Science.gov

Sample records for tridentatacontra rhizoctonia solanien

  1. Rhizoctonia web blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia web blight, caused by several Rhizoctonia spp., is an important disease of evergreen azaleas and other ornamental plants in nurseries. The primary pathogens causing web blight are binucleate Rhizoctonia anastomosis groups (AG) (= Ceratobasidium D.P. Rogers, teleomorph). In southern AL an...

  2. Rhizoctonia solani: Understanding the Terminology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani can cause seedling damping-off and root rot in dry bean and a number of other major crops including sugarbeet, soybean, cotton, potato, etc. There appears to be an increase in reported incidence in both temperate regions and in tropical areas. As well as a root rot, some stains ca...

  3. Rhizoctonia seedling disease on sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia seedling damping-off can cause losses in sugar beet as well as providing inoculum for later root rot. The disease is caused by Rhizoctonia solani. The pathogen has several subgroups, anastomosis groups (AG), of which AG-4 has historically been associated with damping-off, while AG-2-2 is...

  4. Solid formulations of binucleate Rhizoctonia isolates suppress Rhizoctonia solani and Pythium ultimum in potting medium.

    PubMed

    Harris, A R

    2000-03-01

    Two isolates of binucleate Rhizoctonia spp., previously selected for efficacy in suppression of Rhizoctonia solani and Pythium spp., as well as plant growth promotion, were incorporated into various solid substrate formulations. These formulated products were assayed at three doses in three glass-house experiments for biocontrol of damping-off diseases in Capsicum annuum. R. solani anastomosis group 4 or Pythium ultimum var. sporangiiferum were incorporated into pasteurized potting medium with each formulated binucleate Rhizoctonia product. All formulations were effective against both pathogens in at least two experiments, but some formulations of one isolate of binucleate Rhizoctonia did not give consistent control of R. solani in one experiment. The most consistent formulation, which provided control of both pathogens at all doses of binucleate Rhizoctonia, was the simple substrate of rice hulls. The implications for commercialization of a biocontrol product are discussed.

  5. In vitro fungicide sensitivity of Rhizoctonia isolates collected from turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different Rhizoctonia species and anastomosis groups (AGs) have been reported to show variable sensitivity to various commercial fungicides. Thirty–six isolates of Rhizoctonia collected from turfgrasses were tested in vitro for sensitivity to commercial formulations of iprodione, triticonazole, and ...

  6. Management of Rhizoctonia root and crown rot of subarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root and crown rot is caused by the fungus Rhizoctonia solani and is one of the most severe soil-borne diseases of sugarbeet in Minnesota and North Dakota. Rhizoctonia root and crown rot may reduce yield significantly, and diseased beets may cause problems in storage piles. Fields with...

  7. Rhizoctonia belly rot in cucumber fruit using Rhizoctonia solani isolated from sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are grown in rotation with sugar beets in some areas in Michigan but their interaction with important diseases affecting sugar beets is not well known. Cucumbers are known to be primarily susceptible to Rhizoctonia solani AG-4, but little is known about their susceptibility to AG 2-2 isola...

  8. The prevalence of different strains of Rhizoctonia solani associated with Rhizoctonia crown and root rot symptoms in Ontario sugarbeet fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia crown and root rot (RCRR) [Rhizoctonia solani Kühn] is an important disease of sugarbeets in southwestern Ontario, Canada. A survey of commercial sugarbeet fields was completed in 2010 and 2011 to determine the range of R. solani anastomosis groups (AGs) and inter-specific groups (ISGs) ...

  9. Evaluation of strategies for the control of canola and lupin seedling diseases caused by Rhizoctonia anastomosis groups

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several methods with potential for the management of Rhizoctonia diseases of canola and lupin including several methods with potential for the management of Rhizoctonia plant resistance, fungicide seed treatment and biological control using binucleate Rhizoctonia anastomosis groups (AGs) were evalua...

  10. AFLP fingerprinting for identification of infra-species groups of Rhizoctonia solani and Waitea circinata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patch diseases caused by Thanatephorus cucumeris and Waitea circinata varieties (anamorphs: Rhizoctonia species) pose a serious threat to successful maintenance of several important turfgrass species. Reliance on field symptoms to identify Rhizoctonia causal agents can be difficult and misleading. D...

  11. Optimum Timing of Pre-Plant Applications of Glyphosate to Manage Rhizoctonia Root Rot in Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot, caused by Rhizoctonia solani AG-8 and R. oryzae, is considered one of the main deterrents for farmers to adopt reduced tillage systems in the Pacific Northwest. Because of the wide host range of Rhizoctonia spp., herbicide application before planting to control weeds and volunt...

  12. Sugar Beet Resistance to Rhizoctonia Root and Crown Rot: Where does it fit in?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In sugar beet (Beta vulgaris L.), Rhizoctonia root- or crown-rot is caused by Rhizoctonia solani (AG-2-2). Seedling damping-off in sugar beet is caused by R. solani of both anastomosis groups, AG-2-2 and AG-4. Rhizoctonia solani subgroup AG-2-2 IV had been considered to be the primary cause of Rhi...

  13. Rhizoctonia seedling damping-off in sugar beet in Michigan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani is an important seedling pathogen of sugar beet, causing damping-off following seedling emergence. Anastomosis group (AG)-4 has been the primary seedling pathogen reported on sugar beet, however, recent screening has found high incidence of infection by AG-2-2. Isolations of R. so...

  14. Evaluation of Brassica species for resistance to Rhizoctonia solani and binucleate Rhizoctonia (Ceratobasidium spp.) under controlled environment conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isolates of R. solani AG 2-1, AG 8, AG 10 and binucleate Rhizoctonia (Ceratobasidium spp.) were tested for virulence on Brassica crops in growth chamber experiments. Isolate virulence and genotype resistance were determined based on percent of seedling survival, shoot length, and shoot fresh weight....

  15. Characterization and pathogenicity of Rhizoctonia and Rhizoctonia-like spp. from pea crops in the Columbia Basin of Oregon and Washington

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 179 isolates of Rhizoctonia and Rhizoctonia-like species were obtained from soil and plant samples collected from irrigated pea crops in the semi-arid Columbia Basin of Oregon and Washington from 2011 to 2013, and characterized to species, subspecies, and anastomosis groups (AG) based on ...

  16. Soil suppressiveness to Rhizoctonia solani and microbial diversity.

    PubMed

    Bakker, Y; Van Loon, F M J; Schneider, J H M

    2005-01-01

    Rhizoctonia solani anastomosis group 2-2IIIB causes damping-off, black root rot and crown rot in sugar beet (Beta vulgaris). Based on experiences of growers and field experiments, soils can become suppressive to R. solani. The fungus may be present in the soil, but the plant does not show symptoms. Understanding the mechanisms causing soil suppressiveness to R. solani is essential for the development of environmentally friendly control strategies of rhizoctonia root rot in sugar beet. A bioassay that discriminates soils in their level of disease suppressiveness was developed. Results of bioassays were in accordance with field observations. Preliminary results indicate an active role of microbial communities. Our research is focused on the disentanglement of biological mechanisms causing soil suppressiveness to R. solani in sugar beet. Therefore, we are handling a multidisciplinary approach through experimental fields, bioassays, several in vitro techniques and molecular techniques (PCR-DGGE).

  17. Nonpathogenic Binucleate Rhizoctonia spp. and Benzothiadiazole Protect Cotton Seedlings Against Rhizoctonia Damping-Off and Alternaria Leaf Spot in Cotton.

    PubMed

    Jabaji-Hare, Suha; Neate, Stephen M

    2005-09-01

    ABSTRACT Recent reports have shown induction of resistance to Rhizoctonia root rot using nonpathogenic strains of binucleate Rhizoctonia spp. (np-BNR). This study evaluates the biocontrol ability of several np-BNR isolates against root and foliar diseases of cotton in greenhouse trials, provides evidence for induced systemic resistance (ISR) as a mechanism in this biocontrol, and compares the disease control provided by np-BNR with that provided by the chemical inducer benzothiadiazole (BTH). Pretreatment of cotton seedlings with np-BNR isolates provided good protection against pre- and post-emergence damping-off caused by a virulent strain of Rhizoctonia solani (AG-4). Seedling stand of protected cotton was significantly higher (P < 0.05) than that of nonprotected seedlings. Several np-BNR isolates significantly reduced disease severity. The combination of BTH and np-BNR provided significant protection against seedling rot and leaf spot in cotton; however, the degree of disease reduction was comparable to that obtained with np-BNR treatment alone. Significant reduction in leaf spot symptoms caused by Alternaria macrospora occurred on cotyledons pretreated with np-BNR or sprayed with BTH, and the np- BNR-treated seedlings had significantly less leaf spot than BTH-treated seedlings. The results demonstrate that np-BNR isolates can protect cotton from infections caused by both root and leaf pathogens and that disease control was superior to that observed with a chemical inducer.

  18. Rapid quantitative assessment of Rhizoctonia tolerance in roots of wheat and barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani AG8, causal agent of Rhizoctonia root rot and bare patch in dryland cereal production systems of the Pacific Northwest, USA and Australia, reduces yields in a wide range of crops. Disease is not consistently controlled by available management practices, and genetic resistance is d...

  19. Management of Rhizoctonia Damping-off of Brassica Oilseed Crops in the PNW

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani can cause pre and post-emergence damping off of Brassica oilseed species with adverse effects on stand establishment. In greenhouse experiments, we have examined resistance to two groups (AGs) of Rhizoctonia solani among various Brassica species and varieties. R. solani AG 2-1 is ...

  20. Temperature, Moisture, and Fungicide Effects in Managing Rhizoctonia Root and Crown Rot of Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani AG-2-2 is the causal agent of Rhizoctonia root and crown rot in sugar beet. To assess the capacity at which other anastomosis groups (AGs) are able to infect sugar beet, 15 AGs and subgroups were tested for pathogenicity on resistant (FC708 CMS) and susceptible (Monohikari) seedl...

  1. Characterization of Rhizoctonia isolates associated with damping-off and crown rot of rooibos seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia species were reported to be an important component of the complex involved in damping-off of rooibos (Aspalathus linearis) seedlings and cause severe crown rot of seedlings in nurseries. However, no information is available on the anastomosis groups (AGs) of Rhizoctonia associated with d...

  2. Leuconostoc spp. associated with root rot in sugar beet and their interaction with rhizoctonia solani

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root and crown is an important disease problem in sugar beet caused by Rhizoctonia solani and also shown to be associated with Leuconostoc. Since, the initial Leuconostoc studies were conducted with only a few isolates and the relationship of Leuconostoc with R. solani is poorly underst...

  3. Potential of spreading binucleate Rhizoctonia from nursery propagation floors to trays containing azalea stem cuttings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Binucleate Rhizoctonia fungi cause web blight on azaleas and other woody ornamental plants. This research focused on one aspect of how the pathogen may spread from contaminated floors of propagation houses into trays containing clean azalea stem cuttings that generate new root systems. Rhizoctonia w...

  4. Proteomic analysis of Rhizoctonia solani AG-1 sclerotia maturation.

    PubMed

    Kwon, Young Sang; Kim, Sang Gon; Chung, Woo Sik; Bae, Hanhong; Jeong, Sung Woo; Shin, Sung Chul; Jeong, Mi-Jeong; Park, Soo-Chul; Kwak, Youn-Sig; Bae, Dong-Won; Lee, Yong Bok

    2014-01-01

    Rhizoctonia solani (R. solani), a soil-borne necrotrophic pathogen, causes various plant diseases. Rhizoctonia solani is a mitosporic fungus, the sclerotium of which is the primary inoculum and ensures survival of the fungus during the offseason of the host crop. Since the fungus does not produce any asexual or sexual spores, understanding the biology of sclerotia is important to examine pathogen ecology and develop more efficient methods for crop protection. Here, one- and two-dimensional gel electrophoresis (1-DE and 2-DE, respectively) were used to examine protein regulation during the maturation of fungal sclerotia. A total of 75 proteins (20 proteins from 1-DE using matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectrometry (MS) and 55 proteins from 2-DE using MALDI-TOF MS or MALDI-TOF/TOF MS) were differentially expressed during sclerotial maturation. The identified proteins were classified into ten categories based on their biological functions, including genetic information processing, carbohydrate metabolism, cell defense, amino acid metabolism, nucleotide metabolism, cellular processes, pathogenicity and mycotoxin production, and hypothetical or unknown functions. Interestingly, two vacuole function-related proteins were highly up-regulated throughout sclerotial maturation, which was confirmed at the transcript level by reverse transcriptase polymerase chain reaction (RT-PCR) analysis. These findings contribute to our understanding of the biology of R. solani sclerotia.

  5. Interaction between Meloidogyne incognita and Rhizoctonia solani on green beans

    PubMed Central

    Al-Hazmi, A.S.; Al-Nadary, S.N.

    2015-01-01

    The interaction between Meloidogyne incognita (race 2) and Rhizoctonia solani (AG 4) in a root rot disease complex of green beans (Phaseolus vulgaris) was examined in a greenhouse pot experiment. Three week-old seedlings (cv. Contender) were inoculated with the nematode and/or the fungus in different combinations and sequences. Two months after last nematode inoculation, the test was terminated and data were recorded. The synchronized inoculation by both pathogens (N + F) increased the index of Rhizoctonia root rot and the number of root galls; and suppressed plant growth, compared to controls. However, the severity of root rot and suppression of plant growth were greater and more evident when inoculation by the nematode preceded the fungus (N → F) by two weeks. Nematode reproduction (eggs/g root) was adversely affected by the presence of the fungus except by the synchronized inoculation. When inoculation by nematode preceded the fungus, plant growth was severely suppressed and roots were highly damaged and rotted leading to a decrease of root galls and eggs. PMID:26288560

  6. Lysine catabolism in Rhizoctonia leguminicola and related fungi.

    PubMed Central

    Guengerich, F P; Broquist, H P

    1976-01-01

    The catabolism of lysine was studied in several yeasts and fungi. Results with cell-free extracts of Rhizoctonia leguminicola support a proposed pathway involving (D- and L-) EPSILON-N-acetyllysine, alpha-keto-epsilon-acetamidohexanoic acid, delta-acetamidovaleric acid, and delta-aminovaleric acid in the conversion of L-lysine to shortchain organic acids. Label from radioactive L-lysine was found to accumulate in D- and L-epsilon-N-acetyllysine, delta-acetamidovaleric acid, delta-aminovaleric acid, and glutaric acid in cultures of R. leguminicola, Neurospora crassa, Saccharomyces cerevisiae, and Hansenula saturnus, suggesting that the proposed omega-acetyl pathway of lysine catabolism is generalized among yeasts and fungi. In N. crassa, as is the case in R. leguminicola, the major precursor of L-pipecolic acid was the L-isomer of lysine; 15N experiments were consistent with delta1-piperideine-2-carboxylic acid as an intermediate in the transformation. PMID:131119

  7. Optimized protein extraction methods for proteomic analysis of Rhizoctonia solani.

    PubMed

    Lakshman, Dilip K; Natarajan, Savithiry S; Lakshman, Sukla; Garrett, Wesley M; Dhar, Arun K

    2008-01-01

    Rhizoctonia solani (Teleomorph: Thanatephorus cucumeris, T. praticola) is a basidiomycetous fungus and a major cause of root diseases of economically important plants. Various isolates of this fungus are also beneficially associated with orchids, may serve as biocontrol agents or remain as saprophytes with roles in decaying and recycling of soil organic matter. R. solani displays several hyphal anastomosis groups (AG) with distinct host and pathogenic specializations. Even though there are reports on the physiological and histological basis of Rhizoctonia-host interactions, very little is known about the molecular biology and control of gene expression early during infection by this pathogen. Proteamic technologies are powerful tools for examining alterations in protein profiles. To aid studies on its biology and host pathogen interactions, a two-dimensional (2-D) gel-based global proteomic study has been initiated. To develop an optimized protein extraction protocol for R. solani, we compared two previously reported protein extraction protocols for 2-D gel analysis of R. solani (AG-4) isolate Rs23. Both TCA-acetone precipitation and phosphate solubilization before TCA-acetone precipitation worked well for R. solani protein extraction, although selective enrichment of some proteins was noted with either method. About 450 spots could be detected with the densitiometric tracing of Coomassie blue-stained 2-D PAGE gels covering pH 4-7 and 6.5-205 kDa. Selected protein spots were subjected to mass spectrometric analysis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Eleven protein spots were positively identified based on peptide mass fingerprinting match with fungal proteins in public databases with the Mascot search engine. These results testify to the suitability of the two optimized protein extraction protocols for 2-D proteomic studies of R. solani.

  8. Development of SCAR markers and UP-PCR cross-hybridization method for specific detection of four major subgroups of Rhizoctonia from infected turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several species and hyphal anastomosis groups (AG) of Rhizoctonia solani (sensu lato) cause brown patch diseases of turfgrasses. Conventional methods of identification of Rhizoctonia pathogens are time consuming and often inaccurate. A rapid identification assay for Waitea circinata (anamorph: Rhizo...

  9. The influence of soil moisture and Rhizoctonia solani anastomosis and intraspecific group on the incidence of damping-off and the incidence and severity of Rhizoctonia crown and root rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia crown and root rot (Rhizoctonia solani) reduces plant stands, sugar quality and yield in sugar beet. To evaluate the influence of R. solani anastomosis (AG) and intraspecific groups and soil moisture on disease incidence and severity, a field trial was established in Ridgetown, Ontario, ...

  10. Genetic diversity and virulence of Rhizoctonia species associated with plantings of Lotus corniculatus.

    PubMed

    Emery, Keith M; Beuselinck, Paul R; English, James T

    2003-02-01

    Species of Rhizoctonia cause a blight of Lotus corniculatus, a perennial forage legume. We characterized genetic variation and virulence in populations of R. solani and binucleate Rhizoctonia's associated with diseased L. corniculatus in field plantings over several years. Isolates of anastomosis groups AG-1 and AG-4 accounted for the R. solani recovered from diseased leaf and shoot tissues. Isolates of binucleate Rhizoctonia were recovered predominantly from soil and associated plant debris. Isolates of R. solani were more virulent on leaves and shoots of L. corniculatus than were binucleate Rhizoctonia isolates. Numerous unique DNA restriction patterns were observed among binucleate isolates and anastomosis groups of R. solani. Variation in restriction patterns was greater among isolates of AG-1 from the lower plant canopy than from the upper canopy. No restriction pattern was shared by any isolate from AG-1 and AG-4. Allelic and genotypic heterogeneity of AG-1 isolates were also greater in the lower plant canopy. Binucleate isolates exhibited greater heterogeneity than AG-1 isolates from either canopy region. L. corniculatus offers significant opportunities for investigating temporal and spatial dynamics of genetic structure of Rhizoctonia populations in perennial plant systems.

  11. Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium.

    PubMed

    Okubara, Patricia A; Dickman, Martin B; Blechl, Ann E

    2014-11-01

    The soilborne necrotrophic pathogens Rhizoctonia and Pythium infect a wide range of crops in the US and worldwide. These pathogens pose challenges to growers because the diseases they cause are not adequately controlled by fungicides, rotation or, for many hosts, natural genetic resistance. Although a combination of management practices are likely to be required for control of Rhizoctonia and Pythium, genetic resistance remains a key missing component. This review discusses the recent deployment of introduced genes and genome-based information for control of Rhizoctonia, with emphasis on three pathosystems: Rhizoctonia solani AG8 and wheat, R. solani AG1-IA and rice, and R. solani AG3 or AG4 and potato. Molecular mechanisms underlying disease suppression will be addressed, if appropriate. Although less is known about genes and factors suppressive to Pythium, pathogen genomics and biological control studies are providing useful leads to effectors and antifungal factors. Prospects for resistance to Rhizoctonia and Pythium spp. will continue to improve with growing knowledge of pathogenicity strategies, host defense gene action relative to the pathogen infection process, and the role of environmental factors on pathogen-host interactions.

  12. Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium.

    PubMed

    Okubara, Patricia A; Dickman, Martin B; Blechl, Ann E

    2014-11-01

    The soilborne necrotrophic pathogens Rhizoctonia and Pythium infect a wide range of crops in the US and worldwide. These pathogens pose challenges to growers because the diseases they cause are not adequately controlled by fungicides, rotation or, for many hosts, natural genetic resistance. Although a combination of management practices are likely to be required for control of Rhizoctonia and Pythium, genetic resistance remains a key missing component. This review discusses the recent deployment of introduced genes and genome-based information for control of Rhizoctonia, with emphasis on three pathosystems: Rhizoctonia solani AG8 and wheat, R. solani AG1-IA and rice, and R. solani AG3 or AG4 and potato. Molecular mechanisms underlying disease suppression will be addressed, if appropriate. Although less is known about genes and factors suppressive to Pythium, pathogen genomics and biological control studies are providing useful leads to effectors and antifungal factors. Prospects for resistance to Rhizoctonia and Pythium spp. will continue to improve with growing knowledge of pathogenicity strategies, host defense gene action relative to the pathogen infection process, and the role of environmental factors on pathogen-host interactions. PMID:25438786

  13. Rhizoctonia anastomosis groups associated with diseased rooibos seedlings and the potential of compost as soil amendment for disease suppression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia spp. associated with rooibos in the Western Cape province of South Africa were recovered during the 2008 season by planting seedlings in rhizosphere soils collected from 14 rooibos nurseries. Seventy five Rhizoctonia isolates were obtained and 67 were multinucleate and 8 binucleate Rhiz...

  14. DNA fingerprinting and anastomosis grouping reveal similar genetic diversity in Rhizoctonia species infecting turfgrasses in the transition zone of USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia blight (sensu lato) is a common and serious disease of many turfgrass species. The most widespread causal agent, R. solani, consists of several genetically different subpopulations. Though hyphal anastomosis reactions have been used to group Rhizoctonia species, they are time consuming a...

  15. Screening a dry bean Andean diversity panel for potential sources of resistance to Rhizoctonia root rot and damping-off

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot and damping-off, caused by Rhizoctonia solani, are among the most economically important root and hypocotyl diseases in the world and affect a wide range of hosts including the common bean (Phaseolus vulgaris). To identify potential sources of resistance, screening material was ...

  16. Metabolome profiling to understand the defense response to sugar beet (Beta vulgaris) to Rhizoctonia solani AG 2-2 IIIB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia crown and root rot, caused by Rhizoctonia solani Kühn AG 2-2 IIIB, is an important disease of sugar beet (Beta vulgaris L.). The molecular processes that mediate sugar beet resistance to R. solani are largely unknown and identifying the metabolites associated with R. solani infection ma...

  17. Biocontrol of Rhizoctonia solani and Pythium ultimum on Capsicum by Trichoderma koningii in potting medium.

    PubMed

    Harris, A R

    1999-09-01

    Two isolates of Trichoderma koningii were evaluated for efficacy in control of damping-off diseases in seedlings of Capsicum annuum grown in pasteurized potting medium in a glasshouse. A selected isolate of binucleate Rhizoctonia and two fungicides were also included as standards for control of Rhizoctonia solani and Pythium ultimum var. sporangiiferum. Both isolates of T. koningii reduced seedling death caused by R. solani in one of two experiments, and by P. u. sporangii-ferum in two of three experiments. Neither isolate of T. koningii suppressed damping-off caused by either pathogen as consistently as the binucleate Rhizoctonia or fungicides. The implications of these results for commercial disease management are discussed.

  18. Bioactive saponin from tea seed pomace with inhibitory effects against Rhizoctonia solani.

    PubMed

    Kuo, Ping-Chung; Lin, Tsung-Chun; Yang, Cheng-Wei; Lin, Chih-Lung; Chen, Guo-Feng; Huang, Jenn-Wen

    2010-08-11

    The present study was aimed to characterize the antifungal principles in methanol extract of tea ( Camellia oleifera ) seed pomace. Totally, two flavonoids, camelliasides A (1) and B (2), and one saponin mixture composed of camelliasaponin B(1) (3) were identified from the methanol extract. These constituents were tested for their ability to reduce the infection of cabbage seedlings by Rhizoctonia solani Kuhn AG-4 and to inhibit growth of the pathogen on potato dextrose agar plates. The saponin mixture is a potential candidate as a new plant-derived pesticide to control Rhizoctonia damping-off of vegetable seedlings.

  19. Extrachromosomal plasmids in the plant pathogenic fungus Rhizoctonia solani.

    PubMed

    Jabaji-Hare, S H; Burger, G; Forget, L; Lang, B F

    1994-05-01

    Extrachromosomal DNA elements were found in field isolates of Rhizoctonia solani belonging to anastomosis groups (AG) 1-5. An isolate of AG-5 (Rh41) contains a 3.6-kbp plasmid (pRS188) which has a similar A+T content to mitochondrial DNA. pRS188 is linear and has knob structures at its ends, as revealed by electron microscopy. Exonuclease digestions show that the linear ends of pRS188 are protected, and remain protected even after proteinase K digestion. pRS188 does not hybridise to nuclear or mitochondrial DNAs of its host isolate (Rh41), to total DNAs of other plasmid-less AG-5 isolates, or to total DNA of plasmid-harbouring isolates belonging to different AGs. Cellular-fractionation experiments suggest that pRS188 is associated with mitochondria, but it remains undecided whether this occurs inside or outside of the organelles. The nucleotide sequence of about 60% of the plasmid has been determined, revealing no open reading frame longer than 91 amino acids, and no known gene or genetic element is detected in the sequence contigs of 300-1572 bp length. Similar studies were performed with the plasmid pRS104 present in an isolate of AG-4 (Rh36), the sequence of which exhibits essentially the same features as pRS188 except that its A+T content resembles that of nuclear DNA. Pathogenicity tests reveal that the isolates Rh41 and R36 are as virulent as the plasmid-less isolates of AG-4 and -5, indicating that the plasmids do not play any role in pathogenicity.

  20. Effect of potting mix microbial carrying capacity on biological control of rhizoctonia damping-off of radish and rhizoctonia crown and root rot of poinsettia.

    PubMed

    Krause, M S; Madden, L V; Hoitink, H A

    2001-11-01

    ABSTRACT Potting mixes prepared with dark, highly decomposed Sphagnum peat, with light, less decomposed Sphagnum peat, or with composted pine bark, all three of which were colonized by indigenous microorganisms, failed to consistently suppress Rhizoctonia damping-off of radish or Rhizoctonia crown and root rot of poinsettia. Inoculation of these mixes with Chryseobacterium gleum (C(299)R(2)) and Trichoderma hamatum 382 (T(382)) significantly reduced the severity of both diseases in the composted pine bark mix in which both biocontrol agents maintained high populations over 90 days. These microorganisms were less effective against damping-off in the light and dark peat mixes, respectively, in which populations of C(299)R(2) declined. In contrast, crown and root rot, a disease that is severe late in the crop, was suppressed in all three types of mixes. High populations of T(382) in all three mixes late during the cropping cycle may have contributed to control of this disease. PMID:18943449

  1. Effect of potting mix microbial carrying capacity on biological control of rhizoctonia damping-off of radish and rhizoctonia crown and root rot of poinsettia.

    PubMed

    Krause, M S; Madden, L V; Hoitink, H A

    2001-11-01

    ABSTRACT Potting mixes prepared with dark, highly decomposed Sphagnum peat, with light, less decomposed Sphagnum peat, or with composted pine bark, all three of which were colonized by indigenous microorganisms, failed to consistently suppress Rhizoctonia damping-off of radish or Rhizoctonia crown and root rot of poinsettia. Inoculation of these mixes with Chryseobacterium gleum (C(299)R(2)) and Trichoderma hamatum 382 (T(382)) significantly reduced the severity of both diseases in the composted pine bark mix in which both biocontrol agents maintained high populations over 90 days. These microorganisms were less effective against damping-off in the light and dark peat mixes, respectively, in which populations of C(299)R(2) declined. In contrast, crown and root rot, a disease that is severe late in the crop, was suppressed in all three types of mixes. High populations of T(382) in all three mixes late during the cropping cycle may have contributed to control of this disease.

  2. Role of essential oils in control of Rhizoctonia damping-off in tomato with bioactive Monarda herbage.

    PubMed

    Gwinn, Kimberly D; Ownley, Bonnie H; Greene, Sharon E; Clark, Miranda M; Taylor, Chelsea L; Springfield, Tiffany N; Trently, David J; Green, James F; Reed, A; Hamilton, Susan L

    2010-05-01

    Plants in the genus Monarda produce complex essential oils that contain antifungal compounds. The objectives of this research were to identify selections of monarda that reduce Rhizoctonia damping-off of tomato, and to determine relationships between essential oil composition of 13 monarda herbages (dried and ground leaves) and disease suppression. Herbages were grouped into five chemotypes, based on essential oil composition and effective concentrations for reducing growth by 50% for Rhizoctonia solani. Replicated and repeated disease control assays were conducted with monarda herbages in greenhouse medium, with or without Rhizoctonia. Percent survival, seedling height, and stem diameter were evaluated at 8 weeks. Survival, seedling height, and stem diameter in herbage-only treatments were not different from the control (no-herbage, no-pathogen) for most herbage treatments. In the pathogen control (no-herbage + Rhizoctonia), seedling survival was 10% that of the control. In pathogen-infested media, seedling survival ranged from 65 to 80% for treatments with thymol chemotypes and 55 to 65% for carvacrol chemotypes. Effective control of Rhizoctonia damping-off was correlated with phenolic monoterpenes; herbages classified as carvacrol chemotypes effectively protected tomato seedlings from Rhizoctonia damping-off disease without phytotoxicity. This study provides evidence that monarda herbages have potential as growing media amendments for control of Rhizoctonia damping-off disease.

  3. Influence of weed species and time of glyphosate application on Rhizoctonia root rot of barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani AG-8 causes root disease in wheat, barley, canola and other small grains in the dryland inland Pacific Northwest. The pathogen survives between crops on roots of volunteers and grassy weeds. Destroying this green bridge with herbicides such as glyphosate is a common tactic to cont...

  4. Screening of pea genotypes for resistance to root rot caused by Rhizoctonia solani AG 8, 2012.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani AG 8 is one of the major pathogens that causes pea root rot and stunting in the Columbia Basin of Oregon and Washington. The disease is most severe in fields where wheat has been mono-cropped for a number of years or where cereal cover crops are incorporated just before pea seedin...

  5. Comparative analysis of putative pathogenesis-related gene expression in two Rhizoctonia solani pathosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani, teleomorph Thanatephoris cucumeris, is a polyphagous nectrotrophic plant pathogen of the Basidiomycete order that is split into fourteen different anastomosis groups (AGs) based on hyphal interactions and host range. Currently, little is known about the methods by which R. solan...

  6. Evaluation of Onion Genotypes for Resistance to Stunting Caused by Rhizoctonia solani AG 8

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 35 onion genotypes was evaluated for resistance to onion stunting caused by Rhizoctonia solani anastomosis group 8 (AG-8) under temperature-controlled greenhouse conditions (15 ± 1oC) in 2013. Each onion genotype was planted in a cone-tainer with and without inoculation with R. solani AG ...

  7. Rhizoctonia Resistant Wheat -- Potential New Resources for Control for Soilborne Pathogens.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pacific Northwest (PNW) wheat, barley, legume and canola varieties are susceptible to the broad host-range soilborne pathogens that cause Rhizoctonia root rot and Pythium root rot. Effective control of these diseases will likely require additional approaches and resources. We have identified promisi...

  8. Molecular identification, genetic diversity, population genetics, and genomics of Rhizoctonia solani

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The basidiomycetous soilborne fungus Rhizoctonia (sensu lato) is an economically important pathogen of worldwide distribution and it is known to attack at least 188 species of higher plants, including agronomic crops, vegetables, ornamentals, forest trees and turfgrasses. The pathogenic isolates may...

  9. Postharvest respiration rate and sucrose content of Rhizoctonia-infected sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizotonia crown and root rot of sugarbeet, caused by Rhizoctonia solani AG 2-2, is increasing in Minnesota and North Dakota. As the disease increases in prevalence and severity, more diseased roots are being stored in piles where they affect storability and postharvest quality. The objective of th...

  10. Postharvet losses associated with Rhizoctonia crown and root rot of sugarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the prevalence of Rhizoctonia crown and root rot (RCRR) increases, more diseased sugarbeet (Beta vulgaris L.) roots are destined for storage piles. To investigate the effect of RCRR on storage properties, roots with similar symptoms were grouped and extractable sucrose, invert sugar, and respirat...

  11. Postharvest respiration rate and sucrose content of Rhizoctonia-infected sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizotonia crown and root rot of sugarbeet (Beta vulgaris L), caused by Rhizoctonia solani AG 2-2, is increasing in Minnesota and North Dakota. As the disease increases in prevalence and severity, more diseased roots are being stored in piles where they affect storability and postharvest quality. T...

  12. Rhizoctonia web blight development on azalea in relation to leaf wetness duration in the glasshouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In field trials done in nurseries, temperature was identified as the primary variable for predicting web blight development, caused by binucleate Rhizoctonia spp., on container-grown azaleas (Rhododendron spp.). Moisture, in the form of very low vapor pressure deficits, provided only a minor predict...

  13. Molecular characterization, morphological characteristics, virulence and geographic distribution of Rhizoctonia spp. in Washington State

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot and bare patch, caused by R. solani AG-8 and R. oryzae, are chronic and important yield-limiting diseases of wheat and barley in the Inland Pacific Northwest (PNW) of the USA. Major gaps remain in our understanding of the epidemiology of these diseases, and because multiple Rhiz...

  14. Rhizoctonia crown and root rot resistance evaluation of Beta PIs in Fort Collins, CO, 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-six sugar beet (Beta vulgaris subsp. vulgaris) germplasm from the USDA-Agricultural Research Service pre-breeding program at Fort Collins, Colorado were screened for resistance to Rhizoctonia crown and root rot (RCRR) at the Colorado State University ARDEC facility in Fort Collins, CO. There...

  15. Rhizoctonia root rot resistance of Beta PIs from the USDA-ARS NPGS, 2007.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-two plant introductions (PI) from the USDA-ARS National Plant Germplasm System (NPGS) (including garden beet, sugar beet, leaf beet, fodder beet, and wild beet) were evaluated for resistance to Rhizoctonia root rot. The trial was a randomized complete-block design with five replications in ...

  16. Spread potential of binucleate Rhizoctonia from propagation floors to trays containing stem cuttings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Binucelate Rhizoctonia spp. (BNR), the cause of web blight, are present all year on container-grown azaleas in the southern U.S. BNR can be eliminated during vegetative propagation by submerging stem cuttings in 50°C water for 21 minutes. The objective was to evaluate risk of rooting trays bein...

  17. Rhizoctonia crown and root rot resistance evaluation of Beta PIs in Fort Collins, CO, 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty beet accessions of either cultivated beet or sea beet (Beta vulgaris subsp. vulgaris or Beta vulgaris subsp. maritima (L.) Arcang) from the Beta collection of the USDA-Agricultural Research Service National Plant Germplasm System were screened for resistance to Rhizoctonia crown and root rot ...

  18. Molecular Characterization, Morphological Characteristics, Virulence, and Geographic Distribution of Rhizoctonia spp. in Washington State.

    PubMed

    Jaaffar, Ahmad Kamil Mohd; Paulitz, Timothy C; Schroeder, Kurtis L; Thomashow, Linda S; Weller, David M

    2016-05-01

    Rhizoctonia root rot and bare patch, caused by Rhizoctonia solani anastomosis group (AG)-8 and R. oryzae, are chronic and important yield-limiting diseases of wheat and barley in the Inland Pacific Northwest (PNW) of the United States. Major gaps remain in our understanding of the epidemiology of these diseases, in part because multiple Rhizoctonia AGs and species can be isolated from the same cereal roots from the field, contributing to the challenge of identifying the causal agents correctly. In this study, a collection totaling 498 isolates of Rhizoctonia was assembled from surveys conducted from 2000 to 2009, 2010, and 2011 over a wide range of cereal production fields throughout Washington State in the PNW. To determine the identity of the isolates, PCR with AG- or species-specific primers and/or DNA sequence analysis of the internal transcribed spacers was performed. R. solani AG-2-1, AG-8, AG-10, AG-3, AG-4, and AG-11 comprised 157 (32%), 70 (14%), 21 (4%), 20 (4%), 1 (0.2%), and 1 (0.2%), respectively, of the total isolates. AG-I-like binucleate Rhizoctonia sp. comprised 44 (9%) of the total; and 53 (11%), 80 (16%), and 51 (10%) were identified as R. oryzae genotypes I, II, and III, respectively. Isolates of AG-2-1, the dominant Rhizoctonia, occurred in all six agronomic zones defined by annual precipitation and temperature within the region sampled. Isolates of AG-8 also were cosmopolitan in their distribution but the frequency of isolation varied among years, and they were most abundant in zones of low and moderate precipitation. R. oryzae was cosmopolitan, and collectively the three genotypes comprised 37% of the isolates. Only isolates of R. solani AG-8 and R. oryzae genotypes II and III (but not genotype I) caused symptoms typically associated with Rhizoctonia root rot and bare patch of wheat. Isolates of AG-2-1 caused only mild root rot and AG-I-like binucleate isolates and members of groups AG-3, AG-4, and AG-11 showed only slight or no discoloration

  19. DNA fingerprinting and anastomosis grouping reveal similar genetic diversity in Rhizoctonia species infecting turfgrasses in the transition zone of USA.

    PubMed

    Amaradasa, B S; Horvath, B J; Lakshman, D K; Warnke, S E

    2013-01-01

    Rhizoctonia blight is a common and serious disease of many turfgrass species. The most widespread causal agent, Thanatephorus cucumeris (anamorph: R. solani), consists of several genetically different subpopulations. In addition, Waitea circinata varieties zeae, oryzae and circinata (anamorph: Rhizoctonia spp.) also can cause the disease. Accurate identification of the causal pathogen is important for effective management of the disease. It is challenging to distinguish the specific causal pathogen based on disease symptoms or macroscopic and microscopic morphology. Traditional methods such as anastomosis reactions with tester isolates are time consuming and sometimes difficult to interpret. In the present study universally primed PCR (UP-PCR) fingerprinting was used to assess genetic diversity of Rhizoctonia spp. infecting turfgrasses. Eighty-four Rhizoctonia isolates were sampled from diseased turfgrass leaves from seven distinct geographic areas in Virginia and Maryland. Rhizoctonia isolates were characterized by ribosomal DNA internal transcribed spacer (rDNA-ITS) region and UP-PCR. The isolates formed seven clusters based on ITS sequences analysis and unweighted pair group method with arithmetic mean (UPGMA) clustering of UP-PCR markers, which corresponded well with anastomosis groups (AGs) of the isolates. Isolates of R. solani AG 1-IB (n = 18), AG 2-2IIIB (n = 30) and AG 5 (n = 1) clustered separately. Waitea circinata var. zeae (n = 9) and var. circinata (n = 4) grouped separately. A cluster of six isolates of Waitea (UWC) did not fall into any known Waitea variety. The binucleate Rhizoctonia-like fungi (BNR) (n = 16) clustered into two groups. Rhizoctonia solani AG 2-2IIIB was the most dominant pathogen in this study, followed by AG 1-IB. There was no relationship between the geographic origin of the isolates and clustering of isolates based on the genetic associations. To our knowledge this is the first time UP-PCR was used to characterize Rhizoctonia

  20. A fungal growth model fitted to carbon-limited dynamics of Rhizoctonia solani.

    PubMed

    Jeger, M J; Lamour, A; Gilligan, C A; Otten, W

    2008-01-01

    Here, a quasi-steady-state approximation was used to simplify a mathematical model for fungal growth in carbon-limiting systems, and this was fitted to growth dynamics of the soil-borne plant pathogen and saprotroph Rhizoctonia solani. The model identified a criterion for invasion into carbon-limited environments with two characteristics driving fungal growth, namely the carbon decomposition rate and a measure of carbon use efficiency. The dynamics of fungal spread through a population of sites with either low (0.0074 mg) or high (0.016 mg) carbon content were well described by the simplified model with faster colonization for the carbon-rich environment. Rhizoctonia solani responded to a lower carbon availability by increasing the carbon use efficiency and the carbon decomposition rate following colonization. The results are discussed in relation to fungal invasion thresholds in terms of carbon nutrition. PMID:18312538

  1. Stem Rot on Adzuki Bean (Vigna angularis) Caused by Rhizoctonia solani AG 4 HGI in China.

    PubMed

    Sun, Suli; Xia, Changjian; Zhang, Jiqing; Duan, Canxing; Wang, Xiaoming; Wu, Xiaofei; Lee, Suk-Ha; Zhu, Zhendong

    2015-03-01

    During late August and early September 2011, stem rot symptoms were observed on adzuki bean plants (Vigna angularis) growing in fields located in Beijing and Hebei Province, China, respectively. In this study, four isolates were obtained from infected stems of adzuki bean plants. Based on their morphology, and sequence and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses of the ribosomal DNA internal transcribed spacers (rDNA-ITS) region, the four isolates were identified as Rhizoctonia solani in anastomosis group (AG) 4 HGI. Pathogenicity tests showed that all isolates were strongly pathogenic to adzuki bean and resulted in serious wilt symptoms which was similar to observations in the fields. Additionally, the isolates infected several other crops and induced related rot on the roots and basal stems. To our knowledge, this is the first report of Rhizoctonia solani AG 4 HGI causing stem rot on adzuki bean.

  2. A fungal growth model fitted to carbon-limited dynamics of Rhizoctonia solani.

    PubMed

    Jeger, M J; Lamour, A; Gilligan, C A; Otten, W

    2008-01-01

    Here, a quasi-steady-state approximation was used to simplify a mathematical model for fungal growth in carbon-limiting systems, and this was fitted to growth dynamics of the soil-borne plant pathogen and saprotroph Rhizoctonia solani. The model identified a criterion for invasion into carbon-limited environments with two characteristics driving fungal growth, namely the carbon decomposition rate and a measure of carbon use efficiency. The dynamics of fungal spread through a population of sites with either low (0.0074 mg) or high (0.016 mg) carbon content were well described by the simplified model with faster colonization for the carbon-rich environment. Rhizoctonia solani responded to a lower carbon availability by increasing the carbon use efficiency and the carbon decomposition rate following colonization. The results are discussed in relation to fungal invasion thresholds in terms of carbon nutrition.

  3. Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani.

    PubMed

    Shih, Hsin-Der; Liu, Yung-Chuan; Hsu, Fen-Lin; Mulabagal, Vanisree; Dodda, Rajasekhar; Huang, Jenn-Wen

    2003-01-01

    Streptomyces padanus strain PMS-702 is an antagonist of Rhizoctonia solani AG-4, the causal agent of damping-off of cabbage. Treatment of cabbage seeds with the culture filtrate of S. padanus strain PMS-702 was effective in reducing the incidence of damping-off of cabbage. The major active ingredient from the culture filtrate of S. padanus strain PMS-702 was purified by silica gel column chromatography and identified as the polyene macrolide, fungichromin, by NMR and mass spectral data. Bioassay studies showed that fungichromin had a strong antifungal activity against R. solani AG-4, and its minimum inhibitory concentration (over 90% inhibition) was found to be 72 microg/mL. This is the first report of fungichromin from S. padanus as an active ingredient for the control of Rhizoctonia damping-off of cabbage.

  4. Stem Rot on Adzuki Bean (Vigna angularis) Caused by Rhizoctonia solani AG 4 HGI in China

    PubMed Central

    Sun, Suli; Xia, Changjian; Zhang, Jiqing; Duan, Canxing; Wang, Xiaoming; Wu, Xiaofei; Lee, Suk-Ha; Zhu, Zhendong

    2015-01-01

    During late August and early September 2011, stem rot symptoms were observed on adzuki bean plants (Vigna angularis) growing in fields located in Beijing and Hebei Province, China, respectively. In this study, four isolates were obtained from infected stems of adzuki bean plants. Based on their morphology, and sequence and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses of the ribosomal DNA internal transcribed spacers (rDNA-ITS) region, the four isolates were identified as Rhizoctonia solani in anastomosis group (AG) 4 HGI. Pathogenicity tests showed that all isolates were strongly pathogenic to adzuki bean and resulted in serious wilt symptoms which was similar to observations in the fields. Additionally, the isolates infected several other crops and induced related rot on the roots and basal stems. To our knowledge, this is the first report of Rhizoctonia solani AG 4 HGI causing stem rot on adzuki bean. PMID:25774112

  5. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani.

    PubMed

    Brogue, K; Chet, I; Holliday, M; Cressman, R; Biddle, P; Knowlton, S; Mauvais, C J; Broglie, R

    1991-11-22

    The production of enzymes capable of degrading the cell walls of invading phytopathogenic fungi is an important component of the defense response of plants. The timing of this natural host defense mechanism was modified to produce fungal-resistant plants. Transgenic tobacco seedlings constitutively expressing a bean chitinase gene under control of the cauliflower mosaic virus 35S promoter showed an increased ability to survive in soil infested with the fungal pathogen Rhizoctonia solani and delayed development of disease symptoms.

  6. Maple Bark Biochar Affects Rhizoctonia solani Metabolism and Increases Damping-Off Severity.

    PubMed

    Copley, Tanya R; Aliferis, Konstantinos A; Jabaji, Suha

    2015-10-01

    Many studies have investigated the effect of biochar on plant yield, nutrient uptake, and soil microbial populations; however, little work has been done on its effect on soilborne plant diseases. To determine the effect of maple bark biochar on Rhizoctonia damping-off, 11 plant species were grown in a soilless potting substrate amended with different concentrations of biochar and inoculated or not with Rhizoctonia solani anastomosis group 4. Additionally, the effect of biochar amendment on R. solani growth and metabolism in vitro was evaluated. Increasing concentrations of maple bark biochar increased Rhizoctonia damping-off of all 11 plant species. Using multivariate analyses, we observed positive correlations between biochar amendments, disease severity and incidence, abundance of culturable bacterial communities, and physicochemical parameters. Additionally, biochar amendment significantly increased R. solani growth and hyphal extension in vitro, and altered its primary metabolism, notably the mannitol and tricarboxylic acid cycles and the glycolysis pathway. One or several organic compounds present in the biochar, as identified by gas chromatography-mass spectrometry analysis, may be metabolized by R. solani. Taken together, these results indicate that future studies on biochar should focus on the effect of its use as an amendment on soilborne plant pathogens before applying it to soils. PMID:25938176

  7. Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani.

    PubMed

    Pal, K K; Tilak, K V; Saxena, A K; Dey, R; Singh, C S

    2000-09-01

    A plant growth-promoting isolate of a fluorescent Pseudomonas spp. EM85 was found strongly antagonistic to Rhizoctonia solani, a causal agent of damping-off of cotton. The isolate produced HCN (HCN+), siderophore (Sid+), fluorescent pigments (Flu+) and antifungal antibiotics (Afa+). Tn5::lacZ mutagenesis of isolate EM85 resulted in the production of a series of mutants with altered production of HCN, siderophore, fluorescent pigments and antifungal antibiotics. Characterisation of these mutants revealed that the fluorescent pigment produced in PDA and the siderophore produced in CAS agar were not the same. Afa- and Flu- mutants had a smaller inhibition zone when grown with Rhizoctonia solani than the EM85 wild type. Sid- and HCN mutants failed to inhibit the pathogen in vitro. In a pot experiment, mutants deficient in HCN and siderophore production could suppress the damping-off disease by 52%. However, mutants deficient in fluorescent pigments and antifungal antibiotics failed to reduce the disease severity. Treatments with mutants that produced enhanced amounts of fluorescent pigments and antibiotics compared with EM85 wild type, exhibited an increase in biocontrol efficiency. Monitoring of the mutants in the rhizosphere using the lacZ marker showed identical proliferation of mutants and wild type. Purified antifungal compounds (fluorescent pigment and antibiotic) also inhibited the fungus appreciably in a TLC bioassay. Thus, the results indicate that fluorescent pigment and antifungal antibiotic of the fluorescent Pseudomonas spp. EM85 might be involved in the biological suppression of Rhizoctonia-induced damping-off of cotton.

  8. Maple Bark Biochar Affects Rhizoctonia solani Metabolism and Increases Damping-Off Severity.

    PubMed

    Copley, Tanya R; Aliferis, Konstantinos A; Jabaji, Suha

    2015-10-01

    Many studies have investigated the effect of biochar on plant yield, nutrient uptake, and soil microbial populations; however, little work has been done on its effect on soilborne plant diseases. To determine the effect of maple bark biochar on Rhizoctonia damping-off, 11 plant species were grown in a soilless potting substrate amended with different concentrations of biochar and inoculated or not with Rhizoctonia solani anastomosis group 4. Additionally, the effect of biochar amendment on R. solani growth and metabolism in vitro was evaluated. Increasing concentrations of maple bark biochar increased Rhizoctonia damping-off of all 11 plant species. Using multivariate analyses, we observed positive correlations between biochar amendments, disease severity and incidence, abundance of culturable bacterial communities, and physicochemical parameters. Additionally, biochar amendment significantly increased R. solani growth and hyphal extension in vitro, and altered its primary metabolism, notably the mannitol and tricarboxylic acid cycles and the glycolysis pathway. One or several organic compounds present in the biochar, as identified by gas chromatography-mass spectrometry analysis, may be metabolized by R. solani. Taken together, these results indicate that future studies on biochar should focus on the effect of its use as an amendment on soilborne plant pathogens before applying it to soils.

  9. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot.

    PubMed

    Schroeder, K L; Paulitz, T C

    2008-03-01

    Rhizoctonia spp. cause substantial yield losses in direct-seeded cereal crops compared with conventional tillage. To investigate the mechanisms behind this increased disease, soils from tilled or direct-seeded fields were inoculated with Rhizoctonia spp. at population densities from 0.8 to 250 propagules per gram and planted with barley (Hordeum vulgare). The incidence and severity of disease did not differ between soils with different tillage histories. Both R. solani AG-8 and R. oryzae stunted plants at high inoculum densities, with the latter causing pre-emergence damping-off. High inoculum densities of both species stimulated early production of crown roots in barley seedlings. Intact soil cores from these same tilled and direct-seeded fields were used to evaluate the growth of Rhizoctonia spp. from colonized oat seeds. Growth of R. oryzae was not affected by previous tillage history. However, R. solani AG-8 grew more rapidly through soil from a long-term direct-seeded field compared to tilled soils. The differential response between these two experiments (mixed, homogenized soil versus intact soil) suggests that soil structure plays a major role in the proliferation of R. solani AG-8 through soils with different tillage histories.

  10. Rhizoctonia Crown and Root Rot Resistance of Beta Plant Introductions from the USDA, Agricultural Research Service's National Plant Germplasm System, 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty wild beet (Beta vulgaris subsp. maritima (L.) Arcang) plant introduction (PI) accessions from the Beta collection of the USDA-ARS National Plant Germplasm System were screened for resistance to Rhizoctonia root and crown rot, at the USDA-ARS Fort Collins, CO Research Farm. The Rhizoctonia sc...

  11. Biological control of take-all and Rhizoctonia root rot of wheat by the cyclic lipopeptide-producing strain Pseudomonas fluorescens HC1-07

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas fluorescens HC1-07, isolated from the phyllosphere of wheat grown in Hebei province, China, inhibited a broad range of plant pathogens, including Gaeumannomyces graminis var. tritici and Rhizoctonia solani AG-8, and suppressed the soilborne diseases of wheat, take-all and Rhizoctonia roo...

  12. Cropping Systems and Cultural Practices Determine the Rhizoctonia Anastomosis Groups Associated with Brassica spp. in Vietnam

    PubMed Central

    Soltaninejad, Saman; Höfte, Monica

    2014-01-01

    Ninety seven Rhizoctonia isolates were collected from different Brassica species with typical Rhizoctonia symptoms in different provinces of Vietnam. The isolates were identified using staining of nuclei and sequencing of the rDNA-ITS barcoding gene. The majority of the isolates were multinucleate R. solani and four isolates were binucleate Rhizoctonia belonging to anastomosis groups (AGs) AG-A and a new subgroup of A-F that we introduce here as AG-Fc on the basis of differences in rDNA-ITS sequence. The most prevalent multinucleate AG was AG 1-IA (45.4% of isolates), followed by AG 1-ID (17.5%), AG 1-IB (13.4%), AG 4-HGI (12.4%), AG 2-2 (5.2%), AG 7 (1.0%) and an unknown AG related to AG 1-IA and AG 1-IE that we introduce here as AG 1-IG (1.0%) on the basis of differences in rDNA-ITS sequence. AG 1-IA and AG 1-ID have not been reported before on Brassica spp. Pathogenicity tests revealed that isolates from all AGs, except AG-A, induced symptoms on detached leaves of several cabbage species. In in vitro tests on white cabbage and Chinese cabbage, both hosts were severely infected by AG 1-IB, AG 2-2, AG 4-HGI, AG 1-IG and AG-Fc isolates, while under greenhouse conditions, only AG 4-HGI, AG 2-2 and AG-Fc isolates could cause severe disease symptoms. The occurrence of the different AGs seems to be correlated with the cropping systems and cultural practices in different sampling areas suggesting that agricultural practices determine the AGs associated with Brassica plants in Vietnam. PMID:25372406

  13. Soil Pseudomonas community structure and its antagonism towards Rhizoctonia solani under the stress of acetochlor.

    PubMed

    Wu, Minna; Zhang, Xiaoli; Zhang, Huiwen; Zhang, Yan; Li, Xinyu; Zhou, Qixing; Zhang, Chenggang

    2009-09-01

    In a microcosm experiment, the amplified ribosomal DNA restriction analysis was adopted to investigate the Pseudomonas community structure in soils applied with different concentrations (0, 50, 150, and 250 mg/kg) of acetochlor, and an in vitro assay was made to examine the antagonistic activity of isolated Pseudomonas strains acting on soil-borne pathogen Rhizoctonia solani. The results showed that acetochlor application changed the community structure of Pseudomonas in aquic brown soil. The diversity of Pseudomonas and the amount of isolated Pseudomonas strains with antagonistic activity decreased with an increasing acetochlor concentration, and the toxic effect of acetochlor reached to a steady level at 150-250 mg/kg.

  14. Identification of signatory secondary metabolites during mycoparasitism of Rhizoctonia solani by Stachybotrys elegans.

    PubMed

    Chamoun, Rony; Aliferis, Konstantinos A; Jabaji, Suha

    2015-01-01

    Stachybotrys elegans is able to parasitize the fungal plant pathogen Rhizoctonia solani AG-3 following a complex and intimate interaction, which, among others, includes the production of cell wall-degrading enzymes, intracellular colonization, and expression of pathogenic process encoding genes. However, information on the metabolome level is non-existent during mycoparasitism. Here, we performed a direct-infusion mass spectrometry (DIMS) metabolomics analysis using an LTQ Orbitrap analyzer in order to detect changes in the profiles of induced secondary metabolites of both partners during this mycoparasitic interaction 4 and 5 days following its establishment. The diketopiperazine(s) (DKPs) cyclo(S-Pro-S-Leu)/cyclo(S-Pro-S-Ile), ethyl 2-phenylacetate, and 3-nitro-4-hydroxybenzoic acid were detected as the primary response of Rhizoctonia 4 days following dual-culturing with Stachybotrys, whereas only the latter metabolite was up-regulated 1 day later. On the other hand, trichothecenes and atranones were mycoparasite-derived metabolites identified during mycoparasitism 4 and 5 days following dual-culturing. All the above secondary metabolites are known to exhibit bioactivity, including fungitoxicity, and represent key elements that determine the outcome of the interaction being studied. Results could be further exploited in programs for the evaluation of the bioactivity of these metabolites per se or their chemical analogs, and/or genetic engineering programs to obtain more efficient mycoparasite strains with improved efficacy and toxicological profiles.

  15. Characterization, Genetic Structure, and Pathogenicity of Rhizoctonia spp. Associated with Rice Sheath Diseases in India.

    PubMed

    Taheri, Parissa; Gnanamanickam, Sam; Höfte, Monica

    2007-03-01

    ABSTRACT Isolates of Rhizoctonia spp. were obtained from rice in India during 2000-2003. Characterization by conventional techniques and polymerase chain reaction showed that from 110 isolates, 99 were R. solani and 11 were R. oryzae-sativae. Of 99 isolates identified as R. solani, 96 were AG1-IA, 1 was AG1-IB, and 2 were AG1-IC. Amplified fragment length polymorphism (AFLP) analyzes were used to determine genetic relationships in Rhizoctonia pathogen populations collected from different geographic regions. Cluster analysis based on the AFLP data separated isolates belonging to the three different intraspecific groups of R. solani AG1 and differentiated R. solani from R. oryzae-sativae. Analysis of molecular variance (AMOVA) revealed that geographic region was the dominant factor determining population structure of R. solani AG1-1A; host cultivar had no significant effect. Pathogenicity tests on Oryza sativa cv. Zenith revealed that isolates of R. solani AG1-1A and AG1-1B were more virulent than R. solani AG1-IC and R. oryzae-sativae isolates.

  16. Leuconostoc spp. Associated with Root Rot in Sugar Beet and Their Interaction with Rhizoctonia solani.

    PubMed

    Strausbaugh, Carl A

    2016-05-01

    Rhizoctonia root and crown rot is an important disease problem in sugar beet caused by Rhizoctonia solani and also shown to be associated with Leuconostoc spp. Initial Leuconostoc studies were conducted with only a few isolates and the relationship of Leuconostoc with R. solani is poorly understood; therefore, a more thorough investigation was conducted. In total, 203 Leuconostoc isolates were collected from recently harvested sugar beet roots in southern Idaho and southeastern Oregon during 2010 and 2012: 88 and 85% Leuconostoc mesenteroides, 6 and 15% L. pseudomesenteroides, 2 and 0% L. kimchi, and 4 and 0% unrecognized Leuconostoc spp., respectively. Based on 16S ribosomal RNA sequencing, haplotype 11 (L. mesenteroides isolates) comprised 68 to 70% of the isolates in both years. In pathogenicity field studies with commercial sugar beet 'B-7', all Leuconostoc isolates caused more rot (P < 0.0001; α = 0.05) when combined with R. solani than when inoculated alone in both years. Also, 46 of the 52 combination treatments over the 2 years had significantly more rot (P < 0.0001; α = 0.05) than the fungal check. The data support the conclusion that a synergistic interaction leads to more rot when both Leuconostoc spp. and R. solani are present in sugar beet roots. PMID:26735061

  17. Induction of Soil Suppressiveness Against Rhizoctonia solani by Incorporation of Dried Plant Residues into Soil.

    PubMed

    Kasuya, Masahiro; Olivier, Andriantsoa R; Ota, Yoko; Tojo, Motoaki; Honjo, Hitoshi; Fukui, Ryo

    2006-12-01

    ABSTRACT Suppressive effects of soil amendment with residues of 12 cultivars of Brassica rapa on damping-off of sugar beet were evaluated in soils infested with Rhizoctonia solani. Residues of clover and peanut were tested as noncruciferous controls. The incidence of damping-off was significantly and consistently suppressed in the soils amended with residues of clover, peanut, and B. rapa subsp. rapifera 'Saori', but only the volatile substance produced from water-imbibed residue of cv. Saori exhibited a distinct inhibitory effect on mycelial growth of R. solani. Nonetheless, disease suppression in such residue-amended soils was diminished or nullified when antibacterial antibiotics were applied to the soils, suggesting that proliferation of antagonistic bacteria resident to the soils were responsible for disease suppression. When the seed (pericarps) colonized by R. solani in the infested soil without residues were replanted into the soils amended with such residues, damping-off was suppressed in all cases. In contrast, when seed that had been colonized by microorganisms in the soils containing the residues were replanted into the infested soil, damping-off was not suppressed. The evidence indicates that the laimosphere, but not the spermosphere, is the site for the antagonistic microbial interaction, which is the chief principle of soil suppressiveness against Rhizoctonia damping-off.

  18. Rhizoctonia wilt suppression of brinjal (Solanum melongena L) and plant growth activity by Bacillus BS2.

    PubMed

    Boruah, H P Deka; Kumar, B S Dileep

    2003-06-01

    An antibiotic-producing and hydrogen-cyanide-producing rhizobacteria strain Bacillus BS2 showed a wide range of antifungal activity against many Fusarium sp. and brinjal wilt disease pathogen Rhizoctonia solani. Seed bacterization with the strain BS2 promoted seed germination and plant growth in leguminous plants Phaseolus vulgaris and non-leguminous plants Solanum melongena L, Brassica oleracea var. capitata, B. oleraceae var. gongylodes and Lycopersicon esculentum Mill in terms of relative growth rate, shoot height, root length, total biomass production and total chlorophyll content of leaves. Yield of bacterized plants were increased by 10 to 49% compared to uninoculated control plants. Brinjal sapling raised through seed bacterization by the strain BS2 showed a significantly reduced wilt syndrome of brinjal caused by Rhizoctonia solani. Control of wilt disease by the bacterium was clue to the production of antibiotic-like substances, whereas plant growth-promotion was due to the activity of hydrogen cyanide. Root colonization study confirmed that the introduced bacteria colonized the roots and occupied 23-25% of total aerobic bacteria, which was confirmed using dual antibiotic (nalidixic acid and streptomycin sulphate) resistant mutant strain. The results obtained through this investigation suggested the potentiality of the strain BS2 to be used as a plant growth promoter and suppressor of wilt pathogen.

  19. Identification of signatory secondary metabolites during mycoparasitism of Rhizoctonia solani by Stachybotrys elegans

    PubMed Central

    Chamoun, Rony; Aliferis, Konstantinos A.; Jabaji, Suha

    2015-01-01

    Stachybotrys elegans is able to parasitize the fungal plant pathogen Rhizoctonia solani AG-3 following a complex and intimate interaction, which, among others, includes the production of cell wall-degrading enzymes, intracellular colonization, and expression of pathogenic process encoding genes. However, information on the metabolome level is non-existent during mycoparasitism. Here, we performed a direct-infusion mass spectrometry (DIMS) metabolomics analysis using an LTQ Orbitrap analyzer in order to detect changes in the profiles of induced secondary metabolites of both partners during this mycoparasitic interaction 4 and 5 days following its establishment. The diketopiperazine(s) (DKPs) cyclo(S-Pro-S-Leu)/cyclo(S-Pro-S-Ile), ethyl 2-phenylacetate, and 3-nitro-4-hydroxybenzoic acid were detected as the primary response of Rhizoctonia 4 days following dual-culturing with Stachybotrys, whereas only the latter metabolite was up-regulated 1 day later. On the other hand, trichothecenes and atranones were mycoparasite-derived metabolites identified during mycoparasitism 4 and 5 days following dual-culturing. All the above secondary metabolites are known to exhibit bioactivity, including fungitoxicity, and represent key elements that determine the outcome of the interaction being studied. Results could be further exploited in programs for the evaluation of the bioactivity of these metabolites per se or their chemical analogs, and/or genetic engineering programs to obtain more efficient mycoparasite strains with improved efficacy and toxicological profiles. PMID:25972848

  20. Screening different Brassica spp. germplasm for resistance to Rhizoctonia solani AG-2-1 and AG-8

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor stands of canola seedlings in Pacific Northwest (PNW) have been associated with Rhizoctonia solani AG-2-1 and AG-8. A total of eighty five genotypes of Brassica napus, B. rapa, B. carinata, B. juncea and Sinapsis alba were evaluated in the growth chamber for their resistance to both R. solani A...

  1. Use of the polymerase chain reaction to help determine the presence of blackpatch (Rhizoctonia leguminicola) in inoculated red clover leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia leguminicola, the causal agent of blackpatch of red clover, produces alkaloids that cause livestock to salivate excessively. Its presence is generally confirmed by microscopy, disappearance of symptoms after removal of the suspect forage, and chromatographic analysis of slaframine in ext...

  2. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two ...

  3. Pathogenicity, characterization and comparative virulence of Rhizoctonia spp. from insect-galled roots of Lepidium draba in Europe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association of Rhizoctonia spp. with insect-damaged and diseased tissue of the invasive perennial Lepidium draba was documented throughout the range of L. draba that was surveyed in Europe, including Hungary, Austria, Switzerland and France. Samples that could be both maintained under cooled con...

  4. Isolates of Rhizoctonia solani can produce both web blight and root rot symptoms in common bean (Phaseolus vulgaris L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani Kühn (Rs) is an important pathogen in the tropics, causing web blight (WB), and a widespread soil-borne root rot (RR) pathogen of common bean (Phaseolus vulgaris L.) worldwide. This pathogen is a species complex classified into 14 anastomosis groups (AG). Some AGs have been report...

  5. USDA-ARS germplasm evaluated for resistance to Rhizoctonia crown and root rot in Fort Collins, CO, 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-six sugar beet (Beta vulgaris subsp. vulgaris) germplasm from the USDA-Agricultural Research Service pre-breeding program at Fort Collins, Colorado were screened for resistance to Rhizoctonia crown and root rot (RCRR) at the Colorado State University ARDEC facility in Fort Collins, CO. There...

  6. Sugar beet breeding lines evaluated for resistance to Rhizoctonia crown and root rot in Fort Collins, CO, 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-nine beet sugar beet breeding lines (Beta vulgaris subsp. vulgaris) from the USDA-Agricultural Research Service breeding program at Fort Collins, CO, were screened for resistance to Rhizoctonia crown and root rot (Rcrr) at the Colorado State University ARDEC facility in Fort Collins, CO. The...

  7. Spread potential of binucleate Rhizoctonia from nursery propagation floors to trays containing azalea stem cuttings and sanitary control options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Binucelate Rhizoctonia sp. (BNR), the cause of web blight, can be spread on azalea stem cuttings into propagation houses, but can be eliminated from stems by submerging cuttings in 50°C water for 21 minutes. The overall objective was to evaluate risk of rooting cuttings in trays becoming contaminate...

  8. Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several species of fungi and oomycetes including Fusarium, Rhizoctonia, Phytophthora and Pythium have been reported as root pathogens of apple where they contribute to a phenomenon known as apple replant disease. In South Africa, very little is known about the specific species in these genera and th...

  9. Determination of the anastomosis grouping and virulence of Rhizoctonia spp. associated with potato tubers grown in Lincoln, New Zealand.

    PubMed

    Farrokhi-Nejad, Reza; Cromey, Matthew G; Moosawi-Jorf, S Ali

    2007-11-01

    A total of 58 isolates of Rhizoctonia spp. (46 R. solani and 12 binucleate Rhizoctonia) were recovered from potato tubers showing black scurf disease symptom during the 2004 growing season in Lincoln, New Zealand. The isolates were assigned to 5 Anastomosis Groups (AG) ofR. solani AG-3 (54.34%), AG-5 (28.26%), AG-8 (8.69%), AG-4 (6.52%) and AG-2-2 IIIB (2.17%) and six anastomosis groups ofbinucleate Rhizoctonia, AG-K (25%), AG-Bi (25%), AG-Ba (8.33%), AG-C (8.33%), AG-D (8.33%) and AG-E (8.33%). Two isolates of BNR did not anastomose with any of the tester strains and remain unidentified. In pathogenicity tests that were carried out on radish, carrot, lettuce, onion, tomato and hemp, it was found that all the isolates of both R. solani and binucleate Rhizoctonia to be virulent at varying degrees to these 6 plants species from different families. In these tests, isolates of AG-3 and AG-8 from R. solani population caused the highest and lowest disease severity on all 6 plant species, respectively. In population of binucleate Rhizoctonia, on the other hand, the highest and lowest disease severities were caused by the isolates of AG-D and AG-Ba on all test plants, respectively. When the results of the pathogenicity tests were examined in terms of the susceptibility levels of the plants, the most resistant plant was tomato against different AGs of R. solani and BNR. On the other hand, radish was the most susceptible plant species tested in this study against both R. solani and BNR isolates.

  10. Role of Bacterial Communities in the Natural Suppression of Rhizoctonia solani Bare Patch Disease of Wheat (Triticum aestivum L.)

    PubMed Central

    Yin, Chuntao; Hulbert, Scot H.; Schroeder, Kurtis L.; Mavrodi, Olga; Mavrodi, Dmitri; Dhingra, Amit; Schillinger, William F.

    2013-01-01

    Rhizoctonia bare patch and root rot disease of wheat, caused by Rhizoctonia solani AG-8, develops as distinct patches of stunted plants and limits the yield of direct-seeded (no-till) wheat in the Pacific Northwest of the United States. At the site of a long-term cropping systems study near Ritzville, WA, a decline in Rhizoctonia patch disease was observed over an 11-year period. Bacterial communities from bulk and rhizosphere soil of plants from inside the patches, outside the patches, and recovered patches were analyzed by using pyrosequencing with primers designed for 16S rRNA. Taxa in the class Acidobacteria and the genus Gemmatimonas were found at higher frequencies in the rhizosphere of healthy plants outside the patches than in that of diseased plants from inside the patches. Dyella and Acidobacteria subgroup Gp7 were found at higher frequencies in recovered patches. Chitinophaga, Pedobacter, Oxalobacteriaceae (Duganella and Massilia), and Chyseobacterium were found at higher frequencies in the rhizosphere of diseased plants from inside the patches. For selected taxa, trends were validated by quantitative PCR (qPCR), and observed shifts of frequencies in the rhizosphere over time were duplicated in cycling experiments in the greenhouse that involved successive plantings of wheat in Rhizoctonia-inoculated soil. Chryseobacterium soldanellicola was isolated from the rhizosphere inside the patches and exhibited significant antagonism against R. solani AG-8 in vitro and in greenhouse tests. In conclusion, we identified novel bacterial taxa that respond to conditions affecting bare patch disease symptoms and that may be involved in suppression of Rhizoctonia root rot and bare batch disease. PMID:24056471

  11. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    PubMed

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  12. Mass-spectrometry data for Rhizoctonia solani proteins produced during infection of wheat and vegetative growth.

    PubMed

    Anderson, Jonathan P; Hane, James K; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J; Singh, Karam B

    2016-09-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato, legumes and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. The data described in this article is derived from applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Comparisons of the data for sample types in this set will be useful to identify metabolic pathway changes as the fungus switches from saprophytic to a pathogenic lifestyle or pathogenicity related proteins contributing to the ability to cause disease on wheat. The data set is deposited in the PRIDE archive under identifier PRIDE: PXD002806.

  13. Double-stranded RNAs in Korean isolates of Rhizoctonia solani AG4.

    PubMed

    Kim, S O; Chung, H S; Lee, Y H

    1996-08-01

    Eighty-one isolates of Rhizoctonia solani AG4 were obtained from soil samples with diverse geographic origins in Korea. Forty-five out of 81 isolates (56%) contained at least one dsRNA molecule with their sizes ranging from 2.3 to > 23.1 kb. Nine different sizes of dsRNA molecules were found and extensive variation in banding patterns was observed among isolates. By comparing the sizes and combinations of dsRNAs, 21 distinct banding patterns were observed. Cytoplasmic fractions from 3 isolates showed the same dsRNA band patterns as those from the total cell extracts. The dsRNAs were stable through 10 successive hyphal tip cultures and serial transfers onto the potato dextrose agar supplemented with cycloheximide or emetine. The presence or absence of dsRNAs was not apparently correlated with disease severity, phenol oxidase activity, and geographic origin.

  14. Mass-spectrometry data for Rhizoctonia solani proteins produced during infection of wheat and vegetative growth.

    PubMed

    Anderson, Jonathan P; Hane, James K; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J; Singh, Karam B

    2016-09-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato, legumes and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. The data described in this article is derived from applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Comparisons of the data for sample types in this set will be useful to identify metabolic pathway changes as the fungus switches from saprophytic to a pathogenic lifestyle or pathogenicity related proteins contributing to the ability to cause disease on wheat. The data set is deposited in the PRIDE archive under identifier PRIDE: PXD002806. PMID:27331100

  15. Tuberculina-Thanatophytum/Rhizoctonia crocorum-Helicobasidium: a unique mycoparasitic-phytoparasitic life strategy.

    PubMed

    Lutz, Matthias; Bauer, Robert; Begerow, Dominik; Oberwinkler, Franz

    2004-03-01

    Tuberculina species are mitosporic parasites of rust fungi. Phylogenetically they belong to the Urediniomycetidae, therefore being closely related to their rust fungal hosts. We reveal by means of molecular analyses, ultrastructural and morphological features, observations in the field, and infection experiments that species of the genus Tuberculina and the violet root rot (Helicobasidium/Rhizoctonia crocorum) are stages of the life-cycle of one holomorph. This opens up new perspectives on parasitic life strategies as the resulting life-cycle is based on interkingdom host jumping between rusts and spermatophytes. In addition, we point at the consequences for any practical application dealing with Helicobasidium as an economically important plant pathogen and Tuberculina as a biological agent in rust control.

  16. Characterization and taxonomic placement of Rhizoctonia-like endophytes from orchid roots.

    PubMed

    Shan, X C; Liew, E C Y; Weatherhead, M A; Hodgkiss, I J

    2002-01-01

    Twenty-one Rhizoctonia-like fungal strains were isolated from the roots of four terrestrial orchid species from various locations in Hong Kong. The cultural morphology, nuclear number of the hyphal cell, pore ultrastructure, and RAPD and CAPS analyses of rDNA fragments revealed that most of these isolates were associated with the genera Ceratorhiza and Epulorhiza. RAPD analysis showed the presence of genetic diversity between the isolates from different hosts and locations. The compatibility between a selection of these Ceratorhiza and Epulorhiza isolates and 14 orchid species was determined using a symbiotic germination method. The germination and development of three orchid species, Arundina chinensis, Spathoglottis pubescens, and Spiranthes hongkongensis, were strongly stimulated by the Epulorhiza isolates. Habenaria dentata was found to form symbionts successfully with a Ceratorhiza isolate.

  17. Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani.

    PubMed

    Jha, Sanjay; Tank, Harsukh G; Prasad, Bishun Deo; Chattoo, Bharat B

    2009-02-01

    Magnaporthe oryzae and Rhizoctonia solani, are among the most important pathogens of rice, severely limiting its productivity. Dm-AMP1, an antifungal plant defensin from Dahlia merckii, was expressed in rice (Oryza sativa L. sp. indica cv. Pusa basmati 1) using Agrobacterium tumefaciens-mediated transformation. Expression levels of Dm-AMP1 ranged from 0.43% to 0.57% of total soluble protein in transgenic plants. It was observed that constitutive expression of Dm-AMP1 suppresses the growth of M. oryzae and R. solani by 84% and 72%, respectively. Transgenic expression of Dm-AMP1 was not accompanied by an induction of pathogenesis-related (PR) gene expression, indicating that the expression of DmAMP1 directly inhibits the pathogen. The results of in vitro, in planta and microscopic analyses suggest that Dm-AMP1 expression has the potential to provide broad-spectrum disease resistance in rice. PMID:18618285

  18. Identification and functional analysis of AG1-IA specific genes of Rhizoctonia solani.

    PubMed

    Ghosh, Srayan; Gupta, Santosh Kumar; Jha, Gopaljee

    2014-11-01

    Rhizoctonia solani is an important necrotrophic fungal pathogen which causes disease on diverse plant species. It has been classified into 14 genetically distinct anastomosis groups (AGs), however, very little is known about their genomic diversity. AG1-IA causes sheath blight disease in rice and controlling this disease remains a challenge for sustainable rice cultivation. Recently the draft genome sequences of AG1-IA (rice isolate) and AG1-IB (lettuce isolate) had become publicly available. In this study, using comparative genomics, we report identification of 3,942 R. solani genes that are uniquely present in AG1-IA. Many of these genes encode important biological, molecular functions and exhibit dynamic expression during in-planta growth of the pathogen in rice. Based upon sequence similarity with genes that are required for plant and human/zoonotic diseases, we identified several putative virulence/pathogenicity determinants amongst AG1-IA specific genes. While studying the expression of 19 randomly selected genes, we identified three genes highly up-regulated during in-planta growth. The detailed in silico characterization of these genes and extent of their up-regulation in different rice genotypes, having variable degree of disease susceptibility, suggests their importance in rice-Rhizoctonia interactions. In summary, the present study reports identification, functional characterization of AG1-IA specific genes and predicts important virulence determinants that might enable the pathogen to grow inside hostile plant environment. Further characterization of these genes would shed useful insights about the pathogenicity mechanism of AG1-IA on rice.

  19. Impact of biotic and a-biotic parameters on structure and function of microbial communities living on sclerotia of the soil-borne pathogenic fungus Rhizoctonia solani

    PubMed Central

    Zachow, Christin; Grosch, Rita; Berg, Gabriele

    2011-01-01

    The plant pathogen Rhizoctonia solani is very difficult to control due to its persistent, long-living sclerotial structures in soil. Sclerotia are the main source of infection for Rhizoctonia diseases, which cause high yield losses on a broad host range world-wide. Little is known about micro-organisms associated with sclerotia in soil. Therefore, microbial communities of greenhouse and field incubated Rhizoctonia sclerotia were analysed by a multiphasic approach. Using microbial fingerprints performed by PCR-SSCP, sclerotia-associated bacterial communities showed a high diversity, whereas only a few fungi could be detected. Statistical analysis of fingerprints revealed the influence of soil types, incubation conditions (greenhouse, field), and incubation time (5 and 12 weeks) on the bacterial as well as fungal community. No significant differences were found for the microbial community associated with different Rhizoctonia anastomosis sub-groups (AG 1-IB and AG 1-IC). Rhizoctonia sclerotia are an interesting bio-resource: high proportions of fungal cell-wall degrading isolates as well as those with antagonistic activity towards R. solani were found. While a fraction of 28.4% of sclerotia-associated bacteria (=40 isolates) with antagonistic properties was determined, only 4.4% (=6 isolates) of the fungal isolates were antagonistic. We identified strong antagonists of the genera Bacillus, Enterobacter, Pseudomonas, and Stenotrophomonas, which can be used as biological control agents incorporated in soil or applied to Rhizoctonia host plants. PMID:26109749

  20. High levels of gene flow and heterozygote excess characterize Rhizoctonia solani AG-1 IA (Thanatephorus cucumeris) from Texas.

    PubMed

    Rosewich, U L; Pettway, R E; McDonald, B A; Kistler, H C

    1999-12-01

    To date, much of the genetics of the basidiomycete Thanatephorus cucumeris (anamorph = Rhizoctonia solani) remains unknown. Here, we present a population genetics study using codominant markers to augment laboratory analyses. Seven single-copy nuclear RFLP markers were used to examine 182 isolates of Rhizoctonia solani AG-1 IA collected from six commercial rice fields in Texas. Thirty-six multilocus RFLP genotypes were identified. Population subdivision analyses indicated a high degree of gene flow/migration between the six geographic populations. Tests for Hardy-Weinberg equilibrium (HWE) among the 36 multilocus RFLP genotypes revealed that four of the seven loci did not significantly differ from HWE. Subsequent analysis demonstrated that departures from HWE at the three remaining loci were due to an excess of heterozygotes. Data presented here suggest that R. solani AG-1 IA is actively outbreeding (heterothallic). Possible explanations for heterozygote excess, which was observed at all seven RFLP loci, are discussed.

  1. [Evaluation of Trichoderma spp. as antagonist of Rhizoctonia solani in vitro and as biocontrol of greenhouse tomato plants].

    PubMed

    Durman, S; Menendez, A; Godeas, A

    1999-01-01

    Five Trichoderma isolates were compared in their ability for controlling Rhizoctonia solani attack to tomato plants in greenhouse and as antagonists of this pathogen in three independent laboratory assays. Four out of five isolates showed biocontrol ability and decreased pathogen growth and survival of its sclerotia in soil. Results suggest that dual cultures in Petri dishes and mycoparasitism assays against R. solani sclerotia may be useful for detecting isolates effective as biological control agents against this pathogen in tomato plants. PMID:10327455

  2. Wide variation in virulence and genetic diversity of binucleate Rhizoctonia isolates associated with root rot of strawberry in Western Australia.

    PubMed

    Fang, Xiangling; Finnegan, Patrick M; Barbetti, Martin J

    2013-01-01

    Strawberry (Fragaria×ananassa) is one of the most important berry crops in the world. Root rot of strawberry caused by Rhizoctonia spp. is a serious threat to commercial strawberry production worldwide. However, there is no information on the genetic diversity and phylogenetic status of Rhizoctonia spp. associated with root rot of strawberry in Australia. To address this, a total of 96 Rhizoctonia spp. isolates recovered from diseased strawberry plants in Western Australia were characterized for their nuclear condition, virulence, genetic diversity and phylogenetic status. All the isolates were found to be binucleate Rhizoctonia (BNR). Sixty-five of the 96 BNR isolates were pathogenic on strawberry, but with wide variation in virulence, with 25 isolates having high virulence. Sequence analysis of the internal transcribed spacers of the ribosomal DNA separated the 65 pathogenic BNR isolates into six distinct clades. The sequence analysis also separated reference BNR isolates from strawberry or other crops across the world into clades that correspond to their respective anastomosis group (AG). Some of the pathogenic BNR isolates from this study were embedded in the clades for AG-A, AG-K and AG-I, while other isolates formed clades that were sister to the clades specific for AG-G, AG-B, AG-I and AG-C. There was no significant association between genetic diversity and virulence of these BNR isolates. This study demonstrates that pathogenic BNR isolates associated with root rot of strawberry in Western Australia have wide genetic diversity, and highlights new genetic groups not previously found to be associated with root rot of strawberry in the world (e.g., AG-B) or in Australia (e.g., AG-G). The wide variation in virulence and genetic diversity identified in this study will be of high value for strawberry breeding programs in selecting, developing and deploying new cultivars with resistance to these multi-genetic groups of BNR. PMID:23405226

  3. Wide variation in virulence and genetic diversity of binucleate Rhizoctonia isolates associated with root rot of strawberry in Western Australia.

    PubMed

    Fang, Xiangling; Finnegan, Patrick M; Barbetti, Martin J

    2013-01-01

    Strawberry (Fragaria×ananassa) is one of the most important berry crops in the world. Root rot of strawberry caused by Rhizoctonia spp. is a serious threat to commercial strawberry production worldwide. However, there is no information on the genetic diversity and phylogenetic status of Rhizoctonia spp. associated with root rot of strawberry in Australia. To address this, a total of 96 Rhizoctonia spp. isolates recovered from diseased strawberry plants in Western Australia were characterized for their nuclear condition, virulence, genetic diversity and phylogenetic status. All the isolates were found to be binucleate Rhizoctonia (BNR). Sixty-five of the 96 BNR isolates were pathogenic on strawberry, but with wide variation in virulence, with 25 isolates having high virulence. Sequence analysis of the internal transcribed spacers of the ribosomal DNA separated the 65 pathogenic BNR isolates into six distinct clades. The sequence analysis also separated reference BNR isolates from strawberry or other crops across the world into clades that correspond to their respective anastomosis group (AG). Some of the pathogenic BNR isolates from this study were embedded in the clades for AG-A, AG-K and AG-I, while other isolates formed clades that were sister to the clades specific for AG-G, AG-B, AG-I and AG-C. There was no significant association between genetic diversity and virulence of these BNR isolates. This study demonstrates that pathogenic BNR isolates associated with root rot of strawberry in Western Australia have wide genetic diversity, and highlights new genetic groups not previously found to be associated with root rot of strawberry in the world (e.g., AG-B) or in Australia (e.g., AG-G). The wide variation in virulence and genetic diversity identified in this study will be of high value for strawberry breeding programs in selecting, developing and deploying new cultivars with resistance to these multi-genetic groups of BNR.

  4. Phylogenetic utility of indels within ribosomal DNA and beta-tubulin sequences from fungi in the Rhizoctonia solani species complex.

    PubMed

    González, Dolores; Cubeta, Marc A; Vilgalys, Rytas

    2006-08-01

    The genus Rhizoctonia consists of a diverse assemblage of anamorphic fungi frequently associated with plants and soil throughout the world. Some anamorphs are related with teleomorphs (sexual stage) in different taxonomic classes, orders, and families. The fungus may exist as pathogen, saprophyte, or mycorrhizal symbiont and shows extensive variation in characteristics such as geographic location, morphology, host specificity, and pathogenicity. In this study, phylogenetic analyses were performed in the Rhizoctonia solani species complex with individual and combined data sets from three gene partitions (ITS, LSU rDNA, and beta-tubulin). To explore whether indels were a source of phylogenetically informative characters, single-site indels were treated as a new state, while indels greater than one contiguous nucleotide were analyzed by including them as ambiguous data (Coding A); excluding them from the analyses (Coding B), and with three distinct codes: multistate for different sequence (Coding C); multistate for different length (Coding D) and different characters for each distinct sequence (Coding E). Results suggest that indels in noncoding regions contain phylogenetic information and support the fact that the R. solani species complex is not monophyletic. Six clades within R. solani (teleomorph=Thanatephorus) representing distinct anastomosis groups and five clades within binucleate Rhizoctonia (teleomorph=Ceratobasidium) were well supported in all analyses. The data suggest that clades with representatives of R. solani fungi belonging to anastomosis groups 1, 4, 6, and 8 should be recognized as phylogenetic species.

  5. Temperature, moisture, and fungicide effects in managing Rhizoctonia root and crown rot of sugar beet.

    PubMed

    Bolton, Melvin D; Panella, Lee; Campbell, Larry; Khan, Mohamed F R

    2010-07-01

    Rhizoctonia solani AG-2-2 is the causal agent of Rhizoctonia root and crown rot in sugar beet; however, recent increases in disease incidence and severity were grounds to reevaluate this pathosystem. To assess the capacity at which other anastomosis groups (AGs) are able to infect sugar beet, 15 AGs and intraspecific groups (ISGs) were tested for pathogenicity on resistant ('FC708 CMS') and susceptible ('Monohikari') seedlings and 10-week-old plants. Several AGs and ISGs were pathogenic on seedlings regardless of host resistance but only AG-2-2 IIIB and AG-2-2 IV caused significant disease on 10-week-old plants. Because fungicides need to be applied prior to infection for effective disease control, temperature and moisture parameters were assessed to identify potential thresholds that limit infection. Root and leaf disease indices were used to evaluate disease progression of AG-2-2 IIIB- and AG-2-2 IV-inoculated plants in controlled climate conditions of 7 to 22 growing degree days (GDDs) per day. Root disease ratings were positively correlated with increasing temperature of both ISGs, with maximum disease symptoms occurring at 22 GDDs/day. No disease symptoms were evident from either ISG at 10 GDDs/day but disease symptoms did occur in plants grown in growth chambers set to 11 GDDs/day. Using growth chambers adjusted to 22 GDDs/day, disease was evaluated at 25, 50, 75, and 100% moisture-holding capacity (MHC). Disease symptoms for each ISG were highest in soils with 75 and 100% MHC but disease still occurred at 25% MHC. Isolates were tested for their ability to cause disease at 1, 4, and 8 cm from the plant hypocotyl. Only AG-2-2 IIIB was able to cause disease symptoms at 8 cm during the evaluation period. In all experiments, isolates of AG-2-2 IIIB were found to be more aggressive than AG-2-2 IV. Using environmental parameters that we identified as the most conducive to disease development, azoxystrobin, prothioconazole, pyraclostrobin, difenoconazole

  6. Reaction of selected soybean cultivars to Rhizoctonia root rot and other damping-off disease agents.

    PubMed

    Amer, M A

    2005-01-01

    Eight soybean cultivars; Giza 21. Giza 22, Giza 35, Giza 82, Giza 83, Crawford, Holladay and Toamo were evaluated to Rhizoctonia root rot using agar plate and potted plant techniques. Data cleared that, in agar plate assay all soybean cultivars were moderately susceptible (MS), although the differences between them were significant (P=0.05). Generally, in potted assay, the reactions were resistant (R) or moderately resistant (MR) to root rots. Also, the differences between cultivars were significant (P=0.05). These cultivars were inoculated under greenhouse conditions with Fusarium solani, Macrophomina phaseolina, Rhizoctonia solani and Sclerotium rolfsii Generally, G21 had the least pre-emergence damping-off followed by Giza 35, Crawford and Giza 83 with averages of 19.0, 20.0, 20.5 and 21.5%, respectively. In case of post-emergence, Giza 35 had the least values, followed by Giza 21, Crawford and Giza 82 with averages 3.95, 4.10, 4.10 and 4.25%, respectively. Under naturally infested soil in the field conditions the reactions of the same cultivars to damping-off were evaluated in two successive seasons. In 2002 season, G35 had the least pre-emergence damping-off % followed by Giza 21 and Giza 22 with averages of 22.61, 24.33 and 29.33%, respectively. Also, G35 had the least post-emergence damping-off % followed by Toamo and Giza 21 with averages of 9.40, 10.33 and 10.41%, respectively. In 2003 season, the same trend was appeared with light grade where Giza 35 had the least pre-emergence damping of % followed by Giza 22 and Giza 21 with averages of 30.67, 31.00 and 36.67%, respectively and Giza 35 was the most resistant cultivar against post-emergence damping-off, followed by Giza 21 and Giza 22 with averages of 10.91, 11.32 and 11.80%, respectively. Generally, Giza 21 significantly surpassed the other cultivars in plant height, number of pods per plant and 100-seed weight. Moreover, also it had second grade with the other traits.

  7. Temperature, moisture, and fungicide effects in managing Rhizoctonia root and crown rot of sugar beet.

    PubMed

    Bolton, Melvin D; Panella, Lee; Campbell, Larry; Khan, Mohamed F R

    2010-07-01

    Rhizoctonia solani AG-2-2 is the causal agent of Rhizoctonia root and crown rot in sugar beet; however, recent increases in disease incidence and severity were grounds to reevaluate this pathosystem. To assess the capacity at which other anastomosis groups (AGs) are able to infect sugar beet, 15 AGs and intraspecific groups (ISGs) were tested for pathogenicity on resistant ('FC708 CMS') and susceptible ('Monohikari') seedlings and 10-week-old plants. Several AGs and ISGs were pathogenic on seedlings regardless of host resistance but only AG-2-2 IIIB and AG-2-2 IV caused significant disease on 10-week-old plants. Because fungicides need to be applied prior to infection for effective disease control, temperature and moisture parameters were assessed to identify potential thresholds that limit infection. Root and leaf disease indices were used to evaluate disease progression of AG-2-2 IIIB- and AG-2-2 IV-inoculated plants in controlled climate conditions of 7 to 22 growing degree days (GDDs) per day. Root disease ratings were positively correlated with increasing temperature of both ISGs, with maximum disease symptoms occurring at 22 GDDs/day. No disease symptoms were evident from either ISG at 10 GDDs/day but disease symptoms did occur in plants grown in growth chambers set to 11 GDDs/day. Using growth chambers adjusted to 22 GDDs/day, disease was evaluated at 25, 50, 75, and 100% moisture-holding capacity (MHC). Disease symptoms for each ISG were highest in soils with 75 and 100% MHC but disease still occurred at 25% MHC. Isolates were tested for their ability to cause disease at 1, 4, and 8 cm from the plant hypocotyl. Only AG-2-2 IIIB was able to cause disease symptoms at 8 cm during the evaluation period. In all experiments, isolates of AG-2-2 IIIB were found to be more aggressive than AG-2-2 IV. Using environmental parameters that we identified as the most conducive to disease development, azoxystrobin, prothioconazole, pyraclostrobin, difenoconazole

  8. Detection of rDNA ITS polymorphism in Rhizoctonia solani AG 2-1 isolates.

    PubMed

    Pannecoucque, Joke; Höfte, Monica

    2009-01-01

    The sequence variability of the ribosomal internal transcribed spacer regions ITS1 and ITS2, including the 5.8S gene, was investigated for Rhizoctonia solani isolates of anastomosis group (AG) 2-1. During PCR RFLP analysis of eight isolates, the restriction patterns of four isolates showed an excess of bands after restriction with the enzymes AvaII and/or HincII, which suggested the presence of more than one ITS region. By cloning the ITS region of six isolates sequence heterogeneity was detected in the isolates that showed an excess of bands in the PCR RFLP analysis; up to nine different ITS regions were identified within one isolate. The same level of diversity was found within the same isolate as among isolates. In the phylogenetic tree based on the rDNA ITS sequences of several AG 2-1 isolates, sequences derived from the same isolate did not form distinct clusters, questioning the relevance of further subdivision of heterogeneous AG 2-1 isolates based on the ITS region.

  9. Sensitivity to a Phytotoxin from Rhizoctonia solani Correlates with Sheath Blight Susceptibility in Rice.

    PubMed

    Brooks, Steven A

    2007-10-01

    ABSTRACT Sheath blight is one of the most important and intractable diseases of rice (Oryza sativa) where limited control has been achieved using traditional approaches. Quantitative inheritance, extraneous traits, and environmental factors confound genetic analysis of host resistance. A method was developed to isolate and utilize a phytotoxin from Rhizoctonia solani to investigate the genetics of sheath blight susceptibility. Infiltration of the toxin preparation into plant leaves induced necrosis in rice, maize, and tomato. Using 17 rice cultivars known to vary in sheath blight resistance, genotypes were identified that were sensitive (tox-S) and insensitive (tox-I) to the toxin, and a correlation (r = 0.66) between toxin sensitivity and disease susceptibility was observed. Given the broad host range of R. solani, genotypes of host species may be both tox-S and tox-I. A total of 154 F(2) progeny from a cross between Cypress (tox-S) and Jasmine 85 (tox-I) segregated in a 9:7 ratio for tox-S/tox-I, indicating an epistatic interaction between two genes controls sensitivity to the toxin in rice. This work provides the means to genetically map toxin sensitivity genes and eliminate susceptible genotypes when developing sheath blight-resistant rice cultivars.

  10. Genetic variation and pathogenicity of anastomosis group 2 isolates of Rhizoctonia solani in Australia.

    PubMed

    Stodart, Benjamin J; Harvey, Paul R; Neate, Stephen M; Melanson, Dara L; Scott, Eileen S

    2007-08-01

    A collection of isolates of Rhizoctonia solani anastomosis group (AG) 2 was examined for genetic diversity and pathogenicity. Anastomosis reactions classified the majority of isolates into the known subgroups of AG 2-1 and AG 2-2 but the classification of several isolates was ambiguous. Morphological characters were consistent with the species, with no discriminating characters existing between subgroups. Vertical PAGE of pectic enzymes enabled the separation of zymogram group (ZG) 5 and 6 within AG 2-1, but not the separation of ZG 4 and 10 within AG 2-2. PCR analysis using inter-simple sequence repeats (ISSR) and the intron-splice junction (ISJ) region supported the separation of ZG 5 and 6, while the AG 2-2 isolates were separated by geographic region. A comparison of distance matrices produced by the zymogram analysis and PCR indicated a strong correlation between the marker types. Pathogenicity studies suggested canola (Brassica napus) cultivars were most severely affected by AG 2-1, while cultivars of two species of medic (Medicago truncatula cv. Caliph and M. littoralis cv. Herald) were susceptible to both AG 2-1 and 2-2. The results indicate that AG 2 is a polyphyletic group in which the classification of subtypes is sometimes difficult. Further investigation of the population structure within Australia is required to determine the extent and origin of the observed diversity.

  11. The population genetic structure of Rhizoctonia solani AG-3PT from potato in the Colombian Andes.

    PubMed

    Ferrucho, Rosa L; Ceresini, Paulo C; Ramirez-Escobar, Ursula M; McDonald, Bruce A; Cubeta, Marc A; García-Domínguez, Celsa

    2013-08-01

    The soilborne fungus Rhizoctonia solani anastomosis group 3 (AG-3PT) is a globally important potato pathogen. However, little is known about the population genetic processes affecting field populations of R. solani AG-3PT, especially in the South American Colombian Andes, which is near the center of diversity of the two most common groups of cultivated potato, Solanum tuberosum and S. phureja. We analyzed the genetic structure of 15 populations of R. solani AG-3PT infecting potato in Colombia using 11 simple-sequence repeat (SSR) markers. In total, 288 different multilocus genotypes were identified among 349 fungal isolates. Clonal fractions within field populations were 7 to 33%. RST statistics indicated a very low level of population differentiation overall, consistent with high contemporary gene flow, though moderate differentiation was found for the most distant southern populations. Genotype flow was also detected, with the most common genotype found widely distributed among field populations. All populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction, but two populations displayed evidence of inbreeding.

  12. Trichoderma harzianum genes induced during growth on Rhizoctonia solani cell walls.

    PubMed

    Vasseur, V; Van Montagu, M; Goldman, G H

    1995-04-01

    Trichoderma harzianum is a biocontrol agent that attacks a range of economically important phytopathogenic fungi. In an attempt to identify genes specifically expressed by T. harzianum during growth on cell walls of Rhizoctonia solani, we carried out differential screening of an induced cDNA library. In this paper we report the analysis of the sequence and expression of two cDNA clones that encode putative mycoparasitism-related proteins of T. harzianum. One of these clones corresponds to a gene, inda1, that encodes a protein of 570 amino acids with a predicted molecular mass of 62,853 Da. The predicted amino acid sequence of inda1 showed a high degree of similarity with amino acid permeases from several other organisms. The other cDNA clone corresponds to a gene, indc11, that encodes a novel protein of 340 amino acids with a predicted molecular mass of 37,010 Da. The use of this methodology should provide specific genetic markers to follow mycoparasitism by Trichoderma spp.

  13. RSIADB, a collective resource for genome and transcriptome analyses in Rhizoctonia solani AG1 IA.

    PubMed

    Chen, Lei; Ai, Peng; Zhang, Jinfeng; Deng, Qiming; Wang, Shiquan; Li, Shuangcheng; Zhu, Jun; Li, Ping; Zheng, Aiping

    2016-01-01

    Rice [Oryza sativa (L.)] feeds more than half of the world's population. Rhizoctonia solaniis a major fungal pathogen of rice causing extreme crop losses in all rice-growing regions of the world. R. solani AG1 IA is a major cause of sheath blight in rice. In this study, we constructed a comprehensive and user-friendly web-based database, RSIADB, to analyse its draft genome and transcriptome. The database was built using the genome sequence (10,489 genes) and annotation information for R. solani AG1 IA. A total of six RNAseq samples of R. solani AG1 IA were also analysed, corresponding to 10, 18, 24, 32, 48 and 72 h after infection of rice leaves. The RSIADB database enables users to search, browse, and download gene sequences for R. solani AG1 IA, and mine the data using BLAST, Sequence Extractor, Browse and Construction Diagram tools that were integrated into the database. RSIADB is an important genomic resource for scientists working with R. solani AG1 IA and will assist researchers in analysing the annotated genome and transcriptome of this pathogen. This resource will facilitate studies on gene function, pathogenesis factors and secreted proteins, as well as provide an avenue for comparative analyses of genes expressed during different stages of infection. Database URL:http://genedenovoweb.ticp.net:81/rsia/index.php.

  14. Divergence between sympatric rice- and soybean-infecting populations of Rhizoctonia solani anastomosis group-1 IA.

    PubMed

    Bernardes de Assis, Joana; Peyer, Patrik; Rush, Milton C; Zala, Marcello; McDonald, Bruce A; Ceresini, Paulo C

    2008-12-01

    Rhizoctonia solani anastomosis group (AG)-1 IA causes soybean foliar blighting (aerial blight) and rice sheath blight diseases. Although taxonomically related within the AG-1 complex, sister populations of R. solani AG-1 IA infecting Poaceae (rice) and Fabaceae (soybean) are genetically distinct based on internal transcribed spacer rDNA. However, there is currently no information available regarding the extent of genetic differentiation and host specialization between rice- and soybean-infecting populations of R. solani AG-1 IA. We used 10 microsatellite loci to compare sympatric R. solani AG-1 IA populations infecting rice and soybeans in Louisiana and one allopatric rice-infecting population from Texas. None of the 154 multilocus genotypes found among the 223 isolates were shared among the three populations. Partitioning of genetic diversity showed significant differentiation among sympatric populations from different host species (Phi(ST) = 0.39 to 0.41). Historical migration patterns between sympatric rice- and soybean-infecting populations from Louisiana were asymmetrical. Rice- and soybean-derived isolates of R. solani AG-1 IA were able to infect both rice and soybean, but were significantly more aggressive on their host of origin, consistent with host specialization. The soybean-infecting population from Louisiana was more clonal than the sympatric rice-infecting population. Most of the loci in the soybean-infecting populations were out of Hardy-Weinberg equilibrium (HWE), but the sympatric rice-infecting population from Louisiana was mainly in HWE. All populations presented evidence for a mixed reproductive system.

  15. Genetic structure of populations of Rhizoctonia solani anastomosis group-1 IA from soybean in Brazil.

    PubMed

    Ciampi, M B; Meyer, M C; Costa, M J N; Zala, M; McDonald, B A; Ceresini, P C

    2008-08-01

    The Basidiomycete fungus Rhizoctonia solani anastomosis group (AG)-1 IA is a major pathogen of soybean in Brazil, where the average yield losses have reached 30 to 60% in some states in Northern Brazil. No information is currently available concerning levels of genetic diversity and population structure for this pathogen in Brazil. A total of 232 isolates of R. solani AG1 IA were collected from five soybean fields in the most important soybean production areas in central-western, northern, and northeastern Brazil. These isolates were genotyped using 10 microsatellite loci. Most of the multilocus genotypes (MLGTs) were site-specific, with few MLGTs shared among populations. Significant population subdivision was evident. High levels of admixture were observed for populations from Mato Grosso and Tocantins. After removing admixed genotypes, three out of five field populations (Maranhao, Mato Grosso, and Tocantins), were in Hardy-Weinberg (HW) equilibrium, consistent with sexual recombination. HW and gametic disequilibrium were found for the remaining soybean-infecting populations. The findings of low genotypic diversity, departures from HW equilibrium, gametic disequilibrium, and high degree of population subdivision in these R. solani AG-1 IA populations from Brazil are consistent with predominantly asexual reproduction, short-distance dispersal of vegetative propagules (mycelium or sclerotia), and limited long-distance dispersal, possibly via contaminated seed. None of the soybean-infecting populations showed a reduction in population size (bottleneck effect). We detected asymmetric historical migration among the soybean-infecting populations, which could explain the observed levels of subdivision.

  16. Genetic structure of populations of Rhizoctonia solani AG-3 on potato in eastern North Carolina.

    PubMed

    Ceresini, Paulo C; Shew, H David; Vilgalys, Rytas J; Rosewich, U Liane; Cubeta, Marc A

    2002-01-01

    A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was developed to identify and differentiate genotypes of Rhizoctonia solani anastomosis group 3 subgroup PT (AG-3 PT), a fungal pathogen of potato. Polymorphic co-dominant single-locus PCR-RFLP markers were identified after sequencing of clones from a genomic library and digestion with restriction enzymes. Multilocus genotypes were determined by a combination of PCR product and digestion with a specific restriction enzyme for each of seven loci. A sample of 104 isolates from one commercial field in each of five counties in eastern North Carolina was analyzed, and evidence for high levels of gene flow between populations was revealed. When data were clone-corrected and samples pooled into one single North Carolina population, random associations of alleles were found for all loci or pairs of loci, indicating random mating. However, when all genotypes were analyzed, the observed genotypic diversity deviated from panmixia and alleles within and between loci were not randomly associated. These findings support a model of population structure for R. solani AG-3 PT on potato that includes both recombination and clonality.

  17. Over-expression of a protein kinase gene enhances the defense of tobacco against Rhizoctonia solani.

    PubMed

    Chacón, Osmany; González, Marleny; López, Yunior; Portieles, Roxana; Pujol, Merardo; González, Ernesto; Schoonbeek, Henk-Jan; Métraux, Jean-Pierre; Borrás-Hidalgo, Orlando

    2010-03-01

    To identify Nicotiana tabacum genes involved in resistance and susceptibility to Rhizoctonia solani, suppression subtractive hybridization was used to generate a cDNA library from transcripts that are differentially expressed during a compatible and incompatible interaction. This allowed the isolation of a protein kinase cDNA that was down-regulated during a compatible and up-regulated during an incompatible interaction. Quantitative RT-PCR analysis of this gene confirmed the differential expression patterns between the compatible and incompatible interactions. Over-expression of this gene in tobacco enhanced the resistance to damping-off produced by an aggressive R. solani strain. Furthermore, silencing of this protein kinase gene reduced the resistance to a non-aggressive R. solani strain. A set of reported tobacco-resistant genes were also evaluated in tobacco plants over-expressing and silencing the protein kinase cDNA. Several genes previously associated with resistance in tobacco, like manganese superoxide dismutase, Hsr203J, chitinases and phenylalanine ammonia-lyase, were up-regulated in tobacco plants over-expressing the protein kinase cDNA. Potentially, the protein kinase gene could be used to engineer resistance to R. solani in tobacco cultivars susceptible to this important pathogen.

  18. Population genetic structure of Rhizoctonia solani AG 3-PT from potatoes in South Africa.

    PubMed

    Muzhinji, Norman; Woodhall, James W; Truter, Mariette; van der Waals, Jacquie E

    2016-05-01

    Rhizoctonia solani AG 3-PT is an important potato pathogen causing significant yield and quality losses in potato production. However, little is known about the levels of genetic diversity and structure of this pathogen in South Africa. A total of 114 R. solani AG 3-PT isolates collected from four geographic regions were analysed for genetic diversity and structure using eight microsatellite loci. Microsatellite analysis found high intra-population genetic diversity, population differentiation and evidence of recombination. A total of 78 multilocus genotypes were identified with few shared among populations. Low levels of clonality (13-39 %) and high levels of population differentiation were observed among populations. Most of the loci were in Hardy-Weinberg equilibrium and all four populations showed evidence of a mixed reproductive mode of both clonality and recombination. The PCoA clustering method revealed genetically distinct geographic populations of R. solani AG 3-PT in South Africa. This study showed that populations of R. solani AG 3-PT in South Africa are genetically differentiated and disease management strategies should be applied accordingly. This is the first study of the population genetics of R. solani AG 3-PT in South Africa and results may help to develop knowledge-based disease management strategies.

  19. Transcriptional responses of the bacterial antagonist Serratia plymuthica to the fungal phytopathogen Rhizoctonia solani.

    PubMed

    Neupane, Saraswoti; Finlay, Roger D; Alström, Sadhna; Elfstrand, Malin; Högberg, Nils

    2015-02-01

    Rhizobacteria with biocontrol ability exploit a range of mechanisms to compete successfully with other microorganisms and to ensure their growth and survival in the rhizosphere, ultimately promoting plant growth. The rhizobacterium Serratia plymuthica AS13 is able to promote oilseed rape growth and improve seedling survival in the presence of the fungal pathogen, Rhizoctonia solani AG 2-1; however, our understanding of the mechanisms underlying the antagonism of Serratia is limited. To elucidate possible mechanisms, genome-wide gene expression profiling of S. plymuthica AS13 was carried out in the presence or absence of R. solani. We used RNA sequencing methodology to obtain a comprehensive overview of Serratia gene expression in response to R. solani. The differential gene expression profiles of S. plymuthica AS13 revealed significantly increased expression of genes related to the biosynthesis of the antibiotic pyrrolnitrin (prnABCD), protease production and transporters. The results presented here provide evidence that antibiosis is a major functional mechanism underlying the antagonistic behaviour of S. plymuthica AS13.

  20. The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani.

    PubMed

    Wahleithner, J A; Xu, F; Brown, K M; Brown, S H; Golightly, E J; Halkier, T; Kauppinen, S; Pederson, A; Schneider, P

    1996-03-01

    Four distinct laccase genes, lcc1, lcc2, lcc3 and lcc4, have been identified in the fungus Rhizoctonia solani. Both cDNA and genomic copies of these genes were isolated and characterized. Hybridization analyses indicate that each of the four laccase genes is present in a single copy in the genome. The R. solani laccases can be divided into two groups based on their protein size, intron/exon organization, and transcriptional regulation. Three of these enzymes have been expressed in the fungus Aspergillus oryzae. Two of the recombinant laccases, r-lcc1 and r-lcc4, as well as the native lcc4 enzyme were purified and characterized. The purified proteins are homodimeric, comprised of two subunits of approximately 66kDa for lcc4 and 50-100kDa for the recombinant lcc1 protein. These laccases have spectral properties that are consistent with other blue copper proteins. With syringaldazine as a substrate, lcc4 has optimal activity at pH7, whereas lcc1 has optimal activity at pH6.

  1. Amendment with peony root bark improves the biocontrol efficacy of Trichoderma harzianum against Rhizoctonia solani.

    PubMed

    Lee, Tae Ok; Khan, Zakaullah; Kim, Sang Gyu; Kim, Young Ho

    2008-09-01

    We tested Trichoderma harzianum as a biocontrol agent for Rhizoctonia solani AG2-1, using six natural antifungal materials to improve its efficacy. Among the six materials tested, peony (Paeonia suffruticosa) root bark (PRB) showed the strongest antifungal activity against R. solani AG2-1, and was not antagonistic to T. harzianum. Scanning electron microscopy showed that treatment with PRB extract resulted in shortened and deformed R. solani AG2-1 hyphal cells. The control of radish damping-off caused by R. solani AG2-1 was greatly increased by combined treatments of T. harzianum and PRB, as compared with either of the two treatments alone, with the control effect increased from 42.3-51.5% to 71.4-87.6%. The antifungal compound in PRB, which was isolated in chloroform and identified as paeonol by mass spectrometry, 1H NMR, and 13C NMR analyses, inhibited the growth of R. solani AG2-1 but not that of T. harzianum. Thus, PRB powder or extract may be used as a safe additive to T. harzianum to improve the control of the soil borne diseases caused by R. solani AG2-1.

  2. Biological control of Rhizoctonia solani on potato by using indigenous Trichoderma spp.

    NASA Astrophysics Data System (ADS)

    Durak, Emre Demirer

    2016-04-01

    At this study, it was aimed to determine the effect of Trichoderma isolates that was isolated from the soil samples taken from the different regions on black scurf and stem canker disease caused by Rhizoctonia solani Kühn that has been one of the biggest problems of the potato cultivation. At the end of the soil isolations, totally 81 Trichoderma isolates were obtained and their species were identified. Of these isolates, T. harzianum (42%), T. virens (31%), T. asperellum (15%) and T. viride (12%). All of the isolates were tested in vitro for their antagonistic activity against the R. solani isolate. The isolates that show high inhibition rate was selected and tested against R. solani in vitro. Potato plants were grown in a greenhouse for about 10 weeks. Then the plants were evaluated according to the scale, plant height, shoot fresh and dry weights, root fresh and dry weights were noted. The experiment was conducted two times in three replications. At the in vitro tests, generally, it was determined that Trichoderma isolates have inhibited to R. solani and in vivo, they were reduced the effects of the disease and they were raised the development of the plant. In particular, it was determined that some isolates of the T. harzianum and T. virens have reduced the severity of the disease. It was determined that both in vitro and in vivo isolates have shown different efficiency against R. solani.

  3. Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet.

    PubMed

    Zachow, Christin; Fatehi, Jamshid; Cardinale, Massimiliano; Tilcher, Ralf; Berg, Gabriele

    2010-10-01

    To develop effective biocontrol strategies, basic knowledge of plant growth promotion (PGP) and root colonization by antagonists is essential. The survival and colonization patterns of five different biocontrol agents against Rhizoctonia solani AG2-2IIIB in the rhizosphere of greenhouse-grown sugar beet plants were analysed in single and combined treatments. The study included bacteria (Pseudomonas fluorescens L13-6-12, Pseudomonas trivialis RE(*) 1-1-14, Serratia plymuthica 3Re4-18) as well as fungi (Trichoderma gamsii AT1-2-4, Trichoderma velutinum G1/8). Microscopic analysis by confocal laser scanning microscopy revealed different colonization patterns for each DsRed2/green fluorescent protein-labelled strain. Bacteria and T. velutinum G1/8 colonized the root surface and the endorhiza in single and co-culture, while for T. gamsii AT1-2-4, only the transfer of spores was observed. Whereas Pseudomonas strains formed large microcolonies consisting of hundreds of cells, S. plymuthica was arranged in small endophytic clusters or clouds around the entire root system. In co-culture, each strain showed its typical pattern and occupied specific niches on the root, without clear evidence of morphological interactions. PGP was only observed for four strains with rhizosphere competence and not for T. gamsii AT1-2-4. The results provide useful information on which combination of strains to test in larger biocontrol experiments directed to applications.

  4. Unraveling Aspects of Bacillus amyloliquefaciens Mediated Enhanced Production of Rice under Biotic Stress of Rhizoctonia solani

    PubMed Central

    Srivastava, Suchi; Bist, Vidisha; Srivastava, Sonal; Singh, Poonam C.; Trivedi, Prabodh K.; Asif, Mehar H.; Chauhan, Puneet S.; Nautiyal, Chandra S.

    2016-01-01

    Rhizoctonia solani is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study, an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13) is demonstrated to act as a biocontrol agent and enhance immune response against R. solani in rice by modulating various physiological, metabolic, and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post R. solani infection may be attributed to several unconventional aspects of the plants’ physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a) involvement of bacterial mycolytic enzymes, (b) sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c) a delicate balance of ROS and ROS scavengers through production of proline, mannitol, and arabitol and rare sugars like fructopyranose, β-D-glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d) production of metabolites like quinazoline and expression of terpene synthase, and (e) hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in B. amyloliquefaciens (SN13) mediated sustained biotic stress tolerance in rice. PMID:27200058

  5. Baseline sensitivity and resistance risk assessmemt of Rhizoctonia cerealis to thifluzamide, a succinate dehydrogenase inhibitor.

    PubMed

    Zhang, Yu; Lu, Jingle; Wang, Jianxin; Zhou, MingGuo; Chen, Changjun

    2015-10-01

    During 2010-2012, a total of 120 isolates of Rhizoctonia cerealis were collected from wheat with symptoms of sharp eyespot in four provinces (Henan, Shandong, Anhui and Jiangsu) in China. All the isolates were determined for baseline sensitivity to thifluzamide, a succinate dehydrogenase inhibitor (SDHI) with strong antifungal activity. The sampled pathogenic populations, never exposed to SDHIs, had similar sensitivity to trifluzamide (0.025-0.359 µg/ml) in the four regions and over the two years. The baseline sensitivity was distributed as a skewed unimodal curve with a mean EC50 value (effective concentrations for 50% inhibiting mycelial growth) of 0.064 ± 0.013 µg/ml. The resistance risk of R. cerealis to thifluzamide was further evaluated in vitro. Two thifluzamide-resistant mutants of R. cerealis were obtained by culturing on thifluzamide-amended plates. The resistance factors (RF = EC50 value of a mutant/EC50 value of the wild type progenitor of the mutant) were 120 and 40 for two R. cerealis mutants, respectively. All the mutants exhibited similar fitness after 10 successive transfers when compared to their wild-type parents in mycelial growth, sclerotia production, and virulence. However, the two thifluzamide-resistant mutants differed significantly in sensitivity to boscalid and flutolanil. Therefore, a low-to-moderate risk of resistance development was recommended for thifluzamide. PMID:26453237

  6. Influence of glyphosate on Rhizoctonia and Fusarium root rot in sugar beet.

    PubMed

    Larson, Rebecca L; Hill, Amy L; Fenwick, Ann; Kniss, Andrew R; Hanson, Linda E; Miller, Stephen D

    2006-12-01

    This study tests the effect of glyphosate application on disease severity in glyphosate-resistant sugar beet, and examines whether the increase in disease is fungal or plant mediated. In greenhouse studies of glyphosate-resistant sugar beet, increased disease severity was observed following glyphosate application and inoculation with certain isolates of Rhizoctonia solani Kuhn and Fusarium oxysporum Schlecht. f. sp. betae Snyd. & Hans. Significant increases in disease severity were noted for R. solani AG-2-2 isolate R-9 and moderately virulent F. oxysporum isolate FOB13 on both cultivars tested, regardless of the duration between glyphosate application and pathogen challenge, but not with highly virulent F. oxysporum isolate F-19 or an isolate of R. solani AG-4. The increase in disease does not appear to be fungal mediated, since in vitro studies showed no positive impact of glyphosate on fungal growth or overwintering structure production or germination for either pathogen. Studies of glyphosate impact on sugar beet physiology showed that shikimic acid accumulation is tissue specific and the rate of accumulation is greatly reduced in resistant cultivars when compared with a susceptible cultivar. The results indicate that precautions need to be taken when certain soil-borne diseases are present if weed management for sugar beet is to include post-emergence glyphosate treatments.

  7. Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani.

    PubMed

    Solanki, Manoj Kumar; Singh, Rajesh Kumar; Srivastava, Supriya; Kumar, Sudheer; Kashyap, Prem Lal; Srivastava, Alok K; Arora, Dilip K

    2014-06-01

    Plant protection through siderophore producing rhizobacteria (SPR) has emerged as a sustainable approach for crop health management. In present study, 220 bacteria isolated from tomato rhizosphere were screened for in vitro antagonistic activity against Rhizoctonia solani AG-4. Nine potent antagonistic strains viz., Alcaligenes sp. (MUN1, MB21, and MPF37), Enterobacter sp. (MPM1), Pseudomonas sp. (M10A and MB65), P. aeruginosa (MPF14 and MB123) and P. fluorescens (MPF47) were identified on the basis of physiological characters and 16S rDNA sequencing. These strains were able to produce hydrolytic enzymes, hydrogen cyanide, indole acetic acid, although, only few strains were able to solubilize phosphate. Two strains (MB123 and MPF47) showed significant disease reduction in glasshouse conditions were further evaluated under field conditions using three different application methods. Application of P. fluorescens (MPF47) in nursery as soil mix + seedling root treatments prior to transplantation resulted in significant disease reduction compared to control. Total chlorophyll and available iron were significantly higher in the MPF47 treated plants in contrast to infected control. In conclusion, siderophore producing bacteria MPF47 have strong biocontrol abilities and its application as soil mix + seedling root treatments provided strong shield to plant roots against R. solani and could be used for effective bio-management of pathogen. PMID:23686438

  8. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani.

    PubMed

    Kai, Marco; Effmert, Uta; Berg, Gabriele; Piechulla, Birgit

    2007-05-01

    Bacterial antagonists are bacteria that negatively affect the growth of other organisms. Many antagonists inhibit the growth of fungi by various mechanisms, e.g., secretion of lytic enzymes, siderophores and antibiotics. Such inhibition of fungal growth may indirectly support plant growth. Here, we demonstrate that small organic volatile compounds (VOCs) emitted from bacterial antagonists negatively influence the mycelial growth of the soil-borne phytopathogenic fungus Rhizoctonia solani Kühn. Strong inhibitions (99-80%) under the test conditions were observed with Stenotrophomonas maltophilia R3089, Serratia plymuthica HRO-C48, Stenotrophomonas rhizophila P69, Serratia odorifera 4Rx13, Pseudomonas trivialis 3Re2-7, S. plymuthica 3Re4-18 and Bacillus subtilis B2g. Pseudomonas fluorescens L13-6-12 and Burkholderia cepacia 1S18 achieved 30% growth reduction. The VOC profiles of these antagonists, obtained through headspace collection and analysis on GC-MS, show different compositions and complexities ranging from 1 to almost 30 compounds. Most volatiles are species-specific, but overlapping volatile patterns were found for Serratia spp. and Pseudomonas spp. Many of the bacterial VOCs could not be identified for lack of match with mass-spectra of volatiles in the databases. PMID:17180381

  9. The supernatant of Bacillus pumilus SQR-N43 has antifungal activity towards Rhizoctonia solani.

    PubMed

    Huang, Xinqi; Yong, Xiaoyu; Zhang, Ruifu; Shen, Qirong; Yang, Xingming

    2013-08-01

    For clarification of the antagonistic mechanism of Bacillus pumilus SQR-N43 (N43) against Rhizoctonia solani Q1, production of antibiotics by N43 was determined, and the effect of the antibiotics on the pathogen mycelium was microscopically observed. Further more, the control efficiencies of the antifungal compounds on damping-off disease were investigated. The results obtained are listed as follows: N43 produced antibiotic substances towards R. solani Q1 at logarithmic growth phase. The antibiotics caused hyphal deformation and enlargement of cytoplasmic vacuoles in R. solani Q1 mycelia. 70% saturation of ammonium sulfate made a complete precipitation of the antibiotics in culture broth. When treated with protease K and trypsase, the activities of antibiotics were decreased by 79% and 53%, respectively, compared with control. The antibiotics were sensitive to high temperature and were alkaline stable. The molecular weights of the substances were about 500-1000 Da. The bio-control efficiencies of the antibiotics had no significant difference with that of N43 cell suspension. It is a first report that B. pumilus strain produced oligopeptides which had inhibitory effect on R. solani Q1 at logarithmic growth phase.

  10. Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14.

    PubMed

    Asaka, O; Shoda, M

    1996-11-01

    Bacillus subtilis RB14, which showed antibiotic activities against several phytopathogens in vitro by producing the antibiotics iturin A and surfactin, was subjected to a pot test to investigate its ability to suppress damping-off of tomato seedlings caused by Rhizoctonia solani. To facilitate recovery from soil, B. subtilis RB14-C, a spontaneous streptomycin-resistant mutant of RB14, was used. Damping-off was suppressed when the culture broth, cell suspension, or cell-free culture broth of RB14-C was inoculated into soil. Iturin A and surfactin were recovered from the soils inoculated with the cell suspension of RB14-C, confirming that RB14-C produced them in soil. The gene lpa-14, which was cloned from RB14 and required for the production of both antibiotics, was mutated in RB14-C, and a mutant, R(Delta)1, was constructed. The level of disease suppressibility of R(Delta)1 was low, but R(Delta)1(pC115), a transformant of R(Delta)1 with the plasmid pC115 carrying lpa-14, was restored in suppressibility. These results show that the antibiotics iturin A and surfactin produced by RB14 play a major role in the suppression of damping-off caused by R. solani. RB14-C, R(Delta)1, and R(Delta)1(pC115) persisted in soil during the experimental period and were recovered from the soil, mostly as spores.

  11. Suppression of Rhizoctonia solani in Potting Mixtures Amended with Compost Made from Organic Household Waste.

    PubMed

    Tuitert, G; Szczech, M; Bollen, G J

    1998-08-01

    ABSTRACT Compost made from organic household and garden waste was used to substitute part of the peat in potting mixtures used for growing woody ornamental nursery stock. The effects of amendment with compost on the colonization of potting mixture by Rhizoctonia solani (AG1) were studied in greenhouse experiments. A bioassay was developed using cucumber as a sensitive herbaceous test plant as a substitute for woody ornamental cuttings. Pathogen growth in the potting mixture was estimated by measuring the distance over which damping-off of seedlings occurred. Compost from two commercial composting facilities suppressed growth of R. solani in potting mixtures with 20% of the product when the compost was fresh (directly after delivery) or long matured (after 5 to 7 months of additional curing). In contrast, short-matured compost (1 month of additional curing) from the same batches stimulated pathogen growth. In vitro mycelial growth of R. solani on mixtures with mature compost was inhibited by microbial antagonism. Compost-amended potting mixtures responded differentially to the addition of cellulose powder; the effect on suppressiveness depended on curing time and origin of the compost. In long-matured compost, suppressiveness to R. solani was associated with high population densities of cellulolytic and oligotrophic actinomycetes. The ratio of the population density of actinomycetes to that of other bacteria was around 200-fold higher in mature suppressive compost than in conducive compost.

  12. Linear plasmid DNAs of the plant pathogenic fungus Rhizoctonia solani with unique terminal structures.

    PubMed

    Miyashita, S; Hirochika, H; Ikeda, J E; Hashiba, T

    1990-01-01

    Three linear DNA plasmids were found in isolate RI-64 of anastomosis group 4 (AG-4) of Rhizoctonia solani. These plasmids, designated pRS64-1, -2, and -3, possessed the same size of 2.7 kb. Restriction mapping and Southern hybridization analysis of pRS64-1, -2, and -3 revealed the presence of homologous regions at both termini. The plasmid DNAs were resistant to both 3'-exonuclease and 5'-exonuclease even after treatment with proteinase K or alkali. The length of both terminal fragments that were generated by restriction endonuclease digestion was doubled under the denaturation condition, indicating that the linear plasmid DNAs have hairpin loops at both termini. Southern blotting analysis of total DNA showed the presence of two types of dimeric forms of pRS64 DNA. One is a head-to-head dimer and the other is a tail-to-tail dimer. The role of these unique DNA structures in replication of the plasmids is discussed.

  13. Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani.

    PubMed

    Kern, Marcelo Fernando; Maraschin, Simone de Faria; Vom Endt, Débora; Schrank, Augusto; Vainstein, Marilene Henning; Pasquali, Giancarlo

    2010-04-01

    The chit1 gene from the entomopathogenic fungus Metarhizium anisopliae, encoding the endochitinase CHIT42, was placed under the control of the CaMV 35S promoter, and the resulting construct was transferred to tobacco. Seventeen kanamycin-resistant transgenic lines were recovered, and the presence of the transgene was confirmed by polymerase chain reactions and Southern blot hybridization. The number of chit1 copies was determined to be varying from one to four. Copy number had observable effects neither on plant growth nor development. Substantial heterogeneity concerning production of the recombinant chitinase, and both general and specific chitinolytic activities were detected in leaf extracts from primary transformants. The highest chitinase activities were found in plants harboring two copies of chit1 inserts at different loci. Progeny derived from self-pollination of the primary transgenics revealed a stable inheritance pattern, with transgene segregation following a mendelian dihybrid ratio. Two selected plants expressing high levels of CHIT42 were consistently resistant to the soilborne pathogen Rhizoctonia solani, suggesting a direct relationship between enzyme activity and reduction of foliar area affected by fungal lesions. To date, this is the first report of resistance to fungal attack in plants mediated by a recombinant chitinase from an entomopathogenic and acaricide fungus.

  14. RSIADB, a collective resource for genome and transcriptome analyses in Rhizoctonia solani AG1 IA

    PubMed Central

    Ai, Peng; Zhang, Jinfeng; Deng, Qiming; Wang, Shiquan; Li, Shuangcheng; Zhu, Jun; Li, Ping; Zheng, Aiping

    2016-01-01

    Rice [Oryza sativa (L.)] feeds more than half of the world’s population. Rhizoctonia solani is a major fungal pathogen of rice causing extreme crop losses in all rice-growing regions of the world. R. solani AG1 IA is a major cause of sheath blight in rice. In this study, we constructed a comprehensive and user-friendly web-based database, RSIADB, to analyse its draft genome and transcriptome. The database was built using the genome sequence (10 489 genes) and annotation information for R. solani AG1 IA. A total of six RNAseq samples of R. solani AG1 IA were also analysed, corresponding to 10, 18, 24, 32, 48 and 72 h after infection of rice leaves. The RSIADB database enables users to search, browse, and download gene sequences for R. solani AG1 IA, and mine the data using BLAST, Sequence Extractor, Browse and Construction Diagram tools that were integrated into the database. RSIADB is an important genomic resource for scientists working with R. solani AG1 IA and will assist researchers in analysing the annotated genome and transcriptome of this pathogen. This resource will facilitate studies on gene function, pathogenesis factors and secreted proteins, as well as provide an avenue for comparative analyses of genes expressed during different stages of infection. Database URL: http://genedenovoweb.ticp.net:81/rsia/index.php PMID:27022158

  15. Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani: production of salicylic acid and peroxidases.

    PubMed

    Saikia, R; Kumar, R; Arora, D K; Gogoi, D K; Azad, P

    2006-01-01

    Three isolates of Pseudomonas aeruginosa were used for seed treatment of rice; all showed plant growth promoting activity and induced systemic resistance in rice against Rhizoctonia solani G5 and increased seed yield. Production of salicylic acid (Sal) by P. aeruginosa both in vitro and in vivo was quantified with high performance liquid chromatography. All three isolates produced more Sal in King's B broth than in induced roots. Using a split root system, more Sal accumulated in root tissues of bacterized site than in distant roots on the opposite site of the root system after 1 d, but this difference decreased after 3 d. Sal concentration 0-200 g/L showed no inhibition of mycelial growth of R. solani in vitro, while at > or =300 g/L it inhibited it. P. aeruginosa-pretreated rice plants challenged inoculation with R. solani (as pathogen), an additional increase in the accumulation of peroxidase was observed. Three pathogenesis-related peroxidases in induced rice plants were detected; molar mass of these purified peroxidases was 28, 36 and 47 kDa. Purified peroxidase showed antifungal activity against phytopathogenic fungi R. solani, Pyricularia oryzae and Helminthosporium oryzae. PMID:17176755

  16. RSIADB, a collective resource for genome and transcriptome analyses in Rhizoctonia solani AG1 IA.

    PubMed

    Chen, Lei; Ai, Peng; Zhang, Jinfeng; Deng, Qiming; Wang, Shiquan; Li, Shuangcheng; Zhu, Jun; Li, Ping; Zheng, Aiping

    2016-01-01

    Rice [Oryza sativa (L.)] feeds more than half of the world's population. Rhizoctonia solaniis a major fungal pathogen of rice causing extreme crop losses in all rice-growing regions of the world. R. solani AG1 IA is a major cause of sheath blight in rice. In this study, we constructed a comprehensive and user-friendly web-based database, RSIADB, to analyse its draft genome and transcriptome. The database was built using the genome sequence (10,489 genes) and annotation information for R. solani AG1 IA. A total of six RNAseq samples of R. solani AG1 IA were also analysed, corresponding to 10, 18, 24, 32, 48 and 72 h after infection of rice leaves. The RSIADB database enables users to search, browse, and download gene sequences for R. solani AG1 IA, and mine the data using BLAST, Sequence Extractor, Browse and Construction Diagram tools that were integrated into the database. RSIADB is an important genomic resource for scientists working with R. solani AG1 IA and will assist researchers in analysing the annotated genome and transcriptome of this pathogen. This resource will facilitate studies on gene function, pathogenesis factors and secreted proteins, as well as provide an avenue for comparative analyses of genes expressed during different stages of infection. Database URL:http://genedenovoweb.ticp.net:81/rsia/index.php. PMID:27022158

  17. Unraveling Aspects of Bacillus amyloliquefaciens Mediated Enhanced Production of Rice under Biotic Stress of Rhizoctonia solani.

    PubMed

    Srivastava, Suchi; Bist, Vidisha; Srivastava, Sonal; Singh, Poonam C; Trivedi, Prabodh K; Asif, Mehar H; Chauhan, Puneet S; Nautiyal, Chandra S

    2016-01-01

    Rhizoctonia solani is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study, an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13) is demonstrated to act as a biocontrol agent and enhance immune response against R. solani in rice by modulating various physiological, metabolic, and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post R. solani infection may be attributed to several unconventional aspects of the plants' physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a) involvement of bacterial mycolytic enzymes, (b) sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c) a delicate balance of ROS and ROS scavengers through production of proline, mannitol, and arabitol and rare sugars like fructopyranose, β-D-glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d) production of metabolites like quinazoline and expression of terpene synthase, and (e) hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in B. amyloliquefaciens (SN13) mediated sustained biotic stress tolerance in rice. PMID:27200058

  18. Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis?

    PubMed

    Buysens, Catherine; Dupré de Boulois, Hervé; Declerck, Stéphane

    2015-05-01

    There is growing evidence that the application of biocontrol organisms (e.g., Pseudomonas and Bacillus spp., arbuscular mycorrhizal fungi-AMF) is a feasible option to reduce incidence of plant pathogens in an integrated control strategy. However, the utilization of these microorganisms, in particular AMF, may be threatened by the application of fungicides, a widely-used measure to control Rhizoctonia solani in various crops among which potato. Prior to their application, it is thus important to determine the impact of fungicides on AMF. The present study investigated, under in vitro controlled conditions, the impact of azoxystrobin (a systemic broad-spectrum fungicide), flutolanil (a systemic Basidiomycota-specific fungicide), and pencycuron (a contact Rhizoctonia-specific fungicide) and their respective formulations (Amistar, Monarch, and Monceren) on the growth and development of the AMF Rhizophagus irregularis MUCL 41833 (spore germination, root colonization, extraradical mycelium development, and spore production) at doses used to control R. solani. Results demonstrated that azoxystrobin and its formulation Amistar, at threshold values for R. solani control (estimated by the half maximal inhibitory concentration, IC50, on a dry weight basis), did not affect spore germination and potato root colonization by R. irregularis, while the development of extra-radical mycelium and spore production was reduced at 10 times the threshold value. Flutolanil and its formulation Monarch at threshold value did not affect spore germination or extra-radical development but decreased root colonization and arbuscule formation. At threshold value, pencycuron and its formulation Monceren, did not affect spore germination and intra- or extraradical development of R. irregularis. These results suggest that azoxystrobin and pencycuron do not affect the AMF at threshold concentrations to control R. solani in vitro, while flutolanil (as formulation) impacts the intraradical phase of the

  19. Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato.

    PubMed

    Saber, Wesam I A; Ghoneem, Khalid M; Al-Askar, Abdulaziz A; Rashad, Younes M; Ali, Abeer A; Rashad, Ehsan M

    2015-12-01

    Stem canker and black scurf of potato, caused by Rhizoctonia solani, can be serious diseases causing an economically significant damage. Biocontrol activity of Bacillus subtilis ATCC 11774 against the Rhizoctonia diseases of potato was investigated in this study. Chitinase enzyme was optimally produced by B. subtilis under batch fermentation conditions similar to those of the potato-growing soil. The maximum chitinase was obtained at initial pH 8 and 30 °C. In vitro, the lytic action of the B. subtilis chitinase was detected releasing 355 μg GlcNAc ml⁻¹ from the cell wall extract of R. solani and suggesting the presence of various chitinase enzymes in the bacterial filtrate. In dual culture test, the antagonistic behavior of B. subtilis resulted in the inhibition of the radial growth of R. solani by 48.1% after 4 days. Moreover, the extracted B. subtilis chitinase reduced the growth of R. solani by 42.3% when incorporated with the PDA plates. Under greenhouse conditions, application of a bacterial suspension of B. subtilis at 109 cell mL⁻¹ significantly reduced the disease incidence of stem canker and black scurf to 22.3 and 30%, respectively. In addition, it significantly improved some biochemical parameters, growth and tubers yield. Our findings indicate two points; firstly, B. subtilis possesses a good biocontrol activity against Rhizoctonia diseases of potato, secondly, the harmonization and suitability of the soil conditions to the growth and activity of B. subtilis guaranteed a high controlling capacity against the target pathogen. PMID:26616375

  20. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome.

    PubMed

    Erlacher, Armin; Cardinale, Massimiliano; Grosch, Rita; Grube, Martin; Berg, Gabriele

    2014-01-01

    Lettuce belongs to the most commonly raw eaten food worldwide and its microbiome plays an important role for both human and plant health. Yet, little is known about the impact of potentially occurring pathogens and beneficial inoculants of the indigenous microorganisms associated with lettuce. To address this question we studied the impact of the phytopathogenic fungus Rhizoctonia solani and the biological control agent Bacillus amyloliquefaciens FZB42 on the indigenous rhizosphere and phyllosphere community of greenhouse-grown lettuce at two plant stages. The rhizosphere and phyllosphere gammaproteobacterial microbiomes of lettuce plants showed clear differences in their overall and core microbiome composition as well as in corresponding diversity indices. The rhizosphere was dominated by Xanthomonadaceae (48%) and Pseudomonadaceae (37%) with Rhodanobacter, Pseudoxanthomonas, Dokdonella, Luteimonas, Steroidobacter, Thermomonas as core inhabitants, while the dominating taxa associated to phyllosphere were Pseudomonadaceae (54%), Moraxellaceae (16%) and Enterobacteriaceae (25%) with Alkanindiges, Pantoea and a group of Enterobacteriaceae unclassified at genus level. The preferential occurrence of enterics in the phyllosphere was the most significant difference between both habitats. Additional enhancement of enterics on the phyllosphere was observed in bottom rot diseased lettuce plants, while Acinetobacter and Alkanindiges were identified as indicators of healthy plants. Interestingly, the microbial diversity was enhanced by treatment with both the pathogen, and the co-inoculated biological control agent. The highest impact and bacterial diversity was found by Rhizoctonia inoculation, but FZB42 lowered the impact of Rhizoctonia on the microbiome. This study shows that the indigenous microbiome shifts as a consequence to pathogen attack but FZB42 can compensate these effects, which supports their role as biocontrol agent and suggests a novel mode of action. PMID

  1. The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani.

    PubMed

    Baek, J M; Howell, C R; Kenerley, C M

    1999-02-01

    The role of extracellular chitinase in the biocontrol activity of Trichoderma virens was examined using genetically manipulated strains of this fungus. The T. virens strains in which the chitinase gene (cht42) was disrupted (KO) or constitutively over-expressed (COE) were constructed through genetic transformation. The resulting transformants were stable and showed patterns similar to the wild-type (WT) strain with respect to growth rate, sporulation, antibiotic production, colonization efficiency on cotton roots and growth/survival in soil. Biocontrol activity of the KO and COE strains were significantly decreased and enhanced, respectively against cotton seedling disease incited by Rhizoctonia solani when compared with the WT strain.

  2. Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco in North Carolina.

    PubMed

    Ceresini, Paulo C; Shew, H David; Vilgalys, Rytas J; Cubeta, Marc A

    2002-01-01

    Anastomosis group 3 (AG-3) of Rhizoctonia solani (teleomorph = Thanatephorus cucumeris) is frequently associated with diseases of potato (AG-3 PT) and tobacco (AG-3 TB). Although isolates of R. solani AG-3 from these two Solanaceous hosts are somatically related based on anastomosis reaction and taxonomically related based on fatty acid, isozyme and DNA characters, considerable differences are evident in their biology, ecology, and epidemiology. However, genetic diversity among field populations of R. solani AG-3 PT and TB has not been documented. In this study, the genetic diversity of field populations of R. solani AG-3 PT and AG-3 TB in North Carolina was examined using somatic compatibility and amplified fragment length polymorphism (AFLP) criteria. A sample of 32 isolates from potato and 36 isolates from tobacco were paired in all possible combinations on PDA plus activated charcoal and examined for their resulting somatic interactions. Twenty-eight and eight distinct somatic compatibility groups (SCG) were identified in the AG-3 PT and AG-3 TB samples, respectively. AFLP analyses indicated that each of the 32 AG-3 PT isolates had a distinct AFLP phenotype, whereas 28 AFLP phenotypes were found among the 36 isolates of AG-3 TB. None of the AG-3 PT isolates were somatically compatible or shared a common AFLP phenotype with any AG-3 TB isolate. Clones (i.e., cases where two or more isolates were somatically compatible and shared the same AFLP phenotype) were identified only in the AG-3 TB population. Four clones from tobacco represented 22% of the total population. All eight SCG from tobacco were associated with more than one AFLP phenotype. Compatible somatic interactions between AG-3 PT isolates occurred only between certain isolates from the same field (two isolates in each of four different fields), and when this occurred AFLP phenotypes were similar but not identical.

  3. Genetic diversity of Rhizoctonia solani associated with potato tubers in France.

    PubMed

    Fiers, Marie; Edel-Hermann, Véronique; Héraud, Cécile; Gautheron, Nadine; Chatot, Catherine; Le Hingrat, Yves; Bouchek-Mechiche, Karima; Steinberg, Christian

    2011-01-01

    The soilborne fungus Rhizoctonia solani is a pathogen of many plants and causes severe damage in crops around the world. Strains of R. solani from the anastomosis group (AG) 3 attack potatoes, leading to great yield losses and to the downgrading of production. The study of the genetic diversity of the strains of R. solani in France allows the structure of the populations to be determined and adapted control strategies against this pathogen to be established. The diversity of 73 French strains isolated from tubers grown in the main potato seed production areas and 31 strains isolated in nine other countries was assessed by phylogenetic analyses of (i) the internal transcribed spacer sequences (ITS1 and ITS2) of ribosomal RNA (rRNA), (ii) a part of the gene tef-1α and (iii) the total DNA fingerprints of each strain established by amplified fragment length polymorphism (AFLP). The determination of the AGs of R. solani based on the sequencing of the ITS region showed three different AGs among our collection (60 AG 3 PT, 8 AG 2-1 and 5 AG 5). Grouping of the strains belonging to the same AG was confirmed by sequencing of the gene tef-1α used for the first time to study the genetic diversity of R. solani. About 42% of ITS sequences and 72% of tef-1α sequences contained polymorphic sites, suggesting that the cells of R. solani strains contain several copies of ITS and the tef-1α gene within the same nucleus or between different nuclei. Phylogenetic trees showed a greater genetic diversity within AGs in tef-1α sequences than in ITS sequences. The AFLP analyses showed an even greater diversity among the strains demonstrating that the French strains of R. solani isolated from potatoes were not a clonal population. Moreover there was no relationship between the geographical origins of the strains or the variety from which they were isolated and their genetic diversity.

  4. Mechanism of the generation of new somatic compatibility groups within Thanatephorus cucumeris (Rhizoctonia solani).

    PubMed

    Qu, Ping; Saldajeno, Mary Grace B; Hyakumachi, Mitsuro

    2013-01-01

    Single-basidiospore isolates (SBIs) were obtained from field isolates of Thanatephorus cucumeris (Rhizoctonia solani) AG-1 IC and AG-2-2 IV. Formation of distinctive tufts, a recognized feature of heterokaryon synthesis, was observed, and isolates derived from hyphal-tipped tuft hyphae were obtained following pairings between various strains. Three distinctive types of tufts were formed: the fibrous type of mating-compatible homokaryon-homokaryon (Hom-Hom) pairings, the sparse type between heterokaryon-homokaryon (Het-Hom) pairings originating from one parent, and the compact type between Het-Hom pairings originating from different parents. Amplified Fragment Length Polymorphism (AFLP) profile of fingerprints of these tuft isolates verified that they were all heterokaryotic. Because of heterokaryotic vigor, the growth and pathogenicity of the majority of tuft isolates increased compared with their contributing SBIs. New somatic compatibility groups (SCGs) that were different from parental field isolates occurred following heterokaryon formation within T. cucumeris. Tuft isolates produced by Hom-Hom and Het-Hom pairings among isolates of different parents yielded no somatic compatibility with the original parent isolates and a high frequency of new SCGs (62-100%). This was in contrast to those produced by Hom-Hom and Het-Hom pairings among isolates with a common parent that yielded only 12-37% new SCGs. The SCG diversity of R. solani in the field may be attributed to new fitter heterokaryons formed between a heterokaryon of one pair of parents and a homokaryon of another parent pair. This mechanism greatly contributes to genetic diversity in the field and accounts for the failure to recover the expected distribution of SCGs from a field population.

  5. Diversity of Rhizoctonia solani associated with pulse crops in different agro-ecological regions of India.

    PubMed

    Dubey, Sunil C; Tripathi, Aradhika; Upadhyay, Balendu K; Deka, Utpal K

    2014-06-01

    Four hundred seventy Rhizoctonia solani isolates from different leguminous hosts originating from 16 agro-ecological regions of India covering 21 states and 72 districts were collected. The disease incidence caused by R. solani varied from 6.8 to 22.2 % in the areas surveyed. Deccan plateau and central highlands, hot sub-humid ecoregion followed by northern plain and central highlands and hot semi-arid ecoregion showed the highest disease incidence. R. solani isolates were highly variable in growth diameter, number, size and pattern of sclerotia formation as well as hyphal width. The isolates obtained from aerial part of the infected plants showing web blight symptoms produced sclerotia of 1-2 mm in size whereas, the isolates obtained from infected root of the plants showing wet root rot symptoms produced microsclerotia (<1 mm). Majority of R. solani isolates showed <8 μm hyphal diameter. Based on morphological characters the isolates were categorized into 49 groups. Seven anastomosis groups (AGs) were identified among the populations of R. solani associated with the pulse crops. The frequency (25.6 %) of AG3 was the highest followed by AG2-3 (20.9 %) and AG5 (17.4 %). The cropping sequence of rice/sorghum/wheat-chickpea/mungbean/urdbean/cowpea/ricebean influenced the dominance of AG1 (16.3 %). Phylogenetic analysis utilizing ITS-5.8S rDNA gene sequences indicated high level of genetic similarity among isolates representing different AGs, crops and regions. ITS groups did not correspond to the morphological characters. The sequence data from this article has been deposited with NCBI data libraries with JF701707 to JF701795 accession numbers.

  6. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    PubMed

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  7. Effects of water potential on mycelial growth, sclerotial production, and germination of Rhizoctonia solani from potato.

    PubMed

    Ritchie, Faye; McQuilken, Mark P; Bain, Ruairidh A

    2006-06-01

    The effects of osmotic and matric potential on mycelial growth, sclerotial production and germination of isolates of Rhizoctonia solani [anastomosis groups (AGs) 2-1 and 3] from potato were studied on potato dextrose agar (PDA) adjusted osmotically with sodium chloride, potassium chloride, glycerol, and matrically with polyethylene glycol (PEG) 6000. All isolates from AGs 2-1 and AG-3 exhibited fastest mycelial growth on unamended PDA (-0.4MPa), and growth generally declined with decreasing osmotic and matric potentials. Growth ceased between -3.5 and -4.0MPa on osmotically adjusted media, and at -2.0MPa on matrically adjusted media, with slight differences between isolates and osmotica. Sclerotium yield declined with decreasing osmotic potential, and formation by AG 2-1 and AG-3 isolates ceased between -1.5 and -3.0MPa and -2.5 and -3.5MPa, respectively. On matrically adjusted media, sclerotial formation by AG 2-1 isolates ceased at -0.8MPa, whereas formation by AG-3 isolates ceased at the lower matric potential of -1.5MPa. Sclerotial germination also declined with decreasing osmotic and matric potential, with total inhibition occurring over the range -3.0 to -4.0MPa on osmotically adjusted media, and at -2.0MPa on matrically adjusted media. In soil, mycelial growth and sclerotial germination of AG-3 isolates declined with decreasing total water potential, with a minimum potential of -6.3MPa permitting both growth and germination. The relevance of these results to the behaviour of R. solani AGs in soil and their pathogenicity on potato is discussed.

  8. Genetic diversity of Rhizoctonia solani associated with potato tubers in France.

    PubMed

    Fiers, Marie; Edel-Hermann, Véronique; Héraud, Cécile; Gautheron, Nadine; Chatot, Catherine; Le Hingrat, Yves; Bouchek-Mechiche, Karima; Steinberg, Christian

    2011-01-01

    The soilborne fungus Rhizoctonia solani is a pathogen of many plants and causes severe damage in crops around the world. Strains of R. solani from the anastomosis group (AG) 3 attack potatoes, leading to great yield losses and to the downgrading of production. The study of the genetic diversity of the strains of R. solani in France allows the structure of the populations to be determined and adapted control strategies against this pathogen to be established. The diversity of 73 French strains isolated from tubers grown in the main potato seed production areas and 31 strains isolated in nine other countries was assessed by phylogenetic analyses of (i) the internal transcribed spacer sequences (ITS1 and ITS2) of ribosomal RNA (rRNA), (ii) a part of the gene tef-1α and (iii) the total DNA fingerprints of each strain established by amplified fragment length polymorphism (AFLP). The determination of the AGs of R. solani based on the sequencing of the ITS region showed three different AGs among our collection (60 AG 3 PT, 8 AG 2-1 and 5 AG 5). Grouping of the strains belonging to the same AG was confirmed by sequencing of the gene tef-1α used for the first time to study the genetic diversity of R. solani. About 42% of ITS sequences and 72% of tef-1α sequences contained polymorphic sites, suggesting that the cells of R. solani strains contain several copies of ITS and the tef-1α gene within the same nucleus or between different nuclei. Phylogenetic trees showed a greater genetic diversity within AGs in tef-1α sequences than in ITS sequences. The AFLP analyses showed an even greater diversity among the strains demonstrating that the French strains of R. solani isolated from potatoes were not a clonal population. Moreover there was no relationship between the geographical origins of the strains or the variety from which they were isolated and their genetic diversity. PMID:21642342

  9. Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent pseudomonads.

    PubMed

    Afsharmanesh, H; Ahmadzadeh, M; Sharifi-Tehrani, A

    2006-01-01

    Rhizosphere bacteria belonging to the fluorescent pseudomonads are receiving increasing attention for the protection of plants against soil-borne fungal pathogens. Among these pathogens, Rhizoctonia solani, the causal agent of bean damping- off is very important in bean fields of Iran. In this study, the antagonistic activity of 46 isolates of fluorescent pseudomonads (isolated from different area of Iran) and Pseudomonas fluorescens strain CHA0 investigated against one isolate of R. solani. About 64% of isolates revealed antagonistic activity against R. solani. Production of antifungal metabolites such as HCN, siderophore and protease was evaluated. The results showed that 97.8%, 17% and 78% of isolates produced siderophore, HCN and protease respectively. There was no significant correlation between antagonistic activity and production of these metabolites. Isolates P-5, P-10 and P-32 with strain CHA0 were selected in order to investigate involvement of siderophore, volatile metabolites (HCN), and non-volatile metabolites in reducing mycelial growth of R. olani. Isolate P-5 showed much more inhibitory effect by production of volatile metabolites and siderophore. Non-volatile metabolites in isolates P-32 and P-5 completely inhibited mycelial growth of the fungus. After the primary labrotory tests, isolates P-14, P-35, P-30, P-5 and strain CHA0 were selected for in vivo experiments. These selected isolates with benomyl fungicide were used as seed coating and soil drenching in sterile soil under greenhouse condition. The result indicated that in seed treatment method, isolates P-30 by 66% had the most effect in disease reduction while in soil treatment method, strain CHAO by 60% had the most effect, such that this two isolates showed significant differences in comparison with plants inoculated with R. solani inoculums.

  10. Effects of Meloidogyne spp. and Rhizoctonia solani on the Growth of Grapevine Rootings.

    PubMed

    Walker, G E

    1997-06-01

    A disease complex involving Meloidogyne incognita and Rhizoctonia solani was associated with stunting of grapevines in a field nursery. Nematode reproduction was occurring on both susceptible and resistant cultivars, and pot experiments were conducted to determine the virulence of this M. incognita population, and of M. javanica and M. hapla populations, to V. vinifera cv. Colombard (susceptible) and to V. champinii cv. Ramsey (regarded locally as highly resistant). The virulence of R. solani isolates obtained from roots of diseased grapevines also was determined both alone and in combination with M. incognita. Ramsey was susceptible to M. incognita (reproduction ratio 9.8 to 18.4 in a shadehouse and heated glasshouse, respectively) but was resistant to M. javanica and M. hapla. Colombard was susceptible to M. incognita (reproduction ratio 24.3 and 41.3, respectively) and M. javanica. Shoot growth was suppressed (by 35%) by M. incognita and, to a lesser extent, by M. hapla. Colombard roots were more severely galled than Ramsey roots by all three species, and nematode reproduction was higher on Colombard. Isolates of R. solani assigned to putative anastomosis groups 2-1 and 4, and an unidentified isolate, colonized and induced rotting of grapevine roots. Ramsey was more susceptible to root rotting than Colombard. Shoot growth was inhibited by up to 15% by several AG 4 isolates and by 20% by the AG 2-1 isolate. AG 4 isolates varied in their virulence. Root rotting was higher when grapevines were inoculated with both M. incognita and R. solani and was highest when nematode inoculation preceded the fungus. Shoot weights were lower when vines were inoculated with the nematode 13 days before the fungus compared with inoculation with both the nematode and the fungus on the same day. It was concluded that both the M. incognita population and some R. solani isolates were virulent against both Colombard and Ramsey, and that measures to prevent spread in nursery stock were

  11. Blackpatch of Clover, Cause of Slobbers Syndrome: A Review of the Disease and the Pathogen, Rhizoctonia leguminicola

    PubMed Central

    Kagan, Isabelle A.

    2016-01-01

    Rhizoctonia leguminicola Gough and Elliott is a widely used name for the causal agent of blackpatch disease of red clover (Trifolium pratense L.). This fungal pathogen produces alkaloids (slaframine and swainsonine) that affect grazing mammals. Slaframine causes livestock to salivate profusely, and swainsonine causes neurological problems. Although the blackpatch fungus was classified as a Rhizoctonia species (phylum Basidiomycota), morphological studies have indicated that it is in the phylum Ascomycota, and sequencing data have indicated that it may be a new genus of ascomycete. The effects of the alkaloids on grazing mammals and their biosynthetic pathways have been extensively studied. In contrast, few studies have been done on management of the disease, which requires a greater understanding of the pathogen. Methods of disease management have included seed treatments and fungicides, but these have not been investigated since the 1950s. Searches for resistant cultivars have been limited. This review summarizes the biological effects and biosynthetic precursors of slaframine and swainsonine. Emphasis is placed on current knowledge about the epidemiology of blackpatch disease and the ecology and taxonomy of the pathogen. Possibilities for future research and disease management efforts are suggested. PMID:26858953

  12. Mungbean plants expressing BjNPR1 exhibit enhanced resistance against the seedling rot pathogen, Rhizoctonia solani.

    PubMed

    Vijayan, S; Kirti, P B

    2012-02-01

    Mungbean, Vigna radiata (L.) Wilczek is an important pulse crop that is widely cultivated in semi- arid tropics. The crop is attacked by various soil-borne pathogens like Rhizoctonia solani, which causes dry rot disease and seriously affects its productivity. Earlier we characterized the non-expressor of pathogenesis related gene-1(BjNPR1) of mustard, Brassica juncea, the counterpart of AtNPR1 of Arabidopsis thaliana. Here, we transformed mungbean with BjNPR1 via Agrobacterium tumefaciens. Because of the recalcitrant nature of mungbean, the effect of some factors like Agrobacterium tumefaciens strains (GV2260 and LBA4404), pH, L: -cysteine and tobacco leaf extract was tested in transformation. The transgenic status of 15 plants was confirmed by PCR using primers for nptII. The independent integration of T-DNA in transgenic plants was analyzed by Southern hybridization with an nptII probe and the expression of BjNPR1 was confirmed by RT-PCR. Some of the T(0) plants were selected for detached leaf anti-fungal bioassay using the fungus Rhizoctonia solani, which showed moderate to high level of resistance depending on the level of expression of BjNPR1. The seedling bioassay of transgenic T(2) plants indicated resistance against dry rot disease caused by R. solani.

  13. Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a.

    PubMed

    Olorunleke, Feyisara Eyiwumi; Hua, Gia Khuong Hoang; Kieu, Nam Phuong; Ma, Zongwang; Höfte, Monica

    2015-10-01

    We investigated the role of phenazines and cyclic lipopeptides (CLPs) (orfamides and sessilins), antagonistic metabolites produced by Pseudomonas sp. CMR12a, in the biological control of damping-off disease on Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani AG 2-1 and root rot disease on bean (Phaseolus vulgaris L.) caused by R. solani AG 4-HGI. A Pseudomonas mutant that only produced phenazines suppressed damping-off disease on Chinese cabbage to the same extent as CMR12a, while its efficacy to reduce root rot on bean was strongly impaired. In both pathosystems, the phenazine mutant that produced both CLPs was equally effective, but mutants that produced only one CLP lost biocontrol activity. In vitro microscopic assays revealed that mutants that only produced sessilins or orfamides inhibited mycelial growth of R. solani when applied together, while they were ineffective on their own. Phenazine-1-carboxamide suppressed mycelial growth of R. solani AG 2-1 but had no effect on AG 4-HGI. Orfamide B suppressed mycelial growth of both R. solani anastomosis groups in a dose-dependent way. Our results point to an additive interaction between both CLPs. Moreover, phenazines alone are sufficient to suppress Rhizoctonia disease on Chinese cabbage, while they need to work in tandem with the CLPs on bean.

  14. The influence of Bacillus subtilis RB14-C on the development of Rhizoctonia solani and indigenous microorganisms in the soil.

    PubMed

    Szczech, Magdalena; Shoda, Makoto

    2005-05-01

    The effect of soil inoculation with an antagonistic strain Bacillus subtilis RB14-C on the development of Rhizoctonia solani and changes occurring in soil and rhizosphere microbial communities were studied. RB14-C was added to the soil as a water suspension of the cells or as a broth culture. Application of cell suspensions to non-planted soil reduced the number of culturable bacteria. The density of R. solani and the number of filamentous fungi were not significantly affected by RB14-C. A similar effect was observed in the rhizosphere of tomato plants growns in bacterized soil. Broth cultures of RB14-C suppressed R. solani 1 d after inoculation, but after 3 d there was no difference in the pathogen density between soil amended with broth culture and control soil. In microcosm studies, cell suspensions of RB14-C also did not inhibit growth of R. solani on filters buried in soil. However, an inhibitory effect was obtained when a broth culture of the bacterium was used. The effect of RB14-C on fungal biomass was also estimated by measurement of ergosterol concentration in soil. It was found that ergosterol was mostly derived from R. solani and that there were no significant differences in its content between untreated soil and soil treated with RB14-C. The results suggest that suppression of Rhizoctonia damping-off by B. subtilis RB14-C probably is not related to the reduction of the pathogen population in the soil.

  15. Proteomic investigation of Rhizoctonia solani AG 4 identifies secretome and mycelial proteins with roles in plant cell wall degradation and virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani AG 4 is a soilborne necrotrophic fungal plant pathogen that causes economically important diseases on agronomic crops worldwide. Our long-term goal is to elucidate the molecular basis of pathogenesis of isolates of R. solani AG 4 in an effort to develop more effective control meth...

  16. Mid-infared (MidIR) and near-infared (NIR) dection of rhizoctonia solani AG 2-2 IIIB on barley based artificial inoculum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount of Rhizoctonia solani in the soil and how much is needed to cause disease in sugar beet (Beta vulgaris L.) is relatively unknown. This is mostly because of the usually low inoculum densities natually found in soil, and the low sensitivity of traditional serial dilution assays. We invest...

  17. Mid-infared and near-infared detection of Rhizoctonia solani AG 2-2IIIB on barley based artifical inoculum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount of Rhizoctonia solani in the soil and how much is needed to cause disease in sugar beet (Beta vulgaris L.) is relatively unknown. This is mostly because of the usually low inoculum densities natually found in soil, and the low sensitivity of traditional serial dilution assays. We invest...

  18. Identification, molecular characterization, and evolution of group I introns at the expansion segment D11 of 28S rDNA in Rhizoctonia species.

    PubMed

    González, Dolores

    2013-09-01

    The nuclear ribosomal DNA of Rhizoctonia species is polymorphic in terms of the nucleotide composition and length. Insertions of 349-410 nucleotides in length with characteristics of group I introns were detected at a single insertion point at the expansion segment D11 of 28S rDNA in 12 out of 64 isolates. Eleven corresponded to Rhizoctonia solani (teleomorph: Thanatephorous) and one (AG-Q) to Rhizoctonia spp. (teleomorph: Ceratobasidium). Sequence data showed that all but AG-Q contained conserved DNA catalytic core regions (P, Q, R, and S) essential for selfsplicing. The predicted secondary structure revealed that base-paired helices corresponded to subgroup IC1. Isolates from same anastomosis group and even subgroups within R. solani were variable with regard to possession of introns. Phylogenetic analyses indicated that introns were vertically transmitted. Unfortunately, sequence data from the conserved region from all 64 isolates were not useful for delimiting species. Analyses with IC1 introns at same insertion point, of both Ascomycota and Basidiomycota indicated the possibility of horizontal transfer at this site. The present study uncovered new questions on evolutionary pattern of change of these introns within Rhizoctonia species.

  19. Scarlet-Rz1, an EMS-generated hexaploid wheat with tolerance to the soilborne necrotrophic pathogens Rhizoctonia solani AG-8 and R. oryzae.

    PubMed

    Okubara, Patricia Ann; Steber, Camille M; Demacon, Victor L; Walter, Nathalie L; Paulitz, Timothy C; Kidwell, Kimberlee K

    2009-07-01

    The necrotrophic root pathogens Rhizoctonia solani AG-8 and R. oryzae cause Rhizoctonia root rot and damping-off, yield-limiting diseases that pose barriers to the adoption of conservation tillage in wheat production systems. Existing control practices are only partially effective, and natural genetic resistance to Rhizoctonia has not been identified in wheat or its close relatives. We report the first genetic resistance/tolerance to R. solani AG-8 and R. oryzae in wheat (Triticum aestivum L. em Thell) germplasm 'Scarlet-Rz1'. Scarlet-Rz1 was derived from the allohexaploid spring wheat cultivar Scarlet using EMS mutagenesis. Tolerant seedlings displayed substantial root and shoot growth after 14 days in the presence of 100-400 propagules per gram soil of R. solani AG-8 and R. oryzae in greenhouse assays. BC(2)F(4) individuals of Scarlet-Rz1 showed a high and consistent degree of tolerance. Seedling tolerance was transmissible and appeared to be dominant or co-dominant. Scarlet-Rz1 is a promising genetic resource for developing Rhizoctonia-tolerant wheat cultivars because the tolerance trait immediately can be deployed into wheat breeding germplasm through cross-hybridization, thereby avoiding difficulties with transfer from secondary or tertiary relatives as well as constraints associated with genetically modified plants. Our findings also demonstrate the utility of chemical mutagenesis for generating tolerance to necrotrophic pathogens in allohexaploid wheat.

  20. High-resolution mapping of Rsn1, a locus controlling sensitivity of rice to a necrosis-inducing phytotoxin from Rhizoctonia solani AG1-IA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani is a necrotrophic fungal pathogen that causes disease on all major crop-plant species. Anastomosis group 1-IA is the causal agent of sheath blight of rice (Oryza sativa), one of the most important rice diseases worldwide. R. solani AG-IA produces a necrosis-inducing phytotoxin a...

  1. Effect of cropping system on composition of the Rhizoctonia populations recovered from canola and lupin in a winter rainfall region of South Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia spp. are important pathogens of a broad range of crop plants that are economically important to the farm economy of the Western Cape region of South Africa. However, there is little information concerning the identity and relative importance of these fungal pathogens, and the effect of ...

  2. Carbon source-dependent effects of anaerobic soil disinfestation on soil microbiome and suppression of rhizoctonia solani AG-5 and pratylenchus penetrans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of carbon source on efficacy of anaerobic soil disinfestation (ASD) toward suppression of apple root infection by Rhizoctonia solani AG-5 and Pratylenchus penetrans was examined. Orchard grass (GR), rice bran (RB), ethanol (ET), composted steer manure (CM) and Brassica juncea seed meal (S...

  3. Sanitation Can Be A Foundation Disease Management Tool: Potential Of Spreading Binucleate Rhizoctonia from Nursery Propagation Floors To Trays Containing Azalea Stem Cuttings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Binucelate Rhizoctonia spp. (BNR), the cause of web blight, are present all year on container-grown azaleas in the southern U.S. BNR can be eliminated during vegetative propagation by submerging stem cuttings in 50°C water for 21 minutes. The objective was to evaluate risk of rooting trays being con...

  4. Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani AG8

    PubMed Central

    Hane, James K.; Anderson, Jonathan P.; Williams, Angela H.; Sperschneider, Jana; Singh, Karam B.

    2014-01-01

    Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA. We also observed SNP-level “hypermutation” of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the

  5. Integrated options for the management of black root rot of strawberry caused by Rhizoctonia solani Kuhn.

    PubMed

    Asad-Uz-Zaman, Md; Bhuiyan, Mohammad Rejwan; Khan, Mohammad Ashik Iqbal; Alam Bhuiyan, Md Khurshed; Latif, Mohammad Abdul

    2015-02-01

    An investigation was made to manage strawberry black root rot caused by Rhizoctonia solani (R. solani) through the integration of Trichoderma harzianum (T. harzianum) isolate STA7, mustard oil cake and Provax 200. A series of preliminary experiments were conducted to select a virulent isolate of R. solani, an effective isolate of T. harzianum, a suitable organic amendment, and a suitable fungicide before setting the experiment for integration. The pathogenicity of the selected four isolates of R. solani was evaluated against strawberry and isolate SR1 was selected as the test pathogen due to its highest virulent (95.47% mortality) characteristics. Among the 20 isolates of T. harzianum, isolate STA7 showed maximum inhibition (71.97%) against the test pathogen (R. solani). Among the fungicides, Provax-200 was found to be more effective at lowest concentration (100 ppm) and highly compatible with Trichoderma isolates STA7. In the case of organic amendments, maximum inhibition (59.66%) of R. solani was obtained through mustard oil cake at the highest concentration (3%), which was significantly superior to other amendments. Minimum percentages of diseased roots were obtained with pathogen (R. solani)+Trichoderma+mustard oil cake+Provax-200 treatment, while the highest was observed with healthy seedlings with a pathogen-inoculated soil. In the case of leaf and fruit rot diseases, significantly lowest infected leaves as well as fruit rot were observed with a pathogen+Trichoderma+mustard oil cake+Provax-200 treatment in comparison with the control. A similar trend of high effectiveness was observed by the integration of Trichoderma, fungicide and organic amendments in controlling root rot and fruit diseases of strawberry. Single application of Trichoderma isolate STA7, Provax 200 or mustard oil cake did not show satisfactory performance in terms of disease-free plants, but when they were applied in combination, the number of healthy plants increased significantly. The

  6. Integrated options for the management of black root rot of strawberry caused by Rhizoctonia solani Kuhn.

    PubMed

    Asad-Uz-Zaman, Md; Bhuiyan, Mohammad Rejwan; Khan, Mohammad Ashik Iqbal; Alam Bhuiyan, Md Khurshed; Latif, Mohammad Abdul

    2015-02-01

    An investigation was made to manage strawberry black root rot caused by Rhizoctonia solani (R. solani) through the integration of Trichoderma harzianum (T. harzianum) isolate STA7, mustard oil cake and Provax 200. A series of preliminary experiments were conducted to select a virulent isolate of R. solani, an effective isolate of T. harzianum, a suitable organic amendment, and a suitable fungicide before setting the experiment for integration. The pathogenicity of the selected four isolates of R. solani was evaluated against strawberry and isolate SR1 was selected as the test pathogen due to its highest virulent (95.47% mortality) characteristics. Among the 20 isolates of T. harzianum, isolate STA7 showed maximum inhibition (71.97%) against the test pathogen (R. solani). Among the fungicides, Provax-200 was found to be more effective at lowest concentration (100 ppm) and highly compatible with Trichoderma isolates STA7. In the case of organic amendments, maximum inhibition (59.66%) of R. solani was obtained through mustard oil cake at the highest concentration (3%), which was significantly superior to other amendments. Minimum percentages of diseased roots were obtained with pathogen (R. solani)+Trichoderma+mustard oil cake+Provax-200 treatment, while the highest was observed with healthy seedlings with a pathogen-inoculated soil. In the case of leaf and fruit rot diseases, significantly lowest infected leaves as well as fruit rot were observed with a pathogen+Trichoderma+mustard oil cake+Provax-200 treatment in comparison with the control. A similar trend of high effectiveness was observed by the integration of Trichoderma, fungicide and organic amendments in controlling root rot and fruit diseases of strawberry. Single application of Trichoderma isolate STA7, Provax 200 or mustard oil cake did not show satisfactory performance in terms of disease-free plants, but when they were applied in combination, the number of healthy plants increased significantly. The

  7. Comparative proteomic analysis reveals intracellular targets for bacillomycin L to induce Rhizoctonia solani Kühn hyphal cell death.

    PubMed

    Zhang, Bao; Qin, Yuxuan; Han, Yuzhu; Dong, Chunjuan; Li, Pinglan; Shang, Qingmao

    2016-09-01

    Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activity against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. To further understand its antifungal actions, proteomes were comparatively studied within R. solani hyphal cells treated with or without bacillomycin L. The results show that 39 proteins were alternatively expressed within cells in response to this lipopeptide, which are involved in stress response, carbohydrate, amino acid and nucleotide metabolism, cellular component organization, calcium homeostasis, protein degradation, RNA processing, gene transcription, and others, suggesting that, in addition to inducing cell membrane permeabilization, iturin exhibits antibiotic activities by targeting intracellular molecules. Based on these results, a model of action of bacillomycin L against R. solani hyphal cells was proposed. Our study provides new insight into the antibiotic mechanisms of iturins.

  8. First Report of Web Blight of Rosemary (Rosmarinus officinalis) Caused by Rhizoctonia solani AG-1-IB in Korea.

    PubMed

    Aktaruzzaman, Md; Kim, Joon-Young; Afroz, Tania; Kim, Byung-Sup

    2015-06-01

    Herein, we report the first occurrence of web blight of rosemary caused by Rhizoctonia solani AG-1-IB in Gangneung, Gangwon Province, Korea, in August 2014. The leaf tissues of infected rosemary plants were blighted and white mycelial growth was seen on the stems. The fungus was isolated from diseased leaf tissue and cultured on potato dextrose agar for identification. The young hyphae had acute angular branching near the distal septum of the multinucleate cells and mature hyphal branches formed at an approximately 90° angle. This is morphologically identical to R. solani AG-1-IB, as per previous reports. rDNA-ITS sequences of the fungus were homologous to those of R. solani AG-1-IB isolates in the GenBank database with a similarity percentage of 99%, thereby confirming the identity of the causative agent of the disease. Pathogenicity of the fungus in rosemary plants was also confirmed by Koch's postulates.

  9. Effect of Population Dynamics of Pseudomonas cepacia and Paecilomyces lilacinus on Colonization of Polyfoam Rooting Cubes by Rhizoctonia solani

    PubMed Central

    Cartwright, D. Kelly; Benson, D. M.

    1994-01-01

    Suspensions of Pseudomonas cepacia (strain 5.5B) and Paecilomyces lilacinus (isolate 6.2F) were applied to polyfoam rooting cubes for control of stem rot of poinsettia caused by Rhizoctonia solani. The populations of antagonists and colonization of rooting cubes by R. solani were monitored during a 3-week period. Colonization of cubes by R. solani was reduced in cubes treated with P. cepacia, but the population of P. cepacia decreased by as much as 97% during the test period. Increased colonization by R. solani was correlated with a decline in population of P. cepacia. P. lilacinus was more persistent than P. cepacia in cubes, with only a 21% reduction observed during the 3-week period. Colonization of the P. lilacinus-treated cubes by R. solani was significantly less than colonization of infested controls. No correlation existed between population of P. lilacinus and colonization of cubes by R. solani. PMID:16349353

  10. First Report of Web Blight of Rosemary (Rosmarinus officinalis) Caused by Rhizoctonia solani AG-1-IB in Korea.

    PubMed

    Aktaruzzaman, Md; Kim, Joon-Young; Afroz, Tania; Kim, Byung-Sup

    2015-06-01

    Herein, we report the first occurrence of web blight of rosemary caused by Rhizoctonia solani AG-1-IB in Gangneung, Gangwon Province, Korea, in August 2014. The leaf tissues of infected rosemary plants were blighted and white mycelial growth was seen on the stems. The fungus was isolated from diseased leaf tissue and cultured on potato dextrose agar for identification. The young hyphae had acute angular branching near the distal septum of the multinucleate cells and mature hyphal branches formed at an approximately 90° angle. This is morphologically identical to R. solani AG-1-IB, as per previous reports. rDNA-ITS sequences of the fungus were homologous to those of R. solani AG-1-IB isolates in the GenBank database with a similarity percentage of 99%, thereby confirming the identity of the causative agent of the disease. Pathogenicity of the fungus in rosemary plants was also confirmed by Koch's postulates. PMID:26190926

  11. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani.

    PubMed

    Mizumoto, S; Hirai, M; Shoda, M

    2007-07-01

    Enhanced production of the antibiotic iturin A by Bacillus subtilis RB14-CS reached 4.4 g L(-1) in SM medium containing soybean meal and maltose, which was 16-fold and 2.2-fold higher than that in original and modified number 3S media, respectively. When various volumes of RB14-CS cultures grown in SM medium were applied to pot tests of tomato damping-off caused by Rhizoctonia solani, damping-off was dose-dependently suppressed by the cultures. Suppression by SM-grown cultures was significantly more effective than that by cultures grown in original or modified number 3S media. The iturin A concentrations in soil decreased to undetectable levels after 17 days of cultivation in pot tests, indicating that iturin A has a low persistence in soil.

  12. First Report of Web Blight of Rosemary (Rosmarinus officinalis) Caused by Rhizoctonia solani AG-1-IB in Korea

    PubMed Central

    Aktaruzzaman, Md.; Kim, Joon-Young; Afroz, Tania

    2015-01-01

    Herein, we report the first occurrence of web blight of rosemary caused by Rhizoctonia solani AG-1-IB in Gangneung, Gangwon Province, Korea, in August 2014. The leaf tissues of infected rosemary plants were blighted and white mycelial growth was seen on the stems. The fungus was isolated from diseased leaf tissue and cultured on potato dextrose agar for identification. The young hyphae had acute angular branching near the distal septum of the multinucleate cells and mature hyphal branches formed at an approximately 90° angle. This is morphologically identical to R. solani AG-1-IB, as per previous reports. rDNA-ITS sequences of the fungus were homologous to those of R. solani AG-1-IB isolates in the GenBank database with a similarity percentage of 99%, thereby confirming the identity of the causative agent of the disease. Pathogenicity of the fungus in rosemary plants was also confirmed by Koch's postulates. PMID:26190926

  13. Susceptibility to Enzymatic Degradation of Cell Walls From Bean Plants Resistant and Susceptible to Rhizoctonia solani Kuhn.

    PubMed

    Bateman, D F; Van Etten, H D

    1969-05-01

    Enzymes in culture filtrates of Rhizoctonia solani Kuhn grown using 4-day old or 20-day old bean (Phaseolus vulgaris L.) hypocotyl cell walls as a carbon source degraded xylan, galactan, galactomannan, araban, polygalacturonic acid, and carboxymethylcellulose. Extracts of lesions from R. solani infected plants, but not healthy plants, contained similar enzymatic activities. These enzyme sources readily solubilized cell wall constituents containing arabinose, galactose, and glucose from 4-day old, but not from 20-day old, bean cell walls. Analysis of cell walls prepared from infected plants revealed that the alterations in cell wall composition in the diseased host were limited largely to the immediate lesion areas and occurred during the early phases of pathogenesis. The cell walls of young susceptible bean seedlings could be degraded by R. solani enzymes, but the cell walls of older plants which are resistant to this pathogen were not susceptible to enzymatic destruction by the same enzyme preparation.

  14. Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen Rhizoctonia solani AG-3.

    PubMed

    Losada, Liliana; Pakala, Suman B; Fedorova, Natalie D; Joardar, Vinita; Shabalina, Svetlana A; Hostetler, Jessica; Pakala, Suchitra M; Zafar, Nikhat; Thomas, Elizabeth; Rodriguez-Carres, Marianela; Dean, Ralph; Vilgalys, Rytas; Nierman, William C; Cubeta, Marc A

    2014-03-01

    The soil fungus Rhizoctonia solani is an economically important pathogen of agricultural and forestry crops. Here, we present the complete sequence and analysis of the mitochondrial genome of R. solani, field isolate Rhs1AP. The genome (235 849 bp) is the largest mitochondrial genome of a filamentous fungus sequenced to date and exhibits a rich accumulation of introns, novel repeat sequences, homing endonuclease genes, and hypothetical genes. Stable secondary structures exhibited by repeat sequences suggest that they comprise functional, possibly catalytic RNA elements. RNA-Seq expression profiling confirmed that the majority of homing endonuclease genes and hypothetical genes are transcriptionally active. Comparative analysis suggests that the mitochondrial genome of R. solani is an example of a dynamic history of expansion in filamentous fungi. PMID:24461055

  15. Comparative proteomic analysis reveals intracellular targets for bacillomycin L to induce Rhizoctonia solani Kühn hyphal cell death.

    PubMed

    Zhang, Bao; Qin, Yuxuan; Han, Yuzhu; Dong, Chunjuan; Li, Pinglan; Shang, Qingmao

    2016-09-01

    Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activity against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. To further understand its antifungal actions, proteomes were comparatively studied within R. solani hyphal cells treated with or without bacillomycin L. The results show that 39 proteins were alternatively expressed within cells in response to this lipopeptide, which are involved in stress response, carbohydrate, amino acid and nucleotide metabolism, cellular component organization, calcium homeostasis, protein degradation, RNA processing, gene transcription, and others, suggesting that, in addition to inducing cell membrane permeabilization, iturin exhibits antibiotic activities by targeting intracellular molecules. Based on these results, a model of action of bacillomycin L against R. solani hyphal cells was proposed. Our study provides new insight into the antibiotic mechanisms of iturins. PMID:27267622

  16. Evolutionary diversification indicated by compensatory base changes in ITS2 secondary structures in a complex fungal species, Rhizoctonia solani.

    PubMed

    Ahvenniemi, Paavo; Wolf, Matthias; Lehtonen, Mari J; Wilson, Paula; German-Kinnari, Malgorzata; Valkonen, Jari P T

    2009-08-01

    The rRNA cistron (18S-ITS1-5.8S-ITS2-28S) is used widely for phylogenetic analyses. Recent studies show that compensatory base changes (CBC) in the secondary structure of ITS2 correlate with genetic incompatibility between organisms. Rhizoctonia solani consists of genetically incompatible strain groups (anastomosis groups, AG) distinguished by lack of anastomosis between hyphae of strains. Phylogenetic analysis of internal transcribed spacer (ITS) sequences shows a strong correlation with AG determination. In this study, ITS sequences were reannotated according to the flanking 5.8S and 28S regions which interact during ribogenesis. One or two CBCs were detected between the ITS2 secondary structure of AG-3 potato strains as compared to AG-3 tobacco strains, and between these two strains and all other AGs. When a binucleate Rhizoctonia species related to Ceratobasidiaceae was compared to the AGs of R. solani, which were multinucleate (3-21 nuclei per cell), 1-3 CBCs were detected. The CBCs in potato strains of AG-3 distinguish them from AG-3 tobacco strains and other AGs yielding further evidence that the potato strains of AG-3 originally described as R. solani are a species distinct from other AGs. The ITS1-5.8S-ITS2 sequences were analyzed by direct sequencing of PCR products from 497 strains of AG-3 isolated from potato. The same 10 and 4 positions in ITS1 and ITS2, respectively, contained variability in 425 strains (86%). Nine different unambiguous ITS sequences (haplotypes) could be detected in a single strain by sequencing cloned PCR products indicating that concerted evolution had not homogenized the rRNA cistrons in many AG-3 strains. Importantly, the sequence variability did not affect the secondary structure of ITS2 and CBCs in AG-3.

  17. Suppression of Rhizoctonia solani on Impatiens by Enhanced Microbial Activity in Composted Swine Waste-Amended Potting Mixes.

    PubMed

    Diab, H G; Hu, S; Benson, D M

    2003-09-01

    ABSTRACT Peat moss-based potting mix was amended with either of two composted swine wastes, CSW1 and CSW2, at rates from 4 to 20% (vol/vol) to evaluate suppression of pre-emergence damping-off of impatiens (Impatiens balsamina) caused by Rhizoctonia solani (anastomosis group-4). A cucumber bioassay was used prior to each impatiens experiment to monitor maturity of compost as the compost aged in a curing pile by evaluating disease suppression toward both Pythium ultimum and R. solani. At 16, 24, 32, and 37 weeks after composting, plug trays filled with compost-amended potting mix were seeded with impatiens and infested with R. solani to determine suppression of damping-off. Pre-emergence damping-off was lower for impatiens grown in potting mix amended with 20% CSW1 than in CSW2-amended and nonamended mixes. To identify relationships between disease suppression and microbial parameters, samples of mixes were collected to determine microbial activity, biomass carbon and nitrogen, functional diversity, and population density. Higher rates of microbial activity were observed with increasing rates of CSW1 amendment than with CSW2 amendments. Microbial biomass carbon and nitrogen also were higher in CSW1-amended mixes than in CSW2-amended potting mixes 1 day prior to seeding and 5 weeks after seeding. Principal component analysis of Biolog-GN2 profiles showed different functional diversities between CSW1- and CSW2-amended mixes. Furthermore, mixes amended with CSW1 had higher colony forming units of fungi, endospore-forming bacteria, and oligotrophic bacteria. Our results suggest that enhanced microbial activity, functional and population diversity of stable compost-amended mix were associated with suppressiveness to Rhizoctonia damping-off in impatiens. PMID:18944095

  18. Suppression of Rhizoctonia solani on Impatiens by Enhanced Microbial Activity in Composted Swine Waste-Amended Potting Mixes.

    PubMed

    Diab, H G; Hu, S; Benson, D M

    2003-09-01

    ABSTRACT Peat moss-based potting mix was amended with either of two composted swine wastes, CSW1 and CSW2, at rates from 4 to 20% (vol/vol) to evaluate suppression of pre-emergence damping-off of impatiens (Impatiens balsamina) caused by Rhizoctonia solani (anastomosis group-4). A cucumber bioassay was used prior to each impatiens experiment to monitor maturity of compost as the compost aged in a curing pile by evaluating disease suppression toward both Pythium ultimum and R. solani. At 16, 24, 32, and 37 weeks after composting, plug trays filled with compost-amended potting mix were seeded with impatiens and infested with R. solani to determine suppression of damping-off. Pre-emergence damping-off was lower for impatiens grown in potting mix amended with 20% CSW1 than in CSW2-amended and nonamended mixes. To identify relationships between disease suppression and microbial parameters, samples of mixes were collected to determine microbial activity, biomass carbon and nitrogen, functional diversity, and population density. Higher rates of microbial activity were observed with increasing rates of CSW1 amendment than with CSW2 amendments. Microbial biomass carbon and nitrogen also were higher in CSW1-amended mixes than in CSW2-amended potting mixes 1 day prior to seeding and 5 weeks after seeding. Principal component analysis of Biolog-GN2 profiles showed different functional diversities between CSW1- and CSW2-amended mixes. Furthermore, mixes amended with CSW1 had higher colony forming units of fungi, endospore-forming bacteria, and oligotrophic bacteria. Our results suggest that enhanced microbial activity, functional and population diversity of stable compost-amended mix were associated with suppressiveness to Rhizoctonia damping-off in impatiens.

  19. A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes.

    PubMed

    Borras-Hidalgo, Orlando; Caprari, Claudio; Hernandez-Estevez, Ingrid; Lorenzo, Giulia De; Cervone, Felice

    2012-01-01

    We have tested whether a gene encoding a polygalacturonase-inhibiting protein (PGIP) protects tobacco against a fungal pathogen (Rhizoctonia solani) and two oomycetes (Phytophthora parasitica var. nicotianae and Peronospora hyoscyami f. sp. tabacina). The trials were performed in greenhouse conditions for R. solani and P. parasitica and in the field for P. hyoscyami. Our results show that expression of PGIP is a powerful way of engineering a broad-spectrum disease resistance.

  20. The heterogeneity of the rDNA-ITS sequence and its phylogeny in Rhizoctonia cerealis, the cause of sharp eyespot in wheat.

    PubMed

    Li, Wei; Sun, Haiyan; Deng, Yuanyu; Zhang, Aixiang; Chen, Huaigu

    2014-02-01

    The sequence heterogeneity of the ribosomal internal transcribed spacer (ITS) region was investigated for Rhizoctonia cerealis isolates from the anastomosis group AG-DI. Although sequence variability of the ITS has been reported in a few multinucleate R. solani isolates, it has very rarely been reported in binucleate Rhizoctonia spp. isolates and has never been described in R. cerealis, the pathogen of wheat sharp eyespot. In this study, the ITS regions of 15 R. cerealis isolates were cloned and sequenced. The results revealed more than one different ITS sequence within each isolate. This is the first evidence of ITS sequence heterogeneity in R. cerealis. Based on these ITS sequences, different sequences of one isolate did not cluster in one clade, but all of the sequences of the 15 isolates were clustered in the anastomosis subgroup AG-DI, suggesting that the heterogeneity of the ITS did not affect the molecular identification of their anastomosis group. Haplotype analyses indicated that there might be three evolutionary origins of R. cerealis, or a recombination event could be the cause of different ITS sequences in one genome. This study demonstrates the variability and the evolution of Rhizoctonia, especially binucleate R. cerealis. These findings will help design disease control strategies.

  1. The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia

    PubMed Central

    Lee, Yung-I; Yang, Chih-Kai; Gebauer, Gerhard

    2015-01-01

    Background and Aims Most fully mycoheterotrophic (MH) orchids investigated to date are mycorrhizal with fungi that simultaneously form ectomycorrhizas with forest trees. Only a few MH orchids are currently known to be mycorrhizal with saprotrophic, mostly wood-decomposing, fungi instead of ectomycorrhizal fungi. This study provides evidence that the importance of associations between MH orchids and saprotrophic non-Rhizoctonia fungi is currently under-estimated. Methods Using microscopic techniques and molecular approaches, mycorrhizal fungi were localized and identified for seven MH orchid species from four genera and two subfamilies, Vanilloideae and Epidendroideae, growing in four humid and warm sub-tropical forests in Taiwan. Carbon and nitrogen stable isotope natural abundances of MH orchids and autotrophic reference plants were used in order to elucidate the nutritional resources utilized by the orchids. Key Results Six out of the seven MH orchid species were mycorrhizal with either wood- or litter-decaying saprotrophic fungi. Only one orchid species was associated with ectomycorrhizal fungi. Stable isotope abundance patterns showed significant distinctions between orchids mycorrhizal with the three groups of fungal hosts. Conclusions Mycoheterotrophic orchids utilizing saprotrophic non-Rhizoctonia fungi as a carbon and nutrient source are clearly more frequent than hitherto assumed. On the basis of this kind of nutrition, orchids can thrive in deeply shaded, light-limiting forest understoreys even without support from ectomycorrhizal fungi. Sub-tropical East Asia appears to be a hotspot for orchids mycorrhizal with saprotrophic non-Rhizoctonia fungi. PMID:26113634

  2. Interplay between parasitism and host ontogenic resistance in the epidemiology of the soil-borne plant pathogen Rhizoctonia solani.

    PubMed

    Simon, Thomas E; Le Cointe, Ronan; Delarue, Patrick; Morlière, Stéphanie; Montfort, Françoise; Hervé, Maxime R; Poggi, Sylvain

    2014-01-01

    Spread of soil-borne fungal plant pathogens is mainly driven by the amount of resources the pathogen is able to capture and exploit should it behave either as a saprotroph or a parasite. Despite their importance in understanding the fungal spread in agricultural ecosystems, experimental data related to exploitation of infected host plants by the pathogen remain scarce. Using Rhizoctonia solani / Raphanus sativus as a model pathosystem, we have obtained evidence on the link between ontogenic resistance of a tuberizing host and (i) its susceptibility to the pathogen and (ii) after infection, the ability of the fungus to spread in soil. Based on a highly replicable experimental system, we first show that infection success strongly depends on the host phenological stage. The nature of the disease symptoms abruptly changes depending on whether infection occurred before or after host tuberization, switching from damping-off to necrosis respectively. Our investigations also demonstrate that fungal spread in soil still depends on the host phenological stage at the moment of infection. High, medium, or low spread occurred when infection was respectively before, during, or after the tuberization process. Implications for crop protection are discussed. PMID:25127238

  3. Chitosan-cinnamon beads enhance suppressive activity against Rhizoctonia solani and Meloidogyne incognita in vitro.

    PubMed

    Seo, Dong-Jun; Nguyen, Dang-Minh-Chanh; Park, Ro-Dong; Jung, Woo-Jin

    2014-01-01

    A novel chitosan-cinnamon bead carrier was prepared in this study. Chitosan was mixed with cinnamon powder (CP) and cinnamon extract (CE) to obtain chitosan-cinnamon powder (CCP) beads and chitosan-cinnamon extracted (CCE) beads, respectively. The potential antifungal and nematicidal activities of CCP and CCE were investigated against Rhizoctonia solani and Meloidogyne incognita in vitro. Relative antifungal activity of the CCP (5% CP) bead-treated R. solani was 30.9 and 23.9% after 1 and 2 day incubations, respectively. Relative antifungal activity of the CCE (0.5% CE) bead-treated R. solani was 4.3, 3.0 and 4.2% after 1, 2 and 3 days of incubation. Inhibition of hatch by CCP beads with CP of 5% was 78.8%. Inhibition of hatch by CCE beads with CE of 0.5% was 82.0%. J2 mortality following the CCP (5% CP) and CCE (0.5% CE) bead treatments was 85.0 and 95.8%, respectively against M. incognita after 48 h incubations.

  4. Potential for the integration of biological and chemical control of sheath blight disease caused by Rhizoctonia solani on rice.

    PubMed

    Boukaew, Sawai; Klinmanee, Chanasirin; Prasertsan, Poonsuk

    2013-10-01

    Biological control using antagonistic microbes to minimize the use of chemical pesticides has recently become more prevalent. In an attempt to find an integrated control system for sheath blight, caused by Rhizoctonia solani in rice, Streptomyces philanthi RM-1-138, commercial formulations of Bacillus subtilis as Larminar® and B. subtilis strain NSRS 89-24+MK-007 as Biobest® and chemical fungicides including carbendazim®, validamycin®, propiconazole® and mancozeb® were applied alone and in combination with S. philanthi RM-1-138. In vitro experiments showed that all treatments tested did provide some control against mycelial growth and sclerotia production by R. solani PTRRS-9. In addition, the four chemical fungicides had no detrimental effects on S. philanthi RM-1-138 even at high concentrations (up to 100 μg/ml). The efficacy of S. philanthi RM-1-138, the commercial formulations of B. subtilis, chemical fungicides alone or in combination with S. philanthi RM-1-138 was also tested in a greenhouse experiment against sheath blight disease on rice plants. All treatments showed some protection of rice for sheath blight by 47-60 % when carbendazim® was applied alone and up to 74 % when combined with S. philanthi RM-1-138. PMID:23653261

  5. Rhizoctonia bataticola lectin (RBL) induces phenotypic and functional characteristics of macrophages in THP-1 cells and human monocytes.

    PubMed

    Pujari, Radha; Kumar, Natesh; Ballal, Suhas; Eligar, Sachin M; Anupama, S; Bhat, Ganapati; Swamy, Bale M; Inamdar, Shashikala R; Shastry, Padma

    2015-02-01

    We have previously reported that a fungal lectin, Rhizoctonia bataticola lectin (RBL), stimulates proliferation and secretion of Th1/Th2 cytokines in human peripheral blood mononuclear cells (PBMC). In the present study, we evaluated the ability of RBL to differentiate human monocytes to macrophages. RBL induced morphological changes indicative of differentiation in primary monocytes and THP-1 cells. Stimulation with RBL resulted in significant up-regulation of differentiation markers - CD54, HLA-DR, CD11b and CD11c and secretion of proinflammatory cytokines - IL-1β, TNF-α and IL-6. Functionally, RBL profoundly increased phagocytic activity in monocytes. In THP-1 cells, RBL-induced phagocytosis was higher compared to the effect induced by combination of phorbol-12-myristate-13-acetate (PMA) and lipopolysaccharide (LPS). RBL induced a significant increase in matrix metalloproteinase-9 (MMP-9) activity in comparison with a combined treatment of PMA+LPS. Mechanistic studies revealed the involvement of the NF-κB pathway in RBL-induced differentiation of monocytes. The data suggest that RBL mimics the combined action of PMA and LPS to induce morphological and functional differentiation in human monocytes and monocytic cell line - THP-1 to macrophages. Human monocytes differentiated to macrophages with RBL have the potential as an in vitro model to study macrophage biology. PMID:25555439

  6. Detecting Migrants in Populations of Rhizoctonia solani Anastomosis Group 3 from Potato in North Carolina Using Multilocus Genotype Probabilities.

    PubMed

    Ceresini, Paulo C; Shew, H David; Vilgalys, Rytas J; Gale, Liane Rosewich; Cubeta, Marc A

    2003-05-01

    ABSTRACT The relative contribution of migration of Rhizoctonia solani anastomosis group 3 (AG-3) on infested potato seed tubers originating from production areas in Canada, Maine, and Wisconsin (source population) to the genetic diversity and structure of populations of R. solani AG-3 in North Carolina (NC) soil (recipient population) was examined. The frequency of alleles detected by multilocus polymerase chain reaction-restriction fragment length polymorphisms, heterozygosity at individual loci, and gametic phase disequilibrium between all pairs of loci were determined for subpopulations of R. solani AG-3 from eight sources of potato seed tubers and from five soils in NC. Analysis of molecular variation revealed little variation between seed source and NC recipient soil populations or between subpopulations within each region. Analysis of population data with a Bayesian-based statistical method previously developed for detecting migration in human populations suggested that six multilocus genotypes from the NC soil population had a statistically significant probability of being migrants from the northern source population. The one-way (unidirectional) migration of genotypes of R. solani AG-3 into NC on infested potato seed tubers from Canada, Maine, and Wisconsin provides a plausible explanation for the lack of genetic subdivision (differentiation) between populations of the pathogen in NC soils or between the northern source and the NC recipient soil populations.

  7. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes.

    PubMed

    Garbeva, Paolina; Veen, Johannes Antonie; Elsas, Jan Dirk

    2004-01-01

    The genus Pseudomonas is one of the best-studied bacterial groups in soil, and includes numerous species of environmental interest. Pseudomonas species play key roles in soil, for instance in biological control of soil-borne plant pathogens and in bioremediation of pollutants. A polymerase chain reaction-denaturing gradient gel electrophoresis system that specifically describes the diversity of Pseudomonas spp. in soil was developed. On the basis of this molecular method as well as cultivation-based approaches, the diversity of Pseudomonas species in soil under different agricultural regimes (permanent grassland, arable land either under rotation or under monoculture of maize) was studied. Both types of approaches revealed differences in the composition of Pseudomonas populations between the treatments. Differences between the treatments were also found based on the frequency of isolation of Pseudomonas strains with antagonistic properties against the soil-borne pathogen Rhizoctonia solani AG3. Higher relative numbers of isolates either with antagonistic activity toward this pathogen or with chitinolytic activity were obtained from permanent grassland or from the short-term arable land than from the arable land. The results obtained in this study strongly indicate that agricultural regimes influence the structure of Pseudomonas populations in soil, with specific antagonistic subpopulations being stimulated in grassland as compared to arable land.

  8. Sequence variation of the rDNA ITS regions within and between anastomosis groups in Rhizoctonia solani.

    PubMed

    Kuninaga, S; Natsuaki, T; Takeuchi, T; Yokosawa, R

    1997-09-01

    Sequence analysis of the rDNA region containing the internal transcribed spacer (ITS) regions and the 5.8s rDNA coding sequence was used to evaluate the genetic diversity of 45 isolates within and between anastomosis groups (AGs) in Rhizoctonia solani. The 5.8s rDNA sequence was completely conserved across all the AGs examined, whereas the ITS rDNA sequence was found to be highly variable among isolates. The sequence homology in the ITS regions was above 96% for isolates of the same subgroup, 66-100% for isolates of different subgroups within an AG, and 55-96% for isolates of different AGs. In neighbor-joining trees based on distances derived from ITS-5.8s rDNA sequences, subgroups IA, IB and IC within AG-1 and subgroups HG-I and HG-II within AG-4 were placed on statistically significant branches as assessed by bootstrap analysis. These results suggest that sequence analysis of ITS rDNA regions of R. solani may be a valuable tool for identifying AG subgroups of biological significance.

  9. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts.

    PubMed

    Anderson, Jonathan P; Hane, James K; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J; Singh, Karam B

    2016-04-01

    Rhizoctonia solaniis an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about howR. solanicauses disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility toR. solaniwhen expressed inNicotiana benthamiana In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806.

  10. Characterization of the arom gene in Rhizoctonia solani, and transcription patterns under stable and induced hypovirulence conditions.

    PubMed

    Lakshman, Dilip K; Liu, Chunyu; Mishra, Prashant K; Tavantzis, Stellos

    2006-03-01

    The quinate pathway is induced by quinate in the wild-type virulent Rhizoctonia solani isolate Rhs 1AP but is constitutive in the hypovirulent, M2 dsRNA-containing isolate Rhs 1A1. Constitutive expression of the quinate pathway results in downregulation of the shikimate pathway, which includes the pentafunctional arom gene in Rhs 1A1. The arom gene has 5,323 bp including five introns as opposed to a single intron found in arom in ascomycetes. A 199-bp upstream sequence has a GC box, no TATAA box, but two GTATTAGA repeats. The largest arom transcript is 5,108 nucleotides long, excluding the poly(A) tail. It contains an open reading frame of 4,857 bases, coding for a putative 1,618-residue pentafunctional AROM protein. A Kozak sequence (GCGCCATGG) is present between +127 and +135. The 5'-end of the arom mRNA includes two nucleotides (UA) that are not found in the genomic sequence, and are probably added post-transcriptionally. Size and sequence heterogeneity were observed at both 5'- and 3'-end of the mRNA. Northern blot and suppression subtractive hybridization analyses showed that presence of a low amount of quinate, inducer of the quinate pathway, resulted in increased levels of arom mRNA, consistent with the compensation effect observed in ascomycetes.

  11. Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases.

    PubMed

    Foley, Rhonda C; Gleason, Cynthia A; Anderson, Jonathan P; Hamann, Thorsten; Singh, Karam B

    2013-01-01

    Rhizoctonia solani is an important soil-borne necrotrophic fungal pathogen, with a broad host range and little effective resistance in crop plants. Arabidopsis is resistant to R. solani AG8 but susceptible to R. solani AG2-1. A screen of 36 Arabidopsis ecotypes and mutants affected in the auxin, camalexin, salicylic acid, abscisic acid and ethylene/jasmonic acid pathways did not reveal any variation in response to R. solani and demonstrated that resistance to AG8 was independent of these defense pathways. The Arabidopsis Affymetrix ATH1 Genome array was used to assess global gene expression changes in plants infected with AG8 and AG2-1 at seven days post-infection. While there was considerable overlap in the response, some gene families were differentially affected by AG8 or AG2-1 and included those involved in oxidative stress, cell wall associated proteins, transcription factors and heat shock protein genes. Since a substantial proportion of the gene expression changes were associated with oxidative stress responses, we analysed the role of NADPH oxidases in resistance. While single NADPH oxidase mutants had no effect, a NADPH oxidase double mutant atrbohf atrbohd resulted in an almost complete loss of resistance to AG8, suggesting that reactive oxidative species play an important role in Arabidopsis's resistance to R. solani.

  12. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants.

    PubMed

    Almasia, Natalia I; Bazzini, Ariel A; Hopp, H Esteban; Vazquez-Rovere, Cecilia

    2008-05-01

    Snakin-1 (SN1), a cysteine-rich peptide with broad-spectrum antimicrobial activity in vitro, was evaluated for its ability to confer resistance to pathogens in transgenic potatoes. Genetic variants of this gene were cloned from wild and cultivated Solanum species. Nucleotide sequences revealed highly evolutionary conservation with 91-98% identity values. Potato plants (S. tuberosum subsp. tuberosum cv. Kennebec) were transformed via Agrobacterium tumefaciens with a construct encoding the S. chacoense SN1 gene under the regulation of the ubiquitous CaMV 35S promoter. Transgenic lines were molecularly characterized and challenged with either Rhizoctonia solani or Erwinia carotovora to analyse whether constitutive in vivo overexpression of the SN1 gene may lead to disease resistance. Only transgenic lines that accumulated high levels of SN1 mRNA exhibited significant symptom reductions of R. solani infection such as stem cankers and damping-off. Furthermore, these overexpressing lines showed significantly higher survival rates throughout the fungal resistance bioassays. In addition, the same lines showed significant protection against E. carotovora measured as: a reduction of lesion areas (from 46.5 to 88.1% with respect to the wild-type), number of fallen leaves and thickened or necrotic stems. Enhanced resistance to these two important potato pathogens suggests in vivo antifungal and antibacterial activity of SN1 and thus its possible biotechnological application.

  13. The adaptive potential of a plant pathogenic fungus, Rhizoctonia solani AG-3, under heat and fungicide stress.

    PubMed

    Willi, Yvonne; Frank, Aline; Heinzelmann, Renate; Kälin, Andrea; Spalinger, Lena; Ceresini, Paulo C

    2011-07-01

    The ability to improve fitness via adaptive evolution may be affected by environmental change. We tested this hypothesis in an in vitro experiment with the plant pathogen Rhizoctonia solani Anastomosis Group 3 (AG-3), assessing genetic and environmental variances under two temperatures (optimal and higher than optimal) and three fungicide concentrations (no fungicide, low and high concentration of a copper-based fungicide). We measured the mean daily growth rate, the coefficient of variation for genotypic (I (G)) and environmental variance (I (E)) in growth, and broad-sense heritability in growth. Both higher temperature and increased fungicide concentration caused a decline in growth, confirming their potential as stressors for the pathogen. All types of standardized variances in growth-I (G), phenotypic variance, and I (E) as a trend-increased with elevated stress. However, heritability was not significantly higher under enhanced stress because the increase in I (G) was counterbalanced by somewhat increased I (E). The results illustrate that predictions for adaptation under environmental stress may depend on the type of short-term evolvability measure. Because mycelial growth is linked to fitness, I (G) reflects short-term evolvability better than heritability, and it indicates that the evolutionary potential of R. solani is positively affected by stress.

  14. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts.

    PubMed

    Anderson, Jonathan P; Hane, James K; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J; Singh, Karam B

    2016-04-01

    Rhizoctonia solaniis an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about howR. solanicauses disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility toR. solaniwhen expressed inNicotiana benthamiana In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  15. Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat

    PubMed Central

    Foley, Rhonda C.; Kidd, Brendan N.; Hane, James K.; Anderson, Jonathan P.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction. PMID:27031952

  16. Interplay between parasitism and host ontogenic resistance in the epidemiology of the soil-borne plant pathogen Rhizoctonia solani.

    PubMed

    Simon, Thomas E; Le Cointe, Ronan; Delarue, Patrick; Morlière, Stéphanie; Montfort, Françoise; Hervé, Maxime R; Poggi, Sylvain

    2014-01-01

    Spread of soil-borne fungal plant pathogens is mainly driven by the amount of resources the pathogen is able to capture and exploit should it behave either as a saprotroph or a parasite. Despite their importance in understanding the fungal spread in agricultural ecosystems, experimental data related to exploitation of infected host plants by the pathogen remain scarce. Using Rhizoctonia solani / Raphanus sativus as a model pathosystem, we have obtained evidence on the link between ontogenic resistance of a tuberizing host and (i) its susceptibility to the pathogen and (ii) after infection, the ability of the fungus to spread in soil. Based on a highly replicable experimental system, we first show that infection success strongly depends on the host phenological stage. The nature of the disease symptoms abruptly changes depending on whether infection occurred before or after host tuberization, switching from damping-off to necrosis respectively. Our investigations also demonstrate that fungal spread in soil still depends on the host phenological stage at the moment of infection. High, medium, or low spread occurred when infection was respectively before, during, or after the tuberization process. Implications for crop protection are discussed.

  17. Interplay between Parasitism and Host Ontogenic Resistance in the Epidemiology of the Soil-Borne Plant Pathogen Rhizoctonia solani

    PubMed Central

    Delarue, Patrick; Morlière, Stéphanie; Montfort, Françoise; Hervé, Maxime R.; Poggi, Sylvain

    2014-01-01

    Spread of soil-borne fungal plant pathogens is mainly driven by the amount of resources the pathogen is able to capture and exploit should it behave either as a saprotroph or a parasite. Despite their importance in understanding the fungal spread in agricultural ecosystems, experimental data related to exploitation of infected host plants by the pathogen remain scarce. Using Rhizoctonia solani / Raphanus sativus as a model pathosystem, we have obtained evidence on the link between ontogenic resistance of a tuberizing host and (i) its susceptibility to the pathogen and (ii) after infection, the ability of the fungus to spread in soil. Based on a highly replicable experimental system, we first show that infection success strongly depends on the host phenological stage. The nature of the disease symptoms abruptly changes depending on whether infection occurred before or after host tuberization, switching from damping-off to necrosis respectively. Our investigations also demonstrate that fungal spread in soil still depends on the host phenological stage at the moment of infection. High, medium, or low spread occurred when infection was respectively before, during, or after the tuberization process. Implications for crop protection are discussed. PMID:25127238

  18. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    PubMed Central

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  19. In vitro and in silico antifungal efficacy of nitrogen-doped carbon nanohorn (NCNH) against Rhizoctonia solani.

    PubMed

    Dharni, Seema; Sanchita; Unni, SreeKuttan M; Kurungot, Sreekumar; Samad, Abdul; Sharma, Ashok; Patra, Dharani Dhar

    2016-01-01

    We have investigated in vitro antifungal efficiency of nitrogen-doped carbon nanohorn (NCNH) against Rhizoctonia solani (R. solani) plant pathogenic fungi. NCNH with size of 50-60 nm and concentrations of 10, 50, 100, and 150 μg mL(-1) were used. The results showed that growth of fungi in the presence of NCNH was significantly (p > .05) inhibited at 150 μg mL(-1) (85.13 ± .97) after 72 h. The results were validated through computational approaches. Molecular docking analysis of NCNH with endochitinase protein of R. solani was performed to validate the potential of antifungal activity of NCNH. Docking results showed different conformations of interaction of NCNH with endochitinase enzyme. The conformation with least binding energy -13.54 kcal/mol was considered further. It is likely that NCNH interacts with the pathogens by mechanically wrapping, which may be one of the major toxicity actions of NCNH against R. solani. The analysis showed that NCNH might interwinds to endochitinase of R. solani leading to the deactivation of the enzyme. To best of our knowledge, this is the first report of antifungal efficacy of NCNH against R. solani and provides useful information about the application of NCNH in resisting crop disease.

  20. Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat.

    PubMed

    Foley, Rhonda C; Kidd, Brendan N; Hane, James K; Anderson, Jonathan P; Singh, Karam B

    2016-01-01

    Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction. PMID:27031952

  1. Rhizoctonia bataticola lectin (RBL) induces phenotypic and functional characteristics of macrophages in THP-1 cells and human monocytes.

    PubMed

    Pujari, Radha; Kumar, Natesh; Ballal, Suhas; Eligar, Sachin M; Anupama, S; Bhat, Ganapati; Swamy, Bale M; Inamdar, Shashikala R; Shastry, Padma

    2015-02-01

    We have previously reported that a fungal lectin, Rhizoctonia bataticola lectin (RBL), stimulates proliferation and secretion of Th1/Th2 cytokines in human peripheral blood mononuclear cells (PBMC). In the present study, we evaluated the ability of RBL to differentiate human monocytes to macrophages. RBL induced morphological changes indicative of differentiation in primary monocytes and THP-1 cells. Stimulation with RBL resulted in significant up-regulation of differentiation markers - CD54, HLA-DR, CD11b and CD11c and secretion of proinflammatory cytokines - IL-1β, TNF-α and IL-6. Functionally, RBL profoundly increased phagocytic activity in monocytes. In THP-1 cells, RBL-induced phagocytosis was higher compared to the effect induced by combination of phorbol-12-myristate-13-acetate (PMA) and lipopolysaccharide (LPS). RBL induced a significant increase in matrix metalloproteinase-9 (MMP-9) activity in comparison with a combined treatment of PMA+LPS. Mechanistic studies revealed the involvement of the NF-κB pathway in RBL-induced differentiation of monocytes. The data suggest that RBL mimics the combined action of PMA and LPS to induce morphological and functional differentiation in human monocytes and monocytic cell line - THP-1 to macrophages. Human monocytes differentiated to macrophages with RBL have the potential as an in vitro model to study macrophage biology.

  2. A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani.

    PubMed

    Taheri, Parissa; Tarighi, Saeed

    2011-07-01

    We examined basal defense responses and cytomolecular aspects of riboflavin-induced resistance (IR) in sugar beet-Rhizoctonia solani pathsystem by investigating H(2)O(2) burst, phenolics accumulation and analyzing the expression of phenylalanine ammonia-lyase (PAL) and peroxidase (cprx1) genes. Riboflavin was capable of priming plant defense responses via timely induction of H(2)O(2) production and phenolics accumulation. A correlation was found between induction of resistance by riboflavin and upregulation of PAL and cprx1 which are involved in phenylpropanoid signaling and phenolics metabolism. Application of peroxidase and PAL inhibitors suppressed not only basal resistance, but also riboflavin-IR of sugar beet to the pathogen. Treatment of the leaves with each inhibitor alone or together with riboflavin reduced phenolics accumulation which was correlated with higher level of disease progress. Together, these results demonstrate the indispensability of rapid H(2)O(2) accumulation, phenylpropanoid pathway and phenolics metabolism in basal defense and riboflavin-IR of sugar beet against R. solani.

  3. FT-ICR/MS and GC-EI/MS Metabolomics Networking Unravels Global Potato Sprout's Responses to Rhizoctonia solani Infection

    PubMed Central

    Aliferis, Konstantinos A.; Jabaji, Suha

    2012-01-01

    The complexity of plant-pathogen interactions makes their dissection a challenging task for metabolomics studies. Here we are reporting on an integrated metabolomics networking approach combining gas chromatography/mass spectrometry (GC/MS) with Fourier transform ion cyclotron resonance/mass spectrometry (FT-ICR/MS) and bioinformatics analyses for the study of interactions in the potato sprout-Rhizoctonia solani pathosystem and the fluctuations in the global metabolome of sprouts. The developed bioanalytical and bioinformatics protocols provided a snapshot of the sprout's global metabolic network and its perturbations as a result of pathogen invasion. Mevalonic acid and deoxy-xylulose pathways were substantially up-regulated leading to the biosynthesis of sesquiterpene alkaloids such as the phytoalexins phytuberin, rishitin, and solavetivone, and steroidal alkaloids having solasodine and solanidine as their common aglycons. Additionally, the perturbation of the sprout's metabolism was depicted in fluctuations of the content of their amino acids pool and that of carboxylic and fatty acids. Components of the systemic acquired resistance (SAR) and hypersensitive reaction (HR) such as azelaic and oxalic acids were detected in increased levels in infected sprouts and strategies of the pathogen to overcome plant defense were proposed. Our metabolic approach has not only greatly expanded the multitude of metabolites previously reported in potato in response to pathogen invasion, but also enabled the identification of bioactive plant-derived metabolites providing valuable information that could be exploited in biotechnology, biomarker-assisted plant breeding, and crop protection for the development of new crop protection agents. PMID:22880040

  4. Evidence from mycelial studies for differences in the sterol biosynthetic pathway of Rhizoctonia solani and Phytophthora cinnamomi.

    PubMed Central

    Wood, S G; Gottlieb, D

    1978-01-01

    Phytophthora cinnamomi, a member of the Pythiacease, does not synthesize sterols. Small amounts of squalene, but no squalene epoxide or sterol, were isolated from the dried mycelium of this fungus after growth in sterol-free medium. The dried mycelium of Rhizoctonia solani, a sterol-synthesizing fungus grown under the same conditions, contained small amounts of squalene and squalene epoxide and large amounts of ergosterol. When the two organisms were grown in the presence of [14C]acetate, only labelled geraniol, farnesol and squalene were recovered from the P. cinnamomi mycelium, whereas labelled geraniol, farnesol, squalene, squalene epoxide and ergosterol were recovered from the R. solani mycelium. Similar results were obtained when the organisms were incubated in the presence of [2(-14)C]mevalonate; in this case, labelled lanosterol was also detected in the R. solani mycelium. Both organisms, when incubated in the presence of unlabelled squalene, squalene epoxide or lanosterol, incorporated these compounds into their mycelia; however, only the R. solani mycelium was able to convert these substrates into products further along the sterol pathway. It appears that squalene is the terminal compound in the sterol biosynthetic pathway of P. cinnamomi. PMID:637849

  5. Biocontrol of Rhizoctonia solani AG-2, the causal agent of damping-off by Muscodor cinnamomi CMU-Cib 461.

    PubMed

    Suwannarach, Nakarin; Kumla, Jaturong; Bussaban, Boonsom; Lumyong, Saisamorn

    2012-11-01

    Rhizoctonia solani is a damping-off pathogen that causes significant crop loss worldwide. In this study, the potential of Muscodor cinnamomi, a new species of endophytic fungus for controlling R. solani AG-2 damping-off disease of plant seedlings by biological fumigation was investigated. In vitro tests showed that M. cinnamomi volatile compounds inhibited mycelial growth of pathogens. Among nine solid media tested, rye grain was the best grain for inoculum production. An in vivo experiment of four seedlings, bird pepper, bush bean, garden pea and tomato were conducted. The results indicated that treatment with 30 g of M. cinnamomi inoculum was the minimum dose that caused complete control of damping-off symptoms of all seedlings after one month of planting. The R. solani-infested soil showed the lowest percentage of seed germination. In addition, M. cinnamomi did not cause any disease symptoms. From the results it is clear that M. cinnamomi is effective in controlling R. solani AG-2 both in vitro and in vivo.

  6. Powder formulations of two strains of Bacillus subtilis for control of rape seed damping-off caused by Rhizoctonia solani.

    PubMed

    Sharifi-Tehrani, A; Ahmadzadeh, M; Farzaneh, M; Sarani, S

    2006-01-01

    Talc-based formulations of Bacillus subtilis strains B1 and B2 were tested as seed and soil treatments separately for their ability to control Rhizoctonia solani, the causal agent of rape seed damping-off, in greenhouse and field trials. In general, the formulated bacteria was more effective to suppress the disease than the suspension of bacterial cells in carboxymethylcellulose solution (1%, w/v), in both greenhouse and field trials. The formulations of strain B1 as soil treatment and strain B2 as seed treatment in greenhouse, and the formulations of strain B2 as seed and soil treatments in field trials had the greatest effect on reducing the rape seed damping-off (66.7%, 73.3%, 41.3%, and 42.4%, respectively). The formulations of strain B1 as soil treatment and strain B2 as seed treatment were the most effective treatments to increase the root dry weights in the infected soil in greenhouse. The formulation of strain B2 as soil treatment had the greatest effect on enhancement of the fresh weight of roots and stem fresh and dry weights. The formulations of strains B1 and B2 stored at 4 degrees C exhibited better shelf life and efficacy in vitro than their counterparts stored at 25 degrees C. Long-term stability of the formulation of strain B1 was found to be better.

  7. Evaluation of soil microorganisms with inhibitory activity against Rhizoctonia solani causal agent of the damping-off of canola.

    PubMed

    Ciampi, L; Tewari, J P

    1990-10-01

    Pre- and post-emergence damping-off of canola seedlings caused by Rhizoctonia solani is a serious disease in Western Canada. Other fungi such as Fusarium spp. and Pythium spp. are also related to seedling damping-off. To-day, the search of soil bacteria is becoming a tool to use microorganisms as potential biocontrol agents for several plant diseases. The purpose of this research was to detect bacteria to biologically control R. solani, Pythium spp., and Fusarium spp. Soil samples were collected throughout Alberta during 1987 to isolate bacteria. Canola seedlings were also used to obtain bacteria from the same samples. Plant pathogenic fungi were tested to detect the antagonistic activity of the isolates. Tests were made with coated canola seeds, amendments and fresh of freeze-dried cells. Three hundred forty-one bacterial cultures were isolated. Only 16 inhibited fungal growth: 7 showed the same effects against R. solani and 9 showed uneven effects. Some isolates showed a weak action to Pythium spp. and Fusarium spp. Three isolates showed inhibitory effect on R. solani and Pythium spp. Isolate F1 improved by about 50% the germination of canola seeds in inoculated pots when compared with the inoculated control. Coated seeds had low germination and emergence was below the inoculated control. The emergence of canola seedlings was very much improved when isolate 147 was delivered as an amendment in inoculated pots. Identification showed that 3 bacterial belonged to Bacillus spp., 4 to green fluorescent Pseudomonas spp. and 2 were Streptomyces spp.

  8. Powder formulation of Burkholderia cepacia for control of rape seed damping-off caused by Rhizoctonia solani.

    PubMed

    Sharifi-Tehrani, A; Ahmadzadeh, M; Sarani, S; Farzaneh, M

    2007-01-01

    Talc-based formulation of Burkholderia cepaci strain Bu1 was tested as seed and soil drenchs separately for its ability to control Rhizoctonia soloni the causal agent of rape seed damping-off in greenhouse and field trials. In general, the formulated bacteria was more effective to suppress the disease than the suspension of bacteria cells in carboxymethylcellulose solution (1% w/v), in both greenhouse and field trials. The formulation of strain Bul as soil and seed treatments had the greatest effect on reducing the rape seed damping-off in greenhouse and field trials (66.7, 53.3, 64.4 and 40% respectively). The formulation of strain Bu1 as soil and seed treatments were the most effective treatments to increase the root dry weights in the infected soil in greenhouse. The formulation of strain Bul as soil drench had the greatest effect on enhancement of the fresh weight of roots and stem fresh and dry weights. The formulation of strain Bu1 stored at 4 degrees C exhibited better shelf Life and efficacy in vitro than it's counterpart stored at 25 degrees C.

  9. Investigating the roles of MicroRNAs in biotic stress response induced by Rhizoctonia solani in rice

    SciTech Connect

    Syuhada, O. Nurfarahana; Kalaivani, N.

    2014-09-03

    Sheath blight disease, caused by Rhizoctonia solani 1802/KB was screened on two rice varieties, Oryza sativaindica cultivar MR219 and Oryza sativa indica cultivar UKMRC9. The disease symptom was severe in MR219 compared to UKMRC9. Total RNA from R. solani 1802/KB, infected rice leaves of MR219 and infected rice leaves of UKMRC9 were extracted using TRIzol reagent, purified and sent for small RNA sequencing. Three miRNA libraries were generated and analyzed. The libraries generated 65 805, 78 512 and 81 325 known miRNAs respectively. The structure of miRNA of these samples was predicted. The up-regulated and down-regulated of miRNAs target gene prediction and its target functions were discovered and were mainly related to the growth and development of metabolism, protein transport, transcriptional regulation, stress response, and hormone signaling and electron transfer. Sheath blight-induced differential expression of known miRNAs tends to targetMYB transcription factor, F-box proteins, NBS-LRR, leucine-rich repeat receptor protein kinases and zinc finger proteins. Detecting new miRNAs and measuring the expression profiles of known miRNAs is an important tasks required for a better understanding of various biological conditions. Therefore, further analysis using Gene Ontology Slim will be conducted to deduce some biological information from the datasets obtained.

  10. Investigating the roles of MicroRNAs in biotic stress response induced by Rhizoctonia solani in rice

    NASA Astrophysics Data System (ADS)

    Syuhada, O. Nurfarahana; Kalaivani, N.

    2014-09-01

    Sheath blight disease, caused by Rhizoctonia solani 1802/KB was screened on two rice varieties, Oryza sativaindica cultivar MR219 and Oryza sativa indica cultivar UKMRC9. The disease symptom was severe in MR219 compared to UKMRC9. Total RNA from R. solani 1802/KB, infected rice leaves of MR219 and infected rice leaves of UKMRC9 were extracted using TRIzol reagent, purified and sent for small RNA sequencing. Three miRNA libraries were generated and analyzed. The libraries generated 65 805, 78 512 and 81 325 known miRNAs respectively. The structure of miRNA of these samples was predicted. The up-regulated and down-regulated of miRNAs target gene prediction and its target functions were discovered and were mainly related to the growth and development of metabolism, protein transport, transcriptional regulation, stress response, and hormone signaling and electron transfer. Sheath blight-induced differential expression of known miRNAs tends to targetMYB transcription factor, F-box proteins, NBS-LRR, leucine-rich repeat receptor protein kinases and zinc finger proteins. Detecting new miRNAs and measuring the expression profiles of known miRNAs is an important tasks required for a better understanding of various biological conditions. Therefore, further analysis using Gene Ontology Slim will be conducted to deduce some biological information from the datasets obtained.

  11. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Rong, Wei; Qi, Lin; Li, Jiarui; Wei, Xuening; Zhang, Zengyan

    2013-10-01

    Cysteine-rich receptor kinases (CRKs) belong to the receptor-like kinase family. Little is known about CRK genes in wheat. We isolated a wheat CRK gene TaCRK1 from Rhizoctonia cerealis-resistant wheat CI12633 based on a differentially expressed sequence identified by RNA-Sequencing (RNA-Seq) analysis. TaCRK1 was more highly expressed in CI12633 than in susceptible Wenmai 6. Transcription of TaCRK1 in wheat was induced in CI12633 after R. cerealis infection and exogenous abscisic acid (ABA) treatment. The deduced TaCRK1 protein contained a signal peptide, two DUF26 domains, a transmembrane domain, and a serine/threonine protein kinase domain. Transient expression of a green fluorescence protein fused with TaCRK1 in wheat and onion indicated that TaCRK1 may localize to plasma membranes. Characterization of TaCRK1 silencing induced by virus-mediated method in CI12633 showed that the downregulation of TaCRK1 transcript did not obviously impair resistance to R. cerealis. This study paves the way to further CRK research in wheat.

  12. Development of a difenoconazole/propiconazole microemulsion and its antifungal activities against Rhizoctonia solani AG1-IA.

    PubMed

    Leng, Pengfei; Zhang, Zhiming; Li, Qian; Zhang, Yunsong; Zhao, Maojun; Pan, Guangtang

    2012-06-01

    According to its physical and chemical properties, the composition of difenoconazole/propiconazole microemulsion was as follows: xylene as solvent, emulsifier HSH as surfactant and methanol as cosurfactant. The optimal formulation of difenoconazole/propiconazole microemulsion was oil/SAA/water = 1/2/5 (w/w), in which the SAA consisted of emulsifier HSH and methanol with ratio of 3/2 (w/w). The cloud point of difenoconazole/propiconazole microemulsion was 70 degrees C and its effective ingredient content was 2.5% measured by High Performance Liquid Chromatography (HPLC). Its heat storage stability was studied according to the standards. The decomposition rates of the difenoconazole/propiconazole microemulsion were merely 2.45%, 2.63% respectively and met the Food and Agriculture Organization (FAO) standards of pesticide microemulsion. Investigated by Transmission Electron Microscopy (TEM) the particle size of difenoconazole/propiconazole microemulsion was 90-140 nm and its antifungal activities against Rhizoctonia solani AG1-IA were tested and compared with that of Meiyu. We found that the inhibition rates in the difenoconazole/propiconazole microemulsion treatment group were significantly higher than that of the emulsion group with the same content of effective ingredients and the study also revealed that its inhibiting ability on the formation and germination of sclerotia was significant.

  13. Real-Time Quantitative RT-PCR of Defense-Associated Gene Transcripts of Rhizoctonia solani-Infected Bean Seedlings in Response to Inoculation with a Nonpathogenic Binucleate Rhizoctonia Isolate.

    PubMed

    Wen, Kui; Seguin, Philippe; St-Arnaud, Marc; Jabaji-Hare, Suha

    2005-04-01

    ABSTRACT Certain isolates of nonpathogenic binucleate Rhizoctonia spp. (np-BNR) are effective biocontrol agents against seedling root rot and damping-off. Inoculation of bean seed with np-BNR strain 232-CG at sowing reduced disease symptoms in bean (Phaseolus vulgaris) seedlings caused by R. solani. Molecular analyses of the spatial expression of three defense-associated genes were carried out using real-time quantitative reverse transcription-polymerase chain reaction (QRT-PCR) assays. This method allowed accurate quantitative evaluation of transcript levels of pG101 encoding for 1,3-beta-D-glucanase, gPAL1 encoding for phenylalanine ammonia lyase, and CHS17 encoding for chalcone synthase in 1- and 2-week-old bean seedlings that were inoculated simultaneously with np-BNR and infected with R. solani, and in seedlings that were singly inoculated with either fungi or not inoculated. In the seedlings that were infected with R. solani only, results revealed that, following infection, activation of all defense-associated gene transcripts was achieved with significant increases ranging from 7- to 40-fold greater than the control, depending on the defense gene and tissue analyzed. Seedlings that were treated with np-BNR and infected with R. solani had expression similar to those that were treated with np-BNR only, but the levels were significantly down-regulated compared with those that were infected with R. solani only. These findings indicate that disease suppression by np-BNR isolate is not correlated to pG101, gPAL1, and CHS17 gene activation.

  14. Highly polymorphic in silico-derived microsatellite loci in the potato-infecting fungal pathogen Rhizoctonia solani anastomosis group 3 from the Colombian Andes.

    PubMed

    Ferrucho, R L; Zala, M; Zhang, Z; Cubeta, M A; Garcia-Dominguez, C; Ceresini, P C

    2009-05-01

    Fourteen polymorphic microsatellite DNA markers derived from the draft genome sequence of Rhizoctonia solani anastomosis group 3 (AG-3), strain Rhs 1AP, were designed and characterized from the potato-infecting soil fungus R. solani AG-3. All loci were polymorphic in two field populations collected from Solanum tuberosum and S. phureja in the Colombian Andes. The total number of alleles per locus ranged from two to seven, while gene diversity (expected heterozygosity) varied from 0.11 to 0.81. Considering the variable levels of genetic diversity observed, these markers should be useful for population genetic analyses of this important dikaryotic fungal pathogen on a global scale.

  15. The Interaction Pattern between a Homology Model of 40S Ribosomal S9 Protein of Rhizoctonia solani and 1-Hydroxyphenaize by Docking Study

    PubMed Central

    Dharni, Seema; Sanchita; Sharma, Ashok; Patra, Dharani Dhar

    2014-01-01

    1-Hydroxyphenazine (1-OH-PHZ), a natural product from Pseudomonas aeruginosa strain SD12, was earlier reported to have potent antifungal activity against Rhizoctonia solani. In the present work, the antifungal activity of 1-OH-PHZ on 40S ribosomal S9 protein was validated by molecular docking approach. 1-OH-PHZ showed interaction with two polar contacts with residues, Arg69 and Phe19, which inhibits the synthesis of fungal protein. Our study reveals that 1-OH-PHZ can be a potent inhibitor of 40S ribosomal S9 protein of R. solani that may be a promising approach for the management of fungal diseases. PMID:24864254

  16. Solanioic Acid, an Antibacterial Degraded Steroid Produced in Culture by the Fungus Rhizoctonia solani Isolated from Tubers of the Medicinal Plant Cyperus rotundus.

    PubMed

    Ratnaweera, Pamoda B; Williams, David E; Patrick, Brian O; de Silva, E Dilip; Andersen, Raymond J

    2015-05-01

    Solanioic acid (1), a degraded and rearranged steroid that exhibits in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), has been isolated from laboratory cultures of the fungus Rhizoctonia solani obtained from tubers of the plant Cyperus rotundus collected in Sri Lanka. The structure of solanioic acid (1) was elucidated by detailed analysis of NMR data, a single crystal X-ray diffraction analysis of a reduction product 2, and Mosher ester analysis on a derivative of the natural product. Solanioic acid (1) has an unprecedented carbon skeleton. PMID:25860081

  17. Solanioic Acid, an Antibacterial Degraded Steroid Produced in Culture by the Fungus Rhizoctonia solani Isolated from Tubers of the Medicinal Plant Cyperus rotundus.

    PubMed

    Ratnaweera, Pamoda B; Williams, David E; Patrick, Brian O; de Silva, E Dilip; Andersen, Raymond J

    2015-05-01

    Solanioic acid (1), a degraded and rearranged steroid that exhibits in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), has been isolated from laboratory cultures of the fungus Rhizoctonia solani obtained from tubers of the plant Cyperus rotundus collected in Sri Lanka. The structure of solanioic acid (1) was elucidated by detailed analysis of NMR data, a single crystal X-ray diffraction analysis of a reduction product 2, and Mosher ester analysis on a derivative of the natural product. Solanioic acid (1) has an unprecedented carbon skeleton.

  18. De novo Transcriptome Analysis of Rhizoctonia solani AG1 IA Strain Early Invasion in Zoysia japonica Root.

    PubMed

    Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming

    2016-01-01

    Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar "Zenith" root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected "Zenith" roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of "Zenith" root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of "Zenith" root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain. PMID:27242730

  19. 3-Methylthiopropionic Acid of Rhizoctonia solani AG-3 and Its Role in the Pathogenicity of the Fungus

    PubMed Central

    Kankam, Frederick; Long, Hai-Tao; He, Jing; Zhang, Chun-hong; Zhang, Hui-Xiu; Pu, Lumei; Qiu, Huizhen

    2016-01-01

    Studies were conducted to determine the role of 3-methylthioproprionic acid (MTPA) in the pathogenicity of potato stem canker, Rhizoctonia solani, and the concentrations required to inhibit growth of R. solani under laboratory and plant house-based conditions. The experiments were laid out in a completely randomized design with five treatments and five replications. The treatments were 0, 1, 2, 4, and 8 mM concentrations of MTPA. The purified toxin exhibited maximal activity at pH 2.5 and 30°C. MTPA at 1, 2, 4, and 8 mM levels reduced plant height, chlorophyll content, haulm fresh weight, number of stolons, canopy development, and tuber weight of potato plants, as compared to the control. MTPA significantly affected mycelial growth with 8 mM causing the highest infection. The potato seedlings treated with MTPA concentrations of 1.0–8.0 mM induced necrosis of up to 80% of root system area. Cankers were resulted from the injection of potato seedling stems with 8.0 mM MTPA. The results showed the disappearance of cell membrane, rough mitochondrial and cell walls, change of the shape of chloroplasts, and swollen endoplasmic reticulum. Seventy-six (76) hours after toxin treatment, cell contents were completely broken, cytoplasm dissolved, and more chromatin were seen in the nucleus. The results suggested that high levels of the toxin concentration caused cell membrane and cytoplasm fracture. The integrity of cellular structure was destroyed by the phytotoxin. The concentrations of the phytotoxin were significantly correlated with pathogenicity and caused damage to the cell membrane of potato stem base tissue. PMID:27147928

  20. Transmission of the M2 double-stranded RNA in Rhizoctonia solani anastomosis group 3 (AG-3).

    PubMed

    Charlton, Nikki D; Cubeta, Marc A

    2007-01-01

    Horizontal transmission of the 3.57 kb M2 double-stranded RNA (dsRNA) between mycelia of somatically incompatible isolates of Rhizoctonia solani anastomosis group 3 (AG-3), an economically important pathogen of cultivated plants in the family Solanaceae, was investigated. Nine donor isolates of R. solani AG-3 containing the M2 dsRNA were paired on potato-dextrose agar with each of three different recipient isolates where the M2 dsRNA was absent. Reverse-transcription PCR (RT-PCR) was used to detect horizontal transmission of the M2 dsRNA via hyphal anastomosis from donor to recipient isolates by examining hyphal explants taken 3 cm from the hyphal interaction zone. PCR-RFLP genetic-based markers of two nuclear loci and one mitochondrial locus were used to confirm identity and transmission between donor and recipient isolates of R. solani AG-3. The frequency of transmission observed between 72 pairings of the eight donor and three recipient isolates was approximately 4% of the total pairings, and differences in the phenotype of the recipient isolates after acquisition of the M2 dsRNA via horizontal transmission were observed. To our knowledge this represents the first demonstration of transmission of dsRNA between genetically different individuals of R. solani confirmed with nuclear and mitochondrial markers. These results suggest that transmission can occur between somatically incompatible isolates of R. solani AG-3 but that maintenance of the dsRNA in the recipient isolates was not stable after repeated subculturing on nutrient medium.

  1. De novo Transcriptome Analysis of Rhizoctonia solani AG1 IA Strain Early Invasion in Zoysia japonica Root

    PubMed Central

    Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming

    2016-01-01

    Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar “Zenith” root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected “Zenith” roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of “Zenith” root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of “Zenith” root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain

  2. Genetic structure of populations of the rice-infecting pathogen Rhizoctonia solani AG-1 IA from China.

    PubMed

    Bernardes-de-Assis, Joana; Storari, Michelangelo; Zala, Marcello; Wang, Wenxiang; Jiang, Daohong; Shidong, Li; Jin, Meisong; McDonald, Bruce A; Ceresini, Paulo C

    2009-09-01

    ABSTRACT Sheath blight disease (SBD) on rice, caused by Rhizoctonia solani AG-1 IA, is one of the most devastating rice diseases on a global basis, including China (in Eastern Asia), the world's largest rice-growing country. We analyzed the population genetics of nine rice-infecting populations from China using nine microsatellite loci. One allopatric population from India (Southern Asia) was included in the analyses. In total, 300 different multilocus genotypes were found among 572 fungal isolates. Clonal fractions within rice fields were 16 to 95%, suggesting that sclerotia were a major source of primary inoculum in some fields. Global Phi(ST) statistics (Phi(ST) = 42.49; P

  3. Molecular diversity analysis of Rhizoctonia solani isolates infecting various pulse crops in different agro-ecological regions of India.

    PubMed

    Dubey, Sunil C; Tripathi, Aradhika; Upadhyay, B K

    2012-11-01

    Genetic diversity of 89 isolates of Rhizoctonia solani isolated from different pulse crops representing 21 states from 16 agro-ecological regions of India, 49 morphological, and 7 anastomosis groups (AGs) was analyzed using 12 universal rice primers (URPs), 22 random amplified polymorphic DNA (RAPD), and 23 inter-simple sequence repeats (ISSR) markers. Both URPs and RAPD markers provided 100 % polymorphism with the bands ranging from 0.1 to 5 kb in size, whereas ISSR markers gave 99.7 % polymorphism with the bands sizes ranging from 0.1 to 3 kb. The marker URP 38F followed by URP13R, URP25F, and URP30F, RAPD marker R1 followed by OPM6, A3 and OPA12 and ISSR3 followed by ISSR1, ISSR4, and ISSR20 produced the highest number of amplicons. R. solani isolates showed a high level of genetic diversity. Unweighted pair group method with an arithmetic average (UPGMA) analysis grouped the isolates into 7 major clusters at 35 % genetic similarity using the three sets of markers evaluated. In spite of using three different types of markers, about 95 % isolates shared common grouping patterns. The majority of the isolates representing various AGs were grouped together into different sub-clusters using all three types of markers. Molecular groups of the isolates did not correspond to agro-ecological regions or states and crops of the origin. An attempt was made for the first time in the present study to determine the genetic diversity of R. solani populations isolated from different pulse crops representing various AGs and agro-ecological regions.

  4. Intraspecific variation of Rhizoctonia solani AG 3 isolates recovered from potato fields in Central Iran and South Australia.

    PubMed

    Balali, G R; Neate, S M; Kasalkheh, A M; Stodart, B J; Melanson, D L; Scott, E S

    2007-02-01

    Pectic zymogram, RFLP and PCR analyses were used to characterize Rhizoctonia solani AG 3 isolates collected from diseased potatoes in South Australia. The pectic zymogram data were compared with those obtained for isolates collected from central Iran. Analyses of bands corresponding to pectin esterase and polygalacturonase revealed three zymogram subgroups (ZG) in AG 3. In addition to the previously reported ZG7 (here renamed ZG7-1), two new zymogram subgroups, ZG7-2 and ZG7-3, were identified. Of the 446 isolates tested, 50% of the South Australian and 46% of the Iranian isolates were ZG7-1. The majority of the isolates originating from stem and root cankers were ZG7-1, whereas most of the isolates designated ZG7-2 and ZG7-3 originated from tuber-borne sclerotia. Pathogenicity tests revealed that ZG7-1 generally produced fewer sclerotia and more severe cankers of underground parts of the potato plants than the other two ZGs. Two random DNA clones, one originating from an AG 3 isolate and the other from an AG 4 isolate, were used as probes for RFLP analyses of Australian isolates. The AG 3 probe, previously identified to be specific to this group, detected a high level of genetic diversity, with 11 genotypes identified amongst 50 isolates analysed. The low-copy AG 4 probe resolved three genotypes amongst 24 isolates. For 23 isolates analysed with both markers, the combined data distinguished a total of six genotypes and similarity analysis resolved the isolates into two main groups with 50% homology. PCR, using primers for the plant intron splice junction region (R1), also revealed variation. No obvious relationship among pectic zymogram groups, RFLP and PCR genotypes was observed.

  5. Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen Rhizoctonia solani.

    PubMed

    Lee, Joohyun; Bricker, Terry M; Lefevre, Michael; Pinson, Shannon R M; Oard, James H

    2006-09-01

    SUMMARY Sheath blight, caused by the fungus Rhizoctonia solani, is a major disease of rice world-wide, but little is known about the host response to infection. The objective of this study was to identify proteins and DNA markers in resistant and susceptible rice associated with response to infection by R. solani. Replicated two-dimensional polyacrylamide gel electrophoresis experiments were conducted to detect proteins differentially expressed under inoculated and non-inoculated conditions. Tandem mass spectra analysis using electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS) was carried out for protein identification with the NCBI non-redundant protein database. Seven proteins were increased after inoculation in both susceptible and resistant plants. Six of the seven proteins were identified with presumed antifungal, photosynthetic and proteolytic activities. An additional 14 proteins were detected in the response of the resistant line. Eleven of the 14 proteins were identified with presumed functions relating to antifungal activity, signal transduction, energy metabolism, photosynthesis, molecular chaperone, proteolysis and antioxidation. The induction of 3-beta-hydroxysteroid dehydrogenase/isomerase was detected for the first time in resistant rice plants after pathogen challenge, suggesting a defensive role of this enzyme in rice against attack by R. solani. The chromosomal locations of four induced proteins were found to be in close physical proximity to genetic markers for sheath blight resistance in two genetic mapping populations. The proteomic and genetic results from this study indicate a complex response of rice to challenge by R. solani that involves simultaneous induction of proteins from multiple defence pathways.

  6. Divergence between sympatric rice- and maize-infecting populations of Rhizoctonia solani AG-1 IA from Latin America.

    PubMed

    González-Vera, A D; Bernardes-de-Assis, J; Zala, M; McDonald, B A; Correa-Victoria, F; Graterol-Matute, E J; Ceresini, P C

    2010-02-01

    ABSTRACT The basidiomycetous fungus Rhizoctonia solani anastomosis group (AG)-1 IA is a major pathogen in Latin America causing sheath blight (SB) of rice. Particularly in Venezuela, the fungus also causes banded leaf and sheath blight (BLSB) on maize, which is considered an emerging disease problem where maize replaced traditional rice-cropping areas or is now planted in adjacent fields. Our goals in this study were to elucidate (i) the effects of host specialization on gene flow between sympatric and allopatric rice and maize-infecting fungal populations and (ii) the reproductive mode of the fungus, looking for evidence of recombination. In total, 375 isolates of R. solani AG1 IA sampled from three sympatric rice and maize fields in Venezuela (Portuguesa State) and two allopatric rice fields from Colombia (Meta State) and Panama (Chiriquí State) were genotyped using 10 microsatellite loci. Allopatric populations from Venezuela, Colombia, and Panama were significantly differentiated (Phi(ST) of 0.16 to 0.34). Partitioning of the genetic diversity indicated differentiation between sympatric populations from different host species, with 17% of the total genetic variation distributed between hosts while only 3 to 6% was distributed geographically among the sympatric Venezuelan fields. We detected symmetrical historical migration between the rice- and the maize-infecting populations from Venezuela. Rice- and maize-derived isolates were able to infect both rice and maize but were more aggressive on their original hosts, consistent with host specialization. Because the maize- and rice-infecting populations are still cross-pathogenic, we postulate that the genetic differentiation was relatively recent and mediated via a host shift. An isolation with migration analysis indicated that the maize-infecting population diverged from the rice-infecting population between 40 and 240 years ago. Our findings also suggest that maize-infecting populations have a mainly recombining

  7. De novo Transcriptome Analysis of Rhizoctonia solani AG1 IA Strain Early Invasion in Zoysia japonica Root.

    PubMed

    Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming

    2016-01-01

    Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar "Zenith" root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected "Zenith" roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of "Zenith" root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of "Zenith" root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain.

  8. Mycorrhizal fungi and Trichoderma harzianum as biocontrol agents for suppression of Rhizoctonia solani damping-off disease of tomato.

    PubMed

    Amer, M A; Abou-El-Seoud, I I

    2008-01-01

    The objective of the present work was to examine the interaction between arbuscular mycorrhizal fungus (AMF) Glomus intraradices and Trichoderma harzianum in soil. Soil application with T. harzianum or/and G. intraradices significantly reduced tomato seedlings damping-off incited by Rhizoctonia solani. Moreover, more pronounced disease suppression was obtained when both bioagents were applied together. Application of T. harzianum to healthy or inoculated seedlings significantly increased phosphorous supply, which resulted in higher yield, associated with the accumulation of high phosphorus levels in tissues of tomato plants (4.7- 6.5-fold), compared with low P supply. Inoculation with both bioagents in the presence or absence of the pathogen gave significant rise (2.1 - 2.2-fold), compared with low P levels. Root length of inoculated plants treated with T. harzianum or G. intraradices appeared longer than those of inoculated untreated plants at all P levels. Phosphorus uptake (mg P/plant) of tomato plant increased in all treatments with increasing of P levels with R. solani, T. harzianum or their combination and untreated plants have vigorous response to phosphorus fertilization. At low P levels, there was a significant difference between treatments, P uptake of tomato plants inoculated with AMF, T. harzianum or in combination, either in absence or in the presence of the tested pathogen showed highly significant increase, compared to untreated plant, infected plants with pathogen, T. harzianum, and their mixture. At high P levels, there was no significant difference between control and both AMF and T. harzianum, either individually in health plants or in combination with the pathogen. Eventually, results presented here substantiate other studies reporting enhanced biocontrol performance.

  9. Effects of Pseudomonas aureofaciens 63-28 on defense responses in soybean plants infected by Rhizoctonia solani.

    PubMed

    Jung, Woo-Jin; Park, Ro-Dong; Mabood, Fazli; Souleimanov, Alfred; L Smith, Donald

    2011-04-01

    The objective of this work was to investigate the ability of the plant growth-promoting rhizobacterium Pseudomonas aureofaciens 63-28 to induce plant defense systems, including defense-related enzyme levels and expression of defense-related isoenzymes, and isoflavone production, leading to improved resistance to the phytopathogen Rhizoctonia solani AG-4 in soybean seedlings. Seven-dayold soybean seedlings were inoculated with P. aureofaciens 63-28, R. solani AG-4, or P. aureofaciens 63-28 plus R. solani AG-4 (P+R), or not inoculated (control). After 7 days of incubation, roots treated with R. solani AG-4 had obvious damping-off symptoms, but P+R-treated soybean plants had less disease development, indicating suppression of R. solani AG-4 in soybean seedlings. Superoxide dismutase (SOD) and catalase (CAT) activities of R. solani AG-4-treated roots increased by 24.6% and 54.0%, respectively, compared with control roots. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities of R. solani AG-4-treated roots were increased by 75.1% and 23.6%, respectively. Polyphenol oxidase (PPO) activity in soybean roots challenged with P. aureofaciens 63-28 and P+R increased by 25.0% and 11.6%, respectively. Mn-SOD (S1 band on gel) and Fe-SOD (S2) were strongly induced in P+R-treated roots, whereas one CAT (C1) and one APX (A3) were strongly induced in R. solani AG-4- treated roots. The total isoflavone concentration in P+Rtreated shoots was 27.2% greater than the control treatment. The isoflavone yield of R. solani AG-4-treated shoots was 60.9% less than the control.

  10. Pathogenicity of some Rhizoctonia solaniz isolates associated with root/collar rots on the cultivars of bean in greenhouse.

    PubMed

    Bohlooli, A; Okhovvat, S M; Javan-Nikkhah, M

    2006-01-01

    One hundred and eighteen isolates of Rhizoctonia solani were gathered from infected roots and hypocotyls of bean (Phaseolus vulgaris L.) grown in the fields of Tehran Province, Iran. Two isolates of the collected samples belonged to binucleate and 81 isolates to multinucleate of R. solani. The multinucleate isolates showed different anastomosis groups as AG-4 (subg. AG-4 HGI, AG-4HGII), AG-6 and AG-2. In greenhouse, pathogenicity tests carried out on bean cv. Naz in randomized design with 4 replications and each replication (pots) with 5 seeds of bean. Infection was done with seeds of wheat which were infected to the fungus with pasteurized soil. Results showed that the highest disease severity was caused by AG-4 (Rs21) isolates, whereas AG-4 (Rs74) isolates were weakly pathogenic with 90% and 21% infection, respectively. In this test the major pathogenic isolates belonged to AG-4 and they caused seed rot and damping-off of bean and AG-6 isolates were non-pathogenic. Five isolates of the fungus with major pathogenicity (Rs7, Rs18, Rs21, Rs62 and Rs71) selected and used for the reaction with different cultivars of bean. In this test, the cultivars and lines of bean (Pinto, red, white, green) studied in factorial experiment as randomized block design with 4 replications (pots). Results showed that none of the cultivars was completely resistant, however green bean cv. Sanry and pinto cv. Shad with number 4.8 disease severities had the highest susceptibility to seed rot and damping-off and red bean cv. Goli with 2.58 had the lowest susceptibility to the infection. Reaction of the cultivars and lines to the isolates of R. solani was significantly different at 1% level. Isolates of the fungus, Rs7, Rs21 with 84%, 90% pathogenicity was more virulent than the others.

  11. Characterization of bacteria that suppress rhizoctonia damping-off in bark compost media by analysis of Fatty Acid biomarkers.

    PubMed

    Tunlid, A; Hoitink, H A; Low, C; White, D C

    1989-06-01

    Examination of cucumber roots (Cucumis sativus L.) grown in bark compost media and of the surrounding edaphic substrate showed profiles of polar lipid fatty acids commonly found in bacteria. The composition of fatty acids in these profiles differed significantly between roots grown in a medium naturally suppressive to Rhizoctonia damping-off and roots from a conducive medium. Cucumber roots from the suppressive medium had higher proportions of cis-vaccenic acid (18:1 omega 7c) and the iso-branched monoenoic fatty acid i17:1 omega 8 but lower proportions of several iso- and anteiso-branched fatty acids compared with roots from the conducive medium. The concentrations of the bacterial fatty acids were significantly lower in the surrounding media. However, the suppressive and conducive growth substrates had differences in the composition of the bacterial fatty acids similar to those found between the cucumber roots proper. These results suggest major differences in bacterial community composition between suppressive and conducive systems. Fatty acid analyses were also utilized to examine the effects on bacterial community composition of root colonization by Flavobacterium balustinum 299, a biocontrol agent. The concentration of the most prominent fatty acid in this bacterium, i17:1 omega 8, was increased on roots produced from inoculated seeds in a medium rendered suppressive by the treatment. This change was concomitant with a significant increase in the concentration of 18:1 omega 7c, not present in the lipids of the antagonist, indicating a shift in the microflora from a conducive to a suppressive bacterial community.

  12. Induction of defense response against Rhizoctonia solani in cucumber plants by endophytic bacterium Bacillus thuringiensis GS1.

    PubMed

    Seo, Dong-Jun; Nguyen, Dang-Minh-Chanh; Song, Yong-Su; Jung, Woo-Jin

    2012-03-01

    An endophytic bacterium, Bacillus thuringiensis GS1, was isolated from bracken (Pteridium aquilinum) and found to have maximal production of chitinase (4.3 units/ml) at 5 days after culture. This study investigated the ability of B. thuringiensis GS1 to induce resistance to Rhizoctonia solani KACC 40111 (RS) in cucumber plants. Chitinase activity was greatest in RS-treated plants at 4 days. beta-1,3- Glucanase activity was highest in GS1-treated plants at 5 days. Guaiacol peroxidase (GPOD) activity increased continuously in all treated plants for 5 days. Ascorbate peroxidase (APX) activity in RS-treated plants was increased 1.5-fold compared with the control at 4 days. Polyphenol oxidase (PPO) activity in RS-treated plants was increased 1.5-fold compared with the control at 3 days. At 5 days after treatment, activity staining revealed three bands with chitinase activity (Ch1, Ch2, and Ch3) on SDSPAGE of cucumber plants treated with GS1+RS, whereas only one band was observed for RS-treated plants (Ch2). One GPOD isozyme (Gp1) was also observed in response to treatment with RS and GS1+RS at 4 days. One APX band (Ap2) was present on the native-PAGE gel of the control, and GS1- and GS1+RS-treated plants at 1 day. PPO bands (Po1 and Po2) from RS- and GS1+RS-treated plants were stronger than in the control and GS1-treated plants upon native-PAGE at 5 days. Taken together, these results indicate that the induction of PR proteins and defense-related enzymes by B. thuringiensis GS1 might have suppressed the damping-off caused by R. solani KACC 40111 in cucumber plants.

  13. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43.

    PubMed

    Huang, Xinqi; Zhang, Nan; Yong, Xiaoyu; Yang, Xingming; Shen, Qirong

    2012-03-20

    Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Micrographs were used to investigate the ability of Bacillus pumilus (B. pumilus) SQR-N43 to control Rhizoctonia solani (R. solani) Q1 in cucumbers. The root colonization ability of B. pumilus SQR-N43 was analyzed in vivo with a green fluorescent protein (GFP) tag. A pot experiment was performed to assess the in vivo disease-control efficiency of B. pumilus SQR-N43 and its bio-organic fertilizer. Results indicate that B. pumilus SQR-N43 induced hyphal deformation, enlargement of cytoplasmic vacuoles and cytoplasmic leakage in R. solani Q1 mycelia. A biofilm on the root surface was formed when the roots were inoculated with 10(7)-10(8)cells g(-1) of soil of GFP-tagged B. pumilus SQR-N43. In the pot experiment, the biocontrol reduced the concentration of R. solani. In contrast to applications of only B. pumilus SQR-N43 (N treatment), which produced control efficiencies of 23%, control efficiencies of 68% were obtained with applications of a fermented organic fertilizer inoculated with B. pumilus SQR-N43 (BIO treatment). After twenty days of incubation, significant differences in the number of CFUs and the percentage of spores of B. pumilus SQR-N43 were recorded between the N treatment (2.20×10(7)CFU g(-1) of soil and 79%, respectively) and the BIO treatment (1.67×10(8)CFU g(-1) of soil and 52%, respectively). The results indicate that B. pumilus SQR-N43 is a potent antagonist against R. solani Q1. The BIO treatment was more effective than the N treatment because it stabilized the population and increased the active form of the antagonist.

  14. Gene expression profiling of the plant pathogenic basidiomycetous fungus Rhizoctonia solani AG 4 reveals putative virulence factors.

    PubMed

    Lakshman, Dilip K; Alkharouf, Nadim; Roberts, Daniel P; Natarajan, Savithiry S; Mitra, Amitava

    2012-01-01

    Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping-off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. To get broad gene-expression coverage, two normalized EST libraries were developed from mycelia grown under high nitrogen-induced virulent and low nitrogen/methylglucose-induced hypovirulent conditions. A pilot-scale assessment of gene diversity was made from the sequence analyses of the two libraries. A total of 2280 cDNA clones was sequenced that corresponded to 220 unique sequence sets or clusters (contigs) and 805 singlets, making up a total of 1025 unique genes identified from the two virulence-differentiated cDNA libraries. From the total sequences, 295 genes (38.7%) exhibited strong similarities with genes in public databases and were categorized into 11 functional groups. Approximately 61.3% of the R. solani ESTs have no apparent homologs in publicly available fungal genome databases and are considered unique genes. We have identified several cDNAs with potential roles in fungal pathogenicity, virulence, signal transduction, vegetative incompatibility and mating, drug resistance, lignin degradation, bioremediation and morphological differentiation. A codon-usage table has been formulated based on 14694 R. solani EST codons. Further analysis of ESTs might provide insights into virulence mechanisms of R. solani AG 4 as well as roles of these genes in development, saprophytic colonization and ecological adaptation of this important fungal plant pathogen.

  15. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani).

    PubMed

    Li, Z; Pinson, S R; Marchetti, M A; Stansel, J W; Park, W D

    1995-07-01

    Sheath blight, caused by Rhizoctonia solani, is one of the most important diseases of rice. Despite extensive searches of the rice germ plasm, the major gene(s) which give complete resistance to the fungus have not been identified. However, there is much variation in quantitatively inherited resistance to R. solani, and this type of resistance can offer adequate protection against the pathogen under field conditions. Using 255 F4 bulked populations from a cross between the susceptible variety 'Lemont' and the resistant variety 'Teqing', 2 years of field disease evaluation and 113 well-distributed RFLP markers, we identified six quantitative trait loci (QTLs) contributing to resistance to R. solani. These QTLs are located on 6 of the 12 rice chromosomes and collectively explain approximately 60% of the genotypic variation or 47% of the phenotypic variation in the 'Lemont'x'Teqing' cross. One of these resistance QTLs (QSbr4a), which accounted for 6% of the genotypic variation in resistance to R. solani, appeared to be independent of associated morphological traits. The remaining five putative resistance loci (QSbr2a, QSbr3a, QSbr8a, QSbr9a and QSbr12a) all mapped to chromosomal regions also associated with increased plant height, three of which were also associated with QTLs causing later heading. This was consistent with the observation that heading date and plant height accounted for 47% of the genotypic variation in resistance to R. solani in this population. There were also weak associations between resistance to R. solani and leaf width, which were likely due to linkage with a QTL for this trait rather than to a physiological relationship.

  16. Induction of Terpenoid Synthesis in Cotton Roots and Control of Rhizoctonia solani by Seed Treatment with Trichoderma virens.

    PubMed

    Howell, C R; Hanson, L E; Stipanovic, R D; Puckhaber, L S

    2000-03-01

    ABSTRACT Research on the mechanisms employed by the biocontrol agent Trichoderma virens to suppress cotton (Gossypium hirsutum) seedling disease incited by Rhizoctonia solani has shown that mycoparasitism and antibiotic production are not major contributors to successful biological control. In this study, we examined the possibility that seed treatment with T. virens stimulates defense responses, as indicated by the synthesis of terpenoids in cotton roots. We also examined the role of these terpenoid compounds in disease control. Analysis of extracts of cotton roots and hypocotyls grown from T. virens-treated seed showed that terpenoid synthesis and peroxidase activity were increased in the roots of treated plants, but not in the hypocotyls of these plants or in the untreated controls. Bioassay of the terpenoids for toxicity to R. solani showed that the pathway intermediates desoxyhemigossypol (dHG) and hemigossypol (HG) were strongly inhibitory to the pathogen, while the final product gossypol (G) was toxic only at a much higher concentration. Strains of T. virens and T. koningii were much more resistant to HG than was R. solani, and they thoroughly colonized the cotton roots. A comparison of biocontrol efficacy and induction of terpenoid synthesis in cotton roots by strains of T. virens, T. koningii, T. harzianum, and protoplast fusants indicated that there was a strong correlation (+0.89) between these two phenomena. It, therefore, appears that induction of defense response, particularly terpenoid synthesis, in cotton roots by T. virens may be an important mechanism in the biological control by this fungus of R. solani-incited cotton seedling disease.

  17. 3-Methylthiopropionic Acid of Rhizoctonia solani AG-3 and Its Role in the Pathogenicity of the Fungus.

    PubMed

    Kankam, Frederick; Long, Hai-Tao; He, Jing; Zhang, Chun-Hong; Zhang, Hui-Xiu; Pu, Lumei; Qiu, Huizhen

    2016-04-01

    Studies were conducted to determine the role of 3-methylthioproprionic acid (MTPA) in the pathogenicity of potato stem canker, Rhizoctonia solani, and the concentrations required to inhibit growth of R. solani under laboratory and plant house-based conditions. The experiments were laid out in a completely randomized design with five treatments and five replications. The treatments were 0, 1, 2, 4, and 8 mM concentrations of MTPA. The purified toxin exhibited maximal activity at pH 2.5 and 30°C. MTPA at 1, 2, 4, and 8 mM levels reduced plant height, chlorophyll content, haulm fresh weight, number of stolons, canopy development, and tuber weight of potato plants, as compared to the control. MTPA significantly affected mycelial growth with 8 mM causing the highest infection. The potato seedlings treated with MTPA concentrations of 1.0-8.0 mM induced necrosis of up to 80% of root system area. Cankers were resulted from the injection of potato seedling stems with 8.0 mM MTPA. The results showed the disappearance of cell membrane, rough mitochondrial and cell walls, change of the shape of chloroplasts, and swollen endoplasmic reticulum. Seventy-six (76) hours after toxin treatment, cell contents were completely broken, cytoplasm dissolved, and more chromatin were seen in the nucleus. The results suggested that high levels of the toxin concentration caused cell membrane and cytoplasm fracture. The integrity of cellular structure was destroyed by the phytotoxin. The concentrations of the phytotoxin were significantly correlated with pathogenicity and caused damage to the cell membrane of potato stem base tissue. PMID:27147928

  18. Pseudomonas fluorescens DR54 Reduces Sclerotia Formation, Biomass Development, and Disease Incidence of Rhizoctonia solani Causing Damping-Off in Sugar Beet.

    PubMed

    Thrane, C.; Nielsen, M.N.; Sørensen, J.; Olsson, S.

    2001-10-01

    Effects of the biocontrol strain, Pseudomonas fluorescens DR54, on growth and disease development by Rhizoctonia solani causing damping-off in sugar beet were studied in soil microcosms and in pot experiments with natural, clay-type soil. In pot experiments with P. fluorescens DR54-treated seeds, significantly fewer Rhizoctonia-challenged seedlings showed damping-off symptoms than when not inoculated with the biocontrol agent. In the rhizosphere of P. fluorescens DR54 inoculated seeds, the bacterial inoculant was present in high numbers as shown by dilution plating and immunoblotting. By the ELISA antibody technique and direct microscopy of the fungal pathogen grown in soil microcosms, it was shown that the presence of P. fluorescens DR54 on the inoculated seeds had a strong inhibitory effect on development of both mycelium biomass and sclerotia formation by R. solani. In the field experiment, plant emergence was increased by treatment with P. fluorescens DR54 and the inoculant was found to be the dominating rhizosphere colonizing pseudomonad immediately after seedling emergence.

  19. Suppression of Seedling Damping-Off Caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in Container Media Amended with a Diverse Range of Pacific Northwest Compost Sources.

    PubMed

    Scheuerell, Steven J; Sullivan, Dan M; Mahaffee, Walter F

    2005-03-01

    ABSTRACT Suppression of seedling damping-off disease caused by Pythium spp. and Rhizoctonia solani is a potential benefit of formulating soilless container media with compost. Thirty-six compost samples from Pacific Northwest commercial composting facilities were analyzed for a number of physical, chemical, and biological properties, including suppression of damping-off caused by Pythium ultimum, P. irregulare, and R. solani. The samples were produced from diverse feedstocks and composting technol ogies; this was reflected in a large degree of variability in the measured properties. When mixed with sphagnum peat moss and inorganic aggregates, 67% of the compost samples significantly suppressed P. irregulare damping-off of cucumber, 64% suppressed P. ultimum damping-off of cucumber, and 17% suppressed damping-off of cabbage caused by R. solani. Suppression of Pythium damping-off was related to the potential of compost to support microbial activity and a qualitative index of ammonia volatilization. Suppression of Rhizoctonia damping-off was not related to any one compost factor. Currently available compost products potentially could provide commercially acceptable control of damping-off caused by Pythium spp., but it is necessary to fortify composts with microbial antagonists for the control of R. solani.

  20. High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects.

    PubMed

    Hamshou, Mohamad; Van Damme, Els J M; Caccia, Silvia; Cappelle, Kaat; Vandenborre, Gianni; Ghesquière, Bart; Gevaert, Kris; Smagghe, Guy

    2013-03-01

    Whole insect assays where Rhizoctonia solani agglutinin (RSA) was fed to larval stages of the cotton leaf-worm Spodoptera littoralis and the pea aphid Acyrthosiphon pisum demonstrated a high concentration-dependent entomotoxicity, suggesting that this GalNAc/Gal-specific fungal lectin might be a good control agent for different pest insects. RSA at 10 mg/g in the solid diet of 2nd-instar caterpillars caused 84% weight reduction after 8 days with none of the caterpillars reaching the 4th-instar stage. In sucking aphids, 50% mortality was achieved after 3 days with 9 μM of RSA in the liquid diet. Feeding of FITC-labeled RSA to both insect pest species revealed strong lectin binding at the apical/luminal side of the midgut epithelium with the brush border zone, suggesting the insect midgut as a primary insecticide target tissue for RSA. This was also confirmed with cell cultures in vitro, where there was high fluorescence binding at the microvillar zone with primary cultures of larval midgut columnar cells of S. littoralis, and also at the surface with the insect midgut CF-203 cell line without lectin uptake in the midgut cells. In vitro assays using insect midgut CF-203 cells, revealed that RSA was highly toxic with an EC50 of 0.3 μM. Preincubation with GalNAc and saponin indicated that this action of RSA was carbohydrate-binding dependent and happened at the surface of the cells. Intoxicated CF-203 cells showed symptoms of apoptosis as nuclear condensation and DNA fragmentation, and this concurred with an increase of caspase-3/7, -8 and -9 activities. Finally, RSA affinity chromatography of membrane extracts of CF-203 cells followed by LC-MS/MS allowed the identification of 5747 unique peptides, among which four putatively glycosylated membrane proteins that are associated with apoptosis induction, namely Fas-associated factor, Apoptosis-linked gene-2, Neuroglian and CG2076, as potential binding targets for RSA. These data are discussed in relation to the

  1. An immunological approach to quantifying the saprotrophic growth dynamics of Trichoderma species during antagonistic interactions with Rhizoctonia solani in a soil-less mix.

    PubMed

    Thornton, Christopher R

    2004-04-01

    Studies of the saprotrophic growth dynamics of Trichoderma species and their fungal hosts during antagonistic interactions are severely hampered by the absence of methods that allow the unambiguous identification and quantification of individual genera in complex environments such as soil or compost containing mixed populations of fungi. Furthermore, methods are required that allow discrimination between active hyphal growth and other components of fungal biomass such as quiescent spores that are produced in large numbers by Trichoderma species. This study details the use of monoclonal antibodies to quantify the saprotrophic growth dynamics of the soil-borne plant pathogen Rhizoctonia solani and biological control strains of Trichoderma asperellum and Trichoderma harzianum during antagonistic interactions in peat-based microcosms. Quantification was based on the immunological detection of constitutive, extracellular antigens that are secreted from the growing tip of Rhizoctonia and Trichoderma mycelium and, in the case of Trichoderma harzianum, from quiescent phialoconidia also. The Trichoderma-specific monoclonal antibody (MF2) binds to a protein epitope of the enzyme glucoamylase, which was shown by immunofluorescence and immunogold electron gold microscopy studies of Trichoderma virens in vitro to be produced at the origin of germ tube emergence in phialoconidia and from the growing tip of germ tubes. In addition, a non-destructive immunoblotting technique showed that the enzyme was secreted during active growth of Trichoderma asperellum mycelium in peat. The Rhizoctonia solani-specific monoclonal antibody (EH2) similarly binds to a protein epitope of a glycoprotein that is secreted during active mycelial growth. Extracts derived from lyophilized mycelium were used as a quantifiable and repeatable source of antigens for construction of calibration curves. These curves were used to convert the absorbance values obtained in ELISA tests of peat extracts to biomass

  2. Mating type-correlated molecular markers and demonstration of heterokaryosis in the phytopathogenic fungus Thanatephorus cucumeris (Rhizoctonia solani) AG 1-IC by AFLP DNA fingerprinting analysis.

    PubMed

    Julián, M C; Acero, J; Salazar, O; Keijer, J; Rubio, V

    1999-01-01

    The destructive soil-borne plant pathogenic basidiomycetous fungus Thanatephorus cucumeris (Frank) Donk [anamorph: Rhizoctonia solani Kühn] is not a homogeneous species, but is composed of at least twelve anastomosis groups (AG), which seem to be genetically isolated. The genetics of several T. cucumeris anastomosis groups has been studied by analysis of heterokaryotic tuft formation in the area of contact between homokaryotic single-spore isolates, revealing that AG 1 is heterokaryotic and bipolar. To prove that tuft formation is due to heterokaryosis, AFLP DNA fingerprinting has been applied to a heterokaryotic T. cucumeris AG 1-IC isolate, its homokaryotic single spore-derived progeny, and newly formed heterokaryons. By means of AFLP markers, it is demonstrated that fluffy tufts formed upon pairing of homokaryons from different mating types are newly formed heterokaryons. Mating type-correlated markers have also been found, which will be useful for future studies of the genetics of this fungal species complex.

  3. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen.

    PubMed

    Nagarajkumar, M; Bhaskaran, R; Velazhahan, R

    2004-01-01

    Fourteen strains of Pseudomonas fluorescens isolated from rhizosphere soil of rice were tested for their antagonistic effect towards Rhizoctonia solani, the rice sheath blight fungus. Among them, PfMDU2 was the most effective in inhibiting mycelial growth of R. solani in vitro. Production of chitinase, beta-1,3-glucanase, siderophores, salicylic acid (SA) and hydrogen cyanide (HCN) by P. fluorescens strains was evaluated. The highest beta-1,3-glucanase activity, siderophore production, SA production and HCN production were recorded with PfMDU2. A significant relationship between the antagonistic potential of P. fluorescens against R. solani and its level of beta-1,3-glucanase, SA and HCN was observed. PMID:15160609

  4. Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil.

    PubMed

    Kondoh, M; Hirai, M; Shoda, M

    2001-01-01

    Bacillus subtilis RB14-C was isolated as a potential biological agent to control the occurrence of various plant diseases. Integrated control of damping-off in tomato plants caused by Rhizoctonia solani was carried out in pots using B. subtilis RB14-C and chemical pesticide, flutolanil. The growth of RB14-C was the same in both the flutolanil-containing and the flutolanil-free media, indicating the resistance of RB14-C to flutolanil. Although the productivity of surfactin decreased to one-third in the flutolanil-containing medium, compared with that in the flutolanil-free medium, the productivity of iturin A which is mainly associated with the suppressive ability of RB14-C against plant pathogens was unaffected. The integration of RB14-C and flutolanil reduced the amount of flutolanil used to one-fourth of that of the single use of flutolanil, with the same efficacy of reducing disease occurrence.

  5. Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.).

    PubMed

    Akhter, Wasira; Bhuiyan, Mohamed Khurshed Alam; Sultana, Farjana; Hossain, Mohamed Motaher

    2015-01-01

    The study evaluated the comparative performance of a few microbial antagonists, organic amendments and fungicides and their integration for the management of seedling mortality (Rhizoctonia solani Kühn) and yield improvement in pea (Pisum sativum L.). Before setting the experiment in field microplots, a series of in vitro and in vivo experiments were conducted to select a virulent isolate of R. solani, an effective antagonistic isolate of Trichoderma harzianum, a fungitoxic organic amendment and an appropriate fungicide. A greenhouse pathogenicity test compared differences in seedling mortality in pea inoculated by four isolates of R. solani and identified the isolate RS10 as the most virulent one. Among the 20 isolates screened in dual culture assay on PDA, T. harzianum isolate T-3 was found to show the highest (77.22%) inhibition of the radial growth of R. solani. A complete inhibition (100.00%) of colony growth of R. solani was observed when fungicide Bavistin 50 WP and Provax-200 at the rate of 100 and 250 ppm, respectively, were used, while Provax-200 was found to be highly compatible with T. harzianum. Mustard oilcake gave maximum inhibition (60.28%) of the radial growth of R. solani at all ratios, followed by sesame oilcake and tea waste. Integration of soil treatment with T. harzianum isolate T-3 and mustard oilcake and seed treatment with Provax-200 appeared to be significantly superior in reducing seedling mortality and improving seed yield in pea in comparison to any single or dual application of them in the experimental field. The research results will help growers develop integrated disease management strategies for the control of Rhizoctonia disease in pea. The research results show the need for an integrating selective microbial antagonist, organic amendment and fungicide to achieve appropriate management of seedling mortality (R. solani) and increase of seed yield in pea. PMID:25528673

  6. Development of SCAR markers and UP-PCR cross-hybridization method for specific detection of four major subgroups of Rhizoctonia from infected turfgrasses.

    PubMed

    Amaradasa, Bimal S; Lakshman, Dilip; Horvath, Brandon J; Amundsen, Keenan L

    2014-01-01

    A rapid identification assay for Waitea circinata (anamorph: Rhizoctonia spp.) varieties zeae and circinata causing patch diseases on turfgrasses was developed based on the universally primed PCR (UP-PCR) products cross-blot hybridization. Tester isolates belonging to the two varieties of W. circinata were amplified with a single UP primer L21, which generated multiple DNA fragments for each variety. Probes were prepared with UP-PCR products of each tester isolate by labeling with digoxigenin. Fieldcollected W. circinata isolates and representative isolates of different R. solani anastomosis groups (AG) and AG subgroups were amplified with L21, immobilized on nylon membrane and cross hybridized with the two probes. Isolates within a W. circinata variety cross-hybridized strongly, while non-homologous isolates did not cross-hybridize or did so weakly. Closely related W. circinata varieties zeae and circinata were clearly distinguished with this assay. Sequence-characterized amplified region (SCAR) markers also were developed from UP-PCR products to identify isolates of Thanatephorus cucumeris (anamorph: R. solani) AG 1-IB and AG 2-2IIIB. These two AGs are commonly isolated from diseased, cool-season turfgrasses. The specific SCAR markers that were developed could differentiate isolates of AG 1-IB or AG 2-2IIIB groups. These SCAR markers did not amplify a product from genomic DNA of nontarget isolates of Rhizoctonia. The specificities and sensitivities of the SCAR primers were tested on total DNA extracted from several field-grown, cool-season turf species having severe brown-patch symptoms. First, the leaf samples from diseased turf species were tested for the anastomosis groups of the causal pathogen, and thereafter the total DNA was amplified with the specific primers. The specific primers were sensitive and unique enough to produce a band from total DNA of diseased turfgrasses infected with either AG 1-IB or AG 2-2IIIB.

  7. Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.).

    PubMed

    Akhter, Wasira; Bhuiyan, Mohamed Khurshed Alam; Sultana, Farjana; Hossain, Mohamed Motaher

    2015-01-01

    The study evaluated the comparative performance of a few microbial antagonists, organic amendments and fungicides and their integration for the management of seedling mortality (Rhizoctonia solani Kühn) and yield improvement in pea (Pisum sativum L.). Before setting the experiment in field microplots, a series of in vitro and in vivo experiments were conducted to select a virulent isolate of R. solani, an effective antagonistic isolate of Trichoderma harzianum, a fungitoxic organic amendment and an appropriate fungicide. A greenhouse pathogenicity test compared differences in seedling mortality in pea inoculated by four isolates of R. solani and identified the isolate RS10 as the most virulent one. Among the 20 isolates screened in dual culture assay on PDA, T. harzianum isolate T-3 was found to show the highest (77.22%) inhibition of the radial growth of R. solani. A complete inhibition (100.00%) of colony growth of R. solani was observed when fungicide Bavistin 50 WP and Provax-200 at the rate of 100 and 250 ppm, respectively, were used, while Provax-200 was found to be highly compatible with T. harzianum. Mustard oilcake gave maximum inhibition (60.28%) of the radial growth of R. solani at all ratios, followed by sesame oilcake and tea waste. Integration of soil treatment with T. harzianum isolate T-3 and mustard oilcake and seed treatment with Provax-200 appeared to be significantly superior in reducing seedling mortality and improving seed yield in pea in comparison to any single or dual application of them in the experimental field. The research results will help growers develop integrated disease management strategies for the control of Rhizoctonia disease in pea. The research results show the need for an integrating selective microbial antagonist, organic amendment and fungicide to achieve appropriate management of seedling mortality (R. solani) and increase of seed yield in pea.

  8. Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation.

    PubMed

    Kang, Sang-Mo; Radhakrishnan, Ramalingam; Lee, In-Jung

    2015-10-01

    The fungus Rhizoctonia solani is one of the causal agents of numerous diseases that affect crop growth and yield. The aim of this present investigation was to identify a biocontrol agent that acts against R. solani and to determine the agent's protective effect through phytohormones and antioxidant regulation in experimentally infected Chinese cabbage plants. Four rhizospheric soil bacterial isolates GR53, GR169, GR786, and GR320 were tested for their antagonistic activity against R. solani. Among these isolates, GR53 significantly suppressed fungal growth. GR53 was identified as Bacillus amyloliquefaciens subsp. plantarum by phylogenetic analysis of the 16S rDNA sequence. The biocontrol activity of B. amyloliquefaciens subsp. plantarum GR53 was tested in Chinese cabbage plants under controlled conditions. Results showed that R. solani inhibited plant growth (length, width, fresh and dry weight of leaves) by reducing chlorophyll and total phenolic content, as well as by increasing the levels of salicylic acid, jasmonic acid, abscisic acid, and DPPH scavenging activity. By regulating the levels of these compounds, the co-inoculation of B. amyloliquefaciens subsp. plantarum GR53 heightened induced systemic resistance in infected Chinese cabbage, effectively mitigating R. solani-induced damaging effects and improving plant growth. The results obtained from this study suggest that B. amyloliquefaciens subsp. plantarum GR53 is an effective biocontrol agent to prevent the damage caused by R. solani in Chinese cabbage plants.

  9. Pelargonium graveolens L'Her. and Artemisia arborescens L. essential oils: chemical composition, antifungal activity against Rhizoctonia solani and insecticidal activity against Rhysopertha dominica.

    PubMed

    Bouzenna, Hafsia; Krichen, Lamia

    2013-01-01

    The chemical composition of the Pelargonium graveolens essential oil allowed the identification of 15 compounds (93.86% of the total essential oil). The major fractions were citronellol (35%) and geraniol (28.8%). The chemical composition of the Artemisia arborescens essential oil revealed twenty-one compounds representing 93.57% of the total essential oil. The main compounds were chamazulene (31.9%) and camphor (25.8%). The insecticidal effects were tested towards the insect Rhysopertha dominica. Results revealed that these two essential oils were highly effective against R. dominica at the dose of 50 µL on Petri dish of 8.5 cm of diameter. The antifungal activity was evaluated against Rhizoctonia solani and results showed that both of the essential oils were highly active at a dose of 12.5 µL/20 mL of PDA. Moreover, the inhibitory effect of P. graveolens essential oil was evidenced as stronger than that of the A. arborescens oil for all the tested doses.

  10. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani.

    PubMed

    Kobori, Nilce N; Mascarin, Gabriel M; Jackson, Mark A; Schisler, David A

    2015-04-01

    Media and culturing protocols were identified that supported the formation of submerged conidia and microsclerotia (MS) by Trichoderma harzianum Rifai strain T-22 using liquid culture fermentation. Liquid media with a higher carbon concentration (36 g L(-1)) promoted MS formation at all C:N ratios tested. Hyphae aggregated to form MS after 2 d growth and after 7 d MS were fully melanized. This is the first report of MS formation by T. harzianum or any species of Trichoderma. Furthermore, submerged conidia formation was induced by liquid culture media, but yields, desiccation tolerance, and storage stability varied with C:N ratio and carbon rate. Air-dried MS granules (<4% moisture) retained excellent shelf life under cool and unrefrigerated storage conditions with no loss in conidial production. A low-cost complex nitrogen source based on cottonseed flour effectively supported high MS yields. Amending potting mix with dried MS formulations reduced or eliminated damping-off of melon seedlings caused by Rhizoctonia solani. Together, the results provide insights into the liquid culture production, stabilization process, and bioefficacy of the hitherto unreported MS of T. harzianum as a potential biofungicide for use in integrated management programs against soilborne diseases. PMID:25813507

  11. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani

    SciTech Connect

    Kang, Y.; Carlson, R.; Tharpe, W.; Schell, M.A.

    1998-10-01

    Genetic manipulation of fluorescent pseudomonads has provided major insight into their production of antifungal molecules and their role in biological control of plant disease. Burkholderia cepacia also produces antifungal activities, but its biological control activity is much less well characterized, in part due to difficulties in applying genetic tools. Here the authors report genetic and biochemical characterization of a soil isolate of B. cepacia relating to its production of an unusual antibiotic that is very active against a variety of soil fungi. Purification and preliminary structural analyses suggest that this antibiotic (called AFC-BC11) is a novel lipopeptide associated largely with the cell membrane. Analysis of conditions for optimal production of AFC-BC11 indicated stringent environmental regulation of its synthesis. Furthermore, the authors show that production of AFC-BC11 is largely responsible for the ability of B. cepacia BC11 to effectively control the damping-Off of cotton caused by the fungal pathogen Rhizoctonia solani in a gnotobiotic system. Using Tn5 mutagenesis, they identified, cloned, and characterized a region of the genome of strain BC11 that is required for production of this antifungal metabolite. DNA sequence analysis suggested that this region encodes proteins directly involved in the production of a nonribosomally synthesized lipopeptide.

  12. Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice.

    PubMed

    Molla, Kutubuddin A; Karmakar, Subhasis; Chanda, Palas K; Ghosh, Satabdi; Sarkar, Sailendra N; Datta, Swapan K; Datta, Karabi

    2013-12-01

    Rice sheath blight, caused by the necrotrophic fungus Rhizoctonia solani, is one of the most devastating and intractable diseases of rice, leading to a significant reduction in rice productivity worldwide. In this article, in order to examine sheath blight resistance, we report the generation of transgenic rice lines overexpressing the rice oxalate oxidase 4 (Osoxo4) gene in a green tissue-specific manner which breaks down oxalic acid (OA), the pathogenesis factor secreted by R. solani. Transgenic plants showed higher enzyme activity of oxalate oxidase (OxO) than nontransgenic control plants, which was visualized by histochemical assays and sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Transgenic rice leaves were more tolerant than control rice leaves to exogenous OA. Transgenic plants showed a higher level of expression of other defence-related genes in response to pathogen infection. More importantly, transgenic plants exhibited significantly enhanced durable resistance to R. solani. The overexpression of Osoxo4 in rice did not show any detrimental phenotypic or agronomic effect. Our findings indicate that rice OxO can be utilized effectively in plant genetic manipulation for sheath blight resistance, and possibly for resistance to other diseases caused by necrotrophic fungi, especially those that secrete OA. This is the first report of the expression of defence genes in rice in a green tissue-specific manner for sheath blight resistance.

  13. Co-expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight Rhizoctonia solani and blast Magnorpathe oryzae and reveals impact on seed germination.

    PubMed

    Mao, Bizeng; Liu, Xuehui; Hu, Dongwei; Li, Debao

    2014-04-01

    Rice sheath blight and blast caused by Rhizoctonia solani Kühn and Magnorpathe oryzae respectively, are the two most destructive fungal diseases in rice. With no genetic natural traits conferring resistance to sheath blight, transgenic manipulation provides an obvious approach. In this study, the rice basic chitinase gene (RCH10) and the alfalfa β-1,3-glucanase gene (AGLU1) were tandemly inserted into transformation vector pBI101 under the control of 35S promoter with its enhancer sequence to generate a double-defense gene expression cassette pZ100. The pZ100 cassette was transformed into rice (cv. Taipei 309) by Agrobacterium-mediated transformation. More than 160 independent transformants were obtained and confirmed by PCR. Northern analysis of inheritable progenies revealed similar levels of both RCH10 and AGLU1 transcripts in the same individuals. Disease resistance to both sheath blight and blast was challenged in open field inoculation. Immunogold detection revealed that RCH10 and AGLU1 proteins were initially located mainly in the chloroplasts and were delivered to the vacuole and cell wall upon infection, suggesting that these subcellular compartments act as the gathering and execution site for these anti-fungal proteins. We also observed that transgenic seeds display lower germination rate and seedling vigor, indicating that defense enhancement might be achieved at the expense of development.

  14. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani.

    PubMed

    Kang, Y; Carlson, R; Tharpe, W; Schell, M A

    1998-10-01

    Genetic manipulation of fluorescent pseudomonads has provided major insight into their production of antifungal molecules and their role in biological control of plant disease. Burkholderia cepacia also produces antifungal activities, but its biological control activity is much less well characterized, in part due to difficulties in applying genetic tools. Here we report genetic and biochemical characterization of a soil isolate of B. cepacia relating to its production of an unusual antibiotic that is very active against a variety of soil fungi. Purification and preliminary structural analyses suggest that this antibiotic (called AFC-BC11) is a novel lipopeptide associated largely with the cell membrane. Analysis of conditions for optimal production of AFC-BC11 indicated stringent environmental regulation of its synthesis. Furthermore, we show that production of AFC-BC11 is largely responsible for the ability of B. cepacia BC11 to effectively control the damping-off of cotton caused by the fungal pathogen Rhizoctonia solani in a gnotobiotic system. Using Tn5 mutagenesis, we identified, cloned, and characterized a region of the genome of strain BC11 that is required for production of this antifungal metabolite. DNA sequence analysis suggested that this region encodes proteins directly involved in the production of a nonribosomally synthesized lipopeptide.

  15. Identification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approach.

    PubMed

    Scherm, Barbara; Schmoll, Monika; Balmas, Virgilio; Kubicek, Christian P; Migheli, Quirico

    2009-02-01

    A rapid subtraction hybridization approach was used to isolate genes differentially expressed during mycelial contact between Trichoderma harzianum (Hypocrea lixii) and Rhizoctonia solani, and could serve as marker genes for selection of superior biocontrol strains. Putatively positive clones were evaluated by transcription analysis during mycelial contact with R. solani versus growth on glucose, and for their differential transcription between two strains with either strong or poor biocontrol capability before, at, and after contact with R. solani. Besides four clones, which had similarity to putative but as yet uncharacterized proteins, they comprised ribosomal proteins, proteins involved in transcriptional switch and regulation, amino acid and energy catabolism, multidrug resistance, and degradation of proteins and glucans. Transcription of three clones was evaluated in five T. harzianum strains under confrontation conditions with R. solani. Two clones-acetyl-xylane esterase AXE1 and endoglucanase Cel61b-showed significant upregulation during in vivo confrontation of a T. harzianum strain that successively demonstrated a very high antagonistic capability towards R. solani, while expression was progressively lower in a series of T. harzianum strains with intermediate to poor antagonistic activity. These clones are promising candidates for use as markers in the screening of improved T. harzianum biocontrol strains.

  16. Chitinase gene transformation through Agrobacteriumand its explanation in soybean in order to induce resistance to root rot caused by Rhizoctonia solani.

    PubMed

    Salehi, A; Mohammadi, M; Okhovvat, S M; Omidi, M

    2005-01-01

    Chitinase gene (chi) of bean which has been cloned in recombinant binary plasmid vector, pBI121 with 35s promoter of Cauliflower mosaic virus (CaMV), were used for transformation of soybean using strain LBA4404 of Agrobacterium. The plasmid contained nptII gene that is a resistant gene to kanomycin as selector marker and Gus gene as reporter. Cotyledon explants of Williams and Clark cultivars were inoculated by Agrobacterium suspension with pBI121 and were cultured in regeneration medium. After complete regeneration of explants to seedling in B5 medium amended with kanomycin, polymerase chain reaction analysis were conducted to ensure conjugation of nptII, Gus, CHN genes in transformants seedling of soybean. Results showed that some lines of soybean contained Gus and CHN genes. More ever, chitinase activity in leaf extract of transformed soybean lines was significantly more than untransformed soybean, exception one sample. Bioassay of chitinase activity of transgenic lines on in vitro condition prevented mycelial growth of Rhizoctonia solani in comparison with untransformed control leaf extract.

  17. High-resolution mapping of Rsn1, a locus controlling sensitivity of rice to a necrosis-inducing phytotoxin from Rhizoctonia solani AG1-IA.

    PubMed

    Costanzo, Stefano; Jackson, Aaron K; Brooks, Steven A

    2011-06-01

    Rhizoctonia solani is a necrotrophic fungal pathogen that causes disease on many crop-plant species. Anastomosis group 1-IA is the causal agent of sheath blight of rice (Oryza sativa L.), one of the most important rice diseases worldwide. R. solani AG1-IA produces a necrosis-inducing phytotoxin and rice cultivar's sensitivity to the toxin correlates with disease susceptibility. Unlike genetic analyses of sheath blight resistance where resistance loci have been reported as quantitative trait loci, phytotoxin sensitivity is inherited as a Mendelian trait that permits high-resolution mapping of the sensitivity genes. An F(2) mapping population derived from parent cultivars 'Cypress' (toxin sensitive) and 'Jasmine 85' (toxin insensitive) was used to map Rsn1, the necrosis-inducing locus. Initial mapping based on 176 F(2) progeny and 69 simple sequence repeat (SSR) markers located Rsn1 on the long arm of chromosome 7, with tight linkage to SSR marker RM418. A high-resolution genetic map of the region was subsequently developed using a total of 1,043 F(2) progeny, and Rsn1 was mapped to a 0.7 cM interval flanked by markers NM590 and RM418. Analysis of the corresponding 29 Kb genomic sequences from reference cultivars 'Nipponbare' and '93-11' revealed the presence of four putative genes within the interval. Two are expressed cytokinin-O-glucosyltransferases, which fit an apoptotic pathway model of toxin activity, and are individually being investigated further as potential candidates for Rsn1.

  18. The Urochloa Foliar Blight and Collar Rot Pathogen Rhizoctonia solani AG-1 IA Emerged in South America Via a Host Shift from Rice.

    PubMed

    Chavarro Mesa, Edisson; Ceresini, Paulo C; Ramos Molina, Lina M; Pereira, Danilo A S; Schurt, Daniel A; Vieira, José R; Poloni, Nadia M; McDonald, Bruce A

    2015-11-01

    The fungus Rhizoctonia solani anastomosis group (AG)-1 IA emerged in the early 1990s as an important pathogen causing foliar blight and collar rot on pastures of the genus Urochloa (signalgrass) in South America. We tested the hypothesis that this pathogen emerged following a host shift or jump as a result of geographical overlapping of host species. The genetic structure of host and regional populations of R. solani AG-1 IA infecting signalgrass, rice, and soybean in Colombia and Brazil was analyzed using nine microsatellite loci in 350 isolates to measure population differentiation and infer the pathogen reproductive system. Phylogeographical analyses based on the microsatellite loci and on three DNA sequence loci were used to infer historical migration patterns and test hypotheses about the origin of the current pathogen populations. Cross pathogenicity assays were conducted to measure the degree of host specialization in populations sampled from different hosts. The combined analyses indicate that the pathogen populations currently infecting Urochloa in Colombia and Brazil most likely originated from a population that originally infected rice. R. solani AG-1 IA populations infecting Urochloa exhibit a mixed reproductive system including both sexual reproduction and long-distance dispersal of adapted clones, most likely on infected seed. The pathogen population on Urochloa has a genetic structure consistent with a high evolutionary potential and showed evidence for host specialization.

  19. Molecular characterization of the pathogenic plant fungus Rhizoctonia solani (Ceratobasidiaceae) isolated from Egypt based on protein and PCR-RAPD profiles.

    PubMed

    Mahmoud, M A; Al-Sohaibani, S A; Abdelbacki, A M M; Al-Othman, M R; Abd El-Aziz, A R M; Kasem, K K; Mikhail, M S; Sabet, K K; Omar, M R; Hussein, E M

    2012-10-04

    Twenty-one isolates of Rhizoctonia solani were categorized into three anastomosis groups consisting of AG-4-HG-I (eight isolates), AG-2-2 (nine isolates) and AG-5 (four isolates). Their pathogenic capacities were tested on cotton cultivar Giza 86. Pre-emergence damping-off varied in response to the different isolates; however, the differences were not significant. Soluble proteins of the fungal isolates were electrophoresed using SDS-PAGE and gel electrophoreses. A dendrogram of the protein banding patterns by the UPGMA of arithmetic means placed the fungal isolates into distinct groups. There was no evidence of a relationship between protein dendrogram, anastomosis grouping or level of virulence or geographic origin. The dendrogram generated from these isolates based on PCR analysis with five RAPD-PCR primers showed high levels of genetic similarity among the isolates from the same geographical locations. There was partially relationship between the genetic similarity and AGs or level of virulence or geographic origin based on RAPD dendrogram. These results demonstrate that RAPD technique is a useful tool in determining the genetic characterization among isolates of R. solani.

  20. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani.

    PubMed

    Helliwell, Emily E; Wang, Qin; Yang, Yinong

    2013-01-01

    Rice blast (Magnaporthe oryzae) and sheath blight (Rhizoctonia solani) are the two most devastating diseases of rice (Oryza sativa), and have severe impacts on crop yield and grain quality. Recent evidence suggests that ethylene (ET) may play a more prominent role than salicylic acid and jasmonic acid in mediating rice disease resistance. In this study, we attempt to genetically manipulate endogenous ET levels in rice for enhancing resistance to rice blast and sheath blight diseases. Transgenic lines with inducible production of ET were generated by expressing the rice ACS2 (1-aminocyclopropane-1-carboxylic acid synthase, a key enzyme of ET biosynthesis) transgene under control of a strong pathogen-inducible promoter. In comparison with the wild-type plant, the OsACS2-overexpression lines showed significantly increased levels of the OsACS2 transcripts, endogenous ET and defence gene expression, especially in response to pathogen infection. More importantly, the transgenic lines exhibited increased resistance to a field isolate of R. solani, as well as different races of M. oryzae. Assessment of the growth rate, generational time and seed production revealed little or no differences between wild type and transgenic lines. These results suggest that pathogen-inducible production of ET in transgenic rice can enhance resistance to necrotrophic and hemibiotrophic fungal pathogens without negatively impacting crop productivity.

  1. Complete nucleotide sequence of the linear DNA plasmid pRS224 with hairpin loops from Rhizoctonia solani and its unique transcriptional form.

    PubMed

    Katsura, K; Sasaki, A; Nagasaka, A; Fuji, M; Miyake, Y; Hashiba, T

    2001-10-01

    The complete nucleotide sequence of the linear DNA plasmid (pRS224-1) from the plant-pathogenic fungus Rhizoctonia solani isolate H-16 was determined; and its unique RNA transcripts were characterized. The pRS224-1 DNA consists of 4,986 nucleotides. A computer-based study of the folding of pRS224-1 at both termini predicted hairpin-loop structures. The hairpin loops consisted of the left and right termini of 236 and 264 nucleotides, respectively, and share no sequence homology. Unique poly(A) RNAs, 4.7 kb and 7.4 kb in length and hybridizing with the pRS224 DNA, were found in mycelial cells of R. solani H-16. Transcript product-mapping allowed the prediction of the locations of different expression signals. The 7.4-kb transcript is generated from the left terminal region of the complementary strand, via the full-length sense-strand, to the right terminal region of the complementary strand. The 4.7-kb transcript is generated from the center region of the sense strand to the right terminal region of the complementary strand. One open reading frame (ORF) found in pRS224-1 is 887 amino acids long and has a potential coding capacity of 102 kDa. The ORF contains the highly conserved domains characteristic of reverse transcriptase sequences, including the highly conserved YXDD sequence.

  2. Isolation, Identification and Optimal Culture Conditions of Streptomyces albidoflavus C247 Producing Antifungal Agents against Rhizoctonia solani AG2-2

    PubMed Central

    Islam, Md. Rezuanul; Jeong, Yong Tae; Ryu, Yeon Ju; Song, Chi Hyun

    2009-01-01

    Streptomyces albidoflavus C247 was isolated from the soil of the Gyeongsan golf course in Korea. Physiological, biochemical and 16S rDNA gene sequence analysis strongly suggested that the isolate belonged to Streptomyces albidoflavus. Preliminary screening revealed that the isolate was active against fungi and bacteria. Self-directing optimization was employed to determine the best combination of parameters such as carbon and nitrogen source, pH and temperature. Nutritional and culture conditions for the production of antibiotics by this organism under shake-flask conditions were also optimized. Maltose (5%) and soytone (5%) were found to be the best carbon and nitrogen sources for the production of antibiotics by S. albidoflavus C247. Additionally, 62.89% mycelial growth inhibition was achieved when the organism was cultured at 30℃ and pH 6.5. Ethyl acetate (EtOAc) was the best extraction solvent for the isolation of the antibiotics, and 100 µg/ml of EtOAc extract was found to inhibit 60.27% of the mycelial growth of Rhizoctonia solani AG2-2(IV) when the poison plate diffusion method was conducted. PMID:23983519

  3. Compositional variability and antifungal potentials of ocimum basilicum, O. tenuiflorum, O. gratissimum and O. kilimandscharicum essential oils against Rhizoctonia solani and Choanephora cucurbitarum.

    PubMed

    Padalia, Rajendra C; Verma, Ram S; Chauhan, Amit; Goswami, Prakash; Chanotiya, Chandan S; Saroj, Arvind; Samad, Abdul; Khaliq, Abdul

    2014-10-01

    The composition of hydrodistilled essential oils of Ocimum basilicum L. (four chemovariants), O. tenuiflorum L., O. gratissimum L., and O. kilimandscharicum Guerke were analyzed and compared by using capillary gas chromatography (GC/FID) and GC-mass spectrometry (GC/MS). Phenyl propanoids (upto 87.0%) and monoterpenoids (upto 83.3%) were prevalent constituents distributed in the studied Ocimum taxa. The major constituents of the four distinct chemovariants of O. basilicum were methyl chavicol (86.3%), methyl chavicol (61.5%)/linalool (28.6%), citral (65.9%); and linalool (36.1%)/citral (28.8%). Eugenol (66.5% and 78.0%) was the major constituent of O. tenuiflorum and O. gratissimum. Eugenol (34.0%), β-bisabolene (15.4%), (E)-α-bisabolene (10.9%), methyl chavicol (10.2%) and 1,8-cineole (8.2%) were the major constituents of O. kilimandscharicum. In order to explore the potential for industrial use, the extracted essential oils were assessed for their antifungal potential through poison food technique against two phytopathogens, Rhizoctonia solani and Choanephora cucurbitarum, which cause root and wet rot diseases in various crops. O. tenuiflorum, O. gratissimum, and O. kilimandscharicum exhibited complete growth inhibition against R. solani and C. cucurbitarum after 24 and 48 h of treatment. O. basilicum chemotypes showed variable levels of growth inhibition (63.0%-100%) against these two phytopathogens.

  4. Two distinct classes of protein related to GTB and RRM are critical in the sclerotial metamorphosis process of Rhizoctonia solani AG-1 IA.

    PubMed

    Shu, Canwei; Chen, Jieling; Sun, Si; Zhang, Meiling; Wang, Chenjiaozi; Zhou, Erxun

    2015-07-01

    Sheath blight of rice, caused by Rhizoctonia solani Kühn AG-1 IA [teleomorph: Thanatephorus cucumeris (Frank) Donk], is one of the major diseases of rice (Oryza sativa L.) worldwide. Sclerotia produced by R. solani AG-1 IA are crucial for their survival in adverse environments and further dissemination when environmental conditions become conducive. Differentially expressed genes during three stages of sclerotial metamorphosis of R. solani AG-1 IA were investigated by utilizing complementary DNA amplified fragment length polymorphism (cDNA-AFLP) technique. A total of 258 transcript derived fragments (TDFs) were obtained and sequenced, among which 253 TDFs were annotated with known functions through BLASTX by searching the GenBank database and 19 annotated TDFs were assigned into 19 secondary metabolic pathways through searching the Kyoto Encyclopedia of Genes and Genomes (KEGG) PATHWAY database. Moreover, the results of quantitative real-time PCR (qRT-PCR) analysis showed that the expression patterns of eight representative annotated TDFs were positively correlated with sclerotial metamorphosis. Sequence annotation of TDFs showed homology similarities to several genes encoding for proteins belonging to the glycosyltransferases B (GTB) and RNA recognition motif (RRM) superfamily and to other development-related proteins. Taken together, it is concluded that the members of the GTB and RRM superfamilies and several new genes involved in proteolytic process identified in this study might serve as the scavengers of free radicals and reactive oxygen species (ROS) and thus play an important role in the sclerotial metamorphosis process of R. solani AG-1 IA.

  5. Analysis of Phaseolus vulgaris Response to Its Association with Trichoderma harzianum (ALL-42) in the Presence or Absence of the Phytopathogenic Fungi Rhizoctonia solani and Fusarium solani

    PubMed Central

    Pereira, Jackeline L.; Queiroz, Rayner M. L.; Charneau, Sébastien O.; Felix, Carlos R.; Ricart, Carlos A. O.; da Silva, Francilene Lopes; Steindorff, Andrei Stecca; Ulhoa, Cirano J.; Noronha, Eliane F.

    2014-01-01

    The present study was carried out to evaluate the ability of Trichoderma harzianum (ALL 42-isolated from Brazilian Cerrado soil) to promote common bean growth and to modulate its metabolism and defense response in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani using a proteomic approach. T. harzianum was able to promote common bean plants growth as shown by the increase in root/foliar areas and by size in comparison to plants grown in its absence. The interaction was shown to modulate the expression of defense-related genes (Glu1, pod3 and lox1) in roots of P. vulgaris. Proteomic maps constructed using roots and leaves of plants challenged or unchallenged by T. harzianum and phytopathogenic fungi showed differences. Reference gels presented differences in spot distribution (absence/presence) and relative volumes of common spots (up or down-regulation). Differential spots were identified by peptide fingerprinting MALDI-TOF mass spectrometry. A total of 48 identified spots (19 for leaves and 29 for roots) were grouped into protein functional classes. For leaves, 33%, 22% and 11% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. For roots, 17.2%, 24.1% and 10.3% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. PMID:24878929

  6. Analysis of Phaseolus vulgaris response to its association with Trichoderma harzianum (ALL-42) in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani.

    PubMed

    Pereira, Jackeline L; Queiroz, Rayner M L; Charneau, Sébastien O; Felix, Carlos R; Ricart, Carlos A O; da Silva, Francilene Lopes; Steindorff, Andrei Stecca; Ulhoa, Cirano J; Noronha, Eliane F

    2014-01-01

    The present study was carried out to evaluate the ability of Trichoderma harzianum (ALL 42-isolated from Brazilian Cerrado soil) to promote common bean growth and to modulate its metabolism and defense response in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani using a proteomic approach. T. harzianum was able to promote common bean plants growth as shown by the increase in root/foliar areas and by size in comparison to plants grown in its absence. The interaction was shown to modulate the expression of defense-related genes (Glu1, pod3 and lox1) in roots of P. vulgaris. Proteomic maps constructed using roots and leaves of plants challenged or unchallenged by T. harzianum and phytopathogenic fungi showed differences. Reference gels presented differences in spot distribution (absence/presence) and relative volumes of common spots (up or down-regulation). Differential spots were identified by peptide fingerprinting MALDI-TOF mass spectrometry. A total of 48 identified spots (19 for leaves and 29 for roots) were grouped into protein functional classes. For leaves, 33%, 22% and 11% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. For roots, 17.2%, 24.1% and 10.3% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively.

  7. Distinctively variable sequence-based nuclear DNA markers for multilocus phylogeography of the soybean- and rice-infecting fungal pathogen Rhizoctonia solani AG-1 IA

    PubMed Central

    2009-01-01

    A series of multilocus sequence-based nuclear DNA markers was developed to infer the phylogeographical history of the Basidiomycetous fungal pathogen Rhizoctonia solani AG-1 IA infecting rice and soybean worldwide. The strategy was based on sequencing of cloned genomic DNA fragments (previously used as RFLP probes) and subsequent screening of fungal isolates to detect single nucleotide polymorphisms (SNPs). Ten primer pairs were designed based on these sequences, which resulted in PCR amplification of 200-320 bp size products and polymorphic sequences in all markers analyzed. By direct sequencing we identified both homokaryon and heterokaryon (i.e. dikaryon) isolates at each marker. Cloning the PCR products effectively estimated the allelic phase from heterokaryotic isolates. Information content varied among markers from 0.5 to 5.9 mutations per 100 bp. Thus, the former RFLP codominant probes were successfully converted into six distinctively variable sequence-based nuclear DNA markers. Rather than discarding low polymorphism loci, the combination of these distinctively variable anonymous nuclear markers would constitute an asset for the unbiased estimate of the phylogeographical parameters such as population sizes and divergent times, providing a more reliable species history that shaped the current population structure of R. solani AG-1 IA. PMID:21637462

  8. The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes

    PubMed Central

    Shan, Tianlei; Rong, Wei; Xu, Huijun; Du, Lipu; Liu, Xin; Zhang, Zengyan

    2016-01-01

    The necrotrophic fungus Rhizoctonia cerealis is a major pathogen of sharp eyespot that is a devastating disease of wheat (Triticum aestivum). Little is known about roles of MYB genes in wheat defense response to R. cerealis. In this study, TaRIM1, a R. cerealis-induced wheat MYB gene, was identified by transcriptome analysis, then cloned from resistant wheat CI12633, and its function and preliminary mechanism were studied. Sequence analysis showed that TaRIM1 encodes a R2R3-MYB transcription factor with transcription-activation activity. The molecular-biological assays revealed that the TaRIM1 protein localizes to nuclear and can bind to five MYB-binding site cis-elements. Functional dissection results showed that following R. cerealis inoculation, TaRIM1 silencing impaired the resistance of wheat CI12633, whereas TaRIM1 overexpression significantly increased resistance of transgenic wheat compared with susceptible recipient. TaRIM1 positively regulated the expression of five defense genes (Defensin, PR10, PR17c, nsLTP1, and chitinase1) possibly through binding to MYB-binding sites in their promoters. These results suggest that the R2R3-MYB transcription factor TaRIM1 positively regulates resistance response to R. cerealis infection through modulating the expression of a range of defense genes, and that TaRIM1 is a candidate gene to improve sharp eyespot resistance in wheat. PMID:27364458

  9. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani.

    PubMed

    Kobori, Nilce N; Mascarin, Gabriel M; Jackson, Mark A; Schisler, David A

    2015-04-01

    Media and culturing protocols were identified that supported the formation of submerged conidia and microsclerotia (MS) by Trichoderma harzianum Rifai strain T-22 using liquid culture fermentation. Liquid media with a higher carbon concentration (36 g L(-1)) promoted MS formation at all C:N ratios tested. Hyphae aggregated to form MS after 2 d growth and after 7 d MS were fully melanized. This is the first report of MS formation by T. harzianum or any species of Trichoderma. Furthermore, submerged conidia formation was induced by liquid culture media, but yields, desiccation tolerance, and storage stability varied with C:N ratio and carbon rate. Air-dried MS granules (<4% moisture) retained excellent shelf life under cool and unrefrigerated storage conditions with no loss in conidial production. A low-cost complex nitrogen source based on cottonseed flour effectively supported high MS yields. Amending potting mix with dried MS formulations reduced or eliminated damping-off of melon seedlings caused by Rhizoctonia solani. Together, the results provide insights into the liquid culture production, stabilization process, and bioefficacy of the hitherto unreported MS of T. harzianum as a potential biofungicide for use in integrated management programs against soilborne diseases.

  10. Pelargonium graveolens L'Her. and Artemisia arborescens L. essential oils: chemical composition, antifungal activity against Rhizoctonia solani and insecticidal activity against Rhysopertha dominica.

    PubMed

    Bouzenna, Hafsia; Krichen, Lamia

    2013-01-01

    The chemical composition of the Pelargonium graveolens essential oil allowed the identification of 15 compounds (93.86% of the total essential oil). The major fractions were citronellol (35%) and geraniol (28.8%). The chemical composition of the Artemisia arborescens essential oil revealed twenty-one compounds representing 93.57% of the total essential oil. The main compounds were chamazulene (31.9%) and camphor (25.8%). The insecticidal effects were tested towards the insect Rhysopertha dominica. Results revealed that these two essential oils were highly effective against R. dominica at the dose of 50 µL on Petri dish of 8.5 cm of diameter. The antifungal activity was evaluated against Rhizoctonia solani and results showed that both of the essential oils were highly active at a dose of 12.5 µL/20 mL of PDA. Moreover, the inhibitory effect of P. graveolens essential oil was evidenced as stronger than that of the A. arborescens oil for all the tested doses. PMID:22840199

  11. Distribution and efficacy of drip-applied metam-sodium against the survival of Rhizoctonia solani and yellow nutsedge in plastic-mulched sandy soil beds.

    PubMed

    Candole, Byron L; Csinos, Alexander S; Wang, Dong

    2007-05-01

    The effects of metam-sodium application rate on soil residence time, spatial and temporal distributions of methyl isothiocyanate and pest control efficacy were studied in a Georgia sandy soil. Metam-sodium 420 g L(-1) SL was drip applied at rates of 147 and 295 L ha(-1) in plastic-mulched raised beds. Methyl isothiocyanate concentrations in soil air space were monitored from four preselected sites: 10 and 20 cm below the emitter, and 20 and 30 cm laterally away from the emitter at 3, 12, 24, 48, 72, 120 and 240 h after chemigation. A higher rate of metam-sodium application resulted in higher methyl isothiocyanate concentrations in the soil. Highest methyl isothiocyanate concentrations were found at 20 cm below the emitter, and lowest at 30 cm laterally away from the emitter. Methyl isothiocyanate concentrations decreased with time and distance from the emitter. Lower methyl isothiocyanate concentration x time product values at 20 and 30 cm away from the emitter resulted in lower mortalities of Rhizoctonia solani Kühn and yellow nutsedge (Cyperus esculentus L.). The results demonstrated that methyl isothiocyanate can be delivered at lethal doses with drip-applied water downward within the beds. Lateral diffusion of methyl isothiocyanate from the point of application did not reach biologically active concentrations to affect the survival of R. solani or yellow nutsedge. Further studies on the lateral distribution of methyl isothiocyanate in sandy soils are needed to circumvent this limitation. PMID:17397113

  12. Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara.

    PubMed

    Goudjal, Yacine; Toumatia, Omrane; Yekkour, Amine; Sabaou, Nasserdine; Mathieu, Florence; Zitouni, Abdelghani

    2014-01-20

    Thirty-four endophytic actinomycetes were isolated from the roots of native plants of the Algerian Sahara. Morphological and chemical studies showed that twenty-nine isolates belonged to the Streptomyces genus and five were non-Streptomyces. All isolates were screened for their in vitro antifungal activity against Rhizoctonia solani. The six that had the greatest pathogen inhibitory capacities were subsequently tested for their in vivo biocontrol potential on R. solani damping-off in sterilized and non-sterilized soils, and for their plant-growth promoting activities on tomato seedlings. In both soils, coating tomato seeds with antagonistic isolates significantly reduced (P<0.05) the severity of damping-off of tomato seedlings. Among the isolates tested, the strains CA-2 and AA-2 exhibited the same disease incidence reduction as thioperoxydicarbonic diamide, tetramethylthiram (TMTD) and no significant differences (P<0.05) were observed. Furthermore, they resulted in a significant increase in the seedling fresh weight, the seedling length and the root length of the seed-treated seedlings compared to the control. The taxonomic position based on 16S rDNA sequence analysis and phylogenetic studies indicated that the strains CA-2 and AA-2 were related to Streptomyces mutabilis NBRC 12800(T) (100% of similarity) and Streptomyces cyaneofuscatus JCM 4364(T) (100% of similarity), respectively.

  13. Identification of anastomosis group of Rhizoctonia solani, the causal agent of seed rot and damping-off of bean in Iran.

    PubMed

    Bohlooli, A; Okhowat, S M; Javan-Nikkhah, M

    2005-01-01

    Bean is one of the major crops in Iran. Seed rot and damping-off caused by Rhizoctonia solani is the most important disease of bean. In this research, infected roots and seedlings of beans were collected from different fields of Tehran Province. The samples were sterilized with 10% sodium hypochloride (5% stock) and incubated on PDA surface in petri-dishes. The purified fungi kept on filter paper and identified, pathogenicity test of R. solani was carried out on 2 cultivars of bean (red bean cv. Naz and white bean cv. Dehghan) and it determined. For identification of the anastomosis groups, the discs of cultured media with 5 mm. diameter of standard AG placed on one side of microscopic slides covered with water agar (2%) of 1 mm. thick and the isolates of the fungus on another side of slide about 2 cm away from each other. Experiment carried out in 4 replications. The cultures were incubated in 25 +/- 1 degrees C incubator for 24 hours, then the mycelial contact stained with lactophenol, cotton blue and hyphal anastomosis looked for under the light microscope with 10 x 40 and 10 x 100 magnifications. As a result, anastomosis groups: AG4, AG4HGII, AG2-2-2B and AG6 determined, frequency of these groups were 64, 18, 2, 16%, respectively. The group AG6 and subgroups AG4HGII and AG2-2-2B are introduced as new anastomosis groups on bean in Iran.

  14. Effect of Sugar Beet Variety and Nonhost Plant on Rhizoctonia solani AG2-2IIIB Soil Inoculum Potential Measured in Soil DNA Extracts.

    PubMed

    Schulze, Sascha; Koch, Heinz-Josef; Märländer, Bernward; Varrelmann, Mark

    2016-09-01

    A direct soil DNA extraction method from soil samples (250 g) was applied for detection of the soilborne sugar-beet-infecting pathogen Rhizoctonia solani anastomosis group (AG) 2-2IIIB using a newly developed real-time polymerase chain reaction assay that showed specificity to AG2-2IIIB when tested against various R. solani AG. The assay showed a good relation between cycle threshold and amount of AG2-2IIIB sclerotia detected in three spiked field soils and was also able to detect the pathogen in naturally infested field soil samples. A field trial was conducted to quantify R. solani AG2-2IIIB soil inoculum potential (IP) before and after growing a susceptible and a resistant sugar beet variety as well as after subsequent growth of an expected nonhost winter rye. Plants of the susceptible sugar beet variety displayed a higher disease severity. A more than sixfold increase of the R. solani AG2-2IIIB soil IP was observed in contrast to the resistant variety that resulted in a constant IP. Growing winter rye significantly reduced soil IP to the initial level at sowing. Further research is required to better understand the interaction between disease occurrence and soil IP as well as the environmental influence on IP development.

  15. A simple method based on laboratory inoculum and field inoculum for evaluating potato resistance to black scurf caused by Rhizoctonia solani.

    PubMed

    Zhang, Xiao-Yu; Yu, Xiao-Xia; Yu, Zhuo; Xue, Yu-Feng; Qi, Li-Peng

    2014-06-01

    A two-step method was developed to evaluate potato resistance to black scurf caused by Rhizoctonia solani. Tuber piece inoculum was first conducted in the laboratory, which was also first reported in this study. After inoculation with pathogen discs and culture for 48 h, the necrotic spots on the inoculated potato pieces were generated and measured by the crossing method. Further evaluation was conducted through field experiments using a wheat bran inoculum method. The wheat bran inoculum was placed into the pit dispersedly and surrounded seed tubers. Each cultivar or line was subjected to five treatments of 0-, 2-, 3-, 4-, and 5-g soil inoculum. The results showed that 2-4 g of wheat bran inoculum was the optimum for identifying tuber black scurf resistance. The laboratory scores positively correlated with the incidence and severity of black scurf in the field. According to the results in the laboratory, relatively resistant cultivars could be selected for further estimation of tuber black scurf resistance in field experiments. It is a practical and effective screening method for rapid identification of resistant potato germplasm, which can reduce workload in the field, shorten time required for identification.

  16. Identification of phenazine-1-carboxylic acid gene (phc CD) from Bacillus pumilus MTCC7615 and its role in antagonism against Rhizoctonia solani.

    PubMed

    Padaria, Jasdeep Chatrath; Tarafdar, Avijit; Raipuria, Rajkumar; Lone, Showkat Ahmad; Gahlot, Pallavi; Shakil, Najam A; Kumar, Jitendra

    2016-09-01

    Bacillus pumilus MTCC7615, a biocontrol agent isolated from rice rhizosphere was characterized to be antagonistic to Rhizoctonia solani, the pathogen causing sheath blight disease of rice. The phenazine-1-carboxylic acid gene (phc CD) of this bacterium was PCR amplified (1400 bp), cloned, and sequenced. The sequence analysis revealed the presence of two ORFs of phc CD gene commonly found in Pseudomonas species. The sequence showed 98% similarity to phc CD gene of the Pseudomonas isolate LBUM223 (DQ788993). The crude antibiotic extract from B. pumilus MTCC7615 was observed to inhibit mycelial growth of R. solani under in vitro conditions. The HPLC analysis of crude antibiotic extract from B. pumilus MTCC7615 confirmed the presence of phenazine. The study has also reported the presence of phc CD gene which is responsible for the synthesis of phenazine-1-carboxylic acid in B. pumilus. The ability of the bacterial isolate to control sheath blight disease in rice seedlings under in vivo conditions was confirmed by the pot culture experiment. The structural and functional genomics of phc C and phc D genes would lead to a better understanding of phenazine biosynthesis in B. pumilus for its efficient utilization in plant protection strategies. PMID:27106067

  17. Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation.

    PubMed

    Kang, Sang-Mo; Radhakrishnan, Ramalingam; Lee, In-Jung

    2015-10-01

    The fungus Rhizoctonia solani is one of the causal agents of numerous diseases that affect crop growth and yield. The aim of this present investigation was to identify a biocontrol agent that acts against R. solani and to determine the agent's protective effect through phytohormones and antioxidant regulation in experimentally infected Chinese cabbage plants. Four rhizospheric soil bacterial isolates GR53, GR169, GR786, and GR320 were tested for their antagonistic activity against R. solani. Among these isolates, GR53 significantly suppressed fungal growth. GR53 was identified as Bacillus amyloliquefaciens subsp. plantarum by phylogenetic analysis of the 16S rDNA sequence. The biocontrol activity of B. amyloliquefaciens subsp. plantarum GR53 was tested in Chinese cabbage plants under controlled conditions. Results showed that R. solani inhibited plant growth (length, width, fresh and dry weight of leaves) by reducing chlorophyll and total phenolic content, as well as by increasing the levels of salicylic acid, jasmonic acid, abscisic acid, and DPPH scavenging activity. By regulating the levels of these compounds, the co-inoculation of B. amyloliquefaciens subsp. plantarum GR53 heightened induced systemic resistance in infected Chinese cabbage, effectively mitigating R. solani-induced damaging effects and improving plant growth. The results obtained from this study suggest that B. amyloliquefaciens subsp. plantarum GR53 is an effective biocontrol agent to prevent the damage caused by R. solani in Chinese cabbage plants. PMID:26160009

  18. Effect of Sugar Beet Variety and Nonhost Plant on Rhizoctonia solani AG2-2IIIB Soil Inoculum Potential Measured in Soil DNA Extracts.

    PubMed

    Schulze, Sascha; Koch, Heinz-Josef; Märländer, Bernward; Varrelmann, Mark

    2016-09-01

    A direct soil DNA extraction method from soil samples (250 g) was applied for detection of the soilborne sugar-beet-infecting pathogen Rhizoctonia solani anastomosis group (AG) 2-2IIIB using a newly developed real-time polymerase chain reaction assay that showed specificity to AG2-2IIIB when tested against various R. solani AG. The assay showed a good relation between cycle threshold and amount of AG2-2IIIB sclerotia detected in three spiked field soils and was also able to detect the pathogen in naturally infested field soil samples. A field trial was conducted to quantify R. solani AG2-2IIIB soil inoculum potential (IP) before and after growing a susceptible and a resistant sugar beet variety as well as after subsequent growth of an expected nonhost winter rye. Plants of the susceptible sugar beet variety displayed a higher disease severity. A more than sixfold increase of the R. solani AG2-2IIIB soil IP was observed in contrast to the resistant variety that resulted in a constant IP. Growing winter rye significantly reduced soil IP to the initial level at sowing. Further research is required to better understand the interaction between disease occurrence and soil IP as well as the environmental influence on IP development. PMID:27143412

  19. Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana

    PubMed Central

    Yan, Yan; Jia, Haihong; Wang, Fang; Wang, Chen; Liu, Shuchang; Guo, Xingqi

    2015-01-01

    WRKY proteins constitute transcriptional regulators involved in various biological processes, especially in coping with diverse biotic and abiotic stresses. However, in contrast to other well-characterized WRKY groups, the functions of group III WRKY transcription factors are poorly understood in the economically important crop cotton (Gossypium hirsutum). In this study, a group III WRKY gene from cotton, GhWRKY27a, was isolated and characterized. Our data indicated that GhWRKY27a localized to the nucleus and that GhWRKY27a expression could be strongly induced by abiotic stresses, pathogen infection, and multiple defense-related signaling molecules. Virus-induced gene silencing (VIGS) of GhWRKY27a enhanced tolerance to drought stress in cotton. In contrast, GhWRKY27a overexpression in Nicotiana benthamiana markedly reduced plant tolerance to drought stress, as determined through physiological analyses of leaf water loss, survival rates, and the stomatal aperture. This susceptibility was coupled with reduced stomatal closure in response to abscisic acid and decreased expression of stress-related genes. In addition, GhWRKY27a-overexpressing plants exhibited reduced resistance to Rhizoctonia solani infection, mainly demonstrated by the transgenic lines exhibiting more severe disease symptoms, accompanied by attenuated expression of defense-related genes in N. benthamiana. Taken together, these findings indicated that GhWRKY27a functions in negative responses to drought tolerance and in resistance to R. solani infection. PMID:26483697

  20. Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani.

    PubMed

    Khatami, Mehrdad; Nejad, Meysam Soltani; Salari, Samira; Almani, Pooya Ghasemi Nejad

    2016-08-01

    In recent years, biosynthesis and the utilisation of silver nanoparticles (AgNPs) has become an interesting subject. In this study, the authors investigated the biosynthesis of AgNPs using Trifolium resupinatum (Persian clover) seed exudates. The characterisation of AgNPs were analysed using ultraviolet-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infra-red spectroscopy. Also, antifungal efficacy of biogenic AgNPs against two important plant-pathogenic fungi (Rhizoctonia solani and Neofusicoccum Parvum) in vitro condition was evaluated. The XRD analysis showed that the AgNPs are crystalline in nature and have face-centred cubic geometry. TEM images revealed the spherical shape of the AgNPs with an average size of 17 nm. The synthesised AgNPs were formed at room temperature and kept stable for 4 months. The maximum distributions of the synthesised AgNPs were seen to range in size from 5 to 10 nm. The highest inhibition effect was observed against R. solani at 40 ppm concentration of AgNPs (94.1%) followed by N. parvum (84%). The results showed that the antifungal activity of AgNPs was dependent on the amounts of AgNPs. In conclusion, the AgNPs obtained from T. resupinatum seed exudate exhibit good antifungal activity against the pathogenic fungi R. solani and N. Parvum. PMID:27463795

  1. Carbon Source-Dependent Effects of Anaerobic Soil Disinfestation on Soil Microbiome and Suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans.

    PubMed

    Hewavitharana, Shashika S; Mazzola, Mark

    2016-09-01

    The effect of carbon source on efficacy of anaerobic soil disinfestation (ASD) toward suppression of apple root infection by Rhizoctonia solani AG-5 and Pratylenchus penetrans was examined. Orchard grass (GR), rice bran (RB), ethanol (ET), composted steer manure (CM), and Brassica juncea seed meal (SM) were used as ASD carbon inputs, with plant assays conducted in natural and pasteurized orchard soils. Subsequent studies investigated the effect of GR application rate used in ASD on control of these pathogens. In general, apple root infection by R. solani AG-5 was significantly lower in ET, GR, RB, and SM ASD treatments compared with the control. Among different ASD treatments, apple seedling growth was significantly greater when GR or SM was used as the carbon input relative to all other ASD treatments. R. solani AG-5 DNA abundance was significantly reduced in all ASD treatments, regardless of amendment type, compared with the control. In independent experiments, ASD-GR was consistently superior to ASD-CM for limiting pathogen activity in soils. ASD treatment with a grass input rate of 20 t ha(-1) provided superior suppression of P. penetrans but grass application rate did not affect ASD efficacy in control of R. solani AG-5. The soil microbiome from ASD-GR-treated soils was clearly distinct from the control and ASD-CM-treated soils. In contrast, composition of the microbiome from control and ASD-CM-treated soils could not be differentiated. Comparative results from pasteurized and nonpasteurized soils suggest that there is potential for GR based ASD treatment to recruit microbial elements that persist over the anaerobic phase of soil incubation, which may functionally contribute to disease suppression. When ASD was conducted with GR, microbial diversity was markedly reduced relative to the control or ASD-CM soil suggesting that this parameter, typically associated with system resilience, was not instrumental to the function of ASD-induced soil suppressiveness.

  2. Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum – Rhizoctonia solani Interaction

    PubMed Central

    Mayo, Sara; Cominelli, Eleonora; Sparvoli, Francesca; González-López, Oscar; Rodríguez-González, Alvaro; Gutiérrez, Santiago; Casquero, Pedro A.

    2016-01-01

    Bean production is affected by a wide diversity of fungal pathogens, among them Rhizoctonia solani is one of the most important. A strategy to control bean infectious diseases, mainly those caused by fungi, is based on the use of biocontrol agents (BCAs) that can reduce the negative effects of plant pathogens and also can promote positive responses in the plant. Trichoderma is a fungal genus that is able to induce the expression of genes involved in plant defense response and also to promote plant growth, root development and nutrient uptake. In this article, a strategy that combines in silico analysis and real time PCR to detect additional bean defense-related genes, regulated by the presence of Trichoderma velutinum and/or R. solani has been applied. Based in this strategy, from the 48 bean genes initially analyzed, 14 were selected, and only WRKY33, CH5b and hGS showed an up-regulatory response in the presence of T. velutinum. The other genes were or not affected (OSM34) or down-regulated by the presence of this fungus. R. solani infection resulted in a down-regulation of most of the genes analyzed, except PR1, OSM34 and CNGC2 that were not affected, and the presence of both, T. velutinum and R. solani, up-regulates hGS and down-regulates all the other genes analyzed, except CH5b which was not significantly affected. As conclusion, the strategy described in the present work has been shown to be effective to detect genes involved in plant defense, which respond to the presence of a BCA or to a pathogen and also to the presence of both. The selected genes show significant homology with previously described plant defense genes and they are expressed in bean leaves of plants treated with T. velutinum and/or infected with R. solani. PMID:27540382

  3. Polymorphism of genes coding for nuclear 18S rRNA indicates genetic distinctiveness of anastomosis group 10 from other groups in the Rhizoctonia solani species complex.

    PubMed

    Liu, Z L; Domier, L L; Sinclair, J B

    1995-07-01

    DNA polymorphism in the 18S nuclear rRNA gene region was investigated by using 11 restriction endonucleases for 161 isolates of 25 intraspecific groups (ISGs) representing 11 reported anastomosis groups (AGs) of Rhizoctonia solani. A PCR-based restriction mapping method in which enzymatically amplified DNA fragments and subfragments were digested with one or two restriction enzymes was employed. Four types of DNA restriction maps of this region were constructed for these 25 ISGs. Map type I of the 18S rDNA region was represented by isolates of a majority of R. solani ISGs. Map types II and III, represented by ISG 2E and 9 isolates and 5C isolates, respectively, differed from map I by the absence of one (map type II) or two (map type III) restriction sites. Map type IV, represented by ISG 10A and B (or AG 10) isolates, showed significant restriction site variations, with five enzymes in this region compared with those of the remaining ISGs or AGs. Ten of the 25 restriction sites in the 18S rRNA gene region were informative and selected for analysis. Previously reported restriction maps of the 5.8S rRNA gene region, including the internal transcribed spacers, were aligned with each other, and 12 informative restriction sites were identified. These data were used alone and in combination to evaluate group relationships. Analyses derived from these data sets by maximum parsimony and likelihood methods showed that AG 10 isolates were distinct and distantly related to the majority isolates of the other AGs of this species complex.

  4. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.

    PubMed

    Mutuku, J Musembi; Nose, Akihiro

    2012-06-01

    Rhizoctonia solani Kuhn causes sheath blight disease in rice, and genetic resistance against it is the most desirable characteristic. Current improvement efforts are based on analysis of polygenic quantitative trait loci (QTLs), but interpretation is limited by the lack of information on the changes in metabolic pathways. Our previous studies linked activation of the glycolytic pathway to enhanced generation of lignin in the phenylpropanoid pathway. The current studies investigated the regulation of glycolysis by examining the time course of changes in enzymatic activities and metabolite contents. The results showed that the activities of all glycolytic enzymes as well as fructose-6-phosphate (F-6-P), fructose-1,6-bisphosphate (F-1,6-P(2)), dihydroxyacetone phosphate (DHAP), glyceraldehyde-3-phosphate (GAP), 3-phosphoglycerate (3-PG), phosphoenolpyruvate (PEP) and pyruvate contents increased. These results combined with our previous findings that the expression of phosphoglucomutase (PGM), triosephosphate isomerase (TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase and pyruvate kinase (PK) increased after infection suggested that the additional establishment of glycolysis in the cytosol compartment occurred after infection. Further evidence for this was our recent findings that the increase in expression of the 6-phosphofructokinase (PFK) plastid isozyme Os06g05860 was accompanied by an increase in expression of three cytosolic PFK isozymes, i.e. Os01g09570, Os01g53680 and Os04g39420, as well as pyrophosphate-dependent phosphofrucokinase (PFP) isozymes Os08g25720 (α-subunit) and Os06g13810 (β-subunit) in infected rice plants of the resistant line. The results also showed that the reactions catalysed by PFK/PFP, aldolase, GAPDH + phosphoglycerate kinase (PGK) and PK in leaf sheaths of R. solani-infected rice plants were non-equilibrium reactions in vivo. This study showed that PGM, phosphoglucose isomerase (PGI), TPI and phosphoglycerate mutase (PGmu

  5. Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum - Rhizoctonia solani Interaction.

    PubMed

    Mayo, Sara; Cominelli, Eleonora; Sparvoli, Francesca; González-López, Oscar; Rodríguez-González, Alvaro; Gutiérrez, Santiago; Casquero, Pedro A

    2016-01-01

    Bean production is affected by a wide diversity of fungal pathogens, among them Rhizoctonia solani is one of the most important. A strategy to control bean infectious diseases, mainly those caused by fungi, is based on the use of biocontrol agents (BCAs) that can reduce the negative effects of plant pathogens and also can promote positive responses in the plant. Trichoderma is a fungal genus that is able to induce the expression of genes involved in plant defense response and also to promote plant growth, root development and nutrient uptake. In this article, a strategy that combines in silico analysis and real time PCR to detect additional bean defense-related genes, regulated by the presence of Trichoderma velutinum and/or R. solani has been applied. Based in this strategy, from the 48 bean genes initially analyzed, 14 were selected, and only WRKY33, CH5b and hGS showed an up-regulatory response in the presence of T. velutinum. The other genes were or not affected (OSM34) or down-regulated by the presence of this fungus. R. solani infection resulted in a down-regulation of most of the genes analyzed, except PR1, OSM34 and CNGC2 that were not affected, and the presence of both, T. velutinum and R. solani, up-regulates hGS and down-regulates all the other genes analyzed, except CH5b which was not significantly affected. As conclusion, the strategy described in the present work has been shown to be effective to detect genes involved in plant defense, which respond to the presence of a BCA or to a pathogen and also to the presence of both. The selected genes show significant homology with previously described plant defense genes and they are expressed in bean leaves of plants treated with T. velutinum and/or infected with R. solani.

  6. Genes of the de novo and Salvage Biosynthesis Pathways of Vitamin B6 are Regulated under Oxidative Stress in the Plant Pathogen Rhizoctonia solani.

    PubMed

    Samsatly, Jamil; Chamoun, Rony; Gluck-Thaler, Emile; Jabaji, Suha

    2015-01-01

    Vitamin B6 is recognized as an important cofactor required for numerous metabolic enzymes, and has been shown to act as an antioxidant and play a role in stress responses. It can be synthesized through two different routes: salvage and de novo pathways. However, little is known about the possible function of the vitamin B6 pathways in the fungal plant pathogen Rhizoctonia solani. Using genome walking, the de novo biosynthetic pathway genes; RsolPDX1 and RsolPDX2 and the salvage biosynthetic pathway gene, RsolPLR were sequenced. The predicted amino acid sequences of the three genes had high degrees of similarity to other fungal PDX1, PDX2, and PLR proteins and are closely related to other R. solani anastomosis groups. We also examined their regulation when subjected to reactive oxygen species (ROS) stress inducers, the superoxide generator paraquat, or H2O2, and compared it to the well-known antioxidant genes, catalase and glutathione-S-transferase (GST). The genes were differentially regulated with transcript levels as high as 33 fold depending on the gene and type of stress reflecting differences in the type of damage induced by ROS. Exogenous addition of the vitamers PN or PLP in culture medium significantly induced the transcription of the vitamin B6 de novo encoding genes as early as 0.5 hour post treatment (HPT). On the other hand, transcription of RsolPLR was vitamer-specific; a down regulation upon supplementation of PN and upregulation with PLP. Our results suggest that accumulation of ROS in R. solani mycelia is linked to transcriptional regulation of the three genes and implicate the vitamin B6 biosynthesis machinery in R. solani, similar to catalases and GST, as an antioxidant stress protector against oxidative stress.

  7. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis

    PubMed Central

    Zhu, Xiuliang; Yang, Kun; Wei, Xuening; Zhang, Qiaofeng; Rong, Wei; Du, Lipu; Ye, Xingguo; Qi, Lin; Zhang, Zengyan

    2015-01-01

    Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes. PMID:26220083

  8. Suppression subtractive hybridization and comparative expression of a pore-forming toxin and glycosyl hydrolase genes in Rhizoctonia solani during potato sprout infection.

    PubMed

    Chamoun, Rony; Samsatly, Jamil; Pakala, Suman B; Cubeta, Marc A; Jabaji, Suha

    2015-06-01

    Rhizoctonia solani is a plant pathogenic fungus that causes black scurf on tubers and stem and stolon canker on underground parts of potato plant. Early in the season, the fungus attacks germinating sprouts underground before they emerge from the soil. Damage at this stage results in delayed emergence of weakened plants with poor and uneven stands. The mechanism underlying this phenomenon has been investigated in this study by coupling a cDNA-suppression subtractive hybridization (SSH) library to differential screening to identify transcripts of R. solani that are down-regulated during infection of potato sprouts. We report on the identification of 33 unique genes with functions related to carbohydrate binding, vitamin synthesis, pathogenicity, translation, ATP and nucleic acid binding and other categories. RACE-PCR was used to clone and characterize the first full-length cDNA clones, RSENDO1 and RSGLYC1 that encode for an eukaryotic delta-endotoxin CytB protein and an intracellular glycosyl hydrolase, respectively. Quantitative real-time PCR revealed the down-regulation of RSENDO1 during infection of potato sprouts and the up-regulation of RSGLYC1 when the fungus was grown on a cellulose-based nutrient medium. In contrast, additional experiments have highlighted the down-regulation of RSENDO1 when R. solani was co-cultured with the mycoparasite Stachybotrys elegans and the bacterial antagonist Bacillus subtilis B26. These results advance our understanding of R. solani-potato interaction in subterranean parts of the plant. Such approaches could be considered in building an efficient integrated potato disease management program. PMID:25472038

  9. Rhizoctonia Bataticola Lectin (RBL) Induces Caspase-8-Mediated Apoptosis in Human T-Cell Leukemia Cell Lines but Not in Normal CD3 and CD34 Positive Cells

    PubMed Central

    Pujari, Radha; Eligar, Sachin M.; Kumar, Natesh; Barkeer, Srikanth; Reddy, Vishwanath; Swamy, Bale M.; Inamdar, Shashikala R.; Shastry, Padma

    2013-01-01

    We have previously demonstrated immunostimulatory activity of a fungal lectin, Rhizoctonia bataticola lectin (RBL), towards normal human peripheral blood mononuclear cells. The present study aimed to explore the anticancer activities of RBL using human leukemic T-cell lines, Molt-4, Jurkat and HuT-78. RBL exhibited significant binding (>90%) to the cell membrane that was effectively inhibited by complex glycoproteins such as mucin (97% inhibition) and asialofetuin (94% inhibition) but not simple sugars such as N-acetyl-D-galactosamine, glucose and sucrose. RBL induced a dose and time dependent inhibition of proliferation and induced cytotoxicity in the cell lines. The percentage of apoptotic cells, as determined by hypodiploidy, was 33% and 42% in Molt-4 and Jurkat cells, respectively, compared to 3.11% and 2.92% in controls. This effect was associated with a concomitant decrease in the G0/G1 population. Though initiator caspase-8 and -9 were activated upon exposure to RBL, inhibition of caspase-8 but not caspase-9 rescued cells from RBL-induced apoptosis. Mechanistic studies revealed that RBL induced cleavage of Bid, loss of mitochondrial membrane potential and activation of caspase-3. The expression of the anti-apoptotic proteins Bcl-2 and Bcl-X was down regulated without altering the expression of pro-apoptotic proteins- Bad and Bax. In contrast to leukemic cells, RBL did not induce apoptosis in normal PBMC, isolated CD3+ve cells and undifferentiated CD34+ve hematopoietic stem and progenitor cells (HSPCs). The findings highlight the differential effects of RBL on transformed and normal hematopoietic cells and suggest that RBL may be explored for therapeutic applications in leukemia. PMID:24244478

  10. Genes of the de novo and Salvage Biosynthesis Pathways of Vitamin B6 are Regulated under Oxidative Stress in the Plant Pathogen Rhizoctonia solani

    PubMed Central

    Samsatly, Jamil; Chamoun, Rony; Gluck-Thaler, Emile; Jabaji, Suha

    2016-01-01

    Vitamin B6 is recognized as an important cofactor required for numerous metabolic enzymes, and has been shown to act as an antioxidant and play a role in stress responses. It can be synthesized through two different routes: salvage and de novo pathways. However, little is known about the possible function of the vitamin B6 pathways in the fungal plant pathogen Rhizoctonia solani. Using genome walking, the de novo biosynthetic pathway genes; RsolPDX1 and RsolPDX2 and the salvage biosynthetic pathway gene, RsolPLR were sequenced. The predicted amino acid sequences of the three genes had high degrees of similarity to other fungal PDX1, PDX2, and PLR proteins and are closely related to other R. solani anastomosis groups. We also examined their regulation when subjected to reactive oxygen species (ROS) stress inducers, the superoxide generator paraquat, or H2O2, and compared it to the well-known antioxidant genes, catalase and glutathione-S-transferase (GST). The genes were differentially regulated with transcript levels as high as 33 fold depending on the gene and type of stress reflecting differences in the type of damage induced by ROS. Exogenous addition of the vitamers PN or PLP in culture medium significantly induced the transcription of the vitamin B6 de novo encoding genes as early as 0.5 hour post treatment (HPT). On the other hand, transcription of RsolPLR was vitamer-specific; a down regulation upon supplementation of PN and upregulation with PLP. Our results suggest that accumulation of ROS in R. solani mycelia is linked to transcriptional regulation of the three genes and implicate the vitamin B6 biosynthesis machinery in R. solani, similar to catalases and GST, as an antioxidant stress protector against oxidative stress. PMID:26779127

  11. Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism.

    PubMed

    Huang, Xinqi; Chen, Lihua; Ran, Wei; Shen, Qirong; Yang, Xingming

    2011-08-01

    Damping-off disease is caused by Rhizoctonia solani and leads to serious loss in many crops. Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Optical micrographs, scanning electron micrographs, and the determination of hydrolytic enzymes were used to investigate the antagonism of Trichoderma harzianum SQR-T37 (SQR-T37) against R. solani. Experiments were performed in pots to assess the in vivo disease-control efficiency of SQR-T37 and bio-organic fertilizer. The results indicate that the mycoparasitism was the main mechanism accounting for the antagonistic activity of SQR-T37. In one experiment, the population of R. solani was decreased from 10(6) internal transcribed spacer (ITS) copies per gram soil to 10(4) ITS copies per gram soil by the presence of the antagonist. In this experiment, 45% of the control efficiency was obtained when 8 g of SQR-T37 hyphae per gram soil was applied. In a second experiment, as much as 81.82% of the control efficiency was obtained when bio-organic fertilizer (SQR-T37 fermented organic fertilizer, BIO) was applied compared to only 27.27% of the control efficiency when only 4 g of SQR-T37 hyphae per gram soil was applied. Twenty days after incubation, the population of T. harzianum was 4.12 × 10(7) ITS copies per gram soil in the BIO treatment, which was much higher than that in the previous treatment (8.77 × 10(5) ITS copies per gram soil), where only SQR-T37 was applied. The results indicated that SQR-T37 was a potent antagonist against R. solani in a mycoparasitic way that decreased the population of the pathogen. Applying BIO was more efficient than SQR-T37 application alone because it stabilized the population of the antagonist.

  12. Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum - Rhizoctonia solani Interaction.

    PubMed

    Mayo, Sara; Cominelli, Eleonora; Sparvoli, Francesca; González-López, Oscar; Rodríguez-González, Alvaro; Gutiérrez, Santiago; Casquero, Pedro A

    2016-01-01

    Bean production is affected by a wide diversity of fungal pathogens, among them Rhizoctonia solani is one of the most important. A strategy to control bean infectious diseases, mainly those caused by fungi, is based on the use of biocontrol agents (BCAs) that can reduce the negative effects of plant pathogens and also can promote positive responses in the plant. Trichoderma is a fungal genus that is able to induce the expression of genes involved in plant defense response and also to promote plant growth, root development and nutrient uptake. In this article, a strategy that combines in silico analysis and real time PCR to detect additional bean defense-related genes, regulated by the presence of Trichoderma velutinum and/or R. solani has been applied. Based in this strategy, from the 48 bean genes initially analyzed, 14 were selected, and only WRKY33, CH5b and hGS showed an up-regulatory response in the presence of T. velutinum. The other genes were or not affected (OSM34) or down-regulated by the presence of this fungus. R. solani infection resulted in a down-regulation of most of the genes analyzed, except PR1, OSM34 and CNGC2 that were not affected, and the presence of both, T. velutinum and R. solani, up-regulates hGS and down-regulates all the other genes analyzed, except CH5b which was not significantly affected. As conclusion, the strategy described in the present work has been shown to be effective to detect genes involved in plant defense, which respond to the presence of a BCA or to a pathogen and also to the presence of both. The selected genes show significant homology with previously described plant defense genes and they are expressed in bean leaves of plants treated with T. velutinum and/or infected with R. solani. PMID:27540382

  13. Carbon Source-Dependent Effects of Anaerobic Soil Disinfestation on Soil Microbiome and Suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans.

    PubMed

    Hewavitharana, Shashika S; Mazzola, Mark

    2016-09-01

    The effect of carbon source on efficacy of anaerobic soil disinfestation (ASD) toward suppression of apple root infection by Rhizoctonia solani AG-5 and Pratylenchus penetrans was examined. Orchard grass (GR), rice bran (RB), ethanol (ET), composted steer manure (CM), and Brassica juncea seed meal (SM) were used as ASD carbon inputs, with plant assays conducted in natural and pasteurized orchard soils. Subsequent studies investigated the effect of GR application rate used in ASD on control of these pathogens. In general, apple root infection by R. solani AG-5 was significantly lower in ET, GR, RB, and SM ASD treatments compared with the control. Among different ASD treatments, apple seedling growth was significantly greater when GR or SM was used as the carbon input relative to all other ASD treatments. R. solani AG-5 DNA abundance was significantly reduced in all ASD treatments, regardless of amendment type, compared with the control. In independent experiments, ASD-GR was consistently superior to ASD-CM for limiting pathogen activity in soils. ASD treatment with a grass input rate of 20 t ha(-1) provided superior suppression of P. penetrans but grass application rate did not affect ASD efficacy in control of R. solani AG-5. The soil microbiome from ASD-GR-treated soils was clearly distinct from the control and ASD-CM-treated soils. In contrast, composition of the microbiome from control and ASD-CM-treated soils could not be differentiated. Comparative results from pasteurized and nonpasteurized soils suggest that there is potential for GR based ASD treatment to recruit microbial elements that persist over the anaerobic phase of soil incubation, which may functionally contribute to disease suppression. When ASD was conducted with GR, microbial diversity was markedly reduced relative to the control or ASD-CM soil suggesting that this parameter, typically associated with system resilience, was not instrumental to the function of ASD-induced soil suppressiveness

  14. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off.

    PubMed

    Peighamy-Ashnaei, S; Sharifi-Tehrani, A; Ahmadzadeh, M; Behboudi, K

    2007-01-01

    One of the most important environmental factors that regulate the growth and antagonistic efficacy of biocontrol agents is the medium. The aim of this paper was to find the nitrogen and carbon sources that provide maximum biomass production of strains P-5 and P-6 (Pseudomonas fluorescens), B-3 and B-16 (Bacillus subtilis) and minimum cost of media, whilst maintaining biocontrol efficacy. All of the strains were grown in seven liquid media (pH=6.9) including: sucrose + yeast extract, molasses of sugar beet + yeast extract in 2:1 and 1:1 w/w ratios, molasses of sugar beet + urea, nutrient broth, molasses and malt extract, at an initial inoculation of 1 x 10(5) CFU ml(-1). Cells from over night cultures used to inoculate soil at 1 x 10(9) CFU cm(-3) soil. At the same time, fungal inoculum (infected millet seed with Rhizoctonia solani) was added to soil at the rate of 2 g kg(-1) soil. Results indicated that growth of P-6, B-3 and B-16 in molasses + yeast extract (1:1 w/w) medium was significantly higher than in the other media. Molasses + yeast extract (1:1 and 2:1 w/w) media supported rapid growth and high cell yields in P-5. In greenhouse condition, results indicated that the influence of the media on the biocontrol efficacy of P-5, P-6, B-3 and B-16 was the same and Pseudomonas fluorescens P-5 in molasses and malt extract media reduced the severity of disease up to 72.8 percent. On the other hand, there were observed significant differences on bean growth after one month in greenhouse. P-5 in molasses + yeast extract (1:1 w/w) medium had the most effects on bean growth promotion. In this study molasses media showed good yield efficacy in all of the strains. The high sucrose concentration in molasses justifies the high biomass in all of the strains. Also, the low cost of molasses allows its concentration to be increased in media. On the other hand, yeast extract was the best organic nitrogen source for antagonist bacteria but it is expensive for an industrial process

  15. Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum Colonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot Pathogen Rhizoctonia solani.

    PubMed

    Chowdhury, Soumitra Paul; Uhl, Jenny; Grosch, Rita; Alquéres, Sylvia; Pittroff, Sabrina; Dietel, Kristin; Schmitt-Kopplin, Philippe; Borriss, Rainer; Hartmann, Anton

    2015-09-01

    The commercially available inoculant Bacillus amyloliquefaciens FZB42 is able to considerably reduce lettuce bottom rot caused by Rhizoctonia solani. To understand the interaction between FZB42 and R. solani in the rhizosphere of lettuce, we used an axenic system with lettuce bacterized with FZB42 and inoculated with R. solani. Confocal laser scanning microscopy showed that FZB42 could delay the initial establishment of R. solani on the plants. To show which secondary metabolites of FZB42 are produced under these in-situ conditions, we developed an ultra-high performance liquid chromatography coupled to time of flight mass spectrometry-based method and identified surfactin, fengycin, and bacillomycin D in the lettuce rhizosphere. We hypothesized that lipopeptides and polyketides play a role in enhancing the plant defense responses in addition to the direct antagonistic effect toward R. solani and used a quantitative real-time polymerase chain reaction-based assay for marker genes involved in defense signaling pathways in lettuce. A significant higher expression of PDF 1.2 observed in the bacterized plants in response to subsequent pathogen challenge showed that FZB42 could enhance the lettuce defense response toward the fungal pathogen. To identify if surfactin or other nonribosomally synthesized secondary metabolites could elicit the observed enhanced defense gene expression, we examined two mutants of FZB42 deficient in production of surfactin and the lipopetides and polyketides, by expression analysis and pot experiments. In the absence of surfactin and other nonribosomally synthesized secondary metabolites, there was no enhanced PDF 1.2-mediated response to the pathogen challenge. Pot experiment results showed that the mutants failed to reduce disease incidence in lettuce as compared with the FZB42 wild type, indicating, that surfactin as well as other nonribosomally synthesized secondary metabolites play a role in the actual disease suppression and on lettuce

  16. Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR.

    PubMed

    Sturrock, Craig J; Woodhall, James; Brown, Matthew; Walker, Catherine; Mooney, Sacha J; Ray, Rumiana V

    2015-01-01

    Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray μCT) and real-time PCR to study host-pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG) 2-1 in wheat (Triticum aestivum cv. Gallant) and oil seed rape (OSR, Brassica napus cv. Marinka). Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root systems. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field. PMID:26157449

  17. Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR

    PubMed Central

    Sturrock, Craig J.; Woodhall, James; Brown, Matthew; Walker, Catherine; Mooney, Sacha J.; Ray, Rumiana V.

    2015-01-01

    Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray μCT) and real-time PCR to study host–pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG) 2-1 in wheat (Triticum aestivum cv. Gallant) and oil seed rape (OSR, Brassica napus cv. Marinka). Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root systems. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field. PMID:26157449

  18. Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR.

    PubMed

    Sturrock, Craig J; Woodhall, James; Brown, Matthew; Walker, Catherine; Mooney, Sacha J; Ray, Rumiana V

    2015-01-01

    Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray μCT) and real-time PCR to study host-pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG) 2-1 in wheat (Triticum aestivum cv. Gallant) and oil seed rape (OSR, Brassica napus cv. Marinka). Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root systems. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field.

  19. Strain-specific SCAR markers for the detection of Trichoderma harzianum AS12-2, a biological control agent against Rhizoctonia solani, the causal agent of rice sheath blight.

    PubMed

    Naeimi, S; Kocsubé, S; Antal, Zsuzsanna; Okhovvat, S M; Javan-Nikkhah, M; Vágvölgyi, C; Kredics, L

    2011-03-01

    In order to identify a specific marker for T. harzianum AS12-2, a strain capable of controlling rice sheath blight caused by Rhizoctonia solani, UP-PCR was performed using five universal primers (UP) both separately and in pairwise combinations. The application of two UP primers resulted in the amplification of unique fragments from the genomic DNA of T. harzianum AS12-2, clearly distinguishing it from other Trichoderma strains. The unique fragments had no significant sequence homology with any other known sequence available in databases. Based on the sequences of the unique fragments, 14 oligonucleotide primers were designed. Two primer sets amplified a fragment of expected size from the DNA of strain T. harzianum AS12-2 but not from any other examined strains belonging to T. harzianum, to other Trichoderma species assayed, or to other common fungi present in paddy fields of Mazandaran province, Iran. In conclusion, SCAR (sequence characterized amplified regions) markers were successfully identified and rapid, reliable tools were provided for the detection of an effective biocontrol Trichoderma strain, which can facilitate studies of its population dynamics and establishment after release into the natural environment.

  20. Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases

    PubMed Central

    Le Cointe, Ronan; Simon, Thomas E.; Delarue, Patrick; Hervé, Maxime; Leclerc, Melen; Poggi, Sylvain

    2016-01-01

    Reducing our reliance on pesticides is an essential step towards the sustainability of agricultural production. One approach involves the rational use of pesticides combined with innovative crop management. Most control strategies currently focus on the temporal aspect of epidemics, e.g. determining the optimal date for spraying, regardless of the spatial mechanics and ecology of disease spread. Designing innovative pest management strategies incorporating the spatial aspect of epidemics involves thorough knowledge on how disease control affects the life-history traits of the pathogen. In this study, using Rhizoctonia solani/Raphanus sativus as an example of a soil-borne pathosystem, we investigated the effects of a chemical control currently used by growers, Monceren® L, on key epidemiological components (saprotrophic spread and infectivity). We tested the potential “shield effect” of Monceren® L on pathogenic spread in a site-specific application context, i.e. the efficiency of this chemical to contain the spread of the fungus from an infected host when application is spatially localized, in our case, a strip placed between the infected host and a recipient bait. Our results showed that Monceren® L mainly inhibits the saprotrophic spread of the fungus in soil and may prevent the fungus from reaching its host plant. However, perhaps surprisingly we did not detect any significant effect of the fungicide on the pathogen infectivity. Finally, highly localized application of the fungicide—a narrow strip of soil (12.5 mm wide) sprayed with Monceren® L—significantly decreased local transmission of the pathogen, suggesting lowered risk of occurrence of invasive epidemics. Our results highlight that detailed knowledge on epidemiological processes could contribute to the design of innovative management strategies based on precision agriculture tools to improve the efficacy of disease control and reduce pesticide use. PMID:27668731

  1. Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 Isolates.

    PubMed

    Wibberg, Daniel; Rupp, Oliver; Blom, Jochen; Jelonek, Lukas; Kröber, Magdalena; Verwaaijen, Bart; Goesmann, Alexander; Albaum, Stefan; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2015-01-01

    Rhizoctonia solani, a soil-born plant pathogenic basidiomycetous fungus, affects various economically important agricultural and horticultural crops. The draft genome sequence for the R. solani AG1-IB isolate 7/3/14 as well as a corresponding transcriptome dataset (Expressed Sequence Tags--ESTs) were established previously. Development of a specific R. solani AG1-IB gene model based on GMAP transcript mapping within the eukaryotic gene prediction platform AUGUSTUS allowed detection of new genes and provided insights into the gene structure of this fungus. In total, 12,616 genes were recognized in the genome of the AG1-IB isolate. Analysis of predicted genes by means of different bioinformatics tools revealed new genes whose products potentially are involved in degradation of plant cell wall components, melanin formation and synthesis of secondary metabolites. Comparative genome analyses between members of different R. solani anastomosis groups, namely AG1-IA, AG3 and AG8 and the newly annotated R. solani AG1-IB genome were performed within the comparative genomics platform EDGAR. It appeared that only 21 to 28% of all genes encoded in the draft genomes of the different strains were identified as core genes. Based on Average Nucleotide Identity (ANI) and Average Amino-acid Identity (AAI) analyses, considerable sequence differences between isolates representing different anastomosis groups were identified. However, R. solani isolates form a distinct cluster in relation to other fungi of the phylum Basidiomycota. The isolate representing AG1-IB encodes significant more genes featuring predictable functions in secondary metabolite production compared to other completely sequenced R. solani strains. The newly established R. solani AG1-IB 7/3/14 gene layout now provides a reliable basis for post-genomics studies.

  2. A double-stranded RNA element from a hypovirulent strain of Rhizoctonia solani occurs in DNA form and is genetically related to the pentafunctional AROM protein of the shikimate pathway.

    PubMed

    Lakshman, D K; Jian, J; Tavantzis, S M

    1998-05-26

    M2 is a double-stranded RNA (dsRNA) element occurring in the hypovirulent isolate Rhs 1A1 of the plant pathogenic basidiomycete Rhizoctonia solani. Rhs 1A1 originated as a sector of the virulent field isolate Rhs 1AP, which contains no detectable amount of the M2 dsRNA. The complete sequence (3,570 bp) of the M2 dsRNA has been determined. A 6.9-kbp segment of total DNA from either Rhs 1A1 or Rhs 1AP hybridizes with an M2-specific cDNA probe. The sequences of M2 dsRNA and of PCR products generated from Rhs 1A1 total DNA were found to be identical. Thus this report describes a fungal host containing full-length DNA copies of a dsRNA element. A major portion of the M2 dsRNA is located in the cytoplasm, whereas a smaller amount is found in mitochondria. Based on either the universal or the mitochondrial genetic code of filamentous fungi, one strand of M2 encodes a putative protein of 754 amino acids. The resulting polypeptide has all four motifs of a dsRNA viral RNA-dependent RNA polymerase (RDRP) and is phylogenetically related to the RDRP of a mitochondrial dsRNA associated with hypovirulence in strain NB631 of Cryphonectria parasitica, incitant of chestnut blight. This polypeptide also has significant sequence similarity with two domains of a pentafunctional polypeptide, which catalyzes the five central steps of the shikimate pathway in yeast and filamentous fungi.

  3. The Wheat Ethylene Response Factor Transcription Factor PATHOGEN-INDUCED ERF1 Mediates Host Responses to Both the Necrotrophic Pathogen Rhizoctonia cerealis and Freezing Stresses1[C][W][OPEN

    PubMed Central

    Zhu, Xiuliang; Qi, Lin; Liu, Xin; Cai, Shibin; Xu, Huijun; Huang, Rongfeng; Li, Jiarui; Wei, Xuening; Zhang, Zengyan

    2014-01-01

    Sharp eyespot disease (primarily caused by the pathogen Rhizoctonia cerealis) and freezing stress are important yield limitations for the production of wheat (Triticum aestivum). Here, we report new insights into the function and underlying mechanisms of an ethylene response factor (ERF) in wheat, Pathogen-Induced ERF1 (TaPIE1), in host responses to R. cerealis and freezing stresses. TaPIE1-overexpressing transgenic wheat exhibited significantly enhanced resistance to both R. cerealis and freezing stresses, whereas TaPIE1-underexpressing wheat plants were more susceptible to both stresses relative to control plants. Following both stress treatments, electrolyte leakage and hydrogen peroxide content were significantly reduced, and both proline and soluble sugar contents were elevated in TaPIE1-overexpressing wheat, whereas these physiological traits in TaPIE1-underexpressing wheat exhibited the opposite trend. Microarray and quantitative reverse transcription-polymerase chain reaction analyses of TaPIE1-overexpressing and -underexpressing wheat plants indicated that TaPIE1 activated a subset of defense- and stress-related genes. Assays of DNA binding by electrophoretic mobility shift and transient expression in tobacco (Nicotiana tabacum) showed that the GCC boxes in the promoters of TaPIE1-activated genes were essential for transactivation by TaPIE1. The transactivation activity of TaPIE1 and the expression of TaPIE1-activated defense- and stress-related genes were significantly elevated following R. cerealis, freezing, and exogenous ethylene treatments. TaPIE1-mediated responses to R. cerealis and freezing were positively modulated by ethylene biosynthesis. These data suggest that TaPIE1 positively regulates the defense responses to R. cerealis and freezing stresses by activating defense- and stress-related genes downstream of the ethylene signaling pathway and by modulating related physiological traits in wheat. PMID:24424323

  4. Pea Disease Diagnostic Series- Rhizoctonia seed, seedling and root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pea disease diagnostic cards that growers can carry with them into the field that are water resistant and durable which can be used to identify the signs and symptoms of major pea pathogens were developed. Color photographs of major fungal, bacterial, and viral pathogens on peas and a brief descript...

  5. Heterokaryon formation in Thanatephorus cucumeris (Rhizoctonia solani) AG-1 IC.

    PubMed

    Qu, Ping; Yamashita, Koji; Toda, Takeshi; Priyatmojo, Achmadi; Kubota, Mayumi; Hyakumachi, Mitsuro

    2008-09-01

    Approximately 50 single-basidiospore isolates (SBIs) obtained from each of 16 field isolates of Thanatephorus cucumeris AG-1 IC were examined for heterokaryon formation. All SBIs obtained from each field isolate were divided into two mating groups (SBIs-M1 and SBIs-M2), and tufts of mycelia were formed in the contact zone between colonies of paired SBIs-M1 and -M2 based on 0.5 % charcoal agar medium. Tufts were produced from all possible pairing between SBIs from non-parental field isolates. Hyphal anastomosis reactions indicated no cell death and random cell death at the contact cell, and was not related to tuft formation. AFLP phenotypes of SBIs from each field isolate were not identical to each other and were different from their parental field isolate. AFLP phenotypes of the tuft isolates formed from SBIs-M1 and SBIs-M2 from each field isolate were heterokaryotic. Moreover, several SBIs also formed tufts with their parental and non-parental field isolates. AFLP phenotypes of these tuft isolates suggested that they were all heterokaryotic. Results of these experiments suggest that T. cucumeris AG-1 IC is heterothallic and bipolar, and that genetic exchange can occur between homokaryotic and heterokaryotic isolates (Buller phenomenon).

  6. Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping-off disease on sugar beet.

    PubMed

    Karimi, Elham; Safaie, Naser; Shams-Baksh, Masoud; Mahmoudi, Bagher

    2016-11-01

    The use of biocontrol strains recently has become a popular alternative to conventional chemical treatments. A set of bacteria isolated from sugar beet rhizosphere and from roots and shoots of apple and walnut were evaluated for their potential to control sugar beet seedling damping-off caused by R. solani AG-4 and AG2-2.The results of in vitro assays concluded that three isolates, SB6, SB14, SB15, obtained from rhizosphere of sugar beet and five isolates, AP2, AP4, AP6, AP7, AP8, obtained from shoots and roots of apple were the most effective antagonists that inhibited the mycelial growth of both R. solani isolates. Combination of several biochemical tests and partial sequencing of 16S rRNA and gyrBgenes revealed that eight efficient bacterial isolates could be assigned to the genus Bacillus and all could tolerate high temperatures and salt concentrations in their vegetative growth. The potential biocontrol activity of the eight bacterial antagonists were tested in greenhouse condition. The results indicated that four strains,B. amyloliquefaciens SB14, B. pumilus SB6,B. siamensis AP2 and B. siamensisAP8 exerted a significant influence on controlling of seedling damping-off and performed significantly better than others.However, the treatment of the seeds with bacteria was most effective when the isolate SB14 was used, which significantly controlled damping-off disease by 58% caused by R. solani AG-4 and by 52.5% caused by R. solani AG-2-2. This indicates that the use of beneficial bacterial native to the host plant may increase the success rate in screening biocontrols, because these microbes are likely to be better adapted to their host and its associated environmental conditions than are strains isolated from other plant species grown in different environmental conditions. We can infer from the results reported here that sugar beet plantsmay recruitbeneficial microbes to the rhizosphere to help them solve context-specific challenges. PMID:27664740

  7. Effect of arbuscular mycorrhizal fungi on onion growth and onion stunting caused by Rhizoctonia solani, 2013.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A preliminary study was conducted in a greenhouse (15 ± 1oC, with supplemental lights for 12 h/day) to determine the role of AMF on onion growth and for reducing the severity of onion stunting, using a commercial AMF inoculant, BioTerra Plus, that contains 104 propagules/g (ppg) of Glomus intraradic...

  8. Molecular characterization of soil bacteria antagonistic to Rhizoctonia solani, sheath blight of rice.

    PubMed

    Padaria, Jasdeep C; Singh, Aqbal

    2009-05-01

    Bacillus pumillus MTCC7615 has been identified as a potent isolate against Rhizocotonia solani, the fungal pathogen causing sheath blight in rice. The study aimed at probing the role of a 23kb size plasmid pJCP07 of Bacillus pumillus MTCC7615 in its fungal antagonism towards Rhizocotonia solani. Plasmid pJCP07 was found to be involved in production of a fungal antagonistic compound as demonstrated by plasmid curing and conjugational transfer experiments. Tn5 insertional studies further confirmed that the plasmid pJCP07 of Bacillus pumillus MTCC7615 carries some of the gene(s) involved in production of compound antagonistic to Rhizocotonia solani. The plasmid pJCP07 is thus a mobilizable medium-sized plasmid carrying genes responsible for antagonism of Bacillus pumillus MTCC7615 towards Rhizocotonia solani.

  9. Optimum Timing for Spraying Out Greenbridge with Roundup to Control Rhizoctonia in Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted in 2007 in a field at the ARS Palouse Conservation Farm with a high level of both R. solani and R. oryzae. Volunteer and weeds were allowed to grow over the winter, and plots were sprayed out with Roundup at 8 wks, 6 wks, 4 wks, 2 wks, 1 wk, and 2 days before plantin...

  10. In field survival of Rhizoctonia solani in soil and in diseased sugarbeets.

    PubMed

    Herr, L J

    1976-07-01

    Persistence of Rhizotonia solani in the field was investigated by ascertaining survival (competitive saprophytic activity) in soil and survival in diseased plants. Except for one instance, low levels of R. solani survived overwinter in artificially and naturally infested soils. In a sandy loam soil, cropped to sugarbeets, inoculum density increased throughout the growing season from low early spring levels to high levels in July and August. In a silty clay soil, cropped to sugarbeets, inoculum density remained low with only a slight increase throughout the growing season. Survival of R. solani in diseased sugarbeets placed on the soil surface was greater than survival in diseased beets buried in soil. Little reduction in percentages of beets yeilding R. SOLANI COLONIES TOOK PLACE FROM November to April in either buried or unburied beets. The major reduction in survival of R. solani in buried beets occurred during the 6-week interval from April to June.

  11. Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping-off disease on sugar beet.

    PubMed

    Karimi, Elham; Safaie, Naser; Shams-Baksh, Masoud; Mahmoudi, Bagher

    2016-11-01

    The use of biocontrol strains recently has become a popular alternative to conventional chemical treatments. A set of bacteria isolated from sugar beet rhizosphere and from roots and shoots of apple and walnut were evaluated for their potential to control sugar beet seedling damping-off caused by R. solani AG-4 and AG2-2.The results of in vitro assays concluded that three isolates, SB6, SB14, SB15, obtained from rhizosphere of sugar beet and five isolates, AP2, AP4, AP6, AP7, AP8, obtained from shoots and roots of apple were the most effective antagonists that inhibited the mycelial growth of both R. solani isolates. Combination of several biochemical tests and partial sequencing of 16S rRNA and gyrBgenes revealed that eight efficient bacterial isolates could be assigned to the genus Bacillus and all could tolerate high temperatures and salt concentrations in their vegetative growth. The potential biocontrol activity of the eight bacterial antagonists were tested in greenhouse condition. The results indicated that four strains,B. amyloliquefaciens SB14, B. pumilus SB6,B. siamensis AP2 and B. siamensisAP8 exerted a significant influence on controlling of seedling damping-off and performed significantly better than others.However, the treatment of the seeds with bacteria was most effective when the isolate SB14 was used, which significantly controlled damping-off disease by 58% caused by R. solani AG-4 and by 52.5% caused by R. solani AG-2-2. This indicates that the use of beneficial bacterial native to the host plant may increase the success rate in screening biocontrols, because these microbes are likely to be better adapted to their host and its associated environmental conditions than are strains isolated from other plant species grown in different environmental conditions. We can infer from the results reported here that sugar beet plantsmay recruitbeneficial microbes to the rhizosphere to help them solve context-specific challenges.

  12. The pathogen biology, identification and management of Rhizoctonia species with emphasis on isolates infecting turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    R. solani is an economically important soilborne basidiomycetous pathogen of worldwide distribution and it is known to attack at least 188 species of higher plants, including crops, vegetables, ornamentals, forest trees and turfgrasses. The pathogenic isolates may belong to multiple genera and speci...

  13. Identification of unknown sterile fungi as Rhizoctonia zeae and potential for biological control for fungal root diseases of sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several soilborne diseases routinely damage sugar beet in production areas of the Central High Plains, and it is becoming more common to find fields infested simultaneously with multiple pathogens. Due to a shortage of available fungicides for effective management of multiple diseases, alternative ...

  14. Registration of SR98 sugar beet germplasm with resistances to Rhizoctonia seedling and crown and root rot diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris L.) germplasms SR98 (PI 655951) and SR98/2 (659754) are being released as potential pollinators or populations from which to select pollinators for hybrid seed production, and were developed by the USDA-ARS, at East Lansing, MI, in cooperation with the Beet Sugar Developmen...

  15. Impacts of biocontrol products on Rhizoctonia disease of potato and soil microbial communities, and their persistence in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four commercial biocontrol formulations (Bacillus subtilis GB03, Burkholderia ambifaria type Wisconsin isolate J82, Trichoderma virens Gl-21, and Trichoderma harzianum strain T-22), a chemical seed treatment (Topsin, mancozeb, and cymoxanil mixture, TMC), and a combination chemical/biological treatm...

  16. First Report of Rhizoctonia spp. causing a root rot of the invasive rangeland weed Lepidium draba in North America.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The exotic, invasive perennial rangeland weed Lepidium draba spreads rapidly and reduces native species diversity. The extensive root system of L. draba constitutes 76% of plant biomass. Thus searches have been done for biocontrol agents that target root tissue or that may interact with a weevil, Ce...

  17. In vitro evaluation of Pseudomonas bacterial isolates from rice phylloplane for biocontrol of Rhizoctonia solani and plant growth promoting traits.

    PubMed

    Akter, Shamima; Kadir, Jugah; Juraimi, Abdul Shukor; Saud, Halimi Mohd

    2016-07-01

    The ability for biocontrol and plant growth promotion of three Pseudomonas bacterial isolates namely Pseudomonas fluorescens (UMB20), Pseudomonas aeruginosa (KMB25) and Pseudomonas asplenii (BMB42) obtained from rice plants was investigated. Fungal growth inhibition by the isolates ranged from 86.85 to 93.15% in volatile and 100% in diffusible metabolites test. Among the isolates, BMB42 showed fungal growth inhibition significantly in the volatile metabolite test. Isolates UMB20 and BMB42 were able to synthesis chitinase with chitinolytic indices of 13.66 and 13.50, respectively. In case of -1,3-glucanase, all the isolates showed activity to produce this enzyme at varied levels and isolate KMB25 showed significantly highest activity (53.53 ppm). Among the three isolates, KMB25 showed positive response to protease production and all of them were negative to pectinase and lipase and positive to the production of siderophore, and HCN, and were able to solubilize tricalcium phosphate. All the three bacterial isolates were capable of forming biofilm at different levels. Above results suggest that phylloplane Pseudomonas bacterial isolates have potential for antifungal activities and plant growth promotion. PMID:27498507

  18. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes.

    PubMed

    Mayo, Sara; Gutiérrez, Santiago; Malmierca, Monica G; Lorenzana, Alicia; Campelo, M Piedad; Hermosa, Rosa; Casquero, Pedro A

    2015-01-01

    Many Trichoderma species are well-known for their ability to promote plant growth and defense. We study how the interaction of bean plants with R. solani and/or Trichoderma affect the plants growth and the level of expression of defense-related genes. Trichoderma isolates were evaluated in vitro for their potential to antagonize R. solani. Bioassays were performed in climatic chambers and development of the plants was evaluated. The effect of Trichoderma treatment and/or R. solani infection on the expression of bean defense-related genes was analyzed by real-time PCR and the production of ergosterol and squalene was quantified. In vitro growth inhibition of R. solani was between 86 and 58%. In in vivo assays, the bean plants treated with Trichoderma harzianum T019 always had an increased size respect to control and the plants treated with this isolate did not decrease their size in presence of R. solani. The interaction of plants with R. solani and/or Trichoderma affects the level of expression of seven defense-related genes. Squalene and ergosterol production differences were found among the Trichoderma isolates, T019 showing the highest values for both compounds. T. harzianum T019 shows a positive effect on the level of resistance of bean plants to R. solani. This strain induces the expression of plant defense-related genes and produces a higher level of ergosterol, indicating its ability to grow at a higher rate in the soil, which would explain its positive effects on plant growth and defense in the presence of the pathogen.

  19. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes.

    PubMed

    Mayo, Sara; Gutiérrez, Santiago; Malmierca, Monica G; Lorenzana, Alicia; Campelo, M Piedad; Hermosa, Rosa; Casquero, Pedro A

    2015-01-01

    Many Trichoderma species are well-known for their ability to promote plant growth and defense. We study how the interaction of bean plants with R. solani and/or Trichoderma affect the plants growth and the level of expression of defense-related genes. Trichoderma isolates were evaluated in vitro for their potential to antagonize R. solani. Bioassays were performed in climatic chambers and development of the plants was evaluated. The effect of Trichoderma treatment and/or R. solani infection on the expression of bean defense-related genes was analyzed by real-time PCR and the production of ergosterol and squalene was quantified. In vitro growth inhibition of R. solani was between 86 and 58%. In in vivo assays, the bean plants treated with Trichoderma harzianum T019 always had an increased size respect to control and the plants treated with this isolate did not decrease their size in presence of R. solani. The interaction of plants with R. solani and/or Trichoderma affects the level of expression of seven defense-related genes. Squalene and ergosterol production differences were found among the Trichoderma isolates, T019 showing the highest values for both compounds. T. harzianum T019 shows a positive effect on the level of resistance of bean plants to R. solani. This strain induces the expression of plant defense-related genes and produces a higher level of ergosterol, indicating its ability to grow at a higher rate in the soil, which would explain its positive effects on plant growth and defense in the presence of the pathogen. PMID:26442006

  20. First Report of Aerial Blight of Ruth’s Golden Aster (Pityopsis ruthii) caused by Rhizoctonia solani in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruth's golden aster (Pityopsis ruthii) is an endangered, herbaceous perennial that occurs only at a few sites along small reaches of the Hiwassee and Ocoee rivers in Polk County, Tennessee. This species has ornamental potential. In 2012, we vegetatively propagated various genotypes and established p...

  1. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes

    PubMed Central

    Mayo, Sara; Gutiérrez, Santiago; Malmierca, Monica G.; Lorenzana, Alicia; Campelo, M. Piedad; Hermosa, Rosa; Casquero, Pedro A.

    2015-01-01

    Many Trichoderma species are well-known for their ability to promote plant growth and defense. We study how the interaction of bean plants with R. solani and/or Trichoderma affect the plants growth and the level of expression of defense-related genes. Trichoderma isolates were evaluated in vitro for their potential to antagonize R. solani. Bioassays were performed in climatic chambers and development of the plants was evaluated. The effect of Trichoderma treatment and/or R. solani infection on the expression of bean defense-related genes was analyzed by real-time PCR and the production of ergosterol and squalene was quantified. In vitro growth inhibition of R. solani was between 86 and 58%. In in vivo assays, the bean plants treated with Trichoderma harzianum T019 always had an increased size respect to control and the plants treated with this isolate did not decrease their size in presence of R. solani. The interaction of plants with R. solani and/or Trichoderma affects the level of expression of seven defense-related genes. Squalene and ergosterol production differences were found among the Trichoderma isolates, T019 showing the highest values for both compounds. T. harzianum T019 shows a positive effect on the level of resistance of bean plants to R. solani. This strain induces the expression of plant defense-related genes and produces a higher level of ergosterol, indicating its ability to grow at a higher rate in the soil, which would explain its positive effects on plant growth and defense in the presence of the pathogen. PMID:26442006

  2. Pressure Cycling Technology Sample Preparation System (PCT SPS) Improves Quantification of Pathogen DNA in Plants and Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot, bare patch, and damping-off of wheat are yield-limiting diseases caused by Rhizoctonia solani AG-8 and R. oryzae. Detection and quantification of Rhizoctonia spp. are essential for evaluating pathogen distribution and management, but extraction of DNA from these pathogens is ha...

  3. Pressure Cycling Technology Sample Preparation System (PCT SPS) Improves Quantification of Pathogen DNA in Plants and Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat and barley are susceptible to Rhizoctonia root rot, bare patch, and damping-off in the dryland cereal production regions of the Pacific Northwest and throughout the world. Detection and quantification of Rhizoctonia spp., the causal agents of this yield-limiting disease, are inconsistent at lo...

  4. 77 FR 18806 - Fluxapyroxad; Receipt of Application for Emergency Exemption for Use on Rice in Louisiana...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... caused by the fungus, Rhizoctonia solani. The applicant proposes the use of a new chemical which has not... fluxapyroxad on rice to control sheath blight caused by the fungus Rhizoctonia solani. Information in... asserts that fluxapyroxad is needed to control sheath blight in rice caused by the fungus...

  5. Controlling Soilborne Pathogens in Wheat Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pacific Northwest (PNW) wheat, barley, legume and canola varieties are susceptible to broad host-range soilborne pathogens that cause Rhizoctonia root rot and Pythium root rot. Controlling Rhizoctonia and Pythium will likely require multiple strategies. My laboratory focuses on three research areas:...

  6. Antifungal effect of some spice hydrosols.

    PubMed

    Boyraz, Nuh; Ozcan, Musa

    2005-12-01

    The antifungal effects of rosemary, cumin, sater (savory), basil and pickling herb hydrosols were investigated against Rhizoctonia solani, Fusarium oxysporum f. sp tulipae, Botrytis cinerea and Alternaria citri. Hydrosols of sater and pickling herb showed the most relevant fungicidal activity.

  7. Isolation of endosymbionts from Ipomoea carnea and Swainsona canescens that produce swainsonine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi including Metarhizium anisopliae (Clavicipitaceae), Rhizoctonia leguminicola (Ceratobasidiaceae), and Undifilum (Pleosporaceae), an endophyte found in the plant genera Astragalus and Oxytropis (Fabaceae) have been reported to be responsible for the production of swainsonine. Based upon the ass...

  8. Antifungal activity of Bacillus sp. isolated from compost.

    PubMed

    Czaczyk, K; Stachowiak, B; Trojanowska, K; Gulewicz, K

    2000-01-01

    Four strains of Bacillus isolated from lupine compost exhibited an antifungal activity against six plant fungal pathogens (Rhizoctonia solani, Bipolaris sorokiniana, Sclerotinia sclerotiorum, Trichothecium roseum, Fusarium solani, Fusarium oxysporum). It was significantly influenced by the composition of the cultivation media.

  9. Biological control of soilborne diseases in organic potato production as affected by varying environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soilborne diseases are persistent problems in potato production and alternative management practices are needed, particularly in organic production, where control options are limited. Selected biocontrol organisms, including two naturally-occurring hypovirulent strains of Rhizoctonia solani (Rhs1a1 ...

  10. Breeding Value of the qSB9b and qSB12a QTLs in RiceBreeding Value of the qSB9b and qSB12a QTLs in Rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheath blight (SB) caused by Rhizoctonia solani Kuhn is a serious rice disease worldwide. The results of 123 TeQing-into-Lemont (TILs) showed those with introgressions containing qSB9b and/or qSB12a were among the most SB resistant TILs. TIL:615, TIL:642 and TIL:567 have consistently appeared modera...

  11. Inhibitory effects of stilbenes on the growth of three soybean pathogens in culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of resveratrol and pterostilbene on in vitro growth of three soybean pathogens were tested to determine if these stilbenic compounds could potentially be targets to increase innate resistance in transgenic soybean plants. Growth of Macrophomina phaseolina, Rhizoctonia solani, and Sclerot...

  12. Multistate evaluation of Brassica cover crop, biocontrol agent, and fungicide for integrated management of sheath blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheath blight, caused by Rhizoctonia solani, is one of the most important diseases limiting rice production in the southern rice-producing states. The fungus survives between crops as sclerotia and mycelia in infected plant debris and serves as the primary inoculum. Infection starts when sclerotia a...

  13. PGPR and its combined use with fungicide for control of rice sheath blight in the southern U.S

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice growers heavily rely on fungicides for control of sheath blight, caused by Rhizoctonia solani, the most important rice disease in Texas and other southern rice-producing states. Excessive use of fungicides can cause a negative impact on the environment and lead to the potential development of f...

  14. Sugar beet activities of the USDA-ARS East Lansing conducted in cooperation with Saginaw Research & Extension Center during 2013 (including Project 905)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation and rating plots were planted at the Saginaw Valley Research & Extension Center (SVREC) in Frankenmuth, MI in 2013 that focused on Cercospora leaf spot and Rhizoctonia seedling disease performance of a wide range of Beta vulgaris materials. Leaf spot trials were conducted in conjunction w...

  15. Analysis of rice PDR-like ABC transporter genes in sheath blight resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheath blight caused by Rhizoctonia solani is one of the most damaging diseases of rice worldwide. To understand the molecular mechanism of resistance, we identified 450 differentially expressed genes in a resistant rice cultivar Jasmine 85 after R. solani infection with a combination of DNA microar...

  16. Genetic and genomic dissection of resistance genes to the rice sheath blight pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice sheath blight disease caused by the anastomosis group AG1-IA of the fungal pathogen Rhizoctonia solani is one of the most serious rice diseases in the southern US and the world. The use of fungicides is a popular but costly method to control this disease worldwide. Genetic analysis of host re...

  17. Construction of recombinant fluorescent Pseudomonas spp. for suppression of soilborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Take-all, caused by Gaeumannomyces graminis var. tritici, and Rhizoctonia root rot, caused by R. solani AG-8, are among the most important soilborne diseases of wheat in the Pacific Northwest. Because of the lack of resistance to these and many other soilborne diseases, wheat roots rely on antagonis...

  18. Development and characterization of RiceCAP QTL mapping population for sheath blight resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RiceCAP is a USDA CSREES funded project that has as one of its main objectives developing genetic markers associated with sheath blight resistance. Sheath blight, caused by Rhizoctonia solani, is an important disease of rice in the southern US. Tolerance to the disease is quantitatively inherited an...

  19. Isolation and structure elucidation of a new antifungal and antibacterial antibiotic produced by Streptomyces sp. 201.

    PubMed

    Bordoloi, G N; Kumari, B; Guha, A; Bordoloi, M; Yadav, R N; Roy, M K; Bora, T C

    2001-08-01

    An antibacterial and antifungal antibiotic was isolated from the culture filtrate of Streptomyces sp. 201, and its structure was determined as 2-methyl-heptyl isonicotinate by extensive use of NMR spectroscopy. The compound exhibited marked antimicrobial activity against Bacillus subtilis, Shigella sp., Klebsiella sp., E. coli, Proteus mirabilis, and the pathogenic fungi, Fusarium moniliforme, F. semitectum, F. oxysporum, F. solani and Rhizoctonia solani.

  20. Microbial degradation of fluometuron is influenced by Roundup WeatherMAX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory experiments were conducted to describe the influence of glyphosate and fluometuron on soil microbial activity and to determine the effect of glyphosate on fluometuron degradation in soil and by Rhizoctonia solani. Soil and liquid medium were amended with formulated fluometuron alone or w...

  1. Rapeseed rotation, compost and biocontrol amendments reduce soilborne diseases and increase tuber yield in conventional and organic potato production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three different potential disease-suppressive management practices, including a Brassica napus (rapeseed) green manure rotation crop, a conifer-based compost amendment, and three biological control organisms (Trichoderma virens, Bacillus subtilis, and Rhizoctonia solani hypovirulent isolate Rhs1A1)...

  2. Jinggangmycin increases fecundity of the brown planthopper, Nilaparvata lugens (Stal), via fatty acid synthase gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibiotic jinggangmycin (JGM) is mainly used in controlling the rice sheath blight, Rhizoctonia solani, in China. JGM also enhances reproduction of the brown planthopper (BPH), Nilaparvata lugens (Stål). To date, however, molecular mechanisms of the enhancement are unclear. Our related report d...

  3. Registration of PR0401-259 and PR0650-31 Dry Bean Germplasm Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Web blight, caused by Thanatephorus cucumeris (Frank) Donk (anamorph: Rhizoctonia solani Kühn), is a serious disease in the humid tropics that reduces both yield and seed quality. Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv. phaseoli (Smith) Vauterin et al., and Bean common m...

  4. Seedling diseases of sugar beet – diversity and host interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seedling diseases cause loss of plant stand due to pre- and post-emergence damping-off and weakened plants due to root or hypocotyl infection. Several pathogens cause seedling disease of sugar beet, including Rhizoctonia solani, Aphanomyces cochlioides, Pythium species, and Fusarium species. Differe...

  5. Root rot in sugar beet piles at harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...

  6. Use of bacillus biocontrol agents for disease management in organic rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic rice production has significantly increased in the U. S. over the last decade. Organic rice growers lack effective tools to manage sheath blight, caused by Rhizoctonia solani, and narrow brown leaf spot, caused by Cercospora janseana, two major diseases affecting organic rice production. Thi...

  7. Efficacy of bacillus biocontrol agents for management of sheath blight and narrow brown leaf spot in organic rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic rice production has significantly increased in the U. S. over the last decade. Growers lack effective tools to manage sheath blight, caused by Rhizoctonia solani, and narrow brown leaf spot (NBLS), caused by Cercospora janseana, two major diseases affecting organic rice production. An experi...

  8. Sugar beet activities of the USDA-ARS East Lansing conducted in cooperation with Saginaw Research & Extension Center during 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation and rating plots were planted at the Saginaw Valley Research & Extension Center (SVREC) in Frankenmuth, MI in 2014 that focused on Cercospora leaf spot (CLS) and Rhizoctonia crown and root rot (CRR) disease performance of a wide range of Beta vulgaris materials. CLS and CRR trials were co...

  9. Dealing with damping-off

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Damping-off is a common disease that rots and kills both seeds and recently germinated seedlings. The disease is caused by number of different soilborne pathogens, including true fungi (Botrytis, Fusarium, and Rhizoctonia species) and oomycetes (Phytophthora and Pythium species). The seedlings of mo...

  10. Evaluation of the USDA Rice Core Collection for sheath blight disease using micro-chamber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA rice core collection, including 1,794 accessions from 114 countries, was developed using a stratified random sampling method to represent the entire NSGC collection including over 18,000 accessions. Sheath blight (Rhizoctonia solani) is one of the most important and widely distributed disea...

  11. Searching for Germplasm Resistant to Sheath Blight from the USDA Rice Core Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheath blight, caused by the fungal pathogen Rhizoctonia solani, is one of the most important and widely distributed diseases capable of infesting numerous crops including rice. Resistant germplasm with wide variation is essential for controlling this disease via breeding efforts, and genetic backgr...

  12. Confirming QTLs and finding additional loci responsible for resistance to rice sheath blight disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice sheath blight disease (Rhizoctonia solani AG1-1AKühn) is one of the most destructive rice diseases worldwide. Utilization of host resistance is the most economical and environmentally sound strategy in managing sheath blight (ShB). Ten ShB-QTLs were previously mapped in a LJRIL population using...

  13. Identification of external inoculum sources of apple replant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple replant disease (ARD) is an important disease world-wide and occurs when old apple orchards are replanted with apple. The disease is mainly caused by biological agents, since fumigation alleviates symptom development. The main ARD causative agents are fungi (Rhizoctonia solani AG-5 and AG-6, a...

  14. Induced systemic resistance in Arabidopsis against Pseudomonas syringae pv. tomato by disease suppressive soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-week-old Arabidopsis thaliana ecotype Col-0 seedlings were transferred into an autoclaved sand-soil mixture amended with 10% or 20% (weight/weight) soil that is suppressive to either take-all or Rhizoctonia root rot of wheat from fields in Washington State USA. These soils contain population siz...

  15. Pre-breeding for root rot resistance using root morphology and shoot length.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our goal is to identify new wheat varieties that display field resistance/tolerance to root rot diseases, such as those caused by Rhizoctonia and Pythium. We are tapping into the genetic diversity of ‘synthetic’ hexaploid wheats (genome composition AABBDD), which were generated at CIMMYT by artifici...

  16. Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages.

    PubMed

    Těšitelová, Tamara; Kotilínek, Milan; Jersáková, Jana; Joly, François-Xavier; Košnar, Jiří; Tatarenko, Irina; Selosse, Marc-André

    2015-03-01

    Plant dependence on fungal carbon (mycoheterotrophy) evolved repeatedly. In orchids, it is connected with a mycorrhizal shift from rhizoctonia to ectomycorrhizal fungi and a high natural (13)C and (15)N abundance. Some green relatives of mycoheterotrophic species show identical trends, but most of these remain unstudied, blurring our understanding of evolution to mycoheterotrophy. We analysed mycorrhizal associations and (13)C and (15)N biomass content in two green species, Neottia ovata and N. cordata (tribe Neottieae), from a genus comprising green and nongreen (mycoheterotrophic) species. Our study covered 41 European sites, including different meadow and forest habitats and orchid developmental stages. Fungal ITS barcoding and electron microscopy showed that both Neottia species associated mainly with nonectomycorrhizal Sebacinales Clade B, a group of rhizoctonia symbionts of green orchids, regardless of the habitat or growth stage. Few additional rhizoctonias from Ceratobasidiaceae and Tulasnellaceae, and ectomycorrhizal fungi were detected. Isotope abundances did not detect carbon gain from the ectomycorrhizal fungi, suggesting a usual nutrition of rhizoctonia-associated green orchids. Considering associations of related partially or fully mycoheterotrophic species such as Neottia camtschatea or N. nidus-avis with ectomycorrhizal Sebacinales Clade A, we propose that the genus Neottia displays a mycorrhizal preference for Sebacinales and that the association with nonectomycorrhizal Sebacinales Clade B is likely ancestral. Such a change in preference for mycorrhizal associates differing in ecology within the same fungal taxon is rare among orchids. Moreover, the existence of rhizoctonia-associated Neottia spp. challenges the shift to ectomycorrhizal fungi as an ancestral pre-adaptation to mycoheterotrophy in the whole Neottieae.

  17. Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi.

    PubMed

    Abdel-Fattah, G M; El-Haddad, S A; Hafez, E E; Rashad, Y M

    2011-05-20

    Interaction between arbuscular mycorrhizal fungi as a bio-agent and Rhizoctonia root rot disease of common bean plant was investigated in this study under natural conditions in pot experiment. A mixture of Egyptian formulated AM (Multi-VAM) in suspension form (1 × 10(6) unit L(-1) in concentration) was used at dilution of 5 ml L(-1) water. The results demonstrated that colonization of bean plants with AM fungi significantly increased growth parameters, yield parameters and mineral nutrient concentrations and reduced the negative effects on these parameters as well as both disease severity and disease incidence. Different physical and biochemical mechanisms have been shown to play a role in enhancement of plant resistance against Rhizoctonia solani, namely, improved plant nutrition, improved plant growth, increase in cell wall thickening, cytoplasmic granulation, and accumulation of some antimicrobial substances (phenolic compounds and defense related enzymes).

  18. Identification and antifungal assay of a wheat beta-1,3-glucanase.

    PubMed

    Liu, Baoye; Lu, Yan; Xin, Zhiyong; Zhang, Zengyan

    2009-07-01

    A wheat beta-1,3-glucanase gene (TaGluD) was identified as a fungal defense candidate. Its transcript induction was more than 60-fold higher in a resistant wheat line, Shannong0431, than in a susceptible wheat line, Wenmai6, after infection with Rhizoctonia cerealis. The TaGluD protein was overexpressed as inclusion bodies in Escherichia coli. After refolding and purification, TaGluD with 1 unit of beta-1,3-glucanase showed antifungal activity in vitro against Rhizoctonia solani, R. cerealis, Phytophthora capsici and Alternaria longipes with inhibition rates of 42%, 43%, 32% and 30%, respectively. Thus TaGluD may be useful for enhancing fungal resistance in several crop species.

  19. Effect of neem (Azardirachta indica A. Juss) seeds and leaves extract on some plant pathogenic fungi.

    PubMed

    Moslem, M A; El-Kholie, E M

    2009-07-15

    In this study plant pathogenic fungi Alternaria solani, Fusarium oxysporum, Rhizoctonia solani and Sclerotinia sclerotiorum were chosen to study the effect of ethanolic, hexane and methanolic extracts of neem seeds and leaves. Antifungal effects of neem leave and seed extracts obtained by ethanol, hexane and ptrolium ether were examined separately in vitro against Fusarium oxysporum, Rhizoctonia solani, Alternaria solani and Sclerotinia sclerotiorum. Results indicated that seeds and leaves extracts could cause growth inhibition of tested fungi, although the rate of inhibition of tested fungi varied with different extracts and concentrations. But all these extracts and concentrations of extract inhibited the growth of pathogenic fungi at a significant level. Azadirachtin, nimonol and expoxyazdirodione were detected from neem extract by using High Performance Liquid Chromatography (HPLC). We can conclude that neem leave and seed extracts were effective as antifungal against all tested fungi but F. oxysporum and R. solani were the most sensitive fungi. PMID:19947185

  20. Draft Genome Sequences of Two Novel Pseudomonas Strains Exhibiting Differential Hypersensitivity Reactions on Tobacco and Corn Seedlings

    PubMed Central

    Tchagang, Caetanie Fometeu; Xu, Renlin; Mehrtash, Shima; Rahimi, Shabnam; Sidibé, Aïssata; Li, Xiang; Bromfield, Eden S. P.

    2016-01-01

    Two novel Pseudomonas strains (S1E40 and S3E12) isolated from corn roots are antagonistic to Rhizoctonia solani and exhibit differential hypersensitivity reactions on tobacco and corn seedlings. We report here the draft genome sequences of strains S1E40 and S3E12, consisting of 6.98 and 7.06 Mb with 6,150 and 6,129 predicted protein-coding sequences, respectively. PMID:27795242

  1. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum.

    PubMed

    Vinale, Francesco; Flematti, Gavin; Sivasithamparam, Krishnapillai; Lorito, Matteo; Marra, Roberta; Skelton, Brian W; Ghisalberti, Emilio L

    2009-11-01

    A Trichoderma harzianum strain, isolated from composted hardwood bark in Western Australia, was found to produce a metabolite with antifungal and plant growth promoting activity. The structure and absolute configuration of the fungal compound, harzianic acid (1), were determined by X-ray diffraction studies. Harzianic acid showed antibiotic activity against Pythium irregulare, Sclerotinia sclerotiorum, and Rhizoctonia solani. A plant growth promotion effect was observed at low concentrations of 1.

  2. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana.

    PubMed

    Vespermann, Anja; Kai, Marco; Piechulla, Birgit

    2007-09-01

    Volatiles of Stenotrophomonas, Serratia, and Bacillus species inhibited mycelial growth of many fungi and Arabidopsis thaliana (40 to 98%), and volatiles of Pseudomonas species and Burkholderia cepacia retarded the growth to lesser extents. Aspergillus niger and Fusarium species were resistant, and B. cepacia and Staphylococcus epidermidis promoted the growth of Rhizoctonia solani and A. thaliana. Bacterial volatiles provide a new source of compounds with antibiotic and growth-promoting features.

  3. Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: a superoxide dismutase mimetics study.

    PubMed

    Papapostolou, Ioannis; Georgiou, Christos D

    2010-03-01

    This study shows that the superoxide radical (O(2) *( -)), a direct indicator of oxidative stress, is involved in the differentiation of the phytopathogenic filamentous fungi Rhizoctonia solani, Sclerotinia sclerotiorum, Sclerotium rolfsii and Sclerotinia minor, shown by using superoxide dismutase (SOD) mimetics to decrease their sclerotial differentiation. The production rate of O(2) *(-) and SOD levels in these fungi, as expected, were significantly lowered by the SOD mimetics, with concomitant decrease of the indirect indicator of oxidative stress, lipid peroxidation. PMID:20007647

  4. Enhanced Germicidal Efficacy by Co-Delivery of Validamycin and Hexaconazole with Methoxy Poly(ethylene glycol)-Poly(lactide-co-glycolide) Nanoparticles.

    PubMed

    Zhang, Jiakun; Liu, Yajing; Zhao, Caiyan; Cao, Lidong; Huang, Qiliang; Wu, Yan

    2016-01-01

    Co-delivery system has been proposed in pharmaceutical field aim to synergistic treatments. The combination formulation is also important in traditional pesticides formulations based on the low pest resistance risk and wide fungicidal spectrum. However, co-delivery nanoparticles (NPs) tend to be more environmentally friendly for the sustained-release behaviour and none of toxic organic solvents or dusts. Hence, we constructed co-delivery NPs which could delivery two kinds of pesticides, which function was similar with pesticides combination formulation. The co-delivery NPs of validamycin and hexaconazole were prepared with the amphiphilic copolymer methoxy poly(ethylene glycol)- poly(lactide-co-glycolide) (mPEG-PLGA) used an improved double emulsion method. The chemical structure of mPEG-PLGA copolymer was confirmed using fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR). The co-delivery NPs all exhibited good size distribution and held sustained-release property. Germicidal efficacy of the co-delivery NPs against Rhizoctonia cerealis was also studied. The germicidal efficacy of co-delivery NPs against Rhizoctonia cerealis was better than that of traditional pesticides formulation. In addition, co-delivery NPs showed a lasting impact against Rhizoctonia cerealis. PMID:27398440

  5. Damping-off in conifer seedling nurseries in Noshahr and Kelardasht.

    PubMed

    Zad, S J; Koshnevice, M

    2001-01-01

    To study the damping-off of conifer seedlings, we have collected samples from the roots of conifer seedlings (Pinus nigra, Picea excelsa, Abieces spp, Cupressus arizonica, Cupressus sempervirens) from nurseries in the south of Iran (Noshahr and Kelardasht). After disinfecting the samples, we have used standard media like PDA, MA and CLA. The following fungi were identified: Fusarium solani, Fusarium oxysporum, Fusarium sambucinum, Clamydosporium, Rhizoctonia solani, Cylindrocarpon spp., Alternaria spp, Macrophomina phaseoli. Amongst the above mentioned fungi, Fusarium spp. were the commonest ones. Pathogenecity tests of Fusarium spp. and Rhizoctonia solani on seedlings were done. Isolated fungal colonies were purified using single mycelium and single spore methods. Fungal isolates were identified after subculturing on PDA and CLA media by Nelson method. These isolates were Fusarium solani, F. oxysporium, F. sambucinum and F. clamydosporum. Other fungal isolates were Rhizoctonia spp. In order to determine the infectivity of Fusarium on their hosts, seeds of Pinus nigra, Cupressus arizonica and Cupressus sempervirens var. horizontalis were cultured in four repetitions each containing 2 seedlings. After a seasonal growth, seedlings were inoculated with a suspension of Fusarium spores (4.5 +/- 0.3 x 1016 spore/ml). Infection of P. nigra, Cupressus arizonica and Cupressus sempervirens var. horizontalis with F. solani and Pinus nigra and Cupressus semperivirens var. horizontalis with F. oxysporum was high whereas that of Cupressus arizonica with F. sambucinum, F. mondiforme and F. clamydosporum was moderate.

  6. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

    PubMed Central

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M.; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  7. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils.

    PubMed

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'-based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  8. CONTROL OF SOIL-BORNE DISEASES BY DIFFERENT COMPOSTS IN POTTED VEGETABLE CROPS.

    PubMed

    Pugliese, M; Benetti, A; Gilardi, G; Gullino, M L; Garibaldi, A

    2014-01-01

    The composting process and the type and nature of wastes and raw materials influence the maturity, quality and suppressiveness of composts. Variability in disease suppression also depends on the pathosystem, on soil or substrate type, on chemical-physical conditions, like pH and moisture, and on the microbial component of compost. The aim of the research was to evaluate the suppressiveness of composts, originated from green wastes and/or municipal biowastes, and produced by different composting plants located in Europe. The composts were tested against soil-borne pathogens in greenhouse on potted plants: Fusarium oxysporum f.sp. busilici/basil, Pythium ultimum/cucumber, Rhizoctonia solani/bean. Composts were blended with a peat substrate at different dosages (10, 20 and 50% vol./vol.) 14 days before seeding or transplanting. Pythium ultimum and Rhizoctonia solani were mixed into the substrate at 0.5 g of wheat kernels L(-1) 7 days before seeding, while, in the case of Fusarium oxysporum f.sp. basilici, chlamydospores were applied at 1 x 10(4) CFU/g. Seeds of basil, cucumber and bean were sown into 2 L pots in greenhouse. The number of alive plants was counted and above ground biomass was weighed 30 days after seeding. The number of infected cucumber and basil plants was significantly reduced by increasing dosages of composts, but municipal compost was phytotoxic when applied at high dosages compared to green compost. Moreover, municipal compost increased the disease caused by Rhizoctonia solani on bean. The use of compost in substrates can be a suitable strategy for controlling soil-borne diseases on vegetable crops, but results depend on type of composts, application rates and pathosystems. PMID:26084080

  9. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils.

    PubMed

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'-based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils.

  10. Storage of stock cultures of filamentous fungi at -80 degrees C: effects of different freezing-thawing methods.

    PubMed

    Juarros, E; Tortajada, C; García, M D; Uruburu, F

    1993-04-01

    Freezing and storage at -80 degrees C has been applied to the preservation of nonsporulated filamentous fungi Phytophthora, Pythium, Sclerotinia and Rhizoctonia, and the results are presented. We had tested different methods of freezing and thawing, finding that the best results were obtained pre-cooling at 4 degrees C during 1 hour followed by freezing at -80 degrees C. The best thawing method was achieved at 37 degrees C. The technique was found to be simple and reliable for the culture collections labours of fungi maintenance.

  11. Cerinolactone, a hydroxy-lactone derivative from Trichoderma cerinum.

    PubMed

    Vinale, Francesco; Girona, Isabel Arjona; Nigro, Marco; Mazzei, Pierluigi; Piccolo, Alessandro; Ruocco, Michelina; Woo, Sheridan; Rosa, David Ruano; Herrera, Carlos López; Lorito, Matteo

    2012-01-27

    A novel metabolite, 3-hydroxy-5-(6-isopropyl-3-methylene-3,4,4a,5,6,7,8,8a-octahydronaphthalen-2-yl)dihydrofuran-2-one, trivially named cerinolactone (1), has been isolated from culture filtrates of Trichoderma cerinum together with three known butenolides containing the 3,4-dialkylfuran-2(5H)-one nucleus, harzianolide (2), T39butenolide (3), and dehydroharzianolide (4). The structure of 1 was determined by spectroscopic methods, including UV, MS, and 1D and 2D NMR analyses. In vitro tests with the purified compound exhibited activity against Pythium ultimum, Rhizoctonia solani, and Botrytis cinerea. PMID:22196692

  12. Design, synthesis, anti-TMV, fungicidal, and insecticidal activity evaluation of 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid derivatives based on virus inhibitors of plant sources.

    PubMed

    Song, Hong-jian; Liu, Yong-xian; Liu, Yu-xiu; Huang, Yuan-qiong; Li, Yong-qiang; Wang, Qing-min

    2014-11-15

    By drawing the creation ideas of botanical pesticides, a series of tetrahydro-β-carboline-3-carboxylic acid derivatives were designed and synthesized, and first evaluated for their anti-TMV, fungicidal and insecticidal activities. Most of these derivatives exhibited good antiviral activity against TMV both in vitro and in vivo. Especially, the activities of compounds 8 and 15 in vivo were higher than that of ribavirin. The compound 8 exhibited more than 70% fungicidal activities against Cercospora arachidicola Hori, Alternaria solani, Bipolaris maydis, and Rhizoctonia solani at 50mg/kg, compounds 16 and 20 exhibited more than 60% insecticidal activities against Mythimna separate and Ostrinia nubilalis. PMID:25442317

  13. Microwave-assisted Synthesis and antifungal activity of coumarin[8,7-e][1,3]oxazine derivatives.

    PubMed

    Zhang, Ming-Zhi; Zhang, Rong-Rong; Yin, Wen-Zheng; Yu, Xiang; Zhang, Ya-Ling; Liu, Pin; Gu, Yu-Cheng; Zhang, Wei-Hua

    2016-08-01

    The synthesis of novel coumarin[8,7-e][1,3]oxazine derivatives through a microwave-assisted three-component one-pot Mannich reaction is described in this study. All the target compounds were evaluated in vitro for their antifungal activity against Botrytis cinerea, Colletotrichum capsici, Alternaria solani, Gibberella zeae, Rhizoctonia solani, and Alternaria mali. The preliminary bioassays showed that 5e, 5m, and 5s exhibited good antifungal activity and the most active compound was 5m with an [Formula: see text] value as low as 2.1 nM against Botrytis cinerea. PMID:26880591

  14. Tricholoma matsutake fruit bodies secrete hydrogen peroxide as a potent inhibitor of fungal growth.

    PubMed

    Takakura, Yoshimitsu

    2015-06-01

    Tricholoma matsutake is an ectomycorrhizal fungus that dominates the microbial communities in the soil of pine and spruce forests. The mycorrhizas of this fungus have antimicrobial activity, although factors responsible for the antimicrobial activity have not been fully elucidated. The present study shows that fruit bodies of T. matsutake secreted hydrogen peroxide (H2O2), which was produced by pyranose oxidase, and that the H2O2 thus secreted strongly inhibited the growth of mycelia of the phytopathological fungus Rhizoctonia solani. These findings suggest that fruit bodies of T. matsutake have antifungal activity and that the pyranose oxidase plays an important role in the antifungal activity.

  15. Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging.

    PubMed

    Holzlechner, Matthias; Reitschmidt, Sonja; Gruber, Sabine; Zeilinger, Susanne; Marchetti-Deschmann, Martina

    2016-06-01

    Studying microbial interactions by MALDI mass spectrometry imaging (MSI) directly from growing media is a difficult task if high sensitivity is demanded. We present a quick and robust sample preparation strategy for growing fungi (Trichoderma atroviride, Rhizoctonia solani) on glass slides to establish a miniaturized confrontation assay. By this we were able to visualize metabolite distributions by MALDI MSI after matrix deposition with a home-built sublimation device and thorough recrystallization. We present for the first time MALDI MSI data for secondary metabolite release during active mycoparasitism.

  16. Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging

    PubMed Central

    Holzlechner, Matthias; Reitschmidt, Sonja; Gruber, Sabine; Zeilinger, Susanne

    2016-01-01

    Studying microbial interactions by MALDI mass spectrometry imaging (MSI) directly from growing media is a difficult task if high sensitivity is demanded. We present a quick and robust sample preparation strategy for growing fungi (Trichoderma atroviride, Rhizoctonia solani) on glass slides to establish a miniaturized confrontation assay. By this we were able to visualize metabolite distributions by MALDI MSI after matrix deposition with a home‐built sublimation device and thorough recrystallization. We present for the first time MALDI MSI data for secondary metabolite release during active mycoparasitism. PMID:26959280

  17. Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging.

    PubMed

    Holzlechner, Matthias; Reitschmidt, Sonja; Gruber, Sabine; Zeilinger, Susanne; Marchetti-Deschmann, Martina

    2016-06-01

    Studying microbial interactions by MALDI mass spectrometry imaging (MSI) directly from growing media is a difficult task if high sensitivity is demanded. We present a quick and robust sample preparation strategy for growing fungi (Trichoderma atroviride, Rhizoctonia solani) on glass slides to establish a miniaturized confrontation assay. By this we were able to visualize metabolite distributions by MALDI MSI after matrix deposition with a home-built sublimation device and thorough recrystallization. We present for the first time MALDI MSI data for secondary metabolite release during active mycoparasitism. PMID:26959280

  18. Chemical composition, antifungal and herbicidal effects of essential oil isolated from Chersodoma Argentina (Asteraceae).

    PubMed

    Alarcón, Rosana; Ocampos, Soledad; Pacciaroni, Adriana; Sosa, Virginia

    2012-01-01

    Analysis of the hydrodistilled essential oil of the aerial parts of Chersodoma argentina Cabrera by GC-MS and NMR spectroscopy revealed that over 80% consisted of monoterpene hydrocarbons such as alpha-thujene, alpha-pinene and beta-pinene. Contact and headspace volatile exposure assays of the essential oil demonstrated antifungal activity against Sclerotinia sclerotiorum, Sclerotium rolfsii and Rhizoctonia solani with the contact assay showing greater activity than the headspace assay. Herbicidal activity was shown by reduced root growth of Allium porrum, Solanum lycopersicon and Sorghum halepense in both assays.

  19. Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina.

    PubMed

    Sebastián, Fracchia; Vanesa, Silvani; Eduardo, Flachsland; Graciela, Terada; Silvana, Sede

    2014-01-01

    Aa achalensis is an endangered terrestrial orchid endemic from Argentina. In vitro symbiotic seed germination was evaluated for its propagation. Five different fungal strains were isolated from this species: two Rhizoctonia-like related to Thanatephorus cucumeris and three ascomicetaceous fungi belonging to Phialophora graminicola and one to an uncultured Pezizaceae. All five isolates promoted seed germination being one T. cucumeris strain the most effective. After 16 weeks of growth, 30% of A. achalensis protocorms developed until seedlings with two/four leaves in this treatment. These findings open an opportunity to the knowledge and preservation of this species.

  20. Mycorrhizal fungi isolated from native terrestrial orchids of pristine regions in Cordoba (Argentina).

    PubMed

    Fernández Di Pardo, Agustina; Chiocchio, Viviana M; Barrera, Viviana; Colombo, Roxana P; Martinez, Alicia E; Gasoni, Laura; Godeas, Alicia M

    2015-03-01

    Orchidaceae is a highly dependent group on the Rhizoctonia complex that includes Ceratorhiza, Moniliopsis, Epulorhiza and Rhizoctonia, for seed germination and the development of new orchid plants. Thus, the isolation and identification of orchid mycorrhizal fungi are important to understand the orchid-fungus relationship, which can lead to the development of efficient conservation strategies by in vivo germination of seeds from endangered orchid plants. The aim of our work was to isolate and characterize the different mycorrhizal fungi found in roots of terrestrial orchids from Cordoba (Argentina), and, to learn about the natural habit and fungal associations in the Chaco Serrano woodland pristine region. In this study, bloomed orchid root and rhizosphere soil samples were obtained in two times from Valle de Punilla during spring of 2007; samples were kept in plastic bags until processed within 48 hours, and mycorrhizal condition confirmed assessing peloton presence. A total of 23 isolates of the orchideous mycorrhizal Rhizoctonia complex were obtained. The isolates were studied based on morphological characters and ITS-rDNA sequences. Morphological characteristics as color of colonies, texture, growth rate, hyphal diameter and length and presence of sclerotia were observed on culture media. To define the number of nuclei per cell, the isolates were grown in Petri dishes containing water-agar (WA) for three days at 25 degrees C and stained with Safranine-O solution. The mycorrhizal fungi were grouped into binucleate (MSGib, 10 isolates) and multinucleate (MSGim, 13 isolates) based on morphological characteristics of the colonies. We obtained the ITS1-5.8s-ITS4 region that was amplified using primers ITSI and ITS4. Based on DNA sequencing, isolates Q23 and Q29 were found to be related to species of Ceratobasidium. Isolates Q24 and Q4 were related to the binucleated anastomosis group AG-C of Rhizoctonia sp. The rest of the isolates grouped in the Ceratobasidium

  1. Antifungal agents, Part 11. Biphenyl analogues of naftifine: synthesis and antifungal activities.

    PubMed

    Porretta, G C; Fioravanti, R; Biava, M; Artico, M; Villa, A; Simonetti, N

    1995-09-01

    A series of naftifine analogues having the biphenyl instead of the naphthyl moiety have been synthesized in a search devoted to study bioanalogues of clinically efficacious antifungal agents. The new derivatives were tested against Candida albicans by the direct contact method. They were also assayed against Gram-positive and Gram-negative bacteria and against some isolates of plant pathogenic fungi. Derivatives 8a, 8c, and 9a were found to be active against Candida albicans, derivative 5a was active against E. coli, a very resistant species to antimycotic agents, and derivatives 8a and 8b inhibited the plant pathogenic Rhizoctonia solani.

  2. Activity of Vitis vinifera Tendrils Extract Against Phytopathogenic Fungi.

    PubMed

    Fraternale, Daniele; Ricci, Donata; Verardo, Giancarlo; Gorassini, Andrea; Stocchia, Vilberto; Sestili, Piero

    2015-06-01

    The in vitro antifungal activity was determined of an ethanolic extract of Vitis vinifera L. tendrils (TVV) against ten plant pathogenic fungi, using the agar dilution method; activity was shown against all tested fungi. Fusarium species were the most sensitive with MIC values ranging from 250 to 300 ppm, while the basidiomycete fungus Rhizoctonia solani was the most resistant, with a MIC value of 500 ppm. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) was used to obtain qualitative information on the main components of TVV. The high amount of polyphenolic compounds contained in TVV is likely to contribute significantly to its antifungal activity.

  3. Antagonism of some aquatic hyphomycetes against plant pathogenic fungi.

    PubMed

    Sati, S C; Arya, P

    2010-01-01

    The antagonistic activity of five aquatic hyphomycetes, viz., Heliscus lugdunensis, Tetrachaetum elegans, Tetracladium breve, T. marchalianum, and T. nainitalense, against seven plant pathogenic fungi was studied using a dual culture technique. Inhibitory activity of tested aquatic hyphomycetes was determined by measuring the radial growth of plant pathogenic fungi on dual culture plates. Tetrachaetum elegans showed antagonistic activity against Colletotrichum falcatum, Fusarium oxysporum, Pyricularia oryzae, Sclerotium sclerotiorum, and Tilletia indica. Heliscus lugdunensis showed antagonism against only two plant pathogenic fungi, Rhizoctonia solani and Colletotrichum falcatum. Tetracladium breve, T. marchalianum, and T. nainitalense showed no response towards tested plant pathogenic fungi. PMID:20454756

  4. Chemical composition, antifungal and herbicidal effects of essential oil isolated from Chersodoma Argentina (Asteraceae).

    PubMed

    Alarcón, Rosana; Ocampos, Soledad; Pacciaroni, Adriana; Sosa, Virginia

    2012-01-01

    Analysis of the hydrodistilled essential oil of the aerial parts of Chersodoma argentina Cabrera by GC-MS and NMR spectroscopy revealed that over 80% consisted of monoterpene hydrocarbons such as alpha-thujene, alpha-pinene and beta-pinene. Contact and headspace volatile exposure assays of the essential oil demonstrated antifungal activity against Sclerotinia sclerotiorum, Sclerotium rolfsii and Rhizoctonia solani with the contact assay showing greater activity than the headspace assay. Herbicidal activity was shown by reduced root growth of Allium porrum, Solanum lycopersicon and Sorghum halepense in both assays. PMID:22428265

  5. [In vitro tests of the antagonistic behavior of Trichoderma spp. against pathogenic species of the horticultural region of La Plata, Argentina].

    PubMed

    Mónaco, C; Perelló, A; Rollán, M C

    1994-12-01

    The antagonistic properties of seven Trichoderma species in front of the pathogens Fusarium oxysporum, F. equiseti, F. solani, Sclerotinia sclerotiorum, S. minor, Rhizoctonia sp. and Sclerotium rolfsii was evaluated in vitro. Those microorganisms were isolated from horticultural soils of La Plata in order to test the antagonistic-pathogenic relationship. Dual cultures on PDA 2% were used. All the species of Trichoderma grew in the culture medium with a colonization value higher than 50%. Differences in the antagonistic behaviour of the pathogens were observed depending on the species with which they interacted. The presence of diffusible metabolites to the medium was demonstrated in almost 80% of the pathogens antagonists tested. PMID:7772296

  6. Synthesis of novel 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-thiones and evaluation of their biocidal effects.

    PubMed

    Khurana, Jitender M; Magoo, Devanshi; Aggarwal, Komal; Aggarwal, Nisha; Kumar, Rajesh; Srivastava, Chitra

    2012-12-01

    Novel 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-thiones have been synthesized in high yields by treatment of the corresponding oxo analogs with Lawesson's reagent. The structure has been confirmed by X-ray analysis. The compounds were tested for in vitro antifungal activity against Rhizoctonia bataticola, Sclerotium rolfsii, Fusarium oxysporum and Alternaria porii. The compounds exhibited moderate to good activity against all pathogens. Insecticidal activity of these compounds against Spodoptera litura was observed to be comparable to commercial pyrethroid insecticide, cypermethrin. The urease inhibitory activity has also been studied. PMID:23153816

  7. An antifungal compound involved in symbiotic germination of Cypripedium macranthos var. rebunense (Orchidaceae).

    PubMed

    Shimura, Hanako; Matsuura, Mayumi; Takada, Noboru; Koda, Yasunori

    2007-05-01

    Germination of orchid seeds fully depends on a symbiotic association with soil-borne fungi, usually Rhizoctonia spp. In contrast to the peaceful symbiotic associations between many other terrestrial plants and mycorrhizal fungi, this association is a life-and-death struggle. The fungi always try to invade the cytoplasm of orchid cells to obtain nutritional compounds. On the other hand, the orchid cells restrict the growth of the infecting hyphae and obtain nutrition by digesting them. It is likely that antifungal compounds are involved in the restriction of fungal growth. Two antifungal compounds, lusianthrin and chrysin, were isolated from the seedlings of Cypripedium macranthos var. rebunense that had developed shoots. The former had a slightly stronger antifungal activity than the latter, and the antifungal spectra of these compounds were relatively specific to the nonpathogenic Rhizoctonia spp. The level of lusianthrin, which was very low in aseptic protocorm-like bodies, dramatically increased following infection with the symbiotic fungus. In contrast, chrysin was not detected in infected protocorm-like bodies. These results suggest that orchid plants equip multiple antifungal compounds and use them at specific developmental stages; lusianthrin maintains the perilous symbiotic association for germination and chrysin helps to protect adult plants. PMID:17445846

  8. Acaconin, a chitinase-like antifungal protein with cytotoxic and anti-HIV-1 reverse transcriptase activities from Acacia confusa seeds.

    PubMed

    Lam, Sze Kwan; Ng, Tzi Bun

    2010-01-01

    From the seeds of Acacia confusa, a chitinase-like antifungal protein designated as acaconin that demonstrated antifungal activity toward Rhizoctonia solani with an IC₅₀ of 30±4 µM was isolated. Acaconin demonstrated an N-terminal sequence with pronounced similarity to chitinases and a molecular mass of 32 kDa. It was isolated by chromatography on Q-Sepharose, SP-Sepharose and Superdex 75 and was not bound by either ion exchanger. Acaconin was devoid of chitinase activity. The antifungal activity against Rhizoctonia solani was completely preserved from pH 4 to 10 and from 0°C to 70°C. Congo Red staining at the tips of R. solani hyphae indicated inhibition of fungal growth. However, there was no antifungal activity toward Mycosphaerella arachidicola, Fusarium oxysporum, Helminthosporium maydis, and Valsa mali. Acaconin inhibited proliferation of breast cancer MCF-7 cells with an IC₅₀ of 128±9 µM but did not affect hepatoma HepG2 cells. Its IC₅₀ value toward HIV-1 reverse transcriptase was 10±2.3 µM. The unique features of acaconin include relatively high stability when exposed to changes in ambient pH and temperature, specific antifungal and antitumor actions, potent HIV-reverse transcriptase inhibitory activity, and lack of binding by strongly cationic and anionic exchangers. PMID:20725649

  9. Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata).

    PubMed

    Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd

    2016-02-01

    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi. PMID:27019688

  10. Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata).

    PubMed

    Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd

    2016-02-01

    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi.

  11. Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata)

    PubMed Central

    Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd

    2016-01-01

    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi. PMID:27019688

  12. A New Operation for Producing Disease-Suppressive Compost from Grass Clippings

    PubMed Central

    Nakasaki, Kiyohiko; Hiraoka, Sachiko; Nagata, Hiroyuki

    1998-01-01

    This study evaluated the use of grass clippings discharged from golf courses as the raw material for production of a suppressive compost to control Rhizoctonia large-patch disease in mascarene grass. Bacillus subtilis N4, a mesophilic bacterium with suppressive effects on the pathogenic fungus Rhizoctonia solani AG2-2, was used as an inoculum in a procedure developed with the aim of controlling composting temperatures and inoculation timing. The population density of mesophilic bacteria in the raw material was reduced to around 5 log10 CFU/g (dry weight) of composting material in the self-heating reaction at the initial stage of composting by maintaining a temperature of 80°C for 1 day. The inoculum was applied immediately, and the composting material was maintained at 40°C for 3 days. This served both to highly concentrate the suppressive bacterium and to achieve sporulation. The temperature was then raised to 60°C and maintained, enabling hygienic, high-speed composting while maintaining the population density of the suppressive bacterium as high as 8 log10 CFU/g (dry weight) in the compost. The suppressiveness of compost made in this way was confirmed in a turf grass disease prevention assay. PMID:9758834

  13. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils

    PubMed Central

    Wang, Xuefei; Mavrodi, Dmitri V; Ke, Linfeng; Mavrodi, Olga V; Yang, Mingming; Thomashow, Linda S; Zheng, Na; Weller, David M; Zhang, Jibin

    2015-01-01

    The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30–84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide. Growth-promoting rhizobacteria in polluted soils PMID:25219642

  14. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29*

    PubMed Central

    Li, Jing; Yang, Qian; Zhao, Li-hua; Zhang, Shu-mei; Wang, Yu-xia; Zhao, Xiao-yu

    2009-01-01

    An antifungal protein was isolated from a culture of Bacillus subtilis strain B29. The isolation procedure comprised ion exchange chromatography on diethylaminoethyl (DEAE)-52 cellulose and gel filtration chromatography on Bio-Gel® P-100. The protein was absorbed on DEAE-cellulose and Bio-Gel® P-100. The purified antifungal fraction was designated as B29I, with a molecular mass of 42.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pI value 5.69 by isoelectric focusing (IEF)-PAGE, and 97.81% purity by high performance liquid chromatography (HPLC). B29I exhibited inhibitory activity on mycelial growth in Fusarium oxysporum, Rhizoctonia solani, Fusarium moniliforme, and Sclerotinia sclerotiorum. The 50% inhibitory concentrations (IC50) of its antifungal activity toward Fusarium oxysporum and Rhizoctonia solani were 45 and 112 μmol/L, respectively. B29I also demonstrated an inhibitory effect on conidial spore germination of Fusarium oxysporum and suppression of germ-tube elongation, and induced distortion, tumescence, and rupture of a portion of the germinated spores. PMID:19353744

  15. Untangling above- and belowground mycorrhizal fungal networks in tropical orchids.

    PubMed

    Leake, J R; Cameron, D D

    2012-10-01

    Orchids typically depend on fungi for establishment from seeds, forming mycorrhizal associations with basidiomycete fungal partners in the polyphyletic group rhizoctonia from early stages of germination, sometimes with very high specificity. This has raised important questions about the roles of plant and fungal phylogenetics, and their habitat preferences, in controlling which fungi associate with which plants. In this issue of Molecular Ecology, Martos et al. (2012) report the largest network analysis to date for orchids and their mycorrhizal fungi, sampling a total of over 450 plants from nearly half the 150 tropical orchid species on Reunion Island, encompassing its main terrestrial and epiphytic orchid genera. The authors found a total of 95 operational taxonomic units of mycorrhizal fungi and investigated the architecture and nestedness of their bipartite networks with 73 orchid species. The most striking finding was a major ecological barrier between above- and belowground mycorrhizal fungal networks, despite both epiphytic and terrestrial orchids often associating with closely related taxa across all three major lineages of rhizoctonia fungi. The fungal partnerships of the epiphytes and terrestrial species involved a diversity of fungal taxa in a modular network architecture, with only about one in ten mycorrhizal fungi partnering orchids in both groups. In contrast, plant and fungal phylogenetics had weak or no effects on the network. This highlights the power of recently developed ecological network analyses to give new insights into controls on plant-fungal symbioses and raises exciting new hypotheses about the differences in properties and functioning of mycorrhiza in epiphytic and terrestrial orchids.

  16. An antifungal compound involved in symbiotic germination of Cypripedium macranthos var. rebunense (Orchidaceae).

    PubMed

    Shimura, Hanako; Matsuura, Mayumi; Takada, Noboru; Koda, Yasunori

    2007-05-01

    Germination of orchid seeds fully depends on a symbiotic association with soil-borne fungi, usually Rhizoctonia spp. In contrast to the peaceful symbiotic associations between many other terrestrial plants and mycorrhizal fungi, this association is a life-and-death struggle. The fungi always try to invade the cytoplasm of orchid cells to obtain nutritional compounds. On the other hand, the orchid cells restrict the growth of the infecting hyphae and obtain nutrition by digesting them. It is likely that antifungal compounds are involved in the restriction of fungal growth. Two antifungal compounds, lusianthrin and chrysin, were isolated from the seedlings of Cypripedium macranthos var. rebunense that had developed shoots. The former had a slightly stronger antifungal activity than the latter, and the antifungal spectra of these compounds were relatively specific to the nonpathogenic Rhizoctonia spp. The level of lusianthrin, which was very low in aseptic protocorm-like bodies, dramatically increased following infection with the symbiotic fungus. In contrast, chrysin was not detected in infected protocorm-like bodies. These results suggest that orchid plants equip multiple antifungal compounds and use them at specific developmental stages; lusianthrin maintains the perilous symbiotic association for germination and chrysin helps to protect adult plants.

  17. Effect of Seed Quality and Combination Fungicide-Trichoderma spp. Seed Treatments on Pre- and Postemergence Damping-Off in Cotton.

    PubMed

    Howell, Charles R

    2007-01-01

    ABSTRACT Good quality seeds of cotton cultivars often escaped pre-emergence damping-off incited by Pythium spp. and Rhizopus oryzae, and they were resistant to postemergence damping-off incited by Rhizoctonia solani. Poor quality seeds, however, were highly susceptible to both phases of seedling disease and required seed treatment in order to survive. Pre-emergence damping-off incited by Pythium spp. and Rhizopus oryzae could be controlled by seed treatment with biocontrol preparations of a number of Trichoderma spp., but these treatments were much less effective in controlling postemergence disease incited by Rhizoctonia solani. Postemergence seedling disease can be controlled by fungicides, but they were much less effective in controlling the pre-emergence phase of the disease. Combination seed treatments of poor quality cotton seeds with fungicides and Trichoderma spp. preparations, followed by planting in pathogen-infested soil, indicated that this technique will control both phases of seedling disease. Seed treatment with either the fungicides or the biocontrol agents alone did not achieve this goal. The optimum combination treatment for disease control was that of chloroneb plus Trichoderma spp., followed by chloroneb plus metalaxyl (Deltacoat AD) plus T. virens strain G-6.

  18. Isolation and partial characterization of an antifungal protein produced by Bacillus licheniformis BS-3.

    PubMed

    Cui, Tang-Bing; Chai, Hai-Yun; Jiang, Li-Xiang

    2012-06-14

    An antifungal protein produced by Bacillus licheniformis strain BS-3 was purified to homogeneity by ammonium sulfate precipitation, DEAE-52 column chromatography and Sephadex G-75 column chromatography. The purified protein was designated as F2 protein, inhibited the growth of Aspergillus niger, Magnaporthe oryzae and Rhizoctonia solani. F2 protein was a monomer with approximately molecular weight of 31 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gave a single peak on High Performance Liquid Chromatography (HPLC). Using Rhizoctonia solani as the indicator strain, the EC50 of F2 protein was 35.82 µg/mL, displaying a higher antifungal activity in a range of pH 6.0 to pH 10.0, and at a temperature below 70 °C for 30 min. F2 protein was moderately resistant to hydrolysis by trypsin, proteinase K, after which its relative activities were 41.7% and 59.5%, respectively. F2 protein was assayed using various substrates to determine the enzymatic activities, the results showed the hydrolyzing activity on casein, however, no enzymatic activities on colloidal chitin, CM-cellulose, xylan, M. lysodeikticus, and p-nitrophenyl-N-acetylglucosaminide.

  19. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils.

    PubMed

    Wang, Xuefei; Mavrodi, Dmitri V; Ke, Linfeng; Mavrodi, Olga V; Yang, Mingming; Thomashow, Linda S; Zheng, Na; Weller, David M; Zhang, Jibin

    2015-05-01

    The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30-84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide.

  20. Enhancing plant disease suppression by Burkholderia vietnamiensis through chromosomal integration of Bacillus subtilis chitinase gene chi113.

    PubMed

    Zhang, Xinjian; Huang, Yujie; Harvey, Paul R; Ren, Yan; Zhang, Guangzhi; Zhou, Hongzi; Yang, Hetong

    2012-02-01

    Burkholderia vietnamiensis P418 is a plant growth-promoting rhizobacteria. A chitinase gene from Bacillus subtilis was cloned and stably integrated into the chromosome of using the transposon delivery vector, pUTkm1. Chitinase activity was detected in recombinant P418-37 but not in wild type P418. Recombinant P418-37 retained the in vitro growth rate, N(2)-fixation and phosphate and potassium-solubilizing characteristics of the wild type. P418-37 significantly (P < 0.05) increased in vitro inhibition of the plant pathogenic fungi Rhizoctonia solani, Fusarium oxysporum f.sp. vasinfectum, Rhizoctonia cerealis, Bipolaris sorokiniana, Verticillium dahliae and Gaeumannomyces graminis var. tritici compared with P418. In planta disease suppression assays indicated that P418-37 significantly (P < 0.05) enhanced suppression of wheat sheath blight (R. cerealis), cotton Fusarium wilt (F. oxysporium f.sp. vasinfectum) and tomato gray mould (Botrytis cinerea), relative to the wild type.

  1. Morphological characteristics and pathogenicity of fungi associated with Roselle (Hibiscus Sabdariffa) diseases in Penang, Malaysia.

    PubMed

    Eslaminejad, Touba; Zakaria, Maziah

    2011-11-01

    Roselle, or Jamaica sorrel (Hibiscus sabdariffa) is a popular vegetable in many tropical regions, cultivated for its leaves, seeds, stems and calyces which, the dried calyces are used to prepare tea, syrup, jams and jellies and as beverages. The main objectives of this study were to identify and characterise fungal pathogens associated with Roselle diseases based on their morphological and cultural characteristics and to determine the pathogenicity of four fungi infecting Roselle seedlings, namely Phoma exigua, Fusarium nygamai, Fusarium tgcq and Rhizoctonia solani in Penang. A total of 200 fungal isolates were obtained from 90 samples of symptomatic Roselle tissues. The isolates were identified based on cultural and morphological characteristics, as well as their pathogenicity. The fungal pathogen most frequently isolated was P. exigua (present in 45% of the samples), followed by F. nygamai (25%), Rhizoctonia solani (19%) and F. camptoceras (11%). Pathogenicity tests showed that P. exigua, F. nygamai, F. camptoceras and R. solani were able to infect both wounded and unwounded seedlings with different degrees of severity as indicated by the Disease severity (DS). R. solani was the most pathogenic fungus affecting both wounded and unwounded Roselle seedlings, followed by P. exigua that was highly pathogenic on wounded seedlings. F. nygamai was less pathogenic while the least pathogenic fungus was F. camptoceras, infecting only the unwounded seedlings but, surprisingly, not the wounded plants.

  2. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents

    PubMed Central

    Nazir, Rashid; Tazetdinova, Diana I.; van Elsas, Jan Dirk

    2014-01-01

    Soil bacteria can benefit from co-occurring soil fungi in respect of the acquisition of carbonaceous nutrients released by fungal hyphae and the access to novel territories in soil. Here, we investigated the capacity of the mycosphere-isolated bacterium Burkholderia terrae BS001 to comigrate through soil along with hyphae of the soil fungi Trichoderma asperellum, Rhizoctonia solani, Fusarium oxysporum, F. oxysporum pv lini, Coniochaeta ligniaria, Phanerochaete velutina, and Phallus impudicus. We used Lyophyllum sp. strain Karsten as the reference migration-inciting fungus. Bacterial migration through presterilized soil on the extending fungal hyphae was detected with six of the seven test fungi, with only Phallus impudicus not showing any bacterial transport. Much like with Lyophyllum sp. strain Karsten, intermediate (106–108 CFU g-1 dry soil) to high (>108 CFU g-1 dry soil) strain BS001 cell population sizes were found at the hyphal migration fronts of four fungi, i.e., T. asperellum, Rhizoctonia solani, F. oxysporum and F. oxysporum pv lini, whereas for two fungi, Coniochaeta ligniaria and Phanerochaete velutina, the migration responses were retarded and population sizes were lower (103–106 CFU g-1 dry soil). Consistent with previous data obtained with the reference fungus, migration with the migration-inciting fungi occurred only in the direction of the hyphal growth front. Remarkably, Burkholderia terrae BS001 provided protection from several antifungal agents to the canonical host Lyophyllum sp. strain Karsten. Specifically, this host was protected from Pseudomonas fluorescens strain CHA0 metabolites, as well as from the anti-fungal agent cycloheximide. Similar protection by strain BS001was observed for T. asperellum, and, to a lower extent, F. oxysporum and Rhizoctonia solani. The protective effect may be related to the consistent occurrence of biofilm-like cell layers or agglomerates at the surfaces of the protected fungi. The current study represents

  3. Comparative essential oil composition and antifungal effect of bitter fennel (Foeniculum vulgare ssp. piperitum) fruit oils obtained during different vegetation.

    PubMed

    Ozcan, Mehmet Musa; Chalchat, Jean-Claude; Arslan, Derya; Ateş, Ayşe; Unver, Ahmet

    2006-01-01

    The chemical composition of the flower and unripe and ripe fruits from fennel (bitter) (Foeniculum vulgare ssp. piperitum) has been examined by gas chromatography and gas chromatography-mass spectrometry. The main identified components of the flower and unripe and ripe fruit oils were estragole (53.08%, 56.11%, and 61.08%), fenchone (13.53%, 19.18%, and 23.46%), and alpha-phellandrene (5.77%, 3.30%, and 0.72%), respectively. Minor qualitative and major quantitative variations for some compounds of essential oils were determined with respect to the different parts of F. vulgare. The oils exerted varying levels of antifungal effects on the experimental mycelial growth of Alternaria alternata, Fusarium oxysporum, and Rhizoctonia solani. The 40 ppm concentrations of fennel oils showed inhibitory effect against mycelial growth of A. alternaria, whereas 10 ppm levels were ineffective. The analyses show that fennel oils exhibited different degrees of fungistatic activity depending on the doses.

  4. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens

    PubMed Central

    Harkenrider, Mitch; Sharma, Rita; De Vleesschauwer, David; Tsao, Li; Zhang, Xuting; Chern, Mawsheng; Canlas, Patrick; Zuo, Shimin; Ronald, Pamela C.

    2016-01-01

    Wall-associated kinases comprise a sub-family of receptor-like kinases that function in plant growth and stress responses. Previous studies have shown that the rice wall-associated kinase, OsWAK25, interacts with a diverse set of proteins associated with both biotic and abiotic stress responses. Here, we show that wounding and BTH treatments induce OsWAK25 transcript expression in rice. We generated OsWAK25 overexpression lines and show that these lines exhibit a lesion mimic phenotype and enhanced expression of rice NH1 (NPR1 homolog 1), OsPAL2, PBZ1 and PR10. Furthermore, these lines show resistance to the hemibiotrophic pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae, yet display increased susceptibility to necrotrophic fungal pathogens, Rhizoctonia solani and Cochliobolus miyabeanus. PMID:26795719

  5. Disease-reducing effect of Chromolaena odorata extract on sheath blight and other rice diseases.

    PubMed

    Khoa, Nguyen Đac; Thuy, Phan Thi Hong; Thuy, Tran Thi Thu; Collinge, David B; Jørgensen, Hans Jørgen Lyngs

    2011-02-01

    Sheath blight caused by Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) is a major cause of crop loss in intensive rice production systems. No economically viable control methods have been developed. We screened aqueous extracts of common herbal plants that could reduce sheath blight lesions and found that foliar spraying and seed soaking application of extracts of either fresh or dried leaves of Chromolaena odorata gave up to 68% reduction in sheath blight lesion lengths under controlled and semi-field conditions. The observed reductions were not dependent on growth conditions of C. odorata and rice cultivar. The effect was observed until 21 days after inoculation and was not dependent on microbial activity. Under semi-field conditions, extracts also reduced severity of other important rice diseases, i.e., blast (Pyricularia oryzae) using foliar spray (up to 45%), brown spot (Bipolaris oryzae) using seed treatment (up to 57%), and bacterial blight (Xanthomonas oryzae pv. oryzae) using both application methods (up to 50%).

  6. Syntheses and biological activities of pyranyl-substituted cinnamates.

    PubMed

    Zhu, J; Majikina, M; Tawata, S

    2001-01-01

    Twenty-two kinds of pyranyl-substituted cinnamates were synthesized by the reaction of 4-hydroxy-6-(2-phenylethyl)-2H-pyran-2-one or 4-hydroxy-6-methyl-2H-pyran-2-one (HMP) with a variety of substituted cinnamic acids, and their antifungal and plant growth inhibitory activities were investigated. Among the compounds prepared, 6-methyl-2-oxo-2H-pyran-4-yl 3-(4-isopropylphenyl)propenoate (H5) showed the strongest antifungal activity against Rhizoctonia solani and Sclerotium dellfinii, and 6-methyl-2-oxo-2H-pyran-4-yl 3-(2-methylphenyl)propenoate (H2) had the highest plant growth inhibitory activity toward Brassica rapa.

  7. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi

    NASA Astrophysics Data System (ADS)

    Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. T.

    In this present study, silver nanoparticles were synthesized by green chemistry approach using Acalypha indica leaf extract as reducing agents. The reaction medium employed in the synthesis process was optimized to attain better yield, controlled size and stability. Further, the biosynthesized silver nanoparticles were conformed through UV-vis spectrum, XRD and HR-TEM analyses. Different concentration of silver nanoparticles were tested to know the inhibitory effect of fungal plant pathogens namely Alternaria alternata, Sclerotinia sclerotiorum, Macrophomina phaseolina, Rhizoctonia solani, Botrytis cinerea and Curvularia lunata. Interestingly, 15 mg concentration of silver nanoparticles showed excellent inhibitory activity against all the tested pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.

  8. Development of a Selective Medium for the Fungal Pathogen Cylindrocarpon destructans Using Radicicol.

    PubMed

    Kang, Yunhee; Lee, Seung-Ho; Lee, Jungkwan

    2014-12-01

    The soil-borne ascomycete fungus Cylindrocarpon destructans causes ginseng root rot disease and produces various secondary metabolites such as brefeldin A and radicicol. The slow growth of this fungus compared with other plant pathogenic and saprophytic fungi in soil disturbs isolation of this fungus from soil and infected ginseng. In this study, we developed a selective medium for C. destructans using radicicol produced by this fungus. Supplementing 50 mg/L of radicicol to medium inhibited the mycelia growth of other fungi including Botrytis cinerea, Rhizoctonia solani and Alternaria panax, but did not affect the growth of C. destructans. In addition, conidia germination of other fungal species except for C. destructans was inhibited in submerged culture supplemented with radicicol. This medium provides a very efficient tool for isolating C. destructans and also can be used as an enrichment medium for this fungus. PMID:25506308

  9. Synthesis and antifungal activity of the derivatives of novel pyrazole carboxamide and isoxazolol pyrazole carboxylate.

    PubMed

    Sun, Jialong; Zhou, Yuanming

    2015-01-01

    A series of pyrazole carboxamide and isoxazolol pyrazole carboxylate derivatives were designed and synthesized in this study. The structures of the compounds were elucidated based on spectral data (infrared, proton nuclear magnetic resonance and mass spectroscopy). Then, all of the compounds were bioassayed in vitro against four types of phytopathogenic fungi (Alternaria porri, Marssonina coronaria, Cercospora petroselini and Rhizoctonia solani) using the mycelium growth inhibition method. The results showed that some of the synthesized pyrazole carboxamides displayed notable antifungal activity. The isoxazole pyrazole carboxylate 7ai exhibited significant antifungal activity against R. solani, with an EC50 value of 0.37 μg/mL. Nonetheless, this value was lower than that of the commercial fungicide, carbendazol. PMID:25759955

  10. Antifungal and phytotoxic activity of essential oil from root of Senecio amplexicaulis Kunth. (Asteraceae) growing wild in high altitude-Himalayan region.

    PubMed

    Singh, Rajendra; Ahluwalia, Vivek; Singh, Pratap; Kumar, Naresh; Prakash Sati, Om; Sati, Nitin

    2016-08-01

    This work was aimed to evaluate the essential oil from root of medicinally important plant Senecio amplexicaulis for chemical composition, antifungal and phytotoxic activity. The chemical composition analysed by GC/GC-MS showed the presence of monoterpene hydrocarbons in high percentage with marker compounds as α-phellandrene (48.57%), o-cymene (16.80%) and β-ocimene (7.61%). The essential oil exhibited significant antifungal activity against five phytopathogenic fungi, Sclerotium rolfsii, Macrophomina phaseolina, Rhizoctonia solani, Pythium debaryanum and Fusarium oxysporum. The oil demonstrated remarkable phytotoxic activity in tested concentration and significant reduction in seed germination percentage of Phalaris minor and Triticum aestivum at higher concentrations. The roots essential oil showed high yield for one of its marker compound (α-phellandrene) which makes it important natural source of this compound.

  11. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens.

    PubMed

    Harkenrider, Mitch; Sharma, Rita; De Vleesschauwer, David; Tsao, Li; Zhang, Xuting; Chern, Mawsheng; Canlas, Patrick; Zuo, Shimin; Ronald, Pamela C

    2016-01-01

    Wall-associated kinases comprise a sub-family of receptor-like kinases that function in plant growth and stress responses. Previous studies have shown that the rice wall-associated kinase, OsWAK25, interacts with a diverse set of proteins associated with both biotic and abiotic stress responses. Here, we show that wounding and BTH treatments induce OsWAK25 transcript expression in rice. We generated OsWAK25 overexpression lines and show that these lines exhibit a lesion mimic phenotype and enhanced expression of rice NH1 (NPR1 homolog 1), OsPAL2, PBZ1 and PR10. Furthermore, these lines show resistance to the hemibiotrophic pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae, yet display increased susceptibility to necrotrophic fungal pathogens, Rhizoctonia solani and Cochliobolus miyabeanus. PMID:26795719

  12. Complete genome sequence of Bacillus thuringiensis strain HD521.

    PubMed

    Li, Qiao; Xu, Li Z; Zou, Ting; Ai, Peng; Huang, Gang H; Li, Ping; Zheng, Ai P

    2015-01-01

    Bacillus thuringiensis is the most widely used biological pesticide in the world. It belongs to the Bacillus cereus sensu lato group, which contains six species. Among these six species, B. thuringiensis, B. anthracis, and B. cereus have a low genetic diversity. B. thuringiensis strain HD521 shows maroon colony which is different from most of the B. thuringiensis strains. Strain HD521 also displays an ability to inhibit plant sheath blight disease pathogen (Rhizoctonia solani AG1 IB) growth and can form bipyramidal parasporal crystals consisting of three cry7 genes. These crystals have an insecticidal activity against Henosepilachna vigintioctomaculata larva (Coleoptera). Here we report the complete genome sequence of strain HD521, which has one chromosome and six circular plasmids.

  13. Anti-microbial screening of endophytic fungi from Hypericum perforatum Linn.

    PubMed

    Zhang, Huawei; Ying, Chen; Tang, Yifei

    2014-09-01

    Anti-microbial properties of 21 endophytic fungal strains from Hypericum perforatum Linn. were evaluated against three human pathogens, Staphyloccocus aureus, Escherichia coli and Rhodotorula glutinis, and two phytopathogens, Rhizoctonia cerealis and Pyricularia grisea. The results indicated that the ethyl acetate extracts of endophytic fermentation broth had stronger anti-microbial activities than their fermentation broth. And the inhibitory effect of the endophytic extracts on human pathogens was better than those on phytopathogens. Among these endophytic fungi, strains GYLQ-10, GYLQ-24 and GYLQ-22 respectively showed the strongest activities against S. aureu, E. coli, R. glutinis. GYLQ-14 and GYLQ-22 exhibited the most pronounced effect on P. Grisea while both GYLQ-06 and GYLQ-08 had the strongest anti-microbial activities against R. cerealis. Till now, this study is the first report on the isolation of endophytic fungi from H. perforatum Linn. and their anti-microbial evaluation.

  14. Mn(II) and Cu(II) complexes of a bidentate Schiff's base ligand: Spectral, thermal, molecular modelling and mycological studies

    NASA Astrophysics Data System (ADS)

    Tyagi, Monika; Chandra, Sulekh; Tyagi, Prateek

    2014-01-01

    Complexes of manganese(II) and copper(II) of general composition M(L)2X2 have been synthesized [L = 2-acetyl thiophene thiosemicarbazone and X = Cl- and NO3-]. The elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, UV, NMR and EPR spectral studies of the compounds led to the conclusion that the ligand acts as a bidentate manner. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Mn(II) and tetragonal geometry for Cu(II) complexes. The thermal studies suggested that the complexes are more stable as compared to ligand. In molecular modelling the geometries of Schiff's base and metal complexes were fully optimized with respect to the energy using the 6-31g(d,p) basis set. The mycological studies of the compounds were examined against the plant pathogenic fungi i.e. Rhizoctonia bataticola, Macrophomina phaseolina, Fusarium odum.

  15. Synthesis and antifungal activities of 3-alkyl substituted thieno[2,3-d]pyrimidinones

    NASA Astrophysics Data System (ADS)

    Wang, H. M.; Deng, S. H.; Zheng, A. H.; Zhang, Q. Y.; Chen, X. B.; Zeng, X. H.; Hu, Y. G.

    2016-08-01

    The 3-aryl substituted thieno[2,3-d]pyrimidinones 3 by sequential reaction of iminophosphorane 1, aromatic isocyanates and various nucleophiles (HY), found some compounds showed good antitumor and antibacterial activities. Meanwhile, aliphatic isocyanates were applied in the reaction to prepare 3-alkyl substituted thieno[2,3- d]pyrimidinones, but there are no reports of their antifungal activities. As a continuation of our research for new biologically active heterocycles, we herein wish to report a facile synthesis and antifungal activities of 3-alkyl substituted thieno[2,3-d]pyrimidinones 6 via easily accessible iminophosphorane 1. The growth inhibitory effect of one concentration (50mg/L) of compounds 6 against five fungus(Fusarium oxysporium, Rhizoctonia solani, Colletotrichum gossypii, Gibberella zeae and Dothiorella gregaria) in vitro was tested by the method of toxic medium. Compound 6d showed the best inhibition rate against Gibberella zeae with 85.68%.

  16. Inoculation and scoring methods for rice sheath blight disease.

    PubMed

    Jia, Yulin; Liu, Guangjie; Park, Dong-Soo; Yang, Yinong

    2013-01-01

    Sheath blight disease of rice caused by the soilborne fungal pathogen Rhizoctonia solani has been a major disease of rice with a serious threat to stable rice production worldwide. Although various cultural practices have been used to manage the disease, it is advantageous and important to screen rice germplasm and identify resistant rice cultivars for more effective disease control. Recent advances in methods for the fungal inoculation and disease evaluation have enabled a better measurement of host resistance by minimizing confounding factors from plant architectures and environmental conditions. This chapter introduces five such methods: (1) detached leaf method; (2) micro-chamber method; (3) mist-chamber method; (4) parafilm sachet method; and (5) aluminum foil method. These methods are useful for screening and evaluating disease reactions of rice germplasm and facilitating the genetic mapping of disease resistance genes.

  17. Isolation and characterization of genetic variability in bacteria with β-hemolytic and antifungal activity isolated from the rhizosphere of Medicago truncatula plants.

    PubMed

    Hernández-Salmerón, J E; Prieto-Barajas, C M; Valencia-Cantero, E; Moreno-Hagelsieb, G; Santoyo, G

    2014-07-04

    In the present study, we analyzed the frequency of hemolytic and antifungal activities in bacterial isolates from the rhizosphere of Medicago truncatula plants. Of the 2000 bacterial colonies, 96 showed β-hemolytic activities (frequency, 4.8 x 10(-2)). Hemolytic isolates were analyzed for their genetic diversity by using random amplification of polymorphic DNA, yielding 88 haplotypes. The similarity coefficient of Nei and Li showed a polymorphic diversity ranging from 0.3 to 1. Additionally, 8 of the hemolytic isolates showed antifungal activity toward plant pathogens, Diaporthe phaseolorum, Colletotrichum acutatum, Rhizoctonia solani, and Fusarium oxysporum. The 16S ribosomal sequencing analysis showed that antagonistic bacterial isolates corresponded to Bacillus subtilis (UM15, UM33, UM42, UM49, UM52, and UM91), Bacillus pumilus (UM24), and Bacillus licheniformis (UM88). The present results revealed a higher genetic diversity among hemolytic isolates compared to that of isolates with antifungal action.

  18. Adipose triglyceride lipase (Atgl) mediates the antibiotic jinggangmycin-stimulated reproduction in the brown planthopper, Nilaparvata lugens Stål

    PubMed Central

    Jiang, Yi-Ping; Li, Lei; Liu, Zong-Yu; You, Lin-Lin; Wu, You; Xu, Bing; Ge, Lin-Quan; Song, Qi-Sheng; Wu, Jin-Cai

    2016-01-01

    The antibiotic jinggangmycin (JGM) is an agrochemical product widely used in China for controlling rice sheath blight, Rhizoctonia solani. Unexpectedly, it stimulates reproduction in the brown planthopper (BPH), Nilaparvata lugens (Stål). However, the underlying molecular mechanisms of the stimulation are unclear. The present investigation demonstrates that adipose triglyceride lipase (Atgl) is one of the enzymes involved in the JGM-stimulated reproduction in BPH. Silence of Atgl in JGM-treated (JGM + dsAtgl) females eliminated JGM-stimulated fecundity of BPH females. In addition, Atgl knockdown significantly reduced the protein and glycerin contents in the ovaries and fat bodies of JGM + dsAtgl females required for reproduction. We conclude that Atgl is one of the key enzymes responsible for JGM-stimulated reproduction in BPH. PMID:26739506

  19. Antifungal Substances from Streptomyces sp. A3265 Antagonistic to Plant Pathogenic Fungi

    PubMed Central

    Van Minh, Nguyen; Woo, E-Eum; Kim, Ji-Yul; Kim, Dae-Won; Hwang, Byung Soon; Lee, Yoon-Ju; Lee, In-Kyoung

    2015-01-01

    In a previous study, we identified a Streptomyces sp., A3265, as exhibiting potent antifungal activity against various plant pathogenic fungi, including Botrytis cinerea, Colletotrichum gloeosporioides, and Rhizoctonia solani. This strain also exhibited a biocontrolling effect against ginseng root rot and damping-off disease, common diseases of ginseng and other crops. In this study, we isolated two antifungal substances responsible for this biocontrolling effect via Diaion HP-20 and Sephadex LH-20 column chromatography, medium pressure liquid chromatography, and high-performance liquid chromatography. These compounds were identified as guanidylfungin A and methyl guanidylfungin A by spectroscopic methods. These compounds exhibited potent antimicrobial activity against various plant pathogenic fungi as well as against bacteria. PMID:26539051

  20. Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds.

    PubMed

    Ye, X Y; Ng, T B; Tsang, P W; Wang, J

    2001-07-01

    A homodimeric lectin adsorbed on Affi-gel blue gel and CM-Sepharose and possessing a molecular weight of 67 kDa was isolated from red kidney beans. The hemagglutinating activity of this lectin was inhibited by glycoproteins but not by simple sugars. The lectin manifested inhibitory activity on human immunodeficiency virus-1 reverse transcriptase and alpha-glucosidase. The N-terminal sequence of the lectin exhibited some differences from previously reported lectins from Phaseolus vulgaris but showed some similarity to chitinases. It exerted a suppressive effect on growth of the fungal species Fusarium oxysporum, Coprinus comatus, and Rhizoctonia solani. The lectin had low ribonuclease and negligible translation-inhibitory activities. PMID:11732688

  1. A new furoquinoline alkaloid with antifungal activity from the leaves of Ruta chalepensis L.

    PubMed

    Emam, A; Eweis, M; Elbadry, M

    2010-12-01

    Bioassay-guided separation with an eye toward antifungal activity led to the isolation of the new alkaloid 5-(1̀,1̀-dimethylallyl)-8-hydroxyfuro[2-3-b] quinoline (1) and the known biscoumarin daphnoretin (2) as the active constituents of the chloroform extract obtained from the leaves of Ruta chalepensis. The structures of the metabolites were elucidated on the basis of their spectral characteristics (NMR, UV, and MS) and were compared with the literature. The antifungal activity of the isolated compounds was evaluated against the phytopathogenic fungi Rhizoctonia solani, Sclerotium rolfsii, and Fusarium solani, which cause root-rot and wilt diseases in several economically important food crops such as potato, sugar beet, and tomato.

  2. Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum).

    PubMed

    Likar, Matevz; Bukovnik, Urska; Kreft, Ivan; Chrungoo, Nikhil K; Regvar, Marjana

    2008-09-01

    To determine the mycorrhizal status and to identify the fungi colonising the roots of the plants, common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum) were inoculated with an indigenous fungal mixture from a buckwheat field. Root colonisation was characterised by the hyphae and distinct microsclerotia of dark septate endophytes, with occasional arbuscules and vesicles of arbuscular mycorrhizal fungi. Sequences of arbuscular mycorrhizal fungi colonising tartary buckwheat clustered close to the Glomus species group A. Sequences with similarity to the Ceratobasidium/Rhizoctonia complex, a putative dark septate endophyte fungus, were amplified from the roots of both common and tartary buckwheat. To the best of our knowledge, this is the first report of arbuscular mycorrhizal colonisation in tartary buckwheat and the first molecular characterisation of these fungi that can colonise both of these economically important plant species.

  3. Role of Antagonistic Microorganisms and Organic Amendment in Stimulating the Defense System of Okra Against Root Rotting Fungi.

    PubMed

    Shafique, Hafiza Asma; Sultana, Viqar; Ara, Jehan; Ehteshamul-Haque, Syed; Athar, Mohammad

    2015-01-01

    Without application of chemical pesticides control of soilborne diseases is a great challenge. Stimulation of natural plant's defense is considered as one of the most promising alternative strategy for crop protection. Organic amendment of soil besides direct suppressing the pathogen, has been reported to have an influence on phytochemicals in plants. In the present study, Pseudomonas aeruginosa, a plant growth promoting rhizobacterium and Paecilomyces lilacinus, an egg parasite of root knot and cysts nematodes were examined individually and in combination in soil amended with cotton cake for suppressing the root rotting fungi and stimulating the synthesis of polyphenols and improving the antioxidant status in okra. Application of P. aeruginosa and P. lilacinus in soil amended with cotton cake significantly (P < 0.05) suppressed Macrophomina phaseolina, Fusarium oxysporum, and Fusarium solani with complete reduction of Rhizoctonia solani. Combine use of biocontrol agents in cotton cake amended soil showed maximum positive impact on plant growth, polyphenol concentration and antioxidant activity in okra.

  4. [Antibiotic activity of some fungi].

    PubMed

    Savchuk, Ia I; Tsyganenko, K S; Zaĭchenko, O M

    2013-01-01

    Biological activity of pure extracts of cultural filtrates of Aspergillus niveus 2411, Myrothecium cinctum 910, Ulocladium consortiale 960, Penicillium sp. 10-51 concerning wide spectrum of test-organisms was investigated. It was shown that the extracts had high levels of antibacterial activity against Gram-positive microorganisms, especially against Bacillus genus. But their activity against Gram-negative bacteria was a bit lower. On the other hand, metabolites of M. cinctum 910 and Penicillium sp. 10-51 did show the activity concerning phytopathogenic bacteria. Extracts of fungi showed fungistatic activity against yeasts, but they were not so active concerning fungal test-cultures. Extracts of A. niveus 2411, Penicillium sp. 10-51 suppressed the growth of Phoma betae. The highest level of fungistatic activity was shown by metabolites of M. cinctum 910. They showed activity against Aspergillus genus strains and phytopathogenic isolates of Fusarium lactis, Rhizoctonia solani and Botrytis cinerea. PMID:24479314

  5. Synthesis of Novel Pyrimethanil Grafted Chitosan Derivatives with Enhanced Antifungal Activity

    PubMed Central

    Liu, Song; Xing, Ronge; Chen, Xiaolin

    2016-01-01

    In this study, three pyrimethanil grafted chitosan (PML-g-CS) derivatives were obtained. The structures of the conjugates were confirmed by FT-IR, 1H NMR, and EA. The grafting ratios were measured by HPLC. Antifungal properties of pyrimethanil grafted chitosan (PML-g-CS) derivatives against the plant pathogenic fungi Rhizoctonia solani and Gibberella zeae were investigated at concentrations of 100, 200, and 400 mg/L. The PML-g-CS derivatives showed enhanced antifungal activity in comparison with chitosan. The PML-g-CS-1 showed the best antifungal activity against R. solani, whose antifungal index was 58.32%. The PML-g-CS-2 showed the best antifungal activity against G. zeae, whose antifungal index was 53.48%. The conjugation of chitosan and pyrimethanil showed synergistic effect. The PML-g-CS derivatives we developed showed potential for further study and application in crop protection. PMID:27529072

  6. Discovery of Potent Succinate-Ubiquinone Oxidoreductase Inhibitors via Pharmacophore-linked Fragment Virtual Screening Approach.

    PubMed

    Xiong, Li; Zhu, Xiao-Lei; Gao, Hua-Wei; Fu, Yu; Hu, Sheng-Quan; Jiang, Li-Na; Yang, Wen-Chao; Yang, Guang-Fu

    2016-06-22

    Succinate-ubiquinone oxidoreductase (SQR) is an attractive target for fungicide discovery. Herein, we report the discovery of novel SQR inhibitors using a pharmacophore-linked fragment virtual screening approach, a new drug design method developed in our laboratory. Among newly designed compounds, compound 9s was identified as the most potent inhibitor with a Ki value of 34 nM against porcine SQR, displaying approximately 10-fold higher potency than that of the commercial control penthiopyrad. Further inhibitory kinetics studies revealed that compound 9s is a noncompetitive inhibitor with respect to the substrate cytochrome c and DCIP. Interestingly, compounds 8a, 9h, 9j, and 9k exhibited good in vivo preventive effects against Rhizoctonia solani. The results obtained from molecular modeling showed that the orientation of the R(2) group had a significant effect on binding with the protein. PMID:27225833

  7. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production.

    PubMed

    Qualhato, Thiago Fernandes; Lopes, Fabyano Alvares Cardoso; Steindorff, Andrei Stecca; Brandão, Renata Silva; Jesuino, Rosália Santos Amorim; Ulhoa, Cirano José

    2013-09-01

    Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.

  8. Role of Antagonistic Microorganisms and Organic Amendment in Stimulating the Defense System of Okra Against Root Rotting Fungi.

    PubMed

    Shafique, Hafiza Asma; Sultana, Viqar; Ara, Jehan; Ehteshamul-Haque, Syed; Athar, Mohammad

    2015-01-01

    Without application of chemical pesticides control of soilborne diseases is a great challenge. Stimulation of natural plant's defense is considered as one of the most promising alternative strategy for crop protection. Organic amendment of soil besides direct suppressing the pathogen, has been reported to have an influence on phytochemicals in plants. In the present study, Pseudomonas aeruginosa, a plant growth promoting rhizobacterium and Paecilomyces lilacinus, an egg parasite of root knot and cysts nematodes were examined individually and in combination in soil amended with cotton cake for suppressing the root rotting fungi and stimulating the synthesis of polyphenols and improving the antioxidant status in okra. Application of P. aeruginosa and P. lilacinus in soil amended with cotton cake significantly (P < 0.05) suppressed Macrophomina phaseolina, Fusarium oxysporum, and Fusarium solani with complete reduction of Rhizoctonia solani. Combine use of biocontrol agents in cotton cake amended soil showed maximum positive impact on plant growth, polyphenol concentration and antioxidant activity in okra. PMID:26373176

  9. Pathogenicity of some Fusarium species associated with superficial blemishes of potato tubers.

    PubMed

    Gashgari, Rukaia M; Gherbawy, Youssuf A

    2013-01-01

    As an organ for reserve and propagation, the tuber grows underground and is in contact with soil-borne microorganisms, making it potentially exposed to blemishes. Therefore, the objective of this study was the possibility of using some modern methods of molecular diagnostics and detection of the presence of fungal contaminants in potato blemishes in Al-Qasim (Saudi Arabia). Polygonal lesions were the most observed blemish type in the collected samples. One hundred and sixty isolates were recovered from different types of blemishes obtained in this study. Fusarium, Penicillium, Ilyonectria, Alternaria and Rhizoctonia were the most common genera collected from different blemish types. Using ITS region sequencing, all collected fungi were identified at the species level. All Fusarium strains collected during this study were used to detect their pathogenicity against potato tubers. This is the first comprehensive report on the identification of major pathogenic fungi isolated from potato tuber blemishes in Saudi Arabia.

  10. The evolution and pathogenic mechanisms of the rice sheath blight pathogen

    PubMed Central

    Zheng, Aiping; Lin, Runmao; Zhang, Danhua; Qin, Peigang; Xu, Lizhi; Ai, Peng; Ding, Lei; Wang, Yanran; Chen, Yao; Liu, Yao; Sun, Zhigang; Feng, Haitao; Liang, Xiaoxing; Fu, Rongtao; Tang, Changqing; Li, Qiao; Zhang, Jing; Xie, Zelin; Deng, Qiming; Li, Shuangcheng; Wang, Shiquan; Zhu, Jun; Wang, Lingxia; Liu, Huainian; Li, Ping

    2013-01-01

    Rhizoctonia solani is a major fungal pathogen of rice (Oryza sativa L.) that causes great yield losses in all rice-growing regions of the world. Here we report the draft genome sequence of the rice sheath blight disease pathogen, R. solani AG1 IA, assembled using next-generation Illumina Genome Analyser sequencing technologies. The genome encodes a large and diverse set of secreted proteins, enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, which probably reflect an exclusive necrotrophic lifestyle. We find few repetitive elements, a closer relationship to Agaricomycotina among Basidiomycetes, and expand protein domains and families. Among the 25 candidate pathogen effectors identified according to their functionality and evolution, we validate 3 that trigger crop defence responses; hence we reveal the exclusive expression patterns of the pathogenic determinants during host infection. PMID:23361014

  11. Sativin: a novel antifungal miraculin-like protein isolated from legumes of the sugar snap Pisum sativum var. macrocarpon.

    PubMed

    Ye, X Y; Wang, H X; Ng, T B

    2000-07-01

    An antifungal protein designated sativin was isolated from the legumes of the sugar snap (also known as honey pea) Pisum sativum var. macrocarpon. The procedure entailed extraction, affinity chromatography on Affi-gel blue gel and ion exchange chromatography on CM-Sepharose. The protein exhibited a molecular weight of 38 kDa in SDS-polyacrylamide gel electrophoresis. It possessed an N-terminal amino acid sequence which showed similarity to those of miraculin (a sweet protein) and pisavin (a ribosome-inactivating protein from Pisum sativum var arvense Poir manifesting similarity to miraculin). Unlike pisavin, however, sativin demonstrated negligible ribonuclease activity and inhibited translation in a rabbit reticulocyte lysate system with a very low potency (IC50= 14 microM). Sativin exerted antifungal activity against Fusarium oxysporum, Coprinus comatus and Pleurotus ostreatus but not against Rhizoctonia solani. PMID:10968407

  12. Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522).

    PubMed

    Sasidharan, Anju; Sasidharan, Nishanth Kumar; Amma, Dileepkumar Bhaskaran Nair Saraswathy; Vasu, Radhakrishnan Kokkuvayil; Nataraja, Anupama Vijaya; Bhaskaran, Krishnakumar

    2015-10-01

    A novel strain of Chromobacterium sp. NIIST (MTCC 5522) producing high level of purple blue bioactive compound violacein was isolated from clay mine acidic sediment. During 24 h aerobic incubation in modified Luria Bertani medium, around 0.6 g crude violacein was produced per gram of dry weight biomass. An inexpensive method for preparing crystalline, pure violacein from crude pigment was developed (12.8 mg violacein/L) and the pure compound was characterized by different spectrometric methods. The violacein prepared was found effective against a number of plant and human pathogenic fungi and yeast species such as Cryptococcus gastricus, Trichophyton rubrum, Fusarium oxysporum, Rhizoctonia solani, Aspergillus flavus, Penicillium expansum, and Candida albicans. The best activity was recorded against Trichophyton rubrum (2 -g/ml), a human pathogen responsible for causing athlete-s foot infection. This is the first report of antifungal activity of purified violacein against pathogenic fungi and yeast. PMID:26428920

  13. Phytopathogenic fungal inhibitors from celery seeds.

    PubMed

    Liu, Tao; Liu, Fu-Guang; Xie, Hui-Qin; Mu, Qing

    2012-07-01

    Extract of celery (Apium graveolens L.) seeds was investigated against phytopathogenic fungi. The light petroleum extract showed promising inhibition activities in the tests against Rhizoctonia solani and Fusarium oxysporum f. sp. vasinfecum. Chromatographic separation of the extract gave 19 fractions, one of which, QCZ-4, possessed significant inhibitory rates of 64.6%, 88.4% and 54.7% at a concentration of 100 ppm against R. solani, F. oxysporium f. sp. vasinfecum and Alternaria alternata, respectively. Major components in the active fraction were identified by GC-MS as p-(2-aminoethyl)phenol (39.7%), 3-(3,4-dimethybenzoyl) propionic acid (32.6%) and p-heptylphenol (26.9%).

  14. Compatible fungi, suitable medium, and appropriate developmental stage essential for stable association of Dendrobium chrysanthum.

    PubMed

    Hajong, Subarna; Kumaria, Suman; Tandon, Pramod

    2013-12-01

    Establishment of symbiotic association at the appropriate developmental stage helped maintain continued growth which is vital for the long-term ex vitro survival of the orchid. In the present study, symbiotic association was carried out using different developmental stages of Dendrobium chrysanthum and pathogenic Rhizoctonia isolates (obtained from orchids and non-orchid hosts) in different culture media. Isolate 2162 supported highest symbiotic germination on OMA-S (oat meal agar medium without nutrients + sucrose), whereas, stable symbiotic association with plantlets was obtained with isolate 4634 on OMA-NC (oat meal agar medium + cellulose). Isolate Dc-2S2 obtained from the host plant did not promote seed germination nor did it form association with protocorms or plantlets. This study, for the first time identifies a combination of compatible fungal isolate, suitable culture medium, and appropriate developmental stage at which symbiotic association in vitro can be deemed successful for the medicinally important orchid, D. chrysanthum.

  15. Secondary metabolites: applications on cultural heritage.

    PubMed

    Sasso, S; Scrano, L; Bonomo, M G; Salzano, G; Bufo, S A

    2013-01-01

    Biological sciences and related bio-technology play a very important role in research projects concerning protection and preservation of cultural heritage for future generations. In this work secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga) ICMP 11096 strain and crude extract of glycoalkaloids from Solanaceae plants, were tested against a panel of microorganisms isolated from calcarenite stones of two historical bridges located in Potenza and in Campomaggiore (Southern Italy). The isolated bacteria belong to Bacillus cereus and Arthrobacter agilis species, while fungi belong to Aspergillus, Penicillium, Coprinellus, Fusarium, Rhizoctonio and Stemphylium genera. Bga broth (unfiltered) and glycoalkaloids extracts were able to inhibit the growth of all bacterial isolates. Bga culture was active against fungal colonies, while Solanaceae extract exerted bio-activity against Fusarium and Rhizoctonia genera.

  16. Isolation of a New Mexican Strain of Bacillus subtilis with Antifungal and Antibacterial Activities

    PubMed Central

    Basurto-Cadena, M. G. L.; Vázquez-Arista, M.; García-Jiménez, J.; Salcedo-Hernández, R.; Bideshi, D. K.; Barboza-Corona, J. E.

    2012-01-01

    Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21) demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 21 produced augment in the number of leaves per plant and an increment in the length of healthy leaves in comparison with untreated plants. In addition, B. subtilis 21 showed activity against pathogenic bacteria. Secreted proteins by B. subtilis 21 were studied, detecting the presence of proteases and bacteriocin-like inhibitor substances that could be implicated in its antagonistic activity. Chitinases and zwittermicin production could not be detected. Then, B. subtilis 21 could potentially be used to control phytopathogenic fungi that infect strawberry plants. PMID:22593682

  17. Isolation of a new Mexican strain of Bacillus subtilis with antifungal and antibacterial activities.

    PubMed

    Basurto-Cadena, M G L; Vázquez-Arista, M; García-Jiménez, J; Salcedo-Hernández, R; Bideshi, D K; Barboza-Corona, J E

    2012-01-01

    Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21) demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 21 produced augment in the number of leaves per plant and an increment in the length of healthy leaves in comparison with untreated plants. In addition, B. subtilis 21 showed activity against pathogenic bacteria. Secreted proteins by B. subtilis 21 were studied, detecting the presence of proteases and bacteriocin-like inhibitor substances that could be implicated in its antagonistic activity. Chitinases and zwittermicin production could not be detected. Then, B. subtilis 21 could potentially be used to control phytopathogenic fungi that infect strawberry plants. PMID:22593682

  18. Screening of Pseudomonas and Bacillus isolates for potential biocontrol of the damping-off of bean (Phaseolus coccineus).

    PubMed

    Peighami-Ashnaei, S; Sharifi-Tehrani, A; Ahmadzadeh, M; Behboudi, K

    2009-01-01

    In this study fifteen isolates of identified Pseudomonas fluorescens and Bacillus subtilis were investigated for control of bean damping-off disease caused by Rhizoctonia solani. In vitro, P. fluorescens P-6 and B. subtilis B-3 showed the most inhibitory zone in dual culture assay against R. solani. The growth of P-6 (4.5 x 10(8) cfu/ml) was significantly higher than in the other treatments. In greenhouse condition, all of the isolates effectively controlled damping-off on bean. P. fluorescens P-5 and P-6 showed the considerable results against R. solani and could reduce the damping-off disease from 100% to less than 30%. P-5, P-6 (P. fluorescens) and 8-16 (8. subtilis) strains had the highest effect on fresh weight of bean.

  19. Antifungal Substances from Streptomyces sp. A3265 Antagonistic to Plant Pathogenic Fungi.

    PubMed

    Van Minh, Nguyen; Woo, E-Eum; Kim, Ji-Yul; Kim, Dae-Won; Hwang, Byung Soon; Lee, Yoon-Ju; Lee, In-Kyoung; Yun, Bong-Sik

    2015-09-01

    In a previous study, we identified a Streptomyces sp., A3265, as exhibiting potent antifungal activity against various plant pathogenic fungi, including Botrytis cinerea, Colletotrichum gloeosporioides, and Rhizoctonia solani. This strain also exhibited a biocontrolling effect against ginseng root rot and damping-off disease, common diseases of ginseng and other crops. In this study, we isolated two antifungal substances responsible for this biocontrolling effect via Diaion HP-20 and Sephadex LH-20 column chromatography, medium pressure liquid chromatography, and high-performance liquid chromatography. These compounds were identified as guanidylfungin A and methyl guanidylfungin A by spectroscopic methods. These compounds exhibited potent antimicrobial activity against various plant pathogenic fungi as well as against bacteria.

  20. Novonestmycins A and B, two new 32-membered bioactive macrolides from Streptomyces phytohabitans HBERC-20821.

    PubMed

    Wan, Zhongyi; Fang, Wei; Shi, Liqiao; Wang, Kaimei; Zhang, Yani; Zhang, Zhigang; Wu, Zhaoyuan; Yang, Ziwen; Gu, Yucheng

    2015-03-01

    Two new 32-membered macrolide compounds, named Novonestmycins A (1) and B (2), were isolated from the soil strain Streptomyces phytohabitans HBERC-20821. Their structures were elucidated by using spectroscopic methods, including 1D, 2D-NMR and MS spectrometry. The two compounds showed strong activities against the phytophathogenic fungi Corynespora cassiicola, Rhizoctonia solani and Septoria nodorum, with MIC values of 0.78, 0.39 and 0.78 μg ml(-1), respectively. In addition, the two compounds exhibited potent inhibitory activities against four different human tumor cell lines as well as one 5-FU-resistant human hepatocellular carcinoma cell line, with IC50 of 0.15-0.48 μg ml(-1) and 0.24-1.34 μg ml(-1), respectively.

  1. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens.

    PubMed

    Lorito, M; Woo, S L; Garcia, I; Colucci, G; Harman, G E; Pintor-Toro, J A; Filippone, E; Muccifora, S; Lawrence, C B; Zoina, A; Tuzun, S; Scala, F; Fernandez, I G

    1998-07-01

    Disease resistance in transgenic plants has been improved, for the first time, by the insertion of a gene from a biocontrol fungus. The gene encoding a strongly antifungal endochitinase from the mycoparasitic fungus Trichoderma harzianum was transferred to tobacco and potato. High expression levels of the fungal gene were obtained in different plant tissues, which had no visible effect on plant growth and development. Substantial differences in endochitinase activity were detected among transformants. Selected transgenic lines were highly tolerant or completely resistant to the foliar pathogens Alternaria alternata, A. solani, Botrytis cinerea, and the soilborne pathogen Rhizoctonia solani. The high level and the broad spectrum of resistance obtained with a single chitinase gene from Trichoderma overcome the limited efficacy of transgenic expression in plants of chitinase genes from plants and bacteria. These results demonstrate a rich source of genes from biocontrol fungi that can be used to control diseases in plants.

  2. Antimicrobial and insecticidal protein isolated from seeds of Clitoria ternatea, a tropical forage legume.

    PubMed

    Kelemu, Segenet; Cardona, César; Segura, Gustavo

    2004-12-01

    The tropical forage legume Clitoria ternatea (L.) has important agronomic traits such as adaptation to a wide range of soil conditions and resistance to drought. It is resistant to a number of pathogens and pests. These important traits gave us reasons to look more closely at the plant. A highly basic small protein was purified from seeds of C. ternatea to homogeneity by using ultrafiltration with Centricon-3 membrane tubes and preparative granulated-bed isoelectric focusing (IEF). A single protein band was obtained on both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and IEF gels. The protein, designated 'finotin', has broad and potent inhibitory effect on the growth of various important fungal pathogens of plants, namely Rhizoctonia solani, Fusarium solani, Colletotrichum lindemuthianum, Lasiodiplodia theobromae, Pyricularia grisea, Bipolaris oryzae and Colletotrichum gloeosporioides. It also inhibits the common bean bacterial blight pathogen Xanthomonas axonopodis pv. phaseoli. Moreover, finotin has powerful inhibitory properties against the bean bruchids Zabrotes subfasciatus and Acanthoscelides obtectus.

  3. Melanins and resistance of fungi to lysis.

    PubMed

    Bloomfield, B J; Alexander, M

    1967-04-01

    Hyphal walls of Aspergillus phoenicis and Sclerotium rolfsii are composed of large amounts of glucose- and N-acetylhexosamine-containing polysaccharides, and the walls are extensively digested by streptomycete culture filtrates or by a mixture of purified chitinase and beta-(1 --> 3) glucanase preparations with the release of the monomeric units. A. phoenicis conidial walls also contain polymers of glucose and N-acetylhexosamine, but these walls are resistant to digestion by microorganisms or the enzyme combination active on the hyphae. When the melanin-containing spicules were removed from the spore surface, however, the chitinase and glucanase partially digested the underlying structural components. Microorganisms decomposing hyphal walls of S. rolfsii did not attack the melanin-covered sclerotia produced by this fungus. No microorganism capable of lysing two fungi, Rhizoctonia solani and Cladosporium sp., producing hyphae containing abundant melanin was found. The ecological significance of these findings and possible mechanisms for the protective influence associated with melanins are discussed.

  4. Endophytic colonization of balloon flower by antifungal strain Bacillus sp. CY22.

    PubMed

    Cho, Soo Jeong; Lim, Woo Jin; Hong, Su Young; Park, Sang Ryeol; Yun, Han Dae

    2003-10-01

    Endophytic Bacillus sp. CY22 was previously isolated from the root interior of the balloon flower (Platycodon grandiflorum) (Cho et al., Biosci. Biotechnol. Biochem., 66, 1270-1275 (2002)). Three-month-old balloon flower seedlings were inoculated with 10(7) cfu/ml of strain CY22R3, a rifampicin-resistant strain of CY22, and external and internal root colonization was assessed 2 and 4 weeks later. After inoculation, large numbers of bacteria were observed on the root surface by scanning electron microscopy. More detailed studies using optical and transmission electron microscopy confirmed that Bacillus sp. CY22 was endophytically established within intercellular spaces, cortical cells, and aerenchymas of root. Also, Bacillus sp. CY22 showed antibiotic activities against several phytopathogens by producing the antibiotic iturin A. In the pot test, root rot of balloon flower seedlings caused by Rhizoctonia solani was suppressed when the Bacillus sp. CY22R3 was inoculated into the soil.

  5. Combretastatin A-4 and Derivatives: Potential Fungicides Targeting Fungal Tubulin.

    PubMed

    Ma, Zhong-lin; Yan, Xiao-jing; Zhao, Lei; Zhou, Jiu-jiu; Pang, Wan; Kai, Zhen-peng; Wu, Fan-hong

    2016-02-01

    Combretastatin A-4, first isolated from the African willow tree Combretum caffrum, is a tubulin polymerization inhibitor in medicine. It was first postulated as a potential fungicide targeting fungal tubulin for plant disease control in this study. Combretastatin A-4 and its derivatives were synthesized and tested against Rhizoctonia solani and Pyricularia oryzae. Several compounds have EC50 values similar to or better than that of isoprothiolane, which is widely used for rice disease control. Structure-activity relationship study indicated the the cis configuration and hydroxyl group in combretastatin A-4 are crucial to the antifungal effect. Molecular modeling indicated the binding sites of combretastatin A-4 and carbendazim on fungal tubulin are totally different. The bioactivity of combretastatin A-4 and its derivatives against carbendazim-resistant strains was demonstrated in this study. The results provide a new approach for fungicide discovery and fungicide resistance management.

  6. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight.

    PubMed

    Datta, K; Baisakh, N; Thet, K Maung; Tu, J; Datta, S K

    2002-12-01

    Here we describe the development of transgene-pyramided stable elite rice lines resistant to disease and insect pests by conventional crossing of two transgenic parental lines transformed independently with different genes. The Xa21 gene (resistance to bacterial blight), the Bt fusion gene (for insect resistance) and the chitinase gene (for tolerance of sheath blight) were combined in a single rice line by reciprocal crossing of two transgenic homozygous IR72 lines. F4 plant lines carrying all the genes of interest stably were identified using molecular methods. The identified lines, when exposed to infection caused by Xanthomonas oryzae pv oryzae, showed resistance to bacterial blight. Neonate larval mortality rates of yellow stem borer ( Scirpophaga incertulas) in an insect bioassay of the same identified lines were 100%. The identified line pyramided with different genes to protect against yield loss showed high tolerance of sheath blight disease caused by Rhizoctonia solani.

  7. Growth responses of two phytopathogenic fungi to fernasan in culture media.

    PubMed

    Abdalla, M H

    1975-06-14

    The toxic effect of fernasan (containing 25% thiram) was tested on Rhizoctonia solani and Fusarium solani in liquid and agar media. The fungicide was more effective in liquid (at 100 p.p.m.) than in solid media, where 400 p.p.m. checked the growth of R. solani, but was ineffective against F. solani. Both fungi exhibited a zone of inversion growth in liquid culture whereby certain intermediate concentrations were less inhibitory than lower or subsequently higher doses. Similar reaction was recorded for F. solani alone in fungicide-containing agar media. Sclerotium formation by R. solani was highly significant, in relation to controls, at 40 p.p.m. The abundance of chlamydospores of F. solani was coupled with cessation of conidium formation increasing fernasan doses.

  8. [Study of the effect of volatile metabolites of Trichoderma hamatum on the growth of phytopathogenic soilborne fungi.].

    PubMed

    Dal Bello, G M; Mónaco, C I; Cháves, A R

    1997-09-01

    Volatile compounds produced by Trichoderma hamatum were tested for their capacity to suppress in vitro the growth of Alternaria citri, Bipolaris cynodontis, Bipolaris sorokiniana, Curvularia brachyspora, Curvularia lunata, Curvularia oryzae-sativae, Drechslera tritici-repentis, Rhizoctonia solani, Sclerotinia minor and Sclerotium rolfsii. The organisms were cultured in an apparatus made with two Erlenmeyer flasks assembled by their top parts. With the aid of the gas chromatographic technique the variation of carbon dioxide, oxygen and ethylene in the internal system was determined. Acetaldehyde and ethanol were not found. Due to the respiratory metabolism of T. hamatum the carbon dioxide level progressively increased while the oxygen content decreased. Ethylene production was low and after three days remained constant. Excepting C. oryzae-sativae and B. cynodontis the other species showed changes in the growth and development. These results suggest the inhibitory volatiles of T. hamatum as one possible mechanism of biological control.

  9. Novel macrocyclic molecules based on 12a-N substituted 16-membered azalides and azalactams as potential antifungal agents.

    PubMed

    Wang, Xiaolei; Zhang, Shun; Pang, Yanlong; Yuan, Huihui; Liang, Xiaomei; Zhang, Jianjun; Wang, Daoquan; Wang, Mingan; Dong, Yanhong

    2014-02-12

    Novel macrocyclic molecules comprising sulfonyl and acyl moiety at the position N-12a of 16-membered azalides (6a-n) and azalactams (10a-r) scaffold were synthesized from cyclododecanone 1 as starting material via 5 steps and 4 steps, respectively. The antifungal activity of these compounds against Sclerotinia sclerotiorum, Pyricularia oryzae, Botrytis cinerea, Rhizoctonia solani and Phytophthora capsici were evaluated and found that compounds possessing α-exomethylene (6c, 6d, 6e and 6g) showed antifungal activity comparable to commercial fungicide Chlorothalonil against P. oryzae and compounds possessing p-chlorobenzoyl exhibited enhanced antifungal activity than those with other substituents against S. sclerotiorum, P. oryzae, and B. cinerea. These findings suggested that the α-exomethylene and p-chlorobenzoyl may be two potential pharmacological active groups with antifungal activities. PMID:24469079

  10. Disease-reducing effect of Chromolaena odorata extract on sheath blight and other rice diseases.

    PubMed

    Khoa, Nguyen Đac; Thuy, Phan Thi Hong; Thuy, Tran Thi Thu; Collinge, David B; Jørgensen, Hans Jørgen Lyngs

    2011-02-01

    Sheath blight caused by Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) is a major cause of crop loss in intensive rice production systems. No economically viable control methods have been developed. We screened aqueous extracts of common herbal plants that could reduce sheath blight lesions and found that foliar spraying and seed soaking application of extracts of either fresh or dried leaves of Chromolaena odorata gave up to 68% reduction in sheath blight lesion lengths under controlled and semi-field conditions. The observed reductions were not dependent on growth conditions of C. odorata and rice cultivar. The effect was observed until 21 days after inoculation and was not dependent on microbial activity. Under semi-field conditions, extracts also reduced severity of other important rice diseases, i.e., blast (Pyricularia oryzae) using foliar spray (up to 45%), brown spot (Bipolaris oryzae) using seed treatment (up to 57%), and bacterial blight (Xanthomonas oryzae pv. oryzae) using both application methods (up to 50%). PMID:20839964

  11. Combretastatin A-4 and Derivatives: Potential Fungicides Targeting Fungal Tubulin.

    PubMed

    Ma, Zhong-lin; Yan, Xiao-jing; Zhao, Lei; Zhou, Jiu-jiu; Pang, Wan; Kai, Zhen-peng; Wu, Fan-hong

    2016-02-01

    Combretastatin A-4, first isolated from the African willow tree Combretum caffrum, is a tubulin polymerization inhibitor in medicine. It was first postulated as a potential fungicide targeting fungal tubulin for plant disease control in this study. Combretastatin A-4 and its derivatives were synthesized and tested against Rhizoctonia solani and Pyricularia oryzae. Several compounds have EC50 values similar to or better than that of isoprothiolane, which is widely used for rice disease control. Structure-activity relationship study indicated the the cis configuration and hydroxyl group in combretastatin A-4 are crucial to the antifungal effect. Molecular modeling indicated the binding sites of combretastatin A-4 and carbendazim on fungal tubulin are totally different. The bioactivity of combretastatin A-4 and its derivatives against carbendazim-resistant strains was demonstrated in this study. The results provide a new approach for fungicide discovery and fungicide resistance management. PMID:26711170

  12. Antifungal and phytotoxic activity of essential oil from root of Senecio amplexicaulis Kunth. (Asteraceae) growing wild in high altitude-Himalayan region.

    PubMed

    Singh, Rajendra; Ahluwalia, Vivek; Singh, Pratap; Kumar, Naresh; Prakash Sati, Om; Sati, Nitin

    2016-08-01

    This work was aimed to evaluate the essential oil from root of medicinally important plant Senecio amplexicaulis for chemical composition, antifungal and phytotoxic activity. The chemical composition analysed by GC/GC-MS showed the presence of monoterpene hydrocarbons in high percentage with marker compounds as α-phellandrene (48.57%), o-cymene (16.80%) and β-ocimene (7.61%). The essential oil exhibited significant antifungal activity against five phytopathogenic fungi, Sclerotium rolfsii, Macrophomina phaseolina, Rhizoctonia solani, Pythium debaryanum and Fusarium oxysporum. The oil demonstrated remarkable phytotoxic activity in tested concentration and significant reduction in seed germination percentage of Phalaris minor and Triticum aestivum at higher concentrations. The roots essential oil showed high yield for one of its marker compound (α-phellandrene) which makes it important natural source of this compound. PMID:27498832

  13. Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens.

    PubMed Central

    Grondona, I; Hermosa, R; Tejada, M; Gomis, M D; Mateos, P F; Bridge, P D; Monte, E; Garcia-Acha, I

    1997-01-01

    Monoconidial cultures of 15 isolates of Trichoderma harzianum were characterized on the basis of 82 morphological, physiological, and biochemical features and 99 isoenzyme bands from seven enzyme systems. The results were subjected to numerical analysis which revealed four distinct groups. Representative sequences of the internal transcribed spacer 1 (ITS 1)-ITS 2 region in the ribosomal DNA gene cluster were compared between groups confirming this distribution. The utility of the groupings generated from the morphological, physiological, and biochemical data was assessed by including an additional environmental isolate in the electrophoretic analysis. The in vitro antibiotic activity of the T. harzianum isolates was assayed against 10 isolates of five different soilborne fungal plant pathogens: Aphanomyces cochlioides, Rhizoctonia solani, Phoma betae, Acremonium cucurbitacearum, and Fusarium oxysporum f. sp. radicis lycopersici. Similarities between levels and specificities of biological activity and the numerical characterization groupings are both discussed in relation to antagonist-specific populations in known and potential biocontrol species. PMID:9251205

  14. [Study of the effect of volatile metabolites of Trichoderma hamatum on the growth of phytopathogenic soilborne fungi.].

    PubMed

    Dal Bello, G M; Mónaco, C I; Cháves, A R

    1997-09-01

    Volatile compounds produced by Trichoderma hamatum were tested for their capacity to suppress in vitro the growth of Alternaria citri, Bipolaris cynodontis, Bipolaris sorokiniana, Curvularia brachyspora, Curvularia lunata, Curvularia oryzae-sativae, Drechslera tritici-repentis, Rhizoctonia solani, Sclerotinia minor and Sclerotium rolfsii. The organisms were cultured in an apparatus made with two Erlenmeyer flasks assembled by their top parts. With the aid of the gas chromatographic technique the variation of carbon dioxide, oxygen and ethylene in the internal system was determined. Acetaldehyde and ethanol were not found. Due to the respiratory metabolism of T. hamatum the carbon dioxide level progressively increased while the oxygen content decreased. Ethylene production was low and after three days remained constant. Excepting C. oryzae-sativae and B. cynodontis the other species showed changes in the growth and development. These results suggest the inhibitory volatiles of T. hamatum as one possible mechanism of biological control. PMID:17655390

  15. Chemical composition and antifungal activity of Artemisia nilagirica essential oil growing in northern hilly areas of India.

    PubMed

    Sati, Sushil Chandra; Sati, Nitin; Ahluwalia, Vivek; Walia, Suresh; Sati, O P

    2013-01-01

    Essential oil extracted from aerial parts of Artemisia nilagirica was analysed by gas chromatography-mass spectroscopy. Forty-three constituents amounting to 98.16% of the total essential oil contents were identified. The essential oil contained approximately 79.91% monoterpenoids and 18.25% sesquiterpenoids. α-Thujone (36.35%), β-thujone (9.37%), germacrene D (6.32%), 4-terpineol (6.31%), β-caryophyllene (5.43%), camphene (5.47%) and borneol (4.12%) were identified as the major constituents. The essential oil exhibited significant antifungal activity against Rhizoctonia solani (ED(50), 85.75 mg L(-1)), Sclerotium rolfsii (ED(50), 87.63 mg L(-1)) and Macrophomina phaseolina (ED(50), 93.23 mg L(-1)). This study indicated that A. nilagirica essential oil can be used to control phytopathogenic fungi infesting agricultural crops and commodities. PMID:22348279

  16. Thiol redox state and related enzymes in sclerotium-forming filamentous phytopathogenic fungi.

    PubMed

    Patsoukis, Nikolaos; Georgiou, D Christos

    2008-05-01

    Thiol redox state (TRS) reduced and oxidized components form profiles characteristic of each of the four main types of differentiation in the sclerotiogenic phytopathogenic fungi: loose, terminal, lateral-chained, and lateral-simple, represented by Rhizoctonia solani, Sclerotinia sclerotiorum, Sclerotium rolfsii, and Sclerotinia minor, respectively. A common feature of these fungi is that as their undifferentiated mycelium enters the differentiated state, it is accompanied by a decrease in the low oxidative stress-associated total reduced thiols and/or by an increase of the high oxidative stress-associated total oxidized thiols either in the sclerotial mycelial substrate or in its corresponding sclerotium, indicating a relationship between TRS-related oxidative stress and sclerotial differentiation. Moreover, the four studied sclerotium types exhibit high activities of TRS-related antioxidant enzymes, indicating the existence of antioxidant protection of the hyphae of the sclerotium medulla until conditions become appropriate for sclerotium germination. PMID:18400483

  17. Schiff bases as potential fungicides and nitrification inhibitors.

    PubMed

    Aggarwal, Nisha; Kumar, Rajesh; Dureja, Prem; Rawat, Diwan S

    2009-09-23

    A number of substituted Schiff bases were synthesized and characterized by (1)H NMR and mass spectrometry. These compounds were screened for antifungal activity in vitro against pathogenic fungi, namely, Sclerotium rolfsii and Rhizoctonia bataticola, and for their effect on nitrification inhibition under laboratory conditions. Maximum antifungal activity was exhibited by (2,4-dichlorobenzylidene)-(2,4,5-trichlorophenyl)-amine and (3-nitrobenzylidene)-(2,4,5-trichlorophenyl)-amine against both fungi (ED(50) with range from 3 to 24 microg/mL). Maximum nitrification inhibition (NI) was exhibited by (2,4-dichlorobenzylidene)-(2-fluorophenyl)-amine, (4-fluorophenyl)-(3-nitrobenzylidene)-amine, (2,6-dichlorobenzylidene)-(4-fluorophenyl)-amine, and (2,6-dichlorobenzylidene)-(3 fluorophenyl)-amine (NI in the range 91-96%). PMID:19702271

  18. Activity of Flavanones Isolated from Rhododendron hainanense against Plant Pathogenic Fungi.

    PubMed

    Li, Ya; Zhao, Jie; Gao, Kun

    2016-05-01

    In a search for naturally occurring antimicrobial compounds in medicinal plants and herbs, seven flavanones were isolated from the aerial parts of Rhododendron hainanense and were tested for their antimicrobial activities against six bacteria and six plant pathogenic fungi. Within the series of flavanones tested, farrerol (1) displayed moderate antibacterial activities against Bacillus cereus, B. subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Erwinia carotovora, with MICs ranging from 15.6 to 125 μg/mL. Furthermore, farrerol (1) exhibited excellent inhibitory activities against six plant pathogenic fungi: Fusarium oxysporum f sp. niveum, Colletotrichum gloeosporioides, Penicillium italicum, Rhizoctonia solani, Fusarium oxysporum f sp. cubenserace and Phytophthora melonis, with EC50 values of 9, 18, 35, 39, 46 and 66 μg/mL, respectively. This is the first report on farrerol with anti-plant pathogenic fungal activities. PMID:27319130

  19. A new antifungal coumarin from Clausena excavata.

    PubMed

    Kumar, Ramashish; Saha, Aniruddha; Saha, Dipanwita

    2012-01-01

    A new γ-lactone coumarin, named as excavarin-A, showing antifungal activity was isolated from the leaves of Clausena excavata by bioassay guided fractionation method. The structure was elucidated by spectroscopic data analysis and identified as 7((2E)-4(4,5-dihydro-3-methylene-2-oxo-5-furanyl)-3-methylbut-2-enyloxy) coumarin. Minimum inhibitory concentration (MIC) was determined against fifteen fungal strains pathogenic against plants and human. The least MIC was recorded against the human pathogen, Candida tropicalis and the plant pathogens Rhizoctonia solani and Sclerotinia sclerotiorum. Antifungal activities against the human pathogens, Aspergillus fumigatus and Mucor circinelloides and plant pathogens, Colletotrichum gloeosporioides, Lasiodiplodia theobromae, Fusarium oxysporum and Rhizopus stolonifer were stronger than that of the standard antimicrobials. PMID:22088496

  20. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control.

    PubMed

    Ventorino, Valeria; Parillo, Rita; Testa, Antonino; Viscardi, Sharon; Espresso, Francesco; Pepe, Olimpia

    2016-01-15

    Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to

  1. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    PubMed Central

    Cordovez, Viviane; Carrion, Victor J.; Etalo, Desalegn W.; Mumm, Roland; Zhu, Hua; van Wezel, Gilles P.; Raaijmakers, Jos M.

    2015-01-01

    In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures. PMID:26500626

  2. Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species

    PubMed Central

    Ma, Zongwang; Geudens, Niels; Kieu, Nam P.; Sinnaeve, Davy; Ongena, Marc; Martins, José C.; Höfte, Monica

    2016-01-01

    Orfamide-type cyclic lipopeptides (CLPs) are biosurfactants produced by Pseudomonas and involved in lysis of oomycete zoospores, biocontrol of Rhizoctonia and insecticidal activity against aphids. In this study, we compared the biosynthesis, structural diversity, in vitro and in planta activities of orfamides produced by rhizosphere-derived Pseudomonas protegens and related Pseudomonas species. Genetic characterization together with chemical identification revealed that the main orfamide compound produced by the P. protegens group is orfamide A, while the related strains Pseudomonas sp. CMR5c and CMR12a produce orfamide B. Comparison of orfamide fingerprints led to the discovery of two new orfamide homologs (orfamide F and orfamide G) in Pseudomonas sp. CMR5c. The structures of these two CLPs were determined by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Mutagenesis and complementation showed that orfamides determine the swarming motility of parental Pseudomonas sp. strain CMR5c and their production was regulated by luxR type regulators. Orfamide A and orfamide B differ only in the identity of a single amino acid, while orfamide B and orfamide G share the same amino acid sequence but differ in length of the fatty acid part. The biological activities of orfamide A, orfamide B, and orfamide G were compared in further bioassays. The three compounds were equally active against Magnaporthe oryzae on rice, against Rhizoctonia solani AG 4-HGI in in vitro assays, and caused zoospore lysis of Phytophthora and Pythium. Furthermore, we could show that orfamides decrease blast severity in rice plants by blocking appressorium formation in M. oryzae. Taken all together, our study shows that orfamides produced by P. protegens and related species have potential in biological control of a broad spectrum of fungal plant pathogens. PMID:27065956

  3. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing.

    PubMed

    Penton, C Ryan; Gupta, V V S R; Tiedje, James M; Neate, Stephen M; Ophel-Keller, Kathy; Gillings, Michael; Harvey, Paul; Pham, Amanda; Roget, David K

    2014-01-01

    Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils 'suppressive' or 'non-suppressive' for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼ 994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria, Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression. PMID:24699870

  4. Effects of elevated CO2 on biomass and fungi associated with two ecotypes of ragweed (Ambrosia artemisiifolia L.).

    PubMed

    Runion, G Brett; Prior, Stephen A; Price, Andrew J; McElroy, J Scott; Torbert, H Allen

    2014-01-01

    Herbicide resistant weed populations have developed due to the repeated application of herbicides. Elevated concentrations of atmospheric CO2 can have positive effects on weed growth, but how rising CO2 might affect herbicide resistant weeds is not known. Ragweed (Ambrosia artemisiifolia L.) ecotypes known to be resistant or susceptible to glyphosate herbicide were exposed to either ambient or elevated (ambient +200 μ mol mol(-1)) concentrations of CO2 in open top chambers. Plants were harvested following 8 weeks of CO2 exposure; at this time, they had begun to exhibit disease symptoms including spots on leaves and stems. Elevated CO2 significantly increased top, root, and total plant biomass. Also, glyphosate resistant plants had significantly greater top, root, and total biomass than plants susceptible to the herbicide. There were no significant CO2 by ecotype interactions. Fungi from 13 genera were associated with ragweed, several of which can be either pathogens (i.e., Alternaria, Fusarium, Rhizoctonia), aiding the decline in health of the ragweed plants, or saprophytes existing on dead plant tissues. The common foliar disease powdery mildew was significantly higher on susceptible compared with resistant ragweed. Susceptible plants also showed an increased frequency of Rhizoctonia on leaves and Alternaria on stems; however, Fusarium occurred more frequently on resistant ragweed leaves. Fungi were not affected by CO2 concentration or its interaction with ecotype. This study reports the first information on the effects of elevated CO2 on growth of herbicide resistant weeds. This is also the first study examining the impact of herbicide resistance and elevated CO2 on fungi associated with weeds. What effects herbicide resistance might have on plant diseases and how rising atmospheric CO2 might impact these effects needs to be addressed, not only with important weeds but also with crops. PMID:25309569

  5. Keratinolytic activities of alkaliphilic Bacillus sp. MBRL 575 from a novel habitat, limestone deposit site in Manipur, India.

    PubMed

    Kshetri, Pintubala; Ningthoujam, Debananda S

    2016-01-01

    Microbial degradation of keratinous wastes is preferred over physicochemical methods as the latter is costlier and not eco-friendly. Novel habitats are promising for discovery of new microbial strains. Towards discovery of novel keratinolytic bacteria, screening of bacterial strains from a novel limestone habitat in Hundung, Manipur, India was done and a promising isolate, MBRL 575, was found to degrade native chicken feather efficiently. It could grow over a broad pH range (Langeveld et al. in J Infect Dis 188:1782-1789, 2003; Park and Son in Microbiol Res 164:478-485, 2009; Zaghloul et al. in Biodegradation 22:111-128, 2011; Takami et al. in Biosci Biotechnol Biochem 56:1667-1669, 1992; Riffel et al. in J Biotechnol 128:693-703, 2007; Wang et al. in Bioresour Technol 99:5679-5686, 2008) and in presence of 0-15 % NaCl. Based on phenotypic characterization and 16S rRNA gene sequence analysis, the new keratinolytic limestone isolate was identified as Bacillus sp. MBRL 575. It produced 305 ± 12 U/ml keratinase and liberated 120 ± 5.5 mg of soluble peptides and 158 ± 4 mg of amino acids per gram of feather after 48 h of incubation at 30 °C in chicken feather medium. The strain could also degrade feathers of other species besides chicken. The cell-free enzyme was also able to degrade feather. Citrate and soybean meal were found to be the best carbon and nitrogen supplements for enhanced enzyme, soluble peptide and amino acid production. In addition to keratinolytic activity, MBRL 575 also exhibited antagonistic activity against two major rice fungal pathogens, Rhizoctonia oryzae-sativae (65 %) and Rhizoctonia solani (58 %). PMID:27247891

  6. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control.

    PubMed

    Ventorino, Valeria; Parillo, Rita; Testa, Antonino; Viscardi, Sharon; Espresso, Francesco; Pepe, Olimpia

    2016-01-15

    Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to

  7. [Suppression of three soil-borne diseases of cucumber by a rhizosphere fungal strain].

    PubMed

    Lyu, Heng; Niu, Yong-chun; Deng, Hui; Lin, Xiao-min; Jin, Chun-li

    2015-12-01

    To understand the effect of rhizosphere fungi on soil-borne diseases of cucumber, 16 fungal, strains from rhizosphere soil were investigated for the antagonistic activity to three soilborne pathogenic fungi with dual culture method and for suppression of cucumber diseases caused by the pathogens in pot experiments. Four strains showed antagonism to one or more pathogenic fungi tested. The strain JCL143, identified as Aspergillus terreus, showed strong antagonistic activity to the three pathogenic fungi Fusarium oxysporum f. sp. cucumerinum, Rhizoctonia solani and Sclerotinia sclerotiorum. In greenhouse pot experiments, inoculation with strain JCL143 provided 74% or more of relative control effect to all the three diseases of cucumber seedling caused by the above three pathogenic fungi, and provided 85% or more of relative control effect to Rhizoctonia root rot and Sclerotinia root and stem rot in pot experiment with non-sterilized substrate. In pot experiment with natural soil as substrate, inoculation with strain JCL143 provided average 84.1% of relative control effect to Fusarium wilt of cucumber at vine elongation stage. The fermentation broth of strain JCL143 showed inhibitory effect in different degrees on the colonial growth of the three pathogenic fungi tested, and reached 63.3% of inhibitory rate of colonial growth to S. sclerotiorum. The inhibitory activity of the fermentation broth decreased with increasing treatment temperature, was liable to decrease to alkaline pH than acid pH, and stable to protease treatment. The results indicated that A. terreus is an important factor in suppression of plant soil-borne diseases, and strain JCL143 with stable disease suppression is potential in biocontrol application. PMID:27112016

  8. Biological control of collar rot disease with broad-spectrum antifungal bacteria associated with groundnut.

    PubMed

    Kishore, G Krishna; Pande, S; Podile, A R

    2005-02-01

    Bacteria associated with 6 habitats of groundnut were evaluated for their broad-spectrum antifungal activity and suppression of collar rot (Aspergillus niger) of groundnut. Three hundred and ninety-three strains were tested against 8 fungal pathogens of groundnut including 5 necrotrophic fungi, Aspergillus flavus, A. niger, Rhizoctonia bataticola, Rhizoctonia solani, and Sclerotium rolfsii, and 3 biotrophic fungi, Cercospora arachidicola, Phaeoisariopsis personata, and Puccinia arachidis. Pseudomonas sp. GRS 175, Pseudomonas aeruginosa GPS 21, GSE 18, GSE 19, and GSE 30, and their cell-free culture filtrates were highly antagonistic to all the test fungi. The cell-free culture filtrates of these bacteria were fungicidal and induced mycelial deformations including hyphal bulging and vacuolization in necrotrophic fungi. The cell-free culture filtrates at 10% (v/v) concentration significantly inhibited the spore germination of biotrophic fungi. In the greenhouse, P. aeruginosa GSE 18 emerged as an effective biocontrol agent of collar rot closely followed by P. aeruginosa GSE 19. The bacterium applied as a seed treatment reduced the pre-emergence rotting and postemergence wilting by > 60%. Pseudomonas aeruginosa GSE 18 effectively colonized the groundnut rhizosphere, both in native and in A. niger infested potting mixtures. Ninety-day-old peat formulation of P. aeruginosa GSE 18 had biocontrol ability comparable with the midlog-phase cells. Pseudomonas aeruginosa GSE 18, tolerant to thiram, in combination with the fungicide had an improved collar rot control. The present study was a successful attempt in selection of broad-spectrum and fungicide tolerant biocontrol agents that can be a useful component of integrated management of collar rot.

  9. Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species.

    PubMed

    Ma, Zongwang; Geudens, Niels; Kieu, Nam P; Sinnaeve, Davy; Ongena, Marc; Martins, José C; Höfte, Monica

    2016-01-01

    Orfamide-type cyclic lipopeptides (CLPs) are biosurfactants produced by Pseudomonas and involved in lysis of oomycete zoospores, biocontrol of Rhizoctonia and insecticidal activity against aphids. In this study, we compared the biosynthesis, structural diversity, in vitro and in planta activities of orfamides produced by rhizosphere-derived Pseudomonas protegens and related Pseudomonas species. Genetic characterization together with chemical identification revealed that the main orfamide compound produced by the P. protegens group is orfamide A, while the related strains Pseudomonas sp. CMR5c and CMR12a produce orfamide B. Comparison of orfamide fingerprints led to the discovery of two new orfamide homologs (orfamide F and orfamide G) in Pseudomonas sp. CMR5c. The structures of these two CLPs were determined by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Mutagenesis and complementation showed that orfamides determine the swarming motility of parental Pseudomonas sp. strain CMR5c and their production was regulated by luxR type regulators. Orfamide A and orfamide B differ only in the identity of a single amino acid, while orfamide B and orfamide G share the same amino acid sequence but differ in length of the fatty acid part. The biological activities of orfamide A, orfamide B, and orfamide G were compared in further bioassays. The three compounds were equally active against Magnaporthe oryzae on rice, against Rhizoctonia solani AG 4-HGI in in vitro assays, and caused zoospore lysis of Phytophthora and Pythium. Furthermore, we could show that orfamides decrease blast severity in rice plants by blocking appressorium formation in M. oryzae. Taken all together, our study shows that orfamides produced by P. protegens and related species have potential in biological control of a broad spectrum of fungal plant pathogens. PMID:27065956

  10. Effects of elevated CO2 on biomass and fungi associated with two ecotypes of ragweed (Ambrosia artemisiifolia L.)

    PubMed Central

    Runion, G. Brett; Prior, Stephen A.; Price, Andrew J.; McElroy, J. Scott; Torbert, H. Allen

    2014-01-01

    Herbicide resistant weed populations have developed due to the repeated application of herbicides. Elevated concentrations of atmospheric CO2 can have positive effects on weed growth, but how rising CO2 might affect herbicide resistant weeds is not known. Ragweed (Ambrosia artemisiifolia L.) ecotypes known to be resistant or susceptible to glyphosate herbicide were exposed to either ambient or elevated (ambient +200 μ mol mol−1) concentrations of CO2 in open top chambers. Plants were harvested following 8 weeks of CO2 exposure; at this time, they had begun to exhibit disease symptoms including spots on leaves and stems. Elevated CO2 significantly increased top, root, and total plant biomass. Also, glyphosate resistant plants had significantly greater top, root, and total biomass than plants susceptible to the herbicide. There were no significant CO2 by ecotype interactions. Fungi from 13 genera were associated with ragweed, several of which can be either pathogens (i.e., Alternaria, Fusarium, Rhizoctonia), aiding the decline in health of the ragweed plants, or saprophytes existing on dead plant tissues. The common foliar disease powdery mildew was significantly higher on susceptible compared with resistant ragweed. Susceptible plants also showed an increased frequency of Rhizoctonia on leaves and Alternaria on stems; however, Fusarium occurred more frequently on resistant ragweed leaves. Fungi were not affected by CO2 concentration or its interaction with ecotype. This study reports the first information on the effects of elevated CO2 on growth of herbicide resistant weeds. This is also the first study examining the impact of herbicide resistance and elevated CO2 on fungi associated with weeds. What effects herbicide resistance might have on plant diseases and how rising atmospheric CO2 might impact these effects needs to be addressed, not only with important weeds but also with crops. PMID:25309569

  11. Fungal Community Structure in Disease Suppressive Soils Assessed by 28S LSU Gene Sequencing

    PubMed Central

    Penton, C. Ryan; Gupta, V. V. S. R.; Tiedje, James M.; Neate, Stephen M.; Ophel-Keller, Kathy; Gillings, Michael; Harvey, Paul; Pham, Amanda; Roget, David K.

    2014-01-01

    Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils ‘suppressive’ or ‘non-suppressive’ for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria, Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression. PMID:24699870

  12. The wheat calcium-dependent protein kinase TaCPK7-D positively regulates host resistance to sharp eyespot disease.

    PubMed

    Wei, Xuening; Shen, Fangdi; Hong, Yantao; Rong, Wei; Du, Lipu; Liu, Xin; Xu, Huijun; Ma, Lingjian; Zhang, Zengyan

    2016-10-01

    Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, limits wheat production worldwide. Here, TaCPK7-D, encoding a subgroup III member of the calcium-dependent protein kinase (CPK) family, was identified from the sharp eyespot-resistant wheat line CI12633 through comparative transcriptomic analysis. Subsequently, the defence role of TaCPK7-D against R. cerealis infection was studied by the generation and characterization of TaCPK7-D-silenced and TaCPK7-D-overexpressing wheat plants. Rhizoctonia cerealis inoculation induced a higher transcriptional level of TaCPK7-D in the resistant wheat line CI12633 than in the susceptible cultivar Wenmai 6. The expression of TaCPK7-D was significantly induced after exogenous application of 1-aminocyclopropane-1-carboxylic acid (an ethylene biosynthesis precursor). The green fluorescent protein signal distribution assays indicated that TaCPK7-D localizes to the plasma membrane in both onion epidermal cells and wheat protoplasts. Following R. cerealis inoculation, TaCPK7-D-silenced wheat CI12633 plants displayed more severe sharp eyespot symptoms than control CI12633 plants. Four defence-associated genes (β-1,3-glucanase, chitinase 1, defensin and TaPIE1) and an ethylene biosynthesis key gene, ACO2, were significantly suppressed in the TaCPK7-D-silenced wheat plants compared with control plants. Conversely, TaCPK7-D-overexpressing wheat lines showed increased resistance to sharp eyespot compared with untransformed recipient wheat Yangmai 16. Furthermore, the transcriptional levels of these four defence-related genes and ACO2 gene were significantly elevated in TaCPK7-D-overexpressing plants compared with untransformed recipient wheat plants. These results suggest that TaCPK7-D positively regulates the wheat resistance response to R. cerealis infection through the modulation of the expression of these defence-associated genes, and that TaCPK7-D is a candidate to improve sharp eyespot resistance in wheat.

  13. Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes.

    PubMed

    Jacobs, Helen; Gray, Simon N; Crump, David H

    2003-01-01

    The efficacies of three nematophagous fungi, Paecilomyces lilacinus, Plectosphaerella cucumerina and Pochonia chlamydosporia, for controlling potato cyst nematodes (PCN) as part of an Integrated Pest Management (IPM) regime were studied. The compatibility of the nematophagous fungi with commonly used chemical pesticides and their ability to compete with the soil fungi Rhizoctonia solani, Chaetomium globosum, Fusarium oxysporum, Penicillium bilaii and Trichoderma harzianum were tested in vitro. Paecilomyces lilacinus was the most successful competitor when the ability to grow and inhibit growth of an opposing colony at both 10 and 20 degrees C was considered. P. lilacinus also showed potential for control of the soil-borne fungal pathogen R. solani, releasing a diffusable substance in vitro which inhibited its growth and caused morphological abnormalities in its hyphae. Pochonia chlamydosporia was least susceptible to growth inhibition by other fungi at 20 degrees in vitro, but the isolate tested did not grow at 10 degrees. Plectosphaerella cucumerina was a poor saprophytic competitor. Radial growth of Paecilomyces lilacinus and Plectosphaerella cucumerina was slowed, but not prevented, when grown on potato dextrose agar incorporating the fungicides fenpiclonil and tolclofos-methyl, and was not inhibited by the addition of pencycuron or the nematicide oxamyl. Radial growth of Pochonia chlamydosporia was partially inhibited by all the chemical pesticides tested. The efficacy of Paecilomyces lilacinus as a control agent for R. solani was further investigated in situ. Treatment with P. lilacinus significantly reduced the symptoms of Rhizoctonia disease on potato stems in a pot trial. The effectiveness of P. lilacinus and P. cucumerina against PCN was also tested in situ. Three application methods were compared; incorporating the fungi into alginate pellets, Terra-Green inoculated with the fungi and applying conidia directly to the tubers. Both formulations containing P

  14. Manipulation of Rhizosphere Bacterial Communities to Induce Suppressive Soils

    PubMed Central

    Mazzola, Mark

    2007-01-01

    Naturally occurring disease-suppressive soils have been documented in a variety of cropping systems, and in many instances the biological attributes contributing to suppressiveness have been identified. While these studies have often yielded an understanding of operative mechanisms leading to the suppressive state, significant difficulty has been realized in the transfer of this knowledge into achieving effective field-level disease control. Early efforts focused on the inundative application of individual or mixtures of microbial strains recovered from these systems and known to function in specific soil suppressiveness. However, the introduction of biological agents into non-native soil ecosystems typically yielded inconsistent levels of disease control. Of late, greater emphasis has been placed on manipulation of the cropping system to manage resident beneficial rhizosphere microorganisms as a means to suppress soilborne plant pathogens. One such strategy is the cropping of specific plant species or genotypes or the application of soil amendments with the goal of selectively enhancing disease-suppressive rhizobacteria communities. This approach has been utilized in a system attempting to employ biological elements resident to orchard ecosystems as a means to control the biologically complex phenomenon termed apple replant disease. Cropping of wheat in apple orchard soils prior to re-planting the site to apple provided control of the fungal pathogen Rhizoctonia solani AG-5. Disease control was elicited in a wheat cultivar-specific manner and functioned through transformation of the fluorescent pseudomonad population colonizing the rhizosphere of apple. Wheat cultivars that induced disease suppression enhanced populations of specific fluorescent pseudomonad genotypes with antagonistic activity toward R. solani AG-5, but cultivars that did not elicit a disease-suppressive soil did not modify the antagonistic capacity of this bacterial community. Alternatively

  15. Efficacy of microorganisms selected from compost to control soil-borne pathogens.

    PubMed

    Pugliese, M; Gullino, M L; Garibaldi, A

    2010-01-01

    Suppression of soil-borne plant pathogens with compost has been widely studied. Compost has been found to be suppressive against several soil-borne pathogens in various cropping systems. However, an increase of some diseases due to compost usage has also been observed, since compost is a product that varies considerably in chemical, physical and biotic composition, and, consequently, also in ability to suppress soil borne diseases. New opportunities in disease management can be obtained by the selection of antagonists from suppressive composts. The objective of the present work was to isolate microorganisms from a suppressive compost and to test them for their activity against soil-borne pathogens. A compost from green wastes, organic domestic wastes and urban sludge's that showed a good suppressive activity in previous trials was used as source of microorganisms. Serial diluted suspensions of compost samples were plated on five different media: selective for Fusarium sp., selective for Trichoderma sp., selective for oomycetes, potato dextrose agar (PDA) for isolation of fungi, lysogeny broth (LB) for isolation of bacteria. In total, 101 colonies were isolated from plates and tested under laboratory conditions on tomato seedlings growing on perlite medium in Petri plates infected with Fusarium oxysporum f.sp. radicis-lycopersici and compared to a commercial antagonist (Streptomyces griserovidis, Mycostop, Bioplanet). Among them, 28 showed a significant disease reduction and were assessed under greenhouse condition on three pathosystems: Fusarium oxysporum f.sp. basilica/basil, Phytophthora nicotianae/tomato and Rhizoctonia solani/bean. Fusarium spp. selected from compost generally showed a good disease control against Fusarium wilts, while only bacteria significantly controlled P. nicotianae on tomato under greenhouse conditions. None of the microorganisms was able to control the three soil-borne pathogens together, in particular Rhizoctonia solani. Results

  16. Population Dynamics of Bacillus sp. L324-92R(12) and Pseudomonas fluorescens 2-79RN(10) in the Rhizosphere of Wheat.

    PubMed

    Kim, D S; Weller, D M; Cook, R J

    1997-05-01

    ABSTRACT Bacillus sp. L324-92 is suppressive to three root diseases of wheat, namely take-all caused by Gaeumannomyces graminis var. tritici, Rhizoctonia root rot caused by Rhizoctonia solani AG8, and Pythium root rot caused by several Pythium species. Populations of strain L324-92R(12), a rifampicin-resistant mutant of L324-92 applied as a seed treatment, were monitored in the rhizosphere and spermosphere of wheat and compared with populations of Pseudomonas fluorescens 2-79RN(10), a known, rhizosphere-competent, biocontrol agent. In growth chamber studies, the population sizes of L324-92R(12) on roots of wheat were approximately 1,000-fold smaller than those of 2-79RN(10) at 5 days after planting, but, thereafter, they increased while those of 2-79RN(10) decreased until the two were equal in size at 45 days after planting. In the field with winter wheat, the population sizes of L324-92R(12) on roots were at least 10-fold smaller than those of 2-79RN(10) during the fall (November 1993) and early spring (March 1994). Thereafter, the population of L324-92R(12) remained constant or increased slightly, while the population of 2-79RN(10) decreased until the two were roughly the same at 10(4) to 10(5) CFU/plant over the period of 150 days (April 1994) until 285 days (harvest) after planting. In growth chamber studies, strain L324-92R(12) remained confined to root sections within 3.5 cm below the seed, whereas 2-79RN(10) was recovered from all root sections ranging from 0.5 to 6.5 cm below the seed. In the field on winter wheat, both strains were recovered from root sections down to 5.0 to 6.5 cm below the seed at 75 days after planting (mid December), but only 2-79RN(10) was recovered at this depth at 90 days after planting. Both strains were recovered from the seed remnants 6 months after planting in the field. Both strains also were recovered from inside the roots and shoots, but population sizes of strain 279RN(10) were greater than those of L324 92R(12).

  17. Preparation, characterization, and antifungal activity of hymexazol-linked chitosan derivatives

    NASA Astrophysics Data System (ADS)

    Li, Yan; Qin, Yukun; Liu, Song; Li, Pengcheng; Xing, Rong'e.

    2016-09-01

    In this study, three hymexazol-linked chitosan derivatives (HML-CS) were synthesized and their structures confirmed by Fourier transform infrared and elemental analysis. Linkage ratios were measured by high performance liquid chromatography. The derivatives' antifungal activity against the plant pathogenic fungi Rhizoctonia solani CGMCC 3.28 and Gibberella zeae CGMCC 3.42 were investigated at concentrations of 100, 200, and 400 mg/L. These HML-CS derivatives exhibited stronger antifungal activity than CS alone. HML-CS-1 showed the best antifungal activity against G. zeae, whose antifungal index was 65.9% at 400 mg/L, and also showed the best antifungal activity against R. solani, whose antifungal index was 52.7% at 400 mg/L. This conjugation of CS and HML suggested the presence of synergistic effects between the moieties and indicated that these derivatives possessed great potential as novel fungicides and require further research for the development of applications in crop protection.

  18. The effects of some polyamine biosynthetic inhibitors on growth and morphology of phytopathogenic fungi

    NASA Technical Reports Server (NTRS)

    Rajam, M. V.; Galston, A. W.

    1985-01-01

    We have studied the effects of two polyamine biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO) and alpha-difluoromethylarginine (DFMA), and of polyamines (PAs), alone and in combination, on mycelial growth and morphology of four phytopathogenic fungi: Botrytis sp, B. cinerea, Rhizoctonia solani and Monilinia fructicola. The inhibitors were added to a Czapek agar medium to get final concentrations of 0.1, 0.5 and 1.0 mM. DFMO and DFMA, suicide inhibitors of ornithine decarboxylase (ODC) and arginine decarboxylase (ADC) respectively, inhibited mycelial growth strongly; the effect was generally more pronounced with DFMA than with DFMO, but each fungus had its own response pattern. The addition of the PAs putrescine (Put) and spermidine (Spd) to the culture medium resulted in a promotion of growth. In Botrytis sp and Monilinia fructicola exposed to inhibitors plus PAs, mycelial growth was actually increased above control values. Mycelial morphology was altered and cell size dramatically reduced in plates containing inhibitors alone, whereas with PAs alone, or in combination with inhibitors, morphology was normal, but cell length and diameters increased considerably. These results suggest that PAs are essential for growth in fungal mycelia. The inhibition caused by DFMA may be due to its arginase-mediated conversion to DFMO.

  19. DNA Damage Assessment in Zebrafish Embryos Exposed to Monceren(®) 250 SC Fungicide Using the Alkaline Comet Assay.

    PubMed

    Ku-Centurión, Marco; González-Marín, Berenyce; Calderón-Ezquerro, María C; Martínez-Valenzuela, María C; Maldonado, Ernesto; Calderón-Segura, María E

    2016-10-01

    Monceren 250 SC is a commercial fungicide with the active ingredient 1-(4-chlorobenzyl)-1-(cyclopentyl)-3-phenylurea, also known as pencycuron. This compound inhibits the growth of fungi as Rhizoctonia solani that invades potato, rice, and cotton or as Pellicularia spp, which contaminates lettuce and tomato crops. In this study, we assessed genotoxicity or DNA damage by the alkaline comet assay in zebrafish blastula-stage embryos exposed to 250 to 1250 μg/mL of the Monceren fungicide or to Bleomycin (0.25 μg/mL) used as a positive control. Additionally, survival and spontaneous movement were monitored in embryos after exposure to different concentrations of fungicide. DNA damage was evaluated using three genotoxicity parameters of the alkaline comet assay: tail length, tail moment, and tail intensity. We found that Monceren 250 SC fungicide induces DNA damage, as shown by significant increases in the three genotoxicity parameters in zebrafish embryos compared with control embryos nonexposed to Monceren. Tail intensity was the more accurate parameter to evaluate genotoxicity levels in zebrafish embryos. At 48 h after exposure to the fungicide, the survival rate of larvae-embryos was reduced to 40-45%. This study shows that the Monceren 250 SC fungicide exerts genotoxic effects in zebrafish during early stages of development. PMID:27557408

  20. Molecular and Functional Characterization of a Polygalacturonase-Inhibiting Protein from Cynanchum komarovii That Confers Fungal Resistance in Arabidopsis

    PubMed Central

    Liu, Nana; Ma, Xiaowen; Zhou, Sihong; Wang, Ping; Sun, Yun; Li, Xiancai; Hou, Yuxia

    2016-01-01

    Compliance with ethical standards: This study did not involve human participants and animals, and the plant of interest is not an endangered species. Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat proteins that plants produce against polygalacturonase, a key virulence agent in pathogens. In this paper, we cloned and purified CkPGIP1, a gene product from Cynanchum komarovii that effectively inhibits polygalacturonases from Botrytis cinerea and Rhizoctonia solani. We found the expression of CkPGIP1 to be induced in response to salicylic acid, wounding, and infection with B. cinerea and R. solani. In addition, transgenic overexpression in Arabidopsis enhanced resistance against B. cinerea. Furthermore, CkPGIP1 obtained from transgenic Arabidopsis inhibited the activity of B. cinerea and R. solani polygalacturonases by 62.7–66.4% and 56.5–60.2%, respectively. Docking studies indicated that the protein interacts strongly with the B1-sheet at the N-terminus of the B. cinerea polygalacturonase, and with the C-terminus of the polygalacturonase from R. solani. This study highlights the significance of CkPGIP1 in plant disease resistance, and its possible application to manage fungal pathogens. PMID:26752638

  1. Unravelling Linkages between Plant Community Composition and the Pathogen-Suppressive Potential of Soils

    PubMed Central

    Latz, Ellen; Eisenhauer, Nico; Rall, Björn Christian; Scheu, Stefan; Jousset, Alexandre

    2016-01-01

    Plant diseases cause dramatic yield losses worldwide. Current disease control practices can be deleterious for the environment and human health, calling for alternative and sustainable management regimes. Soils harbour microorganisms that can efficiently suppress pathogens. Uncovering mediators driving their functioning in the field still remains challenging, but represents an essential step in order to develop strategies for increased soil health. We set up plant communities of varying richness to experimentally test the potential of soils differing in plant community history to suppress the pathogen Rhizoctonia solani. The results indicate that plant communities shape soil-disease suppression via changes in abiotic soil properties and the abundance of bacterial groups including species of the genera Actinomyces, Bacillus and Pseudomonas. Further, the results suggest that pairwise interactions between specific plant species strongly affect soil suppressiveness. Using structural equation modelling, we provide a pathway orientated framework showing how the complex interactions between plants, soil and microorganisms jointly shape soil suppressiveness. Our results stress the importance of plant community composition as a determinant of soil functioning, such as the disease suppressive potential of soils. PMID:27021053

  2. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    PubMed

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials. PMID:25832181

  3. The induction of Ethylene response factor 3 (ERF3) in potato as a result of co-inoculation with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833 – a possible role in plant defense

    PubMed Central

    Velivelli, Siva LS; Lojan, Paul; Cranenbrouck, Sylvie; de Boulois, Hervé Dupré; Suarez, Juan Pablo; Declerck, Stéphane; Franco, Javier; Prestwich, Barbara Doyle

    2015-01-01

    Colonization of plant rhizosphere/roots by beneficial microorganisms (e.g. plant growth promoting rhizobacteria – PGPR, arbuscular mycorrhizal fungi – AMF) confers broad-spectrum resistance to virulent pathogens and is known as induced systemic resistance (ISR) and mycorrhizal-induced resistance (MIR). ISR or MIR, an indirect mechanism for biocontrol, involves complex signaling networks that are regulated by several plant hormones, the most important of which are salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). In the present study, we investigated if inoculation of potato plantlets with an AMF (Rhizophagus irregularis MUCL 41833) and a PGPR (Pseudomonas sp R41805) either alone or in combination, could elicit host defense response genes in the presence or absence of Rhizoctonia Solani EC-1, a major potato pathogen. RT-qPCR revealed the significant expression of ethylene response factor 3 (EFR3) in mycorrhized potato plantlets inoculated with Pseudomonas sp R41805 and also in mycorrhized potato plantlets inoculated with Pseudomonas sp R41805 and challenged with R. solani. The significance of ethylene response factors (ERFs) in pathogen defense has been well documented in the literature. The results of the present study suggest that the dual inoculation of potato with PGPR and AMF may play a part in the activation of plant systemic defense systems via ERF3. PMID:25723847

  4. Composition and antipathogenic activities of the twig essential oil of Chamaecyparis formosensis from Taiwan.

    PubMed

    Ho, Chen-Lung; Hua, Kuo-Feng; Hsu, Kuan-Ping; Wang, Eugene I-chen; Su, Yu-Chang

    2012-07-01

    In this study, antipathogenic activities of the twig essential oil and its constituents from Chamaecyparis formosensis Matsum were evaluated in vitro against six plant pathogenic fungi. The essential oil from the fresh twigs was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. Twenty-five compounds were identified, representing 98.9% of the oil. The main components were beta-eudesmol (25.1%), tau-muurolol (21.6%), elemol (15.0%), totarol (14.9%), and alpha-cadinol (12.4%). The twig oil (500 mcirog/mL) showed growth inhibitory activity against the phytopathogenic fungi, Fusarium oxysporum, Pestalotiopsis funereal, and Ganoderma austral, with antifungal indices of 92.7%, 71.1%, and 87.7%, respectively. In addition, the oil suppressed totally the growth of Rhizoctonia solani, Colletotrichum gloeosporioides, and Fusarium solani. In order to ascertain the source compounds of these antipathogenic activities, the main components were individually evaluated. Tau-Muurolol and alpha-cadinol exhibited excellent activity against F. oxysporum, R. solani, C. gloeosporioides, and F. solani, with IC50 < 50 microg/mL. These compounds also efficiently inhibited the mycelial growths of P. funereal and G. austral. Thus, alpha-cadinol and tau-muurolol could be considered as potential natural fungicides for controlling fungal pathogens and worth. PMID:22908586

  5. Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana.

    PubMed

    Wang, Fang; Wang, Chen; Yan, Yan; Jia, Haihong; Guo, Xingqi

    2016-01-01

    Many changes in development, growth, hormone activity and environmental stimuli responses are mediated by mitogen-activated protein kinase (MAPK) cascades. However, in plants, studies on MAPKs have mainly focused on MPK3, MPK4 and MPK6. Here, a novel group B MAPK gene, GhMPK11, was isolated from cotton (Gossypium hirsutum L.) and characterized. Both promoter and expression pattern analyses revealed that GhMPK11 is involved in defense responses and signaling pathways. GhMPK11 overexpression in Nicotiana benthamiana plants could increase gibberellin 3 (GA3) content through the regulation of GA-related genes. Interestingly, either GhMPK11 overexpression or exogenous GA3 treatment in N. benthamiana plants could enhance the susceptibility of these plants to the infectious pathogens Ralstonia solanacearum and Rhizoctonia solani. Moreover, reactive oxygen species (ROS) accumulation was increased after pathogen infiltration due to the increased expression of ROS-related gene respiratory burst oxidative homologs (RbohB) and the decreased expression or activity of ROS detoxification enzymes regulated by GA3, such as superoxide dismutases (SODs), peroxidases (PODs), catalase (CAT) and glutathione S-transferase (GST). Taken together, these results suggest that GhMPK11 overexpression could enhance the susceptibility of tobacco to pathogen infection through the GA3 signaling pathway via down-regulation of ROS detoxification enzymes. PMID:27242882

  6. Antimicrobial and insecticidal protein isolated from seeds of Clitoria ternatea, a tropical forage legume.

    PubMed

    Kelemu, Segenet; Cardona, César; Segura, Gustavo

    2004-12-01

    The tropical forage legume Clitoria ternatea (L.) has important agronomic traits such as adaptation to a wide range of soil conditions and resistance to drought. It is resistant to a number of pathogens and pests. These important traits gave us reasons to look more closely at the plant. A highly basic small protein was purified from seeds of C. ternatea to homogeneity by using ultrafiltration with Centricon-3 membrane tubes and preparative granulated-bed isoelectric focusing (IEF). A single protein band was obtained on both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and IEF gels. The protein, designated 'finotin', has broad and potent inhibitory effect on the growth of various important fungal pathogens of plants, namely Rhizoctonia solani, Fusarium solani, Colletotrichum lindemuthianum, Lasiodiplodia theobromae, Pyricularia grisea, Bipolaris oryzae and Colletotrichum gloeosporioides. It also inhibits the common bean bacterial blight pathogen Xanthomonas axonopodis pv. phaseoli. Moreover, finotin has powerful inhibitory properties against the bean bruchids Zabrotes subfasciatus and Acanthoscelides obtectus. PMID:15694280

  7. Mycotoxicoses of ruminants and horses.

    PubMed

    Riet-Correa, Franklin; Rivero, Rodolfo; Odriozola, Ernesto; Adrien, Maria de Lourdes; Medeiros, Rosane M T; Schild, Ana Lucia

    2013-11-01

    In the current study, mycotoxicoses of ruminants and horses are reviewed, with an emphasis on the occurrence of these diseases in South America. The main mycotoxicoses observed in grazing cattle include intoxications by indole-diterpenoid mycotoxins (Paspalum spp. contaminated by Claviceps paspali, Lolium perenne infected by Neotyphodium lolii, Cynodon dactylon infected by Claviceps cynodontis, and Poa huecu), gangrenous ergotism and dysthermic syndrome (hyperthermia) caused by Festuca arundinacea (syn. Festuca elatior) infected by Neotyphodium coenophialum (syn. Acremonium coenophialum), and photosensitization in pastures contaminated by toxigenic Pithomyces chartarum. Other mycotoxicoses in grazing cattle include slaframine toxicity in clover pastures infected by Rhizoctonia leguminicola and diplodiosis in cattle grazing in corn stubbles. The mycotoxicoses caused by contaminated concentrated food or byproducts in cattle include poisoning by toxins of Aspergillus clavatus, which contaminate barley or sugar beetroot by-products, gangrenous ergotism or dysthermic syndrome caused by wheat bran or wheat screenings contaminated with Claviceps purpurea, and acute respiratory distress caused by damaged sweet potatoes (Ipomoea batatas). The main mycotoxicosis of horses is leukoencephalomalacia caused by the fumonisins B1 and B2 produced by Fusarium spp. Poisoning by C. purpurea and F. elatior infected by N. coenophialum has also been reported as a cause of agalactia and neonatal mortality in mares. Slaframine toxicosis caused by the ingestion of alfalfa hay contaminated by R. leguminicola has also been reported in horses. PMID:24091682

  8. Prediction of invasion from the early stage of an epidemic.

    PubMed

    Pérez-Reche, Francisco J; Neri, Franco M; Taraskin, Sergei N; Gilligan, Christopher A

    2012-09-01

    Predictability of undesired events is a question of great interest in many scientific disciplines including seismology, economy and epidemiology. Here, we focus on the predictability of invasion of a broad class of epidemics caused by diseases that lead to permanent immunity of infected hosts after recovery or death. We approach the problem from the perspective of the science of complexity by proposing and testing several strategies for the estimation of important characteristics of epidemics, such as the probability of invasion. Our results suggest that parsimonious approximate methodologies may lead to the most reliable and robust predictions. The proposed methodologies are first applied to analysis of experimentally observed epidemics: invasion of the fungal plant pathogen Rhizoctonia solani in replicated host microcosms. We then consider numerical experiments of the susceptible-infected-removed model to investigate the performance of the proposed methods in further detail. The suggested framework can be used as a valuable tool for quick assessment of epidemic threat at the stage when epidemics only start developing. Moreover, our work amplifies the significance of the small-scale and finite-time microcosm realizations of epidemics revealing their predictive power. PMID:22513723

  9. Synthesis and antifungal evaluation of (1,2,3-triazol-4-yl)methyl nicotinate chitosan.

    PubMed

    Qin, Yukun; Liu, Song; Xing, Ronge; Li, Kecheng; Yu, Huahua; Li, Pengcheng

    2013-10-01

    With an aim to discover novel chitosan derivatives with significant activities against crop-threatening fungi, (1,2,3-triazol-4-yl)methyl nicotinate chitosan (TAMNCS) was prepared via azide-alkyne click reaction. Its structure was characterized by FT-IR, (1)H NMR, elemental analysis, DSC, and SEM. In vitro antifungal properties of TAMNCS against Rhizoctonia solani Kühn (R. solani), Stemphylium solani weber (S. solani), and Alternaria porri (A. porri) were studied at the concentrations ranged from 0.25 mg/mL to 1.0 mg/mL. Experiments conducted displayed the derivative had obviously enhanced antifungal activity after chemical modification compared with original chitosan. Moreover, it was shown that TAMNCS can 94.2% inhibit growth of A. porri at 1.0 mg/mL, while dose at which the fungicide triadimefon had lower inhibitory index (62.2%). The primary antifungal results described here indicate this derivative may be a promising candidate as an antifungal agent. PMID:23732332

  10. The elicitation effect of pathogenic fungi on trichodermin production by Trichoderma brevicompactum.

    PubMed

    Shentu, Xu-Ping; Liu, Wei-Ping; Zhan, Xiao-Huan; Yu, Xiao-Ping; Zhang, Chuan-Xi

    2013-01-01

    The effects of six species of phytopathogenic fungi mycelia as elicitors on trichodermin yield by Trichoderma brevicompactum were investigated. Neither nonviable nor viable mycelia of Botrytis cinerea, Alternaria solani, Colletotrichum lindemuthianum, and Thanatephorus cucumeris demonstrated any elicitation on the accumulation of trichodermin. However, the production of trichodermin was increased by the presence of viable/nonviable Rhizoctonia solani and Fusarium oxysporum mycelia. The strongest elicitation effect was found at the presence of nonviable R. solani. At the presence of nonviable R. solani, the maximum yield of trichodermin (144.55 mg/L) was significantly higher than the Control (67.8 mg/L), and the cultivation time to obtain the maximum yield of trichodermin decreased from 72 h to 60 h. No difference of trichodermin accumulation was observed by changing the concentration of nonviable R. solani from 0.1 to 1.6 g/L. It was observed that the optimum time for adding nonviable R. solani is immediately after inoculation. The diameter of T. brevicompactum mycelial globule after 72 h cultivation with nonviable R. solani elicitor was smaller than that of the Control. PMID:24385883

  11. Synthesis and antifungal activities of novel polyheterocyclic spirooxindole derivatives.

    PubMed

    Wu, Jia-Shou; Zhang, Xue; Zhang, Ying-Lao; Xie, Jian-Wu

    2015-05-01

    A series of spirooxindole tetrahydrofuran derivatives 3 were obtained in moderate to good yields via oxindole derivatives 1 and β-arylacrylonitrile derivatives 2via base-mediated cascade [3 + 2] double Michael reactions under mild conditions and the application of this method in the synthesis of bioactive analogues, such as functionalized spirooxindole octahydrofuro[3,4-c]pyridine derivatives 4 which contain two new heterocyclic rings and two quaternary carbon centers, has also been developed. Subsequently, antifungal activities of all of the synthesized compounds were evaluated against five phytopathogenic fungi (Rhizoctonia solani, Fusarium semitectum, Alternaria solani, Valsa mali and Fusarium graminearum) using the mycelium growth rate method. The preliminary results showed that the spirooxindole octahydrofuro[3,4-c]pyridine derivative 4 showed higher growth inhibition of Valsa mali and Fusarium graminearum, than spirooxindole tetrahydrofuran derivatives 3. For example, spirooxindole octahydrofuro[3,4-c]pyridine derivative 4ab, having a bromine atom at the meta position of the benzene ring, was the best compound in inhibiting F. g. with an IC50 value of 3.31, in particular with inhibition of 4ab on F. g. being similar to that of the control cycloheximide (IC50 = 3.3 μg mL(-1)). PMID:25820179

  12. Antagonistic potential of native strain Streptomyces aurantiogriseus VSMGT1014 against sheath blight of rice disease.

    PubMed

    Harikrishnan, Hariharan; Shanmugaiah, Vellasamy; Balasubramanian, Natesan; Sharma, Mahaveer P; Kotchoni, Simeon O

    2014-12-01

    A total of 132 actinomycetes was isolated from different rice rhizosphere soils of Tamil Nadu, India, among which 57 showed antagonistic activity towards Rhizoctonia solani, which is sheath blight (ShB) pathogen of rice and other fungal pathogens such as Macrophomina phaseolina, Fusarium oxysporum, Fusarium udum and Alternaria alternata with a variable zone of inhibition. Potential actinomycete strain VSMGT1014 was identified as Streptomyces aurantiogriseus VSMGT1014 based on the morphological, physiological, biochemical and 16S rRNA sequence analysis. The strain VSMGT1014 produced lytic enzymes, secondary metabolites, siderophore, volatile substance and indole acetic acid. Crude metabolites of VSMGT1014 showed activity against R. solani at 5 µg ml(-1); however, the prominent inhibition zone was observed from 40 to 100 µg ml(-1). Reduced lesion heights observed in culture, cells-free filtrate, crude metabolites and carbendazim on challenge with pathogen in the detached leaf assay. The high content screening test clearly indicated denucleation of R. solani at 5 µg ml(-1) treatment of crude metabolite and carbendazim respectively. The results conclude that strain VSMGT1014 was found to be a potential candidate for the control of ShB of rice as a bio fungicide. PMID:25304022

  13. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi.

    PubMed

    Saharan, Vinod; Mehrotra, Akanksha; Khatik, Rajesh; Rawal, Pokhar; Sharma, S S; Pal, Ajay

    2013-11-01

    The main aim of present study was to prepare chitosan, chitosan-saponin and Cu-chitosan nanoparticles to evaluate their in vitro antifungal activities. Various nanoparticles were prepared using ionic gelation method by interaction of chitosan, sodium tripolyphosphate, saponin and Cu ions. Their particle size, polydispersity index, zeta potential and structures were confirmed by DLS, FTIR, TEM and SEM. The antifungal properties of nanoparticles against phytopathogenic fungi namely Alternaria alternata, Macrophomina phaseolina and Rhizoctonia solani were investigated at various concentrations ranging from 0.001 to 0.1%. Among the various formulations of nanoparticles, Cu-chitosan nanoparticles were found most effective at 0.1% concentration and showed 89.5, 63.0 and 60.1% growth inhibition of A. alternata, M. phaseolina and R. solani, respectively in in vitro model. At the same concentration, Cu-chitosan nanoparticles also showed maximum of 87.4% inhibition rate of spore germination of A. alternata. Chitosan nanoparticles showed the maximum growth inhibitory effects (87.6%) on in vitro mycelial growth of M. phaseolina at 0.1% concentration. From our study it is evident that chitosan based nanoparticles particularly chitosan and Cu-chitosan nanoparticles have tremendous potential for further field screening towards crop protection. PMID:24141067

  14. Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol.

    PubMed

    Zhang, Qing; Hua, Xiu-de; Shi, Hai-yan; Liu, Ji-song; Tian, Ming-ming; Wang, Ming-hua

    2015-03-01

    The enantioselective bioactivity, acute toxicity and stereoselective degradation of the chiral triazole fungicide flutriafol in vegetables were investigated for the first time using the (R)-, (S)- and rac-flutriafol. The order of the bioactivity against five target pathogens (Rhizoctonia solani, Alternaria solani, Pyricularia grisea, Gibberella zeae, Botrytis cinerea) was found to be (R)-flutriafol>rac-flutriafol>(S)-flutriafol. The fungicidal activity of (R)-flutriafol was 1.49-6.23 times higher than that of (S)-flutriafol. The (R)-flutriafol also showed 2.17-3.52 times higher acute toxicity to Eisenia fetida and Scenedesmus obliquus than (S)-flutriafol. The stereoselective degradation of flutriafol in tomato showed that the active (R)-flutriafol degraded faster, resulting in an enrichment of inactive (S)-form, and the half-lives were 9.23 d and 10.18 d, respectively. Inversely, the (S)-flutriafol, with a half-life of 4.76 d, was preferentially degraded in cucumber. In conclusion, the systemic assessments of the triazole fungicide flutriafol stereoisomers on the enantioselective bioactivity, acute toxicity and environmental behavior may have implications for better environmental and ecological risk assessment. PMID:25463219

  15. Pathogen-induced SGT1 of Arachis diogoi induces cell death and enhanced disease resistance in tobacco and peanut.

    PubMed

    Kumar, Dilip; Kirti, Pulugurtha Bharadwaja

    2015-01-01

    We have identified a transcript derived fragment (TDF) corresponding to SGT1 in a study of differential gene expression on the resistant wild peanut, Arachis diogoi, upon challenge from the late leaf spot pathogen, Phaeoisariopsis personata, and cloned its full-length cDNA followed by subsequent validation through q-PCR. Sodium nitroprusside, salicylic acid, ethephon and methyl jasmonate induced the expression of AdSGT1, while the treatment with abscisic acid did not elicit its up-regulation. AdSGT1 is localized to both nucleus and cytoplasm. Its overexpression induced hypersensitive-like cell death in tobacco under transient conditional expression using the estradiol system, and this conditional expression of AdSGT1 was also associated with the up-regulation of NtHSR203J, HMGR and HIN1, which have been shown to be associated with hypersensitive response in tobacco in earlier studies. Expression of the cDNA in a susceptible cultivated peanut variety enhanced its resistance against the late leaf spot pathogen, Phaeoisariopsis personata, while the heterologous expression in tobacco enhanced its resistance against Phytophthora parasitica var. nicotianae, Alternaria alternata var. nicotianae and Rhizoctonia solani. Constitutive expression in peanut was associated with the co-expression of resistance-related genes, CC-NB-LRR and some protein kinases. PMID:25236372

  16. A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses

    PubMed Central

    Liang, HongXia; Lu, Yan; Liu, HongXia; Wang, FengDe; Xin, ZhiYong; Zhang, ZengYan

    2008-01-01

    Thinopyrum intermedium is resistant to many different pathogens. To understand the roles of ethylene response factors (ERFs) in defence responses, the first member of the ERF family in T. intermedium, TiERF1, was characterized and functionally analysed in this study. The TiERF1 gene encodes a putative protein of 292 amino acids, belonging to the B3 subgroup of the ERF transcription factor family. Biochemical assays demonstrated that the TiERF1 protein is capable of binding to the GCC box, a cis-element present in the promoters of pathogenesis-related (PR) genes, and possessing transactivation activity, as well as localizing to the nucleus. The transcript of TiERF1 in T. intermedium is rapidly induced by infection with Rhizoctonia cerealis, Fusarium graminearum, or Blumeria graminis, and ethylene, jasmonic acid, and salicylic acid treatments. More importantly, the ectopic expression of TiERF1 in tobacco activated the transcript of the PR genes of tobacco with a GCC box cis-element, and ACO and ACS genes key to ethylene synthesis, and in turn improved the resistance level to Alternaria alternata and tobacco mosaic virus, as well as causing some phenotypic changes associated with ethylene response in the transgenic tobacco plants. Taken together, TiERF1 protein as an ERF transcription activator positively regulates defence responses via the activation of some defence-related genes. PMID:18611911

  17. Coastal Bermudagrass Rotation and Fallow for Management of Nematodes and Soilborne Fungi on Vegetable Crops

    PubMed Central

    Johnson, A. W.; Burton, G. W.; Sumner, D. R.; Handoo, Z.

    1997-01-01

    The efficacy of clean fallow, bermudagrass (Cynodon dactylon) as a rotational crop, and fenamiphos for control of root-knot nematode (Meloidogyne incognita race 1) and soilborne fungi in okra (Hibiscus esculentus), snapbean (Phaseolus vulgaris), and pepper (Capsicum annuum) production was evaluated in field tests from 1993 to 1995. Numbers of M. incognita in the soil and root-gall indices were greater on okra than on snapbean or pepper. Application of fenamiphos at 6.7 kg a.i./ha did not suppress numbers of nematodes on any sampling date when compared with untreated plots. The lack of efficacy could be the result of microbial degradation of the nematicide. Application of fenamiphos suppressed root-gall development on okra following fallow and 1-year sod in 1993, but not thereafter. A few galls were observed on roots of snapbean following 2- and 3-year fallow but none following 1-, 2-, and 3-year bermudagrass sod. Population densities of Pythium aphanidermatum, P. myriotylum, and Rhizoctonia solani in soil after planting vegetables were suppressed by 2- or 3-year sod compared with fallow but were not affected by fenamiphos. Yields of snapbean, pepper, and okra did not differ between fallow and 1-year sod. In the final year of the study, yields of all crops were greater following 3-year sod than following fallow. Application of fenamiphos prior to planting each crop following fallow or sod did not affect yields. PMID:19274273

  18. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    PubMed

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials.

  19. Anti-phytopathogenic activity of sporothriolide, a metabolite from endophyte Nodulisporium sp. A21 in Ginkgo biloba.

    PubMed

    Cao, Ling-Ling; Zhang, Ying-Ying; Liu, Ying-Jie; Yang, Ting-Ting; Zhang, Jin-Long; Zhang, Zheng-Guang; Shen, Li; Liu, Jun-Yan; Ye, Yong-Hao

    2016-05-01

    Phytopathogenic fungi such as Rhizoctonia solani and Sclerotinia sclerotiorum caused multiple plant diseases resulting in severe loss of crop production. Increasing documents endorsed that endophytes are a striking resource pool for numerous metabolites with various bioactivities such as anti-fungal. Here we reported the characterization and anti-phytopathogenic activity of sporothriolide, a metabolite produced by Nodulisporium sp. A21-an endophytic fungus in the leaves of Ginkgo biloba. Among the total twenty-five endophytic fungi isolated from the healthy leaves of G. biloba, the fermentation broth (FB) of the strain A21 was found potently inhibitory activity against R. solani and S. sclerotiorum using mycelia growth inhibition method. A21 was then identified as Nodulisporium sp., the asexual stage of Hypoxylon sp., by microscopic examination and ITS rDNA sequence data comparison. Under the bioassay-guided fractionation, sporothriolide was isolated from the petroleum ether extract of the FB of A21, whose structure was established by integrated interpretation of HR-ESI-MS and (1)H- and (13)C-NMR. Furthermore, the crystal structure of sporothriolide was first reported. In addition, sporothriolide was validated to be potently antifungal against R. solani, S. sclerotiorum and inhibit conidium germination of Magnaporthe oryzae in vitro and in vivo, indicating that it could be used as a lead compound for new fungicide development. PMID:27017876

  20. The inhibitory effect of the various seed coating substances against rice seed borne fungi and their shelf-life during storage.

    PubMed

    Thobunluepop, Pitipong

    2009-08-15

    Presently, chemical seed treatments are in discussion due to their directly or indirectly impacts on human health or other living organisms. They may also negatively affect the ecosystem and the food chain. In rice seeds, chemicals may cause phytotoxic effects including seed degradation. Eugenol is the main component of clove (Eugenia caryophillis) oil, which was proved to act simultaneously as bactericide, virocide and especially fungicide. The in vitro study was aimed to compare the inhibitory effect of the following seed treatment substances against seed borne fungi and their shelf-life during 12 months of storage; conventional captan (CA), chitosan-lignosulphonate polymer (CL), eugenol incorporated into chitosan-lignosulphonate polymer (E+CL) and control (CO). The obtained results of fungi inhibition were classified in three groups, which showed at first that CA treatment led to a better, i.e., longer, inhibitory effect on Alternaria padwickii, Rhizoctonia solani, Curvularia sp., Aspergillus flavus and Aspergillus niger than E+CL. Secondly, E+CL coating polymer showed the longest inhibitory effect against Bipolaris oryzae and Nigrospora oryzae compared to CA and CL coating polymer. Finally, both CA and E+CL coating polymer had non-significant difference inhibitory effect on Fusarium moniliforme. The variant of CL coating polymer for seed coating was only during the first 6 months of storage able to inhibit all species of the observed seed borne fungi, whereas CA and E+CL coating polymer were capable to inhibit most of the fungi until 9 months of storage.