usually addressed only in a distributional sense, i.e., the actual error distribution deviates from the nominal one. In this paper, the robustness is considered in a broad sense since the outliers may also be due to inappropriate signal model, or there may be more than one statistical population present in the processing window, causing biased estimates. Two filtering algorithms minimizing a least trimmed squares criterion are provided. The design of the filters is simple since no scale parameters or context-dependent threshold values are required. Experimental results using both real and simulated data are presented. The filters effectively attenuate both impulsive and nonimpulsive noise while recovering the signal structure and preserving interesting details.

  16. High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering

    NASA Technical Reports Server (NTRS)

    Maly, K.

    1998-01-01

    Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated with the monitoring architecture to reduce the volume of event traffic flow in the system, and thereby reduce the intrusiveness of the monitoring process. We are developing an event filtering architecture to efficiently process the large volume of event traffic generated by LSD systems (such as distributed interactive applications). This filtering architecture is used to monitor collaborative distance learning application for obtaining debugging and feedback information. Our architecture supports the dynamic (re)configuration and optimization of event filters in large-scale distributed systems. Our work represents a major contribution by (1) survey and evaluating existing event filtering mechanisms In supporting monitoring LSD systems and (2) devising an integrated scalable high- performance architecture of event filtering that spans several kev application domains, presenting techniques to improve the functionality, performance and scalability. This paper describes the primary characteristics and challenges of developing high-performance event filtering for monitoring LSD systems. We survey existing event filtering mechanisms and explain key characteristics for each technique. In addition, we discuss limitations with existing event filtering mechanisms and outline how our architecture will improve key aspects of event filtering.

  17. Low-loss interference filter arrays made by plasma-assisted reactive magnetron sputtering (PARMS) for high-performance multispectral imaging

    NASA Astrophysics Data System (ADS)

    Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas

    2016-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.

  18. Filtration device for rapid separation of biological particles from complex matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sangil; Naraghi-Arani, Pejman; Liou, Megan

    2018-01-09

    Methods and systems for filtering of biological particles are disclosed. Filtering membranes separate adjacent chambers. Through osmotic or electrokinetic processes, flow of particles is carried out through the filtering membranes. Cells, viruses and cell waste can be filtered depending on the size of the pores of the membrane. A polymer brush can be applied to a surface of the membrane to enhance filtering and prevent fouling.

  19. Application of filtering techniques in preprocessing magnetic data

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Yi, Yongping; Yang, Hongxia; Hu, Guochuang; Liu, Guoming

    2010-08-01

    High precision magnetic exploration is a popular geophysical technique for its simplicity and its effectiveness. The explanation in high precision magnetic exploration is always a difficulty because of the existence of noise and disturbance factors, so it is necessary to find an effective preprocessing method to get rid of the affection of interference factors before further processing. The common way to do this work is by filtering. There are many kinds of filtering methods. In this paper we introduced in detail three popular kinds of filtering techniques including regularized filtering technique, sliding averages filtering technique, compensation smoothing filtering technique. Then we designed the work flow of filtering program based on these techniques and realized it with the help of DELPHI. To check it we applied it to preprocess magnetic data of a certain place in China. Comparing the initial contour map with the filtered contour map, we can see clearly the perfect effect our program. The contour map processed by our program is very smooth and the high frequency parts of data are disappeared. After filtering, we separated useful signals and noisy signals, minor anomaly and major anomaly, local anomaly and regional anomaly. It made us easily to focus on the useful information. Our program can be used to preprocess magnetic data. The results showed the effectiveness of our program.

  20. 15 CFR Supplement No. 6 to Part 774 - Sensitive List

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... filtering and beamforming using Fast Fourier or other transforms or processes. (vi) 6A001.a.2.d. (vii) 6A001... processing and correlation, including spectral analysis, digital filtering and beamforming using Fast Fourier...

  1. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    PubMed

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  2. Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor.

    PubMed

    Vallet, Ana; Besson, Michèle; Ovejero, Gabriel; García, Juan

    2012-08-15

    Catalytic wet air oxidation (CWAO) of a Basic Yellow 11 (BY11) aqueous solution, chosen as a model of a hardly biodegradable non-azo dye was carried out in a continuous-flow trickle-bed reactor, using nickel supported over hydrotalcite precursor calcined at 550°C. An increase in the reaction temperature (120-180°C), and a decrease in dye concentration (1000-3000 ppm) or liquid flow rate (0.1-0.7 mL min(-1)) enhanced the CWAO performance in a 30 and 19% for the variation of the temperature and concentration respectively. After a small leaching observed within the first hours, the catalyst proved to be very stable during the 65-day reaction. The CWAO process was found to be very efficient, achieving BY11 conversion up to 95% and TOC conversion up to 85% at 0.1 mL min(-1) and 180°C under 5 MPa air. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Anatomy of the Crowd4Discovery crowdfunding campaign.

    PubMed

    Perlstein, Ethan O

    2013-01-01

    Crowdfunding allows the public to fund creative projects, including curiosity-driven scientific research. Last Fall, I was part of a team that raised $25,460 from an international coalition of "micropatrons" for an open, pharmacological research project called Crowd4Discovery. The goal of Crowd4Discovery is to determine the precise location of amphetamines inside mouse brain cells, and we are sharing the results of this project on the Internet as they trickle in. In this commentary, I will describe the genesis of Crowd4Discovery, our motivations for crowdfunding, an analysis of our fundraising data, and the nuts and bolts of running a crowdfunding campaign. Science crowdfunding is in its infancy but has already been successfully used by an array of scientists in academia and in the private sector as both a supplement and a substitute to grants. With traditional government sources of funding for basic scientific research contracting, an alternative model that couples fundraising and outreach - and in the process encourages more openness and accountability - may be increasingly attractive to researchers seeking to diversify their funding streams.

  4. The income body weight gradients in the developing economy of China.

    PubMed

    Tafreschi, Darjusch

    2015-01-01

    Existing theories predict the income gradient of individual body weight to change sign from positive to negative in process of economic development. However, there are only few empirical studies which test this hypothesis. This paper adds to the literature on that topic by investigating the case of China. Using individual and community data from 1991 to 2009 waves of the China Health and Nutrition Survey regression analyses suggest that after controlling for important confounding factors (1) higher income is positively related to future growth of individuals' BMI in less developed areas (i.e. BMI growth is 0.7-1.5 percentage points higher when comparing the richest with the poorest individuals), but negatively related to BMI growth in more developed areas (i.e. BMI growth is 0.8-1.6 percentage points lower for the richest individuals), and (2) that concentrations of overweight are "trickling down" to lower income ranks as regions become more developed. Moreover, the reversal of the income gradient appears to happen at earlier stages of development for females. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Identifying future directions for subsurface hydrocarbon migration research

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Clark, J. F.; Luyendyk, B.; Valentine, D.

    Subsurface hydrocarbon migration is important for understanding the input and impacts of natural hydrocarbon seepage on the environment. Great uncertainties remain in most aspects of hydrocarbon migration, including some basic mechanisms of this four-phase flow of tar, oil, water, and gas through the complex fracture-network geometry particularly since the phases span a wide range of properties. Academic, government, and industry representatives recently attended a workshop to identify the areas of greatest need for future research in shallow hydrocarbon migration.Novel approaches such as studying temporal and spatial seepage variations and analogous geofluid systems (e.g., geysers and trickle beds) allow deductions of subsurface processes and structures that remain largely unclear. Unique complexities exist in hydrocarbon migration due to its multiphase flow and complex geometry, including in-situ biological weathering. Furthermore, many aspects of the role of hydrocarbons (positive and negative) in the environment are poorly understood, including how they enter the food chain (respiration, consumption, etc.) and “percolate” to higher trophic levels. But understanding these ecological impacts requires knowledge of the emissions' temporal and spatial variability and trajectories.

  6. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, F.K.

    1986-07-29

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

  7. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, Frank K.

    1986-01-01

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  8. Singular perturbation, state aggregation and nonlinear filtering

    NASA Technical Reports Server (NTRS)

    Hijab, O.; Sastry, S.

    1981-01-01

    Consideration is given to a state process evolving in R(n), whose motion is that of a pure jump process in R(n) in the 0(1) time scale, upon which is superimposed a continuous motion along the orbits of a gradient-like vector field g in R(n) in the 0(1/epsilon) time scale. The infinitesimal generator of the state process is, in other words, of the form L + (1/epsilon)g. It follows from the main results presented that the projected filters converge to the finite state Wonham filter corresponding to the problem of estimating the finite state process in the presence of additive white noise.

  9. The effects of using shell filters in the process of depuration for the survival of Anadara sp.

    NASA Astrophysics Data System (ADS)

    Pursetyo, K. T.; Sulmartiwi, L.; Alamsjah, M. A.; Tjahjaningsih, W.; Rosmarini, A. S.; Nikmah, M.

    2018-04-01

    Anadara sp. is one of the shellfish that has a source of animal protein is high and has a high economic value. However, to obtain a safe source of food, the products must meet the standard by the government, one of which is the limitations in heavy metals in the shells. In the standard of sanitation of shellfish is required to do the depuration process to remove the contaminants be it bacteria or heavy metals. In this study, randomized design with 5 treatments was used: P0 (control / without filter), P1 (25 % filter with shells), P2 (50 % filter with shells), P3 (75 % filter with shells), P4 (100 % filter with shells). Each treatment was replicated 4 times. The results showed that filtering of shell in depuration process could cause the highest shell death for 24 hours occurred in P4 of 24.39 % and the highest death during 48 hours also happened at the treatment of P4 which was equal to 61.71 %. During the research, water quality measurement was measured at 29-30 °C, pH 7.2-7.7, dissolved oxygen (DO) 4-4.4 mg/L and salinity 28-30 ppt.

  10. Active pixel sensors with substantially planarized color filtering elements

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)

    1999-01-01

    A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.

  11. Optical fiber repeatered transmission systems utilizing SAW filters

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. L.; Ross, D. G.; Trischitta, P. R.; Fishman, D. A.; Armitage, C. B.

    1983-05-01

    Baseband digital transmission-line systems capable of signaling rates of several hundred to several thousand Mbit/s are presently being developed around the world. The pulse regeneration process is gated by a timing wave which is synchronous with the symbol rate of the arriving pulse stream. Synchronization is achieved by extracting a timing wave from the arriving pulse stream, itself. To date, surface acoustic-wave (SAW) filters have been widely adopted for timing recovery in the in-line regenerators of high-bit-rate systems. The present investigation has the objective to acquaint the SAW community in general, and SAW filter suppliers in particular, with the requirements for timing recovery filters in repeatered digital transmission systems. Attention is given to the system structure, the timing loop function, the system requirements affecting the timing-recovery filter, the decision process, timing jitter accumulation, the filter 'ringing' requirement, and aspects of reliability.

  12. Fast digital zooming system using directionally adaptive image interpolation and restoration.

    PubMed

    Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki

    2014-01-01

    This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.

  13. Electronic filters, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor)

    1995-01-01

    An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electrical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a first signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the first signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems and methods of operating them are also disclosed.

  14. Drug discovery in jeopardy

    PubMed Central

    Cuatrecasas, Pedro

    2006-01-01

    Despite striking advances in the biomedical sciences, the flow of new drugs has slowed to a trickle, impairing therapeutic advances as well as the commercial success of drug companies. Reduced productivity in the drug industry is caused mainly by corporate policies that discourage innovation. This is compounded by various consequences of mega-mergers, the obsession for blockbuster drugs, the shift of control of research from scientists to marketers, the need for fast sales growth, and the discontinuation of development compounds for nontechnical reasons. Lessons from the past indicate that these problems can be overcome, and herein, new and improved directions for drug discovery are suggested. PMID:17080187

  15. A design aid for determining width of filter strips

    Treesearch

    M.G. Dosskey; M.J. Helmers; D.E. Eisenhauer

    2008-01-01

    watershed planners need a tool for determining width of filter strips that is accurate enough for developing cost-effective site designs and easy enough to use for making quick determinations on a large number and variety of sites.This study employed the process-based Vegetative Filter Strip Model to evaluate the relationship between filter strip width and trapping...

  16. 78 FR 57911 - Self-Regulatory Organizations; BOX Options Exchange LLC; Order Approving a Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... Filter September 16, 2013. I. Introduction On July 22, 2013, BOX Options Exchange LLC (the ``Exchange... included in the HSVF. A. Complex Order Filter BOX's Complex Order Filter provides a process designed to....\\4\\ BOX proposes to revise its rules to specifically provide that the Complex Order Filter operates...

  17. Parallel Processing of Broad-Band PPM Signals

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement

    2010-01-01

    A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).

  18. A Tentative Application Of Morphological Filters To Time-Varying Images

    NASA Astrophysics Data System (ADS)

    Billard, D.; Poquillon, B.

    1989-03-01

    In this paper, morphological filters, which are commonly used to process either 2D or multidimensional static images, are generalized to the analysis of time-varying image sequence. The introduction of the time dimension induces then interesting prop-erties when designing such spatio-temporal morphological filters. In particular, the specification of spatio-temporal structuring ele-ments (equivalent to time-varying spatial structuring elements) can be adjusted according to the temporal variations of the image sequences to be processed : this allows to derive specific morphological transforms to perform noise filtering or moving objects discrimination on dynamic images viewed by a non-stationary sensor. First, a brief introduction to the basic principles underlying morphological filters will be given. Then, a straightforward gener-alization of these principles to time-varying images will be pro-posed. This will lead us to define spatio-temporal opening and closing and to introduce some of their possible applications to process dynamic images. At last, preliminary results obtained us-ing a natural forward looking infrared (FUR) image sequence are presented.

  19. A low-cost solid–liquid separation process for enzymatically hydrolyzed corn stover slurries

    DOE PAGES

    Sievers, David A.; Lischeske, James J.; Biddy, Mary J.; ...

    2015-07-01

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantlymore » reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.« less

  20. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    PubMed

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  1. Backflushing system rapidly cleans fluid filters

    NASA Technical Reports Server (NTRS)

    Descamp, V. A.; Boex, M. W.; Hussey, M. W.; Larson, T. P.

    1973-01-01

    Self contained unit can backflush filter elements in fraction of the time expended by presently used equipment. This innovation may be of interest to manufacturers of hydraulic and pneumatic systems as well as to chemical, food, processing, and filter manufacturing industries.

  2. Ammonium removal pathways and microbial community in GAC-sand dual media filter in drinking water treatment.

    PubMed

    Feng, Shuo; Xie, Shuguang; Zhang, Xiaojian; Yang, Zhiyu; Ding, Wei; Liao, Xiaobin; Liu, Yuanyuan; Chen, Chao

    2012-01-01

    A GAC-sand dual media filter (GSF) was devised as an alternative solution for drinking water treatment plant to tackle the raw water polluted by ammonium in place of expensive ozone-GAC processes or bio-pretreatments. The ammonium removal pathways and microbial community in the GSFs were investigated. The concentrations of ammonium, nitrite and nitrate nitrogen were monitored along the filter. Total inorganic nitrogen (TIN) loss occurred during the filtration. For 1 mg ammonium removal, the TIN loss was as high as 0.35 mg, DO consumption was 3.06 mg, and alkalinity consumption was 5.55 mg. It was assumed that both nitrification and denitrification processes occur in the filters to fit the TIN loss and low DO consumption. During the filtration, nitritation, nitrification and nitritation-anaerobic ammonium oxidation processes probably occur, while traditional nitrification and denitrification and simultaneous nitrification and denitrification processes may occur. In the GSFs, Nitrosomonas and Nitrospira are likely to be involved in nitrification processes, while Novosphingobium, Comamonadaceae and Oxalobacteraceae may be involved in denitrification processes.

  3. Compact Micromachined Infrared Bandpass Filters for Planetary Spectroscopy

    NASA Technical Reports Server (NTRS)

    Merrell, Willie C., II; Aslam, Shahid; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward

    2011-01-01

    The future needs of space based observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high radiation and low temperature environments. Here we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 micrometers and report good agreement between the modeled and measured response. We present a technique of using common micromachining processes for semiconductor fabrication to make compact, free standing resonant metal mesh filter arrays with silicon support frames. The process can accommodate multiple detector array architectures and the silicon frame provides lightweight mechanical support with low form factor. We also present a conceptual hybridization of the filters with a detector array.

  4. Use of Hydrogenophaga pseudoflava Penetration To Quantitatively Assess the Impact of Filtration Parameters for 0.2-Micrometer-Pore-Size Filters ▿

    PubMed Central

    Lee, A.; McVey, J.; Faustino, P.; Lute, S.; Sweeney, N.; Pawar, V.; Khan, M.; Brorson, K.; Hussong, D.

    2010-01-01

    Filters rated as having a 0.2-μm pore size (0.2-μm-rated filters) are used in laboratory and manufacturing settings for diverse applications of bacterial and particle removal from process fluids, analytical test articles, and gasses. Using Hydrogenophaga pseudoflava, a diminutive bacterium with an unusual geometry (i.e., it is very thin), we evaluated passage through 0.2-μm-rated filters and the impact of filtration process parameters and bacterial challenge density. We show that consistent H. pseudoflava passage occurs through 0.2-μm-rated filters. This is in contrast to an absence of significant passage of nutritionally challenged bacteria that are of similar size (i.e., hydrodynamic diameter) but dissimilar geometry. PMID:19966023

  5. The flexural stiffness and tension state of basalt filter

    NASA Astrophysics Data System (ADS)

    Khalmuradovich, Sattarov Laziz; Ahmedovich, Kurbanov Abdirahim

    2017-03-01

    In recent years, there is a growing demand in Uzbekistan for new, cheap and competitive products from local raw materials, the demand being directly connected with the expansion and development opportunities of the mining, metallurgical and processing industries. In such conditions, the need for providing a solution of the problems faced by these industries is a very urgent one and requires further comprehensive studies. One of these tasks includes assessment of the force parameters and bending stiffness of basalt fibre filters, aimed at further improving the efficiency of local basalt raw materials and aiding in the manufacture of new, long-lasting, reliable and high-quality products. In this case, we studied the interaction of basalt fibre filter with a gas or liquid medium, the deformed state of the fibres under the action force of the gas or liquid, and the filter recovery process after removal of the load, all of which occur during mechanical filtration. These tasks are of interest because during the mechanical filtration of a gas or liquid (hereinafter, mechanical filtration) from solids, all attention is paid to the quality of the filtering process. The filtering quality, as known, is determined by the degree of contamination in the liquid undergoing treatment, duration of separation of the pulp into solid and liquid phases during the decantation process of the mixture and the amount of gas/ liquid released into the atmosphere along with carbon monoxide and toxic impurities. At the same time, the state and behaviour of the filtering material remain as minor factors, the consideration of which can play a decisive role in the establishment of filter life and work capacity. Solutions to these problems are very urgent and allow one to create new technologies for the production of basalt filters based on force parameters and bending stiffness, wherein the purification occurs without the intervention of chemicals.

  6. Bacterial community structure in the drinking water microbiome is governed by filtration processes.

    PubMed

    Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde

    2012-08-21

    The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.

  7. An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks

    NASA Astrophysics Data System (ADS)

    El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros

    2007-12-01

    The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.

  8. Method and apparatus for a self-cleaning filter

    DOEpatents

    Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael

    2013-09-10

    A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.

  9. Method and apparatus for a self-cleaning filter

    DOEpatents

    Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael

    2010-11-16

    A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.

  10. Integrated circuit layer image segmentation

    NASA Astrophysics Data System (ADS)

    Masalskis, Giedrius; Petrauskas, Romas

    2010-09-01

    In this paper we present IC layer image segmentation techniques which are specifically created for precise metal layer feature extraction. During our research we used many samples of real-life de-processed IC metal layer images which were obtained using optical light microscope. We have created sequence of various image processing filters which provides segmentation results of good enough precision for our application. Filter sequences were fine tuned to provide best possible results depending on properties of IC manufacturing process and imaging technology. Proposed IC image segmentation filter sequences were experimentally tested and compared with conventional direct segmentation algorithms.

  11. Generalized Hofmann quantum process fidelity bounds for quantum filters

    NASA Astrophysics Data System (ADS)

    Sedlák, Michal; Fiurášek, Jaromír

    2016-04-01

    We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005), 10.1103/PhysRevLett.94.160504] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.

  12. Impact of backwashing procedures on deep bed filtration productivity in drinking water treatment.

    PubMed

    Slavik, Irene; Jehmlich, Alexander; Uhl, Wolfgang

    2013-10-15

    Backwash procedures for deep bed filters were evaluated and compared by means of a new integrated approach based on productivity. For this, different backwash procedures were experimentally evaluated by using a pilot plant for direct filtration. A standard backwash mode as applied in practice served as a reference and effluent turbidity was used as the criterion for filter run termination. The backwash water volumes needed, duration of the filter-to-waste period, time out of operation, total volume discharged and filter run-time were determined and used to calculate average filtration velocity and average productivity. Results for filter run-times, filter backwash volumes, and filter-to-waste volumes showed considerable differences between the backwash procedures. Thus, backwash procedures with additional clear flushing phases were characterised by an increased need for backwash water. However, this additional water consumption could not be compensated by savings during filter ripening. Compared to the reference backwash procedure, filter run-times were longer for both single-media and dual-media filters when air scour and air/water flush were optimised with respect to flow rates and the proportion of air and water. This means that drinking water production time is longer and less water is needed for filter bed cleaning. Also, backwashing with additional clear flushing phases resulted in longer filter run-times before turbidity breakthrough. However, regarding the productivity of the filtration process, it was shown that it was almost the same for all of the backwash procedures investigated in this study. Due to this unexpected finding, the relationships between filter bed cleaning, filter ripening and filtration performance were considered and important conclusions and new approaches for process optimisation and resource savings were derived. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A 48Cycles/MB H.264/AVC Deblocking Filter Architecture for Ultra High Definition Applications

    NASA Astrophysics Data System (ADS)

    Zhou, Dajiang; Zhou, Jinjia; Zhu, Jiayi; Goto, Satoshi

    In this paper, a highly parallel deblocking filter architecture for H.264/AVC is proposed to process one macroblock in 48 clock cycles and give real-time support to QFHD@60fps sequences at less than 100MHz. 4 edge filters organized in 2 groups for simultaneously processing vertical and horizontal edges are applied in this architecture to enhance its throughput. While parallelism increases, pipeline hazards arise owing to the latency of edge filters and data dependency of deblocking algorithm. To solve this problem, a zig-zag processing schedule is proposed to eliminate the pipeline bubbles. Data path of the architecture is then derived according to the processing schedule and optimized through data flow merging, so as to minimize the cost of logic and internal buffer. Meanwhile, the architecture's data input rate is designed to be identical to its throughput, while the transmission order of input data can also match the zig-zag processing schedule. Therefore no intercommunication buffer is required between the deblocking filter and its previous component for speed matching or data reordering. As a result, only one 24×64 two-port SRAM as internal buffer is required in this design. When synthesized with SMIC 130nm process, the architecture costs a gate count of 30.2k, which is competitive considering its high performance.

  14. Oceanographic applications of the Kalman filter

    NASA Technical Reports Server (NTRS)

    Barbieri, R. W.; Schopf, P. S.

    1982-01-01

    The Kalman filter is a data-processing algorithm with a distinguished history in systems theory. Its application to oceanographic problems is in the embryo stage. The behavior of the filter is demonstrated in the context of an internal equatorial Rossby wave propagation problem.

  15. The identification of criteria to evaluate prehospital trauma care using the Delphi technique.

    PubMed

    Rosengart, Matthew R; Nathens, Avery B; Schiff, Melissa A

    2007-03-01

    Current trauma system performance improvement emphasizes hospital- and patient-based outcome measures such as mortality and morbidity, with little focus upon the processes of prehospital trauma care. Little data exist to suggest which prehospital criteria should serve as potential filters. This study identifies the most important filters for auditing prehospital trauma care using a Delphi technique to achieve consensus of expert opinion. Experts in trauma care from the United States (n = 81) were asked to generate filters of potential utility in monitoring the prehospital aspect of the trauma system, and were then required to rank these questions in order of importance to identify those of greatest importance. Twenty-eight filters ranking in the highest tertile are proposed. The majority (54%) pertains to aspects of emergency medical services, which comprise 7 of the top 10 (70%) filters. Triage filters follow in priority ranking, comprising 29% of the final list. Filters concerning interfacility transfers and transportation ranked lowest. This study identifies audit filters representing the most important aspects of prehospital trauma care that merit continued evaluation and monitoring. A subsequent trial addressing the utility of these filters could potentially enhance the sensitivity of identifying deviations in prehospital care, standardize the performance improvement process, and translate into an improvement in patient care and outcome.

  16. Electronic filters, signal conversion apparatus, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Morley, Jr., Robert E. (Inventor); Engebretson, A. Maynard (Inventor); Engel, George L. (Inventor); Sullivan, Thomas J. (Inventor)

    1992-01-01

    An electronic filter for filtering an electrical signal. Signal processing circuitry therein includes a logarithmic filter having a series of filter stages with inputs and outputs in cascade and respective circuits as GOVERNMENT SUPPORT This invention was made with U.S. Government support under Veterans Administration Contract VA KV 674P857 and National Aeronautics and Space Administration (NASA) Research Grant No. NAG10-0040. The U.S. Government has certain rights in this invention.

  17. a Generic Probabilistic Model and a Hierarchical Solution for Sensor Localization in Noisy and Restricted Conditions

    NASA Astrophysics Data System (ADS)

    Ji, S.; Yuan, X.

    2016-06-01

    A generic probabilistic model, under fundamental Bayes' rule and Markov assumption, is introduced to integrate the process of mobile platform localization with optical sensors. And based on it, three relative independent solutions, bundle adjustment, Kalman filtering and particle filtering are deduced under different and additional restrictions. We want to prove that first, Kalman filtering, may be a better initial-value supplier for bundle adjustment than traditional relative orientation in irregular strips and networks or failed tie-point extraction. Second, in high noisy conditions, particle filtering can act as a bridge for gap binding when a large number of gross errors fail a Kalman filtering or a bundle adjustment. Third, both filtering methods, which help reduce the error propagation and eliminate gross errors, guarantee a global and static bundle adjustment, who requires the strictest initial values and control conditions. The main innovation is about the integrated processing of stochastic errors and gross errors in sensor observations, and the integration of the three most used solutions, bundle adjustment, Kalman filtering and particle filtering into a generic probabilistic localization model. The tests in noisy and restricted situations are designed and examined to prove them.

  18. Project Report: Reducing Color Rivalry in Imagery for Conjugated Multiple Bandpass Filter Based Stereo Endoscopy

    NASA Technical Reports Server (NTRS)

    Ream, Allen

    2011-01-01

    A pair of conjugated multiple bandpass filters (CMBF) can be used to create spatially separated pupils in a traditional lens and imaging sensor system allowing for the passive capture of stereo video. This method is especially useful for surgical endoscopy where smaller cameras are needed to provide ample room for manipulating tools while also granting improved visualizations of scene depth. The significant issue in this process is that, due to the complimentary nature of the filters, the colors seen through each filter do not match each other, and also differ from colors as seen under a white illumination source. A color correction model was implemented that included optimized filter selection, such that the degree of necessary post-processing correction was minimized, and a chromatic adaptation transformation that attempted to fix the imaged colors tristimulus indices based on the principle of color constancy. Due to fabrication constraints, only dual bandpass filters were feasible. The theoretical average color error after correction between these filters was still above the fusion limit meaning that rivalry conditions are possible during viewing. This error can be minimized further by designing the filters for a subset of colors corresponding to specific working environments.

  19. Nonlinear Real-Time Optical Signal Processing.

    DTIC Science & Technology

    1981-06-30

    bandwidth and space-bandwidth products. Real-time homonorphic and loga- rithmic filtering by halftone nonlinear processing has been achieved. A...Page ABSTRACT 1 1. RESEARCH OBJECTIVES AND PROGRESS 3 I-- 1.1 Introduction and Project overview 3 1.2 Halftone Processing 9 1.3 Direct Nonlinear...time homomorphic and logarithmic filtering by halftone nonlinear processing has been achieved. A detailed analysis of degradation due to the finite gamma

  20. An Ensemble Framework Coping with Instability in the Gene Selection Process.

    PubMed

    Castellanos-Garzón, José A; Ramos, Juan; López-Sánchez, Daniel; de Paz, Juan F; Corchado, Juan M

    2018-03-01

    This paper proposes an ensemble framework for gene selection, which is aimed at addressing instability problems presented in the gene filtering task. The complex process of gene selection from gene expression data faces different instability problems from the informative gene subsets found by different filter methods. This makes the identification of significant genes by the experts difficult. The instability of results can come from filter methods, gene classifier methods, different datasets of the same disease and multiple valid groups of biomarkers. Even though there is a wide number of proposals, the complexity imposed by this problem remains a challenge today. This work proposes a framework involving five stages of gene filtering to discover biomarkers for diagnosis and classification tasks. This framework performs a process of stable feature selection, facing the problems above and, thus, providing a more suitable and reliable solution for clinical and research purposes. Our proposal involves a process of multistage gene filtering, in which several ensemble strategies for gene selection were added in such a way that different classifiers simultaneously assess gene subsets to face instability. Firstly, we apply an ensemble of recent gene selection methods to obtain diversity in the genes found (stability according to filter methods). Next, we apply an ensemble of known classifiers to filter genes relevant to all classifiers at a time (stability according to classification methods). The achieved results were evaluated in two different datasets of the same disease (pancreatic ductal adenocarcinoma), in search of stability according to the disease, for which promising results were achieved.

  1. Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion.

    PubMed

    Tseng, Chien-Hao; Chang, Chih-Wen; Jwo, Dah-Jing

    2011-01-01

    In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching) mechanism, the interacting multiple model (IMM), which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS). The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.

  2. The Ensemble Kalman filter: a signal processing perspective

    NASA Astrophysics Data System (ADS)

    Roth, Michael; Hendeby, Gustaf; Fritsche, Carsten; Gustafsson, Fredrik

    2017-12-01

    The ensemble Kalman filter (EnKF) is a Monte Carlo-based implementation of the Kalman filter (KF) for extremely high-dimensional, possibly nonlinear, and non-Gaussian state estimation problems. Its ability to handle state dimensions in the order of millions has made the EnKF a popular algorithm in different geoscientific disciplines. Despite a similarly vital need for scalable algorithms in signal processing, e.g., to make sense of the ever increasing amount of sensor data, the EnKF is hardly discussed in our field. This self-contained review is aimed at signal processing researchers and provides all the knowledge to get started with the EnKF. The algorithm is derived in a KF framework, without the often encountered geoscientific terminology. Algorithmic challenges and required extensions of the EnKF are provided, as well as relations to sigma point KF and particle filters. The relevant EnKF literature is summarized in an extensive survey and unique simulation examples, including popular benchmark problems, complement the theory with practical insights. The signal processing perspective highlights new directions of research and facilitates the exchange of potentially beneficial ideas, both for the EnKF and high-dimensional nonlinear and non-Gaussian filtering in general.

  3. Precomputing Process Noise Covariance for Onboard Sequential Filters

    NASA Technical Reports Server (NTRS)

    Olson, Corwin G.; Russell, Ryan P.; Carpenter, J. Russell

    2017-01-01

    Process noise is often used in estimation filters to account for unmodeled and mismodeled accelerations in the dynamics. The process noise covariance acts to inflate the state covariance over propagation intervals, increasing the uncertainty in the state. In scenarios where the acceleration errors change significantly over time, the standard process noise covariance approach can fail to provide effective representation of the state and its uncertainty. Consider covariance analysis techniques provide a method to precompute a process noise covariance profile along a reference trajectory using known model parameter uncertainties. The process noise covariance profile allows significantly improved state estimation and uncertainty representation over the traditional formulation. As a result, estimation performance on par with the consider filter is achieved for trajectories near the reference trajectory without the additional computational cost of the consider filter. The new formulation also has the potential to significantly reduce the trial-and-error tuning currently required of navigation analysts. A linear estimation problem as described in several previous consider covariance analysis studies is used to demonstrate the effectiveness of the precomputed process noise covariance, as well as a nonlinear descent scenario at the asteroid Bennu with optical navigation.

  4. Precomputing Process Noise Covariance for Onboard Sequential Filters

    NASA Technical Reports Server (NTRS)

    Olson, Corwin G.; Russell, Ryan P.; Carpenter, J. Russell

    2017-01-01

    Process noise is often used in estimation filters to account for unmodeled and mismodeled accelerations in the dynamics. The process noise covariance acts to inflate the state covariance over propagation intervals, increasing the uncertainty in the state. In scenarios where the acceleration errors change significantly over time, the standard process noise covariance approach can fail to provide effective representation of the state and its uncertainty. Consider covariance analysis techniques provide a method to precompute a process noise covariance profile along a reference trajectory, using known model parameter uncertainties. The process noise covariance profile allows significantly improved state estimation and uncertainty representation over the traditional formulation. As a result, estimation performance on par with the consider filter is achieved for trajectories near the reference trajectory without the additional computational cost of the consider filter. The new formulation also has the potential to significantly reduce the trial-and-error tuning currently required of navigation analysts. A linear estimation problem as described in several previous consider covariance analysis publications is used to demonstrate the effectiveness of the precomputed process noise covariance, as well as a nonlinear descent scenario at the asteroid Bennu with optical navigation.

  5. Processing Functional Near Infrared Spectroscopy Signal with a Kalman Filter to Assess Working Memory during Simulated Flight.

    PubMed

    Durantin, Gautier; Scannella, Sébastien; Gateau, Thibault; Delorme, Arnaud; Dehais, Frédéric

    2015-01-01

    Working memory (WM) is a key executive function for operating aircraft, especially when pilots have to recall series of air traffic control instructions. There is a need to implement tools to monitor WM as its limitation may jeopardize flight safety. An innovative way to address this issue is to adopt a Neuroergonomics approach that merges knowledge and methods from Human Factors, System Engineering, and Neuroscience. A challenge of great importance for Neuroergonomics is to implement efficient brain imaging techniques to measure the brain at work and to design Brain Computer Interfaces (BCI). We used functional near infrared spectroscopy as it has been already successfully tested to measure WM capacity in complex environment with air traffic controllers (ATC), pilots, or unmanned vehicle operators. However, the extraction of relevant features from the raw signal in ecological environment is still a critical issue due to the complexity of implementing real-time signal processing techniques without a priori knowledge. We proposed to implement the Kalman filtering approach, a signal processing technique that is efficient when the dynamics of the signal can be modeled. We based our approach on the Boynton model of hemodynamic response. We conducted a first experiment with nine participants involving a basic WM task to estimate the noise covariances of the Kalman filter. We then conducted a more ecological experiment in our flight simulator with 18 pilots who interacted with ATC instructions (two levels of difficulty). The data was processed with the same Kalman filter settings implemented in the first experiment. This filter was benchmarked with a classical pass-band IIR filter and a Moving Average Convergence Divergence (MACD) filter. Statistical analysis revealed that the Kalman filter was the most efficient to separate the two levels of load, by increasing the observed effect size in prefrontal areas involved in WM. In addition, the use of a Kalman filter increased the performance of the classification of WM levels based on brain signal. The results suggest that Kalman filter is a suitable approach for real-time improvement of near infrared spectroscopy signal in ecological situations and the development of BCI.

  6. Processing Functional Near Infrared Spectroscopy Signal with a Kalman Filter to Assess Working Memory during Simulated Flight

    PubMed Central

    Durantin, Gautier; Scannella, Sébastien; Gateau, Thibault; Delorme, Arnaud; Dehais, Frédéric

    2016-01-01

    Working memory (WM) is a key executive function for operating aircraft, especially when pilots have to recall series of air traffic control instructions. There is a need to implement tools to monitor WM as its limitation may jeopardize flight safety. An innovative way to address this issue is to adopt a Neuroergonomics approach that merges knowledge and methods from Human Factors, System Engineering, and Neuroscience. A challenge of great importance for Neuroergonomics is to implement efficient brain imaging techniques to measure the brain at work and to design Brain Computer Interfaces (BCI). We used functional near infrared spectroscopy as it has been already successfully tested to measure WM capacity in complex environment with air traffic controllers (ATC), pilots, or unmanned vehicle operators. However, the extraction of relevant features from the raw signal in ecological environment is still a critical issue due to the complexity of implementing real-time signal processing techniques without a priori knowledge. We proposed to implement the Kalman filtering approach, a signal processing technique that is efficient when the dynamics of the signal can be modeled. We based our approach on the Boynton model of hemodynamic response. We conducted a first experiment with nine participants involving a basic WM task to estimate the noise covariances of the Kalman filter. We then conducted a more ecological experiment in our flight simulator with 18 pilots who interacted with ATC instructions (two levels of difficulty). The data was processed with the same Kalman filter settings implemented in the first experiment. This filter was benchmarked with a classical pass-band IIR filter and a Moving Average Convergence Divergence (MACD) filter. Statistical analysis revealed that the Kalman filter was the most efficient to separate the two levels of load, by increasing the observed effect size in prefrontal areas involved in WM. In addition, the use of a Kalman filter increased the performance of the classification of WM levels based on brain signal. The results suggest that Kalman filter is a suitable approach for real-time improvement of near infrared spectroscopy signal in ecological situations and the development of BCI. PMID:26834607

  7. Human attention filters for single colors.

    PubMed

    Sun, Peng; Chubb, Charles; Wright, Charles E; Sperling, George

    2016-10-25

    The visual images in the eyes contain much more information than the brain can process. An important selection mechanism is feature-based attention (FBA). FBA is best described by attention filters that specify precisely the extent to which items containing attended features are selectively processed and the extent to which items that do not contain the attended features are attenuated. The centroid-judgment paradigm enables quick, precise measurements of such human perceptual attention filters, analogous to transmission measurements of photographic color filters. Subjects use a mouse to locate the centroid-the center of gravity-of a briefly displayed cloud of dots and receive precise feedback. A subset of dots is distinguished by some characteristic, such as a different color, and subjects judge the centroid of only the distinguished subset (e.g., dots of a particular color). The analysis efficiently determines the precise weight in the judged centroid of dots of every color in the display (i.e., the attention filter for the particular attended color in that context). We report 32 attention filters for single colors. Attention filters that discriminate one saturated hue from among seven other equiluminant distractor hues are extraordinarily selective, achieving attended/unattended weight ratios >20:1. Attention filters for selecting a color that differs in saturation or lightness from distractors are much less selective than attention filters for hue (given equal discriminability of the colors), and their filter selectivities are proportional to the discriminability distance of neighboring colors, whereas in the same range hue attention-filter selectivity is virtually independent of discriminabilty.

  8. Design and fabrication of label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process.

    PubMed

    Cho, E; Kim, B; Choi, S; Han, J; Jin, J; Han, J; Lim, J; Heo, Y; Kim, S; Sung, G Y; Kang, S

    2011-01-01

    This paper introduces technology to fabricate a guided mode resonance filter biochip using injection molding. Of the various nanofabrication processes that exist, injection molding is the most suitable for the mass production of polymer nanostructures. Fabrication of a nanograting pattern for guided mode resonance filters by injection molding requires a durable metal stamp, because of the high injection temperature and pressure. Careful consideration of the optimized process parameters is also required to achieve uniform sub-wavelength gratings with high fidelity. In this study, a metallic nanostructure pattern to be used as the stamp for the injection molding process was fabricated using electron beam lithography, a UV nanoimprinting process, and an electroforming process. A one-dimensional nanograting substrate was replicated by injection molding, during which the process parameters were controlled. To evaluate the geometric quality of the injection molded nanograting patterns, the surface profile of the fabricated nanograting for different processing conditions was analyzed using an atomic force microscope and a scanning electron microscope. Finally, to demonstrate the feasibility of the proposed process for fabricating guided mode resonance filter biochips, a high-refractive-index material was deposited on the polymer nanograting and its guided mode resonance characteristics were analyzed.

  9. Closure of Regenerative Life Support Systems: Results of the Lunar-Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel; Henninger, D.; Edeen, M.; Lewis, J.; Smth, F.; Verostko, C.

    2006-01-01

    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass, reduce dependency on resupply and increase the level of mission self sufficiency. Such systems may be based on the integration of biological and physiocochemical processes to produce potable water, breathable atmosphere and nutritious food from metabolic and other mission wastes. Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration, Johnson Space Center, to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads. Named the Lunar-Mars Life Support Test Project (LMLSTP), four integrated human tests were conducted with increasing duration, complexity and closure. The first test, LMLSTP Phase I, was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere. A single crew member spent 15 days within an atmospherically closed chamber containing 11.2 square meters of actively growing wheat. Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems. During the second and third tests, LMLSTP Phases II & IIa, four crew members spent 30 days and 60 days, respectively, in a larger sealed chamber. Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water from wastewater. Air revitalization was accomplished by using a molecular sieve and a Sabatier processor for carbon dioxide absorption and reduction, respectively, with oxygen generation performed by water hydrolysis. Production of potable water from wastewater included urine treatment (vapor compression distillation), primary treatment (ultrafiltration/reverse osmosis and multi-filtration) and post processing. For the Phase II test the water recovery rate ranged from 95 to 98%, depending on the processor. LMLSTP Phase III, the fourth test of the series, had a duration of 91 days and included four crew members. The test demonstrated an integration of physicochemical and biological technologies for air revitalization, water recovery and waste processing. Wheat supplemented the physicochemical air revitalization systems by providing approximately 25% of the oxygen required for the 4-person crew. The water recovery system included immobilized cell and trickling filter bioreactors for primary water treatment, reverse osmosis and air evaporation systems for secondary water treatment, followed by post processing. The 8 day initial supply of water was recycled through the chamber and crew 10 times over the course of the test. Grain from the wheat together with fresh lettuce from a small growth chamber within the crew chamber provided supplementation to the stored food system, but at a level less than 5% of the crew s caloric requirement. An incinerator was used to demonstrate mineralization of the crew s solid waste, with the combustion products (mainly carbon dioxide) returned to the wheat for conversion to oxygen.

  10. Coherent broadband sonar signal processing with the environmentally corrected matched filter

    NASA Astrophysics Data System (ADS)

    Camin, Henry John, III

    The matched filter is the standard approach for coherently processing active sonar signals, where knowledge of the transmitted waveform is used in the detection and parameter estimation of received echoes. Matched filtering broadband signals provides higher levels of range resolution and reverberation noise suppression than can be realized through narrowband processing. Since theoretical processing gains are proportional to the signal bandwidth, it is typically desirable to utilize the widest band signals possible. However, as signal bandwidth increases, so do environmental effects that tend to decrease correlation between the received echo and the transmitted waveform. This is especially true for ultra wideband signals, where the bandwidth exceeds an octave or approximately 70% fractional bandwidth. This loss of coherence often results in processing gains and range resolution much lower than theoretically predicted. Wiener filtering, commonly used in image processing to improve distorted and noisy photos, is investigated in this dissertation as an approach to correct for these environmental effects. This improved signal processing, Environmentally Corrected Matched Filter (ECMF), first uses a Wiener filter to estimate the environmental transfer function and then again to correct the received signal using this estimate. This process can be viewed as a smarter inverse or whitening filter that adjusts behavior according to the signal to noise ratio across the spectrum. Though the ECMF is independent of bandwidth, it is expected that ultra wideband signals will see the largest improvement, since they tend to be more impacted by environmental effects. The development of the ECMF and demonstration of improved parameter estimation with its use are the primary emphases in this dissertation. Additionally, several new contributions to the field of sonar signal processing made in conjunction with the development of the ECMF are described. A new, nondimensional wideband ambiguity function is presented as a way to view the behavior of the matched filter with and without the decorrelating environmental effects; a new, integrated phase broadband angle estimation method is developed and compared to existing methods; and a new, asymptotic offset phase angle variance model is presented. Several data sets are used to demonstrate these new contributions. High fidelity Sonar Simulation Toolset (SST) synthetic data is used to characterize the theoretical performance. Two in-water data sets were used to verify assumptions that were made during the development of the ECMF. Finally, a newly collected in-air data set containing ultra wideband signals was used in lieu of a cost prohibitive underwater experiment to demonstrate the effectiveness of the ECMF at improving parameter estimates.

  11. Hybrid Discrete Wavelet Transform and Gabor Filter Banks Processing for Features Extraction from Biomedical Images

    PubMed Central

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    A new methodology for automatic feature extraction from biomedical images and subsequent classification is presented. The approach exploits the spatial orientation of high-frequency textural features of the processed image as determined by a two-step process. First, the two-dimensional discrete wavelet transform (DWT) is applied to obtain the HH high-frequency subband image. Then, a Gabor filter bank is applied to the latter at different frequencies and spatial orientations to obtain new Gabor-filtered image whose entropy and uniformity are computed. Finally, the obtained statistics are fed to a support vector machine (SVM) binary classifier. The approach was validated on mammograms, retina, and brain magnetic resonance (MR) images. The obtained classification accuracies show better performance in comparison to common approaches that use only the DWT or Gabor filter banks for feature extraction. PMID:27006906

  12. Gas stream clean-up filter and method for forming same

    DOEpatents

    Mei, Joseph S.; DeVault, James; Halow, John S.

    1993-01-01

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

  13. Cryogenic filter method produces super-pure helium and helium isotopes

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  14. INTERIOR VIEW FROM CATWALKS LOOKING DOWN ON FILTER WHEEL MACHINES. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW FROM CATWALKS LOOKING DOWN ON FILTER WHEEL MACHINES. USED TO FILTER OUT AND SEPARATE BICARBONATE FROM AMMONIONATED BRINE. DISCHARGE FROM STRIPPER COLUMNS (SOLVAY COLUMNS). - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  15. Design of a micromachined terahertz electromagnetic crystals (EMXT) channel-drop filter on silicon-substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Liu, Yong; Si, Liming; Lv, Xin

    2013-08-01

    An integrated 0.5 THz electromagnetic crystals(EMXT) channel-drop filter based on PBG structure is presented in this paper. A channel-drop filter is a device in which a narrow bandwidth is redirected to another "drop" waveguide while other frequencies are unaffected. It's capable of extracting a certain frequency from a continuous spectrum in the bus channel and passing it to the test channel. It has potential applications in photonic integrated circuits, radio astronomy, THz spectroscopy, THz communication and remote sensing radar receiver. PBG structures(or photonic crystals) are periodic structures which possess band gaps, where the electromagnetic wave of certain ranges of frequencies cannot pass through and is reflected. The proposed channel-drop filter consists of input waveguide,output waveguide and PBG structure. The proposed filter is simulated using the finite element method and can be fabricated by micro-electromechanical systems (MEMS) technology,due to its low cost, high performance and high processing precision.The filter operation principle and fabrication process are discussed.The simulation results show its ability to filter the frequency of 496GHz with a linewidth of approximately 4GHz and transmission of 27.2 dB above background.The loss at resonant frequency is less than 1dB considering the thickness and roughness of gold layer required by the MEMS process.The channel drop efficiency is 84%.

  16. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy

    NASA Astrophysics Data System (ADS)

    Hu, Han; Ding, Yulin; Zhu, Qing; Wu, Bo; Lin, Hui; Du, Zhiqiang; Zhang, Yeting; Zhang, Yunsheng

    2014-06-01

    The filtering of point clouds is a ubiquitous task in the processing of airborne laser scanning (ALS) data; however, such filtering processes are difficult because of the complex configuration of the terrain features. The classical filtering algorithms rely on the cautious tuning of parameters to handle various landforms. To address the challenge posed by the bundling of different terrain features into a single dataset and to surmount the sensitivity of the parameters, in this study, we propose an adaptive surface filter (ASF) for the classification of ALS point clouds. Based on the principle that the threshold should vary in accordance to the terrain smoothness, the ASF embeds bending energy, which quantitatively depicts the local terrain structure to self-adapt the filter threshold automatically. The ASF employs a step factor to control the data pyramid scheme in which the processing window sizes are reduced progressively, and the ASF gradually interpolates thin plate spline surfaces toward the ground with regularization to handle noise. Using the progressive densification strategy, regularization and self-adaption, both performance improvement and resilience to parameter tuning are achieved. When tested against the benchmark datasets provided by ISPRS, the ASF performs the best in comparison with all other filtering methods, yielding an average total error of 2.85% when optimized and 3.67% when using the same parameter set.

  17. Depth Filters Containing Diatomite Achieve More Efficient Particle Retention than Filters Solely Containing Cellulose Fibers

    PubMed Central

    Buyel, Johannes F.; Gruchow, Hannah M.; Fischer, Rainer

    2015-01-01

    The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g., when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m−2 when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU) when diatomite filters were used. We also tested pre–coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m−2 with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins. PMID:26734037

  18. Depth Filters Containing Diatomite Achieve More Efficient Particle Retention than Filters Solely Containing Cellulose Fibers.

    PubMed

    Buyel, Johannes F; Gruchow, Hannah M; Fischer, Rainer

    2015-01-01

    The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g., when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m(-2) when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU) when diatomite filters were used. We also tested pre-coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m(-2) with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins.

  19. Improving inferior vena cava filter retrieval rates with the define, measure, analyze, improve, control methodology.

    PubMed

    Sutphin, Patrick D; Reis, Stephen P; McKune, Angie; Ravanzo, Maria; Kalva, Sanjeeva P; Pillai, Anil K

    2015-04-01

    To design a sustainable process to improve optional inferior vena cava (IVC) filter retrieval rates based on the Define, Measure, Analyze, Improve, Control (DMAIC) methodology of the Six Sigma process improvement paradigm. DMAIC, an acronym for Define, Measure, Analyze, Improve, and Control, was employed to design and implement a quality improvement project to increase IVC filter retrieval rates at a tertiary academic hospital. Retrievable IVC filters were placed in 139 patients over a 2-year period. The baseline IVC filter retrieval rate (n = 51) was reviewed through a retrospective analysis, and two strategies were devised to improve the filter retrieval rate: (a) mailing of letters to clinicians and patients for patients who had filters placed within 8 months of implementation of the project (n = 43) and (b) a prospective automated scheduling of a clinic visit at 4 weeks after filter placement for all new patients (n = 45). The effectiveness of these strategies was assessed by measuring the filter retrieval rates and estimated increase in revenue to interventional radiology. IVC filter retrieval rates increased from a baseline of 8% to 40% with the mailing of letters and to 52% with the automated scheduling of a clinic visit 4 weeks after IVC filter placement. The estimated revenue per 100 IVC filters placed increased from $2,249 to $10,518 with the mailing of letters and to $17,022 with the automated scheduling of a clinic visit. Using the DMAIC methodology, a simple and sustainable quality improvement intervention was devised that markedly improved IVC filter retrieval rates in eligible patients. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.

  20. Noise reduction with complex bilateral filter.

    PubMed

    Matsumoto, Mitsuharu

    2017-12-01

    This study introduces a noise reduction technique that uses a complex bilateral filter. A bilateral filter is a nonlinear filter originally developed for images that can reduce noise while preserving edge information. It is an attractive filter and has been used in many applications in image processing. When it is applied to an acoustical signal, small-amplitude noise is reduced while the speech signal is preserved. However, a bilateral filter cannot handle noise with relatively large amplitudes owing to its innate characteristics. In this study, the noisy signal is transformed into the time-frequency domain and the filter is improved to handle complex spectra. The high-amplitude noise is reduced in the time-frequency domain via the proposed filter. The features and the potential of the proposed filter are also confirmed through experiments.

Top