Magnetic field changes activate the trigeminal brainstem complex in a migratory bird
Heyers, Dominik; Zapka, Manuela; Hoffmeister, Mara; Wild, John Martin; Mouritsen, Henrik
2010-01-01
The upper beak of birds, which contains putative magnetosensory ferro-magnetic structures, is innervated by the ophthalmic branch of the trigeminal nerve (V1). However, because of the absence of replicable neurobiological evidence, a general acceptance of the involvement of the trigeminal nerve in magnetoreception is lacking in birds. Using an antibody to ZENK protein to indicate neuronal activation, we here document reliable magnetic activation of neurons in and near the principal (PrV) and spinal tract (SpV) nuclei of the trigeminal brainstem complex, which represent the two brain regions known to receive primary input from the trigeminal nerve. Significantly more neurons were activated in PrV and in medial SpV when European robins (Erithacus rubecula) experienced a magnetic field changing every 30 seconds for a period of 3 h (CMF) than when robins experienced a compensated, zero magnetic field condition (ZMF). No such differences in numbers of activated neurons were found in comparison structures. Under CMF conditions, sectioning of V1 significantly reduced the number of activated neurons in and near PrV and medial SpV, but not in lateral SpV or in the optic tectum. Tract tracing of V1 showed spatial proximity and regional overlap of V1 nerve endings and ZENK-positive (activated) neurons in SpV, and partly in PrV, under CMF conditions. Together, these results suggest that magnetic field changes activate neurons in and near the trigeminal brainstem complex and that V1 is necessary for this activation. We therefore suggest that V1 transmits magnetic information to the brain in this migratory passerine bird. PMID:20439705
Zhu, Jin; Zhang, Xin; Zhao, Hua; Tang, Yin-Da; Ying, Ting-Ting; Li, Shi-Ting
2017-09-01
To investigate the characteristics of brainstem trigeminal evoked potentials (BTEP) waveform in patients with and without trigeminal neuralgia (TN), and to discuss the utility of BTEP in patients with primary TN treated by microvascular decompression (MVD). A retrospective review of 43 patients who underwent BTEP between January 2016 and June 2016, including 33 patients with TN who underwent MVD and 10 patients without TN. Brainstem trigeminal evoked potentials characteristics of TN and non-TN were summarized, in particular to compare the BTEP changes between pre- and post-MVD, and to discover the relationship between BTEP changes and surgical outcome. Brainstem trigeminal evoked potentials can be recorded in patients without trigeminal neuralgia. Abnormal BTEP could be recorded when different branches were stimulated. After decompression, the original W2, W3 disappeared and then replaced by a large wave in most patients, or original wave poorly differentiated improved in some patients, showed as shorter latency and (or) amplitude increased. Brainstem trigeminal evoked potentials waveform of healthy side in patients with trigeminal neuralgia was similar to the waveform of patients without TN. In 3 patients, after decompression the W2, W3 peaks increased, and the latency, duration, IPLD did not change significantly. Until discharge, 87.9% (29/33) of the patients presented complete absence of pain without medication (BNI I) and 93.9% (31/33) had good pain control without medication (BNI I-II). Brainstem trigeminal evoked potentials can reflect the conduction function of the trigeminal nerve to evaluate the functional level of the trigeminal nerve conduction pathway. The improvement and restoration of BTEP waveforms are closely related to the postoperative curative effect.
Neurochemical dynamics of acute orofacial pain in the human trigeminal brainstem nuclear complex.
de Matos, Nuno M P; Hock, Andreas; Wyss, Michael; Ettlin, Dominik A; Brügger, Mike
2017-11-15
The trigeminal brainstem sensory nuclear complex is the first central relay structure mediating orofacial somatosensory and nociceptive perception. Animal studies suggest a substantial involvement of neurochemical alterations at such basal CNS levels in acute and chronic pain processing. Translating this animal based knowledge to humans is challenging. Human related examining of brainstem functions are challenged by MR related peculiarities as well as applicability aspects of experimentally standardized paradigms. Based on our experience with an MR compatible human orofacial pain model, the aims of the present study were twofold: 1) from a technical perspective, the evaluation of proton magnetic resonance spectroscopy at 3 T regarding measurement accuracy of neurochemical profiles in this small brainstem nuclear complex and 2) the examination of possible neurochemical alterations induced by an experimental orofacial pain model. Data from 13 healthy volunteers aged 19-46 years were analyzed and revealed high quality spectra with significant reductions in total N-acetylaspartate (N-acetylaspartate + N-acetylaspartylglutamate) (-3.7%, p = 0.009) and GABA (-10.88%, p = 0.041) during the pain condition. These results might reflect contributions of N-acetylaspartate and N-acetylaspartylglutamate in neuronal activity-dependent physiologic processes and/or excitatory neurotransmission, whereas changes in GABA might indicate towards a reduction in tonic GABAergic functioning during nociceptive signaling. Summarized, the present study indicates the applicability of 1 H-MRS to obtain neurochemical dynamics within the human trigeminal brainstem sensory nuclear complex. Further developments are needed to pave the way towards bridging important animal based knowledge with human research to understand the neurochemistry of orofacial nociception and pain. Copyright © 2017 Elsevier Inc. All rights reserved.
Bodie, D; Bennett-Clarke, C A; Davis, K; Postelwaite, J P; Chiaia, N L; Rhoades, R W
1997-01-01
Previous experiments from this laboratory have indicated that transection of the infraorbital nerve (ION, the trigeminal [V] branch that supplies the mystacial vibrissae follicles) at birth and in adulthood has markedly different effects on galanin immunoreactivity in the V brainstem complex. Adult nerve transection increases galanin immunoreactivity in the superficial layers of V subnucleus caudalis (SpC) only, while neonatal nerve transection results in increased galanin expression in vibrissae-related primary afferents throughout the V brainstem complex. The present study describes the distribution of binding sites for this peptide in the mature and developing V ganglion and brainstem complex and determines the effects of neonatal and adult ION damage and the associated changes in galanin levels upon their distribution and density. Galanin binding sites are densely distributed in all V brainstem subnuclei and are particularly dense in V subnucleus interpolaris and the superficial layers of SpC. They are present at birth (P-0) and their distribution is similar to that in adult animals. Transection of the ION in adulthood and examination of brainstem 7 days later indicated marked reductions in the density of galanin binding sites in the V brainstem complex. With the exception of the superficial laminae of SpC, the same reduction in density remained apparent in rats that survived > 45 days after nerve cuts. Transection of the ION on P-0 resulted in no change in the density of galanin binding sites in the brainstem after either 7 or > 60 days survival. These results indicate that densely distributed galanin binding sites are present in the V brainstem complex of both neonatal and adult rats, that they are located in regions not innervated by galanin-positive axons, and that their density is not significantly influenced by large lesion-induced changes in the primary afferent content of their natural ligand.
Panneton, W. Michael; Gan, Qi
2014-01-01
Few trigeminal sensory fibers project centrally beyond the trigeminal sensory complex, with only projections of fibers carried in its sensory anterior ethmoidal (AEN) and intraoral nerves described. Fibers of the AEN project into the brainstem reticular formation where immunoreactivity against substance P and CGRP are found. We investigated whether the source of these peptides could be from trigeminal ganglion neurons by performing unilateral rhizotomies of the trigeminal root and looking for absence of label. After an 8–14 days survival, substance P immunoreactivity in the trigeminal sensory complex was diminished, but we could not conclude that the sole source of this peptide in the lateral parabrachial area and lateral reticular formation arises from primary afferent fibers. Immunoreactivity to CGRP after rhizotomy however was greatly diminished in the trigeminal sensory complex, confirming the observations of others. Moreover, CGRP immunoreactivity was nearly eliminated in fibers in the lateral parabrachial area, the caudal ventrolateral medulla, both the peri-ambiguus and ventral parts of the rostral ventrolateral medulla, in the external formation of the nucleus ambiguus, and diminished in the caudal pressor area. The nearly complete elimination of CGRP in the lateral reticular formation after rhizotomy suggests this peptide is carried in primary afferent fibers. Moreover, the arborization of CGRP immunoreactive fibers in these areas mimics that of direct projections from the AEN. Since electrical stimulation of the AEN induces cardiorespiratory adjustments including an apnea, peripheral vasoconstriction, and bradycardia similar to those seen in the mammalian diving response, we suggest these perturbations of autonomic behavior are enhanced by direct somatic primary afferent projections to these reticular neurons. We believe this to be first description of potential direct somatoautonomic projections to brainstem neurons regulating autonomic activity. PMID:24926231
Panneton, W Michael; Gan, Qi
2014-01-01
Few trigeminal sensory fibers project centrally beyond the trigeminal sensory complex, with only projections of fibers carried in its sensory anterior ethmoidal (AEN) and intraoral nerves described. Fibers of the AEN project into the brainstem reticular formation where immunoreactivity against substance P and CGRP are found. We investigated whether the source of these peptides could be from trigeminal ganglion neurons by performing unilateral rhizotomies of the trigeminal root and looking for absence of label. After an 8-14 days survival, substance P immunoreactivity in the trigeminal sensory complex was diminished, but we could not conclude that the sole source of this peptide in the lateral parabrachial area and lateral reticular formation arises from primary afferent fibers. Immunoreactivity to CGRP after rhizotomy however was greatly diminished in the trigeminal sensory complex, confirming the observations of others. Moreover, CGRP immunoreactivity was nearly eliminated in fibers in the lateral parabrachial area, the caudal ventrolateral medulla, both the peri-ambiguus and ventral parts of the rostral ventrolateral medulla, in the external formation of the nucleus ambiguus, and diminished in the caudal pressor area. The nearly complete elimination of CGRP in the lateral reticular formation after rhizotomy suggests this peptide is carried in primary afferent fibers. Moreover, the arborization of CGRP immunoreactive fibers in these areas mimics that of direct projections from the AEN. Since electrical stimulation of the AEN induces cardiorespiratory adjustments including an apnea, peripheral vasoconstriction, and bradycardia similar to those seen in the mammalian diving response, we suggest these perturbations of autonomic behavior are enhanced by direct somatic primary afferent projections to these reticular neurons. We believe this to be first description of potential direct somatoautonomic projections to brainstem neurons regulating autonomic activity.
Hyper-excitability of brainstem pathways in cerebral palsy.
Smith, Allison Teresa; Gorassini, Monica Ann
2018-06-27
Individuals with cerebral palsy (CP) experience impairments in the control of head and neck movements, suggesting dysfunction in brainstem circuitry. To examine if brainstem circuitry is altered in CP we compared reflexes evoked in the sternocleidomastoid (SCM) muscle by trigeminal nerve stimulation in adults with CP and age/sex-matched controls. Increasing the intensity of trigeminal nerve stimulation produced progressive increases in the long-latency suppression of ongoing SCM EMG in controls. In contrast, participants with CP showed progressively increased facilitation around the same reflex window, suggesting heightened excitability of brainstem pathways. We also examined if there was altered activation of cortico-brainstem pathways in response to pre-natal injury of the brain. Motor-evoked potentials (MEPs) in the SCM that were conditioned by a prior trigeminal afferent stimulation were more facilitated in CP compared to controls, especially in ipsilateral MEPs that are likely mediated by cortico-reticulospinal pathways. In some participants with CP, but not in controls, a combined trigeminal nerve and cortical stimulation near threshold intensities produced large, long-lasting responses in both the SCM and biceps brachii muscles. We propose that the enhanced excitatory responses evoked from trigeminal and cortical inputs in CP are produced by heightened excitability of brainstem circuits, resulting in the augmented activation of reticulospinal pathways. Enhanced activation of reticulospinal pathways in response to early injury of the corticospinal tract may provide a compensated activation of the spinal cord, or alternatively, contribute to impairments in the precise control of head and neck functions.
Effect of beam channel plugging on the outcome of gamma knife radiosurgery for trigeminal neuralgia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas; Nissim, Ouzi; Murata, Noriko
2006-07-15
Purpose: We studied the influence of using plugs for brainstem protection during gamma knife radiosurgery (GKR) of trigeminal neuralgia (TN), with special emphasis on irradiation doses delivered to the trigeminal nerve, pain outcomes, and incidence of trigeminal dysfunction. Methods and Materials: A GKR procedure for TN using an anterior cisternal target and a maximum dose of 90 Gy was performed in 109 patients. For 49 patients, customized beam channel blocking (plugs) were used to reduce the dose delivered to the brainstem. We measured the mean and integrated radiation doses delivered to the trigeminal nerve and the clinical course of patientsmore » treated with and without plugs. Results: We found that blocking increases the length of trigeminal nerve exposed to high-dose radiation, resulting in a significantly higher mean dose to the trigeminal nerve. Significantly more of the patients with blocking achieved excellent pain outcomes (84% vs. 62%), but with higher incidences of moderate and bothersome trigeminal nerve dysfunction (37% mild/10% bothersome with plugs vs. 30% mild/2% bothersome without). Conclusions: The use of plugs to protect the brainstem during GKR treatment for TN increases the dose of irradiation delivered to the intracisternal trigeminal nerve root and is associated with an important increase in the incidence of trigeminal nerve dysfunction. Therefore, beam channel blocking should be avoided for 90 Gy-GKR of TN.« less
Stereotactic radiotherapy for malignancies involving the trigeminal and facial nerves.
Cuneo, K C; Zagar, T M; Brizel, D M; Yoo, D S; Hoang, J K; Chang, Z; Wang, Z; Yin, F F; Das, S K; Green, S; Ready, N; Bhatti, M T; Kaylie, D M; Becker, A; Sampson, J H; Kirkpatrick, J P
2012-06-01
Involvement of a cranial nerve caries a poor prognosis for many malignancies. Recurrent or residual disease in the trigeminal or facial nerve after primary therapy poses a challenge due to the location of the nerve in the skull base, the proximity to the brain, brainstem, cavernous sinus, and optic apparatus and the resulting complex geometry. Surgical resection caries a high risk of morbidity and is often not an option for these patients. Stereotactic radiosurgery and radiotherapy are potential treatment options for patients with cancer involving the trigeminal or facial nerve. These techniques can deliver high doses of radiation to complex volumes while sparing adjacent critical structures. In the current study, seven cases of cancer involving the trigeminal or facial nerve are presented. These patients had unresectable recurrent or residual disease after definitive local therapy. Each patient was treated with stereotactic radiation therapy using a linear accelerator based system. A multidisciplinary approach including neuroradiology and surgical oncology was used to delineate target volumes. Treatment was well tolerated with no acute grade 3 or higher toxicity. One patient who was reirradiated experienced cerebral radionecrosis with mild symptoms. Four of the seven patients treated had no evidence of disease after a median follow up of 12 months (range 2-24 months). A dosimetric analysis was performed to compare intensity modulated fractionated stereotactic radiation therapy (IM-FSRT) to a 3D conformal technique. The dose to 90% (D90) of the brainstem was lower with the IM-FSRT plan by a mean of 13.5 Gy. The D95 to the ipsilateral optic nerve was also reduced with IM-FSRT by 12.2 Gy and the D95 for the optic chiasm was lower with FSRT by 16.3 Gy. Treatment of malignancies involving a cranial nerve requires a multidisciplinary approach. Use of an IM-FSRT technique with a micro-multileaf collimator resulted in a lower dose to the brainstem, optic nerves and chiasm for each case examined.
A translational in vivo model of trigeminal autonomic cephalalgias: therapeutic characterization.
Akerman, Simon; Holland, Philip R; Summ, Oliver; Lasalandra, Michele P; Goadsby, Peter J
2012-12-01
Trigeminal autonomic cephalalgias are highly disabling primary headache disorders, characterized by severe unilateral head pain and associated ipsilateral cranial autonomic features. There is limited understanding of their pathophysiology and how and where treatments act to reduce symptoms; this is significantly hindered by a lack of animal models. We have developed the first animal model to explore trigeminal autonomic cephalalgias, using stimulation within the brainstem, at the level of the superior salivatory nucleus, to activate the trigeminal autonomic reflex arc. Using electrophysiological recording of neurons of the trigeminocervical complex and laser Doppler blood flow changes around the ipsilateral lacrimal duct, superior salivatory nucleus stimulation exhibited both neuronal trigeminovascular and cranial autonomic manifestations. These responses were specifically inhibited by the autonomic ganglion blocker hexamethonium bromide. These data demonstrate that brainstem activation may be the driver of both sensory and autonomic symptoms in these disorders, and part of this activation may be via the parasympathetic outflow to the cranial vasculature. Additionally, both sensory and autonomic manifestations were significantly inhibited by highly effective treatments for trigeminal autonomic cephalalgias, such as oxygen, indomethacin and triptans, and some part of their therapeutic action appears to be specifically on the parasympathetic outflow to the cranial vasculature. Treatments more used to migraine, such as naproxen and a calcitonin gene-related peptide receptor inhibitor, olcegepant, were less effective in this model. This is the first model to represent the phenotype of trigeminal autonomic cephalalgias and their response to therapies, and indicates the parasympathetic pathway may be uniquely involved in their pathophysiology and targeted to relieve symptoms.
Organization of the spinal trigeminal nucleus in star-nosed moles.
Sawyer, Eva K; Leitch, Duncan B; Catania, Kenneth C
2014-10-01
Somatosensory inputs from the face project to multiple regions of the trigeminal nuclear complex in the brainstem. In mice and rats, three subdivisions contain visible representations of the mystacial vibrissae, the principal sensory nucleus, spinal trigeminal subnucleus interpolaris, and subnucleus caudalis. These regions are considered important for touch with high spatial acuity, active touch, and pain and temperature sensation, respectively. Like mice and rats, the star-nosed mole (Condylura cristata) is a somatosensory specialist. Given the visible star pattern in preparations of the star-nosed mole cortex and the principal sensory nucleus, we hypothesized there were star patterns in the spinal trigeminal nucleus subnuclei interpolaris and caudalis. In sections processed for cytochrome oxidase, we found star-like segmentation consisting of lightly stained septa separating darkly stained patches in subnucleus interpolaris (juvenile tissue) and subnucleus caudalis (juvenile and adult tissue). Subnucleus caudalis represented the face in a three-dimensional map, with the most anterior part of the face represented more rostrally than posterior parts of the face. Multiunit electrophysiological mapping was used to map the ipsilateral face. Ray-specific receptive fields in adults matched the CO segmentation. The mean areas of multiunit receptive fields in subnucleus interpolaris and caudalis were larger than previously mapped receptive fields in the mole's principal sensory nucleus. The proportion of tissue devoted to each ray's representation differed between the subnucleus interpolaris and the principal sensory nucleus. Our finding that different trigeminal brainstem maps can exaggerate different parts of the face could provide new insights for the roles of these different somatosensory stations. © 2014 Wiley Periodicals, Inc.
Organization of the spinal trigeminal nucleus in Star-Nosed Moles
Sawyer, Eva K.; Leitch, Duncan B.; Catania, Kenneth C.
2014-01-01
Somatosensory inputs from the face project to multiple regions of the trigeminal nuclear complex in the brainstem. In mice and rats three subdivisions contain visible representations of the mystacial vibrissae: the principal sensory nucleus, the spinal trigeminal subnucleus interpolaris and subnucleus caudalis. These regions are considered important for touch with high spatial acuity, active touch, and pain and temperature sensation, respectively. Like mice and rats, the star-nosed mole (Condylura cristata) is a somatosensory specialist. Given the visible star pattern in preparations of the star-nosed mole cortex and the principal sensory nucleus, we hypothesized there were star patterns in the spinal trigeminal nucleus subnuclei interpolaris and caudalis. In sections processed for cytochrome oxidase we found star-like segmentation consisting of lightly stained septa separating darkly stained patches in subnucleus interpolaris (juvenile tissue) and subnucleus caudalis (juvenile and adult tissue). Subnucleus caudalis represented the face in a three-dimensional map with the most anterior part of the face represented more rostrally than posterior parts of the face. Multi-unit electrophysiological mapping was used to map the ipsilateral face. Ray-specific receptive fields in adults matched the CO-segmentation. The mean areas of multiunit receptive fields in subnucleus interpolaris and caudalis were larger than previously mapped receptive fields in the mole's principal sensory nucleus. The proportion of tissue devoted to each ray's representation differed between subnucleus interpolaris and the principal sensory nucleus. Our finding that different trigeminal brainstem maps can exaggerate different parts of the face could provide new insights for the roles of these different somatosensory stations. PMID:24715542
Lukács, M; Warfvinge, K; Tajti, J; Fülöp, F; Toldi, J; Vécsei, L; Edvinsson, L
2017-12-01
Migraine is a debilitating neurological disorder where trigeminovascular activation plays a key role. We have previously reported that local application of Complete Freund's Adjuvant (CFA) onto the dura mater caused activation in rat trigeminal ganglion (TG) which was abolished by a systemic administration of kynurenic acid (KYNA) derivate (SZR72). Here, we hypothesize that this activation may extend to the trigeminal complex in the brainstem and is attenuated by treatment with SZR72. Activation in the trigeminal nucleus caudalis (TNC) and the trigeminal tract (Sp5) was achieved by application of CFA onto the dural parietal surface. SZR72 was given intraperitoneally (i.p.), one dose prior CFA deposition and repeatedly daily for 7 days. Immunohistochemical studies were performed for mapping glutamate, c-fos, PACAP, substance P, IL-6, IL-1β and TNFα in the TNC/Sp5 and other regions of the brainstem and at the C 1 -C 2 regions of the spinal cord. We found that CFA increased c-fos and glutamate immunoreactivity in TNC and C 1 -C 2 neurons. This effect was mitigated by SZR72. PACAP positive fibers were detected in the fasciculus cuneatus and gracilis. Substance P, TNFα, IL-6 and IL-1β immunopositivity were detected in fibers of Sp5 and neither of these molecules showed any change in immunoreactivity following CFA administration. This is the first study demonstrating that dural application of CFA increases the expression of c-fos and glutamate in TNC neurons. Treatment with the KYNA analogue prevented this expression.
Greco, M C; Capuano, A; Navarra, P; Tringali, G
2016-07-01
Several classes of drugs are effective in prevention and treatment of migraine, although they may differ among each other in their mode of action and in indications. One such class is represented by antiepileptics. Lacosamide is an approved antiepileptic drug that also shows antinociceptive activity in animal models, including analgesic efficacy in central and trigeminal pain. Calcitonin gene-related peptide (CGRP) is considered the main neuro-mediator of trigeminal signalling, playing an essential role in headache, migraine in particular. Here, we investigated the effects of lacosamide on CGRP signalling in both in vitro and ex vivo/vitro models in the rat. We assessed: (1) CGRP released from brainstem explants at baseline or after pharmacological challenges; and (2) CGRP levels in brain areas after in vivo treatments with test drugs. We found that: (1) lacosamide inhibits CGRP release from brainstem explants under basal conditions as well as after stimulation by 56 mM KCl, 10 μM veratridine or 1 μM capsaicin; and (2) the i.p. administration of nitroglycerine produces an increase in CGRP levels in the brainstem and trigeminal ganglia, which is inhibited by a pre-treatment with lacosamide. These findings provide preliminary evidence suggesting that lacosamide is able to control pain transmission under conditions affecting the trigeminal system, such as migraine. © 2015 European Pain Federation - EFIC®
Capuano, Alessandro; Greco, Maria Cristina; Navarra, Pierluigi; Tringali, Giuseppe
2014-10-05
The neural mechanism(s) underlying migraine remain poorly defined at present; preclinical and clinical studies show an involvement of CGRP in this disorder. However current evidence pointed out that CGRP does not exert an algogenic action per se, but it is able to mediate migraine pain only if the trigeminal-vascular system is sensitized. The present study was addressed to investigate CGRP-evoked behavior in nitric oxide (NO) sensitized rats, using an experimental model of nitroglycerin induced sensitization of trigeminal system, looking at neuropeptide release from different cerebral areas after the intra-peritoneal (i.p.) administration of NO-donors. CGRP injected into the rat whisker pad did not induce significant changes in face rubbing behavior compared to controls. On the contrary, CGRP injected in animals pre-treated with 10mg/kg nitroglycerin significantly increased the time spent in face rubbing. Nitroglycerin pre-treated animals did not show any rubbing behavior after locally injected saline. Furthermore, the i.p. treatment with nitroglycerin produced an increase of CGRP levels in brainstem and trigeminal ganglia, but not in the hypothalamus and hippocampus. The absolute amounts of CGRP produced in the brainstem were lower compared to those in the trigeminal ganglion; however, after nitroglycerin stimulation the percentage increase was higher in the brainstem. In conclusion, findings presented in this study suggest that CGRP induces a painful behavior in rats only after sensitization of trigeminal system; thus supporting the concept that a genetic as well as acquired predisposition to trigemino- vascular activation represents the neurobiological basis of CGRP nociceptive effects in migraineurs. Copyright © 2014 Elsevier B.V. All rights reserved.
Long-Term Results for Trigeminal Schwannomas Treated With Gamma Knife Surgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Toshinori, E-mail: h-toshi@komakihp.gr.jp; Kato, Takenori; Iizuka, Hiroshi
Purpose: Surgical resection is considered the desirable curative treatment for trigeminal schwannomas. However, complete resection without any complications remains challenging. During the last several decades, stereotactic radiosurgery (SRS) has emerged as a minimally invasive treatment modality. Information regarding long-term outcomes of SRS for patients harboring trigeminal schwannomas is limited because of the rarity of this tumor. The aim of this study was to evaluate long-term tumor control and functional outcomes in patients harboring trigeminal schwannomas treated with SRS, specifically with gamma knife surgery (GKS). Methods and Materials: Fifty-three patients harboring trigeminal schwannomas treated with GKS were evaluated. Of these, 2more » patients (4%) had partial irradiation of the tumor, and 34 patients (64%) underwent GKS as the initial treatment. The median tumor volume was 6.0 cm{sup 3}. The median maximum and marginal doses were 28 Gy and 14 Gy, respectively. Results: The median follow-up period was 98 months. On the last follow-up image, 7 patients (13%) had tumor enlargement, including the 2 patients who had partial treatment. Excluding the 2 patients who had partial treatment, the actuarial 5- and 10-year progression-free survival (PFS) rates were 90% and 82%, respectively. Patients with tumors compressing the brainstem with deviation of the fourth ventricle had significantly lower PFS rates. If those patients with tumors compressing the brainstem with deviation of the fourth ventricle are excluded, the actuarial 5- and 10-year PFS rates increased to 95% and 90%, respectively. Ten percent of patients had worsened facial numbness or pain in spite of no tumor progression, indicating adverse radiation effect. Conclusions: GKS can be an acceptable alternative to surgical resection in patients with trigeminal schwannomas. However, large tumors that compress the brainstem with deviation of the fourth ventricle should be surgically removed first and then treated with GKS when necessary.« less
A second trigeminal CGRP receptor: function and expression of the AMY1 receptor
Walker, Christopher S; Eftekhari, Sajedeh; Bower, Rebekah L; Wilderman, Andrea; Insel, Paul A; Edvinsson, Lars; Waldvogel, Henry J; Jamaluddin, Muhammad A; Russo, Andrew F; Hay, Debbie L
2015-01-01
Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine. PMID:26125036
Peterson, Halloran E.; Larson, Erik W.; Fairbanks, Robert K.; Lamoreaux, Wayne T.; Mackay, Alexander R.; Call, Jason A.; Demakas, John J.; Cooke, Barton S.; Lee, Christopher M.
2013-01-01
Objective and Importance. Brainstem metastases (BSMs) are uncommon but serious complications of some cancers. They cause significant neurological deficit, and options for treatment are limited. Stereotactic radiosurgery (SRS) has been shown to be a safe and effective treatment for BSMs that prolongs survival and can preserve or in some cases improve neurological function. This case illustrates the use of repeated SRS, specifically Gamma Knife radiosurgery (GKRS) for management of a unique brainstem metastasis. Clinical Presentation. This patient presented 5 years after the removal of a lentigo maligna melanoma from her left cheek with left sided facial numbness and paresthesias with no reported facial weakness. Initial MRI revealed a mass on the left trigeminal nerve that appeared to be a trigeminal schwannoma. Intervention. After only limited response to the first GKRS treatment, a biopsy of the tumor revealed it to be metastatic melanoma, not schwannoma. Over the next two years, the patient would receive 3 more GKRS treatments. These procedures were effective in controlling growth in the treated areas, and the patient has maintained a good quality of life. Conclusion. GKRS has proven in this case to be effective in limiting the growth of this metastatic melanoma without acute adverse effects. PMID:24194991
Park, Seong-Cheol; Kwon, Do Hoon; Lee, Do Hee; Lee, Jung Kyo
2016-02-01
To investigate adequate radiation doses for repeat Gamma Knife radiosurgery (GKS) for trigeminal neuralgia in our series and meta-analysis. Fourteen patients treated by ipsilateral repeat GKS for trigeminal neuralgia were included. Median age of patients was 65 years (range, 28-78), the median target dose, 140-180). Patients were followed a median of 10.8 months (range, 1-151) after the second gamma-knife surgery. Brainstem dose analysis and vote-counting meta-analysis of 19 studies were performed. After the second gamma-knife radiosurgeries, pain was relieved effectively in 12 patients (86%; Barrow Neurological Institute Pain Intensity Score I-III). Post-gamma-knife radiosurgery trigeminal nerve deficits were mild in 5 patients. No serious anesthesia dolorosa was occurred. The second GKS radiation dose ≤ 60 Gy was significantly associated with worse pain control outcome (P = 0.018 in our series, permutation analysis of variance, and P = 0.009 in the meta-analysis, 2-tailed Fisher's exact test). Cumulative dose ≤ 140-150 Gy was significantly associated with poor pain control outcome (P = 0.033 in our series and P = 0.013 in the meta-analysis, 2-tailed Fisher's exact test). A cumulative brainstem edge dose >12 Gy tended to be associated with trigeminal nerve deficit (P = 0.077). Our study suggests that the second GKS dose is a potentially important factor. Copyright © 2016 Elsevier Inc. All rights reserved.
Guclu, Bulent; Sindou, Marc; Meyronet, David; Streichenberger, Nathalie; Simon, Emile; Mertens, Patrick
2011-12-01
The aim of this study was to evaluate the anatomy of the central myelin portion and the central myelin-peripheral myelin transitional zone of the trigeminal, facial, glossopharyngeal and vagus nerves from fresh cadavers. The aim was also to investigate the relationship between the length and volume of the central myelin portion of these nerves with the incidences of the corresponding cranial dysfunctional syndromes caused by their compression to provide some more insights for a better understanding of mechanisms. The trigeminal, facial, glossopharyngeal and vagus nerves from six fresh cadavers were examined. The length of these nerves from the brainstem to the foramen that they exit were measured. Longitudinal sections were stained and photographed to make measurements. The diameters of the nerves where they exit/enter from/to brainstem, the diameters where the transitional zone begins, the distances to the most distal part of transitional zone from brainstem and depths of the transitional zones were measured. Most importantly, the volume of the central myelin portion of the nerves was calculated. Correlation between length and volume of the central myelin portion of these nerves and the incidences of the corresponding hyperactive dysfunctional syndromes as reported in the literature were studied. The distance of the most distal part of the transitional zone from the brainstem was 4.19 ± 0.81 mm for the trigeminal nerve, 2.86 ± 1.19 mm for the facial nerve, 1.51 ± 0.39 mm for the glossopharyngeal nerve, and 1.63 ± 1.15 mm for the vagus nerve. The volume of central myelin portion was 24.54 ± 9.82 mm(3) in trigeminal nerve; 4.43 ± 2.55 mm(3) in facial nerve; 1.55 ± 1.08 mm(3) in glossopharyngeal nerve; 2.56 ± 1.32 mm(3) in vagus nerve. Correlations (p < 0.001) have been found between the length or volume of central myelin portions of the trigeminal, facial, glossopharyngeal and vagus nerves and incidences of the corresponding diseases. At present it is rather well-established that primary trigeminal neuralgia, hemifacial spasm and vago-glossopharyngeal neuralgia have as one of the main causes a vascular compression. The strong correlations found between the lengths and volumes of the central myelin portions of the nerves and the incidences of the corresponding diseases is a plea for the role played by this anatomical region in the mechanism of these diseases.
Song, Zhi-Xiu; Qian, Wei; Wu, Yu-Quan; Sun, Fang-Jie; Fei, Jun; Huang, Run-Sheng; Fang, Jing-Yu; Wu, Cai-Zhen; An, You-Ming; Wang, Daxin; Yang, Jun
2014-01-01
To understand the mechanism of the gamma knife treating the trigeminal neuralgia. Using the MASEP-SRRS type gamma knife treatment system, 140 Chinese patients with trigeminal neuralgia (NT) were treated in our hospital from 2002 to 2010, in which the pain relief rate reached 95% and recurrence rate was 3% only. We investigated the effect of the gamma knife treatment on the trigeminal nerve root in 20 Chinese patients with primary trigeminal neuralgia by the magnetic resonance imager (MRI) observation. 1) The cross-sectional area of trigeminal nerve root became smaller and MRI signals were lower in the treatment side than those in the non-treatment side after the gamma knife treatment of primary trigeminal neuralgia; 2) in the treatment side, the cross-sectional area of the trigeminal nerve root decreased significantly after the gamma knife treatment; 3) there was good correlation between the clinical improvement and the MRI findings; and 4) the straight distance between the trigeminal nerve root and the brainstem did not change after the gamma knife treatment. The pain relief induced the gamma knife radiosurgery might be related with the atrophy of the trigeminal nerve root in Chinese patients with primary trigeminal neuralgia.
Sensitization of trigeminal brainstem pathways in a model for tear deficient dry eye
Rahman, Mostafeezur; Okamoto, Keiichiro; Thompson, Randall; Katagiri, Ayano; Bereiter, David A.
2015-01-01
Abstract Chronic dry eye disease (DE) is associated with an unstable tear film and symptoms of ocular discomfort. The characteristics of symptoms suggest a key role for central neural processing; however, little is known about central neuroplasticity and DE. We used a model for tear deficient DE and assessed effects on eye blink behavior, orbicularis oculi muscle activity (OOemg), and trigeminal brainstem neural activity in male rats. Ocular-responsive neurons were recorded at the interpolaris/caudalis transition (Vi/Vc) and Vc/upper cervical cord (Vc/C1) regions under isoflurane, whereas OOemg activity was recorded under urethane. Spontaneous tear volume was reduced by ∼50% at 14 days after exorbital gland removal. Hypertonic saline–evoked eye blink behavior in awake rats was enhanced throughout the 14 days after surgery. Saline-evoked neural activity at the Vi/Vc transition and in superficial and deep laminae at the Vc/C1 region was greatly enhanced in DE rats. Neurons from DE rats classified as wide dynamic range displayed enlarged convergent periorbital receptive fields consistent with central sensitization. Saline-evoked OOemg activity was markedly enhanced in DE rats compared with controls. Synaptic blockade at the Vi/Vc transition or the Vc/C1 region greatly reduced hypertonic saline–evoked OOemg activity in DE and sham rats. These results indicated that persistent tear deficiency caused sensitization of ocular-responsive neurons at multiple regions of the caudal trigeminal brainstem and enhanced OOemg activity. Central sensitization of ocular-related brainstem circuits is a significant factor in DE and likely contributes to the apparent weak correlation between peripheral signs of tear dysfunction and symptoms of irritation. PMID:25734990
Anderson, C W
2001-09-01
Using injections of small molecular weight fluorescein dextran amines, combined with activity-dependent uptake of sulforhodamine 101 (SR101), brainstem circuits presumed to be involved in feeding motor output were investigated. As has been shown previously in other studies, projections to the cerebellar nuclei were identified from the cerebellar cortex, the trigeminal motor nucleus, and the vestibular nuclei. Results presented here suggest an additional pathway from the hypoglossal motor nuclei to the cerebellar nucleus as well as an afferent projection from the peripheral hypoglossal nerve to the Purkinje cell layer of the cerebellar cortex. Injections in the cerebellar cortex combined with retrograde labeling of the peripheral hypoglossal nerve demonstrate anatomical convergence at the level of the medial reticular formation. This suggests a possible integrative region for afferent feedback from the hypoglossal nerve and information through the Purkinje cell layer of the cerebellar cortex. The activity-dependent uptake of SR101 additionally suggests a reciprocal, polysynaptic pathway between this same area of the medial reticular formation and the trigeminal motor nuclei. The trigeminal motor neurons innervate the m adductor mandibulae, the primary mouth-closing muscle. The SR101 uptake clearly labeled the ventrolateral hypoglossal nuclei, the medial reticular formation, and the Purkinje cell layer of the cerebellar cortex. Unlike retrograde labeling of the peripheral hypoglossal nerve, stimulating the hypoglossal nerve while SR101 was bath-applied labeled trigeminal motor neurons. This, combined with the dextran labeling, suggests a reciprocal connection between the trigeminal motor nuclei and the cerebellar nuclei, as well as the medulla. Taken together, these data are important for understanding the neurophysiological pathways used to coordinate the proper timing of an extremely rapid, goal-directed movement and may prove useful for elucidating some of the first principles of sensorimotor integration.
Trigeminal Trophic Syndrome Associated With the Use of Synthetic Marijuana.
Khan, Fawad A; Manacheril, Rinu; Ulep, Robin; Martin, Julie E; Chimakurthy, Anil
2017-01-01
Trigeminal trophic syndrome (TTS) is an uncommon disorder of the trigeminal nerve tract and trigeminal brainstem nucleus. The syndrome is characterized by a triad of unilateral crescentic ulcers with anesthesia and paresthesias of the involved trigeminal dermatomes. A 24-year-old right-handed black female presented to our emergency department with a 4-week history of rapidly progressive painless desquamation/denudation of skin over her right face and scalp. Four weeks prior, she had been admitted to another institution for seizures and was diagnosed with seizures provoked by synthetic marijuana use. She was afebrile during her initial presentation at our institution. Dermatologic examination revealed denudation of the epidermis and partial dermis over the right frontal, parietal, and temporal scalp with associated alopecia. To our knowledge, the association of disorders of the trigeminal nerve pathway, including TTS, with the use of synthetic marijuana has not been previously reported. The long-term neurologic effects of synthetic marijuana are difficult to predict, and the pathologic underpinnings of TTS are largely unknown. Further studies dedicated to exploring the underlying molecular and cellular mechanisms may translate into effective therapies and approaches to halt and reverse the process and prevent tissue destruction and cosmetic disfigurement.
Smith, Zachary A; Gorgulho, Alessandra A; Bezrukiy, Nikita; McArthur, David; Agazaryan, Nzhde; Selch, Michael T; De Salles, Antonio A F
2011-09-01
Dedicated linear accelerator radiosurgery (D-LINAC) has become an important treatment for trigeminal neuralgia (TN). Although the use of gamma knife continues to be established, few large series exist using D-LINAC. The authors describe their results, comparing the effects of varied target and dose regimens. Between August 1995 and January 2008, 179 patients were treated with D-LINAC radiosurgery. Ten patients (5.58%) had no clinical follow-up. The median age was 74.0 years (range, 32-90 years). A total of 39 patients had secondary or atypical pain, and 130 had idiopathic TN. Initially, 28 patients received doses between 70 and 85 Gy, with the 30% isodose line (IDL) touching the brainstem. Then, using 90 Gy, 82 consecutive patients were treated with a 30% IDL and 59 patients with a 50% IDL tangential to the pons. Of 169 patients, 134 (79.3%) experienced significant relief at a mean of 28.8 months (range, 5-142 months). Average time to relief was 1.92 months (range, immediate to 6 months). A total of 31 patients (19.0%) had recurrent pain at 13.5 months. Of 87 patients with idiopathic TN without prior procedures, 79 (90.8%) had initial relief. Among 28 patients treated with 70 Gy and 30% IDL, 18 patients (64.3%) had significant relief, and 10 (35.7%) had numbness. Of the patients with 90 Gy and 30% IDL at the brainstem, 59 (79.0%) had significant relief and 48.9% had numbness. Among 59 consecutive patients with similar dose but the 50% isodoseline at the brainstem, 49 patients (88.0%) had excellent/good relief. Numbness, averaging 2.49 on a subjective scale of 1 to 5, was experienced by 49.7% of the patients, Increased radiation dose and volume of brainstem irradiation may improve clinical outcomes with the trade-off of trigeminal dysfunction. Further study of the implications of dose and target are needed to optimize outcomes and to minimize complications. Published by Elsevier Inc.
Where to locate the isocenter? The treatment strategy for repeat trigeminal neuralgia radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Pengpeng; Brisman, Ronald; Choi, Julie
2005-05-01
Purpose: The purpose of this study is to investigate how the spatial relationship between the isocenters of the first and second radiosurgeries affects the overall outcome. Methods and Materials: We performed a retrospective study on 40 patients who had repeat gamma knife radiosurgery for trigeminal neuralgia. Only one 4-mm isocenter was applied in both first and second radiosurgeries, with a maximum radiation dose of 75 Gy and 40 Gy, respectively. The MR scan of the first radiosurgery was registered to that of the second radiosurgery by a landmark-based registration algorithm. The spatial relationship between the isocenter of the first andmore » the second radiosurgeries was thus determined. The investigating parameters were the distance between the isocenters of the two separate radiosurgeries and isocenter proximity to the brainstem. The outcome end points were pain relief and dysesthesias. The median follow-up for the repeat radiosurgery was 28 months (range, 6-51 months). Results: Pain relief was complete in 11 patients, nearly complete ({>=}90%) in 7 patients, partial ({>=}50%) in 8 patients, and minimal (<50%) or none in another 14 patients. The mean distance between the two isocenters was 2.86 mm in the complete or nearly complete pain relief group vs. 1.93 mm in the others. Farther distance between isocenters was associated with a trend toward better pain relief (p 0.057). The proximity of the second isocenter to the brainstem did not affect pain relief, and neither did placing the second isocenter proximal or distal to the brainstem compared with the first one. Three patients developed moderate dysesthesias (score of 4 on a 0-10 scale), and 2 other patients developed more significant dysesthesias (score of 7) after the second radiosurgery. Dysesthesias related neither to distance between isocenters nor to which isocenter was closer to the brainstem. Conclusions: Image registration between MR scans of the first and second radiosurgeries helps target delineation and radiosurgery treatment planning. Increasing the isocenter distance between the two radiosurgeries treated a longer segment of the trigeminal neuralgia nerve and was associated with a trend toward improved pain relief.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Zachary A.; Gorgulho, Alessandra A.; Bezrukiy, Nikita
2011-09-01
Purpose: Dedicated linear accelerator radiosurgery (D-LINAC) has become an important treatment for trigeminal neuralgia (TN). Although the use of gamma knife continues to be established, few large series exist using D-LINAC. The authors describe their results, comparing the effects of varied target and dose regimens. Methods and Materials: Between August 1995 and January 2008, 179 patients were treated with D-LINAC radiosurgery. Ten patients (5.58%) had no clinical follow-up. The median age was 74.0 years (range, 32-90 years). A total of 39 patients had secondary or atypical pain, and 130 had idiopathic TN. Initially, 28 patients received doses between 70 andmore » 85 Gy, with the 30% isodose line (IDL) touching the brainstem. Then, using 90 Gy, 82 consecutive patients were treated with a 30% IDL and 59 patients with a 50% IDL tangential to the pons. Results: Of 169 patients, 134 (79.3%) experienced significant relief at a mean of 28.8 months (range, 5-142 months). Average time to relief was 1.92 months (range, immediate to 6 months). A total of 31 patients (19.0%) had recurrent pain at 13.5 months. Of 87 patients with idiopathic TN without prior procedures, 79 (90.8%) had initial relief. Among 28 patients treated with 70 Gy and 30% IDL, 18 patients (64.3%) had significant relief, and 10 (35.7%) had numbness. Of the patients with 90 Gy and 30% IDL at the brainstem, 59 (79.0%) had significant relief and 48.9% had numbness. Among 59 consecutive patients with similar dose but the 50% isodoseline at the brainstem, 49 patients (88.0%) had excellent/good relief. Numbness, averaging 2.49 on a subjective scale of 1 to 5, was experienced by 49.7% of the patients, Conclusions: Increased radiation dose and volume of brainstem irradiation may improve clinical outcomes with the trade-off of trigeminal dysfunction. Further study of the implications of dose and target are needed to optimize outcomes and to minimize complications.« less
Albrecht, Jessica; Kopietz, Rainer; Frasnelli, Johannes; Wiesmann, Martin; Hummel, Thomas; Lundström, Johan N.
2009-01-01
Almost every odor we encounter in daily life has the capacity to produce a trigeminal sensation. Surprisingly, few functional imaging studies exploring human neuronal correlates of intranasal trigeminal function exist, and results are to some degree inconsistent. We utilized activation likelihood estimation (ALE), a quantitative voxel-based meta-analysis tool, to analyze functional imaging data (fMRI/PET) following intranasal trigeminal stimulation with carbon dioxide (CO2), a stimulus known to exclusively activate the trigeminal system. Meta-analysis tools are able to identify activations common across studies, thereby enabling activation mapping with higher certainty. Activation foci of nine studies utilizing trigeminal stimulation were included in the meta-analysis. We found significant ALE scores, thus indicating consistent activation across studies, in the brainstem, ventrolateral posterior thalamic nucleus, anterior cingulate cortex, insula, precentral gyrus, as well as in primary and secondary somatosensory cortices – a network known for the processing of intranasal nociceptive stimuli. Significant ALE values were also observed in the piriform cortex, insula, and the orbitofrontal cortex, areas known to process chemosensory stimuli, and in association cortices. Additionally, the trigeminal ALE statistics were directly compared with ALE statistics originating from olfactory stimulation, demonstrating considerable overlap in activation. In conclusion, the results of this meta-analysis map the human neuronal correlates of intranasal trigeminal stimulation with high statistical certainty and demonstrate that the cortical areas recruited during the processing of intranasal CO2 stimuli include those outside traditional trigeminal areas. Moreover, through illustrations of the considerable overlap between brain areas that process trigeminal and olfactory information; these results demonstrate the interconnectivity of flavor processing. PMID:19913573
Brainstem pathology in spasmodic dysphonia
Simonyan, Kristina; Ludlow, Christy L.; Vortmeyer, Alexander O.
2009-01-01
Spasmodic dysphonia (SD) is a primary focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speech production. We examined two rare cases of postmortem brainstem tissue from SD patients compared to four controls. In SD patients, small clusters of inflammation were found in the reticular formation surrounding solitary tract, spinal trigeminal and ambigual nuclei, inferior olive and pyramids. Mild neuronal degeneration and depigmentation were observed in the substantia nigra and locus coeruleus. No abnormal protein accumulations and no demyelination or axonal degeneration were found. These neuropathological findings may provide insights into the pathophysiology of SD. PMID:19795469
Intracranial Management of Perineural Spread in the Trigeminal Nerve.
Redmond, Michael J; Panizza, Benedict J
2016-04-01
Since the mid-1960s surgeons have attempted to cure intracranial perineural spread (PNS) of cutaneous malignancies. Untreated patients with trigeminal PNS die from brainstem invasion and leptomeningeal disease. It was understood that resection with clear margins was potentially curative, but early surgical attempts were unsuccessful. The prevailing wisdom considered that this surgery failed to improve the results achieved with radiation therapy alone and was associated with high morbidity. However, with improved imaging, surgical equipment, and better understanding of cavernous sinus (CS) anatomy and access, contemporary surgeons can improve outcomes for this disease. The aim of this paper is to describe a technique to access the interdural compartment of the CS and treat PNS of cutaneous squamous cell carcinoma (cSCC) in the intracranial trigeminal nerve and ganglion. It is based on the experience of the Queensland Skull Base Unit, Australia in managing PNS of cutaneous squamous cell carcinoma of the head and neck (cSCCHN).
Dong, Yulin; Li, Jinlian; Zhang, Fuxing; Li, Yunqing
2011-01-01
It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals. PMID:21980505
Rehabilitation of the trigeminal nerve
Iro, Heinrich; Bumm, Klaus; Waldfahrer, Frank
2005-01-01
When it comes to restoring impaired neural function by means of surgical reconstruction, sensory nerves have always been in the role of the neglected child when compared with motor nerves. Especially in the head and neck area, with its either sensory, motor or mixed cranial nerves, an impaired sensory function can cause severe medical conditions. When performing surgery in the head and neck area, sustaining neural function must not only be highest priority for motor but also for sensory nerves. In cases with obvious neural damage to sensory nerves, an immediate neural repair, if necessary with neural interposition grafts, is desirable. Also in cases with traumatic trigeminal damage, an immediate neural repair ought to be considered, especially since reconstructive measures at a later time mostly require for interposition grafts. In terms of the trigeminal neuralgia, commonly thought to arise from neurovascular brainstem compression, a pharmaceutical treatment is considered as the state of the art in terms of conservative therapy. A neurovascular decompression of the trigeminal root can be an alternative in some cases when surgical treatment is sought after. Besides the above mentioned therapeutic options, alternative treatments are available. PMID:22073060
Sawyer, Eva Kille; Liao, Chia-Chi; Qi, Hui-Xin; Balaram, Pooja; Matrov, Denis; Kaas, Jon H.
2015-01-01
Galagos are prosimian primates that resemble ancestral primates more than most other extant primates. As in many other mammals, the facial vibrissae of galagos are distributed across the upper and lower jaws and above the eye. In rats and mice, the mystacial macrovibrissae are represented throughout the ascending trigeminal pathways as arrays of cytoarchitecturally distinct modules, with each module having a nearly one-to-one relationship with a specific facial whisker. The macrovibrissal representations are termed barrelettes in the trigeminal somatosensory brainstem, barreloids in the ventroposterior medial subnucleus of the thalamus, and barrels in primary somatosensory cortex. Despite the presence of facial whiskers in all nonhuman primates, barrel-like structures have not been reported in primates. By staining for cytochrome oxidase, Nissl, and vesicular glutamate transporter proteins, we show a distinct array of barrelette-like and barreloid-like modules in the principal sensory nucleus, the spinal trigeminal nucleus, and the ventroposterior medial subnucleus of the galago, Otolemur garnetti. Labeled terminals of primary sensory neurons in the brainstem and cell bodies of thalamocortically projecting neurons demonstrate that barrelette-like and barreloid-like modules are located in areas of these somatosensory nuclei that are topographically consistent with their role in facial touch. Serendipitously, the plane of section that best displays the barreloid-like modules reveals a remarkably distinct homunculus-like patterning which, we believe, is one of the clearest somatotopic maps of an entire body surface yet found. PMID:26038561
Bortolami, R; Calzà, L; Lucchi, M L; Giardino, L; Callegari, E; Manni, E; Pettorossi, V E; Barazzoni, A M; Lalatta Costerbosa, G
1991-04-26
The peripheral territories of sheep trigeminal neurons which send their central process to the brainstem through the oculomotor nerve were investigated by the use of fluorescent tracers in double-labeling experiments. For this purpose Diamidino yellow (DY) injection into the oculomotor nerve was combined with Fast blue (FB) injection either into the extraocular muscles (EOMs), or the cornea, or the superior eyelid. Double-labeled DY + FB cells were found in the ophthalmic region of the trigeminal ganglion in addition to single-labeled DY or FB cells. The DY and DY + FB-labeled trigeminal cells were analysed immunocytochemically for their content of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, and cholecystokinin-8 (CCK-8)-like. All single-labeled DY cells showed SP-, CGRP- or CCK-8-like immunoreactivity. Double-labeled DY + FB neurons innervating the EOMs were immunoreactive for each of the three peptides, whereas double-labeled neurons supplying the cornea were only CGRP-like positive. The findings suggest that, in the sheep, trigeminal neurons which send their process centrally through the oculomotor nerve supply the EOMs, the cornea, and the superior eyelid and contain neuropeptides which are usually associated with pain sensation.
Esparza‐Moreno, Karina P.; Ballesteros‐Zebadúa, Paola; Lárraga‐Gutiérrez, José M.; Moreno‐Jiménez, Sergio; Celis‐López, Miguel A.
2013-01-01
Trigeminal neuralgia (TN) is a chronic, episodic facial pain syndrome that can be extremely intense, and it occurs within the regions of the face that are innervated by the three branches of the trigeminal nerve. Stereotactic radiosurgery (SRS) is the least invasive procedure to treat TN. SRS uses narrow photon beams that require high spatial resolution techniques for their measurement. The use of radiographic or radiochromic films for small‐field dosimetry is advantageous because high spatial resolution and two‐dimensional dose measurements can be performed. Because these films have different properties, it is expected that the calculated dose distributions for TN patients will behave differently, depending on the detector used for the commissioning of the small photon beams. This work is based on two sets of commissioned data: one commissioned with X‐OMAT V2 film and one commissioned with EBT2 film. The calculated dose distributions for 23 TN patients were compared between the commissioning datasets. The variables observed were the differences in the half widths of the 35 and 40 Gy isodose lines (related to the entrance distance to the brainstem) and the volume of the brainstem that received a dose of 12 Gy or more (V12). The results of this comparison showed that there were statistically significant differences between the two calculated dose distributions. The magnitudes of these differences were up to 0.33 mm and 0.38 mm for the 35 and 40 Gy isodose lines. The corresponding difference for the V12 was up to 2.1 cc. It is clear that these differences may impact the treatment of TN patients, and then it must be important to perform this type of analysis when observing complication rates. Clinical reports on irradiation techniques for trigeminal neuralgia should consider that different detectors used for commissioning treatment planning systems might result in small but significant differences in dose distributions. PACS number: 87.55.km PMID:24257267
Osteopathic manipulative treatment for facial numbness and pain after whiplash injury.
Genese, Josephine Sun
2013-07-01
Whiplash injury is often caused by rear-end motor vehicle collisions. Symptoms such as neck pain and stiffness or arm pain or numbness are common with whiplash injury. The author reports a case of right facial numbness and right cheek pain after a whiplash injury. Osteopathic manipulative treatment techniques applied at the level of the cervical spine, suboccipital region, and cranial region alleviated the patient's facial symptoms by treating the right-sided strain of the trigeminal nerve. The strain on the trigeminal nerve likely occurred at the upper cervical spine, at the nerve's cauda, and at the brainstem, the nerve's point of origin. The temporal portion of the cranium played a major role in the strain on the maxillary.
Antinociceptive reflex alteration in acute posttraumatic headache following whiplash injury.
Keidel, M; Rieschke, P; Stude, P; Eisentraut, R; van Schayck, R; Diener, H
2001-06-01
Brainstem-mediated antinociceptive inhibitory reflexes of the temporalis muscle were investigated in 82 patients (47 F, 35 M, mean age 28.3 years, SD 9.4) with acute posttraumatic headache (PH) following whiplash injury but without neurological deficits, bone injury of the cervical spine or a combined direct head trauma on average 5 days after the acceleration trauma. Latencies and durations of the early and late exteroceptive suppression (ES1 and ES2) and the interposed EMG burst (IE) of the EMG of the voluntarily contracted right temporalis muscle evoked by ipsilateral stimulation of the second and third branches of the trigeminal nerve were analyzed and compared to a cohort of 82 normal subjects (43 F, 39 M, mean age 27.7 years, SD 7.1). Highly significant reflex alterations were found in patients with PH with a shortening of ES2 duration with delayed onset and premature ending as the primary parameter of this study, a moderate prolongation of ES1 and IE duration and a delayed onset of IE. The latency of ES1 was not significantly changed. These findings indicate that acute PH in whiplash injury is accompanied by abnormal antinociceptive brainstem reflexes. We conclude that the abnormality of the trigeminal inhibitory temporalis reflex is based on a transient dysfunction of the brainstem-mediated reflex circuit mainly of the late polysynaptic pathways. The reflex abnormalities are considered as a neurophysiological correlate of the posttraumatic (cervico)-cephalic pain syndrome. They point to an altered central pain control in acute PH due to whiplash injury.
TFOS DEWS II pain and sensation report
Belmonte, Carlos; Nichols, Jason J.; Cox, Stephanie M.; Brock, James A.; Begley, Carolyn G.; Bereiter, David A.; Dartt, Darlene A.; Galor, Anat; Hamrah, Pedram; Ivanusic, Jason J.; Jacobs, Deborah S.; McNamara, Nancy A.; Rosenblatt, Mark I.; Stapleton, Fiona; Wolffsohn, James S.
2017-01-01
Pain associated to mechanical and chemical irritation of the eye surface is mediated by trigeminal ganglia mechano- and polymodal nociceptor neurons while cold thermoreceptors detect wetness and reflexly maintain basal tear production and blinking rate. These neurons project into two regions of the trigeminal brain stem nuclear complex: ViVc, activated by changes in the moisture of the ocular surface and VcC1, mediating sensory-discriminative aspects of ocular pain and reflex blinking. ViVc ocular neurons project to brain regions that control lacrimation and spontaneous blinking and to the sensory thalamus. Secretion of the main lacrimal gland is regulated dominantly by autonomic parasympathetic nerves, reflexly activated by eye surface sensory nerves. These also evoke goblet cell secretion through unidentified efferent fibers. Neural pathways involved in the regulation of Meibonian gland secretion or mucins release have not been identified. In dry eye disease, reduced tear secretion leads to inflammation and peripheral nerve damage. Inflammation causes sensitization of polymodal and mechano-nociceptor nerve endings and an abnormal increase in cold thermoreceptor activity, altogether evoking dryness sensations and pain. Long-term inflammation and nerve injury alter gene expression of ion channels and receptors at terminals and cell bodies of trigeminal ganglion and brainstem neurons, changing their excitability, connectivity and impulse firing. Perpetuation of molecular, structural and functional disturbances in ocular sensory pathways ultimately leads to dysestesias and neuropathic pain referred to the eye surface. Pain can be assessed with a variety of questionaires while the status of corneal nerves is evaluated with esthesiometry and with in vivo confocal microscopy. PMID:28736339
Sessle, B J
2000-01-01
This paper reviews the recent advances in knowledge of brainstem mechanisms related to craniofacial pain. It also draws attention to their clinical implications, and concludes with a brief overview and suggestions for future research directions. It first describes the general organizational features of the trigeminal brainstem sensory nuclear complex (VBSNC), including its input and output properties and intrinsic characteristics that are commensurate with its strategic role as the major brainstem relay of many types of somatosensory information derived from the face and mouth. The VBSNC plays a crucial role in craniofacial nociceptive transmission, as evidenced by clinical, behavioral, morphological, and electrophysiological data that have been especially derived from studies of the relay of cutaneous nociceptive afferent inputs through the subnucleus caudalis of the VBSNC. The recent literature, however, indicates that some fundamental differences exist in the processing of cutaneous vs. other craniofacial nociceptive inputs to the VBSNC, and that rostral components of the VBSNC may also play important roles in some of these processes. Modulatory mechanisms are also highlighted, including the neurochemical substrate by which nociceptive transmission in the VBSNC can be modulated. In addition, the long-term consequences of peripheral injury and inflammation and, in particular, the neuroplastic changes that can be induced in the VBSNC are emphasized in view of the likely role that central sensitization, as well as peripheral sensitization, can play in acute and chronic pain. The recent findings also provide new insights into craniofacial pain behavior and are particularly relevant to many approaches currently in use for the management of pain and to the development of new diagnostic and therapeutic procedures aimed at manipulating peripheral inputs and central processes underlying nociceptive transmission and its control within the VBSNC.
Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism.
Matsuo, Kiyoshi; Ban, Ryokuya; Hama, Yuki; Yuzuriha, Shunsuke
2015-01-01
Eyelid opening stretches mechanoreceptors in the supratarsal Müller muscle to activate the proprioceptive fiber supplied by the trigeminal mesencephalic nucleus. This proprioception induces reflex contractions of the slow-twitch fibers in the levator palpebrae superioris and frontalis muscles to sustain eyelid and eyebrow positions against gravity. The cell bodies of the trigeminal proprioceptive neurons in the mesencephalon potentially make gap-junctional connections with the locus coeruleus neurons. The locus coeruleus is implicated in arousal and autonomic function. Due to the relationship between arousal, ventromedial prefrontal cortex, and skin conductance, we assessed whether upgaze with trigeminal proprioceptive evocation activates sympathetically innervated sweat glands and the ventromedial prefrontal cortex. Specifically, we examined whether 60° upgaze induces palmar sweating and hemodynamic changes in the prefrontal cortex in 16 subjects. Sweating was monitored using a thumb-mounted perspiration meter, and prefrontal cortex activity was measured with 45-channel, functional near-infrared spectroscopy (fNIRS) and 2-channel NIRS at Fp1 and Fp2. In 16 subjects, palmar sweating was induced by upgaze and decreased in response to downgaze. Upgaze activated the ventromedial prefrontal cortex with an accumulation of integrated concentration changes in deoxyhemoglobin, oxyhemoglobin, and total hemoglobin levels in 12 subjects. Upgaze phasically and degree-dependently increased deoxyhemoglobin level at Fp1 and Fp2, whereas downgaze phasically decreased it in 16 subjects. Unilateral anesthetization of mechanoreceptors in the supratarsal Müller muscle used to significantly reduce trigeminal proprioceptive evocation ipsilaterally impaired the increased deoxyhemoglobin level by 60° upgaze at Fp1 or Fp2 in 6 subjects. We concluded that upgaze with strong trigeminal proprioceptive evocation was sufficient to phasically activate sympathetically innervated sweat glands and appeared to induce rapid oxygen consumption in the ventromedial prefrontal cortex and to rapidly produce deoxyhemoglobin to regulate physiological arousal. Thus, eyelid opening with trigeminal proprioceptive evocation may activate the ventromedial prefrontal cortex via the mesencephalic trigeminal nucleus and locus coeruleus.
Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism
Matsuo, Kiyoshi; Ban, Ryokuya; Hama, Yuki; Yuzuriha, Shunsuke
2015-01-01
Eyelid opening stretches mechanoreceptors in the supratarsal Müller muscle to activate the proprioceptive fiber supplied by the trigeminal mesencephalic nucleus. This proprioception induces reflex contractions of the slow-twitch fibers in the levator palpebrae superioris and frontalis muscles to sustain eyelid and eyebrow positions against gravity. The cell bodies of the trigeminal proprioceptive neurons in the mesencephalon potentially make gap-junctional connections with the locus coeruleus neurons. The locus coeruleus is implicated in arousal and autonomic function. Due to the relationship between arousal, ventromedial prefrontal cortex, and skin conductance, we assessed whether upgaze with trigeminal proprioceptive evocation activates sympathetically innervated sweat glands and the ventromedial prefrontal cortex. Specifically, we examined whether 60° upgaze induces palmar sweating and hemodynamic changes in the prefrontal cortex in 16 subjects. Sweating was monitored using a thumb-mounted perspiration meter, and prefrontal cortex activity was measured with 45-channel, functional near-infrared spectroscopy (fNIRS) and 2-channel NIRS at Fp1 and Fp2. In 16 subjects, palmar sweating was induced by upgaze and decreased in response to downgaze. Upgaze activated the ventromedial prefrontal cortex with an accumulation of integrated concentration changes in deoxyhemoglobin, oxyhemoglobin, and total hemoglobin levels in 12 subjects. Upgaze phasically and degree-dependently increased deoxyhemoglobin level at Fp1 and Fp2, whereas downgaze phasically decreased it in 16 subjects. Unilateral anesthetization of mechanoreceptors in the supratarsal Müller muscle used to significantly reduce trigeminal proprioceptive evocation ipsilaterally impaired the increased deoxyhemoglobin level by 60° upgaze at Fp1 or Fp2 in 6 subjects. We concluded that upgaze with strong trigeminal proprioceptive evocation was sufficient to phasically activate sympathetically innervated sweat glands and appeared to induce rapid oxygen consumption in the ventromedial prefrontal cortex and to rapidly produce deoxyhemoglobin to regulate physiological arousal. Thus, eyelid opening with trigeminal proprioceptive evocation may activate the ventromedial prefrontal cortex via the mesencephalic trigeminal nucleus and locus coeruleus. PMID:26244675
Chaskiel, Léa; Paul, Flora; Gerstberger, Rüdiger; Hübschle, Thomas; Konsman, Jan Pieter
2016-08-01
During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tan, Soon Hao; Ong, Kien Chai; Wong, Kum Thong
2014-11-01
Enterovirus 71 (EV71)-associated hand, foot, and mouth disease may be complicated by encephalomyelitis. We investigated EV71 brainstem infection and whether this infection could be ameliorated by passive immunization in a mouse model. Enterovirus 71 was injected into unilateral jaw/facial muscles of 2-week-old mice, and hyperimmune sera were given before or after infection. Harvested tissues were studied by light microscopy, immunohistochemistry, in situ hybridization, and viral titration. In unimmunized mice, viral antigen and RNA were detected within 24 hours after infection only in ipsilateral cranial nerves, motor trigeminal nucleus, reticular formation, and facial nucleus; viral titers were significantly higher in the brainstem than in the spinal cord samples. Mice given preinfection hyperimmune serum showed a marked reduction of ipsilateral viral antigen/RNA and viral titers in the brainstem in a dose-dependent manner. With optimum hyperimmune serum given after infection, brainstem infection was significantly reduced in a time-dependent manner. A delay in disease onset and a reduction of disease severity and mortality were also observed. Thus, EV71 can directly infect the brainstem, including the medulla, via cranial nerves, most likely by retrograde axonal transport. This may explain the sudden cardiorespiratory collapse in human patients with fatal encephalomyelitis. Moreover, our results suggest that passive immunization may still benefit EV71-infected patients who have neurologic complications.
Dental Occlusion and Ophthalmology: A Literature Review
Marchili, Nicola; Ortu, Eleonora; Pietropaoli, Davide; Cattaneo, Ruggero; Monaco, Annalisa
2016-01-01
Stomatognathic system is strictly correlated to other anatomical regions; many studies investigated relationship between temporomandibular joint and posture, several articles describe cranio-facial pain from dental causes, such as trigger points. Until now less interest has been given to connections between dental occlusion and ophthalmology, even if they are important and involving. Clinical experience in dental practice claims that mandibular latero-deviation is connected both to eye dominance and to defects of ocular convergence. The trigeminal nerve is the largest and most complex of the twelve cranial nerves. The trigeminal system represents the connection between somitic structures and those derived from the branchial arches, collecting the proprioception from both somitic structures and oculomotor muscles. The intermedius nucleus of the medulla is a small perihypoglossal brainstem nucleus, which acts to integrate information from the head and neck and relays it on to the nucleus of the solitary tract where autonomic responses are generated. This intriguing neurophysiological web led our research group to investigate anatomical and functional associations between dental occlusion and vision. In conclusion, nervous system and functional pathways strictly connect vision and dental occlusion, and in the future both dentists and oculists should be more and more aware of this correlation for a better diagnosis and therapy. PMID:27733873
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekizawa, Shin-ichi, E-mail: ssekizawa@ucdavis.ed; Bechtold, Andrea G.; Tham, Rick C.
Allergic airway diseases in children are a common and a growing health problem. Changes in the central nervous system (CNS) have been implicated in contributing to some of the symptoms. We hypothesized that airway allergic diseases are associated with altered histamine H3 receptor expression in the nucleus tractus solitarius (NTS) and caudal spinal trigeminal nucleus, where lung/airway and nasal sensory afferents terminate, respectively. Immunohistochemistry for histamine H3 receptors was performed on brainstem sections containing the NTS and the caudal spinal trigeminal nucleus from 6- and 12-month-old rhesus monkeys who had been exposed for 5 months to house dust mite allergenmore » (HDMA) + O{sub 3} or to filtered air (FA). While histamine H3 receptors were found exclusively in astrocytes in the caudal spinal trigeminal nucleus, they were localized to both neuronal terminals and processes in the NTS. HDMA + O{sub 3} exposure significantly decreased histamine H3 receptor immunoreactivity in the NTS at 6 months and in the caudal spinal trigeminal nucleus at 12 months of age. In conclusion, exposing young primates to HDMA + O{sub 3} changed histamine H3 receptor expression in CNS pathways involving lung and nasal afferent nerves in an age-related manner. Histamine H3 receptors may be a therapeutic target for allergic asthma and rhinitis in children.« less
Mehboob, Riffat
2017-01-01
Sudden demise of a healthy fetus or a neonate is a very tragic episode in the life of parents. These deaths have been a mystery since ages but still remain unexplained. This review proposes the involvement of trigeminal nerve, neurotransmitter substance P (SP), and its receptor neurokinin 1 (NK-1R) in regulation of cardiorespiratory control in fetuses and newborns. Anomalies and immaturity of neuroregulatory systems such as trigeminal system in medulla oblongata of brainstem may provide a possible mechanism of sudden perinatal deaths. Vulnerable infants are born with respiratory center immaturity which in combination with any stressor such as cold, hypoxia, and smoking may lead to cessation of breathing and ventilatory response. SP/NK-1R may be involved in regulating the ventilatory control in neonates while it is decreased in fetal and adult life in humans, and any alterations from these may lead to irreversible sleep apnea and fatal breathing, ultimately sudden death. This review summarizes the studies performed to highlight the expression of SP or NK-1R in sudden perinatal deaths and proposes the involvement of trigeminal ganglion along with its nerve and SP/NK-1R expression alteration as one of the possible pathophysiological underlying mechanism. However, further studies are required to explore the role of SP, NK-1R, and trigeminal system in the pathogenesis of sudden infant deaths, sudden intrauterine deaths, stillbirths, and sudden deaths later in human life. PMID:28348544
Mehboob, Riffat
2017-01-01
Sudden demise of a healthy fetus or a neonate is a very tragic episode in the life of parents. These deaths have been a mystery since ages but still remain unexplained. This review proposes the involvement of trigeminal nerve, neurotransmitter substance P (SP), and its receptor neurokinin 1 (NK-1R) in regulation of cardiorespiratory control in fetuses and newborns. Anomalies and immaturity of neuroregulatory systems such as trigeminal system in medulla oblongata of brainstem may provide a possible mechanism of sudden perinatal deaths. Vulnerable infants are born with respiratory center immaturity which in combination with any stressor such as cold, hypoxia, and smoking may lead to cessation of breathing and ventilatory response. SP/NK-1R may be involved in regulating the ventilatory control in neonates while it is decreased in fetal and adult life in humans, and any alterations from these may lead to irreversible sleep apnea and fatal breathing, ultimately sudden death. This review summarizes the studies performed to highlight the expression of SP or NK-1R in sudden perinatal deaths and proposes the involvement of trigeminal ganglion along with its nerve and SP/NK-1R expression alteration as one of the possible pathophysiological underlying mechanism. However, further studies are required to explore the role of SP, NK-1R, and trigeminal system in the pathogenesis of sudden infant deaths, sudden intrauterine deaths, stillbirths, and sudden deaths later in human life.
Ohmoto, Makoto; Matsumoto, Ichiro; Yasuoka, Akihito; Yoshihara, Yoshihiro; Abe, Keiko
2008-08-01
We established transgenic mouse lines expressing a transneuronal tracer, wheat germ agglutinin (WGA), under the control of mouse T1R3 gene promoter/enhancer. In the taste buds, WGA transgene was faithfully expressed in T1R3-positive sweet/umami taste receptor cells. WGA protein was transferred not laterally to the synapse-bearing, sour-responsive type III cells in the taste buds but directly to a subset of neurons in the geniculate and nodose/petrosal ganglia, and further conveyed to a rostro-central region of the nucleus of solitary tract. In addition, WGA was expressed in solitary chemoreceptor cells in the nasal epithelium and transferred along the trigeminal sensory pathway to the brainstem neurons. The solitary chemoreceptor cells endogenously expressed T1R3 together with bitter taste receptors T2Rs. This result shows an exceptional signature of receptor expression. Thus, the t1r3-WGA transgenic mice revealed the sweet/umami gustatory pathways from taste receptor cells and the trigeminal neural pathway from solitary chemoreceptor cells.
Ling, Jennifer; Erol, Ferhat; Viatchenko-Karpinski, Viacheslav; Kanda, Hirosato; Gu, Jianguo G
2017-01-01
Neuropathic pain induced by chemotherapy drugs such as oxaliplatin is a dose-limiting side effect in cancer treatment. The mechanisms underlying chemotherapy-induced neuropathic pain are not fully understood. KCNQ2 channels are low-threshold voltage-gated K+ channels that play a role in controlling neuronal excitability. Downregulation of KCNQ2 channels has been proposed to be an underlying mechanism of sensory hypersensitivity that leads to neuropathic pain. However, it is currently unknown whether KCNQ channels may be downregulated by chemotherapy drugs in trigeminal ganglion neurons to contribute to the pathogenesis of chemotherapy-induced orofacial neuropathic pain. In the present study, mechanical sensitivity in orofacial regions is measured using the operant behavioral test in rats treated with oxaliplatin. Operant behaviors in these animals show the gradual development of orofacial neuropathic pain that manifests with orofacial mechanical allodynia. Immunostaining shows strong KCNQ2 immunoreactivity in small-sized V2 trigeminal ganglion neurons in controls, and the numbers of KCNQ2 immunoreactivity positive V2 trigeminal ganglion neurons are significantly reduced in oxaliplatin-treated animals. Immunostaining is also performed in brainstem and shows strong KCNQ2 immunoreactivity at the trigeminal afferent central terminals innervating the caudal spinal trigeminal nucleus (Vc) in controls, but the KCNQ2 immunoreactivity intensity is significantly reduced in oxaliplatin-treated animals. We further show with the operant behavioral test that oxaliplatin-induced orofacial mechanical allodynia can be alleviated by the KCNQ2 potentiator retigabine. Taken together, these findings suggest that KCNQ2 downregulation may be a cause of oxaliplatin-induced orofacial neuropathic pain and KCNQ2 potentiators may be useful for alleviating the neuropathic pain.
Zakharov, A.; Vitale, C.; Kilinc, E.; Koroleva, K.; Fayuk, D.; Shelukhina, I.; Naumenko, N.; Skorinkin, A.; Khazipov, R.; Giniatullin, R.
2015-01-01
Trigeminal nerves in meninges are implicated in generation of nociceptive firing underlying migraine pain. However, the neurochemical mechanisms of nociceptive firing in meningeal trigeminal nerves are little understood. In this study, using suction electrode recordings from peripheral branches of the trigeminal nerve in isolated rat meninges, we analyzed spontaneous and capsaicin-induced orthodromic spiking activity. In control, biphasic single spikes with variable amplitude and shapes were observed. Application of the transient receptor potential vanilloid 1 (TRPV1) agonist capsaicin to meninges dramatically increased firing whereas the amplitudes and shapes of spikes remained essentially unchanged. This effect was antagonized by the specific TRPV1 antagonist capsazepine. Using the clustering approach, several groups of uniform spikes (clusters) were identified. The clustering approach combined with capsaicin application allowed us to detect and to distinguish “responder” (65%) from “non-responder” clusters (35%). Notably, responders fired spikes at frequencies exceeding 10 Hz, high enough to provide postsynaptic temporal summation of excitation at brainstem and spinal cord level. Almost all spikes were suppressed by tetrodotoxin (TTX) suggesting an involvement of the TTX-sensitive sodium channels in nociceptive signaling at the peripheral branches of trigeminal neurons. Our analysis also identified transient (desensitizing) and long-lasting (slowly desensitizing) responses to the continuous application of capsaicin. Thus, the persistent activation of nociceptors in capsaicin-sensitive nerve fibers shown here may be involved in trigeminal pain signaling and plasticity along with the release of migraine-related neuropeptides from TRPV1 positive neurons. Furthermore, cluster analysis could be widely used to characterize the temporal and neurochemical profiles of other pain transducers likely implicated in migraine. PMID:26283923
Distinct development of the trigeminal sensory nuclei in platypus and echidna.
Ashwell, Ken W S; Hardman, Craig D
2012-01-01
Both lineages of the modern monotremes have been reported to be capable of electroreception using the trigeminal pathways and it has been argued that electroreception arose in an aquatic platypus-like ancestor of both modern monotreme groups. On the other hand, the trigeminal sensory nuclear complex of the platypus is highly modified for processing tactile and electrosensory information from the bill, whereas the trigeminal sensory nuclear complex of the short-beaked echidna (Tachyglossus aculeatus) is not particularly specialized. If the common ancestor for both platypus and echidna were an electroreceptively and trigeminally specialized aquatic feeder, one would expect the early stages of development of the trigeminal sensory nuclei in both species to show evidence of structural specialization from the outset. To determine whether this is the case, we examined the development of the trigeminal sensory nuclei in the platypus and short-beaked echidna using the Hill and Hubrecht embryological collections. We found that the highly specialized features of the platypus trigeminal sensory nuclei (i.e. the large size of the principal nucleus and oral part of the spinal trigeminal nuclear complex, and the presence of a dorsolateral parvicellular segment in the principal nucleus) appear around the time of hatching in the platypus, but are never seen at any stage in the echidna. Our findings support the proposition that the modern echidna and platypus are derived from a common ancestor with only minimal trigeminal specialization and that the peculiar anatomy of the trigeminal sensory nuclei in the modern platypus emerged in the ornithorhynchids after divergence from the tachyglossids. Copyright © 2012 S. Karger AG, Basel.
Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.
Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P
1986-02-01
Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.
Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.
Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P
1986-01-01
Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations. Images PMID:3003377
Concurrent cervical and craniofacial pain. A review of empiric and basic science evidence.
Browne, P A; Clark, G T; Kuboki, T; Adachi, N Y
1998-12-01
Because many patients present themselves for treatment with both craniofacial and craniocervical pain, 2 questions arise: (1) What are the sensory and motor consequences of dysfunction in either of these areas on the other? (2) Do craniofacial and craniocervical pain have a similar cause? These questions formed the impetus for this review article. The phenomenon of concurrent pain in craniofacial and cervical structures is considered, and clinical reports and opinions are presented regarding theories of cervical-to-craniofacial and craniofacial-to-cervical pain referral. Because pain referral between these 2 areas requires anatomic and functional connectivity between trigeminally and cervically innervated structures, basic neurophysiologic and neuroanatomic literature is reviewed. The published data clearly demonstrate neurophysiologic and structural convergence of cervical sensory and muscle afferent inputs onto trigeminal subnucleus caudalis nociceptive and non-nociceptive neurons. Moreover, changes in metabolic activity and blood flow in the brainstem and cervical dorsal horn of the spinal cord in both monkeys and cats have been demonstrated after electric stimulation of the V1-innervated superior sagittal sinus. In conclusion, the animal experimental data support the findings of human empiric and experimental studies, which suggest that strong connectivity exists between trigeminal and cervical motor and sensory responses.
A Dynamic Circuit Hypothesis for the Pathogenesis of Blepharospasm.
Peterson, David A; Sejnowski, Terrence J
2017-01-01
Blepharospasm (sometimes called "benign essential blepharospasm," BEB) is one of the most common focal dystonias. It involves involuntary eyelid spasms, eye closure, and increased blinking. Despite the success of botulinum toxin injections and, in some cases, pharmacologic or surgical interventions, BEB treatments are not completely efficacious and only symptomatic. We could develop principled strategies for preventing and reversing the disease if we knew the pathogenesis of primary BEB. The objective of this study was to develop a conceptual framework and dynamic circuit hypothesis for the pathogenesis of BEB. The framework extends our overarching theory for the multifactorial pathogenesis of focal dystonias (Peterson et al., 2010) to incorporate a two-hit rodent model specifically of BEB (Schicatano et al., 1997). We incorporate in the framework three features critical to cranial motor control: (1) the joint influence of motor cortical regions and direct descending projections from one of the basal ganglia output nuclei, the substantia nigra pars reticulata, on brainstem motor nuclei, (2) nested loops composed of the trigeminal blink reflex arc and the long sensorimotor loop from trigeminal nucleus through thalamus to somatosensory cortex back through basal ganglia to the same brainstem nuclei modulating the reflex arc, and (3) abnormalities in the basal ganglia dopamine system that provide a sensorimotor learning substrate which, when combined with patterns of increased blinking, leads to abnormal sensorimotor mappings manifest as BEB. The framework explains experimental data on the trigeminal reflex blink excitability (TRBE) from Schicatano et al. and makes predictions that can be tested in new experimental animal models based on emerging genetics in dystonia, including the recently characterized striatal-specific D1R dopamine transduction alterations caused by the GNAL mutation. More broadly, the model will provide a guide for future efforts to mechanistically link multiple factors in the pathogenesis of BEB and facilitate simulations of how exogenous manipulations of the pathogenic factors could ultimately be used to prevent and reverse the disorder.
A Dynamic Circuit Hypothesis for the Pathogenesis of Blepharospasm
Peterson, David A.; Sejnowski, Terrence J.
2017-01-01
Blepharospasm (sometimes called “benign essential blepharospasm,” BEB) is one of the most common focal dystonias. It involves involuntary eyelid spasms, eye closure, and increased blinking. Despite the success of botulinum toxin injections and, in some cases, pharmacologic or surgical interventions, BEB treatments are not completely efficacious and only symptomatic. We could develop principled strategies for preventing and reversing the disease if we knew the pathogenesis of primary BEB. The objective of this study was to develop a conceptual framework and dynamic circuit hypothesis for the pathogenesis of BEB. The framework extends our overarching theory for the multifactorial pathogenesis of focal dystonias (Peterson et al., 2010) to incorporate a two-hit rodent model specifically of BEB (Schicatano et al., 1997). We incorporate in the framework three features critical to cranial motor control: (1) the joint influence of motor cortical regions and direct descending projections from one of the basal ganglia output nuclei, the substantia nigra pars reticulata, on brainstem motor nuclei, (2) nested loops composed of the trigeminal blink reflex arc and the long sensorimotor loop from trigeminal nucleus through thalamus to somatosensory cortex back through basal ganglia to the same brainstem nuclei modulating the reflex arc, and (3) abnormalities in the basal ganglia dopamine system that provide a sensorimotor learning substrate which, when combined with patterns of increased blinking, leads to abnormal sensorimotor mappings manifest as BEB. The framework explains experimental data on the trigeminal reflex blink excitability (TRBE) from Schicatano et al. and makes predictions that can be tested in new experimental animal models based on emerging genetics in dystonia, including the recently characterized striatal-specific D1R dopamine transduction alterations caused by the GNAL mutation. More broadly, the model will provide a guide for future efforts to mechanistically link multiple factors in the pathogenesis of BEB and facilitate simulations of how exogenous manipulations of the pathogenic factors could ultimately be used to prevent and reverse the disorder. PMID:28326032
Detectability of neural tracts and nuclei in the brainstem utilizing 3DAC-PROPELLER.
Nishikawa, Taro; Okamoto, Kouichirou; Matsuzawa, Hitoshi; Terumitsu, Makoto; Nakada, Tsutomu; Fujii, Yukihiko
2014-01-01
Despite clinical importance of identifying exact anatomical location of neural tracts and nuclei in the brainstem, no neuroimaging studies have validated the detectability of these structures. The aim of this study was to assess the detectability of the structures using three-dimensional anisotropy contrast-periodically rotated overlapping parallel lines with enhanced reconstruction (3DAC-PROPELLER) imaging. Forty healthy volunteers (21 males, 19 females; 19-53 years, average 23.4 years) participated in this study. 3DAC-PROPELLER axial images were obtained with a 3T-MR system at four levels of the brainstem: the lower midbrain, upper and lower pons, and medulla oblongata. Three experts independently judged whether five tracts (corticospinal tract, medial lemniscus, medial longitudinal fasciculus, central tegmental and spinothalamic tracts) and 10 nuclei (oculomotor and trochlear nuclei, spinal trigeminal, abducens, facial, vestibular, hypoglossal, prepositus, and solitary nuclei, locus ceruleus, superior and inferior olives) on each side could be identified. In total, 240 assessments were made. The five tracts and eight nuclei were identified in all the corresponding assessments, whereas the locus ceruleus and superior olive could not be identified in 3 (1.3%) and 16 (6.7%) assessments, respectively. 3DAC-PROPELLER seems extremely valuable imaging method for mapping out surgical strategies for brainstem lesions. Copyright © 2013 by the American Society of Neuroimaging.
Jääskeläinen, Satu K
2004-01-01
Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions and have shown heterogeneity within clinical diagnostic categories. With the aid of neurophysiological recordings and quantitative sensory testing, it is possible to approach a mechanism-based classification of orofacial pain.
Central effects of acetylsalicylic acid on trigeminal-nociceptive stimuli
2014-01-01
Background Acetylsalicylic acid is one of the most used analgesics to treat an acute migraine attack. Next to the inhibitory effects on peripheral prostaglandin synthesis, central mechanisms of action have also been discussed. Methods Using a standardized model for trigeminal-nociceptive stimulation during fMRI scanning, we investigated the effect of acetylsalicylic acid on acute pain compared to saline in 22 healthy volunteers in a double-blind within-subject design. Painful stimulation was applied using gaseous ammonia and presented in a pseudo-randomized order with several control stimuli. All participants were instructed to rate the intensity and unpleasantness of every stimulus on a VAS scale. Based on previous results, we hypothesized to find an effect of ASA on central pain processing structures like the ACC, SI and SII as well as the trigeminal nuclei and the hypothalamus. Results Even though we did not find any differences in pain ratings between saline and ASA, we observed decreased BOLD signal changes in response to trigemino-nociceptive stimulation in the ACC and SII after administration of ASA compared to saline. This finding is in line with earlier imaging results investigating the effect of ASA on acute pain. Contrary to earlier findings from animal studies, we could not find an effect of ASA on the trigeminal nuclei in the brainstem or within the hypothalamic area. Conclusion Taken together our study replicates earlier findings of an attenuating effect of ASA on pain processing structures, which adds further evidence to a possibly central mechanism of action of ASA. PMID:25201152
Greco, Maria Cristina; Navarra, Pierluigi; Tringali, Giuseppe
2016-01-15
In this study we tested the hypothesis that tapentadol inhibits GGRP release from the rat brainstem through a mechanism mediated by the inhibition of NA reuptake; as a second alternative hypothesis, we investigated whether tapentadol inhibits GGRP release via the inhibition of 5-HT reuptake. Rat brainstems were explanted and incubated in short-term experiments. CGRP released in the incubation medium was taken as a marker of CGRP release from the central terminals of trigeminal neurons within the brainstem. CGRP levels were measured by radioimmunoassay under basal conditions or in the presence of tapentadol; NA, 5-HT, clonidine, yohimbine and ondansetron were used as pharmacological tools to investigate the action mechanism of tapentadol. The α2-antagonist yohimbine failed to counteract the effects of tapentadol. Moreover, neither NA nor the α2-agonist clonidine per se inhibited K(+)-stimulated CGRP release, thereby indicating that the effects of tapentadol are nor mediated through the block of NA reuptake. Further experiments showed that 5-HT and tramadol, which inhibits both NA and 5-HT reuptake, significantly reduced K(+)-stimulated CGRP release. Moreover, the 5-HT3 antagonist ondansetron was able to counteract the effects of tapentadol in this system. This study provided pharmacological evidence that tapentadol inhibits stimulated CGRP release from the rat brainstem in vitro through a mechanism involving an increase in 5-HT levels in the system and the subsequent activation of 5-HT3 receptors. Copyright © 2015 Elsevier Inc. All rights reserved.
Hannibal, Jens
2002-11-25
In the present study the localization of pituitary adenylate cyclase-activating peptide (PACAP)-expressing cell bodies and PACAP projections were mapped in the adult rat brain and spinal cord by using immunohistochemistry and in situ hybridization histochemistry. A widespread occurrence of PACAP-containing cell bodies was found, with the greatest accumulation in several hypothalamic nuclei and in several brainstem nuclei, especially the habenular nuclei, the pontine nucleus, the lateral parabrachial nucleus (LPB), and the vagal complex. PACAP was also present in cell bodies in the olfactory areas, in neocortical areas, in the hippocampus, in the vestibulo- and cochlear nuclei, in cell bodies of the intermediolateral cell column of the spinal cord and in Purkinje cells of the cerebellum, in the subfornical organ, and in the organum vasculosum of the lamina terminalis. An intense accumulation of PACAP-immunoreactive (-IR) nerve fibers was observed throughout the hypothalamus, in the amydaloid and extended amygdaloid complex, in the anterior and paraventricular thalamic nuclei, in the intergeniculate leaflet, in the pretectum, and in several brainstem nuclei, such as the parabrachial nucleus, the sensory trigeminal nucleus, and the nucleus of the solitary tract. PACAP-IR nerve fibers were also found in the area postrema, the posterior pituitary and the choroid plexus, and the dorsal and ventral horn of the spinal cord. The widespread distribution of PACAP in the brain and spinal cord suggests that PACAP is involved in the control of many autonomic and sensory functions as well as higher cortical processes. Copyright 2002 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Murashov, A. K.; Talebian, S.; Wolgemuth, D. J.
1998-01-01
Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury. Copyright 1998 Elsevier Science B.V.
LeWinter, Robin D.; Scherrer, Grégory; Basbaum, Allan I.
2008-01-01
The transient receptor potential cation channel TRPV2 is a member of the TRPV family of proteins and is a homologue of the capsaicin/vanilloid receptor (TRPV1). Like TRPV1, TRPV2 is expressed in a subset of dorsal root ganglia (DRG) neurons that project to superficial laminae of the spinal cord dorsal horn. Because noxious heat (>52°C) activates TRPV2 in transfected cells this channel has been implicated in the processing of high intensity thermal pain messages in vivo. In contrast to TRPV1, however, which is restricted to small diameter DRG neurons, there is significant TRPV2 immunoreactivity in a variety of CNS regions. The present report focuses on a subset of neurons in the brainstem and spinal cord of the rat including the dorsal lateral nucleus (DLN) of the spinal cord, the nucleus ambiguus, and the motor trigeminal nucleus. Double label immunocytochemistry with markers of motoneurons, combined with retrograde labeling, established that these cells are, in fact, motoneurons. With the exception of their smaller diameter, these cells did not differ from other motoneurons, which are only lightly TRPV2-immunoreactive. As for the majority of DLN neurons, the densely-labeled populations co-express androgen receptor and follow normal DLN ontogeny. The functional significance of the very intense TRPV2 expression in these three distinct spinal cord and brainstem motoneurons groups remains to be determined. PMID:18063314
Hornbruch, Amata; Ma, Grace; Ballermann, Mark A; Tumova, Katerina; Liu, Dan; Cairine Logan, C
2005-07-01
The divergent homeobox-containing transcription factor, Tlx-3 (also known as Hox11L2/Rnx), is required for proper formation of first-order relay sensory neurons in the developing vertebrate brainstem. To date, however, the inductive signals and transcriptional regulatory cascade underlying their development are poorly understood. We previously isolated the chick Tlx-3 homologue and showed it is expressed early (i.e. beginning at HH15) in distinct subcomponents of both the trigeminal/solitary and vestibular nuclei. Here we show via in vivo rhombomere inversions that expression of Tlx-3 is under control of local environmental signals. Our RNA in situ analysis shows expression of the BMP-specific receptor, Bmpr-1b, correlates well with Tlx-3. Furthermore, manipulation of the BMP signaling pathway in vivo via electroporation of expression vectors encoding either BMP or NOGGIN coupled with MASH1 gain-of-function experiments demonstrate that a BMP-mediated transcriptional cascade involving Cash1 and Tlx-3 specifies first-order relay sensory neurons in the developing brainstem. Notably, high-level Noggin misexpression results in an increase in newly differentiated Tlx-3+ neurons that correlates with a corresponding increase in the number of Calretinin+ neurons in vestibular nuclei at later developmental stages strongly suggesting that Tlx-3, in addition to being required for proper formation of somatic as well as visceral sensory neurons in the trigeminal and solitary nuclei, respectively, is sufficient for proper formation of special somatic sensory neurons in vestibular nuclei.
Spontaneous behavioral responses in the orofacial region: A model of trigeminal pain in mouse
Romero-Reyes, Marcela; Akerman, Simon; Nguyen, Elaine; Vijjeswarapu, Alice; Hom, Betty; Dong, Hong-Wei; Charles, Andrew C.
2012-01-01
OBJECTIVES To develop a translational mouse model for the study and measurement of non-evoked pain in the orofacial region by establishing markers of nociceptive-specific grooming behaviors in the mouse. BACKGROUND Some of the most prevalent and debilitating conditions involve pain in the trigeminal distribution. Although there are current therapies for these pain conditions, for many patients they are far from optimal. Understanding the pathophysiology of pain disorders arising from structures innervated by the trigeminal nerve is still limited and most animal behavioral models focus on the measurement of evoked pain. In patients, spontaneous (non-evoked) pain responses provide a more accurate representation of the pain experience than do responses that are evoked by an artificial stimulus. Therefore, the development of animal models that measure spontaneous nociceptive behaviors may provide a significant translational tool for a better understanding of pain neurobiology. METHODS C57BL/6 mice received either an injection of 0.9% Saline solution or complete Freund’s adjuvant (CFA) into the right masseter muscle. Animals were video recorded and then analyzed by an observer blind to the experiment group. The duration of different facial grooming patterns performed in the area of injection were measured. After 2 hrs, mice were euthanized, perfused and the brainstem was removed. Fos protein expression in the trigeminal nucleus caudalis was quantified using immunohistochemistry to investigate nociceptive-specific neuronal activation. A separate group of animals was treated with morphine sulfate, to determine the nociceptive-specific nature of their behaviors. RESULTS We characterized and quantified 3 distinct patterns of acute grooming behaviors: fore-paw rubbing, lower lip skin/cheek rubbing against enclosure floor and hind paw scratching. These behaviors occurred with a reproducible frequency and time course, and were inhibited by the analgesic morphine. CFA-injected animals also showed Fos labeling consistent with neuronal activation in nociceptive-specific pathways of the trigeminal nucleus after two hours. CONCLUSIONS These behaviors and their correlated cellular responses represent a model of trigeminal pain that can be used to better understand basic mechanisms of orofacial pain and identify new therapeutic approaches to this common and challenging condition. PMID:22830495
Bakalar, Dana; Tamaiev, Jonathan; Zeigler, H Philip; Feinstein, Paul
2015-01-01
Ingestive behaviors in mice are dependent on orosensory cues transmitted via the trigeminal nerve, as confirmed by transection studies. However, these studies cannot differentiate between deficits caused by the loss of the lemniscal pathway vs. the parallel paralemniscal pathway. The paired-like homeodomain protein Prrxl1 is expressed widely in the brain and spinal cord, including the trigeminal system. A knockout of Prrxl1 abolishes somatotopic barrellette patterning in the lemniscal brainstem nucleus, but not in the parallel paralemniscal nucleus. Null animals are significantly smaller than littermates by postnatal day 5, but reach developmental landmarks at appropriate times, and survive to adulthood on liquid diet. A careful analysis of infant and adult ingestive behavior reveals subtle impairments in suckling, increases in time spent feeding and the duration of feeding bouts, feeding during inappropriate times of the day, and difficulties in the mechanics of feeding. During liquid diet feeding, null mice display abnormal behaviors including extensive use of the paws to move food into the mouth, submerging the snout in the diet, changes in licking, and also have difficulty consuming solid chow pellets. We suggest that our Prrxl1(-/-) animal is a valuable model system for examining the genetic assembly and functional role of trigeminal lemniscal circuits in the normal control of eating in mammals and for understanding feeding abnormalities in humans resulting from the abnormal development of these circuits.
Basic mechanisms of migraine and its acute treatment.
Edvinsson, Lars; Villalón, Carlos M; MaassenVanDenBrink, Antoinette
2012-12-01
Migraine is a neurovascular disorder characterized by recurrent unilateral headaches accompanied by nausea, vomiting, photophobia and phonophobia. Current theories suggest that the initiation of a migraine attack involves a primary event in the central nervous system (CNS), probably involving a combination of genetic changes in ion channels and environmental changes, which renders the individual more sensitive to environmental factors; this may, in turn, result in a wave of cortical spreading depression (CSD) when the attack is initiated. Genetically, migraine is a complex familial disorder in which the severity and the susceptibility of individuals are most likely governed by several genes that vary between families. Early PET studies have suggested the involvement of a migraine active region in the brainstem. Migraine headache is associated with trigeminal nerve activation and calcitonin gene-related peptide (CGRP) release from the trigeminovascular system. Administration of triptans (5-HT(1B/1D) receptor agonists) causes the headache to subside and the levels of CGRP to normalize. Moreover, administration of CGRP receptor antagonists aborts the headache. Recent immunohistochemical and pharmacological results suggest that the trigeminal system has receptors for CGRP; further, 5-HT(1B/1D) receptors, which inhibit the action of CGRP in pain transmission when activated, have been demonstrated. This offers an explanation for the treatment response. The present review provides an updated analysis of the basic mechanisms involved in the pathophysiology of migraine and the various pharmacological approaches (including 5-HT(1B/1D) receptor agonists, CGRP receptor antagonists and glutamate receptor antagonists) that have shown efficacy for the acute treatment of this disorder. Copyright © 2012 Elsevier Inc. All rights reserved.
Fifty years of migraine research.
Lance, J W
1988-05-01
The prevalence of ice-pick pains and ice-cream headache in migrainous patients and their localisation to the habitual site of migraine headache, suggest that segments of the central pain pathways remain hyperexcitable between spontaneous attacks. Excessive afferent stimulation (flashing lights, noise, strong perfumes) or hypothalamic changes resulting from emotion, stress or the operation of some internal clock may set in motion brainstem mechanisms, including spontaneous unilateral or bilateral discharge of pain pathways. Studies in the experimental animal have shown that certain monoaminergic brainstem nuclei can influence the cerebral circulation unilaterally and that they and the trigeminal system can induce a reflex dilatation of the external carotid circulation. Descending pathways from the same brainstem nuclei cause the adrenal gland to secrete noradrenaline, which in turn can release serotonin from blood platelets. Free serotonin may become adsorbed to the arterial wall, thus increasing sensitivity to pain, augmenting afferent input and adding a pulsating quality to migrainous pain. Both neural and vascular components of migraine implicate monoamines, specifically noradrenaline and serotonin, as neurotransmitters and humoral agents. The recent pharmacological classification of serotonin (5HT) receptors indicates that agonists of a subset of the 5HT1 receptor and antagonists of 5HT2 receptors are most likely to be helpful in the treatment of migraine.
C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation
Matsui, Toshiyasu; Hongo, Yu; Haizuka, Yoshinori; Kaida, Kenichi; Matsumura, George; Martin, Donna M.; Kobayashi, Yasushi
2013-01-01
Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons. PMID:23756176
Schwarz, Peter B; Mir, Saba; Peever, John H
2014-01-01
Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep–wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally. PMID:24860176
Lewinter, R D; Scherrer, G; Basbaum, A I
2008-01-02
The transient receptor potential cation channel, vanilloid family, type 2 (TRPV2) is a member of the TRPV family of proteins and is a homologue of the capsaicin/vanilloid receptor (transient receptor potential cation channel, vanilloid family, type 1, TRPV1). Like TRPV1, TRPV2 is expressed in a subset of dorsal root ganglia (DRG) neurons that project to superficial laminae of the spinal cord dorsal horn. Because noxious heat (>52 degrees C) activates TRPV2 in transfected cells this channel has been implicated in the processing of high intensity thermal pain messages in vivo. In contrast to TRPV1, however, which is restricted to small diameter DRG neurons, there is significant TRPV2 immunoreactivity in a variety of CNS regions. The present report focuses on a subset of neurons in the brainstem and spinal cord of the rat including the dorsal lateral nucleus (DLN) of the spinal cord, the nucleus ambiguus, and the motor trigeminal nucleus. Double label immunocytochemistry with markers of motoneurons, combined with retrograde labeling, established that these cells are, in fact, motoneurons. With the exception of their smaller diameter, these cells did not differ from other motoneurons, which are only lightly TRPV2-immunoreactive. As for the majority of DLN neurons, the densely-labeled populations co-express androgen receptor and follow normal DLN ontogeny. The functional significance of the very intense TRPV2 expression in these three distinct spinal cord and brainstem motoneurons groups remains to be determined.
Ishida, Kentaro; Saito, Tetsuichiro; Mitsui, Toshiyuki
2018-06-01
A Merkel cell-neurite complex is a touch receptor composed of specialized epithelial cells named Merkel cells and peripheral sensory nerves in the skin. Merkel cells are found in touch-sensitive skin components including whisker follicles. The nerve fibers that innervate Merkel cells of a whisker follicle extend from the maxillary branch of the trigeminal ganglion. Whiskers as a sensory organ attribute to the complicated architecture of the Merkel cell-neurite complex, and therefore it is intriguing how the structure is formed. However, observing the dynamic process of the formation of a Merkel cell-neurite complex in whiskers during embryonic development is still difficult. In this study, we tried to develop an organotypic co-culture method of a whisker pad and a trigeminal ganglion explant to form the Merkel cell-neurite complex in vitro. We initially developed two distinct culture methods of a single whisker row and a trigeminal ganglion explant, and then combined them. By dissecting and cultivating a single row from a whisker pad, the morphogenesis of whisker follicles could be observed under a microscope. After the co-cultivation of the whisker row with a trigeminal ganglion explant, a Merkel cell-neurite complex composed of Merkel cells, which were positive for both cytokeratin 8 and SOX2, Neurofilament-H-positive trigeminal nerve fibers and Schwann cells expressing Nestin, SOX2 and SOX10 was observed via immunohistochemical analyses. These results suggest that the process for the formation of a Merkel cell-neurite complex can be observed under a microscope using our organotypic co-culture method. © 2018 Japanese Society of Developmental Biologists.
Reis, Renata; Hennessy, Edel; Murray, Caoimhe; Griffin, Éadaoin W.
2015-01-01
Aims The processes by which neurons degenerate in chronic neurodegenerative diseases remain unclear. Synaptic loss and axonal pathology frequently precede neuronal loss and protein aggregation demonstrably spreads along neuroanatomical pathways in many neurodegenerative diseases. The spread of neuronal pathology is less studied. Methods We previously demonstrated severe neurodegeneration in the posterior thalamus of multiple prion disease strains. Here we used the ME7 model of prion disease to examine the nature of this degeneration in the posterior thalamus and the major brainstem projections into this region. Results We objectively quantified neurological decline between 16 and 18 weeks post‐inoculation and observed thalamic subregion‐selective neuronal, synaptic and axonal pathology while demonstrating relatively uniform protease‐resistant prion protein (PrP) aggregation and microgliosis across the posterior thalamus. Novel amyloid precursor protein (APP) pathology was particularly prominent in the thalamic posterior (PO) and ventroposterior lateral (VPL) nuclei. The brainstem nuclei forming the major projections to these thalamic nuclei were examined. Massive neuronal loss in the PO was not matched by significant neuronal loss in the interpolaris (Sp5I), while massive synaptic loss in the ventral posteromedial nucleus (VPM) did correspond with significant neuronal loss in the principal trigeminal nucleus. Likewise, significant VPL synaptic loss was matched by significant neuronal loss in the gracile and cuneate nuclei. Conclusion These findings demonstrate significant spread of neuronal pathology from the thalamus to the brainstem in prion disease. The divergent neuropathological features in adjacent neuronal populations demonstrates that there are discrete pathways to neurodegeneration in different neuronal populations. PMID:25727649
C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation.
Matsui, Toshiyasu; Hongo, Yu; Haizuka, Yoshinori; Kaida, Kenichi; Matsumura, George; Martin, Donna M; Kobayashi, Yasushi
2013-08-26
Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hullugundi, Swathi K.; Ferrari, Michel D.; van den Maagdenberg, Arn M. J. M.; Nistri, Andrea
2013-01-01
A knock-in (KI) mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unclear as their membrane expression and TRPV1 nociceptor activity are the same as in wildtype (WT) neurons. Using primary cultures of WT or KI trigeminal ganglia, we investigated whether soluble compounds that may contribute to initiating (or maintaining) migraine attacks, such as TNFα, CGRP, and BDNF, might be responsible for increasing P2X3 receptor responses. Exogenous application of TNFα potentiated P2X3 receptor-mediated currents of WT but not of KI neurons, most of which expressed both the P2X3 receptor and the TNFα receptor TNFR2. However, sustained TNFα neutralization failed to change WT or KI P2X3 receptor currents. This suggests that endogenous TNFα does not regulate P2X3 receptor responses. Nonetheless, on cultures made from both genotypes, exogenous TNFα enhanced TRPV1 receptor-mediated currents expressed by a few neurons, suggesting transient amplification of TRPV1 nociceptor responses. CGRP increased P2X3 receptor currents only in WT cultures, although prolonged CGRP receptor antagonism or BDNF neutralization reduced KI currents to WT levels. Our data suggest that, in KI trigeminal ganglion cultures, constitutive up-regulation of P2X3 receptors probably is already maximal and is apparently contributed by basal CGRP and BDNF levels, thereby rendering these neurons more responsive to extracellular ATP. PMID:23577145
Lefranc, Michel; Da Roz, Leila Maria; Balossier, Anne; Thomassin, Jean Marc; Roche, Pierre Hugue; Regis, Jean
2018-06-01
Grade IV vestibular schwannoma (Koos classification) is generally considered to be an indication for microsurgical resection or combined radiosurgery-microsurgery. However, the place of Gamma Knife stereotactic surgery (GK-SRS), either as first-line treatment or when progression of residual tumor compresses the brainstem, has not been clearly evaluated. This article reports the results of a large case series of patients with grade 4 vestibular schwannoma treated by GK-SRS. All consecutive patients with grade IV vestibular schwannoma treated by GK-SRS in our department between 1996 and 2011 with a minimum follow-up of 3 years were included in this study. 86 patients were treated by GK-SRS with a minimum follow-up of 3 years. Mean follow-up was 6.2 years (3-16 years). The mean age of the patients at the time of GK-SRS was 54.6 years (range: 23-84) and the sex ratio was 0.6. At the time of radiosurgery, no patient presented brainstem dysfunction prior to GK-SRS. 38 patients had functional hearing before treatment. One patient presented mild trigeminal neuralgia before GK-SRS. Tumor control with no clinical deterioration was obtained in 78 patients (90.7%). No radiation-induced brainstem or cranial nerve toxicity was observed in any of these patients. Functional hearing was maintained in 25 patients. 8 (9.3%) patients presented tumor growth and required microsurgical resection in 7 cases and ventricular shunt in 1 case. On the basis of this large series, GK-SRS appears to be a safe and effective treatment option for grade IV vestibular schwannoma for patients with no signs of brainstem dysfunction. Copyright © 2018 Elsevier Inc. All rights reserved.
Uluc, Kayihan; Baskan, Ozdil; Yildirim, Kadriye Agan; Ozsahin, Selda; Koseoglu, Mesrure; Isak, Baris; Scheper, G C; Gunal, Dilek Ince; van der Knaap, M S
2008-10-15
Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a recently described disorder with autosomal recessive mode of inheritance. Lately, mutations in the DARS2 gene, which encodes mitochondrial aspartyl-tRNA synthetase, have been found as the underlying defect. We report a 19-year-old male patient with cerebellar, pyramidal and dorsal column dysfunctions and specific magnetic resonance imaging (MRI) and characteristic magnetic resonance spectroscopy (MRS) abnormalities. The patient was compound-heterozygous for two mutations in DARS2. MRI showed selective involvement of cerebral and cerebellar white matter and superior and inferior cerebellar peduncles, without contrast enhancement. The U-fibers were spared. The sensory and the pyramidal tracts were affected over their entire length. Involvement of the intraparenchymal trajectories of the trigeminal nerves and mesencephalic trigeminal tracts was demonstrated. In the spinal cord, signal abnormalities were identified in the dorsal columns and the lateral corticospinal tracts. Proton-MRS of the frontal and cerebellar white matter showed elevated lactate, reduced N-acetylaspartate, increased myoinositol and mildly elevated choline. In LBSL, distinct MRI findings should lead to the diagnosis, which can be confirmed by the analysis of the disease gene DARS2.
Facial neuroma masquerading as acoustic neuroma.
Sayegh, Eli T; Kaur, Gurvinder; Ivan, Michael E; Bloch, Orin; Cheung, Steven W; Parsa, Andrew T
2014-10-01
Facial nerve neuromas are rare benign tumors that may be initially misdiagnosed as acoustic neuromas when situated near the auditory apparatus. We describe a patient with a large cystic tumor with associated trigeminal, facial, audiovestibular, and brainstem dysfunction, which was suspicious for acoustic neuroma on preoperative neuroimaging. Intraoperative investigation revealed a facial nerve neuroma located in the cerebellopontine angle and internal acoustic canal. Gross total resection of the tumor via retrosigmoid craniotomy was curative. Transection of the facial nerve necessitated facial reanimation 4 months later via hypoglossal-facial cross-anastomosis. Clinicians should recognize the natural history, diagnostic approach, and management of this unusual and mimetic lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schmidt, K; Forkmann, K; Sinke, C; Gratz, M; Bitz, A; Bingel, U
2016-07-01
Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance. Copyright © 2016 Elsevier Inc. All rights reserved.
Wild, J M; Krützfeldt, N E O
2012-02-15
During singing in songbirds, the extent of beak opening, like the extent of mouth opening in human singers, is partially correlated with the fundamental frequency of the sounds emitted. Since song in songbirds is under the control of "the song system" (a collection of interconnected forebrain nuclei dedicated to the learning and production of song), it might be expected that beak movements during singing would also be controlled by this system. However, direct neural connections between the telencephalic output of the song system and beak muscle motor neurons in the brainstem are conspicuous by their absence, leaving unresolved the question of how beak movements are affected during singing. By using standard tract tracing methods, we sought to answer this question by defining beak premotor neurons and examining their afferent projections. In the caudal medulla, jaw premotor cell bodies were located adjacent to the terminal field of the output of the song system, into which many premotor neurons extended their dendrites. The premotor neurons also received a novel input from the trigeminal ganglion and an overlapping input from a lateral arcopallial component of a trigeminal sensorimotor circuit that traverses the forebrain. The ganglionic input in songbirds, which is not present in doves and pigeons that vocalize with a closed beak, may modulate the activity of beak premotor neurons in concert with the output of the song system. These inputs to jaw premotor neurons could, together, affect beak movements as a means of modulating filter properties of the upper vocal tract during singing. Copyright © 2011 Wiley-Liss, Inc.
Aigner, M; Robert Lukas, J; Denk, M; Ziya-Ghazvini, F; Kaider, A; Mayr, R
2000-04-01
Apart from the somatotopic organization of the trigeminal ganglion (TG) into the ophthalmic, maxillary and mandibular divisions along the mediolateral axis, there exist further somatotopic organizations within these three divisions. According to literature, the cell organization in the TG and the somatotopy in the brainstem develop together, formed by naturally occurring cell death in the TG. Thus, the somatotopy of the primary afferent trigeminal perikarya is of special interest. The aim of this study was to investigate the location of the primary afferent perikarya of the extraocular muscles (EOMs) in the TG of guinea-pig. The primary afferent perikarya were labeled by post-mortem application of the carbocyanine DiI on the oculomotor nerve branches near their entrance into the single EOMs. The DiI-positive perikarya were found musculo-somatically organized in the ipsilateral ophthalmic part of the TG at a wide range along the dorsoventral axis, expressing an overlap of the representation areas. The primary afferent perikarya of the superior rectus and the superior oblique muscles were mainly localized in the dorsal part of the ganglion while those of the inferior rectus and the inferior oblique muscle mainly in ventral part. The lateral and the medial rectus were predominantly represented in between. An organization along the mediolateral axis of the TG was not observed. Although guinea-pigs lack classical EOM proprioceptors, the somatotopic representation of the extraocular muscle primary afferent perikarya in the TG found in this study is in line with findings in species with well known encapsulated proprioceptors within the EOMs.
Parasympathetic reflex vasodilation in the cerebral hemodynamics of rats.
Ishii, Hisayoshi; Sato, Toshiya; Izumi, Hiroshi
2014-04-01
We investigated the role of parasympathetic reflex vasodilation in the regulation of the cerebral hemodynamics, and whether GABAA receptors modulate the response. We examined the effects of activation of the parasympathetic fibers through trigeminal afferent inputs on blood flow in the internal carotid artery (ICABF) and the cerebral blood vessels (rCBF) in parietal cortex in urethane-anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve (LN) elicited intensity- and frequency-dependent increases in ICABF that were independent of changes in external carotid artery blood flow. Increases in ICABF were elicited by LN stimulation regardless of the presence or absence of sympathetic innervation. The ICABF increases evoked by LN stimulation were almost abolished by the intravenous administration of hexamethonium (10 mg kg(-1)) and were reduced significantly by atropine administration (0.1 mg kg(-1)). Although the LN stimulation alone had no significant effect on rCBF, LN stimulation in combination with a blocker of the GABAA receptor pentylenetetrazole increased the rCBF markedly. This increase in rCBF was reduced significantly by the administration of hexamethonium and atropine. These observations indicate that the increases in both ICABF and rCBF are evoked by parasympathetic activation via the trigeminal-mediated reflex. The rCBF increase evoked by LN stimulation is thought to be limited by the GABAA receptors in the central nervous system. These results suggest that the parasympathetic reflex vasodilation and its modulation mediated by GABA receptors within synaptic transmission in the brainstem are involved in the regulation of the cerebral hemodynamics during trigeminal afferent inputs.
Athanassiadis, T; Westberg, K-G; Olsson, K A; Kolta, A
2005-12-01
A population of neurons in the trigeminal principal sensory nucleus (NVsnpr) fire rhythmically during fictive mastication induced in the in vivo rabbit. To elucidate whether these neurons form part of the central pattern generator (CPG) for mastication, we performed intracellular recordings in brainstem slices taken from young rats. Two cell types were defined, nonbursting (63%) and bursting (37%). In response to membrane depolarization, bursting cells, which dominated in the dorsal part of the NVsnpr, fired an initial burst followed by single spikes or recurring bursts. Non-bursting neurons, scattered throughout the nucleus, fired single action potentials. Microstimulation applied to the trigeminal motor nucleus (NVmt), the reticular border zone surrounding the NVmt, the parvocellular reticular formation or the nucleus reticularis pontis caudalis (NPontc) elicited a postsynaptic potential in 81% of the neurons tested for synaptic inputs. Responses obtained were predominately excitatory and sensitive to glutamatergic antagonists DNQX and/or APV. Some inhibitory and biphasic responses were also evoked. Bicuculline methiodide or strychnine blocked the IPSPs indicating that they were mediated by GABA(A) or glycinergic receptors. About one-third of the stimulations activated both types of neurons antidromically, mostly from the masseteric motoneuron pool of NVmt and dorsal part of NPontc. In conclusion, our new findings show that some neurons in the dorsal NVsnpr display both firing properties and axonal connections which support the hypothesis that they may participate in masticatory pattern generation. Thus, the present data provide an extended basis for further studies on the organization of the masticatory CPG network.
Wild, J.M.; Krützfeldt, N.E.O.
2014-01-01
During singing in songbirds, the extent of beak opening, like the extent of mouth opening in human singers, is partially correlated with the fundamental frequency of the sounds emitted. Since song in songbirds is under the control of “the song system” (a collection of interconnected forebrain nuclei dedicated to the learning and production of song), it might be expected that beak movements during singing would also be controlled by this system. However, direct neural connections between the telencephalic output of the song system and beak muscle motor neurons in the brainstem are conspicuous by their absence, leaving unresolved the question of how beak movements are affected during singing. By using standard tract tracing methods, we sought to answer this question by defining beak premotor neurons and examining their afferent projections. In the caudal medulla, jaw premotor cell bodies were located adjacent to the terminal field of the output of the song system, into which many premotor neurons extended their dendrites. The premotor neurons also received a novel input from the trigeminal ganglion and an overlapping input from a lateral arcopallial component of a trigeminal sensorimotor circuit that traverses the forebrain. The ganglionic input in songbirds, which is not present in doves and pigeons that vocalize with a closed beak, may modulate the activity of beak premotor neurons in concert with the output of the song system. These inputs to jaw premotor neurons could, together, affect beak movements as a means of modulating filter properties of the upper vocal tract during singing. PMID:21858818
Involvement of histaminergic inputs in the jaw-closing reflex arc
Gemba, Chikako; Nakayama, Kiyomi; Nakamura, Shiro; Mochizuki, Ayako; Inoue, Tomio
2015-01-01
Histamine receptors are densely expressed in the mesencephalic trigeminal nucleus (MesV) and trigeminal motor nucleus. However, little is known about the functional roles of neuronal histamine in controlling oral-motor activity. Thus, using the whole-cell recording technique in brainstem slice preparations from Wistar rats aged between postnatal days 7 and 13, we investigated the effects of histamine on the MesV neurons innervating the masseter muscle spindles and masseter motoneurons (MMNs) that form a reflex arc for the jaw-closing reflex. Bath application of histamine (100 μM) induced membrane depolarization in both MesV neurons and MMNs in the presence of tetrodotoxin, whereas histamine decreased and increased the input resistance in MesV neurons and MMNs, respectively. The effects of histamine on MesV neurons and MMNs were mimicked by an H1 receptor agonist, 2-pyridylethylamine (100 μM). The effects of an H2 receptor agonist, dimaprit (100 μM), on MesV neurons were inconsistent, whereas MMNs were depolarized without changes in the input resistance. An H3 receptor agonist, immethridine (100 μM), also depolarized both MesV neurons and MMNs without changing the input resistance. Histamine reduced the peak amplitude of postsynaptic currents (PSCs) in MMNs evoked by stimulation of the trigeminal motor nerve (5N), which was mimicked by 2-pyridylethylamine but not by dimaprit or immethridine. Moreover, 2-pyridylethylamine increased the failure rate of PSCs evoked by minimal stimulation and the paired-pulse ratio. These results suggest that histaminergic inputs to MesV neurons through H1 receptors are involved in the suppression of the jaw-closing reflex although histamine depolarizes MesV neurons and/or MMNs. PMID:25904711
Lochhead, Jeffrey J; Wolak, Daniel J; Pizzo, Michelle E; Thorne, Robert G
2015-03-01
The intranasal administration route is increasingly being used as a noninvasive method to bypass the blood-brain barrier because evidence suggests small fractions of nasally applied macromolecules may reach the brain directly via olfactory and trigeminal nerve components present in the nasal mucosa. Upon reaching the olfactory bulb (olfactory pathway) or brainstem (trigeminal pathway), intranasally delivered macromolecules appear to rapidly distribute within the brains of rodents and primates. The mechanisms responsible for this distribution have yet to be fully characterized. Here, we have used ex vivo fluorescence imaging to show that bulk flow within the perivascular space (PVS) of cerebral blood vessels contributes to the rapid central distribution of fluorescently labeled 3 and 10 kDa dextran tracers after intranasal administration in anesthetized adult rats. Comparison of tracer plasma levels and fluorescent signal distribution associated with the PVS of surface arteries and internal cerebral vessels showed that the intranasal route results in unique central access to the PVS not observed after matched intravascular dosing in separate animals. Intranasal targeting to the PVS was tracer size dependent and could be regulated by modifying nasal epithelial permeability. These results suggest cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain.
[Change in trigeminal mesencephalic neurons after teeth extraction in guinea pig].
Kimoto, A
1993-03-01
Trigeminal mesencephalic (Mes V) neurons innervating the periodontal mechanoreceptor (PMR) are known to play an important role in controlling the bite force and jaw-movements during mastication. After teeth loss, the PMR disappears due to loss of the periodontal membrane. The present work is a study on whether cell death is induced in the Mes V neurons in association with teeth loss. The upper and lower incisors were extracted on the right side in 5 guinea pigs (extraction group) and the other 5 guinea pigs were kept intact (control group). In the extraction group, the animals were kept alive for 58-119 days after teeth extraction. Serial coronal sections (50 microns thick) were made of the midbrain and pons and stained with cresyl violet. The Mes V neurons were counted on every other section. In the caudal half of the Mes V nucleus, where the neurons innervating the PMR are reported to be located, the number of neurons was less on the right side than on the left side (P < 0.01) in the extraction group, while there was no difference between the right and left sides in the control group. We conclude that teeth extraction can induce cell death in the Mes V neurons innervating the PMR and produce a significant change in the brainstem mechanisms controlling mastication.
Hougaard, Anders; Amin, Faisal M; Christensen, Casper E; Younis, Samaira; Wolfram, Frauke; Cramer, Stig P; Larsson, Henrik B W; Ashina, Messoud
2017-06-01
See Moskowitz (doi:10.1093/brain/awx099) for a scientific commentary on this article.The migraine aura is characterized by transient focal cortical disturbances causing dramatic neurological symptoms that are usually followed by migraine headache. It is currently not understood how the aura symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas of the anterior, middle and posterior circulation during spontaneous attacks of migraine with aura. Patients reported to our institution to undergo magnetic resonance imaging during the headache phase after presenting with typical visual aura. Nineteen patients were scanned during attacks and on an attack-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability in any of the investigated regions. There was no correlation between blood-brain barrier permeability, brain perfusion, and time from symptom onset to examination or pain intensity. Our findings demonstrate hyperperfusion in brainstem during the headache phase of migraine with aura, while the blood-brain barrier remains intact during attacks of migraine with aura. These data thus contradict the preclinical hypothesis of cortical spreading depression-induced blood-brain barrier disruption as a possible mechanism linking aura and headache.awx089media15422686892001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ophthalmic branch radiofrequency thermocoagulation for atypical trigeminal neuralgia:a case report.
Du, Shibin; Ma, Xiaoliang; Li, Xiaoqin; Yuan, Hongjie
2015-01-01
Trigeminal neuralgia is an intense neuralgia involving facial areas supplied by trigeminal nerve. The pain is characterized by sudden onset, short persistence, sharp or lancinating. Trigeminal neuralgia commonly affects frontal areas, infraorbital or paranasal areas, mandibular areas and teeth. While Trigeminal neuralgia affecting merely the upper eyelid is rare. Here we report a case of atypical Trigeminal neuralgia confined to the upper eyelid. The patient was pain free during the follow-up period of 6 months after unusual ophthalmic branch radiofrequency thermocoagulation. A 55-year-old female patient was diagnosed as primary trigeminal neuralgia involving the right upper eyelid. As the pain could not be controlled by drug therapy, peripheral nerve branch radiofrequency thermocoagulation was recommended. A combination of infratrochlear, supratrochlear and lacrimal radiofrequency thermocoagulation was implemented in this case. The point where the bridge of the nose abuts the supraorbital ridge and the point slightly above the lateral canthus along outer border of the orbit were selected respectively as the puncture sites. After positive diagnostic test, radiofrequency thermocoagulation of the above-mentioned nerve branches was performed respectively. The patient was pain free immediately after the treatment and during the follow-up period of 6 months. Trigeminal neuralgia is a common severe and chronic facial neuralgia which requires accurate diagnosis and effective therapy. With typical clinical symptoms, normal neurological signs, normal CT and MRI findings, the patient was diagnosed as classic trigeminal neuralgia. As the patient was drug resistant, some invasive treatments were considered. Peripheral branch neurolysis was chosen for its minimal invasiveness, convenience, low risk and not affecting further invasive treatments. According to the anatomic data and the diagnostic test results, infratrochlear, supratrochlear and lacrimal nerve were responsible, therefore, an unusual combination of infratrochlear, supratrochlear, and lacrimal radiofrequency thermocoagulation was implemented for this patient. Radiofrequency thermocoagulation is an effective treatment option for trigeminal neuralgia. Peripheral branch radiofrequency thermocoagulation for trigeminal neuralgia should be considered preferentially due to its minimal invasiveness and convenience. Furthermore, as the sensory innervation of the upper eyelid is complex, the knowledge of peripheral distribution of trigeminal nerve is essential.
Franceschini, Alessia; Vilotti, Sandra; Ferrari, Michel D.; van den Maagdenberg, Arn M. J. M.; Nistri, Andrea; Fabbretti, Elsa
2013-01-01
Latent changes in trigeminal ganglion structure and function resembling inflammatory conditions may predispose to acute attacks of migraine pain. Here, we investigated whether, in trigeminal sensory ganglia, cytokines such as TNFα might contribute to a local inflammatory phenotype of a transgenic knock-in (KI) mouse model of familial hemiplegic migraine type-1 (FHM-1). To this end, macrophage occurrence and cytokine expression in trigeminal ganglia were compared between wild type (WT) and R192Q mutant CaV2.1 Ca2+ channel (R192Q KI) mice, a genetic model of FHM-1. Cellular and molecular characterization was performed using a combination of confocal immunohistochemistry and cytokine assays. With respect to WT, R192Q KI trigeminal ganglia were enriched in activated macrophages as suggested by their morphology and immunoreactivity to the markers Iba1, CD11b, and ED1. R192Q KI trigeminal ganglia constitutively expressed higher mRNA levels of IL1β, IL6, IL10 and TNFα cytokines and the MCP-1 chemokine. Consistent with the report that TNFα is a major factor to sensitize trigeminal ganglia, we observed that, following an inflammatory reaction evoked by LPS injection, TNFα expression and macrophage occurrence were significantly higher in R192Q KI ganglia with respect to WT ganglia. Our data suggest that, in KI trigeminal ganglia, the complex cellular and molecular environment could support a new tissue phenotype compatible with a neuroinflammatory profile. We propose that, in FHM patients, this condition might contribute to trigeminal pain pathophysiology through release of soluble mediators, including TNFα, that may modulate the crosstalk between sensory neurons and resident glia, underlying the process of neuronal sensitisation. PMID:23326332
Linear accelerator stereotactic radiosurgery for trigeminal neuralgia.
Varela-Lema, Leonor; Lopez-Garcia, Marisa; Maceira-Rozas, Maria; Munoz-Garzon, Victor
2015-01-01
Stereotactic radiosurgery is accepted as an alternative for patients with refractory trigeminal neuralgia, but existing evidence is fundamentally based on the Gamma Knife, which is a specific device for intracranial neurosurgery, available in few facilities. Over the last decade it has been shown that the use of linear accelerators can achieve similar diagnostic accuracy and equivalent dose distribution. To assess the effectiveness and safety of linear-accelerator stereotactic radiosurgery for the treatment of patients with refractory trigeminal neuralgia. We carried out a systematic search of the literature in the main electronic databases (PubMed, Embase, ISI Web of Knowledge, Cochrane, Biomed Central, IBECS, IME, CRD) and reviewed grey literature. All original studies on the subject published in Spanish, French, English, and Portuguese were eligible for inclusion. The selection and critical assessment was carried out by 2 independent reviewers based on pre-defined criteria. In view of the impossibility of carrying out a pooled analysis, data were analyzed in a qualitative way. Eleven case series were included. In these, satisfactory pain relief (BIN I-IIIb or reduction in pain = 50) was achieved in 75% to 95.7% of the patients treated. The mean time to relief from pain ranged from 8.5 days to 3.8 months. The percentage of patients who presented with recurrences after one year of follow-up ranged from 5% to 28.8%. Facial swelling or hypoesthesia, mostly of a mild-moderate grade appeared in 7.5% - 51.9% of the patients. Complete anaesthesia dolorosa was registered in only study (5.3%). Cases of hearing loss (2.5%), brainstem edema (5.8%), and neurotrophic keratoplasty (3.5%) were also isolated. The results suggest that stereotactic radiosurgery with linear accelerators could constitute an effective and safe therapeutic alternative for drug-resistant trigeminal neuralgia. However, existing studies leave important doubts as to optimal treatment doses or the therapeutic target, long-term recurrence, and do not help identify which subgroups of patients could most benefit from this technique. Paucity of literature and clear lack of clarification for clinical utilization of this technique.
Unilateral Punctate Keratitis Secondary to Wallenberg Syndrome
Boto, Ana; Del Hierro, Almudena; Capote, Maria; Noval, Susana; Garcia, Amanda; Santiago, Susana
2014-01-01
We studied three patients who developed left unilateral punctate keratitis after suffering left-sided Wallenberg Syndrome. A complex evolution occurred in two of them. In all cases, neurophysiological studies showed damage in the trigeminal sensory component at the bulbar level. Corneal involvement secondary to Wallenberg syndrome is a rare cause of unilateral superficial punctate keratitis. The loss of corneal sensitivity caused by trigeminal neuropathy leads to epithelial erosions that are frequently unobserved by the patient, resulting in a high risk of corneal-ulcer development with the possibility of superinfection. Neurophysiological studies can help to locate the anatomical level of damage at the ophthalmic branch of the trigeminal nerve, confirming the suspected etiology of stroke, and demonstrating that prior vascular involvement coincides with the location of trigeminal nerve damage. In some of these patients, oculofacial pain is a distinctive feature. PMID:24882965
Zausinger, Stefan; Yousry, Indra; Brueckmann, Hartmut; Schmid-Elsaesser, Robert; Tonn, Joerg-Christian
2006-02-01
The indications for resection of cavernous malformations (CMs) of the brainstem include neurological deficits, (recurrent) hemorrhage, and surgically accessible location. In particular, knowledge of the thickness of the parenchymal layer and of the CM's spatial relation to nuclei, tracts, cranial nerves, and vessels is critical for planning the surgical approach. We reviewed the operative treatment of 13 patients with 14 brainstem CMs, with special regard to refined three-dimensional (3D)-constructive interference in steady-state (CISS) magnetic resonance imaging (MRI). Patients were evaluated neurologically and by conventional spin-echo/fast spin-echo and 3D-CISS MRI. Surgery was performed with the use of microsurgical techniques and neurophysiological monitoring. Eleven CMs were located in the pons/pontomedullary region; 10 of the 11 were operated on via the lateral suboccipital approach. Three CMs were located near the floor of the fourth ventricle and operated on via the median suboccipital approach, with total removal of all CMs. Results were excellent or good in 10 patients; one patient transiently required tracheostomy, and two patients developed new hemipareses/ataxia with subsequent improvement. Not only did 3D-CISS sequences allow improved judgment of the thickness of the parenchymal layer over the lesion compared with spin-echo/fast spin-echo MRI, but 3D-CISS imaging also proved particularly superior in demonstrating the spatial relation of the lesion to fairly "safe" entry zones (e.g., between the trigeminal nerve and the VIIth and VIIIth nerve groups) by displaying the cranial nerves and vessels within the cerebellopontine cistern more precisely. Surgical treatment of brainstem CMs is recommended in symptomatic patients. Especially in patients with lesions situated ventrolaterally, the 3D-CISS sequence seems to be a valuable method for identifying the CM's relation to safe entry zones, thereby facilitating the surgical approach.
New approach to neurorehabilitation: cranial nerve noninvasive neuromodulation (CN-NINM) technology
NASA Astrophysics Data System (ADS)
Danilov, Yuri P.; Tyler, Mitchel E.; Kaczmarek, Kurt A.; Skinner, Kimberley L.
2014-06-01
Cranial Nerve NonInvasive NeuroModulation (CN-NINM) is a primary and complementary multi-targeted rehabilitation therapy that appears to initiate the recovery of multiple damaged or suppressed brain functions affected by neurological disorders. It is deployable as a simple, home-based device (portable neuromodulation stimulator, or PoNSTM) and training regimen following initial patient training in an outpatient clinic. It may be easily combined with many existing rehabilitation therapies, and may reduce or eliminate the need for more aggressive invasive procedures or possibly decrease total medication intake. CN-NINM uses sequenced patterns of electrical stimulation on the tongue. Our hypothesis is that CN-NINM induces neuroplasticity by noninvasive stimulation of two major cranial nerves: trigeminal (CN-V), and facial (CN-VII). This stimulation excites a natural flow of neural impulses to the brainstem (pons varolli and medulla), and cerebellum, to effect changes in the function of these targeted brain structures, extending to corresponding nuclei of the brainstem. CN-NINM represents a synthesis of a new noninvasive brain stimulation technique with applications in physical medicine, cognitive, and affective neurosciences. Our new stimulation method appears promising for treatment of a full spectrum of movement disorders, and for both attention and memory dysfunction associated with traumatic brain injury.
Iijima, N; Tanaka, M; Mitsui, S; Yamamura, Y; Yamaguchi, N; Ibata, Y
1999-03-20
Serine proteases are considered to play several important roles in the brain. In an attempt to find novel brain-specific serine proteases (BSSPs), motopsin (PRSS-12) was cloned from a mouse brain cDNA library by polymerase chain reaction (PCR). Northern blot analysis demonstrated that the postnatal 10-day mouse brain contained the most amount of motopsin mRNA. At this developmental stage, in situ hybridization histochemistry showed that motopsin mRNA was specifically expressed in the following regions: cerebral cortical layers II/III, V and VIb, endopiriform cortex and the limbic system, particularly in the CA1 region of the hippocampal formation. In addition, in the brainstem, the oculomotor nucleus, trochlear nucleus, mecencephalic and motor nuclei of trigeminal nerve (N), abducens nucleus, facial nucleus, nucleus of the raphe pontis, dorsoral motor nucleus of vagal N, hypoglossal nucleus and ambiguus nucleus showed motopsin mRNA expression. Expression was also found in the anterior horn of the spinal cord. The above findings strongly suggest that neurons in almost all motor nuclei, particularly in the brainstem and spinal cord, express motopsin mRNA, and that motopsin seems to have a close relation to the functional role of efferent neurons. Copyright 1999 Elsevier Science B.V.
Selective localization of oxytocin receptors and vasopressin 1a receptors in the human brainstem
Freeman, Sara M.; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.
2017-01-01
Intranasal oxytocin affects a suite of human social behaviors, including trust, eye contact, and emotion recognition. However, it is unclear where oxytocin receptors (OXTR) and the structurally related vasopressin 1a receptors (AVPR1a) are expressed in the human brain. We have previously described a reliable, pharmacologically informed receptor autoradiography protocol for visualizing these receptors in postmortem primate brain tissue. We used this technique in human brainstem tissue to identify the neural targets of oxytocin and vasopressin. To determine binding selectivity of the OXTR radioligand and AVPR1a radioligand, sections were incubated in four conditions: radioligand alone, radioligand with the selective AVPR1a competitor SR49059, and radioligand with a low or high concentration of the selective OXTR competitor ALS-II-69. We found selective OXTR binding in the spinal trigeminal nucleus, a conserved region of OXTR expression in all primate species investigated to date. We found selective AVPR1a binding in the nucleus prepositus, an area implicated in eye gaze stabilization. The tissue's postmortem interval was not correlated with either the specific or nonspecific binding of either radioligand, indicating that it will not likely be a factor in similar postmortem studies. This study provides critical data for future studies of OXTR and AVPR1a in human brain tissue. PMID:26911439
Renton, T
2017-07-01
The issues specific to trigeminal pain include the complexity of the region, the problematic impact on daily function and significant psychological impact (J Dent, 43, 2015, 1203). By nature of the geography of the pain (affecting the face, eyes, scalp, nose, mouth), it may interfere with just about every social function we take for granted and enjoy (J Orofac Pain, 25, 2011, 333). The trigeminal nerve is the largest sensory nerve in the body, protecting the essential organs that underpin our very existence (brain, eyes, nose, mouth). It is no wonder that pain within the trigeminal system in the face is often overwhelming and inescapable for the affected individual. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cytoarchitectonic study of the trigeminal ganglion in humans.
Krastev, Dimo Stoyanov; Apostolov, Alexander
2013-01-01
The trigeminal ganglion (TG), a cluster of pseudounipolar neurons, is located in the trigeminal impression of the temporal pyramid. It is covered by a sheath of the dura mater and arachnoid and is near the rear end of the cavernous sinus. The peripheral processes of the pseudounipolar cells are involved in the formation of the first and second branch and the sensory part of the third branch of the fifth cranial nerve, and the central ones form the sensory root of the nerve, which penetrates at the level of the middle cerebellar peduncle, aside from the pons, and terminate in the sensory nuclei of the trigeminal complex. We found that the primary sensory neurons involved in sensory innervation of the orofacial complex are a diverse group. Although they possess the general structure of pseudounipolar neurons, there are significant differences among them, seen in varying intensities of staining. Based on our investigations we classified the neurons into 7 groups, i.e. large, subdivided into light and dark, medium, also light and dark, and small light and dark, and, moreover, neurons with an irregular shape of their perikarya. Further research by applying various immunohistochemical methods will clarify whether differences in the morphological patterns of the neurons are associated with differences in the neurochemical composition of various neuronal types.
Cytoarchitectonic study of the trigeminal ganglion in humans
KRASTEV, DIMO STOYANOV; APOSTOLOV, ALEXANDER
2013-01-01
The trigeminal ganglion (TG), a cluster of pseudounipolar neurons, is located in the trigeminal impression of the temporal pyramid. It is covered by a sheath of the dura mater and arachnoid and is near the rear end of the cavernous sinus. The peripheral processes of the pseudounipolar cells are involved in the formation of the first and second branch and the sensory part of the third branch of the fifth cranial nerve, and the central ones form the sensory root of the nerve, which penetrates at the level of the middle cerebellar peduncle, aside from the pons, and terminate in the sensory nuclei of the trigeminal complex. We found that the primary sensory neurons involved in sensory innervation of the orofacial complex are a diverse group. Although they possess the general structure of pseudounipolar neurons, there are significant differences among them, seen in varying intensities of staining. Based on our investigations we classified the neurons into 7 groups, i.e. large, subdivided into light and dark, medium, also light and dark, and small light and dark, and, moreover, neurons with an irregular shape of their perikarya. Further research by applying various immunohistochemical methods will clarify whether differences in the morphological patterns of the neurons are associated with differences in the neurochemical composition of various neuronal types. PMID:26527926
Macrini, Thomas E; Rowe, Timothy; Archer, Michael
2006-08-01
A digital cranial endocast of the Miocene platypus Obdurodon dicksoni was extracted from high-resolution X-ray computed tomography scans. This endocast represents the oldest from an unequivocal member of either extant monotreme lineage and is therefore important for inferring character support for Monotremata, a clade that is not well diagnosed. We describe the Obdurodon endocast with reference to endocasts extracted from skulls of the three species of extant monotremes, particularly Ornithorhynchus anatinus, the duckbill platypus. We consulted published descriptions and illustrations of whole and sectioned brains of monotremes to determine which external features of the nervous system are represented on the endocasts. Similar to Ornithorhynchus, well-developed parafloccular casts and reduced olfactory bulb casts are present in the Obdurodon endocast. Reduction of the olfactory bulbs in comparison with tachyglossids and therian mammals is a potential apomorphy for Ornithorhynchidae. The trigeminal nuclei, ganglia, and nerves (i.e., trigeminal complex) are enlarged in Obdurodon, as evidenced by their casts on the endocast, as is the case in the extant platypus. The visibility of enlarged trigeminal nucleus casts on the endocasts of Obdurodon and Ornithorhynchus is a possible synapomorphy of Ornithorhynchidae. Electroreception and enlargement of the trigeminal complex are possible synapomorphies for Monotremata. Copyright 2006 Wiley-Liss, Inc.
Morphometric analysis of astrocytes in brainstem respiratory regions.
Sheikhbahaei, Shahriar; Morris, Brian; Collina, Jared; Anjum, Sommer; Znati, Sami; Gamarra, Julio; Zhang, Ruli; Gourine, Alexander V; Smith, Jeffrey C
2018-06-11
Astrocytes, the most abundant and structurally complex glial cells of the central nervous system, are proposed to play an important role in modulating the activities of neuronal networks, including respiratory rhythm-generating circuits of the preBötzinger complex (preBötC) located in the ventrolateral medulla of the brainstem. However, structural properties of astrocytes residing within different brainstem regions are unknown. In this study astrocytes in the preBötC, an intermediate reticular formation (IRF) region with respiratory-related function, and a region of the nucleus tractus solitarius (NTS) in adult rats were reconstructed and their morphological features were compared. Detailed morphological analysis revealed that preBötC astrocytes are structurally more complex than those residing within the functionally distinct neighboring IRF region, or the NTS, located at the dorsal aspect of the medulla oblongata. Structural analyses of the brainstem microvasculature indicated no significant regional differences in vascular properties. We hypothesize that high morphological complexity of preBötC astrocytes reflects their functional role in providing structural/metabolic support and modulation of the key neuronal circuits essential for breathing, as well as constraints imposed by arrangements of associated neurons and/or other local structural features of the brainstem parenchyma. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats
Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi
2009-01-01
In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and γ-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABAA receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABAA receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin–NTS, lingual muscle–NTS and lingual muscle–Pa5–NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures. PMID:19124539
Cyto- and chemoarchitecture of the sensory trigeminal nuclei of the echidna, platypus and rat.
Ashwell, Ken W S; Hardman, Craig D; Paxinos, George
2006-02-01
We have examined the cyto- and chemoarchitecture of the trigeminal nuclei of two monotremes using Nissl staining, enzyme reactivity for cytochrome oxidase, immunoreactivity for calcium binding proteins and non-phosphorylated neurofilament (SMI-32 antibody) and lectin histochemistry (Griffonia simplicifolia isolectin B4). The principal trigeminal nucleus and the oralis and interpolaris spinal trigeminal nuclei were substantially larger in the platypus than in either the echidna or rat, but the caudalis subnucleus was similar in size in both monotremes and the rat. The numerical density of Nissl stained neurons was higher in the principal, oralis and interpolaris nuclei of the platypus relative to the echidna, but similar to that in the rat. Neuropil immunoreactivity for parvalbumin was particularly intense in the principal trigeminal, oralis and interpolaris subnuclei of the platypus, but the numerical density of parvalbumin immunoreactive neurons was not particularly high in these nuclei of the platypus. Neuropil immunoreactivity for calbindin and calretinin was relatively weak in both monotremes, although calretinin immunoreactive somata made up a large proportion of neurons in the principal, oralis and interpolaris subnuclei of the echidna. Distribution of calretinin immunoreactivity and Griffonia simplicifolia B4 isolectin reactivity suggested that the caudalis subnucleus of the echidna does not have a clearly defined gelatinosus region. Our findings indicate that the trigeminal nuclei of the echidna do not appear to be highly specialized, but that the principal, oralis and interpolaris subnuclei of the platypus trigeminal complex are highly differentiated, presumably for processing of tactile and electrosensory information from the bill.
Operative management of brainstem cavernous malformations.
Asaad, Wael F; Walcott, Brian P; Nahed, Brian V; Ogilvy, Christopher S
2010-09-01
Brainstem cavernous malformations (CMs) are complex lesions associated with hemorrhage and neurological deficit. In this review, the authors describe the anatomical nuances relating to the operative techniques for these challenging lesions. The resection of brainstem CMs in properly selected patients has been demonstrated to reduce the risk of rehemorrhage and can be achieved relatively safely in experienced hands.
Severe psychosocial compromise in idiopathic trigeminal neuralgia: case report.
Siqueira, Silvia R D T; Teixeira, Manoel J; de Siqueira, José T T
2010-03-01
This article describes a 60-year-old man with 17 years of idiopathic trigeminal neuralgia (ITN) which affected tooth brushing for 6 years, causing severe dental complications and psychosocial problems. Case report. Following ITN diagnosis, this patient underwent neurosurgery (microcompression of the trigeminal ganglion with a balloon) with immediate relief, but after three months, pain recurred and was accompanied by dysesthesia and periodontal disease. After dental treatment, he had complete alleviation of pain and no further need of medication over the following 3 years. The intense suffering of this patient represents the importance of a multidisciplinary evaluation for pain-caused secondary complications. ITN is a simple diagnosis but may have complex course. Appropriately trained health professionals are necessary to evaluate and treat these patients.
Stereotactic radiosurgery for trigeminal neuralgia utilizing the BrainLAB Novalis system.
Zahra, Hadi; Teh, Bin S; Paulino, Arnold C; Yoshor, Daniel; Trask, Todd; Baskin, David; Butler, E Brian
2009-12-01
Stereotactic radiosurgery (SRS) is one of the least invasive treatments for trigeminal neuralgia (TN). To date, most reports have been about Cobalt-based treatments (i.e., Gamma Knife) with limited data on image-guided stereotactic linear accelerator treatments. We describe our initial experience of using BrainLAB Novalis stereotactic system for the radiosurgical treatment of TN. A total of 20 patients were treated between July 2004 and February 2007. Each SRS procedure was performed using the BrainLAB Novalis System. Thin cuts MRI images of 1.5 mm thickness were acquired and fused with the simulation CT of each patient. Majority of the patients received a maximum dose of 90 Gy. The median brainstem dose to 1.0 cc and 0.1 cc was 2.3 Gy and 13.5 Gy, respectively. In addition, specially acquired three-dimensional fast imaging sequence employing steady-state acquisition (FIESTA) MRI was utilized to improve target delineation of the trigeminal proximal nerve root entry zone. Barrow Neurological Index (BNI) pain scale for TN was used for assessing treatment outcome. At a median follow-up time of 14.2 months, 19 patients (95%) reported at least some improvement in pain. Eight (40%) patients were completely pain-free and stopped all medications (BNI Grade I) while another 2 (10%) patients also stopped medications but reported occasional pain (BNI Grade II). Another 2 (10%) patients reported no pain and 7 (35%) patients only occasional pain while continuing medications, BNI Grade IIIA and IIIB, respectively. Median time to pain control was 8.5 days (range: 1-70 days). No patient reported severe pain, worsening pain or any pain not controlled on their previously taken medication. Intermittent or persistent facial numbness following treatments occurred in 35% of patients. No other complications were reported. Stereotactic radiosurgery using the BrainLAB Novalis system is a safe and effective treatment for TN. This information is important as more centers are obtaining image-guided stereotactic-based linear accelerators capable of performing radiosurgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayhurst, Caroline; Monsalves, Eric; Bernstein, Mark
2012-04-01
Purpose: To define clinical and dosimetric predictors of nonauditory adverse radiation effects after radiosurgery for vestibular schwannoma treated with a 12 Gy prescription dose. Methods: We retrospectively reviewed our experience of vestibular schwannoma patients treated between September 2005 and December 2009. Two hundred patients were treated at a 12 Gy prescription dose; 80 had complete clinical and radiological follow-up for at least 24 months (median, 28.5 months). All treatment plans were reviewed for target volume and dosimetry characteristics; gradient index; homogeneity index, defined as the maximum dose in the treatment volume divided by the prescription dose; conformity index; brainstem; andmore » trigeminal nerve dose. All adverse radiation effects (ARE) were recorded. Because the intent of our study was to focus on the nonauditory adverse effects, hearing outcome was not evaluated in this study. Results: Twenty-seven (33.8%) patients developed ARE, 5 (6%) developed hydrocephalus, 10 (12.5%) reported new ataxia, 17 (21%) developed trigeminal dysfunction, 3 (3.75%) had facial weakness, and 1 patient developed hemifacial spasm. The development of edema within the pons was significantly associated with ARE (p = 0.001). On multivariate analysis, only target volume is a significant predictor of ARE (p = 0.001). There is a target volume threshold of 5 cm3, above which ARE are more likely. The treatment plan dosimetric characteristics are not associated with ARE, although the maximum dose to the 5th nerve is a significant predictor of trigeminal dysfunction, with a threshold of 9 Gy. The overall 2-year tumor control rate was 96%. Conclusions: Target volume is the most important predictor of adverse radiation effects, and we identified the significant treatment volume threshold to be 5 cm3. We also established through our series that the maximum tolerable dose to the 5th nerve is 9 Gy.« less
Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance
ERIC Educational Resources Information Center
Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina
2013-01-01
Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…
Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice
Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H
2015-01-01
Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons. PMID:25476605
NASA Astrophysics Data System (ADS)
Dahlem, Markus A.
2013-12-01
Migraine is a common disabling headache disorder characterized by recurrent episodes sometimes preceded or accompanied by focal neurological symptoms called aura. The relation between two subtypes, migraine without aura (MWoA) and migraine with aura (MWA), is explored with the aim to identify targets for neuromodulation techniques. To this end, a dynamically regulated control system is schematically reduced to a network of the trigeminal nerve, which innervates the cranial circulation, an associated descending modulatory network of brainstem nuclei, and parasympathetic vasomotor efferents. This extends the idea of a migraine generator region in the brainstem to a larger network and is still simple and explicit enough to open up possibilities for mathematical modeling in the future. In this study, it is suggested that the migraine generator network (MGN) is driven and may therefore respond differently to different spatio-temporal noxious input in the migraine subtypes MWA and MWoA. The noxious input is caused by a cortical perturbation of homeostasis, known as spreading depression (SD). The MGN might even trigger SD in the first place by a failure in vasomotor control. As a consequence, migraine is considered as an inherently dynamical disease to which a linear course from upstream to downstream events would not do justice. Minimally invasive and noninvasive neuromodulation techniques are briefly reviewed and their rational is discussed in the context of the proposed mechanism.
Overactive bladder and pontine reticular formation.
Zorba, Orhan Ünal; Kırbaş, Serkan; Uzun, Hakkı; Cetinkaya, Mehmet; Önem, Kadir; Rifaioğlu, Mehmet Murat
2013-01-01
The etiology of overactive bladder (OAB) remains unclear. Observed neurogenic factors in the literature are limited to suprapontine or spinal pathologies. The blink reflex is a useful tool in the evaluation of brainstem functions. Blink reflex latency times were evaluated in order to reveal pathology in the brainstem. A total of 60 women, 30 patients with idiopathic OAB and 30 healthy controls, were enrolled in the study. Blink reflex latency times were analyzed by electrical stimulation of the supraorbital nerve. Two responses in the orbicularis oculi muscle, early ipsilateral response (R1) and late bilateral response (R2) latency times, were recorded. Mean ages of the patients and controls were 51.9 ± 5.3 and 49.2 ± 6.2 years, respectively. R2 latency times were significantly higher in patients than in controls. However, R1 latency times were similar between the two groups. The results of the study suggest a significant relation between late blink latency times and OAB. An oligosynaptic path via the trigeminal nuclei is responsible for R1; however, R2 response is relayed through the reticular formation. Stimulation of pontine reticular formation inhibits micturition contraction. In some patients, idiopathic OAB may result from reticular formation-originated pathology. Additional studies on other reticular formation-mediated reflexes are needed to reveal possible dysfunction of reticular formation. Copyright © 2013 S. Karger AG, Basel.
An unusual case of episodic SUNCT responding to high doses of topiramate.
Khalil, Modar; Maniyar, Farooq; Ahmed, Fayyaz
2014-01-01
Trigeminal autonomic cephalalgias (TAC) are rare. Cluster headaches comprise the majority, with short-lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCT) being the rarest and shortest in duration. The majority of SUNCT are primary with a few cases occurring secondary to posterior fossa or pituitary lesions. Although activities like exercise or blowing of the nose can trigger SUNCT, onset during orgasm has not been described. Short-lasting aura has been described in TACs including SUNCT, but persistence of focal symptoms and signs without an underlying structural lesion have not been described. Lastly, treatment of SUNCT is difficult, with lamotrigine being the most common effective reported. We report a case of episodic SUNCT with symptoms suggestive of brainstem stroke that completely resolved spontaneously for which no underlying structural cause was found. The onset of first attack occurred during orgasm, and the patient responded to a high dose of topiramate. © 2014 American Headache Society.
Dyslexia risk gene relates to representation of sound in the auditory brainstem.
Neef, Nicole E; Müller, Bent; Liebig, Johanna; Schaadt, Gesa; Grigutsch, Maren; Gunter, Thomas C; Wilcke, Arndt; Kirsten, Holger; Skeide, Michael A; Kraft, Indra; Kraus, Nina; Emmrich, Frank; Brauer, Jens; Boltze, Johannes; Friederici, Angela D
2017-04-01
Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Panneton, W. Michael; Gan, Qi; Ariel, Michael
2015-01-01
Although musculoskeletal pain disorders are common clinically, the central processing of muscle pain is little understood. The present study reports on central neurons activated by injections of algesic solutions into the gastrocnemius muscle of the rat, and their subsequent localization by c-Fos immunohistochemistry in the spinal cord and brainstem. An injection (300μl) of an algesic solution (6% hypertonic saline, pH 4.0 acetate buffer, or 0.05% capsaicin) was made into the gastrocnemius muscle and the distribution of immunolabeled neurons compared to that obtained after control injections of phosphate buffered saline [pH 7.0]. Most labeled neurons in the spinal cord were found in laminae IV-V, VI, VII and X, comparing favorably with other studies, with fewer labeled neurons in laminae I and II. This finding is consistent with the diffuse pain perception due to noxious stimuli to muscles mediated by sensory fibers to deep spinal neurons as compared to more restricted pain localization during noxious stimuli to skin mediated by sensory fibers to superficial laminae. Numerous neurons were immunolabeled in the brainstem, predominantly in the lateral reticular formation (LRF). Labeled neurons were found bilaterally in the caudalmost ventrolateral medulla, where neurons responsive to noxious stimulation of cutaneous and visceral structures lie. Immunolabeled neurons in the LRF continued rostrally and dorsally along the intermediate reticular nucleus in the medulla, including the subnucleus reticularis dorsalis caudally and the parvicellular reticular nucleus more rostrally, and through the pons medial and lateral to the motor trigeminal nucleus, including the subcoerulear network. Immunolabeled neurons, many of them catecholaminergic, were found bilaterally in the nucleus tractus solitarii, the gracile nucleus, the A1 area, the CVLM and RVLM, the superior salivatory nucleus, the nucleus locus coeruleus, the A5 area, and the nucleus raphe magnus in the pons. The external lateral and superior lateral subnuclei of the parabrachial nuclear complex were consistently labeled in experimental data, but they also were labeled in many control cases. The internal lateral subnucleus of the parabrachial complex was labeled moderately. Few immunolabeled neurons were found in the medial reticular formation, however, but the rostroventromedial medulla was labeled consistently. These data are discussed in terms of an interoceptive, multisynaptic spinoreticulothalamic path, with its large receptive fields and role in the motivational-affective components of pain perceptions. PMID:26154308
Panneton, W Michael; Gan, Qi; Ariel, Michael
2015-01-01
Although musculoskeletal pain disorders are common clinically, the central processing of muscle pain is little understood. The present study reports on central neurons activated by injections of algesic solutions into the gastrocnemius muscle of the rat, and their subsequent localization by c-Fos immunohistochemistry in the spinal cord and brainstem. An injection (300 μl) of an algesic solution (6% hypertonic saline, pH 4.0 acetate buffer, or 0.05% capsaicin) was made into the gastrocnemius muscle and the distribution of immunolabeled neurons compared to that obtained after control injections of phosphate buffered saline [pH 7.0]. Most labeled neurons in the spinal cord were found in laminae IV-V, VI, VII and X, comparing favorably with other studies, with fewer labeled neurons in laminae I and II. This finding is consistent with the diffuse pain perception due to noxious stimuli to muscles mediated by sensory fibers to deep spinal neurons as compared to more restricted pain localization during noxious stimuli to skin mediated by sensory fibers to superficial laminae. Numerous neurons were immunolabeled in the brainstem, predominantly in the lateral reticular formation (LRF). Labeled neurons were found bilaterally in the caudalmost ventrolateral medulla, where neurons responsive to noxious stimulation of cutaneous and visceral structures lie. Immunolabeled neurons in the LRF continued rostrally and dorsally along the intermediate reticular nucleus in the medulla, including the subnucleus reticularis dorsalis caudally and the parvicellular reticular nucleus more rostrally, and through the pons medial and lateral to the motor trigeminal nucleus, including the subcoerulear network. Immunolabeled neurons, many of them catecholaminergic, were found bilaterally in the nucleus tractus solitarii, the gracile nucleus, the A1 area, the CVLM and RVLM, the superior salivatory nucleus, the nucleus locus coeruleus, the A5 area, and the nucleus raphe magnus in the pons. The external lateral and superior lateral subnuclei of the parabrachial nuclear complex were consistently labeled in experimental data, but they also were labeled in many control cases. The internal lateral subnucleus of the parabrachial complex was labeled moderately. Few immunolabeled neurons were found in the medial reticular formation, however, but the rostroventromedial medulla was labeled consistently. These data are discussed in terms of an interoceptive, multisynaptic spinoreticulothalamic path, with its large receptive fields and role in the motivational-affective components of pain perceptions.
Cerebellar and Brainstem Malformations.
Poretti, Andrea; Boltshauser, Eugen; Huisman, Thierry A G M
2016-08-01
The frequency and importance of the evaluation of the posterior fossa have increased significantly over the past 20 years owing to advances in neuroimaging. Conventional and advanced neuroimaging techniques allow detailed evaluation of the complex anatomic structures within the posterior fossa. A wide spectrum of cerebellar and brainstem malformations has been shown. Familiarity with the spectrum of cerebellar and brainstem malformations and their well-defined diagnostic criteria is crucial for optimal therapy, an accurate prognosis, and correct genetic counseling. This article discusses cerebellar and brainstem malformations, with emphasis on neuroimaging findings (including diagnostic criteria), neurologic presentation, systemic involvement, prognosis, and recurrence. Copyright © 2016 Elsevier Inc. All rights reserved.
Cohen-Inbar, Or; Ding, Dale; Chen, Ching-Jen; Sheehan, Jason P
2016-02-01
The management of brainstem arteriovenous malformations (AVM) are one of the greatest challenges encountered by neurosurgeons. Brainstem AVM have a higher risk of hemorrhage compared to AVM in other locations, and rupture of these lesions commonly results in devastating neurological morbidity and mortality. The potential morbidity associated with currently available treatment modalities further compounds the complexity of decision making for affected patients. Stereotactic radiosurgery (SRS) has an important role in the management of brainstem AVM. SRS offers acceptable obliteration rates with lower risks of hemorrhage occurring during the latency period. Complex nidal architecture requires a multi-disciplinary treatment approach. Nidi partly involving subpial/epipial regions of the dorsal midbrain or cerebellopontine angle should be considered for a combination of endovascular embolization, micro-surgical resection and SRS. Considering the fact that incompletely obliterated lesions (even when reduced in size) could still cause lethal hemorrhages, additional treatment, including repeat SRS and surgical resection should be considered when complete obliteration is not achieved by first SRS. Patients with brainstem AVM require continued clinical and radiological observation and follow-up after SRS, well after angiographic obliteration has been confirmed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Orofacial complex regional pain syndrome: pathophysiologic mechanisms and functional MRI.
Lee, Yeon-Hee; Lee, Kyung Mi; Kim, Hyug-Gi; Kang, Soo-Kyung; Auh, Q-Schick; Hong, Jyung-Pyo; Chun, Yang-Hyun
2017-08-01
Complex regional pain syndrome (CRPS) is one of the most challenging chronic pain conditions and is characterized by burning pain, allodynia, hyperalgesia, autonomic changes, trophic changes, edema, and functional loss involving mainly the extremities. Until recently, very few reports have been published concerning CRPS involving the orofacial area. We report on a 50-year-old female patient who presented with unbearable pain in all of her teeth and hypersensitivity of the facial skin. She also reported intractable pain in both extremities accompanied by temperature changes and orofacial pain that increased when the other pains were aggravated. In the case of CRPS with trigeminal neuropathic pain, protocols for proper diagnosis and prompt treatment have yet to be established in academia or in the clinical field. We performed functional magnetic resonance imaging for a thorough analysis of the cortical representation of the affected orofacial area immediately before and immediately after isolated light stimulus of the affected hand and foot and concluded that CRPS can be correlated with trigeminal neuropathy in the orofacial area. Furthermore, the patient was treated with carbamazepine administration and stellate ganglion block, which can result in a rapid improvement of pain in the trigeminal region. Copyright © 2017 Elsevier Inc. All rights reserved.
Caprio, John; Shimohara, Mami; Marui, Takayuki; Kohbara, Jun; Harada, Shuitsu; Kiyohara, Sadao
2015-12-01
The Japanese sea catfish, Plotosus japonicus, possesses taste and solitary chemoreceptor cells (SCCs) located on the external body surface that detect specific water-soluble substances. Here, we identify two major fiber types of the facial/trigeminal complex that transmit amino acid information to the medulla. Both single and few fiber preparations respond to amino acid stimulation in the 0.1 μM to mM range. One fiber type responds best to glycine and l-alanine (i.e. Gly/Ala fibers) whereas the other fiber type is best stimulated by l-proline and glycine betaine (hereafter referred to only as betaine) (i.e. Pro/Bet fibers). We demonstrate that betaine, which does not alter the pH of the seawater and therefore does not activate the animals' highly sensitive pH sensors (Caprio et al., Science 344:1154-1156, 2014), is sufficient to elicit appetitive food search behavior. We further show that the amino acid specificity of fibers of the facial/trigeminal complex in P. japonicus is different from that in Ariopsis felis (Michel and Caprio, J. Neurophysiol. 66:247-260, 1991; Michel et al., J. Comp. Physiol. A. 172:129-138, 1993), a representative member of the only other family (Ariidae) of extant marine catfishes. Copyright © 2015 Elsevier Inc. All rights reserved.
Doeltgen, Sebastian H; Young, Jessica; Bradnam, Lynley V
2016-08-01
The cerebellum controls descending motor commands by outputs to primary motor cortex (M1) and the brainstem in response to sensory feedback. The cerebellum may also modulate afferent input en route to M1 and the brainstem. The objective of this study is to determine if anodal transcranial direct current stimulation (tDCS) to the cerebellum influences cerebellar brain inhibition (CBI), short afferent inhibition (SAI) and trigeminal reflexes (TRs) in healthy adults. Data from two studies evaluating effects of cerebellar anodal and sham tDCS are presented. The first study used a twin coil transcranial magnetic stimulation (TMS) protocol to investigate CBI and combined TMS and cutaneous stimulation of the digit to assess SAI. The second study evaluated effects on trigemino-cervical and trigemino-masseter reflexes using peripheral nerve stimulation of the face. Fourteen right-handed healthy adults participated in experiment 1. CBI was observed at baseline and was reduced by anodal cerebellar DCS only (P < 0.01). There was SAI at interstimulus intervals of 25 and 30 ms at baseline (both P < 0.0001), but cerebellar tDCS had no effect. Thirteen right-handed healthy adults participated in experiment 2. Inhibitory reflexes were evoked in the ipsilateral masseter and sternocleidomastoid muscles. There was no effect of cerebellar DCS on either reflex. Anodal DCS reduced CBI but did not change SAI or TRs in healthy adults. These results require confirmation in individuals with neurological impairment.
Reed, Mitchell D; Iceman, Kimberly E; Harris, Michael B; Taylor, Barbara E
2018-06-08
The development of amphibian breathing provides insight into vertebrate respiratory control mechanisms. Neural oscillators in the rostral and caudal medulla drive ventilation in amphibians, and previous reports describe ventilatory oscillators and CO 2 sensitive regions arise during different stages of amphibian metamorphosis. However, inconsistent findings have been enigmatic, and make comparisons to potential mammalian counterparts challenging. In the current study we assessed amphibian central CO 2 responsiveness and respiratory rhythm generation during two different developmental stages. Whole-nerve recordings of respiratory burst activity in cranial and spinal nerves were made from intact or transected brainstems isolated from tadpoles during early or late stages of metamorphosis. Brainstems were transected at the level of the trigeminal nerve, removing rostral structures including the nucleus isthmi, midbrain, and locus coeruleus, or transected at the level of the glossopharyngeal nerve, removing the putative buccal oscillator and caudal medulla. Removal of caudal structures stimulated the frequency of lung ventilatory bursts and revealed a hypercapnic response in normally unresponsive preparations derived from early stage tadpoles. In preparations derived from late stage tadpoles, removal of rostral or caudal structures reduced lung burst frequency, while CO 2 responsiveness was retained. Our results illustrate that structures within the rostral medulla are capable of sensing CO 2 throughout metamorphic development. Similarly, the region controlling lung ventilation appears to be contained in the rostral medulla throughout metamorphosis. This work offers insight into the consistency of rhythmic respiratory and chemosensitive capacities during metamorphosis. Copyright © 2018. Published by Elsevier Inc.
Pollard, Amelia Kate; Craig, Emma Louise; Chakrabarti, Lisa
2016-01-01
Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70-71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions.
Al-Sarraj, Safa; Fegan-Earl, Ashley; Ugbade, Antonia; Bodi, Istvan; Chapman, Rob; Poole, Simon; Swift, Ben; Jerreat, Peter; Cary, Nat
2012-04-01
Brainstem haemorrhage is common in cases of head injury when it is associated with space-occupying lesion and increases in the intracranial pressure (duret haemorrhage), in cases of diffuse axonal injury (in dorso-lateral quadrant) and diffuses vascular injury (in the periventricular tissue). However focal traumatic brainstem injury is rare. We identified 12 cases of focal traumatic brainstem injury from review of 319 case of head injury. The head trauma had been caused by different mechanisms of complex fall from height and assault. 10/12 are associated with skull fracture, 11/12 with contre coup contusions in the frontal and temporal lobes, 5/12 direct contusions to cerebellum, 5/12 haemorrhage in corpus callosum and 2/11 have gliding contusions. None of the cases had pathological evidence of increase in the intracranial pressure. The bleeding in the pons was at the edge in 2/12 and cross the section in 10/12. The majority of patients were unconscious immediately after the incident (10/12) and 9/12 died within one day. Focal traumatic brainstem injury occurs most likely due to direct impact at the back of the head or stretching forces affecting the brainstem in cases of complex fall from height and after assault, particularly those associated with kicks. It is a serious and commonly fatal brain damage, which needed to be differentiated from other causes of brainstem haemorrhages. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Zaytsev, A Yu; Nazaryan, D N; Kim, S Yu; Dubrovin, K V; Svetlov, V A; Khovrin, V V
2014-01-01
There are difficulties in procedure of regional block of 2 and 3 brunches of the trigeminal nerve despite availability of many different methods of nerves imaging. The difficulties are connected with complex anatomy structure. Neurostimulation not always effective and as a rule, is accompanied with wrong interpretation of movement response on stimulation. The changing of the tactics on paraesthesia search improves the situation. The use of new methods of nerves imaging (3D-CT) also allows decreasing the frequency of fails during procedure of regional block of the brunches of the trigeminal nerve.
Wu, Min; Fu, Xianming; Ji, Ying; Ding, Wanhai; Deng, Dali; Wang, Yehan; Jiang, Xiaofeng; Niu, Chaoshi
2018-05-01
Microvascular decompression of the trigeminal nerve is the most effective treatment for trigeminal neuralgia. However, when encountering classical trigeminal neuralgia caused by venous compression, the procedure becomes much more difficult, and failure or recurrence because of incomplete decompression may become frequent. This study aimed to investigate the anatomic variation of the culprit veins and discuss the surgical strategy for different types. We performed a retrospective analysis of 64 consecutive cases in whom veins were considered as responsible vessels alone or combined with other adjacent arteries. The study classified culprit veins according to operative anatomy and designed personalized approaches and decompression management according to different forms of compressive veins. Curative effects were assessed by the Barrow Neurological Institute (BNI) pain intensity score and BNI facial numbness score. The most commonly encountered veins were the superior petrosal venous complex (SPVC), which was artificially divided into 4 types according to both venous tributary distribution and empty point site. We synthetically considered these factors and selected an approach to expose the trigeminal root entry zone, including the suprafloccular transhorizontal fissure approach and infratentorial supracerebellar approach. The methods of decompression consist of interposing and transposing by using Teflon, and sometimes with the aid of medical adhesive. Nerve combing (NC) of the trigeminal root was conducted in situations of extremely difficult neurovascular compression, instead of sacrificing veins. Pain completely disappeared in 51 patients, and the excellent outcome rate was 79.7%. There were 13 patients with pain relief treated with reoperation. Postoperative complications included 10 cases of facial numbness, 1 case of intracranial infection, and 1 case of high-frequency hearing loss. The accuracy recognition of anatomic variation of the SPVC is crucial for the management of classical trigeminal neuralgia caused by venous compression. Selecting an appropriate approach and using reasonable decompression methods can bring complete postoperative pain relief for most cases. NC can be an alternative choice for extremely difficult cases, but it could lead to facial numbness more frequently. Copyright © 2018 Elsevier Inc. All rights reserved.
Samara, Ziyad; Fiamma, Marie-Noëlle; Bautin, Nathalie; Ranohavimparany, Anja; Le Coz, Patrick; Golmard, Jean-Louis; Darré, Pierre; Zelter, Marc; Poon, Chi-Sang; Similowski, Thomas
2011-01-01
Human ventilation at rest exhibits mathematical chaos-like complexity that can be described as long-term unpredictability mediated (in whole or in part) by some low-dimensional nonlinear deterministic process. Although various physiological and pathological situations can affect respiratory complexity, the underlying mechanisms remain incompletely elucidated. If such chaos-like complexity is an intrinsic property of central respiratory generators, it should appear or increase when these structures mature or are stimulated. To test this hypothesis, we employed the isolated tadpole brainstem model [Rana (Pelophylax) esculenta] and recorded the neural respiratory output (buccal and lung rhythms) of pre- (n = 8) and postmetamorphic tadpoles (n = 8), at physiologic (7.8) and acidic pH (7.4). We analyzed the root mean square of the cranial nerve V or VII neurograms. Development and acidosis had no effect on buccal period. Lung frequency increased with development (P < 0.0001). It also increased with acidosis, but in postmetamorphic tadpoles only (P < 0.05). The noise-titration technique evidenced low-dimensional nonlinearities in all the postmetamorphic brainstems, at both pH. Chaos-like complexity, assessed through the noise limit, increased from pH 7.8 to pH 7.4 (P < 0.01). In contrast, linear models best fitted the ventilatory rhythm in all but one of the premetamorphic preparations at pH 7.8 (P < 0.005 vs. postmetamorphic) and in four at pH 7.4 (not significant vs. postmetamorphic). Therefore, in a lower vertebrate model, the brainstem respiratory central rhythm generator accounts for ventilatory chaos-like complexity, especially in the postmetamorphic stage and at low pH. According to the ventilatory generators homology theory, this may also be the case in mammals. PMID:21325645
Straus, Christian; Samara, Ziyad; Fiamma, Marie-Noëlle; Bautin, Nathalie; Ranohavimparany, Anja; Le Coz, Patrick; Golmard, Jean-Louis; Darré, Pierre; Zelter, Marc; Poon, Chi-Sang; Similowski, Thomas
2011-05-01
Human ventilation at rest exhibits mathematical chaos-like complexity that can be described as long-term unpredictability mediated (in whole or in part) by some low-dimensional nonlinear deterministic process. Although various physiological and pathological situations can affect respiratory complexity, the underlying mechanisms remain incompletely elucidated. If such chaos-like complexity is an intrinsic property of central respiratory generators, it should appear or increase when these structures mature or are stimulated. To test this hypothesis, we employed the isolated tadpole brainstem model [Rana (Pelophylax) esculenta] and recorded the neural respiratory output (buccal and lung rhythms) of pre- (n = 8) and postmetamorphic tadpoles (n = 8), at physiologic (7.8) and acidic pH (7.4). We analyzed the root mean square of the cranial nerve V or VII neurograms. Development and acidosis had no effect on buccal period. Lung frequency increased with development (P < 0.0001). It also increased with acidosis, but in postmetamorphic tadpoles only (P < 0.05). The noise-titration technique evidenced low-dimensional nonlinearities in all the postmetamorphic brainstems, at both pH. Chaos-like complexity, assessed through the noise limit, increased from pH 7.8 to pH 7.4 (P < 0.01). In contrast, linear models best fitted the ventilatory rhythm in all but one of the premetamorphic preparations at pH 7.8 (P < 0.005 vs. postmetamorphic) and in four at pH 7.4 (not significant vs. postmetamorphic). Therefore, in a lower vertebrate model, the brainstem respiratory central rhythm generator accounts for ventilatory chaos-like complexity, especially in the postmetamorphic stage and at low pH. According to the ventilatory generators homology theory, this may also be the case in mammals.
[Chondroma adjacent to Meckel's cave mimicking a fifth cranial nerve neurinoma. A case report].
Narro-Donate, Jose María; Huete-Allut, Antonio; Velasco-Albendea, Francisco J; Escribano-Mesa, Jose A; Mendez-Román, Paddy; Masegosa-González, Jose
2016-01-01
Cranial chondromas are tumours arising from chondrocyte embryonic remnants cells that usually appear in the skull base synchondrosis. In contrast to the rest of the organism, where chondroid tumours are the most common primary bone tumour just behind the haematopoietic lineage ones, they are a rarity at cranial level, with an incidence of less than 1% of intracranial tumours. The case is reported on a 42 year-old male referred to our clinic due to the finding of an extra-axial lesion located close to the Meckel's cave region, with extension to the posterior fossa and brainstem compression after progressive paraparesis of 6 months onset. With the diagnosis of trigeminal schwannoma, a subtotal tumour resection was performed using a combined supra-infratentorial pre-sigmoidal approach. The postoperative histopathology report confirmed the diagnosis of cranial chondroma. Copyright © 2016 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Stimulus Selection for Intranasal Sensory Isolation: Eugenol Is an Irritant
Wise, Paul M.; Lundström, Johan N.
2012-01-01
Both the olfactory and the trigeminal systems are able to respond to intranasal presentations of chemical vapor. Accordingly, when the nose detects a volatile chemical, it is often unclear whether we smell it, feel it, or both. The distinction may often be unimportant in our everyday perception of fragrances or aromas, but it can matter in experiments that purport to isolate olfactory processes or study the interaction between olfaction and chemesthesis. Researchers turn to a small pool of compounds that are believed to be “pure olfactory” stimuli with little or no trigeminal impact. The current report reexamines one such commonly used compound, namely eugenol, a flavor and fragrance ingredient that has anesthetic properties under some conditions. Using a standard method involving many trials during an experimental session (Experiment 1), subjects were unable to reliably lateralize eugenol, consistent with claims that this compound is detected primarily through olfaction. However, with more limited exposure (Experiments 2 and 3), subjects were able to lateralize eugenol. We speculate that anesthetic properties of eugenol could blunt its trigeminal impact in some paradigms. Regardless, the current experiments suggest that eugenol can in fact stimulate the trigeminal nerve but in a complex concentration–dependent manner. Implications and strategies for selection of model odorants are discussed. PMID:22293937
New Insights in Trigeminal Anatomy: A Double Orofacial Tract for Nociceptive Input
Henssen, Dylan J. H. A.; Kurt, Erkan; Kozicz, Tamas; van Dongen, Robert; Bartels, Ronald H. M. A.; van Cappellen van Walsum, Anne-Marie
2016-01-01
Orofacial pain in patients relies on the anatomical pathways that conduct nociceptive information, originating from the periphery towards the trigeminal sensory nucleus complex (TSNC) and finally, to the thalami and the somatosensorical cortical regions. The anatomy and function of the so-called trigeminothalamic tracts have been investigated before. In these animal-based studies from the previous century, the intracerebral pathways were mapped using different retro- and anterograde tracing methods. We review the literature on the trigeminothalamic tracts focusing on these animal tracer studies. Subsequently, we related the observations of these studies to clinical findings using fMRI trials. The intracerebral trigeminal pathways can be subdivided into three pathways: a ventral (contralateral) and dorsal (mainly ipsilateral) trigeminothalamic tract and the intranuclear pathway. Based on the reviewed evidence we hypothesize the co-existence of an ipsilateral nociceptive conduction tract to the cerebral cortex and we translate evidence from animal-based research to the human anatomy. Our hypothesis differs from the classical idea that orofacial pain arises only from nociceptive information via the contralateral, ventral trigeminothalamic pathway. Better understanding of the histology, anatomy and connectivity of the trigeminal fibers could contribute to the discovery of a more effective pain treatment in patients suffering from various orofacial pain syndromes. PMID:27242449
Dubbeldam, J L
1984-01-01
The afferent connections of the facial nerve and glossopharyngeal nerve in the pigeon have been studied with the Fink-Heimer I method after ganglion lesions. The nucleus ventrolateralis anterior of the solitary complex and an indistinct cell group S VII medial to the nucleus interpolaris of the descending trigeminal tract are the terminal fields for facial afferents. The n. ventrolateralis anterior also receives an important projection from the distal glossopharyngeal ganglion. Other projection areas of this ganglion are the n. presulcalis , n. centralis anterior, n. intermedius anterior and the parasolitary nucleus. Both ganglia have only ipsilateral projections. A lesion in the jugular ganglion complex causes degeneration throughout the ipsilateral solitary complex, in the contralateral n. commissuralis and n. centralis posterior and in the n. cuneatus externus. The lack of a substantial contribution to the trigeminal system is ascribed to the absence of mechanoreceptors in the tongue. The implications for the organization of neuronal pathways related to the feeding behavior are discussed.
Saito, Y; Ito, M; Ozawa, Y; Obonai, T; Kobayashi, Y; Washizawa, K; Ohsone, Y; Takami, T; Oku, K; Takashima, S
1999-06-01
We examined neuropathologically and immunohistochemically the respiratory centers in the brainstem of two patients with Joubert syndrome (JS), three patients with congenital central hypoventilation syndrome (CCHS) and a patient with apneustic breathing (prolonged inspiratory pause) due to unknown etiology. Immunoreactivity (IR) of tryptophan hydroxylase (TPH) was decreased in the dorsal raphe nuclei of two patients with JS compared with age-matched controls, as well as in two patients with Dandy-Walker malformation. The two JS patients showed vermian defect and elongated cerebellar peduncles, and peculiar vascularities in the midline of the whole brainstem were also noted in one of these patients. These findings, as a whole, confirm that the midline structures of brainstem are disordered both structurally and functionally in JS, conceivably resulting in respiratory patterns and psychomotor deficits. IR of serotonin 1A receptor showed no significant changes in the medulla oblongata of these patients, however. In the parabrachial complex, IR of substance P was increased in two patients with CCHS, and one with apneustic breathing. IR of tyrosine hydroxylase was also increased in the latter. The brainstem of these patients showed reactive astrogliosis. These findings suggest preceding hypoxic episodes as well as an increased activity in the parabrachial complex which plays an important role in conducting the driving force to the medullary respiratory neurons from ascending sensory pathways.
Cellular Localization of Aquaporin-1 in the Human and Mouse Trigeminal Systems
Gu, Minxia; Marshall, Charles; Ding, Jiong; Hu, Gang; Xiao, Ming
2012-01-01
Previous studies reported that a subpopulation of mouse and rat trigeminal neurons express water channel aquaporin-1 (AQP1). In this study we make a comparative investigation of AQP1 localization in the human and mouse trigeminal systems. Immunohistochemistry and immunofluorescence results showed that AQP1 was localized to the cytoplasm and cell membrane of some medium and small-sized trigeminal neurons. Additionally, AQP1 was found in numerous peripheral trigeminal axons of humans and mice. In the central trigeminal root and brain stem, AQP1 was specifically expressed in astrocytes of humans, but was restricted to nerve fibers within the central trigeminal root and spinal trigeminal tract and nucleus in mice. Furthermore, AQP1 positive nerve fibers were present in the mucosal and submucosal layers of human and mouse oral tissues, but not in the muscular and subcutaneous layers. Fluorogold retrograde tracing demonstrated that AQP1 positive trigeminal neurons innervate the mucosa but not skin of cheek. These results reveal there are similarities and differences in the cellular localization of AQP1 between the human and mouse trigeminal systems. Selective expression of AQP1 in the trigeminal neurons innervating the oral mucosa indicates an involvement of AQP1 in oral sensory transduction. PMID:23029502
Calderón-Garcidueñas, Lilian; González-González, Luis O; Kulesza, Randy J; Fech, Tatiana M; Pérez-Guillé, Gabriela; Luna, Miguel Angel Jiménez-Bravo; Soriano-Rosales, Rosa Eugenia; Solorio, Edelmira; Miramontes-Higuera, José de Jesús; Gómez-Maqueo Chew, Aline; Bernal-Morúa, Alexia F; Mukherjee, Partha S; Torres-Jardón, Ricardo; Mills, Paul C; Wilson, Wayne J; Pérez-Guillé, Beatriz; D'Angiulli, Amedeo
2017-10-01
Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM 2.5 ) and ozone (O 3 ) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Ma, Qiufu; Anderson, David J.
2000-01-01
The proneuronal gene neurogenin 1 (ngn1) is essential for development of the inner-ear sensory neurons that are completely absent in ngn1 null mutants. Neither afferent, efferent, nor autonomic nerve fibers were detected in the ears of ngn1 null mutants. We suggest that efferent and autonomic fibers are lost secondarily to the absence of afferents. In this article we show that ngn1 null mutants develop smaller sensory epithelia with morphologically normal hair cells. In particular, the saccule is reduced dramatically and forms only a small recess with few hair cells along a duct connecting the utricle with the cochlea. Hair cells of newborn ngn1 null mutants show no structural abnormalities, suggesting that embryonic development of hair cells is independent of innervation. However, the less regular pattern of dispersal within sensory epithelia may be caused by some effects of afferents or to the stunted growth of the sensory epithelia. Tracing of facial and stato-acoustic nerves in control and ngn1 null mutants showed that only the distal, epibranchial, placode-derived sensory neurons of the geniculate ganglion exist in mutants. Tracing further showed that these geniculate ganglion neurons project exclusively to the solitary tract. In addition to the normal complement of facial branchial and visceral motoneurons, ngn1 null mutants have some trigeminal motoneurons and contralateral inner-ear efferents projecting, at least temporarily, through the facial nerve. These data suggest that some neurons in the brainstem (e.g., inner-ear efferents, trigeminal motoneurons) require afferents to grow along and redirect to ectopic cranial nerve roots in the absence of their corresponding sensory roots. PMID:11545141
Conti, Alfredo; Pontoriero, Antonio; Iatì, Giuseppe; Esposito, Felice; Siniscalchi, Enrico Nastro; Crimi, Salvatore; Vinci, Sergio; Brogna, Anna; De Ponte, Francesco; Germanò, Antonino; Pergolizzi, Stefano; Tomasello, Francesco
2017-07-01
Trigeminal neuralgia (TN) affects 7% of patients with multiple sclerosis (MS). In such patients, TN is difficult to manage either pharmacologically and surgically. Radiosurgical rhizotomy is an effective treatment option. The nonisocentric geometry of radiation beams of CyberKnife introduces new concepts in the treatment of TN. Its efficacy for MS-related TN has not yet been demonstrated. Twenty-seven patients with refractory TN and MS were treated. A nonisocentric beams distribution was chosen; the maximal target dose was 72.5 Gy. The maximal dose to the brainstem was <12 Gy. Effects on pain, medications, sensory disturbance, rate, and time of pain recurrence were analyzed. Median follow-up was 37 (18-72) months. Barrow Neurological Institute pain scale score I-III was achieved in 23/27 patients (85%) within 45 days. Prescription isodose line (80%) accounting for a dose of 58 Gy incorporated an average of 4.85 mm (4-6 mm) of the nerve and mean nerve volume of 26.4 mm 3 (range 20-38 mm 3 ). Seven out of 27 patients (26%) had mild, not bothersome, facial numbness (Barrow Neurological Institute numbness score II). The rate of pain control decreased progressively after the first year, and only 44% of patients retained pain control 4 years later. Frameless radiosurgery can be effectively used to perform retrogasserian rhizotomy. Pain relief was satisfactory and, with our dose/volume constraints, no sensory complications were recorded. Nonetheless, long-term pain control was possible in less than half of the patients. This is a limitation that CyberKnife radiosurgery shares with other techniques in MS patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Yin, Hua; Yang, Eun Ju; Park, Soo Joung
2011-01-01
Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na+ channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a GABAA receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and GABAA receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing. PMID:22128261
Yin, Hua; Yang, Eun Ju; Park, Soo Joung; Han, Seong Kyu
2011-10-01
Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na(+) channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a GABA(A) receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and GABA(A) receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing.
Trigeminal nerve anatomy in neuropathic and non-neuropathic orofacial pain patients.
Wilcox, Sophie L; Gustin, Sylvia M; Eykman, Elizabeth N; Fowler, Gordon; Peck, Christopher C; Murray, Greg M; Henderson, Luke A
2013-08-01
Trigeminal neuralgia, painful trigeminal neuropathy, and painful temporomandibular disorders (TMDs) are chronic orofacial pain conditions that are thought to have fundamentally different etiologies. Trigeminal neuralgia and neuropathy are thought to arise from damage to or pressure on the trigeminal nerve, whereas TMD results primarily from peripheral nociceptor activation. This study sought to assess the volume and microstructure of the trigeminal nerve in these 3 conditions. In 9 neuralgia, 18 neuropathy, 20 TMD, and 26 healthy controls, the trigeminal root entry zone was selected on high-resolution T1-weighted magnetic resonance images and the volume (mm(3)) calculated. Additionally, using diffusion-tensor images (DTIs), the mean diffusivity and fractional anisotropy values of the trigeminal nerve root were calculated. Trigeminal neuralgia patients displayed a significant (47%) decrease in nerve volume but no change in DTI values. Conversely, trigeminal neuropathy subjects displayed a significant (40%) increase in nerve volume but again no change in DTI values. In contrast, TMD subjects displayed no change in volume or DTI values. The data suggest that the changes occurring within the trigeminal nerve are not uniform in all orofacial pain conditions. These structural and volume changes may have implications in diagnosis and management of different forms of chronic orofacial pain. This study reveals that neuropathic orofacial pain conditions are associated with changes in trigeminal nerve volume, whereas non-neuropathic orofacial pain is not associated with any change in nerve volume. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Kadiyala, Sridhar B; Ferland, Russell J
2017-03-01
C57BL/6J mice exposed to eight flurothyl-induced generalized clonic seizures exhibit a change in seizure phenotype following a 28-day incubation period and subsequent flurothyl rechallenge. Mice now develop a complex seizure semiology originating in the forebrain and propagating into the brainstem seizure network (a forebrain→brainstem seizure). In contrast, this phenotype change does not occur in seizure-sensitive DBA/2J mice. The underlying mechanism(s) was the focus of these studies. DBA2/J mice were exposed to eight flurothyl-induced seizures (1/day) followed by 24-hour video-electroencephalographic recordings for 28-days. Forebrain and brainstem seizure thresholds were determined in C57BL/6J and DBA/2J mice following one or eight flurothyl-induced seizures, or after eight flurothyl-induced seizures, a 28-day incubation period, and final flurothyl rechallenge. Similar to C57BL/6J mice, DBA2/J mice expressed spontaneous seizures. However, unlike C57BL/6J mice, DBA2/J mice continued to have spontaneous seizures without remission. Because DBA2/J mice do not express forebrain→brainstem seizures following flurothyl rechallenge after a 28-day incubation period, this indicated that spontaneous seizures were not sufficient for the evolution of forebrain→brainstem seizures. Therefore, we determined whether brainstem seizure thresholds were changing during this repeated-flurothyl model and whether this could account for the expression of forebrain→brainstem seizures. Brainstem seizure thresholds were not different between C57BL/6J and DBA/2J mice on day one or on the last induction seizure trial (day eight). However, brainstem seizure thresholds did differ significantly on flurothyl rechallenge (day 28) with DBA/2J mice showing no lowering of their brainstem seizure thresholds. These results demonstrated that DBA/2J mice exposed to the repeated-flurothyl model develop spontaneous seizures without evidence of seizure remission and provide a new model of epileptogenesis. Moreover, these findings indicated that the transition of forebrain ictal discharge into the brainstem seizure network occurs due to changes in brainstem seizure thresholds that are independent of spontaneous seizure expression.
Amey-Özel, Monique; von der Emde, Gerhard; Engelmann, Jacob; Grant, Kirsty
2015-04-01
The weakly electric fish Gnathonemus petersii uses its electric sense to actively probe the environment. Its highly mobile chin appendage, the Schnauzenorgan, is rich in electroreceptors. Physical measurements have demonstrated the importance of the position of the Schnauzenorgan in funneling the fish's self-generated electric field. The present study focuses on the trigeminal motor pathway that controls Schnauzenorgan movement and on its trigeminal sensory innervation and central representation. The nerves entering the Schnauzenorgan are very large and contain both motor and sensory trigeminal components as well as an electrosensory pathway. With the use of neurotracer techniques, labeled Schnauzenorgan motoneurons were found throughout the ventral main body of the trigeminal motor nucleus but not among the population of larger motoneurons in its rostrodorsal region. The Schnauzenorgan receives no motor or sensory innervation from the facial nerve. There are many anastomoses between the peripheral electrosensory and trigeminal nerves, but these senses remain separate in the sensory ganglia and in their first central relays. Schnauzenorgan trigeminal primary afferent projections extend throughout the descending trigeminal sensory nuclei, and a few fibers enter the facial lobe. Although no labeled neurons could be identified in the brain as the trigeminal mesencephalic root, some Schnauzenorgan trigeminal afferents terminated in the trigeminal motor nucleus, suggesting a monosynaptic, possibly proprioceptive, pathway. In this first step toward understanding multimodal central representation of the Schnauzenorgan, no direct interconnections were found between the trigeminal sensory and electromotor command system, or the electrosensory and trigeminal motor command. The pathways linking perception to action remain to be studied. © 2014 Wiley Periodicals, Inc.
Li, K-W; Kim, D-S; Zaucke, F; Luo, Z D
2014-04-01
Injury to the trigeminal nerve often results in the development of chronic pain states including tactile allodynia, or hypersensitivity to light touch, in orofacial area, but its underlying mechanisms are poorly understood. Peripheral nerve injury has been shown to cause up-regulation of thrombospondin-4 (TSP4) in dorsal spinal cord that correlates with neuropathic pain development. In this study, we examined whether injury-induced TSP4 is critical in mediating orofacial pain development in a rat model of chronic constriction injury to the infraorbital nerve. Orofacial sensitivity to mechanical stimulation was examined in a unilateral infraorbital nerve ligation rat model. The levels of TSP4 in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 spinal cord (Vc/C2) from injured rats were examined at time points correlating with the initiation and peak orofacial hypersensitivity. TSP4 antisense and mismatch oligodeoxynucleotides were intrathecally injected into injured rats to see if antisense oligodeoxynucleotide treatment could reverse injury-induced TSP4 up-regulation and orofacial behavioural hypersensitivity. Our data indicated that trigeminal nerve injury induced TSP4 up-regulation in Vc/C2 at a time point correlated with orofacial tactile allodynia. In addition, intrathecal treatment with TSP4 antisense, but not mismatch, oligodeoxynucleotides blocked both injury-induced TSP4 up-regulation in Vc/C2 and behavioural hypersensitivity. Our data support that infraorbital nerve injury leads to TSP4 up-regulation in trigeminal spinal complex that contributes to orofacial neuropathic pain states. Blocking this pathway may provide an alternative approach in management of orofacial neuropathic pain states. © 2013 European Pain Federation - EFIC®
Henry, M A; Johnson, L R; Nousek-Goebl, N; Westrum, L E
1996-02-19
Calcitonin gene-related peptide (CGRP) is a neuropeptide that has been implicated in the transmission and modulation of primary afferent nociceptive stimuli. In this study, we describe the light microscopic distribution of CGRP immunoreactivity (IR) within the feline trigeminal ganglion and trigeminal nucleus of normal adult subjects and in subjects 10 and 30 days following complete retrogasserian rhizotomy. Within the trigeminal ganglion of normal subjects, cell bodies and fibers showed CGRP-IR, whereas immunoreactive fibers were rare in the central root region. Within the normal spinal trigeminal and main sensory nuclei, CGRP-IR was seen to form a reproducible pattern that varied between the different nuclei. Following rhizotomy, most, but not all, of the CGRP-IR was lost from the spinal trigeminal and main sensory nuclei, except in regions where the upper cervical roots and cranial nerves VII, IX and X project into the trigeminal nucleus. The pattern seen at 10 days contained more CGRP-IR than that seen at 30 days and suggests that degenerating fibers still show CGRP-IR. In contrast to the decrease seen in the nuclei after rhizotomy, examination of the central root that was still attached to the trigeminal ganglion showed an increase in CGRP-IR within fibers, some of which ended in growth conelike enlargements. Rhizotomy induced a dramatic increase in CGRP-IR within trigeminal motoneurons and their fibers, which was strongest 10 days after rhizotomy and weaker at 30 days, which was still stronger than normal. These results indicate that the majority of CGRP-IR found in the trigeminal nucleus originates from trigeminal primary afferents and that an upregulation of CGRP-IR occurs in trigeminal motoneurons and in regenerating fibers in the part of the central root that was still attached to the ganglion. In addition, the persistence of CGRP-IR fibers in the trigeminal nucleus provides one possible explanation for the preservation of pain in humans following trigeminal rhizotomy.
Cornelison, Lauren E.; Hawkins, Jordan L.; Durham, Paul L.
2016-01-01
Orofacial pain conditions including temporomandibular joint disorder and migraine are characterized by peripheral and central sensitization of trigeminal nociceptive neurons. Although calcitonin gene-related peptide (CGRP) is implicated in the development of central sensitization, the pathway by which elevated spinal cord CGRP levels promote peripheral sensitization of primary trigeminal nociceptive neurons is not well understood. The goal of this study was to investigate the role of CGRP in promoting bidirectional signaling within the trigeminal system to mediate sensitization of primary trigeminal ganglion nociceptive neurons. Adult male Sprague Dawley rats were injected in the upper spinal cord with CGRP or co-injected with the receptor antagonist CGRP8-37 or KT 5720, an inhibitor of protein kinase A (PKA). Nocifensive head withdrawal response to mechanical stimulation of trigeminal nerves was investigated using von Frey filaments. Expression of PKA, GFAP, and Iba1 in the spinal cord and P-ERK in the trigeminal ganglion was studied using immunohistochemistry. Some animals were co-injected intracisternally with CGRP and Fast Blue dye and trigeminal ganglion imaged using fluorescent microscopy. Intracisternal CGRP increased nocifensive responses to mechanical stimulation when compared to control levels. Co-injection of CGRP8-37 or KT 5720 with CGRP inhibited the nocifensive response. CGRP stimulated expression of PKA and GFAP in the spinal cord, and P-ERK in trigeminal ganglion neurons. Seven days post injection, Fast Blue was observed in trigeminal ganglion neurons and satellite glial cells. Our results demonstrate that elevated levels of CGRP in the upper spinal cord promote sensitization of primary trigeminal nociceptive neurons via a mechanism that involves activation of PKA centrally and P-ERK in trigeminal ganglion neurons. Our findings provide evidence of bidirectional signaling within the trigeminal system that can facilitate increased neuron-glia communication within the trigeminal ganglion associated with peripheral sensitization. PMID:27746346
A Case Report About Cluster-Tic Syndrome Due to Venous Compression of the Trigeminal Nerve.
de Coo, Ilse; van Dijk, J Marc C; Metzemaekers, Jan D M; Haan, Joost
2017-04-01
The term "cluster-tic syndrome" is used for the rare ipsilateral co-occurrence of attacks of cluster headache and trigeminal neuralgia. Medical treatment should combine treatment for cluster headache and trigeminal neuralgia, but is very often unsatisfactory. Here, we describe a 41-year-old woman diagnosed with cluster-tic syndrome who underwent microvascular decompression of the trigeminal nerve, primarily aimed at the "trigeminal neuralgia" part of her pain syndrome. After venous decompression of the trigeminal nerve both a decrease in trigeminal neuralgia and cluster headache attacks was seen. However, the headache did not disappear completely. Furthermore, she reported a decrease in pain intensity of the remaining cluster headache attacks. This case description suggests that venous vascular decompression in cluster-tic syndrome can be remarkably effective, both for trigeminal neuralgia and cluster headache. © 2016 American Headache Society.
Zdilla, Matthew J; Hatfield, Scott A; Mangus, Kelsey R
2016-11-01
The debilitating pain of trigeminal neuralgia often necessitates neurosurgical intervention via percutaneous transovale cannulation. While most percutaneous treatments of trigeminal neuralgia are successful, severe adverse events resulting from failure to properly cannulate the foramen ovale (FO) have been reported. With regard to specific targeting of particular trigeminal divisions (ie, V1, V2, V3, and combinations thereof), operative techniques have been described; however, these descriptions have not included specific angulation data. This anatomic study analyzed the angular relationship between the centroid and anteromedial- and posterolateral-most aspects of the FO and the boundaries of the trigeminal impression. The study is the first to detail the angular relationship between the FO boundaries and the boundaries of the trigeminal impression in dry human skulls relative to the coronal plane. The information may be used to prevent miscannulation and also target specific branches of the trigeminal nerve for optimal operative results.
Herzer, M; Koch, J; Prokisch, H; Rodenburg, R; Rauscher, C; Radauer, W; Forstner, R; Pilz, P; Rolinski, B; Freisinger, P; Mayr, J A; Sperl, W
2010-02-01
Mitochondrial NADH: ubiquinone oxidoreductase (complex I) deficiency accounts for most defects in mitochondrial oxidative phosphorylation. Pathogenic mutations have been described in all 7 mitochondrial and 12 of the 38 nuclear encoded subunits as well as in assembly factors by interfering with the building of the mature enzyme complex within the inner mitochondrial membrane. We now describe a male patient with a novel homozygous stop mutation in the NDUFAF2 gene. The boy presented with severe apnoea and nystagmus. MRI showed brainstem lesions without involvement of basal ganglia and thalamus, plasma lactate was normal or close to normal. He died after a fulminate course within 2 months after the first crisis. Neuropathology verified Leigh disease. We give a synopsis with other reported patients. Within the clinical spectrum of Leigh disease, patients with mutations in NDUFAF2 present with a distinct clinical pattern with predominantly brainstem involvement on MRI. The diagnosis should not be missed in spite of the normal lactate and lack of thalamus and basal ganglia changes on brain MRI.
Strittmatter, M; Grauer, M; Isenberg, E; Hamann, G; Fischer, C; Hoffmann, K H; Blaes, F; Schimrigk, K
1997-04-01
The pathogenesis of trigeminal neuralgia remains largely unknown. "Peripheral" as well as "central" causes have been suggested. To investigate the role of serotonergic, noradrenergic, dopaminergic, and peptidergic systems, we determined the concentrations of epinephrine, norepinephrine, and their breakdown product, vanillylmandelic acid, in the cerebrospinal fluid of 16 patients (55.3 +/- 8.3 years) with trigeminal neuralgia. As a marker for the dopaminergic system, we determined cerebrospinal fluid concentrations of dopamine and its metabolite, homovanillic acid. As a marker for the serotonergic system, we measured cerebrospinal fluid levels of the serotonin metabolite, 5-hydroxyindoleacetic acid. In addition, levels of the neuropeptides, substance P and somatostatin, were determined. The concentration of norepinephrine (P < 0.01) and its metabolite, vanillylmandelic acid, (P < 0.05) were significantly decreased in our patients. The level of the dopamine metabolite, homovanillic acid, was also significantly reduced (P < 0.01). Also significantly decreased was 5-hydroxyindoleacetic acid (P < 0.01). Substance P was significantly elevated (P < 0.05). Somatostatin was significantly decreased (P < 0.05). We hypothesize that the sum of complex neurochemical changes plays a role in the pathogenesis of trigeminal neuralgia. The elevated substance P could support the concept of a neurogenic inflammation in the trigeminovascular system, whereas changes in the monoaminergic transmitters and their metabolites seem to reflect a more central dysfunction possibly due to a longer duration of the disease and an accompanying depression.
Differences in individual susceptibility affect the development of trigeminal neuralgia☆
Duransoy, Yusuf Kurtuluş; Mete, Mesut; Akçay, Emrah; Selçuki, Mehmet
2013-01-01
Trigeminal neuralgia is a syndrome due to dysfunctional hyperactivity of the trigeminal nerve, and is characterized by a sudden, usually unilateral, recurrent lancinating pain arising from one or more divisions of the nerve. The most accepted pathogenetic mechanism for trigeminal neuralgia is compression of the nerve at its dorsal root entry zone or in its distal course. In this paper, we report four cases with trigeminal neuralgia due to an unknown mechanism after an intracranial intervention. The onset of trigeminal neuralgia after surgical interventions that are unrelated to the trigeminal nerve suggests that in patients with greater individual susceptibility, nerve contact with the vascular structure due to postoperative pressure and changes in cerebrospinal fluid flow may cause the onset of pain. PMID:25206428
Identification of clinical target areas in the brainstem of prion‐infected mice
Mirabile, Ilaria; Jat, Parmjit S.; Brandner, Sebastian
2015-01-01
Aims While prion infection ultimately involves the entire brain, it has long been thought that the abrupt clinical onset and rapid neurological decline in laboratory rodents relates to involvement of specific critical neuroanatomical target areas. The severity and type of clinical signs, together with the rapid progression, suggest the brainstem as a candidate location for such critical areas. In this study we aimed to correlate prion pathology with clinical phenotype in order to identify clinical target areas. Method We conducted a comprehensive survey of brainstem pathology in mice infected with two distinct prion strains, which produce different patterns of pathology, in mice overexpressing prion protein (with accelerated clinical onset) and in mice in which neuronal expression was reduced by gene targeting (which greatly delays clinical onset). Results We identified specific brainstem areas that are affected by prion pathology during the progression of the disease. In the early phase of disease the locus coeruleus, the nucleus of the solitary tract, and the pre‐Bötzinger complex were affected by prion protein deposition. This was followed by involvement of the motor and autonomic centres of the brainstem. Conclusions Neurodegeneration in the locus coeruleus, the nucleus of the solitary tract and the pre‐Bötzinger complex predominated and corresponded to the manifestation of the clinical phenotype. Because of their fundamental role in controlling autonomic function and the overlap with clinical signs in sporadic Creutzfeldt–Jakob disease, we suggest that these nuclei represent key clinical target areas in prion diseases. PMID:25311251
MacDonnell, M F
1984-01-01
The midline ridge formation (MRF) of the trigeminal complex in 127 cartilaginous fish of 15 species was examined by scanning electron microscopy or light microscopy. Five distinct species variations of the MRF in sharks are described. The formation has not yet been observed to be present in skates and rays, but its presence in the subclass Holocephali, the sister group to the Elasmobranchii, indicates that this proposed circumventricular organ is an ancient brain characteristic of this line of vertebrates, perhaps predating the emergence of the class Chondrichthyii. The different types of MRF are compared to a current phyletic organization of the elasmobranchs and the possible functional significance of the formation is discussed briefly.
Influence of oculomotor nerve afferents on central endings of primary trigeminal fibers.
Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E; Draicchio, F
1987-12-01
Painful fibers running in the third nerve and originating from the ophthalmic trigeminal area send their central projections at level of substantia gelatinosa of nucleus caudalis trigemini. The central endings of these fibers form axoaxonic synapses with trigeminal fibers entering the brain stem through the trigeminal root. The effect of electrical stimulation of the third nerve central stump on the central endings of trigeminal afferent fibers consists in an increased excitability, possibly resulting in a presynaptic inhibition. This inhibitory influence is due to both direct and indirect connections of the third nerve afferent fibers with the trigeminal ones.
Supratentorial lesions contribute to trigeminal neuralgia in multiple sclerosis.
Fröhlich, Kilian; Winder, Klemens; Linker, Ralf A; Engelhorn, Tobias; Dörfler, Arnd; Lee, De-Hyung; Hilz, Max J; Schwab, Stefan; Seifert, Frank
2018-06-01
Background It has been proposed that multiple sclerosis lesions afflicting the pontine trigeminal afferents contribute to trigeminal neuralgia in multiple sclerosis. So far, there are no imaging studies that have evaluated interactions between supratentorial lesions and trigeminal neuralgia in multiple sclerosis patients. Methods We conducted a retrospective study and sought multiple sclerosis patients with trigeminal neuralgia and controls in a local database. Multiple sclerosis lesions were manually outlined and transformed into stereotaxic space. We determined the lesion overlap and performed a voxel-wise subtraction analysis. Secondly, we conducted a voxel-wise non-parametric analysis using the Liebermeister test. Results From 12,210 multiple sclerosis patient records screened, we identified 41 patients with trigeminal neuralgia. The voxel-wise subtraction analysis yielded associations between trigeminal neuralgia and multiple sclerosis lesions in the pontine trigeminal afferents, as well as larger supratentorial lesion clusters in the contralateral insula and hippocampus. The non-parametric statistical analysis using the Liebermeister test yielded similar areas to be associated with multiple sclerosis-related trigeminal neuralgia. Conclusions Our study confirms previous data on associations between multiple sclerosis-related trigeminal neuralgia and pontine lesions, and showed for the first time an association with lesions in the insular region, a region involved in pain processing and endogenous pain modulation.
Perception of trigeminal mixtures.
Filiou, Renée-Pier; Lepore, Franco; Bryant, Bruce; Lundström, Johan N; Frasnelli, Johannes
2015-01-01
The trigeminal system is a chemical sense allowing for the perception of chemosensory information in our environment. However, contrary to smell and taste, we lack a thorough understanding of the trigeminal processing of mixtures. We, therefore, investigated trigeminal perception using mixtures of 3 relatively receptor-specific agonists together with one control odor in different proportions to determine basic perceptual dimensions of trigeminal perception. We found that 4 main dimensions were linked to trigeminal perception: sensations of intensity, warmth, coldness, and pain. We subsequently investigated perception of binary mixtures of trigeminal stimuli by means of these 4 perceptual dimensions using different concentrations of a cooling stimulus (eucalyptol) mixed with a stimulus that evokes warmth perception (cinnamaldehyde). To determine if sensory interactions are mainly of central or peripheral origin, we presented stimuli in a physical "mixture" or as a "combination" presented separately to individual nostrils. Results showed that mixtures generally yielded higher ratings than combinations on the trigeminal dimensions "intensity," "warm," and "painful," whereas combinations yielded higher ratings than mixtures on the trigeminal dimension "cold." These results suggest dimension-specific interactions in the perception of trigeminal mixtures, which may be explained by particular interactions that may take place on peripheral or central levels. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Olfactory dysfunction affects thresholds to trigeminal chemosensory sensations.
Frasnelli, J; Schuster, B; Hummel, T
2010-01-14
Next to olfaction and gustation, the trigeminal system represents a third chemosensory system. These senses are interconnected; a loss of olfactory function also leads to a reduced sensitivity in the trigeminal chemosensory system. However, most studies so far focused on comparing trigeminal sensitivity to suprathreshold stimuli; much less data is available with regard to trigeminal sensitivity in the perithreshold range. Therefore we assessed detection thresholds for CO(2), a relatively pure trigeminal stimulus in controls and in patients with olfactory dysfunction (OD). We could show that OD patients exhibit higher detection thresholds than controls. In addition, we were able to explore the effects of different etiologies of smell loss on trigeminal detection thresholds. We could show that in younger subjects, patients suffering from olfactory loss due to head trauma are more severely impaired with regard to their trigeminal sensitivity than patients with isolated congenital anosmia. In older patients, we could not observe any differences between different etiologies, probably due to the well known age-related decrease of trigeminal sensitivity. Furthermore we could show that a betterment of the OD was accompanied by decreased thresholds. This was most evident in patients with postviral OD. In conclusion, factors such as age, olfactory status and etiology of olfactory disorder can affect responsiveness to perithreshold trigeminal chemosensory stimuli. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Kassem, Hassan; Wafaie, Ahmed; Abdelfattah, Sherif; Farid, Tarek
2014-01-01
Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is a recently identified autosomal recessive disorder with early onset of symptoms and slowly progressive pyramidal, cerebellar and dorsal column dysfunction. LBSL is characterized by distinct white matter abnormalities and selective involvement of brainstem and spinal cord tracts. The purpose of this study is to assess the imaging features of the involved white matter tracts in cases of LBSL by MRI. We retrospectively reviewed the imaging features of the selectively involved white matter tracts in sixteen genetically proven cases of leukoencephalopathy with brainstem and spinal cord involvement and elevated brain lactate (LBSL). All patients presented with slowly progressive cerebellar sensory ataxia with spasticity and dorsal column dysfunction. MRI of the brain and spine using 1.5 T machine and proton magnetic resonance spectroscopy (1H MRS) on the abnormal white matter were done to all patients. The MRI and MRS data sets were analyzed according to lesion location, extent, distribution and signal pattern as well as metabolite values and ratios in MRS. Laboratory examinations ruled out classic leukodystrophies. In all cases, MRI showed high signal intensity in T2-weighted and FLAIR images within the cerebral subcortical, periventricular and deep white matter, posterior limbs of internal capsules, centrum semiovale, medulla oblongata, intraparenchymal trajectory of trigeminal nerves and deep cerebellar white matter. In the spine, the signal intensity of the dorsal column and lateral cortico-spinal tracts were altered in all patients. The subcortical U fibers, globi pallidi, thalami, midbrain and transverse pontine fibers were spared in all cases. In 11 cases (68.8%), the signal changes were inhomogeneous and confluent whereas in 5 patients (31.2%), the signal abnormalities were spotty. MRI also showed variable signal abnormalities in the sensory and pyramidal tracts in addition to the brainstem and cerebellar connections. Proton MRS showed consistent elevation of the lactate within the abnormal white matter. Distinct MRI findings in the form of selective affection of subcortical and deep white matter tracts of the brain (involving the posterior limb of internal capsules and sparing the subcortical U fibers), dorsal column and lateral cortico-spinal tracts of the spinal cord should lead to the diagnosis of LBSL supported by the presence of lactate peak in 1H MRS. The disease can be confirmed by the analysis of the disease gene DARS2.
Identification of Cytokines and Signaling Proteins Differentially Regulated by Sumatriptan/Naproxen
Vause, Carrie V; Durham, Paul L
2011-01-01
Summary Objectives The goal of this study was to use protein array analysis to investigate temporal regulation of stimulated cytokine expression in trigeminal ganglia and spinal trigeminal nuclei in response to cotreatment of sumatriptan and naproxen sodium or individual drug. Background Activation of neurons and glia in trigeminal ganglia and spinal trigeminal nuclei leads to increased levels of cytokines that promote peripheral and central sensitization, which are key events in migraine pathology. While recent clinical studies have provided evidence that a combination of sumatriptan and naproxen sodium is more efficacious in treating migraine than either drug alone, it is not well understood why the combination therapy is superior to monotherapy. Methods Male Sprague Dawley rats were left untreated (control), injected with capsaicin, or pre-treated with sumatriptan/naproxen, sumatriptan, or naproxen for 1 hour prior to capsaicin. Trigeminal ganglia and spinal trigeminal nuclei were isolated 2 and 24 hours after capsaicin or drug treatment and levels of 90 proteins were determined using a RayBio® Label-Based Rat Antibody Array. Results Capsaicin stimulated a >3-fold increase in expression of the majority of cytokines in trigeminal ganglia at 2 hours that was sustained at 24 hours. Significantly, treatment with sumatriptan/naproxen almost completely abolished the stimulatory effects of capsaicin at 2 and 24 hours. Capsaicin stimulated >3-fold expression of more proteins in spinal trigeminal nuclei at 24 hours when compared to 2 hours. Similarly, sumatriptan/naproxen abolished capsaicin stimulation of proteins in spinal trigeminal nuclei at 2 hours and greatly suppressed protein expression 24 hours post capsaicin injection. Interestingly, treatment with sumatriptan alone suppressed expression of different cytokines in trigeminal ganglia and spinal trigeminal nuclei than repressed by naproxen sodium. Conclusion We found that the combination of sumatriptan/naproxen was effective in blocking capsaicin stimulation of pro-inflammatory proteins implicated in the development of peripheral and central sensitization in response to capsaicin activation of trigeminal neurons. Based on our findings that sumatriptan and naproxen regulate expression of different proteins in trigeminal ganglia and spinal trigeminal nuclei, we propose that these drugs function on therapeutically distinct cellular targets to suppress inflammation and pain associated with migraine. PMID:22150557
Weiss, Alessandro; Perrini, Paolo; De Notaris, Matteo; Soria, Guadalupe; Carlos, Alarcon; Castagna, Maura; Lutzemberger, Lodovico; Santonocito, Orazio Santo; Catapano, Giuseppe; Kassam, Amin; Galino, Alberto Prats
2018-05-10
Treatment of intrinsic lesions of the ventral brainstem is a surgical challenge that requires complex skull base antero- and posterolateral approaches. More recently, endoscopic endonasal transclival approach (EETA) has been reported in the treatment of selected ventral brainstem lesions. In this study we explored the endoscopic ventral brainstem anatomy with the aim to describe the degree of exposure of the ventral safe entry zones. In addition, we used a newly developed method combining traditional white matter dissection with high-resolution 7T magnetic resonance imaging (MRI) of the same specimen coregistered using a neuronavigation system. Eight fresh-frozen latex-injected cadaver heads underwent EETA. Additional 8 formalin-fixed brainstems were dissected using Klingler technique guided by ultra-high resolution MRI. The EETA allows a wide exposure of different safe entry zones located on the ventral brainstem: the exposure of perioculomotor zone requires pituitary transposition and can be hindered by superior cerebellar artery. The peritrigeminal zone was barely visible and its exposure required an extradural anterior petrosectomy. The anterolateral sulcus of the medulla was visible in most of specimens, although its close relationship with the corticospinal tract makes it suboptimal as an entry point for intrinsic lesions. In all cases, the use of 7T-MRI allowed the identification of tiny fiber bundles, improving the quality of the dissection. Exposure of the ventral brainstem with EETA requires mastering surgical maneuvers, including pituitary transposition and extradural petrosectomy. The correlation of fiber dissection with 7T-MRI neuronavigation significantly improves the understanding of the brainstem anatomy.
Ambekar, Sudheer; Amene, Chiazo; Sonig, Ashish; Guthikonda, Bharat; Nanda, Anil
2013-01-01
Background Retrosigmoid transtentorial (RTT) and retrosigmoid intradural suprameatal (RISA) approaches have been used in the treatment of petroclival tumors. Objective To compare the area of exposure of brainstem and petroclival region obtained through RTT and RISA in cadaveric specimens. Methods Five cadaveric specimens with a total of 10 sides were analyzed. RTT and RISA were performed on five sides each. Brainstem and petroclival surface exposure were measured using both the approaches. These values were compared between the two approaches. Results Brainstem area exposure with RTT was 441 ± 63 mm2 and that with RISA was 311 ± 61 mm2. Student's t-test revealed that the difference was significant (p = 0.01). The area of petroclival exposure medial to the Meckel cave through RTT was 696 ± 57 mm2, and that through RISA was 716 ± 51 mm2 (p = 0.69). The area of brainstem exposure between V and VII-VII complex through RTT and RISA was 387 ± 86 mm2 and 378 ± 76 mm2 (p = 0.87). Conclusion The RTT approach is an excellent approach to ventrolateral brainstem and petroclival region. It provides greater superoventral exposure of the ventrolateral brainstem than RISA and provides similar petroclival exposure. PMID:24436928
Lee, Seung Hwan; Koh, Jun Seok; Lee, Cheol Young
2011-06-01
A 61-year-old woman presented with typical trigeminal neuralgia (TN), caused by an aberrant posterior inferior cerebellar artery (PICA) associated with the primitive trigeminal artery (PTA). Magnetic resonance angiography and digital subtraction angiography clearly showed an anomalous artery directly originating from the PTA and coursing into the PICA territory at the cerebellum. During microvascular decompression (MVD), we confirmed and decompressed vascular compression of the trigeminal nerve by this anomalous, PICA-variant type of PTA. The PTA did not conflict with the trigeminal nerve, and the anomalous PICA only compressed the caudolateral part of the trigeminal nerve, without the more common compression at its root entry zone. This case is informative due not only to its very unusual angioanatomical variation but also to its helpfulness for surgeons preparing a MVD for a TN associated with such a rare vascular anomaly.
Tarasenko, Melissa A; Swerdlow, Neal R; Makeig, Scott; Braff, David L; Light, Gregory A
2014-01-01
Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker - the auditory brain-stem response (ABR) to complex sounds (cABR) - that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions.
Diabetes mellitus in classical trigeminal neuralgia: A predisposing factor for its development.
Xu, Zhenq; Zhang, Ping; Long, Li; He, Huiy; Zhang, Jianch; Sun, Shup
2016-12-01
A higher prevalence of diabetes mellitus in classical trigeminal neuralgia patients was observed in few pilot surveys. The study was aimed to investigate whether diabetes mellitus is a predisposing factor for developing trigeminal neuralgia. Patients with classical trigeminal neuralgia were enrolled in the case study group. The control group consisted of the same number of age- and gender-matched, randomly sampled subjects without trigeminal neuralgia. Characteristics of classical trigeminal neuralgia cases were analyzed. The prevalence of diabetes mellitus in the cases and controls was calculated using the Chi-square test. The onset age ranged from 31 to 93 in 256 patients affected classical trigeminal neuralgia (162 females; 94 males) with a peak age between the fifth and seventh decade; right-side involvement and mandibular branch affliction occurred at a greater frequency. 21.9% patients in the study group was affected by diabetes mellitus compared to 12.9% of controls. The increased prevalence of diabetes mellitus in the trigeminal neuralgia group was statistically significant (P=0.01). Diabetes is a risk factor to the development of classical trigeminal neuralgia, and nerve damage duing to hyperglycemia might be the linkage to the two diseases. More works should be done to consolidate the correlation and to clarify the underlying mechanism for the positive association which would provide new insight into the pathogenesis of trigeminal neuralgia and may open new therapeutic perspectives. Copyright © 2016 Elsevier B.V. All rights reserved.
Autoradiographic localization of /sup 3/H-paroxetine-labeled serotonin uptake sites in rat brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Souza, E.B.; Kuyatt, B.L.
1987-01-01
Paroxetine is a potent and selective inhibitor of serotonin uptake into neurons. Serotonin uptake sites have been identified, localized, and quantified in rat brain by autoradiography with 3H-paroxetine; 3H-paroxetine binding in slide-mounted sections of rat forebrain was of high affinity (KD = 10 pM) and the inhibition affinity constant (Ki) values of various drugs in competing 3H-paroxetine binding significantly correlated with their reported potencies in inhibiting synaptosomal serotonin uptake. Serotonin uptake sites labeled by 3H-paroxetine were highly concentrated in the dorsal and median raphe nuclei, central gray, superficial layer of the superior colliculus, lateral septal nucleus, paraventricular nucleus of themore » thalamus, and the islands of Calleja. High concentrations of 3H-paroxetine binding sites were found in brainstem areas containing dopamine (substantia nigra and ventral tegmental area) and norepinephrine (locus coeruleus) cell bodies. Moderate concentrations of 3H-paroxetine binding sites were present in laminae I and IV of the frontal parietal cortex, primary olfactory cortex, olfactory tubercle, regions of the basal ganglia, septum, amygdala, thalamus, hypothalamus, hippocampus, and some brainstem areas including the interpeduncular, trigeminal, and parabrachial nuclei. Lower densities of 3H-paroxetine binding sites were found in other regions of the neocortex and very low to nonsignificant levels of binding were present in white matter tracts and in the cerebellum. Lesioning of serotonin neurons with 3,4-methylenedioxyamphetamine caused large decreases in 3H-paroxetine binding. The autoradiographic distribution of 3H-paroxetine binding sites in rat brain corresponds extremely well to the distribution of serotonin terminals and cell bodies as well as with the pharmacological sites of action of serotonin.« less
Qi, Hui-Xin; Gharbawie, Omar A; Wong, Peiyan; Kaas, Jon H
2011-03-01
The architectonic features of the ventroposterior nucleus (VP) were visualized in coronal brain sections from two macaque monkeys, two owl monkeys, two squirrel monkeys, and three galagos that were processed for cytochrome oxidase, Nissl bodies, or the vesicular glutamate transporter 2 (vGluT2). The traditional ventroposterior medial (VPM) and ventroposterior lateral (VPL) subnuclei were easily identified, as well as the forelimb and hindlimb compartments of VPL, as they were separated by poorly staining, cell-poor septa. Septa also separated other cell groups within VPM and VPL, specifically in the medial compartment of VPL representing the hand (hand VPL). In one squirrel monkey and one galago we demonstrated that these five groups of cells represent digits 1-5 in a mediolateral sequence by injecting tracers into the cortical representation of single digits, defined by microelectrode recordings, and relating concentrations of labeled neurons to specific cell groups in hand VPL. The results establish the existence of septa that isolate the representation of the five digits in VPL of primates and demonstrate that the isolated cell groups represent digits 1-5 in a mediolateral sequence. The present results show that the septa are especially prominent in brain sections processed for vGluT2, which is expressed in the synaptic terminals of excitatory neurons in most nuclei of the brainstem and thalamus. As vGluT2 is expressed in the synaptic terminations from dorsal columns and trigeminal brainstem nuclei, the effectiveness of vGluT2 preparations in revealing septa in VP likely reflects a lack of synapses using glutamate in the septa. Copyright © 2010 Wiley-Liss, Inc.
Qi, Hui-Xin; Gharbawie, Omar A.; Wong, Peiyan; Kaas, Jon H.
2013-01-01
The architectonic features of the ventroposterior nucleus (VP) were visualized in coronal brain sections from two macaque monkeys, two owl monkeys, two squirrel monkeys, and three galagos that were processed for cytochrome oxidase, Nissl bodies, or the vesicular glutamate transporter 2 (vGluT2). The traditional ventroposterior medial (VPM) and ventroposterior lateral (VPL) subnuclei were easily identified, as well as the forelimb and hindlimb compartments of VPL, as they were separated by poorly staining, cell-poor septa. Septa also separated other cell groups within VPM and VPL, specifically in the medial compartment of VPL representing the hand (hand VPL). In one squirrel monkey and one galago we demonstrated that these five groups of cells represent digits 1–5 in a mediolateral sequence by injecting tracers into the cortical representation of single digits, defined by microelectrode recordings, and relating concentrations of labeled neurons to specific cell groups in hand VPL. The results establish the existence of septa that isolate the representation of the five digits in VPL of primates and demonstrate that the isolated cell groups represent digits 1–5 in a mediolateral sequence. The present results show that the septa are especially prominent in brain sections processed for vGluT2, which is expressed in the synaptic terminals of excitatory neurons in most nuclei of the brainstem and thalamus. As vGluT2 is expressed in the synaptic terminations from dorsal columns and trigeminal brainstem nuclei, the effectiveness of vGluT2 preparations in revealing septa in VP likely reflects a lack of synapses using glutamate in the septa. J. Comp. Neurol. 519:738–758, 2011. PMID:21246552
Gnanasekaran, Aswini; Bele, Tanja; Hullugundi, Swathi; Simonetti, Manuela; Ferrari, Michael D; van den Maagdenberg, Arn M J M; Nistri, Andrea; Fabbretti, Elsa
2013-12-02
ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine.
SOLITARY CHEMORECEPTOR CELL SURVIVAL IS INDEPENDENT OF INTACT TRIGEMINAL INNERVATION
Gulbransen, Brian; Silver, Wayne; Finger, Tom
2008-01-01
Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al., 2003). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al., 2003) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. PMID:18300260
Nair, Kavitha; George, Thomas; El Beltagi, Ahmed
2015-01-01
Malignant trigeminal neuralgia due to perineural spread along the branches of the trigeminal nerve, is known to commonly occur secondary to squamous cell carcinomas, lymphomas and adenoid cystic carcinomas in the head and neck region. Rarely metastases to the trigeminal nerve have been reported in breast cancer, prostate cancer and colon cancer. To the best of our knowledge trigeminal neuropathy due to skull base metastases and perineural spread along the maxillary (V2) and mandibular (V3) branches of the trigeminal nerve, secondary to colon cancer, has not been previously reported. The diagnosis in our index case was made on magnetic resonance imaging, and patient was treated accordingly by fractionated stereotactic radiotherapy, with subsequent relief of her pain. PMID:26629299
Painful Traumatic Trigeminal Neuropathy.
Rafael, Benoliel; Sorin, Teich; Eli, Eliav
2016-08-01
This article discusses neuropathic pain of traumatic origin affecting the trigeminal nerve. This syndrome has been termed painful traumatic trigeminal neuropathy by the International Headache Society and replaces atypical odontalgia, deafferentation pain, traumatic neuropathy, and phantom toothache. The discussion emphasizes the diagnosis and the early and late management of injuries to the trigeminal nerve and subsequent painful conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
[Influence of trigeminal nerve lesion on facial growth: study of two cases of Goldenhar syndrome].
Darris, Pierre; Treil, Jacques; Marchal-Sixou, Christine; Baron, Pascal
2015-06-01
This cases report confirms the hypothesis that embryonic and maxillofacial growth are influenced by the peripheral nervous system, including the trigeminal nerve (V). So, it's interesting to use the stigma of the trigeminal nerve as landmarks to analyze the maxillofacial volume and understand its growth. The aim of this study is to evaluate the validity of the three-dimensional cephalometric analysis of Treil based on trigeminal landmarks. The first case is a caucasian female child with Goldenhar syndrome. The second case is a caucasian male adult affected by the same syndrome. In both cases, brain MRI showed an unilateral trigeminal nerve lesion, ipsilateral to the facial dysmorphia. The results of this radiological study tend to prove the primary role of the trigeminal nerve in craniofacial growth. These cases demonstrate the validity of the theory of Moss. They are one of anatomo-functional justifications of the three-dimensional cephalometric biometry of Treil based on trigeminal nerve landmarks. © EDP Sciences, SFODF, 2015.
Solitary chemoreceptor cell survival is independent of intact trigeminal innervation.
Gulbransen, Brian; Silver, Wayne; Finger, Thomas E
2008-05-01
Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al. [2003] Proc Natl Acad Sci USA 100:8981-8986). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al. [2003]) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. (c) 2008 Wiley-Liss, Inc.
A developmental classification of malformations of the brainstem.
Barkovich, A James; Millen, Kathleen J; Dobyns, William B
2007-12-01
With advances in imaging and genetics, malformations of the brainstem are being more commonly identified. We describe and classify brainstem anomalies in 138 patients ascertained over a period of 10 years Magnetic resonance imaging studies and, where available, clinical records of the patients were retrospectively reviewed. Malformations were segregated according to magnetic resonance findings and classified when possible by embryological mechanisms The most common location for anomalies was the pons, which was involved in 114 patients. The midbrain was involved in 45 patients, whereas the medulla was involved in 14. In 53 patients, more than 1 region was affected (all 3 regions in 6 patients, midbrain and pons in 39, and medulla and pons in 8). The malformations were divided into four groups: (1) malformations with abnormal brainstem segmentation, (2) malformations with segmental hypoplasia, (3) postsegmentation malformations, and (4) malformations associated with abnormal cortical organization The malformations of the brainstem identified in this study were diverse and complex. This proposed classification organizes them into groupings based on known genetics and embryological events. Use of this system will help clinicians and scientists to better understand these disorders and, ultimately, to better counsel families of affected patients.
Impaired brainstem and thalamic high-frequency oscillatory EEG activity in migraine between attacks.
Porcaro, Camillo; Di Lorenzo, Giorgio; Seri, Stefano; Pierelli, Francesco; Tecchio, Franca; Coppola, Gianluca
2017-09-01
Introduction We investigated whether interictal thalamic dysfunction in migraine without aura (MO) patients is a primary determinant or the expression of its functional disconnection from proximal or distal areas along the somatosensory pathway. Methods Twenty MO patients and twenty healthy volunteers (HVs) underwent an electroencephalographic (EEG) recording during electrical stimulation of the median nerve at the wrist. We used the functional source separation algorithm to extract four functionally constrained nodes (brainstem, thalamus, primary sensory radial, and primary sensory motor tangential parietal sources) along the somatosensory pathway. Two digital filters (1-400 Hz and 450-750 Hz) were applied in order to extract low- (LFO) and high- frequency (HFO) oscillatory activity from the broadband signal. Results Compared to HVs, patients presented significantly lower brainstem (BS) and thalamic (Th) HFO activation bilaterally. No difference between the two cortical HFO as well as in LFO peak activations between the two groups was seen. The age of onset of the headache was positively correlated with HFO power in the right brainstem and thalamus. Conclusions This study provides evidence for complex dysfunction of brainstem and thalamocortical networks under the control of genetic factors that might act by modulating the severity of migraine phenotype.
Huang, Chih-Yu; Yao, Hui-Wen; Wang, Li-Chiu; Shen, Fang-Hsiu; Hsu, Sheng-Min; Chen, Shun-Hua
2017-02-15
Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484-490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised patients with persistent infection. However, answers to the questions as to whether TK-negative (TK - ) HSV-1 can establish persistent infection in brains of immunocompromised hosts and whether neurons in vivo are permissive for TK - HSV-1 remain elusive. Using three genetically engineered HSV-1 TK - mutants and two strains of nude mice deficient in T cells, we found that all three HSV-1 TK - mutants can efficiently establish persistent infection in the brain stem and trigeminal ganglion and detected glycoprotein C, a true late viral antigen, in brainstem neurons. Our study provides evidence that TK - HSV-1 can persist in neural tissues and replicate in brain neurons of immunocompromised hosts. Copyright © 2017 American Society for Microbiology.
Huang, Chih-Yu; Yao, Hui-Wen; Wang, Li-Chiu; Shen, Fang-Hsiu
2016-01-01
ABSTRACT Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484–490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. IMPORTANCE Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised patients with persistent infection. However, answers to the questions as to whether TK-negative (TK−) HSV-1 can establish persistent infection in brains of immunocompromised hosts and whether neurons in vivo are permissive for TK− HSV-1 remain elusive. Using three genetically engineered HSV-1 TK− mutants and two strains of nude mice deficient in T cells, we found that all three HSV-1 TK− mutants can efficiently establish persistent infection in the brain stem and trigeminal ganglion and detected glycoprotein C, a true late viral antigen, in brainstem neurons. Our study provides evidence that TK− HSV-1 can persist in neural tissues and replicate in brain neurons of immunocompromised hosts. PMID:27974554
NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement.
Leshinsky-Silver, E; Lebre, Anne-Sophie; Minai, Limor; Saada, Ann; Steffann, Julie; Cohen, Sarit; Rötig, Agnes; Munnich, Arnold; Lev, Dorit; Lerman-Sagie, Tally
2009-07-01
Complex I deficiency is a frequent cause of Leigh syndrome. We describe a non-consanguineous Ashkenazi-Sephardic Jewish patient with Leigh syndrome due to complex I deficiency. The clinical and neuroradiological presentation showed predominant brainstem involvement. Blue native polyacrylamide gel electrophoresis analysis revealed an impaired assembly of complex I. The patient was found to be compound heterozygous of two mutations in the NDUFS4 gene: p.Asp119His (a novel mutation) and p.Lys154fs (recently described in an Ashkenazi Jewish family). These findings support the suggestion that the p.Lys154fs mutation in NDUFS4 should be evaluated in Ashkenazi Jewish patients presenting with early onset Leigh syndrome even before enzymatic studies. Our results further demonstrated that NDUFS4 presents a hotspot of mutations in the genetic apparatus of oxidative phosphorylation and the correct assembly of the subunit it encodes is essential for completion of the assembly of complex I.
Pihut, M.; Szuta, M.; Ferendiuk, E.; Zeńczak-Więckiewicz, D.
2014-01-01
Chronic oral and facial pain syndromes are an indication for intervention of physicians of numerous medical specialties, while the complex nature of these complaints warrants interdisciplinary diagnostic and therapeutic approach. Oftentimes, lack of proper differentiation of pain associated with pathological changes of the surrounding tissues, neurogenic pain, vascular pain, or radiating pain from idiopathic facial pain leads to improper treatment. The objective of the paper is to provide detailed characterization of pain developing in the natural history of trigeminal neuralgia and temporomandibular joint dysfunction, with particular focus on similarities accounting for the difficulties in diagnosis and treatment as well as on differences between both types of pain. It might seem that trigeminal neuralgia can be easily differentiated from temporomandibular joint dysfunction due to the acute, piercing, and stabbing nature of neuralgic pain occurring at a single facial location to spread along the course of the nerve on one side, sometimes a dozen or so times a day, without forewarning periods. Both forms differ significantly in the character and intensity of pain. The exact analysis of the nature, intensity, and duration of pain may be crucial for the differential diagnostics of the disorders of our interest. PMID:24995309
Endogenous angiotensinergic system in neurons of rat and human trigeminal ganglia
Imboden, Hans; Patil, Jaspal; Nussberger, Juerg; Nicoud, Françoise; Hess, Benno; Ahmed, Nermin; Schaffner, Thomas; Wellner, Maren; Müller, Dominik; Inagami, Tadashi; Senbonmatsu, Takaaki; Pavel, Jaroslav; Saavedra, Juan M.
2009-01-01
To clarify the role of Angiotensin II (Ang II) in the sensory system and especially in the trigeminal ganglia, we studied the expression of angiotensinogen (Ang-N)-, renin-, angiotensin converting enzyme (ACE)- and cathepsin D-mRNA, and the presence of Ang II and substance P in the rat and human trigeminal ganglia. The rat trigeminal ganglia expressed substantial amounts of Ang-N- and ACE mRNA as determined by quantitative real time PCR. Renin mRNA was untraceable in rat samples. Cathepsin D was detected in the rat trigeminal ganglia indicating the possibility of existence of pathways alternative to renin for Ang I formation. In situ hybridization in rat trigeminal ganglia revealed expression of Ang-N mRNA in the cytoplasm of numerous neurons. By using immunocytochemistry, a number of neurons and their processes in both the rat and human trigeminal ganglia were stained for Ang II. Post in situ hybridization immunocytochemistry reveals that in the rat trigeminal ganglia some, but not all Ang-N mRNA-positive neurons marked for Ang II. In some neurons Substance P was found colocalized with Ang II. Angiotensins from rat trigeminal ganglia were quantitated by radioimmunoassay with and without prior separation by high performance liquid chromatography. Immunoreactive angiotensin II (ir-Ang II) was consistently present and the sum of true Ang II (1-8) octapeptide and its specifically measured metabolites were found to account for it. Radioimmunological and immunocytochemical evidence of ir-Ang II in neuronal tissue is compatible with Ang II as a neurotransmitter. In conclusion, these results suggest that Ang II could be produced locally in the neurons of rat trigeminal ganglia. The localization and colocalization of neuronal Ang II with Substance P in the trigeminal ganglia neurons may be the basis for a participation and function of Ang II in the regulation of nociception and migraine pathology. PMID:19323983
Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance.
Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina
2013-02-01
To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004) and pure-tone hearing thresholds. Participants included 111 middle- to older-age adults (range = 45-78) with audiometric configurations ranging from normal hearing levels to moderate sensorineural hearing loss. In addition to using audiometric testing, the authors also used such evaluation measures as the QuickSIN, the SSQ, and the cABR. Multiple linear regression analysis indicated that the inclusion of brainstem variables in a model with QuickSIN, hearing thresholds, and age accounted for 30% of the variance in the Speech subtest of the SSQ, compared with significantly less variance (19%) when brainstem variables were not included. The authors' results demonstrate the cABR's efficacy for predicting self-reported speech-in-noise perception difficulties. The fact that the cABR predicts more variance in self-reported speech-in-noise (SIN) perception than either the QuickSIN or hearing thresholds indicates that the cABR provides additional insight into an individual's ability to hear in background noise. In addition, the findings underscore the link between the cABR and hearing in noise.
The big CGRP flood - sources, sinks and signalling sites in the trigeminovascular system.
Messlinger, Karl
2018-03-12
Calcitonin gene-related peptide (CGRP) has long been a focus of migraine research, since it turned out that inhibition of CGRP or CGRP receptors by antagonists or monoclonal IgG antibodies was therapeutic in frequent and chronic migraine. This contribution deals with the questions, from which sites CGRP is released, where it is drained and where it acts to cause its headache proliferating effects in the trigeminovascular system. The available literature suggests that the bulk of CGRP is released from trigeminal afferents both in meningeal tissues and at the first synapse in the spinal trigeminal nucleus. CGRP may be drained off into three different compartments, the venous blood plasma, the cerebrospinal fluid and possibly the glymphatic system. CGRP receptors in peripheral tissues are located on arterial vessel walls, mononuclear immune cells and possibly Schwann cells; within the trigeminal ganglion they are located on neurons and glial cells; in the spinal trigeminal nucleus they can be found on central terminals of trigeminal afferents. All these structures are potential signalling sites for CGRP, where CGRP mediates arterial vasodilatation but not direct activation of trigeminal afferents. In the spinal trigeminal nucleus a facilitating effect on synaptic transmission seems likely. In the trigeminal ganglion CGRP is thought to initiate long-term changes including cross-signalling between neurons and glial cells based on gene expression. In this way, CGRP may upregulate the production of receptor proteins and pro-nociceptive molecules. CGRP and other big molecules cannot easily pass the blood-brain barrier. These molecules may act in the trigeminal ganglion to influence the production of pronociceptive substances and receptors, which are transported along the central terminals into the spinal trigeminal nucleus. In this way peripherally acting therapeutics can have a central antinociceptive effect.
Santos, Priscila L.; Araújo, Adriano A. S.; Quintans, Jullyana S. S.; Oliveira, Makson G. B.; Brito, Renan G.; Serafini, Mairim R.; Menezes, Paula P.; Santos, Marcio R. V.; Alves, Pericles B.; de Lucca Júnior, Waldecy; Blank, Arie F.; La Rocca, Viviana; Almeida, Reinaldo N.; Quintans-Júnior, Lucindo J.
2015-01-01
This study aimed to evaluate the orofacial antinociceptive effect of the Cymbopogon winterianus essential oil (LEO) complexed in β-cyclodextrin (LEO-CD) and to assess the possible involvement of the central nervous system (CNS). The LEO was extracted, chromatographed, and complexed in β-cyclodextrin. The complex was characterized by differential scanning calorimetry (DSC) and thermogravimetry derivative (TG/DTG). Male Swiss mice (2-3 months) were treated with LEO-CD (50–200 mg/kg, p.o.), vehicle (distilled water, p.o.), or standard drug (i.p.) and subjected to the orofacial nociception formalin-, capsaicin-, and glutamate-induced. After the formalin test, the animals were perfused and the brains subjected to immunofluorescence for Fos. The rota-rod test (7 rpm/min) was carried out. Geraniol (37.57%) was the main compound of LEO. DSC and TG/DTG proved the complexation. The orofacial nociceptive behavior was significantly (p < 0.05) reduced. The number of Fos-positive cells was significantly changed in the dorsal raphe nucleus (p < 0.01), locus coeruleus (p < 0.001), trigeminal nucleus (p < 0.05), and trigeminal thalamic tract (p < 0.05). LEO-CD did not cause changes in motor coordination in the rota-rod test. Thus, our results suggested that LEO-CD has an orofacial antinociceptive profile, probably mediated by the activation of the CNS without changing the motor coordination. PMID:26246838
Activation of oral trigeminal neurons by fatty acids is dependent upon intracellular calcium.
Yu, Tian; Shah, Bhavik P; Hansen, Dane R; Park-York, MieJung; Gilbertson, Timothy A
2012-08-01
The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons.
Activation of Oral Trigeminal Neurons by Fatty Acids is Dependent upon Intracellular Calcium
Yu, Tian; Shah, Bhavik P.; Hansen, Dane R.; Park-York, MieJung; Gilbertson, Timothy A.
2012-01-01
The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential (TRP) channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons. PMID:22644615
Chemosensory Information Processing between Keratinocytes and Trigeminal Neurons
Sondersorg, Anna Christina; Busse, Daniela; Kyereme, Jessica; Rothermel, Markus; Neufang, Gitta; Gisselmann, Günter; Hatt, Hanns; Conrad, Heike
2014-01-01
Trigeminal fibers terminate within the facial mucosa and skin and transmit tactile, proprioceptive, chemical, and nociceptive sensations. Trigeminal sensations can arise from the direct stimulation of intraepithelial free nerve endings or indirectly through information transmission from adjacent cells at the peripheral innervation area. For mechanical and thermal cues, communication processes between skin cells and somatosensory neurons have already been suggested. High concentrations of most odors typically provoke trigeminal sensations in vivo but surprisingly fail to activate trigeminal neuron monocultures. This fact favors the hypothesis that epithelial cells may participate in chemodetection and subsequently transmit signals to neighboring trigeminal fibers. Keratinocytes, the major cell type of the epidermis, express various receptors that enable reactions to multiple environmental stimuli. Here, using a co-culture approach, we show for the first time that exposure to the odorant chemicals induces a chemical communication between human HaCaT keratinocytes and mouse trigeminal neurons. Moreover, a supernatant analysis of stimulated keratinocytes and subsequent blocking experiments with pyrodoxalphosphate-6-azophenyl-2′,4′-disulfonate revealed that ATP serves as the mediating transmitter molecule released from skin cells after odor stimulation. We show that the ATP release resulting from Javanol® stimulation of keratinocytes was mediated by pannexins. Consequently, keratinocytes act as chemosensors linking the environment and the trigeminal system via ATP signaling. PMID:24790106
Stratford, J M; Larson, E D; Yang, R; Salcedo, E; Finger, T E
2017-07-01
Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT 3 receptors on the gustatory nerves. We show here, using 5-HT 3A GFP mice, that 5-HT 3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT 3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT 3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT 3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus. © 2017 Wiley Periodicals, Inc.
Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration
Finger, Thomas E.; Böttger, Bärbel; Hansen, Anne; Anderson, Karl T.; Alimohammadi, Hessamedin; Silver, Wayne L.
2003-01-01
Inhalation of irritating substances leads to activation of the trigeminal nerve, triggering protective reflexes that include apnea or sneezing. Receptors for trigeminal irritants are generally assumed to be located exclusively on free nerve endings within the nasal epithelium, requiring that trigeminal irritants diffuse through the junctional barrier at the epithelial surface to activate receptors. We find, in both rats and mice, an extensive population of chemosensory cells that reach the surface of the nasal epithelium and form synaptic contacts with trigeminal afferent nerve fibers. These chemosensory cells express T2R “bitter-taste” receptors and α-gustducin, a G protein involved in chemosensory transduction. Functional studies indicate that bitter substances applied to the nasal epithelium activate the trigeminal nerve and evoke changes in respiratory rate. By extending to the surface of the nasal epithelium, these chemosensory cells serve to expand the repertoire of compounds that can activate trigeminal protective reflexes. The trigeminal chemoreceptor cells are likely to be remnants of the phylogenetically ancient population of solitary chemoreceptor cells found in the epithelium of all anamniote aquatic vertebrates. PMID:12857948
Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration.
Finger, Thomas E; Böttger, Bärbel; Hansen, Anne; Anderson, Karl T; Alimohammadi, Hessamedin; Silver, Wayne L
2003-07-22
Inhalation of irritating substances leads to activation of the trigeminal nerve, triggering protective reflexes that include apnea or sneezing. Receptors for trigeminal irritants are generally assumed to be located exclusively on free nerve endings within the nasal epithelium, requiring that trigeminal irritants diffuse through the junctional barrier at the epithelial surface to activate receptors. We find, in both rats and mice, an extensive population of chemosensory cells that reach the surface of the nasal epithelium and form synaptic contacts with trigeminal afferent nerve fibers. These chemosensory cells express T2R "bitter-taste" receptors and alpha-gustducin, a G protein involved in chemosensory transduction. Functional studies indicate that bitter substances applied to the nasal epithelium activate the trigeminal nerve and evoke changes in respiratory rate. By extending to the surface of the nasal epithelium, these chemosensory cells serve to expand the repertoire of compounds that can activate trigeminal protective reflexes. The trigeminal chemoreceptor cells are likely to be remnants of the phylogenetically ancient population of solitary chemoreceptor cells found in the epithelium of all anamniote aquatic vertebrates.
Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E
1978-01-01
The main aim of the present study was to localize with electrophysiological techniques the central projections and terminations of the aberrant trigeminal fibres contained in the oculomotor nerve of the lamb. After severing a trigeminal root, single-shock electrical stimulation of the trigeminal axons present in the central stump of the ipsilateral oculomotor nerve evoked field potentials in the area of, i) the subnucleus gelatinosus of the nucleus caudalis trigemini at the level of C1-C2; ii) the main sensory trigeminal nucleus; iii) the descending trigeminal nucleus and tract; iv) the adjacent reticular formation. Units whose discharge rate was influenced by such a stimulation were also found in the same territories. These regions actually exhibited degenerations after cutting an oculomotor nerve. We conclude, therefore, that the trigeminal fibres which leave the Vth nerve at the level of the cavernous sinus and enter the brain stem through the IIIrd nerve, end in the same structures which receive the terminations of the afferent fibres entering the brain stem through the sensory trigeminal root.
Tarasenko, Melissa A.; Swerdlow, Neal R.; Makeig, Scott; Braff, David L.; Light, Gregory A.
2014-01-01
Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker – the auditory brain-stem response (ABR) to complex sounds (cABR) – that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions. PMID:25352811
2013-01-01
Background ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. Results KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. Conclusions We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine. PMID:24294842
Huang, Fang; He, Hongwen; Fan, Wenguo; Liu, Yongliang; Zhou, Hongyu; Cheng, Bin
2013-01-01
Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin receptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histochemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings suggest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated. PMID:25206619
Gospodarev, Vadim; Chakravarthy, Vikram; Harms, Casey; Myers, Hannah; Kaplan, Brett; Kim, Esther; Pond, Matthew; De Los Reyes, Kenneth
2018-05-01
Trigeminal neuralgia (TGN) causes severe unilateral facial pain. The etiology is hypothesized to be segmental demyelination of the trigeminal nerve root via compression by the superior cerebellar artery (SCA). Microvascular decompression (MVD) allows immediate and long-term pain relief. Preoperative evaluation includes magnetic resonance imaging (MRI) and/or magnetic resonance angiography of the brain. Having a pacemaker is a contraindication for MRI. There have been isolated reports of using computed tomography (CT) cisternography scans for radiation planning for TGN. A 75-year-old male with a permanent pacemaker who had refractory TGN in the V2 (maxillary) distribution of the trigeminal nerve underwent CT cisternography to prepare for MVD. CT angiography with Isovue 370 intravenous contrast injection and 0.625-mm axial images were obtained from the skull base across the posterior fossa. An intrathecal injection of Isovue 180 was performed at the L2/3 level. Imaging revealed the right SCA abutting the medial margin of the proximal right trigeminal nerve. In surgery (K.D.), a standard retrosigmoid suboccipital craniotomy was performed to access the cerebellopontine angle and separate the abutting SCA and trigeminal nerve. The patient had immediate pain relief. MRI is the preferred method of evaluating for TGN because it offers excellent visualization of vasculature in relation to the trigeminal nerve without accompanying radiation exposure. However, for patients who have contraindications to MRI, CT cisternography is shown to also be an effective method for visualizing the trigeminal root entry zone and nearby vasculature in preparation for MVD of the trigeminal nerve. Published by Elsevier Inc.
Renton, Tara
2011-01-01
This article provides a simple overview of acute trigeminal pain for the non dentist. This article does not cover oral mucosal diseases (vesiculobullous disorders) that may cause acute pain. Dental pain is the most common in this group and it can present in several different ways. Of particular interest for is that dental pain can mimic both trigeminal neuralgia and other chronic trigeminal pain disorders. It is crucial to exclude these disorders whilst managing patients with chronic trigeminal pain. PMID:26527224
Custead, Rebecca; Oh, Hyuntaek; Rosner, Austin Oder; Barlow, Steven
2015-10-05
Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus). Copyright © 2015 Elsevier B.V. All rights reserved.
Differential diagnosis of ventriculomegaly and brainstem kinking on fetal MRI.
Amir, Tali; Poretti, Andrea; Boltshauser, Eugen; Huisman, Thierry A G M
2016-01-01
Fetal ventriculomegaly is a common and frequently leading neuroimaging finding in complex brain malformations. Here we report on pre- and postnatal neuroimaging findings in three fetuses with prenatal ventriculomegaly and brainstem kinking. We aim to identify key neuroimaging features that may allow the prenatal differentiation between diseases associated with fetal ventriculomegaly and brainstem kinking. All pre- and postnatal magnetic resonance imaging (MRI) data were qualitatively evaluated for infra- and supratentorial abnormalities. Data about clinical features and genetic findings were collected from clinical histories. In all three patients, fetal MRI showed ventriculomegaly and brainstem kinking. In two patients, postnatal MRI also showed supratentorial migration abnormalities and eye abnormalities were found. In these children, the diagnosis of α-dystroglycanopathy was genetically confirmed. In the third patient, basal ganglia had an abnormal shape on MRI suggesting a tubulinopathy. The differential diagnosis of prenatal ventriculomegaly and brainstem kinking includes α-dystroglycanopathies, X-linked hydrocephalus due to mutations in L1CAM, and tubulinopathies. The prenatal differentiation between these diseases may be difficult. The presence of ocular abnormalities on prenatal neuroimaging may favor α-dystroglycanopathies, while dysplastic basal ganglia may suggest a tubulinopathy. However, in some patients the final differentiation between these diseases is possible only postnatally. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Galbraith, G C; Jhaveri, S P; Kuo, J
1997-01-01
Speech-evoked brainstem frequency-following responses (FFRs) were recorded to repeated presentations of the same stimulus word. Word repetition results in illusory verbal transformations (VTs) in which word perceptions can differ markedly from the actual stimulus. Previous behavioral studies support an explanation of VTs based on changes in arousal or attention. Horizontal and vertical dipole FFRs were recorded to assess responses with putative origins in the auditory nerve and central brainstem, respectively. FFRs were recorded from 18 subjects when they correctly heard the stimulus and when they reported VTs. Although horizontal and vertical dipole FFRs showed different frequency response patterns, dipoles did not differentiate between perceptual conditions. However, when subjects were divided into low- and high-VT groups (based on percentage of VT trials), a significant Condition x Group interaction resulted. This interaction showed the largest difference in FFR amplitudes during VT trials, with the low-VT group showing increased amplitudes, and the high-VT group showing decreased amplitudes, relative to trials in which the stimulus was correctly perceived. These results demonstrate measurable subject differences in the early processing of complex signals, due to possible effects of attention on the brainstem FFR. The present research shows that the FFR is useful in understanding human language as it is coded and processed in the brainstem auditory pathway.
Age-Related Changes in Binaural Interaction at Brainstem Level.
Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Beynon, Andy J; Dhooge, Ingeborg J M
2016-01-01
Age-related hearing loss hampers the ability to understand speech in adverse listening conditions. This is attributed to a complex interaction of changes in the peripheral and central auditory system. One aspect that may deteriorate across the lifespan is binaural interaction. The present study investigates binaural interaction at the level of the auditory brainstem. It is hypothesized that brainstem binaural interaction deteriorates with advancing age. Forty-two subjects of various age participated in the study. Auditory brainstem responses (ABRs) were recorded using clicks and 500 Hz tone-bursts. ABRs were elicited by monaural right, monaural left, and binaural stimulation. Binaural interaction was investigated in two ways. First, grand averages of the binaural interaction component were computed for each age group. Second, wave V characteristics of the binaural ABR were compared with those of the summed left and right ABRs. Binaural interaction in the click ABR was demonstrated by shorter latencies and smaller amplitudes in the binaural compared with the summed monaural responses. For 500 Hz tone-burst ABR, no latency differences were found. However, amplitudes were significantly smaller in the binaural than summed monaural condition. An age-effect was found for 500 Hz tone-burst, but not for click ABR. Brainstem binaural interaction seems to decline with age. Interestingly, these changes seem to be stimulus-dependent.
Effects of analgesics on olfactory function and the perception of intranasal trigeminal stimuli.
Mizera, L; Gossrau, G; Hummel, T; Haehner, A
2017-01-01
There is some evidence suggesting that analgesics have an impact on human chemosensory function, especially opioids and cannabinoids are known to interfere with olfactory function. However, largely unknown is the effect of a long-term use of analgesics on the intranasal trigeminal system so far. Here, we investigated olfactory function and the perception of intranasal trigeminal stimuli in pain patients with long-term use of analgesics compared to age-matched healthy controls. For this purpose, a psychophysical approach was chosen to measure these sensory functions in 100 chronic pain patients and 95 controls. Olfactory testing was performed using the 'Sniffin' Sticks' test kit, which involves tests for odour threshold, odour discrimination and odour identification. Further, participants were asked to rate the intensity of trigeminal stimuli by using a visual analogue scale. We observed that the chronic use of pain medication was associated with significantly reduced perception of intranasal trigeminal stimuli and olfactory function compared to age-matched controls without intake of analgesics. Results indicate that non-opioid and opioid drugs, or a combination of both did not differ in their effects on chemosensory function. Further, after eliminating the effect of a co-existing depression and the use of co-analgesics, the negative influence of analgesics on olfactory function and trigeminal perception was still evident. The observed effect might be mediated due to interaction with opioid receptors in trigeminal ganglia and nuclei or due to trigeminal/olfactory interaction. As a practical consequence, patients should be made aware of a possible impairment of their olfactory and trigeminal function under long-term analgesic treatment. WHAT DOES THIS STUDY ADD?: We observed that the chronic use of pain medication was associated with significantly reduced olfactory function and perception of intranasal trigeminal stimuli compared to age-matched controls without intake of analgesics. Non-opioid and opioid drugs did not differ in their effects on chemosensory function. © 2016 European Pain Federation - EFIC®.
Chatchaisak, Duangthip; Connor, Mark; Srikiatkhachorn, Anan; Chetsawang, Banthit
2018-05-01
Growing evidence suggests that calcitonin gene-related peptide (CGRP) participates in trigeminal nociceptive responses. However, the role of CGRP in sensitization or desensitization of nociceptive transduction remains poorly understood. In this study, we sought to further investigate the CGRP-induced up-regulation of transient receptor potential vanilloid-1 (TRPV1) and the responses of trigeminal neurons to nociceptive stimuli. Rat trigeminal ganglion (TG) organ cultures and isolated trigeminal neurons were incubated with CGRP. An increase in TRPV1 levels was observed in CGRP-incubated TG organ cultures. CGRP potentiated capsaicin-induced increase in phosphorylated CaMKII levels in the TG organ cultures. The incubation of the trigeminal neurons with CGRP significantly increased the inward currents in response to capsaicin challenge, and this effect was inhibited by co-incubation with the CGRP receptor antagonist, BIBN4068BS or the inhibitor of protein kinase A, H-89. These findings reveal that CGRP acting on trigeminal neurons may play a significant role in facilitating cellular events that contribute to the peripheral sensitization of the TG in nociceptive transmission.
TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor
Chen, Yong; Kanju, Patrick; Fang, Quan; Lee, Suk Hee; Parekh, Puja K.; Lee, Whasil; Moore, Carlene; Brenner, Daniel; Gereau, Robert W.; Wang, Fan; Liedtke, Wolfgang
2014-01-01
Detection of external irritants by head nociceptor neurons has deep evolutionary roots. Irritant-induced aversive behavior is a popular pain model in laboratory animals. It is used widely in the formalin-model, where formaldehyde is injected into the rodent paw, eliciting quantifiable nocifensive behavior that has a direct, tissue-injury-evoked phase, and a subsequent tonic phase caused by neural maladaptation. The formalin model has elucidated many anti-pain compounds and pain-modulating signaling pathways. We have adopted this model to trigeminally-innervated territories in mice. Also, we have examined the involvement of TRPV4 channels in formalin-evoked trigeminal pain behavior, because TRPV4 is abundantly expressed in trigeminal ganglion (TG) sensory neurons, also because we have recently defined TRPV4’s role in response to air-borne irritants, and in a model for temporomandibular joint pain. We found TRPV4 to be important for trigeminal nocifensive behavior evoked by formalin whiskerpad injections. This conclusion is supported by studies with Trpv4−/− mice and TRPV4-specific antagonists. Our results imply TRPV4 in MEK-ERK activation in TG sensory neurons. Furthermore, cellular studies in primary TG neurons and in heterologous TRPV4-expressing cells suggest that TRPV4 can be activated directly by formalin to gate Ca++. Using TRPA1-blocker and Trpa1−/− mice, we found that both TRP channels co-contribute to the formalin trigeminal pain response. These results imply TRPV4 as an important signaling molecule in irritation-evoked trigeminal pain. TRPV4-antagonistic therapies can therefore be envisioned as novel analgesics, possibly for specific targeting of trigeminal pain disorders, such as migraine, headaches, TMJ, facial and dental pain, and irritation of trigeminally-innervated surface epithelia. PMID:25281928
Ashwell, Ken W S; Hardman, Craig D; Giere, Peter
2012-01-01
The extant monotremes (platypus and echidnas) are believed to all be capable of electroreception in the trigeminal pathways, although they differ significantly in the number and distribution of electroreceptors. It has been argued by some authors that electroreception was first developed in an aquatic environment and that echidnas are descended from a platypus-like ancestor that invaded an available terrestrial habitat. If this were the case, one would expect the developmental trajectories of the trigeminal pathways to be similar in the early stages of platypus and short-beaked echidna development, with structural divergence occurring later. We examined the development of the peripheral trigeminal pathway from snout skin to trigeminal ganglion in sectioned material in the Hill and Hubrecht collections to test for similarities and differences between the two during the development from egg to adulthood. Each monotreme showed a characteristic and different pattern of distribution of developing epidermal sensory gland specializations (electroreceptor primordia) from the time of hatching. The cross-sectional areas of the trigeminal divisions and the volume of the trigeminal ganglion itself were also very different between the two species at embryonic ages, and remained consistently different throughout post-hatching development. Our findings indicate that the trigeminal pathways in the short-beaked echidna and the platypus follow very different developmental trajectories from the earliest ages. These findings are more consistent with the notion that the platypus and echidna have both diverged from an ancestor with rudimentary electroreception and/or trigeminal specialization, rather than the contention that the echidna is derived from a platypus-like ancestor. Copyright © 2011 S. Karger AG, Basel.
Schöbel, Nicole; Beltrán, Leopoldo; Wetzel, Christian Horst; Hatt, Hanns
2013-01-01
Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual’s physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants), environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants). In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia. PMID:24205061
Barreiro-Iglesias, Antón; Romaus-Sanjurjo, Daniel; Senra-Martínez, Pablo; Anadón, Ramón; Rodicio, María Celina
2011-01-01
Studies in lampreys have revealed interesting aspects of the evolution of the trigeminal system and the jaw. In the present study, we found a marker that distinguishes subpopulations of trigeminal motoneurons innervating two different kinds of oropharyngeal muscles. Immunofluorescence with an antibody against doublecortin (DCX; a neuron-specific phosphoprotein) enabled identification of the trigeminal motoneurons that innervate the velar musculature of larval and recently transformed sea lampreys. DCX-immunoreactive (-ir) motoneurons were observed in the rostro-lateral part of the trigeminal motor nucleus of these animals, but not in lampreys 1 month or more after metamorphosis. Combined double DCX/tubulin and serotonin/tubulin immunofluorescence and tract-tracing experiments with neurobiotin (NB) were also performed in larvae for further characterization of this system. Rich innervation by DCX-ir fibers was observed on the muscle fibers of the velum but not on the upper lip or lower lip muscles, which were innervated by tubulin-ir/DCX-negative fibers. No double-labelled DCX-ir motoneurons were observed in experiments in which the tracer NB was applied to the upper lip. Innervation of velar muscles by serotonergic fibers is also reported. The present results indicate that development of the trigeminal motoneurons innervating the velum differs from that of the trigeminal motoneurons innervating the lips, which is probably related to the dramatic regression of the velum during metamorphosis. The absence of data on a similar subsystem in the trigeminal motor nucleus of gnathostomes suggests that they may be lamprey-specific motoneurons. These results provide support for the "heterotopic theory" of jaw evolution and are inconsistent with the theories of a velar origin for the gnathostome jaw. © 2011 Wiley Periodicals, Inc.
Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model
Marsh, John E.; Campbell, Tom A.
2016-01-01
The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory. PMID:27242396
Maskey, Dhiraj; Kim, Hyung Gun; Suh, Myung-Whan; Roh, Gu Seob; Kim, Myeung Ju
2014-08-01
The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) radiation. The interplay among auditory processing, excitation and inhibitory molecule interactions plays a major role in auditory function. In particular, inhibitory molecules, such a glycine, are predominantly localized in the auditory brainstem. However, the effects of exposure to RF radiation on auditory function have not been reported to date. Thus, the aim of the present study was to investigate the effects of exposure to RF radiation on glycine receptor (GlyR) immunoreactivity (IR) in the auditory brainstem region at 835 MHz with a specific absorption rate of 4.0 W/kg for three months using free-floating immunohistochemistry. Compared with the sham control (SC) group, a significant loss of staining intensity of neuropils and cells in the different subdivisions of the auditory brainstem regions was observed in the mice exposed to RF radiation (E4 group). A decrease in the number of GlyR immunoreactive cells was also noted in the cochlear nuclear complex [anteroventral cochlear nucleus (AVCN), 31.09%; dorsal cochlear nucleus (DCN), 14.08%; posteroventral cochlear nucleus (PVCN), 32.79%] and the superior olivary complex (SOC) [lateral superior olivary nucleus (LSO), 36.85%; superior paraolivary nucleus (SPN), 24.33%, medial superior olivary nucleus (MSO), 23.23%; medial nucleus of the trapezoid body (MNTB), 10.15%] of the mice in the E4 group. Auditory brainstem response (ABR) analysis also revealed a significant threshold elevation of in the exposed (E4) group, which may be associated with auditory dysfunction. The present study suggests that the auditory brainstem region is susceptible to chronic exposure to RF radiation, which may affect the function of the central auditory system.
Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model.
Marsh, John E; Campbell, Tom A
2016-01-01
The rostral brainstem receives both "bottom-up" input from the ascending auditory system and "top-down" descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory.
[Pathophysiology and treatment of orofacial pain.
Shinoda, Masamichi; Noma, Noboru
"Pain" is one of body defense mechanisms and crucial for the life support. However, orofacial pain such as myofascial pain syndrome, burning mouth syndrome and trigeminal neuralgia plays no part in body defense mechanisms and requires therapeutic intervention. Recent studies have indicated that plastic changes in the activities of trigeminal neurons, satellite glial cells in trigeminal ganglion, secondary neurons, microglia and astrocytes in trigeminal spinal subnucleus following orofacial inflammation and trigeminal nerve injury are responsible for orofacial pain mechanisms. Clinically, it is well known that the etiologic differential diagnosis which consists of careful history-taking and physical examination is essential for therapeutic decision in patients with orofacial pain. This report outlines the current knowledge on the pathophysiology, diagnosis, treatment of orofacial pain.
Forsberg, David; Horn, Zachi; Tserga, Evangelia; Smedler, Erik; Silberberg, Gilad; Shvarev, Yuri; Kaila, Kai; Uhlén, Per; Herlenius, Eric
2016-01-01
Inflammation-induced release of prostaglandin E2 (PGE2) changes breathing patterns and the response to CO2 levels. This may have fatal consequences in newborn babies and result in sudden infant death. To elucidate the underlying mechanisms, we present a novel breathing brainstem organotypic culture that generates rhythmic neural network and motor activity for 3 weeks. We show that increased CO2 elicits a gap junction-dependent release of PGE2. This alters neural network activity in the preBötzinger rhythm-generating complex and in the chemosensitive brainstem respiratory regions, thereby increasing sigh frequency and the depth of inspiration. We used mice lacking eicosanoid prostanoid 3 receptors (EP3R), breathing brainstem organotypic slices and optogenetic inhibition of EP3R+/+ cells to demonstrate that the EP3R is important for the ventilatory response to hypercapnia. Our study identifies a novel pathway linking the inflammatory and respiratory systems, with implications for inspiration and sighs throughout life, and the ability to autoresuscitate when breathing fails. DOI: http://dx.doi.org/10.7554/eLife.14170.001 PMID:27377173
Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam
2016-04-01
It is widely accepted that the spinal trigeminal nuclear complex, especially the subnucleus caudalis (Vc), receives input from orofacial structures. The neuropeptides orexin-A and -B are expressed in multiple neuronal systems. Orexin signaling has been implicated in pain-modulating system as well as learning and memory processes. Orexin 1 receptor (OX1R) has been reported in trigeminal nucleus caudalis. However, its roles in trigeminal pain modulation have not been elucidated so far. This study was designed to investigate the role of Vc OX1R in the modulation of orofacial pain as well as pain-induced learning and memory deficits. Orofacial pain was induced by subcutaneous injection of capsaicin in the right upper lip of the rats. OX1R agonist (orexin-A) and antagonist (SB-334867-A) were microinjected into Vc prior capsaicin administration. After recording nociceptive times, learning and memory was investigated using Morris water maze (MWM) test. The results indicated that, orexin-A (150 pM/rat) significantly reduced the nociceptive times, while SB334867-A (80 nM/rat) exaggerated nociceptive behavior in response to capsaicin injection. In MWM test, capsaicin-treated rats showed a significant learning and memory impairment. Moreover, SB-334867-A (80 nM/rat) significantly exaggerated learning and memory impairment in capsaicin-treated rats. However, administration of orexin-A (100 pM/rat) prevented learning and memory deficits. Taken together, these results indicate that Vc OX1R was at least in part involved in orofacial pain transmission and orexin-A has also a beneficial inhibitory effect on orofacial pain-induced deficits in abilities of spatial learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons.
Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung
2017-03-01
The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K + and Ca 2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K + currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K + currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs + (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca 2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.
Gamma Knife® radiosurgery for trigeminal neuralgia.
Yen, Chun-Po; Schlesinger, David; Sheehan, Jason P
2011-11-01
Trigeminal neuralgia is characterized by a temporary paroxysmal lancinating facial pain in the trigeminal nerve distribution. The prevalence is four to five per 100,000. Local pressure on nerve fibers from vascular loops results in painful afferent discharge from an injured segment of the fifth cranial nerve. Microvascular decompression addresses the underlying pathophysiology of the disease, making this treatment the gold standard for medically refractory trigeminal neuralgia. In patients who cannot tolerate a surgical procedure, those in whom a vascular etiology cannot be identified, or those unwilling to undergo an open surgery, stereotactic radiosurgery is an appropriate alternative. The majority of patients with typical facial pain will achieve relief following radiosurgical treatment. Long-term follow-up for recurrence as well as for radiation-induced complications is required in all patients undergoing stereotactic radiosurgery for trigeminal neuralgia.
Fried, Nathan T; Maxwell, Christina R; Elliott, Melanie B; Oshinsky, Michael L
2017-01-01
Background The blood-brain barrier (BBB) has been hypothesized to play a role in migraine since the late 1970s. Despite this, limited investigation of the BBB in migraine has been conducted. We used the inflammatory soup rat model of trigeminal allodynia, which closely mimics chronic migraine, to determine the impact of repeated dural inflammatory stimulation on BBB permeability. Methods The sodium fluorescein BBB permeability assay was used in multiple brain regions (trigeminal nucleus caudalis (TNC), periaqueductal grey, frontal cortex, sub-cortex, and cortex directly below the area of dural activation) during the episodic and chronic stages of repeated inflammatory dural stimulation. Glial activation was assessed in the TNC via GFAP and OX42 immunoreactivity. Minocycline was tested for its ability to prevent BBB disruption and trigeminal sensitivity. Results No astrocyte or microglial activation was found during the episodic stage, but BBB permeability and trigeminal sensitivity were increased. Astrocyte and microglial activation, BBB permeability, and trigeminal sensitivity were increased during the chronic stage. These changes were only found in the TNC. Minocycline treatment prevented BBB permeability modulation and trigeminal sensitivity during the episodic and chronic stages. Discussion Modulation of BBB permeability occurs centrally within the TNC following repeated dural inflammatory stimulation and may play a role in migraine. PMID:28457145
Li, Jin-Lian; Xiong, Kang-Hui; Dong, Yu-Lin; Fujiyama, Fumino; Kaneko, Takeshi; Mizuno, Noboru
2003-08-18
Vesicular glutamate transporters are responsible for glutamate transport into synaptic vesicles. In the present study, we examined immunohistochemically the expression of vesicular glutamate transporters, VGluT1 and VGluT2, in trigeminal ganglion neurons of the rat. Immunohistochemistry for VGluT1 and VGluT2 indicated that more than 80% of trigeminal ganglion neurons express VGluT1 and/or VGluT2 in their cell bodies. It also indicated that large and small trigeminal ganglion neurons express VGluT2 more frequently than VGluT1. Dual immunofluorescence histochemistry for VGluT1 and VGluT2 indicated that trigeminal ganglion neurons express VGluT2 more frequently than VGluT1 and that more than 80% of VGluT-expressing trigeminal ganglion neurons express VGluT1 and VGluT2. Many axon terminals in the superficial layers of the medullary dorsal horn also showed VGluT1 and VGluT2 immunoreactivities. Some of these axon terminals were confirmed to form the central core of the synaptic glomerulus. These results indicated that VGluT1 and VGluT2 are coexpressed in the cell bodies and axon terminals in most trigeminal ganglion neurons. Copyright 2003 Wiley-Liss, Inc.
The diet factor in pediatric and adolescent migraine.
Millichap, J Gordon; Yee, Michelle M
2003-01-01
Diet can play an important role in the precipitation of headaches in children and adolescents with migraine. The diet factor in pediatric migraine is frequently neglected in favor of preventive drug therapy. The list of foods, beverages, and additives that trigger migraine includes cheese, chocolate, citrus fruits, hot dogs, monosodium glutamate, aspartame, fatty foods, ice cream, caffeine withdrawal, and alcoholic drinks, especially red wine and beer. Underage drinking is a significant potential cause of recurrent headache in today's adolescent patients. Tyramine, phenylethylamine, histamine, nitrites, and sulfites are involved in the mechanism of food intolerance headache. Immunoglobulin E-mediated food allergy is an infrequent cause. Dietary triggers affect phases of the migraine process by influencing release of serotonin and norepinephrine, causing vasoconstriction or vasodilatation, or by direct stimulation of trigeminal ganglia, brainstem, and cortical neuronal pathways. Treatment begins with a headache and diet diary and the selective avoidance of foods presumed to trigger attacks. A universal migraine diet with simultaneous elimination of all potential food triggers is generally not advised in practice. A well-balanced diet is encouraged, with avoidance of fasting or skipped meals. Long-term prophylactic drug therapy is appropriate only after exclusion of headache-precipitating trigger factors, including dietary factors.
Diener, Hans-Christoph; Gaul, Charly; Holle-Lee, Dagny; Lazaridis, Lazaros; Nägel, Steffen; Obermann, Mark
2017-06-01
A review of the latest and most relevant information on different disorders of head and facial pain is presented. News from epidemiologic studies regarding the relationship between migraine and patent foramen ovale, the cardiovascular risk in migraine, and migraine behavior during menopause, and the development of white matter lesions or migraine genetics are presented. Regarding pathophysiology there are very recent insights regarding the role of the hypothalamus during prodromal phase and the interplay of brain-stem and hypothalamus during the attack. In the last year studies and metaanalysis generated new knowledge for the use of triptans in general as in menstrual related migraine and hemiplegic variants. Furthermore, new hope rises for the CGRP (calcitonin-gene related peptide)-antagonists, as the data for ubrogepant do not suggest hepatotoxicity but efficacy. In prophylactic migraine treatment the news are manly on how the new therapeutic approach with monoclonal antibodies against CGRP or its receptor is moving on. Additional newly generated data for already known prophylactic agents as for new approaches are compactly discussed. Although main developments in headache focus on migraine new data on trigemino-autonomic headache trigeminal neuralgia and new daily persistant headache became available. Georg Thieme Verlag KG Stuttgart · New York.
Emerging Role of (Endo)Cannabinoids in Migraine.
Leimuranta, Pinja; Khiroug, Leonard; Giniatullin, Rashid
2018-01-01
In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain. Individual sections of this review cover key aspects of this topic, such as: (i) the current knowledge on the endocannabinoid system (ECS) with emphasis on expression of its components in migraine related structures; (ii) distinguishing peripheral from central site of action of cannabinoids, (iii) proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv) therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v) dual (possibly opposing) actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors. We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD) hypothesis, which implies reduced tone of endocannabinoids in migraine patients. We further discuss the control of cortical excitability by cannabinoids via inhibition of cortical spreading depression (CSD) underlying the migraine aura. Finally, we present our view on perspectives of Cannabis-derived (extracted or synthetized marijuana components) or novel endocannabinoid therapeutics in migraine treatment.
Sumatriptan Inhibits TRPV1 Channels in Trigeminal Neurons
Evans, M. Steven; Cheng, Xiangying; Jeffry, Joseph A.; Disney, Kimberly E.; Premkumar, Louis S.
2011-01-01
Objective To understand a possible role for transient potential receptor vanilloid 1 (TRPV1) ion channels in sumatriptan relief of pain mediated by trigeminal nociceptors. Background TRPV1 channels are expressed in small nociceptive sensory neurons. In dorsal root ganglia (DRG), TRPV1-containing nociceptors mediate certain types of inflammatory pain. Neurogenic inflammation of cerebral dura and blood vessels in the trigeminal nociceptive system is thought to be important in migraine pain, but the ion channels important in transducing migraine pain are not known. Sumatriptan is an agent effective in treatment of migraine and cluster headache. We hypothesized that sumatriptan might modulate activity of TRPV1 channels found in the trigeminal nociceptive system. Methods We used immunohistochemistry to detect the presence of TRPV1 channel protein, whole cell recording in acutely dissociated trigeminal ganglia (TG) to detect functionality of TRPV1 channels, and whole cell recording in trigeminal nucleus caudalis (TNC) to detect effects on release of neurotransmitters from trigeminal neurons onto second order sensory neurons. Effects specifically on TG neurons that project to cerebral dura were assessed by labeling dural nociceptors with DiI. Results Immunohistochemistry demonstrated that TRPV1 channels are present in cerebral dura, trigeminal ganglion, and in the trigeminal nucleus caudalis. Capsaicin, a TRPV1 agonist, produced depolarization and repetitive action potential firing in current clamp recordings and large inward currents in voltage clamp recordings from acutely dissociated TG neurons, demonstrating that TRPV1 channels are functional in trigeminal neurons. Capsaicin increased spontaneous excitatory postsynaptic currents (sEPSCs) in neurons of layer II in TNC slices, showing that these channels have a physiological effect on central synaptic transmission. Sumatriptan (10 μM), a selective anti-migraine drug inhibited TRPV1-mediated inward currents in TG. and capsaicin-elicited sEPSCs in TNC slices. The same effects of capsaicin and sumatriptan were found in acutely dissociated DiI-labeled TG neurons innervating cerebral dura. Conclusion Our results build on previous work indicating that TRPV1 channels in trigeminal nociceptors play a role in craniofacial pain. Our findings that TRPV1 is inhibited by the specific antimigraine drug sumatriptan, and that TRPV1 channels are functional in neurons projecting to cerebral dura suggests a specific role for these channels in migraine or cluster headache. PMID:22289052
A brief review of the clinical anatomy of the vestibular-ocular connections-how much do we know?
Bronstein, A M; Patel, M; Arshad, Q
2015-02-01
The basic connectivity from the vestibular labyrinth to the eye muscles (vestibular ocular reflex, VOR) has been elucidated in the past decade, and we summarise this in graphic format. We also review the concept of 'velocity storage', a brainstem integrator that prolongs vestibular responses. Finally, we present new discoveries of how complex visual stimuli, such as binocular rivalry, influence VOR processing. In contrast to the basic brainstem circuits, cortical vestibular circuits are far from being understood, but parietal-vestibular nuclei projections are likely to be involved.
A new view of “dream enactment” in REM sleep behavior disorder
Blumberg, Mark S.; Plumeau, Alan M.
2015-01-01
SUMMARY REM sleep behavior disorder (RBD) is a disorder in which patients exhibit increased muscle tone and exaggerated myoclonic twitching during REM sleep. In addition, violent movements of the limbs, and complex behaviors that can sometimes appear to involve the enactment of dreams, are associated with RBD. These behaviors are widely thought to result from a dysfunction involving atonia-producing neural circuitry in the brainstem, thereby unmasking cortically generated dreams. Here we scrutinize the assumptions that led to this interpretation of RBD. In particular, we challenge the assumption that motor cortex produces twitches during REM sleep, thus calling into question the related assumption that motor cortex is primarily responsible for all of the pathological movements of RBD. Moreover, motor cortex is not even necessary to produce complex behavior; for example, stimulation of some brainstem structures can produce defensive and aggressive behaviors in rats and monkeys that are striking similar to those reported in human patients with RBD. Accordingly, we suggest an interpretation of RBD that focuses increased attention on the brainstem as a source of the pathological movements and that considers sensory feedback from moving limbs as an important influence on the content of dream mentation. PMID:26802823
IL-1β Stimulates COX-2 Dependent PGE2 Synthesis and CGRP Release in Rat Trigeminal Ganglia Cells
Neeb, Lars; Hellen, Peter; Boehnke, Carsten; Hoffmann, Jan; Schuh-Hofer, Sigrid; Dirnagl, Ulrich; Reuter, Uwe
2011-01-01
Objective Pro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified. Methods and Results 1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE2) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE2 and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect. Conclusion We identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE2 (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The results could help to explain the mechanism of action of COX-2 inhibitors in migraine. PMID:21394197
Clinical Evaluation of Targeting Accuracy of Gamma Knife Radiosurgery in Trigeminal Neuralgia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas; Abeloos, Laurence; Devriendt, Daniel
2007-12-01
Purpose: The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgical treatment with the Leksell Gamma Knife for trigeminal neuralgia. We also studied the applied radiation dose within the area of focal contrast enhancement on the trigeminal nerve root following radiosurgery. Methods and Materials: From an initial group of 78 patients with trigeminal neuralgia treated with gamma knife radiosurgery using a 90-Gy dose, we analyzed a subgroup of 65 patients for whom 6-month follow-up MRI showed focal contrast enhancement of the trigeminal nerve. Follow-up MRI was spatially coregistered to the radiosurgicalmore » planning MRI. Target accuracy was assessed from deviation of the coordinates of the intended target compared with the center of enhancement on postoperative MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated. Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was 0.91 mm in Euclidean space. The radiation doses fitting within the borders of the contrast enhancement of the trigeminal nerve root ranged from 49 to 85 Gy (median value, 77 {+-} 8.7 Gy). Conclusions: The median deviation found in clinical assessment of gamma knife treatment for trigeminal neuralgia is low and compatible with its high rate of efficiency. Focal enhancement of the trigeminal nerve after radiosurgery occurred in 83% of our patients and was not associated with clinical outcome. Focal enhancement borders along the nerve root fit with a median dose of 77 {+-} 8.7 Gy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciura, Katherine; McBurney, Michelle; Nguyen, Baongoc
Intensity-modulated radiation therapy (IMRT) is becoming the treatment of choice for many head and neck cancer patients. IMRT reduces some toxicities by reducing radiation dose to uninvolved normal tissue near tumor targets; however, other tissues not irradiated using previous 3D techniques may receive clinically significant doses, causing undesirable side effects including nausea and vomiting (NV). Irradiation of the brainstem, and more specifically, the area postrema and dorsal vagal complex (DVC), has been linked to NV. We previously reported preliminary hypothesis-generating dose effects associated with NV in IMRT patients. The goal of this study is to relate brainstem dose to NVmore » symptoms. We retrospectively studied 100 consecutive patients that were treated for oropharyngeal cancer with IMRT. We contoured the brainstem, area postrema, and DVC with the assistance of an expert diagnostic neuroradiologist. We correlated dosimetry for the 3 areas contoured with weekly NV rates during IMRT. NV rates were significantly higher for patients who received concurrent chemotherapy. Post hoc analysis demonstrated that chemoradiation cases exhibited a trend towards the same dose-response relationship with both brainstem mean dose (p = 0.0025) and area postrema mean dose (p = 0.004); however, both failed to meet statistical significance at the p {<=} 0.002 level. Duration of toxicity was also greater for chemoradiation patients, who averaged 3.3 weeks with reported Common Terminology Criteria for Adverse Events (CTC-AE), compared with an average of 2 weeks for definitive RT patients (p = 0.002). For definitive RT cases, no dose-response trend could be ascertained. The mean brainstem dose emerged as a key parameter of interest; however, no one dose parameter (mean/median/EUD) best correlated with NV. This study does not address extraneous factors that would affect NV incidence, including the use of antiemetics, nor chemotherapy dose schedule specifics before and during RT. A prospective study will be required to depict exactly how IMRT dose affects NV.« less
Guarneros, Marco; Hummel, Thomas; Martínez-Gómez, Margaríta; Hudson, Robyn
2009-11-01
Surprisingly little is known about the effects of big-city air pollution on olfactory function and even less about its effects on the intranasal trigeminal system, which elicits sensations like burning, stinging, pungent, or fresh and contributes to the overall chemosensory experience. Using the Sniffin' Sticks olfactory test battery and an established test for intranasal trigeminal perception, we compared the olfactory performance and trigeminal sensitivity of residents of Mexico City, a region with high air pollution, with the performance of a control population from the Mexican state of Tlaxcala, a geographically comparable but less polluted region. We compared the ability of 30 young adults from each location to detect a rose-like odor (2-phenyl ethanol), to discriminate between different odorants, and to identify several other common odorants. The control subjects from Tlaxcala detected 2-phenyl ethanol at significantly lower concentrations than the Mexico City subjects, they could discriminate between odorants significantly better, and they performed significantly better in the test of trigeminal sensitivity. We conclude that Mexico City air pollution impairs olfactory function and intranasal trigeminal sensitivity, even in otherwise healthy young adults.
Puri, Jyoti; Vinothini, Priya; Reuben, Jayne; Bellinger, Larry L.; Ailing, Li; Peng, Yuan B.; Kramer, Phillip R.
2012-01-01
Trigeminal ganglia neurons express the GABAA receptor subunit alpha 6 (Gabrα6) but the role of this particular subunit in orofacial hypersensitivity is unknown. In this report the function of Gabrα6 was tested by reducing its expression in the trigeminal ganglia and measuring the effect of this reduction on inflammatory temporomandibular joint (TMJ) hypersensitivity. Gabrα6 expression was reduced by infusing the trigeminal ganglia of male Sprague Dawley rats with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabrα6 siRNA) or no known gene (control siRNA). Sixty hours after siRNA infusion the rats received a bilateral TMJ injection of complete Freund’s adjuvant to induce an inflammatory response. Hypersensitivity was then quantitated by measuring meal duration, which lengthens when hypersensitivity increases. Neuronal activity in the trigeminal ganglia was also measured by quantitating the amount of phosphorylated ERK. Rats in a different group that did not have TMJ inflammation had an electrode placed in the spinal cord at the level of C1 sixty hours after siRNA infusion to record extracellular electrical activity of neurons that responded to TMJ stimulation. Our results show that Gabrα6 was expressed in both neurons and satellite glia of the trigeminal ganglia and that Gabrα6 positive neurons within the trigeminal ganglia have afferents in the TMJ. Gabrα6 siRNA infusion reduced Gabrα6 gene expression by 30% and significantly lengthened meal duration in rats with TMJ inflammation. Gabrα6 siRNA infusion also significantly increased p-ERK expression in the trigeminal ganglia of rats with TMJ inflammation and increased electrical activity in the spinal cord of rats without TMJ inflammation. These results suggest that maintaining Gabrα6 expression was necessary to inhibit primary sensory afferents in the trigeminal pathway and reduce inflammatory orofacial nociception. PMID:22521829
Kouni, Sophia N; Giannopoulos, Sotirios; Ziavra, Nausika; Koutsojannis, Constantinos
2013-01-01
Acoustic signals are transmitted through the external and middle ear mechanically to the cochlea where they are transduced into electrical impulse for further transmission via the auditory nerve. The auditory nerve encodes the acoustic sounds that are conveyed to the auditory brainstem. Multiple brainstem nuclei, the cochlea, the midbrain, the thalamus, and the cortex constitute the central auditory system. In clinical practice, auditory brainstem responses (ABRs) to simple stimuli such as click or tones are widely used. Recently, complex stimuli or complex auditory brain responses (cABRs), such as monosyllabic speech stimuli and music, are being used as a tool to study the brainstem processing of speech sounds. We have used the classic 'click' as well as, for the first time, the artificial successive complex stimuli 'ba', which constitutes the Greek word 'baba' corresponding to the English 'daddy'. Twenty young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) comprised the diseased group. Twenty sex-, age-, education-, hearing sensitivity-, and IQ-matched normal subjects comprised the control group. Measurements included the absolute latencies of waves I through V, the interpeak latencies elicited by the classical acoustic click, the negative peak latencies of A and C waves, as well as the interpeak latencies of A-C elicited by the verbal stimulus 'baba' created on a digital speech synthesizer. The absolute peak latencies of waves I, III, and V in response to monoaural rarefaction clicks as well as the interpeak latencies I-III, III-V, and I-V in the dyslexic subjects, although increased in comparison with normal subjects, did not reach the level of a significant difference (p<0.05). However, the absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli were found to be increased in the dyslexic group in comparison with the control group (p=0.0004 and p=0.045, respectively). In the subgroup consisting of 10 patients suffering from 'other learning disabilities' and who were characterized as with 'light' dyslexia according to dyslexia tests, no significant delays were found in peak latencies A and C and interpeak latencies A-C in comparison with the control group. Acoustic representation of a speech sound and, in particular, the disyllabic word 'baba' was found to be abnormal, as low as the auditory brainstem. Because ABRs mature in early life, this can help to identify subjects with acoustically based learning problems and apply early intervention, rehabilitation, and treatment. Further studies and more experience with more patients and pathological conditions such as plasticity of the auditory system, cochlear implants, hearing aids, presbycusis, or acoustic neuropathy are necessary until this type of testing is ready for clinical application. © 2013 Elsevier Inc. All rights reserved.
Autonomic headache with autonomic seizures: a case report.
Ozge, Aynur; Kaleagasi, Hakan; Yalçin Tasmertek, Fazilet
2006-10-01
The aim of the report is to present a case of an autonomic headache associated with autonomic seizures. A 19-year-old male who had had complex partial seizures for 15 years was admitted with autonomic complaints and left hemicranial headache, independent from seizures, that he had had for 2 years and were provoked by watching television. Brain magnetic resonance imaging showed right hippocampal sclerosis and electroencephalography revealed epileptic activity in right hemispheric areas. Treatment with valproic acid decreased the complaints. The headache did not fulfil the criteria for the diagnosis of trigeminal autonomic cephalalgias, and was different from epileptic headache, which was defined as a pressing type pain felt over the forehead for several minutes to a few hours. Although epileptic headache responds to anti-epileptics and the complaints of the present case decreased with antiepileptics, it has been suggested that the headache could be a non-trigeminal autonomic headache instead of an epileptic headache.
Overview and History of Trigeminal Neuralgia.
Patel, Smruti K; Liu, James K
2016-07-01
Although the symptoms associated with trigeminal neuralgia have been well documented, the root cause of this disease initially eluded most surgeons. Although early remedies were haphazard because of a lack of understanding about the condition, near the 20th century both medical and procedural therapies were established for the treatment of trigeminal neuralgia. These treatments include a variety of medications, chemoneurolysis, radiofrequency lesioning, percutaneous ablative procedures, stereotactic radiosurgery, and open rhizotomy and microvascular decompression. This report recounts the history of trigeminal neuralgia, from its earliest descriptions to the historical evolution of nonsurgical and surgical therapies. Copyright © 2016 Elsevier Inc. All rights reserved.
McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R
1998-08-01
Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.
Plasticity in the adult human auditory brainstem following short-term linguistic training
Song, Judy H.; Skoe, Erika; Wong, Patrick C. M.; Kraus, Nina
2009-01-01
Peripheral and central structures along the auditory pathway contribute to speech processing and learning. However, because speech requires the use of functionally and acoustically complex sounds which necessitates high sensory and cognitive demands, long-term exposure and experience using these sounds is often attributed to the neocortex with little emphasis placed on subcortical structures. The present study examines changes in the auditory brainstem, specifically the frequency following response (FFR), as native English-speaking adults learn to incorporate foreign speech sounds (lexical pitch patterns) in word identification. The FFR presumably originates from the auditory midbrain, and can be elicited pre-attentively. We measured FFRs to the trained pitch patterns before and after training. Measures of pitch-tracking were then derived from the FFR signals. We found increased accuracy in pitch-tracking after training, including a decrease in the number of pitch-tracking errors and a refinement in the energy devoted to encoding pitch. Most interestingly, this change in pitch-tracking accuracy only occurred in the most acoustically complex pitch contour (dipping contour), which is also the least familiar to our English-speaking subjects. These results not only demonstrate the contribution of the brainstem in language learning and its plasticity in adulthood, but they also demonstrate the specificity of this contribution (i.e., changes in encoding only occurs in specific, least familiar stimuli, not all stimuli). Our findings complement existing data showing cortical changes after second language learning, and are consistent with models suggesting that brainstem changes resulting from perceptual learning are most apparent when acuity in encoding is most needed. PMID:18370594
Selectively targeting pain in the trigeminal system
Kim, Hyun Yeong; Kim, Kihwan; Li, Hai Ying; Chung, Gehoon; Park, Chul-Kyu; Kim, Joong Soo; Jung, Sung Jun; Lee, Min Kyung; Ahn, Dong Kuk; Hwang, Se Jin; Kang, Youngnam; Binshtok, Alexander M.; Bean, Bruce P.; Woolf, Clifford J.; Oh, Seog Bae
2015-01-01
We tested whether it is possible to selectively block pain signals in the orofacial area by delivering the permanently charged lidocaine derivative QX-314 into nociceptors via TPRV1 channels. We examined the effects of co-applied QX-314 and capsaicin on nociceptive, proprioceptive, and motor function in the rat trigeminal system. QX-314 alone failed to block voltage-gated sodium channel currents (INa) and action potentials (APs) in trigeminal ganglion (TG) neurons. However, co-application of QX-314 and capsaicin blocked INa and APs in TRPV1-positive TG and dental nociceptive neurons, but not in TRPV1-negative TG neurons or in small neurons from TRPV1 knock-out mice. Immunohistochemistry revealed that TRPV1 is not expressed by trigeminal motor and trigeminal mesencephalic neurons. Capsaicin had no effect on rat trigeminal motor and proprioceptive mesencephalic neurons and therefore should not allow QX-314 to enter these cells. Co-application of QX-314 and capsaicin inhibited the jaw-opening reflex evoked by noxious electrical stimulation of the tooth pulp when applied to a sensory but not a motor nerve, and produced long-lasting analgesia in the orofacial area. These data show that selective block of pain signals can be achieved by co-application of QX-314 with TRPV1 agonists. This approach has potential utility in the trigeminal system for treating dental and facial pain. PMID:20236764
Kawaguchi, Jun; Matsuura, Nobuyuki; Kasahara, Masataka; Ichinohe, Tatsuya
2015-02-01
The purpose of this study was to investigate the latency and amplitude of trigeminal somatosensory evoked potentials to clarify how nerve function on the contralateral side is affected after cervical sympathetic block (CSB). Subjects comprised 16 volunteers. For CSB, the tip of a needle was contacted with the transverse process of the sixth cervical vertebra on the right side, and lidocaine was injected. Trigeminal somatosensory evoked potentials were recorded bilaterally from C5/C6 scalp positions. Pupil diameters were also measured. Electrical stimulations were applied to the left-side lower lip, and trigeminal somatosensory evoked potentials waveforms derived from both sides of the scalp were recorded. Then, electrical stimulations were applied to the right-side of the lower lip, and recording was again performed. Recordings were performed at 5, 15, and 30 minutes after CSB. On the CSB side, pupil diameter decreased at 5 and 15 minutes after CSB. Trigeminal somatosensory evoked potentials at contralateral stimulation showed a prolongation of the latency in both P20 and N25 components on bilateral recording sites 5 and 15 minutes after CSB. Trigeminal somatosensory evoked potentials' amplitude at contralateral stimulation was smaller than at ipsilateral stimulation 5 minutes after CSB. Cervical sympathetic block prolongs the latency and reduces the amplitude of trigeminal somatosensory evoked potentials on the contralateral side.
The association of middle ear effusion with trigeminal nerve mass lesions in dogs.
Wessmann, A; Hennessey, A; Goncalves, R; Benigni, L; Hammond, G; Volk, H A
2013-11-09
The trigeminal nerve is involved in the opening of the pharyngeal orifice of the Eustachian tube by operating the tensor veli palatini muscle. The hypothesis was investigated that middle ear effusion occurs in a more severe disease phenotype of canine trigeminal nerve mass lesions compared with dogs without middle ear effusion. Three observers reviewed canine MRIs with an MRI-diagnosis of trigeminal nerve mass lesion from three institutions. Various parameters describing the musculature innervated by the trigeminal nerve were scored and compared between dogs with and without middle ear effusion. Nineteen dogs met the inclusion criteria. Ipsilateral middle ear effusion was observed in 63 per cent (95% CI 48.4 per cent to 77.6 per cent) of the dogs. The size of the trigeminal nerve mass lesions was positively correlated with the severity of masticatory muscle mass loss (Spearman r=0.5, P=0.03). Dogs with middle ear effusion had a significantly increased generalised masticatory muscle mass loss (P=0.02) or tensor veli palatini muscle loss score (P=0.03) compared with those without. Larger trigeminal nerve mass lesions were associated with a greater degree of masticatory muscle mass loss. Masticatory muscle mass and, importantly, tensor veli palatini muscle mass was more severely affected in dogs with middle ear effusion suggesting an associated Eustachian tube dysfunction.
2010-01-01
Background Inflammation and pain associated with temporomandibular joint disorder, a chronic disease that affects 15% of the adult population, involves activation of trigeminal ganglion nerves and development of peripheral and central sensitization. Natural products represent an underutilized resource in the pursuit of safe and effective ways to treat chronic inflammatory diseases. The goal of this study was to investigate effects of grape seed extract on neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis in response to persistent temporomandibular joint inflammation. Sprague Dawley rats were pretreated with 200 mg/kg/d MegaNatural-BP grape seed extract for 14 days prior to bilateral injections of complete Freund's adjuvant into the temporomandibular joint capsule. Results In response to grape seed extract, basal expression of mitogen-activated protein kinase phosphatase 1 was elevated in neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis, and expression of the glutamate aspartate transporter was increased in spinal glia. Rats on a normal diet injected with adjuvant exhibited greater basal levels of phosphorylated-p38 in trigeminal ganglia neurons and spinal neurons and microglia. Similarly, immunoreactive levels of OX-42 in microglia and glial fibrillary acidic protein in astrocytes were greatly increased in response to adjuvant. However, adjuvant-stimulated levels of phosphorylated-p38, OX-42, and glial fibrillary acidic protein were significantly repressed in extract treated animals. Furthermore, grape seed extract suppressed basal expression of the neuropeptide calcitonin gene-related peptide in spinal neurons. Conclusions Results from our study provide evidence that grape seed extract may be beneficial as a natural therapeutic option for temporomandibular joint disorders by suppressing development of peripheral and central sensitization. PMID:21143976
Puri, Jyoti; Bellinger, Larry L.; Kramer, Phillip R.
2011-01-01
Females report temporomandibular joint (TMJ) pain more than men and studies suggest estrogen modulates this pain response. Our goal in this study was to determine genes that are modulated by physiological levels of 17β-estradiol that could have a role in TMJ pain. To complete this goal, saline or complete Freund’s adjuvant was injected in the TMJ when plasma 17β-estradiol was low or when it was at a high proestrus level. TMJ, trigeminal ganglion and trigeminal subnucleus caudalis/upper cervical cord junction (Vc/C1–2) tissues were isolated from the treated rats and expression of 184 genes was quantitated in each tissue using real time PCR. Significant changes in the amount of specific transcripts were observed in the TMJ tissues, trigeminal ganglia and Vc/C1–2 region when comparing rats with high and low estrogen. GABA A receptor subunit α6 (Gabra6) and the glycine receptor α2 (Glra2) were two genes of interest because of their direct function in neuronal activity and a greater than 29 fold increase in the trigeminal ganglia was observed in proestrus rats with TMJ inflammation. Immunohistochemical studies showed that Gabrα6 and Glrα2 neuronal and not glial expression increased when comparing rats with high and low estrogen. Estrogen receptors α and β are present in neurons of the trigeminal ganglia, whereby 17β-estradiol can alter expression of Gabrα6 and Glrα2. Also, estrogen receptor α (ERα) but not ERβ was observed in satellite glial cells of the trigeminal ganglia. These results demonstrate that genes associated with neurogenic inflammation or neuronal excitability were altered by changes in the concentration of 17β-estradiol. PMID:21321935
Does somatostatin have a role to play in migraine headache?
Lambert, Geoffrey A; Zagami, Alessandro S
2018-06-01
Migraine is a condition without apparent pathology. Its cardinal symptom is the prolonged excruciating headache. Theories about this pain have posited pathologies which run the gamut from neural to vascular to neurovascular, but no observations have detected a plausible pathology. We believe that no pathology can be found for migraine headache because none exists. Migraine is not driven by pathology - it is driven by neural events produced by triggers - or simply by neural noise- noise that has crossed a critical threshold. If these ideas are true, how does the pain arise? We hypothesise that migraine headache is a consequence of withdrawal of descending pain control, produced by "noise" in the cerebral cortex. Nevertheless, there has to be a neural circuit to transform cortical noise to withdrawal of pain control. In our hypothesis, this neural circuit extends from the cortex, synapses in two brainstem nuclei (the periaqueductal gray matter and the raphe magnus nucleus) and ultimately reaches the first synapse of the trigeminal sensory system. The second stage of this circuit uses serotonin (5HT) as a neurotransmitter, but the neuronal projection from the cortex to the brainstem seems to involve relatively uncommon neurotransmitters. We believe that one of these is somatostatin (SST). Temporal changes in levels of circulating SST mirror the temporal changes in the incidence of migraine, particularly in women. The SST 2 receptor agonist octreotide has been used with some success in migraine and cluster headache. A cortical to PAG/NRM neural projection certainly exists and we briefly review the anatomical and neurophysiological evidence for it and provide preliminary evidence that SST may the critical neurotransmitter in this pathway. We therefore suggest that the withdrawal of descending tone in SST-containing neurons, might create a false pain signal and hence the headache of migraine. Copyright © 2018. Published by Elsevier Ltd.
Josephson, Anna; Trifunovski, Alexandra; Widmer, Hans Ruedi; Widenfalk, Johan; Olson, Lars; Spenger, Christian
2002-11-18
Nogo (reticulon-4) is a myelin-associated protein that is expressed in three different splice variants, Nogo-A, Nogo-B, and Nogo-C. Nogo-A inhibits neurite regeneration in the central nervous system. Messenger RNA encoding Nogo is expressed in oligodendrocytes and central and peripheral neurons, but not in astrocytes or Schwann cells. Nogo is a transmembraneous protein; the extracellular domain is termed Nogo-66, and a Nogo-66-receptor (Nogo-R) has been identified. We performed in situ hybridization in human and mouse nervous tissues to map the cellular distribution of Nogo-R gene activity patterns in fetal and adult human spinal cord and sensory ganglia, adult human brain, and the nervous systems of developing and adult mice. In the human fetus Nogo-R was transcribed in the ventral horn of the spinal cord and in dorsal root ganglia. In adult human tissues Nogo-R gene activity was found in neocortex, hippocampus, amygdala, and a subset of large and medium-sized neurons of the dorsal root ganglia. Nogo-R mRNA was not expressed in the adult human spinal cord at detectable levels. In the fetal mouse, Nogo-R was diffusely expressed in brain, brainstem, trigeminal ganglion, spinal cord, and dorsal root ganglia at all stages. In the adult mouse strong Nogo-R mRNA expression was found in neurons in neocortex, hippocampus, amygdala, habenula, thalamic nuclei, brainstem, the granular cell layer of cerebellum, and the mitral cell layer of the olfactory bulb. Neurons in the adult mouse striatum, the medial septal nucleus, and spinal cord did not express Nogo-R mRNA at detectable levels. In summary, Nogo-66-R mRNA expression in humans and mice was observed in neurons of the developing nervous system Expression was downregulated in the adult spinal cord of both species, and specific expression patterns were seen in the adult brain. Copyright 2002 Wiley-Liss, Inc.
Update on neuropathic pain treatment for trigeminal neuralgia
Al-Quliti, Khalid W.
2015-01-01
Trigeminal neuralgia is a syndrome of unilateral, paroxysmal, stabbing facial pain, originating from the trigeminal nerve. Careful history of typical symptoms is crucial for diagnosis. Most cases are caused by vascular compression of the trigeminal root adjacent to the pons leading to focal demyelination and ephaptic axonal transmission. Brain imaging is required to exclude secondary causes. Many medical and surgical treatments are available. Most patients respond well to pharmacotherapy; carbamazepine and oxcarbazepine are first line therapy, while lamotrigine and baclofen are considered second line treatments. Other drugs such as topiramate, levetiracetam, gabapentin, pregabalin, and botulinum toxin-A are alternative treatments. Surgical options are available if medications are no longer effective or tolerated. Microvascular decompression, gamma knife radiosurgery, and percutaneous rhizotomies are most promising surgical alternatives. This paper reviews the medical and surgical therapeutic options for the treatment of trigeminal neuralgia, based on available evidence and guidelines. PMID:25864062
Botulinum Toxin for Neuropathic Pain: A Review of the Literature
Oh, Hyun-Mi; Chung, Myung Eun
2015-01-01
Botulinum neurotoxin (BoNT), derived from Clostridium botulinum, has been used therapeutically for focal dystonia, spasticity, and chronic migraine. Its spectrum as a potential treatment for neuropathic pain has grown. Recent opinions on the mechanism behind the antinociceptive effects of BoNT suggest that it inhibits the release of peripheral neurotransmitters and inflammatory mediators from sensory nerves. There is some evidence showing the axonal transport of BoNT, but it remains controversial. The aim of this review is to summarize the experimental and clinical evidence of the antinociceptive effects, mechanisms, and therapeutic applications of BoNT for neuropathic pain conditions, including postherpetic neuralgia, complex regional pain syndrome, and trigeminal neuralgia. The PubMed and OvidSP databases were searched from 1966 to May 2015. We assessed levels of evidence according to the American Academy of Neurology guidelines. Recent studies have suggested that BoNT injection is an effective treatment for postherpetic neuralgia and is likely efficient for trigeminal neuralgia and post-traumatic neuralgia. BoNT could also be effective as a treatment for diabetic neuropathy. It has not been proven to be an effective treatment for occipital neuralgia or complex regional pain syndrome. PMID:26287242
Quantitative proteomic analysis of the brainstem following lethal sarin exposure.
Meade, Mitchell L; Hoffmann, Andrea; Makley, Meghan K; Snider, Thomas H; Schlager, John J; Gearhart, Jeffery M
2015-06-22
The brainstem represents a major tissue area affected by sarin organophosphate poisoning due to its function in respiratory and cardiovascular control. While the acute toxic effects of sarin on brainstem-related responses are relatively unknown, other brain areas e.g., cortex or cerebellum, have been studied more extensively. The study objective was to analyze the guinea pig brainstem toxicology response following sarin (2×LD50) exposure by proteome pathway analysis to gain insight into the complex regulatory mechanisms that lead to impairment of respiratory and cardiovascular control. Guinea pig exposure to sarin resulted in the typical acute behavior/physiology outcomes with death between 15 and 25min. In addition, brain and blood acetylcholinesterase activity was significantly reduced in the presence of sarin to 95%, and 89%, respectively, of control values. Isobaric-tagged (iTRAQ) liquid chromatography tandem mass spectrometry (LC-MS/MS) identified 198 total proteins of which 23% were upregulated, and 18% were downregulated following sarin exposure. Direct gene ontology (GO) analysis revealed a sarin-specific broad-spectrum proteomic profile including glutamate-mediated excitotoxicity, calcium overload, energy depletion responses, and compensatory carbohydrate metabolism, increases in ROS defense, DNA damage and chromatin remodeling, HSP response, targeted protein degradation (ubiquitination) and cell death response. With regards to the sarin-dependent effect on respiration, our study supports the potential interference of sarin with CO2/H(+) sensitive chemoreceptor neurons of the brainstem retrotrapezoid nucleus (RTN) that send excitatory glutamergic projections to the respiratory centers. In conclusion, this study gives insight into the brainstem broad-spectrum proteome following acute sarin exposure and the gained information will assist in the development of novel countermeasures. Published by Elsevier B.V.
The trigeminal trophic syndrome: an unusual cause of nasal ulceration.
Monrad, Seetha U; Terrell, Jeffrey E; Aronoff, David M
2004-06-01
Trigeminal trophic syndrome (TTS) is an unusual complication after peripheral or central damage to the trigeminal nerve, characterized by anesthesia, paresthesias, and ala nasi ulceration. We describe a patient with classic TTS after trigeminal rhizotomy who underwent several extensive evaluations for nasal ulceration and received prolonged immunosuppressive therapy for a presumed autoimmune disorder before the correct diagnosis was made. An understanding of the predisposing factors and clinical presentation of TTS is important to ensure a timely diagnosis of this difficult-to-treat illness. Differentiation of TTS from malignancy, infection, or vasculitis is possible on the basis of clinical history, tissue biopsy, and serologic evaluation.
Flohr, Elena L R; Boesveldt, Sanne; Haehner, Antje; Iannilli, Emilia; Sinding, Charlotte; Hummel, Thomas
2015-03-01
Habituation of responses to chemosensory signals has been explored in many ways. Strong habituation and adaptation processes can be observed at the various levels of processing. For example, with repeated exposure, amplitudes of chemosensory event-related potentials (ERP) decrease over time. However, long-term habituation has not been investigated so far and investigations of differences in habituation between trigeminal and olfactory ERPs are very rare. The present study investigated habituation over a period of approximately 80 min for two olfactory and one trigeminal stimulus, respectively. Habituation was examined analyzing the N1 and P2 amplitudes and latencies of chemosensory ERPs and intensity ratings. It was shown that amplitudes of both components - and intensity ratings - decreased from the first to the last block. Concerning ERP latencies no effects of habituation were seen. Amplitudes of trigeminal ERPs diminished faster than amplitudes of olfactory ERPs, indicating that the habituation of trigeminal ERPs is stronger than habituation of olfactory ERPs. Amplitudes of trigeminal ERPs were generally higher than amplitudes of olfactory ERPs, as it has been shown in various studies before. The results reflect relatively selective central changes in response to chemosensory stimuli over time. Copyright © 2015 Elsevier B.V. All rights reserved.
Lukács, M; Warfvinge, K; Kruse, L S; Tajti, J; Fülöp, F; Toldi, J; Vécsei, L; Edvinsson, L
2016-12-01
Neurogenic inflammation has for decades been considered an important part of migraine pathophysiology. In the present study, we asked the question if administration of a novel kynurenic acid analogue (SZR72), precursor of an excitotoxin antagonist and anti-inflammatory substance, can modify the neurogenic inflammatory response in the trigeminal ganglion. Inflammation in the trigeminal ganglion was induced by local dural application of Complete Freunds Adjuvant (CFA). Levels of phosphorylated MAP kinase pERK1/2 and IL-1β expression in V1 region of the trigeminal ganglion were investigated using immunohistochemistry and Western blot. Pretreatment with one dose of SZR72 abolished the CFA-induced pERK1/2 and IL-1β activation in the trigeminal ganglion. No significant change was noted in case of repeated treatment with SZR72 as compared to a single dose. This is the first study that demonstrates that one dose of KYNA analog before application of CFA can give anti-inflammatory response in a model of trigeminal activation, opening a new line for further investigations regarding possible effects of KYNA derivates.
Pain in trigeminal neuralgia: neurophysiology and measurement: a comprehensive review
Kumar, S; Rastogi, S; Kumar, S; Mahendra, P; Bansal, M; Chandra, L
2013-01-01
Abstract Trigeminal neuralgia (TN) is defined as sudden, usually unilateral, severe, brief, stabbing recurrent episodes of pain within the distribution of one or more branches of the trigeminal nerve. It is the most frequent cranial neuralgia, the incidence being 1 per 1,000,00 persons per year. Pain attacks start abruptly and last several seconds but may persist 1 to 2 minutes. The attacks are initiated by non painful physical stimulation of specific areas (trigger points or zones) that are located ipsilateral to the pain. After each episode, there is usually a refractive period during which stimulation of the trigger zone will not induce the pain. According to the European Federation of Neurological Societies (EFNS) guidelines on neuropathic pain assessment and the American Academy of Neurology (AAN)-EFNS guidelines on TN management the neurophysiological recording of trigeminal reflexes represents the most useful and reliable test for the neurophysiological diagnosis of trigeminal pains. The present article discusses different techniques for investigation of the trigeminal system by which an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. With the aid of neurophysiological recordings and quantitative sensory testing, it is possible to approach a mechanism-based classification of orofacial pain. PMID:24701256
Pain in trigeminal neuralgia: neurophysiology and measurement: a comprehensive review.
Kumar, S; Rastogi, S; Kumar, S; Mahendra, P; Bansal, M; Chandra, L
2013-01-01
Trigeminal neuralgia (TN) is defined as sudden, usually unilateral, severe, brief, stabbing recurrent episodes of pain within the distribution of one or more branches of the trigeminal nerve. It is the most frequent cranial neuralgia, the incidence being 1 per 1,000,00 persons per year. Pain attacks start abruptly and last several seconds but may persist 1 to 2 minutes. The attacks are initiated by non painful physical stimulation of specific areas (trigger points or zones) that are located ipsilateral to the pain. After each episode, there is usually a refractive period during which stimulation of the trigger zone will not induce the pain. According to the European Federation of Neurological Societies (EFNS) guidelines on neuropathic pain assessment and the American Academy of Neurology (AAN)-EFNS guidelines on TN management the neurophysiological recording of trigeminal reflexes represents the most useful and reliable test for the neurophysiological diagnosis of trigeminal pains. The present article discusses different techniques for investigation of the trigeminal system by which an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. With the aid of neurophysiological recordings and quantitative sensory testing, it is possible to approach a mechanism-based classification of orofacial pain.
Vilain, C; Rens, C; Aeby, A; Balériaux, D; Van Bogaert, P; Remiche, G; Smet, J; Van Coster, R; Abramowicz, M; Pirson, I
2012-09-01
Although deficiency of complex I of the mitochondrial respiratory chain is a frequent cause of encephalopathy in children, only a few mutations have been reported in each of its subunits. In the absence of families large enough for conclusive segregation analysis and of robust functional testing, it is difficult to unequivocally show the causality of the observed mutations and to delineate genotype-phenotype correlations, making additional observations necessary. We observed two consanguineous siblings with an early-onset encephalopathy, medulla, brainstem and mesencephalon lesions on brain magnetic resonance imaging and death before 8 months of age, caused by a complex I deficiency. We used a homozygosity mapping approach and identified a missense mutation in the NDUFV1 gene. The mutation, p.Arg386His, affects a highly conserved residue, contiguous to a cysteine residue known to coordinate an Fe ion. This observation adds to our understanding of complex I deficiency disease. It validates the important role of Arg386 and therefore supports the current molecular model of iron-sulfur clusters in NDUFV1. © 2011 John Wiley & Sons A/S.
Johnson, Neil J; Hanson, Leah R; Frey, William H
2010-06-07
Intranasal delivery has been shown to noninvasively deliver drugs from the nose to the brain in minutes along the olfactory and trigeminal nerve pathways, bypassing the blood-brain barrier. However, no one has investigated whether nasally applied drugs target orofacial structures, despite high concentrations observed in the trigeminal nerve innervating these tissues. Following intranasal administration of lidocaine to rats, trigeminally innervated structures (teeth, temporomandibular joint (TMJ), and masseter muscle) were found to have up to 20-fold higher tissue concentrations of lidocaine than the brain and blood as measured by ELISA. This concentration difference could allow intranasally administered therapeutics to treat disorders of orofacial structures (i.e., teeth, TMJ, and masseter muscle) without causing unwanted side effects in the brain and the rest of the body. In this study, an intranasally administered infrared dye reached the brain within 10 minutes. Distribution of dye is consistent with dye entering the trigeminal nerve after intranasal administration through three regions with high drug concentrations in the nasal cavity: the middle concha, the maxillary sinus, and the choana. In humans the trigeminal nerve passes through the maxillary sinus to innervate the maxillary teeth. Delivering lidocaine intranasally may provide an effective anesthetic technique for a noninvasive maxillary nerve block. Intranasal delivery could be used to target vaccinations and treat disorders with fewer side effects such as tooth pain, TMJ disorder, trigeminal neuralgia, headache, and brain diseases.
Keep, Marcus F; DeMare, Paul A; Ashby, Lynn S
2005-01-01
The authors tested the hypothesis that two targets are needed to treat postherpetic trigeminal neuralgia (TN): one in the trigeminal nerve for the direct sharp pain and one in the thalamus for the diffuse burning pain. Three patients with refractory postherpetic TN were treated with gamma knife surgery (GKS) through a novel two-target approach. In a single treatment session, both the trigeminal nerve and centromedian nucleus were targeted. First, the trigeminal nerve, ipsilateral to the facial pain, was treated with 60 to 80 Gy. Second, the centromedian nucleus was localized using standard coordinates and by comparing magnetic resonance images with a stereotactic atlas. A single dose of 120 to 140 Gy was delivered to the target point with a single 4-mm isocenter. Patients were followed clinically and with neuroimaging studies. Pain relief was scored as excellent (75-100%), good (50-75%), poor (25-50%); or none (0-25%). Follow up ranged from 6 to 53 months. There were no GKS-related complications. Two patients died of unrelated medical illnesses but had good or excellent pain relief until death. One patient continues to survive with 44 months follow up and no decrease in pain intensity, but with a decreased area of pain. Combined GKS of the centromedian nucleus and trigeminal nerve in a single treatment session is feasible and safe, and the effect was promising. A larger study is required to confirm and expand these results.
The nucleus raphe magnus OFF-cells are involved in diffuse noxious inhibitory controls.
Chebbi, R; Boyer, N; Monconduit, L; Artola, A; Luccarini, P; Dallel, R
2014-06-01
Diffuse noxious inhibitory controls (DNIC) are very powerful long-lasting descending inhibitory controls which are pivotal in modulating the activity of spinal and trigeminal nociceptive neurons. DNIC are subserved by a loop involving supraspinal structures such as the lateral parabrachial nucleus and the subnucleus reticularis dorsalis. Surprisingly, though, whether the nucleus raphe magnus (NRM), another supraspinal area which is long known to be important in pain modulation, is involved in DNIC is still a matter of discussion. Here, we reassessed the role of the NRM neurons in DNIC by electrophysiologically recording from wide dynamic range (WDR) neurons in the trigeminal subnucleus oralis and pharmacologically manipulating the NRM OFF- and ON-cells. In control conditions, C-fiber-evoked responses in trigeminal WDR neurons are inhibited by a conditioning noxious heat stimulation applied to the hindpaw. We show that inactivating the NRM by microinjecting the GABAA receptor agonist, muscimol, both facilitates C-fiber-evoked responses of trigeminal WDR neurons and strongly attenuates their inhibition by heat applied to the hindpaw. Interestingly, selective blockade of ON-cells by microinjecting the broad-spectrum excitatory amino acid antagonist, kynurenate, into the NRM neither affects C-fiber-evoked responses nor attenuates DNIC of trigeminal WDR neurons. These results indicate that the NRM tonically inhibits trigeminal nociceptive inputs and is involved in the neuronal network underlying DNIC. Moreover, within NRM, OFF-cells might be more specifically involved in both the tonic and phasic descending inhibitory controls of trigeminal nociception. Copyright © 2014 Elsevier Inc. All rights reserved.
Intracranial stimulation of the trigeminal nerve in man. III. Sensory potentials.
Cruccu, G; Inghilleri, M; Manfredi, M; Meglio, M
1987-01-01
Percutaneous electrical stimulation of the trigeminal root was performed in 18 subjects undergoing surgery for idiopathic trigeminal neuralgia or implantation of electrodes into Meckel's cave for recording of limbic epileptic activity. All subjects had normal trigeminal reflexes and evoked potentials. Sensory action potentials were recorded antidromically from the supraorbital (V1), infraorbital (V2) and mental (V3) nerves. In the awake subject, sensory potentials were usually followed by myogenic artifacts due to direct activation of masticatory muscles or reflex activation of facial muscles. In the anaesthetised and curarised subject, sensory potentials from the three nerves showed 1.4-2.2 ms onset latency, 1.9-2.7 ms peak latency and 17-29 microV amplitude. Sensory conduction velocity was computed at the onset latency (maximum CV) and at the peak latency (peak CV). On average, maximum and peak CV were 52 and 39 m/s for V1, 54 and 42 m/s for V2 and 54 and 44 m/s for V3. There was no apparent difference in CV between subjects with trigeminal neuralgia and those with epilepsy. A significant inverse correlation was found between CV and age, the overall maximum CV declining from 59 m/s (16 years) to 49 m/s (73 years). This range of CV is compatible both with histometric data and previous electrophysiological findings on trigeminal nerve conduction. Intraoperative intracranial stimulation is also proposed as a method of monitoring trigeminal function under general anaesthesia. Images PMID:3681311
Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan
2017-01-01
Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not in the trigeminal nucleus caudalis, and no significant differences were found in the expression of the VPAC1 and VPAC2 receptors. Conclusions This study demonstrated the chronic alteration of pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in the rat, which suggests the crucial involvement of pituitary adenylate cyclase-activating polypeptide in the development of migraine. The selective increase in pituitary adenylate cyclase-activating polypeptide-related receptors suggests that the PAC1 receptor pathway is a novel target for the treatment of migraine.
Trigeminal neuralgia treatment dosimetry of the Cyberknife
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Anthony; Lo, Anthony T., E-mail: tonyho22003@yahoo.com; Dieterich, Sonja
2012-04-01
There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculationmore » algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.« less
NASA Astrophysics Data System (ADS)
Maher, Nicola; England, Matthew H.; Gupta, Alex Sen; Spence, Paul
2018-05-01
Patients with the feeling of a congested nose not always suffer from an anatomical obstruction but might just have a low trigeminal sensibility, which prevents them from perceiving the nasal airstream. We examined whether intermittent trigeminal stimulation increases sensitivity of the nasal trigeminal nerve and whether this effect is accompanied by subjective improvement of nasal breathing.
Feistel, Stephan; Albrecht, Stephanie; Messlinger, Karl
2013-11-20
Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) are regarded as key mediators in migraine and other primary headaches. Migraineurs respond to infusion of nitroglycerin with delayed headaches, and inhibition of CGRP receptors has been shown to be effective in migraine therapy. In animal experiments nitrovasodilators like nitroglycerin induced increases in spinal trigeminal activity, which were reversed after inhibition of CGRP receptors. In the present study we asked if CGRP receptor inhibition can also prevent spinal trigeminal activity induced by nitroglycerin. In isoflurane anaesthetised rats extracellular recordings were made from neurons in the spinal trigeminal nucleus with meningeal afferent input. The non-peptide CGRP receptor inhibitor MK-8825 (5 mg/kg) dissolved in acidic saline (pH 3.3) was slowly infused into rats one hour prior to prolonged glyceryl trinitrate (nitroglycerin) infusion (250 μg/kg/h for two hours). After infusion of MK-8825 the activity of spinal trigeminal neurons with meningeal afferent input did not increase under continuous nitroglycerin infusion but decreased two hours later below baseline. In contrast, vehicle infusion followed by nitroglycerin was accompanied by a transient increase in activity. CGRP receptors may be important in an early phase of nitroglycerin-induced central trigeminal activity. This finding may be relevant for nitroglycerin-induced headaches.
St. John, James A.; Walkden, Heidi; Nazareth, Lynn; Beagley, Kenneth W.; Batzloff, Michael R.
2016-01-01
Infection with Burkholderia pseudomallei causes melioidosis, a disease with a high mortality rate (20% in Australia and 40% in Southeast Asia). Neurological melioidosis is particularly prevalent in northern Australian patients and involves brain stem infection, which can progress to the spinal cord; however, the route by which the bacteria invade the central nervous system (CNS) is unknown. We have previously demonstrated that B. pseudomallei can infect the olfactory and trigeminal nerves within the nasal cavity following intranasal inoculation. As the trigeminal nerve projects into the brain stem, we investigated whether the bacteria could continue along this nerve to penetrate the CNS. After intranasal inoculation of mice, B. pseudomallei caused low-level localized infection within the nasal cavity epithelium, prior to invasion of the trigeminal nerve in small numbers. B. pseudomallei rapidly invaded the trigeminal nerve and crossed the astrocytic barrier to enter the brain stem within 24 h and then rapidly progressed over 2,000 μm into the spinal cord. To rule out that the bacteria used a hematogenous route, we used a capsule-deficient mutant of B. pseudomallei that does not survive in the blood and found that it also entered the CNS via the trigeminal nerve. This suggests that the primary route of entry is via the nerves that innervate the nasal cavity. We found that actin-mediated motility could facilitate initial infection of the olfactory epithelium. Thus, we have demonstrated that B. pseudomallei can rapidly infect the brain and spinal cord via the trigeminal nerve branches that innervate the nasal cavity. PMID:27382023
Neurovascular Study of the Trigeminal Nerve at 3 T MRI
Gonzalez, Nadia; Muñoz, Alexandra; Bravo, Fernando; Sarroca, Daniel; Morales, Carlos
2015-01-01
This study aimed to show a novel visualization method to investigate neurovascular compression of the trigeminal nerve (TN) using a volume-rendering fusion imaging technique of 3D fast imaging employing steady-state acquisition (3D FIESTA) and coregistered 3D time of flight MR angiography (3D TOF MRA) sequences, which we called “neurovascular study of the trigeminal nerve”. We prospectively studied 30 patients with unilateral trigeminal neuralgia (TN) and 50 subjects without symptoms of TN (control group), on a 3 Tesla scanner. All patients were assessed using 3D FIESTA and 3D TOF MRA sequences centered on the pons, as well as a standard brain protocol including axial T1, T2, FLAIR and GRE sequences to exclude other pathologies that could cause TN. Post-contrast T1-weighted sequences were also performed. All cases showing arterial imprinting on the trigeminal nerve (n = 11) were identified on the ipsilateral side of the pain. No significant relationship was found between the presence of an artery in contact with the trigeminal nerve and TN. Eight cases were found showing arterial contact on the ipsilateral side of the pain and five cases of arterial contact on the contralateral side. The fusion imaging technique of 3D FIESTA and 3D TOF MRA sequences, combining the high anatomical detail provided by the 3D FIESTA sequence with the 3D TOF MRA sequence and its capacity to depict arterial structures, results in a tool that enables quick and efficient visualization and assessment of the relationship between the trigeminal nerve and the neighboring vascular structures. PMID:25924169
Shelukhina, Irina; Mikhailov, Nikita; Abushik, Polina; Nurullin, Leniz; Nikolsky, Evgeny E; Giniatullin, Rashid
2017-01-01
Parasympathetic innervation of meninges and ability of carbachol, acetylcholine (ACh) receptor (AChR) agonist, to induce headaches suggests contribution of cholinergic mechanisms to primary headaches. However, neurochemical mechanisms of cholinergic regulation of peripheral nociception in meninges, origin place for headache, are almost unknown. Using electrophysiology, calcium imaging, immunohistochemistry, and staining of meningeal mast cells, we studied effects of cholinergic agents on peripheral nociception in rat hemiskulls and isolated trigeminal neurons. Both ACh and carbachol significantly increased nociceptive firing in peripheral terminals of meningeal trigeminal nerves recorded by local suction electrode. Strong nociceptive firing was also induced by nicotine, implying essential role of nicotinic AChRs in control of excitability of trigeminal nerve endings. Nociceptive firing induced by carbachol was reduced by muscarinic antagonist atropine, whereas the action of nicotine was prevented by the nicotinic blocker d-tubocurarine but was insensitive to the TRPA1 antagonist HC-300033. Carbachol but not nicotine induced massive degranulation of meningeal mast cells known to release multiple pro-nociceptive mediators. Enzymes terminating ACh action, acetylcholinesterase (AChE) and butyrylcholinesterase, were revealed in perivascular meningeal nerves. The inhibitor of AChE neostigmine did not change the firing per se but induced nociceptive activity, sensitive to d-tubocurarine, after pretreatment of meninges with the migraine mediator CGRP. This observation suggested the pro-nociceptive action of endogenous ACh in meninges. Both nicotine and carbachol induced intracellular Ca 2+ transients in trigeminal neurons partially overlapping with expression of capsaicin-sensitive TRPV1 receptors. Trigeminal nerve terminals in meninges, as well as dural mast cells and trigeminal ganglion neurons express a repertoire of pro-nociceptive nicotinic and muscarinic AChRs, which could be activated by the ACh released from parasympathetic nerves. These receptors represent a potential target for novel therapeutic interventions in trigeminal pain and probably in migraine.
2005-06-01
derived cells, we isolated first branchial arch mesenchymal populations, as well as trigeminal ganglion non-neuronal cells, from mouse embryos and measured...demonstrate that loss of neurofibromin affects the invasiveness of neural crest-derived (trigeminal ganglion) and cranial mesenchymal ( branchial arch) cell...trigeminal and branchial arch cells between El0 and El 2 indicates that the roles of neurofibromin in controlling motility may become increasingly
Microsurgical anatomy of the trochlear nerve.
Joo, Wonil; Rhoton, Albert L
2015-10-01
The trochlear nerve is the cranial nerve with the longest intracranial course, but also the thinnest. It is the only nerve that arises from the dorsal surface of the brainstem and decussates in the superior medullary velum. After leaving the dorsal surface of the brainstem, it courses anterolaterally around the lateral surface of the brainstem and then passes anteriorly just beneath the free edge of the tentorium. It passes forward to enter the cavernous sinus, traverses the superior orbital fissure and terminates in the superior oblique muscle in the orbit. Because of its small diameter and its long course, the trochlear nerve can easily be injured during surgical procedures. Therefore, precise knowledge of its surgical anatomy and its neurovascular relationships is essential for approaching and removing complex lesions of the orbit and the middle and posterior fossae safely. This review describes the microsurgical anatomy of the trochlear nerve and is illustrated with pictures involving the nerve and its surrounding connective and neurovascular structures. © 2015 Wiley Periodicals, Inc.
Advanced and standardized evaluation of neurovascular compression syndromes
NASA Astrophysics Data System (ADS)
Hastreiter, Peter; Vega Higuera, Fernando; Tomandl, Bernd; Fahlbusch, Rudolf; Naraghi, Ramin
2004-05-01
Caused by a contact between vascular structures and the root entry or exit zone of cranial nerves neurovascular compression syndromes are combined with different neurological diseases (trigeminal neurolagia, hemifacial spasm, vertigo, glossopharyngeal neuralgia) and show a relation with essential arterial hypertension. As presented previously, the semi-automatic segmentation and 3D visualization of strongly T2 weighted MR volumes has proven to be an effective strategy for a better spatial understanding prior to operative microvascular decompression. After explicit segmentation of coarse structures, the tiny target nerves and vessels contained in the area of cerebrospinal fluid are segmented implicitly using direct volume rendering. However, based on this strategy the delineation of vessels in the vicinity of the brainstem and those at the border of the segmented CSF subvolume are critical. Therefore, we suggest registration with MR angiography and introduce consecutive fusion after semi-automatic labeling of the vascular information. Additionally, we present an approach of automatic 3D visualization and video generation based on predefined flight paths. Thereby, a standardized evaluation of the fused image data is supported and the visualization results are optimally prepared for intraoperative application. Overall, our new strategy contributes to a significantly improved 3D representation and evaluation of vascular compression syndromes. Its value for diagnosis and surgery is demonstrated with various clinical examples.
Stuck, B A; Frey, S; Freiburg, C; Hörmann, K; Zahnert, T; Hummel, T
2006-06-01
For chemosensory event-related potentials (ERP) significant effects of age and sex have been demonstrated. The aim of the present study was to assess the effects of stimulus concentration, side of stimulation, and sex on the topographical distribution of chemosensory ERP in a large group of subjects stratified for different age groups. In addition, psychophysical measures of both olfactory and trigeminal function should be assessed in greater detail compared to previous work. A total of 95 healthy subjects participated in the study. Olfactory functions were tested using the 'Sniffin' Sticks' comprising tests of odor identification, odor discrimination, and odor threshold. Trigeminal sensitivity was assessed on a psychophysical level using a lateralization paradigm. ERP to the olfactory stimulant H2S and the trigeminal irritant CO2 were recorded; stimuli were presented in different concentrations to the left and right nostril. Olfactory thresholds exhibited an age-related increase while the outcome of psychophysical trigeminal tests was not significantly affected by age. In contrast, there was no significant main effect of the factor 'sex' for olfactory tests, while women scored higher than men in the trigeminal task. ERP to olfactory and trigeminal stimuli exhibited a relationship to stimulus concentration, age, and sex with youngest women showing largest amplitudes and shortest latencies. There was no significant main effect of left- or right-sided stimulation on ERP. Measures of olfactory function were found to correlate with parameters of olfactory ERP even when controlling for the subject's age. In addition, correlations between scores in the lateralization task and parameters of the trigeminal ERP were found. Based on electrophysiological data obtained in a large sample size the present results established an age-related loss of olfactory and trigeminal function, which appears to be almost linear. Further, the present results emphasize that responses to chemosensory stimuli are related to sex, while the side of stimulation does not play a major role in the presently used paradigm. Finally, these data establish the lateralization paradigm as a psychophysical tool to investigate intranasal trigeminal function. The present results obtained in a representative group of healthy subjects establishes a comprehensive set of data, which will serve as reference for future work in this area of research.
Deep brain stimulation for trigeminal autonomic cephalalgias.
Messina, Giuseppe; Broggi, Giovanni; Levi, Vincenzo; Franzini, Angelo
2018-04-19
Deep brain stimulation (DBS) of the posterior hypothalamic region (pHyr) has been shown to be efficacious for more than a half of patients suffering from trigeminal autonomic cephalalgias (TACs); nonetheless, controversies about the mechanisms of action and the actual site of stimulation have arisen in recent years. Areas covered: Firstly, a review of the most recent literature on the subject is presented, stressing the critical points that could, in the future, make a difference for optimal management of patients afflicted by these life-threating diseases. Hypothalamic functional anatomy, experimental data and pathophysiological hypotheses are reported. Expert commentary: About 32% of patients who underwent DBS for TACs are pain-free. The determination of the pHyr region seems to be crucial for the generation of pain attack in these pathologies, although other structures are involved in complex mechanisms and circuits that interact with each other. Neurophysiological data, combined with more advanced experimental models, are of primary importance regarding our understanding of what the real target is, and how to overcome the issue of refractory patients.
Gessele, Nikodemus; Garcia-Pino, Elisabet; Omerbašić, Damir; Park, Thomas J; Koch, Ursula
2016-01-01
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.
St John, James A; Walkden, Heidi; Nazareth, Lynn; Beagley, Kenneth W; Ulett, Glen C; Batzloff, Michael R; Beacham, Ifor R; Ekberg, Jenny A K
2016-09-01
Infection with Burkholderia pseudomallei causes melioidosis, a disease with a high mortality rate (20% in Australia and 40% in Southeast Asia). Neurological melioidosis is particularly prevalent in northern Australian patients and involves brain stem infection, which can progress to the spinal cord; however, the route by which the bacteria invade the central nervous system (CNS) is unknown. We have previously demonstrated that B. pseudomallei can infect the olfactory and trigeminal nerves within the nasal cavity following intranasal inoculation. As the trigeminal nerve projects into the brain stem, we investigated whether the bacteria could continue along this nerve to penetrate the CNS. After intranasal inoculation of mice, B. pseudomallei caused low-level localized infection within the nasal cavity epithelium, prior to invasion of the trigeminal nerve in small numbers. B. pseudomallei rapidly invaded the trigeminal nerve and crossed the astrocytic barrier to enter the brain stem within 24 h and then rapidly progressed over 2,000 μm into the spinal cord. To rule out that the bacteria used a hematogenous route, we used a capsule-deficient mutant of B. pseudomallei that does not survive in the blood and found that it also entered the CNS via the trigeminal nerve. This suggests that the primary route of entry is via the nerves that innervate the nasal cavity. We found that actin-mediated motility could facilitate initial infection of the olfactory epithelium. Thus, we have demonstrated that B. pseudomallei can rapidly infect the brain and spinal cord via the trigeminal nerve branches that innervate the nasal cavity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Schwend, Tyler; Deaton, Ryan J.; Zhang, Yuntao; Caterson, Bruce; Conrad, Gary W.
2012-01-01
Purpose. Sensory trigeminal nerve growth cones innervate the cornea in a highly coordinated fashion. The purpose of this study was to determine if extracellular matrix glycosaminoglycans (ECM–GAGs), including keratan sulfate (KS), dermatan sulfate (DS), and chondroitin sulfate A (CSA) and C (CSC), polymerized in developing eyefronts, may provide guidance cues to nerves during cornea innervation. Methods. Immunostaining using antineuron-specific-β-tubulin and monoclonal antibodies for KS, DS, and CSA/C was performed on eyefronts from embryonic day (E) 9 to E14 and staining visualized by confocal microscopy. Effects of purified GAGs on trigeminal nerve growth cone behavior were tested using in vitro neuronal explant cultures. Results. At E9 to E10, nerves exiting the pericorneal nerve ring grew as tight fascicles, advancing straight toward the corneal stroma. In contrast, upon entering the stroma, nerves bifurcated repeatedly as they extended anteriorly toward the epithelium. KS was localized in the path of trigeminal nerves, whereas DS and CSA/C–rich areas were avoided by growth cones. When E10 trigeminal neurons were cultured on different substrates comprised of purified GAG molecules, their neurite growth cone behavior varied depending on GAG type, concentration, and mode of presentation (immobilized versus soluble). High concentrations of immobilized KS, DS, and CSA/C inhibited neurite growth to varying degrees. Neurites traversing lower, permissive concentrations of immobilized DS and CSA/C displayed increased fasciculation and decreased branching, whereas KS caused decreased fasciculation and increased branching. Enzymatic digestion of sulfated GAGs canceled their effects on trigeminal neurons. Conclusions. Data herein suggest that GAGs may direct the movement of trigeminal nerve growth cones innervating the cornea. PMID:23132805
Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid
2016-09-01
Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.
2011-01-01
Background Calcitonin gene-related peptide (CGRP), a neuropeptide released from trigeminal nerves, is implicated in the underlying pathology of temporomandibular joint disorder (TMD). Elevated levels of CGRP in the joint capsule correlate with inflammation and pain. CGRP mediates neurogenic inflammation in peripheral tissues by increasing blood flow, recruiting immune cells, and activating sensory neurons. The goal of this study was to investigate the capability of CGRP to promote peripheral and central sensitization in a model of TMD. Results Temporal changes in protein expression in trigeminal ganglia and spinal trigeminal nucleus were determined by immunohistochemistry following injection of CGRP in the temporomandibular joint (TMJ) capsule of male Sprague-Dawley rats. CGRP stimulated expression of the active forms of the MAP kinases p38 and ERK, and PKA in trigeminal ganglia at 2 and 24 hours. CGRP also caused a sustained increase in the expression of c-Fos neurons in the spinal trigeminal nucleus. In contrast, levels of P2X3 in spinal neurons were only significantly elevated at 2 hours in response to CGRP. In addition, CGRP stimulated expression of GFAP in astrocytes and OX-42 in microglia at 2 and 24 hours post injection. Conclusions Our results demonstrate that an elevated level of CGRP in the joint, which is associated with TMD, stimulate neuronal and glial expression of proteins implicated in the development of peripheral and central sensitization. Based on our findings, we propose that inhibition of CGRP-mediated activation of trigeminal neurons and glial cells with selective non-peptide CGRP receptor antagonists would be beneficial in the treatment of TMD. PMID:22145886
Walker, C S; Sundrum, T; Hay, D L
2014-01-01
Background and Purpose A major challenge in the development of new medicines targeting GPCRs is the ability to quantify drug action in physiologically relevant models. Primary cell models that closely resemble the clinically relevant in vivo site of drug action are important translational tools in drug development. However, pharmacological studies in these models are generally very limited due to the methodology used. Experimental Approach We used a neuropeptide system to demonstrate the applicability of using highly sensitive signalling assays in primary cells. We quantified the action of pituitary adenylate cyclase-activating peptide (PACAP)-38, PACAP-27 and vasoactive intestinal polypeptide in primary cultures of neurons and glia derived from rat trigeminal ganglia (TG), comparing our observations to transfected cells. Key Results PACAP-responsive receptors in rat trigeminal neurons, glia and transfected PAC1n receptors were pharmacologically distinct. PACAP-38, but not PACAP-27, activated ERK in glia, while both forms stimulated cellular cAMP production. PACAP(6–38) also displayed cell-type-dependent, agonist-specific, antagonism. Conclusions and Implications The complexity of PACAP pharmacology in the TG may help to direct, more effectively, the development of disease treatments targeting the PACAP receptor. We suggest that these methodologies are broadly applicable to other primary cell types of human or animal origin, and that our approach may allow more thorough characterization of ligand properties in physiologically relevant cell types. PMID:24303997
Trigeminal Neuralgia Following Lightning Injury.
López Chiriboga, Alfonso S; Cheshire, William P
2017-01-01
Lightning and other electrical incidents are responsible for more than 300 injuries and 100 deaths per year in the United States alone. Lightning strikes can cause a wide spectrum of neurologic manifestations affecting any part of the neuraxis through direct strikes, side flashes, touch voltage, connecting leaders, or acoustic shock waves. This article describes the first case of trigeminal neuralgia induced by lightning injury to the trigeminal nerve, thereby adding a new syndrome to the list of possible lightning-mediated neurologic injuries.
Shigetani, Yasuyo; Howard, Sara; Guidato, Sonia; Furushima, Kenryo; Abe, Takaya; Itasaki, Nobue
2008-07-15
While most cranial ganglia contain neurons of either neural crest or placodal origin, neurons of the trigeminal ganglion derive from both populations. The Wnt signaling pathway is known to be required for the development of neural crest cells and for trigeminal ganglion formation, however, migrating neural crest cells do not express any known Wnt ligands. Here we demonstrate that Wise, a Wnt modulator expressed in the surface ectoderm overlying the trigeminal ganglion, play a role in promoting the assembly of placodal and neural crest cells. When overexpressed in chick, Wise causes delamination of ectodermal cells and attracts migrating neural crest cells. Overexpression of Wise is thus sufficient to ectopically induce ganglion-like structures consisting of both origins. The function of Wise is likely synergized with Wnt6, expressed in an overlapping manner with Wise in the surface ectoderm. Electroporation of morpholino antisense oligonucleotides against Wise and Wnt6 causes decrease in the contact of neural crest cells with the delaminated placode-derived cells. In addition, targeted deletion of Wise in mouse causes phenotypes that can be explained by a decrease in the contribution of neural crest cells to the ophthalmic lobe of the trigeminal ganglion. These data suggest that Wise is able to function cell non-autonomously on neural crest cells and promote trigeminal ganglion formation.
2013-01-01
Background Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) are regarded as key mediators in migraine and other primary headaches. Migraineurs respond to infusion of nitroglycerin with delayed headaches, and inhibition of CGRP receptors has been shown to be effective in migraine therapy. In animal experiments nitrovasodilators like nitroglycerin induced increases in spinal trigeminal activity, which were reversed after inhibition of CGRP receptors. In the present study we asked if CGRP receptor inhibition can also prevent spinal trigeminal activity induced by nitroglycerin. Methods In isoflurane anaesthetised rats extracellular recordings were made from neurons in the spinal trigeminal nucleus with meningeal afferent input. The non-peptide CGRP receptor inhibitor MK-8825 (5 mg/kg) dissolved in acidic saline (pH 3.3) was slowly infused into rats one hour prior to prolonged glyceryl trinitrate (nitroglycerin) infusion (250 μg/kg/h for two hours). Results After infusion of MK-8825 the activity of spinal trigeminal neurons with meningeal afferent input did not increase under continuous nitroglycerin infusion but decreased two hours later below baseline. In contrast, vehicle infusion followed by nitroglycerin was accompanied by a transient increase in activity. Conclusions CGRP receptors may be important in an early phase of nitroglycerin-induced central trigeminal activity. This finding may be relevant for nitroglycerin-induced headaches. PMID:24256609
Atkinson, M E; Shehab, S A
1986-12-01
In the vasoactive intestinal polypeptide (VIP)-rich lumbosacral spinal cord, VIP increases at the expense of other neuropeptides after primary sensory nerve axotomy. This study was undertaken to ascertain whether similar changes occur in peripherally axotomised cranial sensory nerves. VIP immunoreactivity increased in the terminal region of the mandibular nerve in the trigeminal nucleus caudalis following unilateral section of the sensory root of the mandibular trigeminal nerve at the foramen orale. Other primary afferent neuropeptides (substance P, cholecystokinin and somatostatin) were depleted and fluoride-resistant acid phosphatase activity was abolished in the same circumscribed areas of the nucleus caudalis. The rise in VIP and depletion of other markers began 4 days postoperatively and was maximal by 10 days, these levels remaining unchanged up to 1 year postoperatively. VIP-immunoreactive cell bodies were absent from trigeminal ganglia from the unoperated side but small and medium cells stained intensely in the ganglia of the operated side after axotomy. These observations indicate that increase of VIP in sensory nerve terminals is a general phenomenon occurring in both cranial and spinal sensory terminal areas. The intense VIP immunoreactivity in axotomised trigeminal ganglia suggests that the increased levels of VIP in the nucleus caudalis are of peripheral origin, indicating a change in expression of neuropeptides within primary afferent neurons following peripheral axotomy.
Pain. Part 2a: Trigeminal Anatomy Related to Pain.
Renton, Tara; Egbuniwe, Obi
2015-04-01
In order to understand the underlying principles of orofacial pain it is important to understand the corresponding anatomy and mechanisms. Paper 1 of this series explains the central nervous and peripheral nervous systems relating to pain. The trigeminal nerve is the 'great protector' of the most important region of our body. It is the largest sensory nerve of the body and over half of the sensory cortex is responsive to any stimulation within this system. This nerve is the main sensory system of the branchial arches and underpins the protection of the brain, sight, smell, airway, hearing and taste, underpinning our very existence. The brain reaction to pain within the trigeminal system has a significant and larger reaction to the threat of, and actual, pain compared with other sensory nerves. We are physiologically wired to run when threatened with pain in the trigeminal region and it is a 'miracle' that patients volunteer to sit in a dental chair and undergo dental treatment. Clinical Relevance: This paper aims to provide the dental and medical teams with a review of the trigeminal anatomy of pain and the principles of pain assessment.
Jiang, Yunquan; Hossain, Ashfaque; Winkler, Maria Teresa; Holt, Todd; Doster, Alan; Jones, Clinton
1998-01-01
Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807–3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation. PMID:9733854
Jiang, Y; Hossain, A; Winkler, M T; Holt, T; Doster, A; Jones, C
1998-10-01
Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807-3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation.
... Elsevier Saunders; 2015:chap 117. Zakrzewska JM, Chen HI, Lee JYK. Trigeminal and glossopharyngeal neuralgia. In: McMohan ... A.M. is also a founding member of Hi-Ethics and subscribes to the principles of the ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Sood, S; Badkul, R
Purpose: SRS is an effective non-invasive alternative treatment modality with minimal-toxicity used to treat patients with medically/surgically refractory trigeminal neuralgia root(TNR) or those who may not tolerate surgical intervention. We present our linac-based SRS procedure for TNR treatment and simultaneously report our clinical outcomes. Methods: Twenty-eight TNR-patients treated with frame-based SRS at our institution (2009–2015) with a single-fraction point-dose of 60-80Gy to TNR were included in this IRB-approved study. Experienced neurosurgeon and radiation oncologist delineated the TNR on 1.0mm thin 3D-FIESTA-MRI that was co-registered with 0.7mm thin planning-CT. Treatment plans were generated in iPlan (BrainLAB) with a 4-mm diameter conemore » using 79 arcs with differential-weighting for Novalis-TX 6MV-SRS(1000MU/min) beam and optimized to minimize brainstem dose. Winston-Lutz test was performed before each treatment delivery with sub-millimeter isocenter accuracy. Quality assurance of frame placement was maintained by helmet-bobble-measurement before simulation-CT and before patient setup at treatment couch. OBI-CBCT scan was performed for patient setup verification without applying shifts. On clinical follow up, treatment response was assessed using Barrow Neurological Institute Pain Intensity Score(BNI-score:I–V). Results: 26/28 TNR-patients (16-males/10-females) who were treated with following single-fraction point-dose to isocenter: 80Gy(n=22),75Gy(n=1),70Gy(n=2) and 60Gy(n=1, re-treatment) were followed up. Median follow-up interval was 8.5-months (ranged:1–48.5months). Median age was 70-yr (ranged:43–93-yr). Right/left TNR ratio was 15/11. Delivered total # of average MUs was 19034±1204. Average beam-on-time: 19.0±1.3min. Brainstem max-dose and dose to 0.5cc were 13.3±2.4Gy (ranged:8.1–16.5Gy) and 3.6±0.4Gy (ranged:3.0–4.9Gy). On average, max-dose to optic-apparatus was ≤1.2Gy. Mean value of max-dose to eyes/lens was 0.26Gy/0.11Gy. Overall, 20-patients (77%) responded to treatment: 5(19%) achieved complete pain relief without medication (BNI score: I); 5(19%) had no-pain, decreased medication (BNI-score:II); 2(7.7%) had no-pain, but, continued medication (BNI-score:IIIA), and 8(30.8%) had pain that was well controlled by medication (BNI-score: IIIB). Six-patients (23.0%) did not respond to treatment (BNI-score:IV–V). Neither cranial nerve deficit nor radio-necrosis of temporal lobe was clinically observed. Conclusion: Linac-based SRS for medically/surgically refractory TNR provided an effective treatment option for pain resolution/control with very minimal if any normal tissue toxicity. Longer follow up of these patients is anticipated/needed to confirm our observations.« less
Fujiwara, M; Hayashi, H; Muramatsu, I; Ueda, N
1984-01-01
The rabbit left ophthalmic nerve (first branch of the left trigeminal nerve) was cut at the intracranial, peripheral side of the trigeminal ganglion and the effects of denervation were examined using iris sphincter muscle preparations isolated from the left and right eye, as denervated and control innervated preparations, respectively. Electrical transmural stimulation produced a substance P-operated contraction, in addition to a cholinergic one, in the preparation isolated from the right control eye. The former response was abolished in the preparation isolated from the left denervated eye, thereby indicating that the trigeminal, substance P nerve ipsilaterally innervates the iris sphincter muscle. Exogenously applied carbachol and substance P produced concentration-dependent contractions in preparations isolated from either eye. Supersensitivity characterized by a decrease in median effective concentration (EC50) values and an increase in maximal response was observed in the responses to both agents of the left denervated preparation. Such supersensitivity developed slowly after trigeminal denervation and 3 weeks was required for full development. Exogenously applied KCl produced substance P-operated and direct muscle contractions in the right control preparations. In the left denervated preparations, the substance P-operated contraction was either markedly attenuated or abolished, while the direct muscle-related contraction was enhanced after trigeminal denervation. The length of the left denervated preparation was longer than that of the right control preparation, and the resting tensions required to produce maximal carbachol contraction shifted to lower values. These physical changes of the iris sphincter muscle developed within 5 days after trigeminal denervation. In the non-denervated preparation treated with capsaicin in vitro, electrical transmural stimulation and KCl failed to produce the substance P-related contraction. However, supersensitivity to neither exogenously applied substance P, carbachol and KCl nor physical changes were observed in the capsaicin-treated preparation. These results suggest that trigeminal, substance P-related nerves tonically and ipsilaterally innervate the rabbit iris sphincter muscle and that the denervation results in non-specific supersensitivity. These findings are essentially the same as those observed in various types of smooth muscles after autonomic denervation. PMID:6205140
Fact Sheet: Trigeminal Neuralgia
... causes extreme, sporadic, sudden burning or shock-like facial pain that lasts anywhere from a few seconds to ... stroke, or facial trauma) may also produce neuropathic facial pain. top What are the symptoms of trigeminal neuralgia? ...
Allam, Abdallah El-Sayed; Khalil, Adham Aboul Fotouh; Eltawab, Basma Aly; Wu, Wei-Ting
2018-01-01
Orofacial myofascial pain is prevalent and most often results from entrapment of branches of the trigeminal nerves. It is challenging to inject branches of the trigeminal nerve, a large portion of which are shielded by the facial bones. Bony landmarks of the cranium serve as important guides for palpation-guided injections and can be delineated using ultrasound. Ultrasound also provides real-time images of the adjacent muscles and accompanying arteries and can be used to guide the needle to the target region. Most importantly, ultrasound guidance significantly reduces the risk of collateral injury to vital neurovascular structures. In this review, we aimed to summarize the regional anatomy and ultrasound-guided injection techniques for the trigeminal nerve and its branches, including the supraorbital, infraorbital, mental, auriculotemporal, maxillary, and mandibular nerves. PMID:29808105
Botulinum toxin in trigeminal neuralgia.
Castillo-Álvarez, Federico; Hernando de la Bárcena, Ignacio; Marzo-Sola, María Eugenia
2017-01-06
Trigeminal neuralgia is one of the most disabling facial pain syndromes, with a significant impact on patients' quality of life. Pharmacotherapy is the first choice for treatment but cases of drug resistance often require new strategies, among which various interventional treatments have been used. In recent years a new therapeutic strategy consisting of botulinum toxin has emerged, with promising results. We reviewed clinical cases and case series, open-label studies and randomized clinical trials examining the use of botulinum toxin for drug-refractory trigeminal neuralgia published in the literature. The administration of botulinum toxin has proven to be a safe and effective therapeutic strategy in patients with drug-refractory idiopathic trigeminal neuralgia, but many questions remain unanswered as to the precise role of botulinum toxin in the treatment of this disease. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Anheim, M; Echaniz-Laguna, A; Rey, D; Tranchant, C
2006-01-01
Pure trigeminal motor neuropathy (PTMN) is a rarely described condition. We report the case of a 41-year-old woman infected with the human immunodeficiency virus (HIV1) and hepatitis C virus who presented with weakness of left temporalis and masseter muscles and painful left temporomandibular joint dysfunction (TMD) a few months after cerebral toxoplasmosis revealing acquired immunodeficiency syndrome (AIDS). Magnetic resonance imaging revealed severe wasting and fat replacement of the left temporalis, pterygoid and masseter muscles and showed neither abnormalities in the left motor nucleus of the trigeminal nerve nor compression of the left trigeminal nerve. Electromyographic examination gave evidence of denervation in the left temporalis, masseter and pterygoid muscles and blink reflex studies were normal, confirming the diagnosis of PTMN which was probably secondary to HIV and HCV co-infection.
Hegarty, Deborah M; Hermes, Sam M; Largent-Milnes, Tally M; Aicher, Sue A
2014-11-01
We examined the substrates for ocular nociception in adult male Sprague-Dawley rats. Capsaicin application to the ocular surface in awake rats evoked nocifensive responses and suppressed spontaneous grooming responses. Thus, peripheral capsaicin was able to activate the central pathways encoding ocular nociception. Our capsaicin stimulus evoked c-Fos expression in a select population of neurons within rostral trigeminal nucleus caudalis in anesthetized rats. These activated neurons also received direct contacts from corneal afferent fibers traced with cholera toxin B from the corneal surface. However, the central terminals of the corneal afferents that contacted capsaicin-activated trigeminal neurons did not contain TRPV1. To determine if TRPV1 expression had been altered by capsaicin stimulation, we examined TRPV1 content of corneal afferents in animals that did not receive capsaicin stimulation. These studies confirmed that while TRPV1 was present in 30% of CTb-labeled corneal afferent neurons within the trigeminal ganglion, TRPV1 was only detected in 2% of the central terminals of these corneal afferents within the trigeminal nucleus caudalis. Other TRP channels were also present in low proportions of central corneal afferent terminals in unstimulated animals (TRPM8, 2%; TRPA1, 10%). These findings indicate that a pathway from the cornea to rostral trigeminal nucleus caudalis is involved in corneal nociceptive transmission, but that central TRP channel expression is unrelated to the type of stimulus transduced by the peripheral nociceptive endings. Copyright © 2014 Elsevier B.V. All rights reserved.
Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals.
Tizzano, Marco; Gulbransen, Brian D; Vandenbeuch, Aurelie; Clapp, Tod R; Herman, Jake P; Sibhatu, Hiruy M; Churchill, Mair E A; Silver, Wayne L; Kinnamon, Sue C; Finger, Thomas E
2010-02-16
The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.
Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals
Tizzano, Marco; Gulbransen, Brian D.; Vandenbeuch, Aurelie; Clapp, Tod R.; Herman, Jake P.; Sibhatu, Hiruy M.; Churchill, Mair E. A.; Silver, Wayne L.; Kinnamon, Sue C.; Finger, Thomas E.
2010-01-01
The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl–homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca2+. Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either Gα-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl–homoserine lactones serve as quorum-sensing molecules for Gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms. PMID:20133764
Pinniped Hearing in Complex Acoustic Environments
2013-09-30
published] Mulsow, J. & Reichmuth, C. (2013). The binaural click-evoked auditory brainstem response of the California sea lion (Zalophus...California sea lion can keep the beat : Motor entrainment to rhythmic auditory stimuli in a non vocal mimic. Journal of Comparative Psychology, online first. [published
NASA Astrophysics Data System (ADS)
Patel, Nirmal; Sultana, Sharmin; Rashid, Tanweer; Krusienski, Dean; Audette, Michel A.
2015-03-01
This paper presents a methodology for the digital formatting of a printed atlas of the brainstem and the delineation of cranial nerves from this digital atlas. It also describes on-going work on the 3D resampling and refinement of the 2D functional regions and nerve contours. In MRI-based anatomical modeling for neurosurgery planning and simulation, the complexity of the functional anatomy entails a digital atlas approach, rather than less descriptive voxel or surface-based approaches. However, there is an insufficiency of descriptive digital atlases, in particular of the brainstem. Our approach proceeds from a series of numbered, contour-based sketches coinciding with slices of the brainstem featuring both closed and open contours. The closed contours coincide with functionally relevant regions, whereby our objective is to fill in each corresponding label, which is analogous to painting numbered regions in a paint-by-numbers kit. Any open contour typically coincides with a cranial nerve. This 2D phase is needed in order to produce densely labeled regions that can be stacked to produce 3D regions, as well as identifying the embedded paths and outer attachment points of cranial nerves. Cranial nerves are modeled using an explicit contour based technique called 1-Simplex. The relevance of cranial nerves modeling of this project is two-fold: i) this atlas will fill a void left by the brain segmentation communities, as no suitable digital atlas of the brainstem exists, and ii) this atlas is necessary to make explicit the attachment points of major nerves (except I and II) having a cranial origin. Keywords: digital atlas, contour models, surface models
Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus
Wenstrup, Jeffrey James; Nataraj, Kiran; Sanchez, Jason Tait
2012-01-01
This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the auditory forebrain of many vertebrate species, the work described here establishes their origin in the auditory brainstem and midbrain. Focusing on the mustached bat, we review several major findings: (1) Combination-sensitive responses involve facilitatory interactions, inhibitory interactions, or both when activated by distinct spectral elements in complex sounds. (2) Combination-sensitive responses are created in distinct stages: inhibition arises mainly in lateral lemniscal nuclei of the auditory brainstem, while facilitation arises in the inferior colliculus (IC) of the midbrain. (3) Spectral integration underlying combination-sensitive responses requires a low-frequency input tuned well below a neuron's characteristic frequency (ChF). Low-ChF neurons in the auditory brainstem project to high-ChF regions in brainstem or IC to create combination sensitivity. (4) At their sites of origin, both facilitatory and inhibitory combination-sensitive interactions depend on glycinergic inputs and are eliminated by glycine receptor blockade. Surprisingly, facilitatory interactions in IC depend almost exclusively on glycinergic inputs and are largely independent of glutamatergic and GABAergic inputs. (5) The medial nucleus of the trapezoid body (MNTB), the lateral lemniscal nuclei, and the IC play critical roles in creating combination-sensitive responses. We propose that these mechanisms, based on work in the mustached bat, apply to a broad range of mammals and other vertebrates that depend on temporally sensitive integration of information across the audible spectrum. PMID:23109917
Surgical treatment of parapontine epidermoid cysts presenting with trigeminal neuralgia.
Guo, Zhilin; Ouyang, Huoniu; Cheng, Zhihua
2011-03-01
We retrospectively reviewed the management of 49 patients with parapontine epidermoid cyst presenting with trigeminal neuralgia, emphasizing the importance of fully removing the tumor to relieve the trigeminal neuralgia. Clinical symptoms, MRI, the operative approach, and post-operative results were examined. Trigeminal neuralgia was noted in all patients. The mean duration from onset of symptoms to surgery was 18 months. Total removal was achieved in 23 patients, near-total removal in 21, and subtotal removal in five patients. However, all tumor capsule that adhered to the trigeminal nerve was completely removed. After the operation, 33 patients developed facial hypoesthesia, three complained of double vision, and two developed acute hydrocephalus. At six months of follow-up, all patients had recovered and returned to their normal lives. At 2 years of follow-up, one patient experienced pain recurrence and underwent another operation. Parapontine epidermoid cysts either encase cranial nerve (CN) V but with intact arachnoid between the capsule and the nerve, or compress and distort the nerve with tumor capsule adherent or attached to the nerve surface. Resecting the tumor capsule's attachment to CN V is critical in relieving pain, even though this method may damage the nerve. Copyright © 2010 Elsevier Ltd. All rights reserved.
Molecular basis of tactile specialization in the duck bill.
Schneider, Eve R; Anderson, Evan O; Mastrotto, Marco; Matson, Jon D; Schulz, Vincent P; Gallagher, Patrick G; LaMotte, Robert H; Gracheva, Elena O; Bagriantsev, Sviatoslav N
2017-12-05
Tactile-foraging ducks are specialist birds known for their touch-dependent feeding behavior. They use dabbling, straining, and filtering to find edible matter in murky water, relying on the sense of touch in their bill. Here, we present the molecular characterization of embryonic duck bill, which we show contains a high density of mechanosensory corpuscles innervated by functional rapidly adapting trigeminal afferents. In contrast to chicken, a visually foraging bird, the majority of duck trigeminal neurons are mechanoreceptors that express the Piezo2 ion channel and produce slowly inactivating mechano-current before hatching. Furthermore, duck neurons have a significantly reduced mechano-activation threshold and elevated mechano-current amplitude. Cloning and electrophysiological characterization of duck Piezo2 in a heterologous expression system shows that duck Piezo2 is functionally similar to the mouse ortholog but with prolonged inactivation kinetics, particularly at positive potentials. Knockdown of Piezo2 in duck trigeminal neurons attenuates mechano current with intermediate and slow inactivation kinetics. This suggests that Piezo2 is capable of contributing to a larger range of mechano-activated currents in duck trigeminal ganglia than in mouse trigeminal ganglia. Our results provide insights into the molecular basis of mechanotransduction in a tactile-specialist vertebrate.
Molecular basis of tactile specialization in the duck bill
Anderson, Evan O.; Mastrotto, Marco; Matson, Jon D.; Schulz, Vincent P.; Gallagher, Patrick G.; LaMotte, Robert H.; Gracheva, Elena O.; Bagriantsev, Sviatoslav N.
2017-01-01
Tactile-foraging ducks are specialist birds known for their touch-dependent feeding behavior. They use dabbling, straining, and filtering to find edible matter in murky water, relying on the sense of touch in their bill. Here, we present the molecular characterization of embryonic duck bill, which we show contains a high density of mechanosensory corpuscles innervated by functional rapidly adapting trigeminal afferents. In contrast to chicken, a visually foraging bird, the majority of duck trigeminal neurons are mechanoreceptors that express the Piezo2 ion channel and produce slowly inactivating mechano-current before hatching. Furthermore, duck neurons have a significantly reduced mechano-activation threshold and elevated mechano-current amplitude. Cloning and electrophysiological characterization of duck Piezo2 in a heterologous expression system shows that duck Piezo2 is functionally similar to the mouse ortholog but with prolonged inactivation kinetics, particularly at positive potentials. Knockdown of Piezo2 in duck trigeminal neurons attenuates mechano current with intermediate and slow inactivation kinetics. This suggests that Piezo2 is capable of contributing to a larger range of mechano-activated currents in duck trigeminal ganglia than in mouse trigeminal ganglia. Our results provide insights into the molecular basis of mechanotransduction in a tactile-specialist vertebrate. PMID:29109250
Sayles, Mark; Stasiak, Arkadiusz; Winter, Ian M.
2015-01-01
The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once), in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation). Brainstem circuits help segregate these complex acoustic mixtures into “auditory objects.” Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0) modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous. We examine the ability of 129 single units in the ventral cochlear nucleus (VCN) of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels' spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels' spectral energy into two streams (corresponding to the two vowels), on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset) are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging listening conditions. PMID:25628545
Ishihara, H; San Millán Ruíz, D; Abdo, G; Asakura, F; Yilmaz, H; Lovblad, K O; Rüfenacht, D A
2011-09-01
A 32-year-old woman hospitalized for subarachnoid hemorrhage showed rare arterial variation on the right side with anomalous origins of the vertebral artery, aberrant subclavian artery and persistent trigeminal artery. Angiography showed the right vertebral artery to originate from the right common carotid artery, the right subclavian artery to arise separately from the descending aorta, and persistent trigeminal artery on the right side. The possible embryonic mechanism of this previously unreported variant combination is discussed.
SU-F-J-160: Clinical Evaluation of Targeting Accuracy in Radiosurgery Using Tractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juh, R; Han, J; Kim, C
Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess trigeminal nerve changes. The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgery with Gamma knife. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging, allowing detection of unique, focal changes in the target area after radiosurgery. Methods: Sixteen TN patients (2 females, 4 males, average age 65.3 years) treated with Gamma Knife radiosurgery, 40 Gy/50% isodosemore » line underwent 1.5Tesla MR trigeminal nerve. Target accuracy was assessed from deviation of the coordinates of the target compared with the center of enhancement on post MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated. Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was within 1mm. The radiation doses fitting within the borders of the contrast enhancement the target ranged from 37.5 to 40 Gy. Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA values at the target with no significant change in FA outside the target, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive, since FA changes were detected regardless of trigeminal nerve enhancement. Conclusion: The median deviation found in clinical assessment of gamma knife treatment for TN Is low and compatible with its high rate of efficiency. DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the pathophysiology of TN and treatment effects.« less
Romero-Reyes, Marcela; Pardi, Vanessa; Akerman, Simon
2015-09-01
Temporomandibular disorders (TMDs) are orofacial pains within the trigeminal distribution, which involve the masticatory musculature, the temporomandibular joint or both. Their pathophysiology remains unclear, as inflammatory mediators are thought to be involved, and clinically TMD presents pain and sometimes limitation of function, but often appears without gross indications of local inflammation, such as visible edema, redness and increase in temperature. Calcitonin gene-related peptide (CGRP) has been implicated in other pain disorders with trigeminal distribution, such as migraine, of which TMD shares a significant co-morbidity. CGRP causes activation and sensitization of trigeminal primary afferent neurons, independent of any inflammatory mechanisms, and thus may also be involved in TMD. Here we used a small molecule, selective CGRP receptor antagonist, MK-8825, to dissect the role of CGRP in inducing spontaneous nociceptive facial grooming behaviors, neuronal activation in the trigeminal nucleus, and systemic release of pro-inflammatory cytokines, in a mouse model of acute orofacial masseteric muscle pain that we have developed, as a surrogate of acute TMD. We show that CFA masseteric injection causes significant spontaneous orofacial pain behaviors, neuronal activation in the trigeminal nucleus, and release of interleukin-6 (IL-6). In mice pre-treated with MK-8825 there is a significant reduction in these spontaneous orofacial pain behaviors. Also, at 2 and 24h after CFA injection the level of Fos immunoreactivity in the trigeminal nucleus, used as a marker of neuronal activation, was much lower on both ipsilateral and contralateral sides after pre-treatment with MK-8825. There was no effect of MK-8825 on the release of IL-6. These data suggest that CGRP may be involved in TMD pathophysiology, but not via inflammatory mechanisms, at least in the acute stage. Furthermore, CGRP receptor antagonists may have therapeutic efficacy in the treatment of TMD, as they do with migraine. Copyright © 2015 Elsevier Inc. All rights reserved.
Berti, Aldo; Granville, Michelle; Jacobson, Robert E
2018-01-12
A case of an extremely healthy, active, 96-year-old patient, nonsmoker, is reviewed. He was initially treated for left V1, V2, and V3 trigeminal neuralgia in 2001, at age 80, with stereotactic radiosurgery (SRS) with a dose of 80 Gy to the left retrogasserian trigeminal nerve. He remained asymptomatic for nine years until his trigeminal pain recurred in 2010. He was first treated medically but was intolerant to increasing doses of carbamazepine and gabapentin. He underwent a second SRS in 2012 with a dose of 65.5 Gy to the same retrogasserian area of the trigeminal nerve, making the total cumulative dose 125.5 Gy. In late 2016, four years after the 2 nd SRS, he was found to have invasive keratinizing squamous cell carcinoma in the left posterior mandibular oral mucosa. Keratinizing squamous cell carcinoma is seen primarily in smokers or associated with the human papillomavirus, neither of which was found in this patient. A review of his two SRS plans shows that the left lower posterior mandibular area was clearly within the radiation fields for both SRS treatments. It is postulated that his cancer developed secondary to the long-term radiation effect with a very localized area being exposed twice to a focused, cumulative, high-dose radiation. There are individual reports in the literature of oral mucositis immediately after radiation for trigeminal neuralgia and the delayed development of malignant tumors, including glioblastoma found after SRS for acoustic neuromas, but there are no reports of delayed malignant tumors developing within the general radiation field. Using repeat SRS is an accepted treatment for recurrent trigeminal neuralgia, but physicians and patients should be aware of the potential effects of higher cumulative radiation effects within the treatment field when patients undergo repeat procedures.
SU-E-J-34: Clinical Evaluation of Targeting Accuracy and Tractogrphy Delineation of Radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juh, R; Suh, T; Kim, Y
2014-06-01
Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess trigeminal nerve changes. The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgery with Gamma knife. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging, allowing detection of unique, focal changes in the target area after radiosurgery. Methods: Sixteen TN patients (2 females, 4 male, average age 65.3 years) treated with Gamma Knife radiosurgery, 40 Gy/50% isodosemore » line underwent 1.5Tesla MR trigeminal nerve . Target accuracy was assessed from deviation of the coordinates of the target compared with the center of enhancement on post MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was within 1mm. The radiation doses fitting within the borders of the contrast enhancement the target ranged from 37.5 to 40 Gy. Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA values at the target with no significant change in FA outside the target, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive, since FA changes were detected regardless of trigeminal nerve enhancement Conclusion: The median deviation found in clinical assessment of gamma knife treatment for TN Is low and compatible with its high rate of efficiency. DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the pathophysiology of TN and treatment effects.« less
Lulz, Ana Paula; Kopach, Olga; Santana-Varela, Sonia; Wood, John N
2015-01-01
Trigeminal neuralgia is accompanied by severe mechanical, thermal and chemical hypersensitivity of the orofacial area innervated by neurons of trigeminal ganglion (TG). We examined the role of the voltage-gated sodium channel subtype Nav1.9 in the development of trigeminal neuralgia. We found that Nav1.9 is required for the development of both thermal and mechanical hypersensitivity induced by constriction of the infraorbital nerve (CION). The CION model does not induce change on Nav1.9 mRNA expression in the ipsilateral TG neurons when evaluated 9 days after surgery. These results demonstrate that Nav1.9 channels play a critical role in the development of orofacial neuropathic pain. New routes for the treatment of orofacial neuropathic pain focussing on regulation of the voltage-gated Nav1.9 sodium channel activity should be investigated. © 2015 Luiz et al.
Trigeminal induced arousals during human sleep.
Heiser, Clemens; Baja, Jan; Lenz, Franziska; Sommer, J Ulrich; Hörmann, Karl; Herr, Raphael M; Stuck, Boris A
2015-05-01
Arousals caused by external stimuli during human sleep have been studied for most of the sensorial systems. It could be shown that a pure nasal trigeminal stimulus leads to arousals during sleep. The frequency of arousals increases dependent on the stimulus concentration. The aim of the study was to evaluate the influence of different stimulus durations on arousal frequency during different sleep stages. Ten young healthy volunteers with 20 nights of polysomnography were included in the study. Pure trigeminal stimulation with both different concentrations of CO2 (0, 10, 20, 40% v/v) and different stimulus durations (1, 3, 5, and 10 s) were applied during different sleep stages to the volunteers using an olfactometer. The application was performed during different sleep stages (light sleep, deep sleep, REM sleep). The number of arousals increased with rising stimulus duration and stimulus concentration during each sleep stage. Trigeminal stimuli during sleep led to arousals in dose- and time-dependent manner.
Molecular and cellular mechanisms of trigeminal chemosensation.
Gerhold, Kristin A; Bautista, Diana M
2009-07-01
Three sensory systems, olfaction, taste, and somatosensation, are dedicated to the detection of chemicals in the environment. Trigeminal somatosensory neurons enable us to detect a wide range of environmental stimuli, including pressure, temperature, and chemical irritants, within the oral and nasal mucosa. Natural plant-derived irritants have served as powerful pharmacological tools for identifying receptors underlying somatosensation. This is illustrated by the use of capsaicin, menthol, and wasabi to identify the heat-sensitive ion channel TRPV1, the cold-sensitive ion channel TRPM8, and the irritant receptor TRPA1, respectively. In addition to TRP channels, members of the two-pore potassium channel family have also been implicated in trigeminal chemosensation. KCNK18 was recently identified as a target for hydroxy-alpha-sanshool, the tingling and numbing compound produced in Schezuan peppers and other members of the Xanthoxylum genus. The role of these channels in trigeminal thermosensation and pain will be discussed.
Molecular and Cellular Mechanisms of Trigeminal Chemosensation
Gerhold, Kristin A.; Bautista, Diana M.
2010-01-01
Three sensory systems, olfaction, taste, and somatosensation, are dedicated to the detection of chemicals in the environment. Trigeminal somatosensory neurons enable us to detect a wide range of environmental stimuli, including pressure, temperature, and chemical irritants, within the oral and nasal mucosa. Natural plant-derived irritants have served as powerful pharmacological tools for identifying receptors underlying somatosensation. This is illustrated by the use of capsaicin, menthol, and wasabi to identify the heat-sensitive ion channel TRPV1, the cold-sensitive ion channel TRPM8, and the irritant receptor TRPA1, respectively. In addition to TRP channels, members of the two-pore potassium channel family have also been implicated in trigeminal chemosensation. KCNK18 was recently identified as a target for hydroxy-α-sanshool, the tingling and numbing compound produced in Schezuan peppers and other members of the Xanthoxylum genus. The role of these channels in trigeminal thermosensation and pain will be discussed. PMID:19686135
VASS, Z.; DAI, C. F.; STEYGER, P. S.; JANCSÓ, G.; TRUNE, D. R.; NUTTALL, A. L.
2014-01-01
Evidence suggests that capsaicin-sensitive substance P (SP)-containing trigeminal ganglion neurons innervate the spiral modiolar artery (SMA), radiating arterioles, and the stria vascularis of the cochlea. Antidromic electrical or chemical stimulation of trigeminal sensory nerves results in neurogenic plasma extravasation in inner ear tissues. The primary aim of this study was to reveal the possible morphological basis of cochlear vascular changes mediated by capsaicin-sensitive sensory nerves. Therefore, the distribution of SP and capsaicin receptor (transient receptor potential vanilloid type 1—TRPV1) was investigated by double immunolabeling to demonstrate the anatomical relationships between the cochlear and vertebro-basilar blood vessels and the trigeminal sensory fiber system. Extensive TRPV1 and SP expression and co-localization were observed in axons within the adventitial layer of the basilar artery, the anterior inferior cerebellar artery, the SMA, and the radiating arterioles of the cochlea. There appears to be a functional relationship between the trigeminal ganglion and the cochlear blood vessels since electrical stimulation of the trigeminal ganglion induced significant plasma extravasation from the SMA and the radiating arterioles. The findings suggest that stimulation of paravascular afferent nerves may result in permeability changes in the basilar and cochlear vascular bed and may contribute to the mechanisms of vertebro-basilar type of headache through the release of SP and stimulation of TPVR1, respectively. We propose that vertigo, tinnitus, and hearing deficits associated with migraine may arise from perturbations of capsaicin-sensitive trigeminal sensory ganglion neurons projecting to the cochlea. PMID:15026132
Cady, Ryan J.; Durham, Paul L.
2010-01-01
Activation of trigeminal nerves and release of neuropeptides that promote inflammation are implicated in the underlying pathology of migraine and temporomandibular joint (TMJ) disorders. The overall response of trigeminal nerves to peripheral inflammatory stimuli involves a balance between enzymes that promote inflammation, kinases, and those that restore homeostasis, phosphatases. The goal of this study was to determine the effects of a cocoa-enriched diet on the expression of key inflammatory proteins in trigeminal ganglion neurons under basal and inflammatory conditions. Rats were fed a control diet or an isocaloric diet enriched in cocoa for 14 days prior to an injection of noxious stimuli to cause acute or chronic excitation of trigeminal neurons. In animals fed a cocoa-enriched diet, basal levels of the mitogen-activated kinase (MAP) phosphatases MKP-1 and MKP-3 were elevated in neurons. Importantly, the stimulatory effects of acute or chronic peripheral inflammation on neuronal expression of the MAPK p38 and extracellular signal-regulated kinases (ERK) were significantly repressed in response to cocoa. Similarly, dietary cocoa significantly suppressed basal neuronal expression of calcitonin gene-related peptide (CGRP) as well as stimulated levels of the inducible form of nitric oxide synthase (iNOS), proteins implicated in the underlying pathology of migraine and TMJ disorders. To our knowledge, this is first evidence that a dietary supplement can cause upregulation of MKP, and that cocoa can prevent inflammatory responses in trigeminal ganglion neurons. Furthermore, our data provide evidence that cocoa contains biologically active compounds that would be beneficial in the treatment of migraine and TMJ disorders. PMID:20138852
Arakaki, Xianghong; McCleary, Paige; Techy, Matthew; Chiang, Jiarong; Kuo, Linus; Fonteh, Alfred N; Armstrong, Brian; Levy, Dan; Harrington, Michael G
2013-03-14
Cerebrospinal fluid (CSF) sodium concentration increases during migraine attacks, and both CSF and vitreous humor sodium increase in the rat migraine model. The Na,K-ATPase is a probable source of these sodium fluxes. Since Na,K-ATPase isoforms have different locations and physiological roles, our objective was to establish which alpha isoforms are present at sites where sodium homeostasis is disrupted. Specific Na,K-ATPase alpha isoforms were identified in rat tissues by immunohistochemistry at the blood-CSF barrier at the choroid plexus, at the blood-CSF-trigeminal barrier at the meninges, at the blood-retina barrier, and at the blood-aqueous barrier at the ciliary body. Calcitonin gene-related peptide (CGRP), occludin, or von Willibrand factor (vWF) were co-localized with Na,K-ATPase to identify trigeminal nociceptor fibers, tight junctions, and capillary endothelial cells respectively. The Na,K-ATPase alpha-2 isoform is located on capillaries and intensely at nociceptive trigeminal nerve fibers at the meningeal blood-CSF-trigeminal barrier. Alpha-1 and -3 are lightly expressed on the trigeminal nerve fibers but not at capillaries. Alpha-2 is expressed at the blood-retina barriers and, with alpha-1, at the ciliary body blood aqueous barrier. Intense apical membrane alpha-1 was associated with moderate cytoplasmic alpha-2 expression at the choroid plexus blood-CSF barrier. Na,K-ATPase alpha isoforms are present at the meningeal, choroid plexus, and retinal barriers. Alpha-2 predominates at the capillary endothelial cells in the meninges and retinal ganglion cell layer.
2013-01-01
Background Cerebrospinal fluid (CSF) sodium concentration increases during migraine attacks, and both CSF and vitreous humor sodium increase in the rat migraine model. The Na,K-ATPase is a probable source of these sodium fluxes. Since Na,K-ATPase isoforms have different locations and physiological roles, our objective was to establish which alpha isoforms are present at sites where sodium homeostasis is disrupted. Methods Specific Na,K-ATPase alpha isoforms were identified in rat tissues by immunohistochemistry at the blood-CSF barrier at the choroid plexus, at the blood-CSF-trigeminal barrier at the meninges, at the blood-retina barrier, and at the blood-aqueous barrier at the ciliary body. Calcitonin gene-related peptide (CGRP), occludin, or von Willibrand factor (vWF) were co-localized with Na,K-ATPase to identify trigeminal nociceptor fibers, tight junctions, and capillary endothelial cells respectively. Results The Na,K-ATPase alpha-2 isoform is located on capillaries and intensely at nociceptive trigeminal nerve fibers at the meningeal blood-CSF-trigeminal barrier. Alpha-1 and −3 are lightly expressed on the trigeminal nerve fibers but not at capillaries. Alpha-2 is expressed at the blood-retina barriers and, with alpha-1, at the ciliary body blood aqueous barrier. Intense apical membrane alpha-1 was associated with moderate cytoplasmic alpha-2 expression at the choroid plexus blood-CSF barrier. Conclusion Na,K-ATPase alpha isoforms are present at the meningeal, choroid plexus, and retinal barriers. Alpha-2 predominates at the capillary endothelial cells in the meninges and retinal ganglion cell layer. PMID:23497725
Chronic migraine is associated with reduced corneal nerve fiber density and symptoms of dry eye.
Kinard, Krista I; Smith, A Gordon; Singleton, J Robinson; Lessard, Margaret K; Katz, Bradley J; Warner, Judith E A; Crum, Alison V; Mifflin, Mark D; Brennan, Kevin C; Digre, Kathleen B
2015-04-01
We used in vivo corneal confocal microscopy to investigate structural differences in the sub-basal corneal nerve plexus in chronic migraine patients and a normal population. We used a validated questionnaire and tests of lacrimal function to determine the prevalence of dry eye in the same group of chronic migraine patients. Activation of the trigeminal system is involved in migraine. Corneal nociceptive sensation is mediated by trigeminal axons that synapse in the gasserian ganglion and the brainstem, and serve nociceptive, protective, and trophic functions. Noninvasive imaging of the corneal sub-basal nerve plexus is possible with in vivo corneal confocal microscopy. For this case-control study, we recruited chronic migraine patients and compared them with a sex- and age-similar group of control subjects. Patients with peripheral neuropathy, a disease known to be associated with a peripheral neuropathy, or prior corneal or intraocular surgery were excluded. Participants underwent in vivo corneal confocal microscopy using a Heidelberg Retinal Tomography III confocal microscope with a Rostock Cornea Module. Nerve fiber length, nerve branch density, nerve fiber density, and tortuosity coefficient were measured using established methodologies. Migraine participants underwent testing of basal tear production with proparacaine, corneal sensitivity assessment with a cotton-tip applicator, measurement of tear break-up time, and completion of a validated dry eye questionnaire. A total of 19 chronic migraine patients and 30 control participants completed the study. There were no significant differences in age or sex. Nerve fiber density was significantly lower in migraine patients compared with controls (48.4 ± 23.5 vs. 71.0 ± 15.0 fibers/mm2 , P < .001). Nerve fiber length was decreased in the chronic migraine group compared with the control group, but this difference was not statistically significant (21.5 ± 11.8 vs. 26.8 ± 5.9 mm/mm2, P < .084). Nerve branch density was similar in the two groups (114.0 ± 92.4 vs. 118.1 ± 55.9 branches/mm2 , P < .864). Tortuosity coefficient and log tortuosity coefficient also were similar in the chronic migraine and control groups. All migraine subjects had symptoms consistent with a diagnosis of dry eye syndrome. We found that in the sample used in this study, the presence of structural changes in nociceptive corneal axons lends further support to the hypothesis that the trigeminal system plays a critical role in the pathogenesis of migraine. In vivo corneal confocal microscopy holds promise as a biomarker for future migraine research as well as for studies examining alterations of corneal innervation. Dry eye symptoms appear to be extremely prevalent in this population. The interrelationships between migraine, corneal nerve architecture, and dry eye will be the subject of future investigations. © 2015 American Headache Society.
Zhong, Weiwei; Johnson, Christopher M; Cui, Ningren; Oginsky, Max F; Wu, Yang; Jiang, Chun
2017-01-01
Rett syndrome (RTT) is mostly caused by mutations of the X-linked MECP2 gene. Although the causal neuronal mechanisms are still unclear, accumulating experimental evidence obtained from Mecp2 -/Y mice suggests that imbalanced excitation/inhibition in central neurons plays a major role. Several approaches may help to rebalance the excitation/inhibition, including agonists of GABA A receptors (GABA A R). Indeed, our previous studies have shown that early-life exposure of Mecp2-null mice to the extrasynaptic GABA A R agonist THIP alleviates several RTT-like symptoms including breathing disorders, motor dysfunction, social behaviors, and lifespan. However, how the chronic THIP affects the Mecp2 -/Y mice at the cellular level remains elusive. Here, we show that the THIP exposure in early lives markedly alleviated hyperexcitability of two types of brainstem neurons in Mecp2 -/Y mice. In neurons of the locus coeruleus (LC), known to be involved in breathing regulation, the hyperexcitability showed clear age-dependence, which was associated with age-dependent deterioration of the RTT-like breathing irregularities. Both the neuronal hyperexcitability and the breathing disorders were relieved with early THIP treatment. In neurons of the mesencephalic trigeminal nucleus (Me5), both the neuronal hyperexcitability and the changes in intrinsic membrane properties were alleviated with the THIP treatment in Mecp2-null mice. The effects of THIP on both LC and Me5 neuronal excitability remained 1 week after withdrawal. Persistent alleviation of breathing abnormalities in Mecp2 -/Y mice was also observed a week after THIP withdrawal. These results suggest that early-life exposure to THIP, a potential therapeutic medicine, appears capable of controlling neuronal hyperexcitability in Mecp2 -/Y mice, which occurs in the absence of THIP in the recording solution, lasts at least 1 week after withdrawal, and may contribute to the RTT-like symptom mitigation. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Flickinger, John C; Kim, Hyun; Kano, Hideyuki; Greenberger, Joel S; Arai, Yoshio; Niranjan, Ajay; Lunsford, L Dade; Kondziolka, Douglas; Flickinger, John C
2012-07-15
Laboratory studies have documented radioprotective effects with carbamazepine. We sought to determine whether carbamazepine or other anticonvulsant/neuroleptic drugs would show significant radioprotective effects in patients undergoing high-dose small-volume radiosurgery for trigeminal neuralgia. We conducted a retrospective review of 200 patients undergoing Gamma Knife (Elekta Instrument AB, Stockholm, Sweden) stereotactic radiosurgery for trigeminal neuralgia between February 1995 and May 2008. We selected patients treated with a maximum dose of 80 Gy with 4-mm diameter collimators, with no previous microvascular decompression, and follow-up ≥6 months (median, 24 months; range, 6-153 months). At the time of radiosurgery, 28 patients were taking no anticonvulsants, 62 only carbamazepine, 35 only gabapentin, 21 carbamazepine plus gabapentin, 17 carbamazepine plus other anticonvulsants, and 9 gabapentin plus other anticonvulsants, and 28 were taking other anticonvulsants or combinations. Pain improvement developed post-radiosurgery in 187 of 200 patients (93.5%). Initial complete pain relief developed in 84 of 200 patients (42%). Post-radiosurgery trigeminal neuropathy developed in 27 of 200 patients (13.5%). We could not significantly correlate pain improvement or initial complete pain relief with use of carbamazepine, gabapentin, or use of any anticonvulsants/neuroleptic drugs or other factors in univariate or multivariate analysis. Post-radiosurgery numbness/paresthesias correlated with the use of gabapentin (1 of 36 patients with gabapentin vs. 7 of 28 without, p = 0.017). In multivariate analysis, decreasing age, purely typical pain, and use of gabapentin correlated (p = 0.008, p = 0.005, and p = 0.021) with lower risks of developing post-radiosurgery trigeminal neuropathy. New post-radiosurgery numbness/paresthesias developed in 3% (1 of 36), 5% (4 of 81), and 13% (23 of 187) of patients on gabapentin alone, with age ≤70 years, and Type 1 typical trigeminal neuralgia pain compared with 25% (7 of 28), 20% (23 of 114), and 33% (4 of 12) of patients taking no anticonvulsants, age >70 years, and partly atypical Type 2 trigeminal neuralgia, respectively. The use of carbamazepine or gabapentin at the time of radiosurgery does not decrease the rates of obtaining partial or complete pain relief after radiosurgery, but gabapentin may reduce the risks of developing post-radiosurgery trigeminal neuropathy. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flickinger, John C.; College of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA; Kim, Hyun
2012-07-15
Purpose: Laboratory studies have documented radioprotective effects with carbamazepine. We sought to determine whether carbamazepine or other anticonvulsant/neuroleptic drugs would show significant radioprotective effects in patients undergoing high-dose small-volume radiosurgery for trigeminal neuralgia. Methods and Materials: We conducted a retrospective review of 200 patients undergoing Gamma Knife (Elekta Instrument AB, Stockholm, Sweden) stereotactic radiosurgery for trigeminal neuralgia between February 1995 and May 2008. We selected patients treated with a maximum dose of 80 Gy with 4-mm diameter collimators, with no previous microvascular decompression, and follow-up {>=}6 months (median, 24 months; range, 6-153 months). At the time of radiosurgery, 28 patientsmore » were taking no anticonvulsants, 62 only carbamazepine, 35 only gabapentin, 21 carbamazepine plus gabapentin, 17 carbamazepine plus other anticonvulsants, and 9 gabapentin plus other anticonvulsants, and 28 were taking other anticonvulsants or combinations. Results: Pain improvement developed post-radiosurgery in 187 of 200 patients (93.5%). Initial complete pain relief developed in 84 of 200 patients (42%). Post-radiosurgery trigeminal neuropathy developed in 27 of 200 patients (13.5%). We could not significantly correlate pain improvement or initial complete pain relief with use of carbamazepine, gabapentin, or use of any anticonvulsants/neuroleptic drugs or other factors in univariate or multivariate analysis. Post-radiosurgery numbness/paresthesias correlated with the use of gabapentin (1 of 36 patients with gabapentin vs. 7 of 28 without, p = 0.017). In multivariate analysis, decreasing age, purely typical pain, and use of gabapentin correlated (p = 0.008, p = 0.005, and p = 0.021) with lower risks of developing post-radiosurgery trigeminal neuropathy. New post-radiosurgery numbness/paresthesias developed in 3% (1 of 36), 5% (4 of 81), and 13% (23 of 187) of patients on gabapentin alone, with age {<=}70 years, and Type 1 typical trigeminal neuralgia pain compared with 25% (7 of 28), 20% (23 of 114), and 33% (4 of 12) of patients taking no anticonvulsants, age >70 years, and partly atypical Type 2 trigeminal neuralgia, respectively. Conclusions: The use of carbamazepine or gabapentin at the time of radiosurgery does not decrease the rates of obtaining partial or complete pain relief after radiosurgery, but gabapentin may reduce the risks of developing post-radiosurgery trigeminal neuropathy.« less
Habibi, Zohreh; Meybodi, Ali Tayebi; Maleki, Farid; Tabatabai, Seyed
2011-01-01
The aim was to clarify the anatomical features of the superior and anterior inferior cerebellar arteries in relation to the trigeminal nerve and acoustic-facial complex and to the bony structures of the skull in a sample of male Iranian cadavers. Bilateral dissections, calvariectomy, and brain evacuation were performed on 31 adult human fresh brains and skull bases to assess the neurovascular associations, and skull base morphometry. Equations were defined to estimate posterior fossa volume and the relationships between bony and neurovascular elements. Eight SCAs were duplicated from origin. There were 9 cases of SCA-trigeminal contacts, which were at the root entry zone in 7. Mean distance from the origin of AICA to the vertebrobasilar junction was 11.80 mm, while 79% of AICAs originated from the lower half of the BA. This was significantly associated with "posterior fossa funneling" and "basilar narrowing" indexes. In most cases AICA crossed the acoustic-facial complex and coursed between neural bundles (48.3%). The AICA reached or entered the internal acoustic canal in 22.6% of cases and was medial to porous in 77.4%. We documented anatomical variations of the superior and anterior inferior cerebellar arteries along with some cephalometric equations with relevant neurovascular anatomy in Iranian cadavers.
Evolutionary trends in directional hearing
Carr, Catherine E.; Christensen-Dalsgaard, Jakob
2016-01-01
Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and lizards resemble this ancestral, directionally sensitive framework. Despite this anatomically similarity, coding of sound source location differs between birds and lizards. In birds, brainstem circuits compute sound location from interaural cues. Lizards, however, have coupled ears, and do not need to compute source location in the brain. Thus their neural processing of sound direction differs, although all show mechanisms for enhancing sound source directionality. Comparisons with mammals reveal similarly complex interactions between coding strategies and evolutionary history. PMID:27448850
Choi, Jin-gyu
2017-01-01
Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures. PMID:28331643
Son, Byung-Chul; Choi, Jin-Gyu
2017-01-01
Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures.
Unilateral or "side-locked" migrainous headache with autonomic symptoms linked to night guard use.
Strahlendorf, Jean; Schiffer, Randolph; Strahlendorf, Howard
2008-01-01
Night guards are commonly prescribed as a palliative measure for bruxism, temporomandibular joint symptoms, and associated disorders. We describe a patient with a 10- to 12-year history of night guard use with concurrent unilateral side-locked migrainous headaches with autonomic symptoms characteristic of trigeminal autonomic cephalgia. These headaches were refractory to numerous pharmacological interventions. Upon self-initiated cessation of night guard use, there was complete remission of headaches. We believe the headaches were initiated by night guard-initiated irritation of the trigeminal nerve and a trigeminal autonomic reflex resulting in unilateral migrainous headache with autonomic signs.
Bowen, Elizabeth J; Schmidt, Thomas W; Firm, Christina S; Russo, Andrew F; Durham, Paul L
2006-01-01
Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factor-alpha (TNF-alpha). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNF-alpha stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNF-alpha caused a coordinate increase in CGRP promoter activity. TNF-alpha treatment activated the transcription factor NF-kappaB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNF-alpha induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels.
Bowen, Elizabeth J.; Schmidt, Thomas W.; Firm, Christina S.; Russo, Andrew F.; Durham, Paul L.
2006-01-01
Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factorα (TNFα). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNFα stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNFα caused a coordinate increase in CGRP promoter activity. TNFα treatment activated the transcription factor NF-κB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNFα induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels. PMID:16277606
Mastication induces long-term increases in blood perfusion of the trigeminal principal nucleus.
Viggiano, A; Manara, R; Conforti, R; Paccone, A; Secondulfo, C; Lorusso, L; Sbordone, L; Di Salle, F; Monda, M; Tedeschi, G; Esposito, F
2015-12-17
Understanding mechanisms for vessel tone regulation within the trigeminal nuclei is of great interest because some headache syndromes are due to dysregulation of such mechanisms. Previous experiments on animal models suggest that mastication may alter neuron metabolism and blood supply in these nuclei. To investigate this hypothesis in humans, arterial spin-labeling magnetic resonance imaging (MRI) was used to measure blood perfusion within the principal trigeminal nucleus (Vp) and in the dorsolateral-midbrain (DM, including the mesencephalic trigeminal nucleus) in healthy volunteers, before and immediately after a mastication exercise consisting of chewing a gum on one side of the mouth for 1 h at 1 bite/s. The side preference for masticating was evaluated with a chewing test and the volume of the masseter muscle was measured on T1-weighted MRI scans. The results demonstrated that the mastication exercise caused a perfusion increase within the Vp, but not in the DM. This change was correlated to the preference score for the side where the exercise took place. Moreover, the basal Vp perfusion was correlated to the masseter volume. These results indicate that the local vascular tone of the trigeminal nuclei can be constitutively altered by the chewing practice and by strong or sustained chewing. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Bellamy, Jamie; Bowen, Elizabeth J.; Russo, Andrew F.; Durham, Paul L.
2006-01-01
Calcitonin gene-related peptide (CGRP) and nitric oxide are involved in the underlying pathophysiology of migraine and other diseases involving neurogenic inflammation. We have tested the hypothesis that nitric oxide might trigger signaling mechanisms within the trigeminal ganglia neurons that would coordinately stimulate CGRP synthesis and release. Treatment of primary trigeminal ganglia cultures with nitric oxide donors caused a greater than four-fold increase in CGRP release compared with unstimulated cultures. Similarly, CGRP promoter activity was also stimulated by nitric oxide donors and overexpression of inducible nitric oxide synthase (iNOS). Cotreatment with the antimigraine drug sumatriptan greatly repressed nitric oxide stimulation of CGRP promoter activity and secretion. Somewhat surprisingly, the mechanisms of nitric oxide stimulation of CGRP secretion did not require cGMP or PI3-kinase signaling pathways, but rather, nitric oxide action required extracellular calcium and likely involves T-type calcium channels. Furthermore, nitric oxide was shown to increase expression of the active forms of the mitogen-activated protein kinases Jun amino-terminal kinase and p38 but not extracellular signal-related kinase in trigeminal neurons. In summary, our results provide new insight into the cellular mechanisms by which nitric oxide induces CGRP synthesis and secretion from trigeminal neurons. PMID:16630053
Notsu, Kazuki; Tsumori, Toshiko; Yokota, Shigefumi; Sekine, Joji; Yasui, Yukihiko
2008-12-09
This study was performed to understand the anatomical substrates of hypothalamic modulation of jaw movements. After cholera toxin B subunit (CTb) injection into the parvicellular reticular formation (RFp) of the rat medulla oblongata, where many trigeminal premotor neurons have been known to exist, numerous CTb-labeled neurons were found in the posterior lateral hypothalamus (PLH) bilaterally with a clear-cut ipsilateral dominance. After ipsilateral injections of biotinylated dextran amine (BDA) into the PLH and CTb into the motor trigeminal nucleus (Vm), the prominent distribution of BDA-labeled axon terminals around CTb-labeled neurons was found in the RFp region just ventral to the nucleus of the solitary tract and medial to the spinal trigeminal nucleus ipsilateral to the injection sites. Within the neuropil of the RFp, BDA-labeled axon terminals made an asymmetrical synaptic contact predominantly with dendrites and additionally with somata of the RFp neurons, some of which were labeled with CTb. It was further revealed that these BDA-labeled axon terminals were immunoreactive for vesicular glutamate transporter 2. The present data suggest that the PLH plays an important role in the control of jaw movements by exerting its glutamatergic excitatory action upon RFp neurons presynaptic to trigeminal motoneurons.
Inferior colliculus contributions to phase encoding of stop consonants in an animal model
Warrier, Catherine M; Abrams, Daniel A; Nicol, Trent G; Kraus, Nina
2011-01-01
The human auditory brainstem is known to be exquisitely sensitive to fine-grained spectro-temporal differences between speech sound contrasts, and the ability of the brainstem to discriminate between these contrasts is important for speech perception. Recent work has described a novel method for translating brainstem timing differences in response to speech contrasts into frequency-specific phase differentials. Results from this method have shown that the human brainstem response is surprisingly sensitive to phase-differences inherent to the stimuli across a wide extent of the spectrum. Here we use an animal model of the auditory brainstem to examine whether the stimulus-specific phase signatures measured in human brainstem responses represent an epiphenomenon associated with far field (i.e., scalp-recorded) measurement of neural activity, or alternatively whether these specific activity patterns are also evident in auditory nuclei that contribute to the scalp-recorded response, thereby representing a more fundamental temporal processing phenomenon. Responses in anaesthetized guinea pigs to three minimally-contrasting consonant-vowel stimuli were collected simultaneously from the cortical surface vertex and directly from central nucleus of the inferior colliculus (ICc), measuring volume conducted neural activity and multiunit, near-field activity, respectively. Guinea pig surface responses were similar to human scalp-recorded responses to identical stimuli in gross morphology as well as phase characteristics. Moreover, surface recorded potentials shared many phase characteristics with near-field ICc activity. Response phase differences were prominent during formant transition periods, reflecting spectro-temporal differences between syllables, and showed more subtle differences during the identical steady-state periods. ICc encoded stimulus distinctions over a broader frequency range, with differences apparent in the highest frequency ranges analyzed, up to 3000 Hz. Based on the similarity of phase encoding across sites, and the consistency and sensitivity of response phase measured within ICc, results suggest that a general property of the auditory system is a high degree of sensitivity to fine-grained phase information inherent to complex acoustical stimuli. Furthermore, results suggest that temporal encoding in ICc contributes to temporal features measured in speech-evoked scalp-recorded responses. PMID:21945200
Susceptibility-weighted imaging of the venous networks around the brain stem.
Cai, Ming; Zhang, Xiao-Fen; Qiao, Hui-Huang; Lin, Zhong-Xiao; Ren, Chuan-Gen; Li, Jian-Ce; Chen, Cheng-Chun; Zhang, Nu
2015-02-01
The venous network of the brainstem is complex and significant. Susceptibility-weighted imaging (SWI) is a practical technique which is sensitive to veins, especially tiny veins. Our purpose of this study was to evaluate the visualization of the venous network of brainstem by using SWI at 3.0 T. The occurrence rate of each superficial veins of brainstem was evaluated by using SWI on a 3 T MR imaging system in 60 volunteers. The diameter of the lateral mesencephalic vein and peduncular vein were measured by SWI using the reconstructed mIP images in the sagittal view. And the outflow of the veins of brainstem were studied and described according to the reconstructed images. The median anterior pontomesencephalic vein, median anterior medullary vein, peduncular vein, right vein of the pontomesencephalic sulcus, and right lateral anterior pontomesencephalic vein were detected in all the subjects (100%). The outer diameter of peduncular vein was 1.38 ± 0.26 mm (range 0.8-1.8 mm). The lateral mesencephalic vein was found in 75% of the subjects and the mean outer diameter was 0.81 ± 0.2 mm (range 0.5-1.2 mm). The inner veins of mesencephalon were found by using SWI. The venous networks around the brain stem can be visualized by SWI clearly. This result can not only provide data for anatomical study, but also may be available for the surgical planning in the infratentorial region.
SU-E-T-669: Radiosurgery Failure for Trigeminal Neuralgia: A Study of Radiographic Spatial Fidelity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, J; Spalding, A
Purpose: Management of Trigeminal Neuralgia with radiosurgery is well established, but often met with limited success. Recent advancements in imaging afford improvements in target localization for radiosurgery. Methods: A Trigeminal Neuralgia radiosurgery specific protocol was established for MR enhancement of the trigeminal nerve using a CISS scan with slice spacing of 0.7mm. Computed Tomography simulation was performed using axial slices on a 40 slice CT with slice spacing of 0.6mm. These datasets were registered using a mutual information algorithm and localized in a stereotactic coordinate system. Image registration between the MR and CT was evaluated for each patient by amore » Medical Physicist to ensure accuracy. The dorsal root entry zone target was defined on the CISS MR by a Neurosurgeon and dose calculations performed on the localized CT. Treatment plans were reviewed and approved by a Radiation Oncologist and Neurosurgeon. Image guided radiosurgery was delivered using positioning tolerance of 0.5mm and 1°. Eight patients with Trigeminal Neuralgia were treated with this protocol. Results: Seven patients reported a favorable response to treatment with average Barrow Neurological Index pain score of four before treatment and one following treatment. Only one patient had a BNI>1 following treatment and review of the treatment plan revealed that the CISS MR was registered to the CT via a low resolution (5mm slice spacing) T2 MR. All other patients had CISS MR registered directly with the localized CT. This patient was retreated 6 months later using direct registration between CISS MR and localized CT and subsequently responded to treatment with a BNI of one. Conclusion: Frameless radiosurgery offers an effective solution to Trigeminal Neuralgia management provided appropriate technology and imaging protocols (utilizing submillimeter imaging) are established and maintained.« less
Hung, Peter S-P; Chen, David Q; Davis, Karen D; Zhong, Jidan; Hodaie, Mojgan
2017-01-01
Trigeminal neuralgia (TN) is a chronic neuropathic facial pain disorder that commonly responds to surgery. A proportion of patients, however, do not benefit and suffer ongoing pain. There are currently no imaging tools that permit the prediction of treatment response. To address this paucity, we used diffusion tensor imaging (DTI) to determine whether pre-surgical trigeminal nerve microstructural diffusivities can prognosticate response to TN treatment. In 31 TN patients and 16 healthy controls, multi-tensor tractography was used to extract DTI-derived metrics-axial (AD), radial (RD), mean diffusivity (MD), and fractional anisotropy (FA)-from the cisternal segment, root entry zone and pontine segment of trigeminal nerves for false discovery rate-corrected Student's t -tests. Ipsilateral diffusivities were bootstrap resampled to visualize group-level diffusivity thresholds of long-term response. To obtain an individual-level statistical classifier of surgical response, we conducted discriminant function analysis (DFA) with the type of surgery chosen alongside ipsilateral measurements and ipsilateral/contralateral ratios of AD and RD from all regions of interest as prediction variables. Abnormal diffusivity in the trigeminal pontine fibers, demonstrated by increased AD, highlighted non-responders (n = 14) compared to controls. Bootstrap resampling revealed three ipsilateral diffusivity thresholds of response-pontine AD, MD, cisternal FA-separating 85% of non-responders from responders. DFA produced an 83.9% (71.0% using leave-one-out-cross-validation) accurate prognosticator of response that successfully identified 12/14 non-responders. Our study demonstrates that pre-surgical DTI metrics can serve as a highly predictive, individualized tool to prognosticate surgical response. We further highlight abnormal pontine segment diffusivities as key features of treatment non-response and confirm the axiom that central pain does not commonly benefit from peripheral treatments.
Weon, Haein; Kim, Tae Wan; Youn, Dong-Ho
2017-11-01
Both N-type and P/Q-type voltage-gated Ca 2+ channels (VGCCs) are involved in the induction of long-term potentiation (LTP), the long-lasting increase of synaptic strength, in the central nervous system. To provide further information on the roles of N-type and P/Q-type VGCCs in the induction of LTP at excitatory synapses of trigeminal primary afferents in the spinal trigeminal subnucleus oralis (Vo), we investigated whether they contribute to the induction of LTP by activation of group I metabotropic glutamate receptors (mGluRs). (S)-3,5-Dihydroxyphenylglycine (DHPG; 10μM for 5min), the group I mGluR agonist, was used to induce LTP of excitatory postsynaptic currents that were evoked in the Vo neurons by stimulating the trigeminal track. Weak blockade of the N-type or P/Q-type VGCCs by ω-conotoxin GVIA or ω-agatoxin IVA, respectively, which inhibited only 20-40% of Ca 2+ currents recorded in isolated trigeminal ganglion neurons but had no effect on the basal excitatory synaptic transmission, completely blocked the induction of LTP. In contrast, stronger blockade of the channels, which inhibited >50% of Ca 2+ currents and about 30% of basal synaptic transmission, resulted in the development of long-term depression (LTD), the long-lasting decrease of synaptic strength. Interestingly, the postsynaptic mechanism of DHPG-induced LTP, which was determined by paired-pulse ratio, disappeared when LTP was blocked, or LTD occurred, while a presynaptic mechanism still remained. Our data suggest that postsynaptic N-type and P/Q-type VGCCs mediate the DHPG-induced LTP at the trigeminal afferent synapses in the Vo. Copyright © 2017 Elsevier Inc. All rights reserved.
AlMasri, Omar A; Brown, Emma E; Forster, Alan; Kamel, Mahmoud H
2014-11-01
The aim in this paper was to localize and detect incipient damage to the ophthalmic and maxillary branches of the trigeminal nerve during tumor surgery. This was an observational study of patients with skull base, retroorbital, or cavernous sinus tumors warranting dissection toward the cavernous sinus at a university hospital. Stimuli were applied as normal during approach to the cavernous sinus to localize cranial nerves (CNs) III, IV, and VI. Recordings were also obtained from the facial muscles to localize CN VII. The trigeminofacial reflex was sought simply by observing a longer time base routinely. Clear facial electromyography responses were reproduced when stimuli were applied to the region of V1, V2, and V3. Response latency was increased compared with direct CN VII stimuli seen in some cases. Responses gave early warning of approach to these sensory trigeminal branches. The authors submit this as a new technique, which may improve the chances of preserving trigeminal sensory branches during surgery in this region.
Sleep disorders and chronic craniofacial pain: Characteristics and management possibilities.
Almoznino, Galit; Benoliel, Rafael; Sharav, Yair; Haviv, Yaron
2017-06-01
Chronic craniofacial pain involves the head, face and oral cavity and is associated with significant morbidity and high levels of health care utilization. A bidirectional relationship is suggested in the literature for poor sleep and pain, and craniofacial pain and sleep are reciprocally related. We review this relationship and discuss management options. Part I reviews the relationship between pain and sleep disorders in the context of four diagnostic categories of chronic craniofacial pain: 1) primary headaches: migraines, tension-type headache (TTH), trigeminal autonomic cephalalgias (TACs) and hypnic headache, 2) secondary headaches: sleep apnea headache, 3) temporomandibular joint disorders (TMD) and 4) painful cranial neuropathies: trigeminal neuralgia, post-herpetic trigeminal neuropathy, painful post-traumatic trigeminal neuropathy (PTTN) and burning mouth syndrome (BMS). Part II discusses the management of patients with chronic craniofacial pain and sleep disorders addressing the factors that modulate the pain experience as well as sleep disorders and including both non-pharmacological and pharmacological modalities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Orofacial pain management: current perspectives.
Romero-Reyes, Marcela; Uyanik, James M
2014-01-01
Some of the most prevalent and debilitating pain conditions arise from the structures innervated by the trigeminal system (head, face, masticatory musculature, temporomandibular joint and associated structures). Orofacial pain (OFP) can arise from different regions and etiologies. Temporomandibular disorders (TMD) are the most prevalent orofacial pain conditions for which patients seek treatment. Temporomandibular disorders include a number of clinical problems that involve the masticatory musculature, the temporomandibular joint (TMJ) or both. Trigeminal neuropathic pain conditions can arise from injury secondary to dental procedures, infection, neoplasias, or disease or dysfunction of the peripheral and/or central nervous system. Neurovascular disorders, such as primary headaches, can present as chronic orofacial pain, such as in the case of facial migraine, where the pain is localized in the second and third division of the trigeminal nerve. Together, these disorders of the trigeminal system impact the quality of life of the sufferer dramatically. A multidisciplinary pain management approach should be considered for the optimal treatment of orofacial pain disorders including both non-pharmacological and pharmacological modalities.
Orofacial pain management: current perspectives
Romero-Reyes, Marcela; Uyanik, James M
2014-01-01
Some of the most prevalent and debilitating pain conditions arise from the structures innervated by the trigeminal system (head, face, masticatory musculature, temporomandibular joint and associated structures). Orofacial pain (OFP) can arise from different regions and etiologies. Temporomandibular disorders (TMD) are the most prevalent orofacial pain conditions for which patients seek treatment. Temporomandibular disorders include a number of clinical problems that involve the masticatory musculature, the temporomandibular joint (TMJ) or both. Trigeminal neuropathic pain conditions can arise from injury secondary to dental procedures, infection, neoplasias, or disease or dysfunction of the peripheral and/or central nervous system. Neurovascular disorders, such as primary headaches, can present as chronic orofacial pain, such as in the case of facial migraine, where the pain is localized in the second and third division of the trigeminal nerve. Together, these disorders of the trigeminal system impact the quality of life of the sufferer dramatically. A multidisciplinary pain management approach should be considered for the optimal treatment of orofacial pain disorders including both non-pharmacological and pharmacological modalities. PMID:24591846
Khan, Mohammad; Nishi, Shamima Easmin; Hassan, Siti Nazihahasma; Islam, Md Asiful; Gan, Siew Hua
2017-01-01
Neuropathic pain is a common phenomenon that affects millions of people worldwide. Maxillofacial structures consist of various tissues that receive frequent stimulation during food digestion. The unique functions (masticatory process and facial expression) of the maxillofacial structure require the exquisite organization of both the peripheral and central nervous systems. Neuralgia is painful paroxysmal disorder of the head-neck region characterized by some commonly shared features such as the unilateral pain, transience and recurrence of attacks, and superficial and shock-like pain at a trigger point. These types of pain can be experienced after nerve injury or as a part of diseases that affect peripheral and central nerve function, or they can be psychological. Since the trigeminal and glossopharyngeal nerves innervate the oral structure, trigeminal and glossopharyngeal neuralgia are the most common syndromes following myofascial pain dysfunction syndrome. Nevertheless, misdiagnoses are common. The aim of this review is to discuss the currently available diagnostic procedures and treatment options for trigeminal neuralgia, glossopharyngeal neuralgia, and myofascial pain dysfunction syndrome.
Nishi, Shamima Easmin; Hassan, Siti Nazihahasma
2017-01-01
Neuropathic pain is a common phenomenon that affects millions of people worldwide. Maxillofacial structures consist of various tissues that receive frequent stimulation during food digestion. The unique functions (masticatory process and facial expression) of the maxillofacial structure require the exquisite organization of both the peripheral and central nervous systems. Neuralgia is painful paroxysmal disorder of the head-neck region characterized by some commonly shared features such as the unilateral pain, transience and recurrence of attacks, and superficial and shock-like pain at a trigger point. These types of pain can be experienced after nerve injury or as a part of diseases that affect peripheral and central nerve function, or they can be psychological. Since the trigeminal and glossopharyngeal nerves innervate the oral structure, trigeminal and glossopharyngeal neuralgia are the most common syndromes following myofascial pain dysfunction syndrome. Nevertheless, misdiagnoses are common. The aim of this review is to discuss the currently available diagnostic procedures and treatment options for trigeminal neuralgia, glossopharyngeal neuralgia, and myofascial pain dysfunction syndrome. PMID:28827979
[Trigeminal motor paralysis and dislocation of the temporo-mandibular joints].
Ohkawa, S; Yoshida, T; Ohsumi, Y; Tabuchi, M
1996-07-01
A 64-year-old woman with diabetes mellitus was admitted to our hospital with left hemiparesis of sudden onset. A brain MRI demonstrated a cerebral infarction in the ventral part of the right lower pons. When left hemiparesis worsened, she had dislocation of the temporo-mandibular joints repeatedly. Then, her lower jaw deviated to the right when she opened her mouth. Also, there was decreased contraction of the right masseter when she clenched her teeth. These findings suggest that there was trigeminal motor paralysis on the right side resulting from involvement of the intrapontine trigeminal motor nerve. She has no history of dislocation of the temporo-mandibular joints. An X-ray film showed that the temporo-mandibular joints were intact. Thus, it is possible that deviation of the lower jaw was the cause of this dislocation. We suspect that dislocation of the temporo-mandibular joints may occur as a complication of unilateral trigeminal motor paralysis. This has not been reported to our knowledge.
Schwend, Tyler; Lwigale, Peter Y.; Conrad, Gary W.
2012-01-01
The cornea, the most densely innervated tissue on the surface of the body, becomes innervated in a series of highly coordinated developmental events. During cornea development, chick trigeminal nerve growth cones reach the cornea margin at embryonic day (E)5, where they are initially repelled for days from E5-8, instead encircling the corneal periphery in a nerve ring prior to entering on E9. The molecular events coordinating growth cone guidance during cornea development are poorly understood. Here we evaluated a potential role for the Robo-Slit nerve guidance family. We found that Slit 1, 2 and 3 expression in the cornea and lens persisted during all stages of cornea innervation examined. Robo1 expression was developmentally regulated in trigeminal cell bodies, expressed robustly during nerve ring formation (E5-8), then later declining concurrent with projection of growth cones into the cornea. In this study we provide in vivo and in vitro evidence that Robo-Slit signaling guides trigeminal nerves during cornea innervation. Transient, localized inhibition of Robo-Slit signaling, by means of beads loaded with inhibitory Robo-Fc protein implanted into the developing eyefield in vivo, led to disorganized nerve ring formation and premature cornea innervation. Additionally, when trigeminal explants (source of neurons) were oriented adjacent to lens vesicles or corneas (source of repellant molecules) in organotypic tissue culture both lens and cornea tissues strongly repelled E7 trigeminal neurites, except in the presence of inhibitory Robo-Fc protein. In contrast, E10 trigeminal neurites were not as strongly repelled by cornea, and presence of Robo-Slit inhibitory protein had no effect. In full, these findings suggest that nerve repulsion from the lens and cornea during nerve ring formation is mediated by Robo-Slit signaling. Later, a shift in nerve guidance behavior occurs, in part due to molecular changes in trigeminal neurons, including Robo1 downregulation, thus allowing nerves to find the Slit-expressing cornea permissive for growth cones. PMID:22236962
Nakaya, Yuka; Tsuboi, Yoshiyuki; Okada-Ogawa, Akiko; Shinoda, Masamichi; Kubo, Asako; Chen, Jui Yen; Noma, Noboru; Batbold, Dulguun; Imamura, Yoshiki; Sessle, Barry J; Iwata, Koichi
2016-01-01
Dry mouth is known to cause severe pain in the intraoral structures, and many dry mouth patients have been suffering from intraoral pain. In development of an appropriate treatment, it is crucial to study the mechanisms underlying intraoral pain associated with dry mouth, yet the detailed mechanisms are not fully understood. To evaluate the mechanisms underlying pain related to dry mouth, the dry-tongue rat model was developed. Hence, the mechanical or heat nocifensive reflex, the phosphorylated extracellular signal-regulated kinase and phosphorylated GluR1-IR immunohistochemistries, and the single neuronal activity were examined in the trigeminal spinal subnucleus caudalis of dry-tongue rats. The head-withdrawal reflex threshold to mechanical, but not heat, stimulation of the tongue was significantly decreased on day 7 after tongue drying. The mechanical, but not heat, responses of trigeminal spinal subnucleus caudalis nociceptive neurons were significantly enhanced in dry-tongue rats compared to sham rats on day 7. The number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells was also significantly increased in the trigeminal spinal subnucleus caudalis following noxious stimulation of the tongue in dry-tongue rats compared to sham rats on day 7. The decrement of the mechanical head-withdrawal reflex threshold (HWT) was reversed during intracisternal administration of the mitogen-activated protein kinase kinase 1 inhibitor, PD98059. The trigeminal spinal subnucleus caudalis neuronal activities and the number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells following noxious mechanical stimulation of dried tongue were also significantly decreased following intracisternal administration of PD98059 compared to vehicle-administrated rats. Increased number of the phosphorylated GluR1-IR cells was observed in the trigeminal spinal subnucleus caudalis of dry-tongue rats, and the number of phosphorylated GluR1-IR cells was significantly reduced in PD98059-administrated rats compared to the vehicle-administrated tongue-dry rats. These findings suggest that the pERK-pGluR1 cascade is involved in central sensitization of trigeminal spinal subnucleus caudalis nociceptive neurons, thus resulting in tongue mechanical hyperalgesia associated with tongue drying. © The Author(s) 2016.
Glendinning, John I; Tang, Joyce; Morales Allende, Ana Paula; Bryant, Bruce P; Youngentob, Lisa; Youngentob, Steven L
2017-08-01
Fetal alcohol exposure (FAE) leads to increased intake of ethanol in adolescent rats and humans. We asked whether these behavioral changes may be mediated in part by changes in responsiveness of the peripheral taste and oral trigeminal systems. We exposed the experimental rats to ethanol in utero by administering ethanol to dams through a liquid diet; we exposed the control rats to an isocaloric and isonutritive liquid diet. To assess taste responsiveness, we recorded responses of the chorda tympani (CT) and glossopharyngeal (GL) nerves to lingual stimulation with ethanol, quinine, sucrose, and NaCl. To assess trigeminal responsiveness, we measured changes in calcium levels of isolated trigeminal ganglion (TG) neurons during stimulation with ethanol, capsaicin, mustard oil, and KCl. Compared with adolescent control rats, the adolescent experimental rats exhibited diminished CT nerve responses to ethanol, quinine, and sucrose and GL nerve responses to quinine and sucrose. The reductions in taste responsiveness persisted into adulthood for quinine but not for any of the other stimuli. Adolescent experimental rats also exhibited reduced TG neuron responses to ethanol, capsaicin, and mustard oil. The lack of change in responsiveness of the taste nerves to NaCl and the TG neurons to KCl indicates that FAE altered only a subset of the response pathways within each chemosensory system. We propose that FAE reprograms development of the peripheral taste and trigeminal systems in ways that reduce their responsiveness to ethanol and surrogates for its pleasant (i.e., sweet) and unpleasant (i.e., bitterness, oral burning) flavor attributes. NEW & NOTEWORTHY Pregnant mothers are advised to avoid alcohol. This is because even small amounts of alcohol can alter fetal brain development and increase the risk of adolescent alcohol abuse. We asked how fetal alcohol exposure (FAE) produces the latter effect in adolescent rats by measuring responsiveness of taste nerves and trigeminal chemosensory neurons. We found that FAE substantially reduced taste and trigeminal responsiveness to ethanol and its flavor components. Copyright © 2017 the American Physiological Society.
Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N. B.; Hummel, Thomas
2011-01-01
Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality. PMID:21556139
Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N B; Hummel, Thomas
2011-04-27
Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.
Trigeminal Neuralgia and Multiple Sclerosis: A Historical Perspective.
Burkholder, David B; Koehler, Peter J; Boes, Christopher J
2017-09-01
Trigeminal neuralgia (TN) associated with multiple sclerosis (MS) was first described in Lehrbuch der Nervenkrankheiten für Ärzte und Studirende in 1894 by Hermann Oppenheim, including a pathologic description of trigeminal root entry zone demyelination. Early English-language translations in 1900 and 1904 did not so explicitly state this association compared with the German editions. The 1911 English-language translation described a more direct association. Other later descriptions were clinical with few pathologic reports, often referencing Oppenheim but citing the 1905 German or 1911 English editions of Lehrbuch. This discrepancy in part may be due to the translation differences of the original text.
Trigeminal autonomic cephalgias
2012-01-01
Summary points 1. Trigeminal autonomic cephalgias (TACs) are headaches/facial pains classified together based on:a suspected common pathophysiology involving the trigeminovascular system, the trigeminoparasympathetic reflex and centres controlling circadian rhythms;a similar clinical presentation of trigeminal pain, and autonomic activation. 2. There is much overlap in the diagnostic features of individual TACs. 3. In contrast, treatment response is relatively specific and aids in establishing a definitive diagnosis. 4. TACs are often presentations of underlying pathology; all patients should be imaged. 5. The aim of the article is to provide the reader with a broad introduction to, and an overview of, TACs. The reading list is extensive for the interested reader. PMID:26516482
Olfactory threshold increase in trigeminal neuralgia after balloon compression.
Siqueira, S R D T; Nóbrega, J C M; Teixeira, M J; Siqueira, J T T
2006-12-01
Idiopathic trigeminal neuralgia (ITN) is a well-known disease often treated with neurosurgical procedures, which may produce sensorial abnormalities, such as numbness, dysesthesia and taste complaints. We studied 12 patients that underwent this technique, in order to verify pain, gustative and olfactory thresholds abnormalities, with a follow-up of 120 days. We compared the patients with a matched control group of 12 patients. Our results found a significant difference in the olfactory threshold at the immediate post-operative period (p=0.048). We concluded that injured trigeminal fibers are probably associated with the increase in the olfactory threshold after the surgery, supporting the sensorial interaction theory.
Huang, Jie; Ni, Zhongge; Finch, Philip
2017-09-01
Varicella zoster virus reactivation can cause permanent histological changes in the central and peripheral nervous system. Neural inflammatory changes or damage to the dorsal root ganglia sensory nerve fibers during reactivation can lead to postherpetic neuralgia (PHN). For PHN of the first division of the fifth cranial nerve (ophthalmic division of the trigeminal ganglion), there is evidence of inflammatory change in the ganglion and adjacent ocular neural structures. First division trigeminal nerve PHN can prove to be difficult and sometimes even impossible to manage despite the use of a wide range of conservative measures, including anticonvulsant and antidepressant medication. Steroids have been shown to play an important role by suppressing neural inflammatory processes. We therefore chose the trigeminal ganglion as an interventional target for an 88-year-old woman with severe ophthalmic division PHN after she failed to respond to conservative treatment. Under fluoroscopic guidance, a trigeminal ganglion nerve block was performed with lidocaine combined with dexamethasone. A retrobulbar block with lidocaine and triamcinolone settled residual oculodynia. At 1-year follow-up, the patient remained pain free and did not require analgesic medication. To our knowledge, this is the first reported case of ophthalmic division PHN successfully treated with a combination of trigeminal ganglion and retrobulbar nerve block using a local anesthetic agent and steroid for central and peripheral neural inflammatory processes. © 2016 World Institute of Pain.
Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro.
Gulbransen, Brian D; Clapp, Tod R; Finger, Thomas E; Kinnamon, Sue C
2008-06-01
Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear. Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein alpha-gustducin, PLCbeta2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP-positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium and this response is blocked by the PLC inhibitor U73122. In addition, GFP+ cells respond to the neuromodulators adenosine 5'-triphosphate and acetylcholine but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system.
Cady, Ryan J.; Denson, Jennifer E.; Durham, Paul L.
2013-01-01
Scope Central sensitization is implicated in the pathology of temporomandibular joint disorder (TMD) and other types of orofacial pain. We investigated the effects of dietary cocoa on expression of proteins involved in the development of central sensitization in the spinal trigeminal nucleus (STN) in response to inflammatory stimulation of trigeminal nerves. Methods and results Male Sprague Dawley rats were fed either a control diet or an isocaloric diet consisting of 10% cocoa powder 14 days prior to bilateral injection of complete Freund’s adjuvant (CFA) into the temporomandibular joint to promote prolonged activation of trigeminal ganglion neurons and glia. While dietary cocoa stimulated basal expression of GLAST and MKP-1 when compared to animals on a normal diet, cocoa suppressed basal calcitonin gene-related peptide levels in the STN. CFA-stimulated levels of protein kinase A, P2X3, P-p38, GFAP, and OX-42, whose elevated levels in the STN are implicated in central sensitization, were repressed to near control levels in animals on a cocoa enriched diet. Similarly, dietary cocoa repressed CFA-stimulated inflammatory cytokine expression. Conclusion Based on our findings, we speculate that cocoa enriched diets could be beneficial as a natural therapeutic option for TMD and other chronic orofacial pain conditions. PMID:23576361
Robo2 determines subtype-specific axonal projections of trigeminal sensory neurons
Pan, Y. Albert; Choy, Margaret; Prober, David A.; Schier, Alexander F.
2012-01-01
How neurons connect to form functional circuits is central to the understanding of the development and function of the nervous system. In the somatosensory system, perception of sensory stimuli to the head requires specific connections between trigeminal sensory neurons and their many target areas in the central nervous system. Different trigeminal subtypes have specialized functions and downstream circuits, but it has remained unclear how subtype-specific axonal projection patterns are formed. Using zebrafish as a model system, we followed the development of two trigeminal sensory neuron subtypes: one that expresses trpa1b, a nociceptive channel important for sensing environmental chemicals; and a distinct subtype labeled by an islet1 reporter (Isl1SS). We found that Trpa1b and Isl1SS neurons have overall similar axon trajectories but different branching morphologies and distributions of presynaptic sites. Compared with Trpa1b neurons, Isl1SS neurons display reduced branch growth and synaptogenesis at the hindbrain-spinal cord junction. The subtype-specific morphogenesis of Isl1SS neurons depends on the guidance receptor Robo2. robo2 is preferentially expressed in the Isl1SS subset and inhibits branch growth and synaptogenesis. In the absence of Robo2, Isl1SS afferents acquire many of the characteristics of Trpa1b afferents. These results reveal that subtype-specific activity of Robo2 regulates subcircuit morphogenesis in the trigeminal sensory system. PMID:22190641
The role of a trigeminal sensory nucleus in the initiation of locomotion.
Buhl, Edgar; Roberts, Alan; Soffe, Stephen R
2012-05-15
While we understand how stimuli evoke sudden, ballistic escape responses, like fish fast-starts, a precise pathway from sensory stimulation to the initiation of rhythmic locomotion has not been defined for any vertebrate. We have now asked how head skin stimuli evoke swimming in hatchling frog tadpoles. Whole-cell recordings and dye filling revealed a nucleus of ∼20 trigeminal interneurons (tINs) in the hindbrain, at the level of the auditory nerve, with long, ipsilateral, descending axons. Stimulation of touch-sensitive trigeminal afferents with receptive fields anywhere on the head evoked large, monosynaptic EPSPs (∼5-20 mV) in tINs, at mixed AMPAR/NMDAR synapses. Following stimuli sufficient to elicit swimming, tINs fired up to six spikes, starting 4-8 ms after the stimulus. Paired whole-cell recordings showed that tINs produce small (∼2-6 mV), monosynaptic, glutamatergic EPSPs in the hindbrain reticulospinal neurons (descending interneurons, dINs) that drive swimming. Modelling suggested that summation of EPSPs from 18-24 tINs can make 20-50% of dINs fire. We conclude that: brief activity in a few sensory afferents is amplified by recruitment of many tINs; these relay summating excitation to hindbrain reticulospinal dINs; dIN firing then initiates activity for swimming on the stimulated side. During fictive swimming, tINs are depolarised and receive rhythmic inhibition but do not fire. Our recordings demonstrate a neuron-by-neuron pathway from head skin afferents to the reticulospinal neurons and motoneurons that drive locomotion in a vertebrate. This direct pathway, which has an important amplifier function, implies a simple origin for the complex routes to initiate locomotion in higher vertebrates.
The role of a trigeminal sensory nucleus in the initiation of locomotion
Buhl, Edgar; Roberts, Alan; Soffe, Stephen R
2012-01-01
While we understand how stimuli evoke sudden, ballistic escape responses, like fish fast-starts, a precise pathway from sensory stimulation to the initiation of rhythmic locomotion has not been defined for any vertebrate. We have now asked how head skin stimuli evoke swimming in hatchling frog tadpoles. Whole-cell recordings and dye filling revealed a nucleus of ∼20 trigeminal interneurons (tINs) in the hindbrain, at the level of the auditory nerve, with long, ipsilateral, descending axons. Stimulation of touch-sensitive trigeminal afferents with receptive fields anywhere on the head evoked large, monosynaptic EPSPs (∼5–20 mV) in tINs, at mixed AMPAR/NMDAR synapses. Following stimuli sufficient to elicit swimming, tINs fired up to six spikes, starting 4–8 ms after the stimulus. Paired whole-cell recordings showed that tINs produce small (∼2–6 mV), monosynaptic, glutamatergic EPSPs in the hindbrain reticulospinal neurons (descending interneurons, dINs) that drive swimming. Modelling suggested that summation of EPSPs from 18–24 tINs can make 20–50% of dINs fire. We conclude that: brief activity in a few sensory afferents is amplified by recruitment of many tINs; these relay summating excitation to hindbrain reticulospinal dINs; dIN firing then initiates activity for swimming on the stimulated side. During fictive swimming, tINs are depolarised and receive rhythmic inhibition but do not fire. Our recordings demonstrate a neuron-by-neuron pathway from head skin afferents to the reticulospinal neurons and motoneurons that drive locomotion in a vertebrate. This direct pathway, which has an important amplifier function, implies a simple origin for the complex routes to initiate locomotion in higher vertebrates. PMID:22393253
Oswald, Duane J; Lee, Albert; Trinidad, Monique; Chi, Cheryl; Ren, Ruiyi; Rich, Celeste B; Trinkaus-Randall, Vickery
2012-01-01
Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca(2+) wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca(2+) wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca(2+) mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca(2+) mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca(2+) waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA) receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.
Filipović, Boris; Matak, Ivica; Bach-Rojecky, Lidija; Lacković, Zdravko
2012-01-01
Background Infraorbital nerve constriction (IoNC) is an experimental model of trigeminal neuropathy. We investigated if IoNC is accompanied by dural extravasation and if botulinum toxin type A (BoNT/A) can reduce pain and dural extravasation in this model. Methodology/Principal Findings Rats which developed mechanical allodynia 14 days after the IoNC were injected with BoNT/A (3.5 U/kg) into vibrissal pad. Allodynia was tested by von Frey filaments and dural extravasation was measured as colorimetric absorbance of Evans blue - plasma protein complexes. Presence of dural extravasation was also examined in orofacial formalin-induced pain. Unilateral IoNC, as well as formalin injection, produced bilateral dural extravasation. Single unilateral BoNT/A injection bilaterally reduced IoNC induced dural extravasation, as well as allodynia (lasting more than 2 weeks). Similarly, BoNT/A reduced formalin-induced pain and dural extravasation. Effects of BoNT/A on pain and dural extravasation in IoNC model were dependent on axonal transport through sensory neurons, as evidenced by colchicine injections (5 mM, 2 µl) into the trigeminal ganglion completely preventing BoNT/A effects. Conclusions/Significance Two different types of pain, IoNC and formalin, are accompanied by dural extravasation. The lasting effect of a unilateral injection of BoNT/A in experimental animals suggests that BoNT/A might have a long-term beneficial effect in craniofacial pain associated with dural neurogenic inflammation. Bilateral effects of BoNT/A and dependence on retrograde axonal transport suggest a central site of its action. PMID:22238656
Benito-González, Elena; Palacios-Ceña, Maria; Fernández-Muñoz, Juan J; Castaldo, Matteo; Wang, Kelun; Catena, Antonella; Arendt-Nielsen, Lars; Fernández-de-Las-Peñas, César
2018-01-01
To investigate variables associated at baseline (cross-sectional design) and at one year (longitudinal design) with the quality of sleep in chronic tension-type headache (CTTH). One hundred and eighty (n = 180) and 135 individuals with CTTH participated in the cross-sectional and longitudinal design respectively. Clinical features were collected with a 4-weeks headache diary at baseline and one-year follow-up. Sleep quality was assessed at baseline and 1-year follow-up with the Pittsburgh Sleep Quality Index. Anxiety and depression (Hospital Anxiety and Depression Scale-HADS), burden of headache (Headache Disability Inventory-HDI), quality of life (SF-36 questionnaire), and pressure pain thresholds (PPTs) at trigeminal, extra-trigeminal and widespread area were assessed at baseline. Hierarchical regression analyses were conducted to determine the associations between variables at baseline and 1-year follow-up with sleep quality. At baseline positive correlations between sleep quality and headache intensity, headache frequency, headache duration, emotional and physical burden of headache and depression were observed. The regression analyses found that depression and emotional burden of headache explained 27.5% of the variance in sleep quality at baseline (r2 = .262; F = 23.72 P < .001). At one-year, sleep quality was significantly associated with baseline burden of headache, depression, widespread PPTs, vitality and mental health domains. Regression analyses revealed that vitality, PPT over the second metacarpal and PPT over the neck explained 30.0% of the variance of sleep quality at one-year (r2 = .269, F = 9.71, P < .001). It seems that sleep quality exhibits a complex interaction in individuals with CTTH since depression and the emotional burden were associated with sleep quality at baseline, but vitality and PPTs over extra-trigeminal areas were associated with the quality of sleep at one-year.
De Cicco, Vincenzo
2012-09-03
A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be useful in patients with asymmetric hemodynamics of cerebro-afferent vessels and dental occlusal proprioceptive rebalance can integrate the complex therapy of patients with increased chronic sympathetic activity.
Tokita, Masayoshi; Nakayama, Tomoki
2014-02-01
Vertebrates have succeeded to inhabit almost every ecological niche due in large part to the anatomical diversification of their jaw complex. As a component of the feeding apparatus, jaw muscles carry a vital role for determining the mode of feeding. Early patterning of the jaw muscles has been attributed to cranial neural crest-derived mesenchyme, however, much remains to be understood about the role of nonneural crest tissues in the evolution and diversification of jaw muscle morphology. In this study, we describe the development of trigeminal motor neurons in a parrot species with the uniquely shaped jaw muscles and compare its developmental pattern to that in the quail with the standard jaw muscles to uncover potential roles of nervous tissue in the evolution of vertebrate jaw muscles. In parrot embryogenesis, the motor axon bundles are detectable within the muscular tissue only after the basic shape of the muscular tissue has been established. This supports the view that nervous tissue does not primarily determine the spatial pattern of jaw muscles. In contrast, the trigeminal motor nucleus, which is composed of somata of neurons that innervate major jaw muscles, of parrot is more developed compared to quail, even in embryonic stage where no remarkable interspecific difference in both jaw muscle morphology and motor nerve branching pattern is recognized. Our data suggest that although nervous tissue may not have a large influence on initial patterning of jaw muscles, it may play an important role in subsequent growth and maintenance of muscular tissue and alterations in cranial nervous tissue development may underlie diversification of jaw muscle morphology. Copyright © 2013 Wiley Periodicals, Inc.
Ge, Shun-Nan; Ma, Yun-Fei; Hioki, Hiroyuki; Wei, Yan-Yan; Kaneko, Takeshi; Mizuno, Noboru; Gao, Guo-Dong; Li, Jin-Lian
2010-08-01
VGLUT1 and VGLUT2 have been reported to show complementary distributions in most brain regions and have been assumed to define distinct functional elements. In the present study, we first investigated the expression of VGLUT1 and VGLUT2 in the trigeminal sensory nuclear complex of the rat by dual-fluorescence in situ hybridization. Although VGLUT1 and/or VGLUT2 mRNA signals were detected in all the nuclei, colocalization was found only in the principal sensory trigeminal nucleus (Vp). About 64% of glutamatergic Vp neurons coexpressed VGLUT1 and VGLUT2, and the others expressed either VGLUT1 or VGLUT2, indicating that Vp neurons might be divided into three groups. We then injected retrograde tracer into the thalamic regions, including the posteromedial ventral nucleus (VPM) and posterior nuclei (Po), and observed that the majority of both VGLUT1- and VGLUT2-expressing Vp neurons were retrogradely labeled with the tracer. We further performed anterograde labeling of Vp neurons and observed immunoreactivies for anterograde tracer, VGLUT1, and VGLUT2 in the VPM and Po. Most anterogradely labeled axon terminals showed immunoreactivities for both VGLUT1 and VGLUT2 in the VPM and made asymmetric synapses with dendritic profiles of VPM neurons. On the other hand, in the Po, only a few axon terminals were labeled with anterograde tracer, and they were positive only for VGLUT2. The results indicated that Vp neurons expressing VGLUT1 and VGLUT2 project to the VPM, but not to the Po, although the functional differences of three distinct populations of Vp neurons, VGLUT1-, VGLUT2-, and VGLUT1/VGLUT2-expressing ones, remain unsettled. (c) 2010 Wiley-Liss, Inc.
van der Merwe, Dirk Johannes; Andronikou, Savvas; Van Toorn, Ronald; Pienaar, Manana
2009-08-01
The Western Cape in South Africa has one of the highest incidences of tuberculous meningitis (TBM) in the world. Despite therapy, the outcome in children with advanced TBM remains dismal. Magnetic resonance imaging (MRI) has been shown to be superior to computed tomography (CT) in demonstrating ischemia in TBM, especially of the brainstem. The objective of this study was to characterize brainstem lesions and association with clinical findings in children with TBM by using MRI. CT and multiplanar MRI scans were performed in 30 children with proven TBM. From this group, a subgroup with radiological ischemic changes of the brainstem were identified. Radiological findings in these patients were then correlated with severity of disease, motor deficit, and outcome after 6 months. Radiological brainstem abnormalities were identified in 14 out of 30 children. Thirty-eight brainstem lesions were confirmed to be ischemic. The severity of disease at presentation, degree of motor deficit, and developmental outcome after 6 months of the children with ischemic brainstem lesions was poorer compared to those children without brainstem involvement. However, both sensitivity and specificity of the MRI brainstem lesion detection for clinical outcome proved low. A significant percentage of children with TBM have ischemic brainstem lesions. These are poorly visualized on conventional CT. MRI scanning is more sensitive in detecting these lesions and localizing them. There appears to be some association between MRI-detected brainstem lesions and clinical outcome. The exact meaning of these lesions and their implication for the patient's management require further clarification.
Subacute Sclerosing Panencephalitis of the Brainstem as a Clinical Entity.
Upadhyayula, Pavan S; Yang, Jason; Yue, John K; Ciacci, Joseph D
2017-11-07
Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurological disorder of early adolescence caused by persistent infection of the measles virus, which remains prevalent worldwide despite an effective vaccine. SSPE is a devastating disease with a characteristic clinical course in subcortical white matter; however, atypical presentations of brainstem involvement may be seen in rare cases. This review summarizes reports to date on brainstem involvement in SSPE, including the clinical course of disease, neuroimaging presentations, and guidelines for treatment. A comprehensive literature search was performed for English-language publications with keywords "subacute sclerosing panencephalitis" and "brainstem" using the National Library of Medicine PubMed database (March 1981-September 2017). Eleven articles focusing on SSPE of the brainstem were included. Predominant brainstem involvement remains uncharacteristic of SSPE, which may lead to misdiagnosis and poor outcome. A number of case reports have demonstrated brainstem involvement associated with other intracranial lesions commonly presenting in later SSPE stages (III and IV). However, brainstem lesions can appear in all stages, independent of higher cortical structures. The varied clinical presentations complicate diagnosis from a neuroimaging perspective. SSPE of the brainstem is a rare but important clinical entity. It may present like canonical SSPE or with unique clinical features such as absence seizures and pronounced ataxia. While SSPE generally progresses to the brainstem, it can also begin with a primary focus of infection in the brainstem. Awareness of varied SSPE presentations can aid in early diagnosis as well as guide management and treatment.
Duchcherer, Maryana; Baghdadwala, Mufaddal I; Paramonov, Jenny; Wilson, Richard J A
2013-12-01
Frog metamorphosis includes transition from water breathing to air breathing but the extent to which such a momentous change in behavior requires fundamental changes in the organization of the brainstem respiratory circuit is unknown. Here, we combine a vertically mounted isolated brainstem preparation, "the Sheep Dip," with a search algorithm used in computer science, to identify essential rhombomeres for generation of ventilatory motor bursts in metamorphosing bullfrog tadpoles. Our data suggest that rhombomere 7, which in mammals hosts the PreBötC (PreBötzinger Complex; the likely inspiratory oscillator), is essential for gill and buccal bursts. Whereas rhombomere 5, in close proximity to a brainstem region associated with the mammalian expiratory oscillator, is essential for lung bursts at both stages. Therefore, we conclude there is no rhombomeric translocation of respiratory oscillators in bullfrogs as previously suggested. In premetamorphic tadpoles, functional ablation of rhombomere 7 caused ectopic expression of precocious lung bursts, suggesting the gill oscillator suppresses an otherwise functional lung oscillator in early development. Copyright © 2013 Wiley Periodicals, Inc.
Reduced auditory efferent activity in childhood selective mutism.
Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava
2004-06-01
Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.
Stanić, Davor; Dhingra, Rishi R; Dutschmann, Mathias
2018-04-01
Expression of the transcription factor FOXP2 is linked to brain circuits that control motor function and speech. Investigation of FOXP2 protein expression in respiratory areas of the ponto-medullary brainstem of adult rat revealed distinct rostro-caudal expression gradients. A high density of FOXP2 immunoreactive nuclei was observed within the rostral pontine Kölliker-Fuse nucleus, compared to low densities in caudal pontine and rostral medullary respiratory nuclei, including the: (i) noradrenergic A5 and parafacial respiratory groups; (ii) Bötzinger and pre-Bötzinger complex and; (iii) rostral ventral respiratory group. Moderate densities of FOXP2 immunoreactive nuclei were observed in the caudal ventral respiratory group and the nucleus retroambiguus, with significant density levels found in the caudal half of the dorsal respiratory group and the hypoglossal pre-motor area lateral around calamus scriptorius. FOXP2 immunoreactivity was absent in all cranial nerve motor nuclei. We conclude that FOXP2 expression in respiratory brainstem areas selectively delineates laryngeal and hypoglossal pre-motor neuron populations essential for the generation of sound and voice. Copyright © 2018 Elsevier B.V. All rights reserved.
Gemba-Nishimura, A; Inoue, T; Nakamura, S; Nakayama, K; Mochizuki, A; Shintani, S; Yoshimura, S
2010-03-31
We previously reported that electrical stimulation of the reticular formation dorsal to the facial nucleus (RdVII) elicited excitatory masseter responses at short latencies and that RdVII neurons were antidromically activated by stimulation of the trigeminal motor nucleus (MoV), suggesting that excitatory premotor neurons targeting the MoV are likely located in the RdVII. We thus examined the properties of synaptic transmission from the RdVII to jaw-closing and jaw-opening motoneurons in horizontal brainstem preparations from developing rats using voltage-sensitive dye, patch-clamp recordings and laser photostimulation. Electrical stimulation of the RdVII evoked optical responses in the MoV. Combined bath application of the non-N-methyl-d-aspartate (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (APV) reduced these optical responses, and addition of the glycine receptor antagonist strychnine and the GABA(A) receptor antagonist bicuculline further reduced the remaining responses. Electrical stimulation of the RdVII evoked postsynaptic currents (PSCs) in all 19 masseter motoneurons tested in postnatal day (P)1-4 rats, and application of CNQX and the NMDA receptor antagonist (+/-)-3(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) reduced the PSC amplitudes by more than 50%. In the presence of CNQX and CPP, the GABA(A) receptor antagonist SR95531 further reduced PSC amplitude, and addition of strychnine abolished the remaining PSCs. Photostimulation of the RdVII with caged glutamate also evoked PSCs in masseter motoneurons of P3-4 rats. In P8-11 rats, electrical stimulation of the RdVII also evoked PSCs in all 14 masseter motoneurons tested, and the effects of the antagonists on the PSCs were similar to those in P1-4 rats. On the other hand, RdVII stimulation evoked PSCs in only three of 16 digastric motoneurons tested. These results suggest that both neonatal and juvenile jaw-closing motoneurons receive strong synaptic inputs from the RdVII through activation of glutamate, glycine and GABA(A) receptors, whereas inputs from the RdVII to jaw-opening motoneurons seem to be weak. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Astringency: A More Stringent Definition
Gong, Naihua N.; Matsunami, Hiroaki
2014-01-01
Despite being an everyday sensory experience, the nature of astringency perception is not clear. In this issue of Chemical Senses, Schöbel et al. demonstrate that astringency is a trigeminal sensation in human, and astringents trigger a G protein-coupled pathway in trigeminal ganglion cells in the mouse. PMID:24860069
Feng, Jie; Hao, Shuyu; Pan, Changcun; Wang, Yu; Wu, Zhen; Zhang, Junting; Yan, Hai; Zhang, Liwei; Wan, Hong
2015-11-01
Brainstem and thalamic gliomas are rare, and they are poorly understood in adults. Genetic aberrations that occur in these tumors are still unknown. In this study, we investigated whether thalamic gliomas have different genetic aberrations and clinical outcomes compared with brainstem gliomas in adults. Forty-three glioma samples were selected, including 28 brainstem and 15 thalamic gliomas. The frequency of the K27M mutation in adult midline gliomas was 58.1%. High-grade gliomas in the thalamus were statistically significantly more numerous than brainstem gliomas. Patients with K27M mutant brainstem gliomas had a significantly shorter overall survival than patients with wild-type tumors (P = .020) by Cox regression after adjustment for other independent risk factors. However, there was no statistical tendency toward a poorer overall survival in thalamic gliomas containing the K27M mutation compared with wild-type tumors. The presence of the K27M mutation significantly corresponded with mutations in TP53 in thalamic gliomas. Interestingly, the K27M mutation was mutually exclusive with mutations in IDH1, which was detected only in brainstem gliomas. The microarray data identified 86 differentially expressed genes between brainstem and thalamic gliomas with the K27M mutation. The cyclin-dependent kinase 6 (CDK6) gene, which plays an important role in cancer pathways, was found to be differentially expressed between brainstem and thalamic gliomas with K27M mutations. Although the K27M mutation was frequently observed in adult brainstem and thalamic gliomas, this mutation tended to be associated with a poorer prognosis in brainstem gliomas but not in thalamic gliomas. Brainstem gliomas may present different genetic aberrations from thalamic gliomas. These differences may provide guidance for therapeutic decisions for the treatment of adult brainstem and thalamic gliomas, which may have different molecular targets. Copyright © 2015. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leshinsky-Silver, E.; Mitochondrial Disease Center, Wolfson Medical Center, Holon; E-mail: leshinsky@wolfson.health.gov.il
Leigh syndrome can result from both nuclear and mitochondrial DNA defects. Mutations in complex V genes of the respiratory chain were considered until recently as the most frequent cause for mitochondrial inherited Leigh syndrome, while gene defects in complex I were related to recessive Leigh syndrome. Recently few reports of mutations in the mitochondrial-encoded complex I subunit genes causing Leigh syndrome have been reported. We describe a 1-month-old baby who acutely deteriorated, with abrupt onset of brainstem dysfunction, due to basal ganglia lesions extending to the brainstem. A muscle biopsy demonstrated complex I deficiency. Subsequent analysis of the mitochondrial genomemore » revealed a homoplastic T10191C mutation in the ND3 gene (in blood and muscle), resulting in a substitution of serine to proline. Hair root analysis revealed a 50% mutant load, reflecting heteroplasmy in early embryonic stages. The mutation was also detected in his mother (5%). Western blot analysis revealed a decrease of the 20 kDa subunit (likely ND6) and of the 30 kDa subunit (NDUFA9), which is probably due to instability attributed to the inability to form subcomplexes with ND3. This is the first description of infantile Leigh syndrome due to a maternally transmitted T10191C substitution in ND3 and not due to a de novo mutation. This mutation is age and tissue dependent and therefore may not be amenable to prenatal testing.« less
Studies on the biosynthesis and intracellular transport of gangliosides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrer, R.G.
1987-01-01
Ganglioside biosynthesis and transport to myelin was studied in brainstem of 17-21 day old rats. Brainstem slices were incubated for up to 2 hours with (/sup 3/H)glucosamine, and gangliosides were isolated by column chromatography and HPTLC. Results from these experiments showed that: (a) ganglioside synthesis was decreased in the slices compared to in vivo, and this decrease was greater in the more complex gangliosides than in the simpler ones; (b) label incorporation into gangliosides GM3 and GM2 increased in a linear fashion, whereas the rate of incorporation continuously increased over the 2 hour period for the more complex gangliosides; (c)more » label incorporated into gangliosides, which showed almost no effect of chase after 30 minutes; (d) monensin at 0.1 uM inhibited the synthesis of all gangliosides except GM3, GM2 and GD3. Compartmentation of ganglioside biosynthesis was examined by analyzing the subcellular location of two ganglioside synthesizing enzymes, lactosylceramide sialosyltransferase (LCST) and GDlb sialosyltransferase (GDlbST), acting early and late in the ganglioside pathway, respectively.« less
Congenital brainstem disconnection associated with a syrinx of the brainstem.
Barth, P G; de Vries, L S; Nikkels, P G J; Troost, D
2008-02-01
We report a case of congenital brainstem disconnection including the second detailed autopsy. A full-term newborn presented with irreversible apnoea and died on the fifth day. MRI revealed disconnection of the brainstem. The autopsy included a series of transverse sections of the mesencephalon, medulla oblongata and bridging tissue fragments. A fragile tube walled by mature brainstem tissue could be reconstructed. It enveloped a cylinder of fluid within the ventral pons extending to the mesencephalon and the lower brainstem. The aqueduct was patent and outside the lesion. The basilar artery was represented by a tiny median vessel. The ventral and lateral parts of the posterior brainstem were surrounded by heterotopic glial tissue. The olivary nucleus was absent and the cerebellar dentate nucleus was dysplastic. Considering the maturity of the remaining parts of the pons, the onset of structural decline is likely to be close to the time of birth. Probable causes are progressively insufficient perfusion through an hypoplastic basilar artery, and obstructed venous drainage through an abnormal glial barrier surrounding the posterior brainstem. The morphological findings can be characterized as a syrinx, known from disorders in which brainstem or spinal cord are damaged by a combination of mechanical and circulatory factors.
Crnošija, Luka; Krbot Skorić, Magdalena; Gabelić, Tereza; Adamec, Ivan; Habek, Mario
2017-01-15
To validate the VEMP score as a measure of brainstem dysfunction in patients with the first symptom of multiple sclerosis (MS) (clinically isolated syndrome (CIS)) and to investigate the correlation between VEMP and brainstem MRI results. 121 consecutive CIS patients were enrolled and brainstem functional system score (BSFS) was determined. Ocular VEMP (oVEMP) and cervical VEMP (cVEMP) were analyzed for latencies, conduction block and amplitude asymmetry ratio and the VEMP score was calculated. MRI was analyzed for the presence of brainstem lesions as a whole and separately for the presence of pontine, midbrain and medulla oblongata lesions. Patients with signs of brainstem involvement during the neurological examination (with BSFS ≥1) had a higher oVEMP score compared to patients with no signs of brainstem involvement. A binary logistic regression model showed that patients with brainstem lesion on the MRI are 6.780 times more likely to have BSFS ≥1 (p=0.001); and also, a higher VEMP score is associated with BSFS ≥1 (p=0.042). Furthermore, significant correlations were found between clinical brainstem involvement and brainstem and pontine MRI lesions, and prolonged latencies and/or absent VEMP responses. The VEMP score is a valuable tool in evaluation of brainstem involvement in patients with early MS. Copyright © 2016 Elsevier B.V. All rights reserved.
Auditory Brainstem Responses in Autism: Brainstem Dysfunction or Peripheral Hearing Loss?
ERIC Educational Resources Information Center
Klin, Ami
1993-01-01
A review of 11 studies of auditory brainstem response (ABR) in individuals with autism concludes that the ABR data are only suggestive (rather than supportive) of brainstem involvement in autism. The presence of peripheral hearing impairment was observed in some of the autistic individuals. (Author/DB)
Eugenin, J; Nicholls, J G; Cohen, L B; Muller, K J
2006-01-01
Unfailing respiration depends on neural mechanisms already present in mammals before birth. Experiments were made to determine how inspiratory and expiratory neurons are grouped in the brainstem of fetal mice. A further aim was to assess whether rhythmicity arises from a single pacemaker or is generated by multiple sites in the brainstem. To measure neuronal firing, a fluorescent calcium indicator dye was applied to embryonic central nervous systems isolated from mice. While respiratory commands were monitored electrically from third to fifth cervical ventral roots, activity was measured optically over areas containing groups of respiratory neurones, or single neurones, along the medulla from the facial nucleus to the pre-Bötzinger complex. Large optical signals allowed recordings to be made during individual respiratory cycles. Inspiratory and expiratory neurones were intermingled. A novel finding was that bursts of activity arose in a discrete area intermittently, occurring during some breaths, but failing in others. Raised CO2 partial pressure or lowered pH increased the frequency of respiration; neurons then fired reliably with every cycle. Movies of activity revealed patterns of activation of inspiratory and expiratory neurones during successive respiratory cycles; there was no evidence for waves spreading systematically from region to region. Our results suggest that firing of neurons in immature respiratory circuits is a stochastic process, and that the rhythm does not depend on a single pacemaker. Respiratory circuits in fetal mouse brainstem appear to possess a high safety factor for generating rhythmicity, which may or may not persist as development proceeds.
Giraudin, Aurore; Le Bon-Jégo, Morgane; Cabirol, Marie-Jeanne; Simmers, John; Morin, Didier
2012-08-22
The coordination of locomotion and respiration is widespread among mammals, although the underlying neural mechanisms are still only partially understood. It was previously found in neonatal rat that cyclic electrical stimulation of spinal cervical and lumbar dorsal roots (DRs) can fully entrain (1:1 coupling) spontaneous respiratory activity expressed by the isolated brainstem/spinal cord. Here, we used a variety of preparations to determine the type of spinal sensory inputs responsible for this respiratory rhythm entrainment, and to establish the extent to which limb movement-activated feedback influences the medullary respiratory networks via direct or relayed ascending pathways. During in vivo overground locomotion, respiratory rhythm slowed and became coupled 1:1 with locomotion. In hindlimb-attached semi-isolated preparations, passive flexion-extension movements applied to a single hindlimb led to entrainment of fictive respiratory rhythmicity recorded in phrenic motoneurons, indicating that the recruitment of limb proprioceptive afferents could participate in the locomotor-respiratory coupling. Furthermore, in correspondence with the regionalization of spinal locomotor rhythm-generating circuitry, the stimulation of DRs at different segmental levels in isolated preparations revealed that cervical and lumbosacral proprioceptive inputs are more effective in this entraining influence than thoracic afferent pathways. Finally, blocking spinal synaptic transmission and using a combination of electrophysiology, calcium imaging and specific brainstem lesioning indicated that the ascending entraining signals from the cervical or lumbar limb afferents are transmitted across first-order synapses, probably monosynaptic, in the spinal cord. They are then conveyed to the brainstem respiratory centers via a brainstem pontine relay located in the parabrachial/Kölliker-Fuse nuclear complex.
Escera, Carles; Leung, Sumie; Grimm, Sabine
2014-07-01
Detection of changes in the acoustic environment is critical for survival, as it prevents missing potentially relevant events outside the focus of attention. In humans, deviance detection based on acoustic regularity encoding has been associated with a brain response derived from the human EEG, the mismatch negativity (MMN) auditory evoked potential, peaking at about 100-200 ms from deviance onset. By its long latency and cerebral generators, the cortical nature of both the processes of regularity encoding and deviance detection has been assumed. Yet, intracellular, extracellular, single-unit and local-field potential recordings in rats and cats have shown much earlier (circa 20-30 ms) and hierarchically lower (primary auditory cortex, medial geniculate body, inferior colliculus) deviance-related responses. Here, we review the recent evidence obtained with the complex auditory brainstem response (cABR), the middle latency response (MLR) and magnetoencephalography (MEG) demonstrating that human auditory deviance detection based on regularity encoding-rather than on refractoriness-occurs at latencies and in neural networks comparable to those revealed in animals. Specifically, encoding of simple acoustic-feature regularities and detection of corresponding deviance, such as an infrequent change in frequency or location, occur in the latency range of the MLR, in separate auditory cortical regions from those generating the MMN, and even at the level of human auditory brainstem. In contrast, violations of more complex regularities, such as those defined by the alternation of two different tones or by feature conjunctions (i.e., frequency and location) fail to elicit MLR correlates but elicit sizable MMNs. Altogether, these findings support the emerging view that deviance detection is a basic principle of the functional organization of the auditory system, and that regularity encoding and deviance detection is organized in ascending levels of complexity along the auditory pathway expanding from the brainstem up to higher-order areas of the cerebral cortex.
Ringkamp, Matthias; Wooten, Matthew; Carson, Benjamin S; Lim, Michael; Hartke, Timothy; Guarnieri, Michael
2016-02-01
Percutaneous treatments for trigeminal neuralgia are safe, simple, and effective for achieving good pain control. Procedural risks could be minimized by using noninvasive imaging techniques to improve the placement of the radiofrequency thermocoagulation probe into the trigeminal ganglion. Positioning of a probe is crucial to maximize pain relief and to minimize unwanted side effects, such as denervation in unaffected areas. This investigation examined the use of laser speckle imaging during probe placement in an animal model. This preclinical safety study used nonhuman primates, Macaca nemestrina (pigtail monkeys), to examine whether real-time imaging of blood flow in the face during the positioning of a coagulation probe could monitor the location and guide the positioning of the probe within the trigeminal ganglion. Data from 6 experiments in 3 pigtail monkeys support the hypothesis that laser imaging is safe and improves the accuracy of probe placement. Noninvasive laser speckle imaging can be performed safely in nonhuman primates. Because improved probe placement may reduce morbidity associated with percutaneous rhizotomies, efficacy trials of laser speckle imaging should be conducted in humans.
Trigeminal activation using chemical, electrical, and mechanical stimuli.
Iannilli, E; Del Gratta, C; Gerber, J C; Romani, G L; Hummel, T
2008-10-15
Tactile, proprioceptive, and nociceptive information, including also chemosensory functions are expressed in the trigeminal nerve sensory response. To study differences in the processing of different stimulus qualities, we performed a study based on functional magnetic resonance imaging. The first trigeminal branch (ophthalmic nerve) was activated by (a) intranasal chemical stimulation with gaseous CO2 which produces stinging and burning sensations, but is virtually odorless, (b) painful, but not nociceptive specific cutaneous electrical stimulation, and (c) cutaneous mechanical stimulation using air puffs. Eighteen healthy subjects participated (eight men, 10 women, mean age 31 years). Painful stimuli produced patterns of activation similar to what has been reported for other noxious stimuli, namely activation in the primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and thalamus. In addition, analyses indicated intensity-related activation in the prefrontal cortex which was specifically involved in the evaluation of stimulus intensity. Importantly, the results also indicated similarities between activation patterns after intranasal chemosensory trigeminal stimulation and patterns usually found following intranasal odorous stimulation, indicating the intimate connection between these two systems in the processing of sensory information.
Bhatjiwale, M; Bhatjiwale, M; Naik, L D; Chopade, P
2018-05-29
Trigeminal neuralgia and deafferentation neuropathic pain, or trigeminal neuropathy, are different symptomatologies, rarely reported to present together. The case of a 65-year-old gentleman suffering from trigeminal neuralgia of the maxillary and mandibular division is reported. He first underwent an infraorbital neurectomy that was complicated by deafferentation neuropathic pain, whilst his mandibular neuralgia continued. He was treated successfully for both the neuropathic and neuralgic symptoms in the same session using ultra-extended euthermic pulsed radiofrequency treatment for the maxillary division (V2) and radiofrequency thermocoagulation for the mandibular division (V3). This report is novel in describing the use of dual modalities in the same session for two distinct coexisting clinical entities in two different divisions of the same cranial nerve. The use of ultra-extended pulsed radiofrequency treatment for neuropathic pain in this case is also unique. Nearly 2years after the procedure, the patient continues to have complete pain relief. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Hernández, C J; Ortíz, T; Rosa, C; Foster, K; Tyagi, M; Lugo, N; Albrecht, R; Chinapen, S
2007-04-01
Mucociliary activity is an important clearance mechanism in the respiratory system of air breathing vertebrates. Substance P (SP) and acetylcholine play a key role in the stimulation of the mucociliary transport in the frog palate. In this study, retrograde neuronal tracing was combined with immunocytochemistry for SP and choline acetyl transferase (ChAT) in the trigeminal ganglion and for neurokinin-1 receptor (NK1R) in the palate of Rana pipiens. The cells of origin of the palatine nerve were identified in the trigeminal ganglion using the retrograde tracer Fluorogold (FG). Optimal labeling of FG cells in the trigeminal ganglion was obtained at 96 h of exposure. Immunoflorescent shows that SP and acetylcholine are co-localized in 92% of the cells labeled with FG in the trigeminal ganglion. NK1 receptors were found in the membrane of epithelial and goblet cells of the palate. Ultrastructural study of the palate showed axonal-like endings with vesicles in connection with epithelial and goblet cells. These results further support the concerted action of both neurotransmitters in the regulation of mucociliary activity in the frog palate.
Lambertz, M; Vandenhouten, R; Grebe, R; Langhorst, P
2000-01-14
Neuronal activities of the reticular formation (RF) of the lower brainstem and the nucleus tractus solitarii (NTS, first relay station of baroreceptor afferents) were recorded together in the anesthized dog with related parameters of EEG, respiration and cardiovascular system. The RF neurons are part of the common brainstem system (CBS) which participates in regulation and coordination of cardiovascular, respiratory, somatomotor systems, and vigilance. Multiple time series of these physiological subsystems yield useful information about internal dynamic coordination of the organism. Essential problems are nonlinearity and instationarity of the signals, due to the dynamic complexity of the systems. Several time-resolving methods are presented to describe nonlinear dynamic couplings in the time course, particularly during phase transitions. The methods are applied to the recorded signals representing the complex couplings of the physiological subsystems. Phase transitions in these systems are detected by recurrence plots of the instationary signals. The pointwise transinformation and the pointwise conditional coupling divergence are measures of the mutual interaction of the subsystems in the state space. If the signals show marked rhythms, instantaneous frequencies and their shiftings are demonstrated by time frequency distributions, and instantaneous phase differences show couplings of oscillating subsystems. Transient signal components are reconstructed by wavelet packet time selective transient reconstruction. These methods are useful means for analyzing coupling characteristics of the complex physiological system, and detailed analyses of internal dynamic coordination of subsystems become possible. During phase transitions of the functional organization (a) the rhythms of the central neuronal activities and the peripheral systems are altered, (b) changes in the coupling between CBS neurons and cardiovascular signals, respiration and the EEG, and (c) between NTS neurons (influenced by baroreceptor afferents) and CBS neurons occur, and (d) the processing of baroreceptor input at the NTS neurons changes. The results of this complex analysis, which could not be done formerly in this manner, confirm and complete former investigations on the dynamic organization of the CBS with its changing relations to peripheral and other central nervous subsystems.
Role of transcutaneous electric nerve stimulation in the management of trigeminal neuralgia.
Singla, Sanju; Prabhakar, Vikram; Singla, Rajan Kumar
2011-07-01
Trigeminal neuralgia typically involves nerves supplying teeth, jaws and face of older females. Though the etiology is usually obscure, different treatment modalities have been tried for it viz. medicinal treatment, injection alcohol, peripheral neurectomy, rhizotomy, and microvascular decompression etc. Transcutaneous electric nerve stimulation (TENS) is an emerging and promising option for management of such patients. The present study was designed with an aim to study the efficacy of TENS in management of trigeminal neuralgia. The study was conducted on 30 patients of trigeminal neuralgia confirmed by diagnostic nerve block. They were given bursts of TENS for 20-40 days over the path of the affected nerve and subsequently evaluated at 1 month and 3 month intervals by visual analogue scale (VAS), verbal pain scale (VPS), a functional outcome scales for main daily activities like sleep, chewing, talking, or washing face. The results showed that, on VAS, the score decreased from 8.9 (Pre TENS) to 3.1 at 1 month and 1.3 at 3 months, and on VPS, the score decreased from 3.5 (Pre TENS) to 1.2 at 1 month and 0.3 at 3 months. Similarly, a considerable decrease in scores was seen on functional outcome scale for different activities. No side effects like irritation or redness of skin were seen in any of the patients. Thus, TENS was found to be a safe, easily acceptable, and non-invasive outdoor patient department procedure for management of trigeminal neuralgia.
Klein, Amanda H.; Joe, Christopher L.; Davoodi, Auva; Takechi, Kenichi; Carstens, Mirela Iodi; Carstens, E
2014-01-01
Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive TRPA1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher-order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42°C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue. PMID:24759772
Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro
Gulbransen, Brian D; Clapp, Tod R; Kinnamon, Sue C; Finger, Thomas E
2009-01-01
Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear (Finger et al. 2003). Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein α-gustducin, PLCβ2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium, and this response is blocked by the PLC inhibitor U73122. In addition GFP+ cells respond to the PLC activator 3M3FBS, the neuromodulators ATP and ACh, but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist, denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system. PMID:18417634
Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia
Vit, Jean-Philippe; Ohara, Peter T; Sundberg, Christopher; Rubi, Blanca; Maechler, Pierre; Liu, Chunyan; Puntel, Mariana; Lowenstein, Pedro; Castro, Maria; Jasmin, Luc
2009-01-01
Background Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. Results Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. Conclusion Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya. PMID:19656360
Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia.
Vit, Jean-Philippe; Ohara, Peter T; Sundberg, Christopher; Rubi, Blanca; Maechler, Pierre; Liu, Chunyan; Puntel, Mariana; Lowenstein, Pedro; Castro, Maria; Jasmin, Luc
2009-08-05
Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya.
Magnetic resonance imaging differential diagnosis of brainstem lesions in children
Quattrocchi, Carlo Cosimo; Errante, Yuri; Rossi Espagnet, Maria Camilla; Galassi, Stefania; Della Sala, Sabino Walter; Bernardi, Bruno; Fariello, Giuseppe; Longo, Daniela
2016-01-01
Differential diagnosis of brainstem lesions, either isolated or in association with cerebellar and supra-tentorial lesions, can be challenging. Knowledge of the structural organization is crucial for the differential diagnosis and establishment of prognosis of pathologies with involvement of the brainstem. Familiarity with the location of the lesions in the brainstem is essential, especially in the pediatric population. Magnetic resonance imaging (MRI) is the most sensitive and specific imaging technique for diagnosing disorders of the posterior fossa and, particularly, the brainstem. High magnetic static field MRI allows detailed visualization of the morphology, signal intensity and metabolic content of the brainstem nuclei, together with visualization of the normal development and myelination. In this pictorial essay we review the brainstem pathology in pediatric patients and consider the MR imaging patterns that may help the radiologist to differentiate among vascular, toxico-metabolic, infective-inflammatory, degenerative and neoplastic processes. Helpful MR tips can guide the differential diagnosis: These include the location and morphology of lesions, the brainstem vascularization territories, gray and white matter distribution and tissue selective vulnerability. PMID:26834941
Noise-induced tinnitus: auditory evoked potential in symptomatic and asymptomatic patients.
Santos-Filha, Valdete Alves Valentins dos; Samelli, Alessandra Giannella; Matas, Carla Gentile
2014-07-01
We evaluated the central auditory pathways in workers with noise-induced tinnitus with normal hearing thresholds, compared the auditory brainstem response results in groups with and without tinnitus and correlated the tinnitus location to the auditory brainstem response findings in individuals with a history of occupational noise exposure. Sixty individuals participated in the study and the following procedures were performed: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz and auditory brainstem response. The mean auditory brainstem response latencies were lower in the Control group than in the Tinnitus group, but no significant differences between the groups were observed. Qualitative analysis showed more alterations in the lower brainstem in the Tinnitus group. The strongest relationship between tinnitus location and auditory brainstem response alterations was detected in individuals with bilateral tinnitus and bilateral auditory brainstem response alterations compared with patients with unilateral alterations. Our findings suggest the occurrence of a possible dysfunction in the central auditory nervous system (brainstem) in individuals with noise-induced tinnitus and a normal hearing threshold.
Transcriptome analysis of trigeminal ganglia following masseter muscle inflammation in rats
Park, Jennifer; Asgar, Jamila; Ro, Jin Y.
2016-01-01
Background Chronic pain in masticatory muscles is a major medical problem. Although mechanisms underlying persistent pain in masticatory muscles are not fully understood, sensitization of nociceptive primary afferents following muscle inflammation or injury contributes to muscle hyperalgesia. It is well known that craniofacial muscle injury or inflammation induces regulation of multiple genes in trigeminal ganglia, which is associated with muscle hyperalgesia. However, overall transcriptional profiles within trigeminal ganglia following masseter inflammation have not yet been determined. In the present study, we performed RNA sequencing assay in rat trigeminal ganglia to identify transcriptome profiles of genes relevant to hyperalgesia following inflammation of the rat masseter muscle. Results Masseter inflammation differentially regulated >3500 genes in trigeminal ganglia. Predominant biological pathways were predicted to be related with activation of resident non-neuronal cells within trigeminal ganglia or recruitment of immune cells. To focus our analysis on the genes more relevant to nociceptors, we selected genes implicated in pain mechanisms, genes enriched in small- to medium-sized sensory neurons, and genes enriched in TRPV1-lineage nociceptors. Among the 2320 candidate genes, 622 genes showed differential expression following masseter inflammation. When the analysis was limited to these candidate genes, pathways related with G protein-coupled signaling and synaptic plasticity were predicted to be enriched. Inspection of individual gene expression changes confirmed the transcriptional changes of multiple nociceptor genes associated with masseter hyperalgesia (e.g., Trpv1, Trpa1, P2rx3, Tac1, and Bdnf) and also suggested a number of novel probable contributors (e.g., Piezo2, Tmem100, and Hdac9). Conclusion These findings should further advance our understanding of peripheral mechanisms involved in persistent craniofacial muscle pain conditions and provide a rational basis for identifying novel genes or sets of genes that can be potentially targeted for treating such conditions. PMID:27702909
He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen
2014-11-15
The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that tooth extraction should be avoided in these populations.
Clinical value of a self-designed training model for pinpointing and puncturing trigeminal ganglion.
He, Yu-Quan; He, Shu; Shen, Yun-Xia; Qian, Cheng
2014-04-01
OBJECTIVES. A training model was designed for learners and young physicians to polish their skills in clinical practices of pinpointing and puncturing trigeminal ganglion. METHODS. A head model, on both cheeks of which the deep soft tissue was replaced by stuffed organosilicone and sponge while the superficial soft tissue, skin and the trigeminal ganglion were made of organic silicon rubber for an appearance of real human being, was made from a dried skull specimen and epoxy resin. Two physicians who had experiences in puncturing foramen ovale and trigeminal ganglion were selected to test the model, mainly for its appearance, X-ray permeability, handling of the puncture, and closure of the puncture sites. Four inexperienced physicians were selected afterwards to be trained combining Hartel's anterior facial approach with the new method of real-time observation on foramen ovale studied by us. RESULTS. Both appearance and texture of the model were extremely close to those of a real human. The fact that the skin, superficial soft tissue, deep muscles of the cheeks, and the trigeminal ganglion made of organic silicon rubber all had great elasticity resulted in quick closure and sealing of the puncture sites. The head model made of epoxy resin had similar X-ray permeability to a human skull specimen under fluoroscopy. The soft tissue was made of radiolucent material so that the training can be conducted with X-ray guidance. After repeated training, all the four young physicians were able to smoothly and successfully accomplish the puncture. CONCLUSION. This self-made model can substitute for cadaver specimen in training learners and young physicians on foramen ovale and trigeminal ganglion puncture. It is very helpful for fast learning and mastering this interventional operation skill, and the puncture accuracy can be improved significantly with our new method of real-time observation on foramen ovale.
Nagoya, Kouta; Nakamura, Shiro; Ikeda, Keiko; Onimaru, Hiroshi; Yoshida, Atsushi; Nakayama, Kiyomi; Mochizuki, Ayako; Kiyomoto, Masaaki; Sato, Fumihiko; Kawakami, Kiyoshi; Takahashi, Koji; Inoue, Tomio
2017-09-01
Phox2b encodes a paired-like homeodomain-containing transcription factor essential for development of the autonomic nervous system. Phox2b-expressing (Phox2b + ) neurons are present in the reticular formation dorsal to the trigeminal motor nucleus (RdV) as well as the nucleus of the solitary tract and parafacial respiratory group. However, the nature of Phox2b + RdV neurons is still unclear. We investigated the physiological and morphological properties of Phox2b + RdV neurons using postnatal day 2-7 transgenic rats expressing yellow fluorescent protein under the control of Phox2b. Almost all of Phox2b + RdV neurons were glutamatergic, whereas Phox2b-negative (Phox2b - ) RdV neurons consisted of a few glutamatergic, many GABAergic, and many glycinergic neurons. The majority (48/56) of Phox2b + neurons showed low-frequency firing (LF), while most of Phox2b - neurons (35/42) exhibited high-frequency firing (HF) in response to intracellularly injected currents. All, but one, Phox2b + neurons (55/56) did not fire spontaneously, whereas three-fourths of the Phox2b - neurons (31/42) were spontaneously active. K + channel and persistent Na + current blockers affected the firing of LF and HF neurons. The majority of Phox2b + (35/46) and half of the Phox2b - neurons (19/40) did not respond to stimulations of the mesencephalic trigeminal nucleus, the trigeminal tract, and the principal sensory trigeminal nucleus. Biocytin labeling revealed that about half of the Phox2b + (5/12) and Phox2b - RdV neurons (5/10) send their axons to the trigeminal motor nucleus. These results suggest that Phox2b + RdV neurons have distinct neurotransmitter phenotypes and firing properties from Phox2b - RdV neurons and might play important roles in feeding-related functions including suckling and possibly mastication. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Subacute Sclerosing Panencephalitis of the Brainstem as a Clinical Entity
Yang, Jason; Ciacci, Joseph D.
2017-01-01
Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurological disorder of early adolescence caused by persistent infection of the measles virus, which remains prevalent worldwide despite an effective vaccine. SSPE is a devastating disease with a characteristic clinical course in subcortical white matter; however, atypical presentations of brainstem involvement may be seen in rare cases. This review summarizes reports to date on brainstem involvement in SSPE, including the clinical course of disease, neuroimaging presentations, and guidelines for treatment. A comprehensive literature search was performed for English-language publications with keywords “subacute sclerosing panencephalitis” and “brainstem” using the National Library of Medicine PubMed database (March 1981–September 2017). Eleven articles focusing on SSPE of the brainstem were included. Predominant brainstem involvement remains uncharacteristic of SSPE, which may lead to misdiagnosis and poor outcome. A number of case reports have demonstrated brainstem involvement associated with other intracranial lesions commonly presenting in later SSPE stages (III and IV). However, brainstem lesions can appear in all stages, independent of higher cortical structures. The varied clinical presentations complicate diagnosis from a neuroimaging perspective. SSPE of the brainstem is a rare but important clinical entity. It may present like canonical SSPE or with unique clinical features such as absence seizures and pronounced ataxia. While SSPE generally progresses to the brainstem, it can also begin with a primary focus of infection in the brainstem. Awareness of varied SSPE presentations can aid in early diagnosis as well as guide management and treatment. PMID:29112137
Two Mechanisms Involved in Trigeminal CGRP Release: Implications for Migraine Treatment
Durham, Paul L.; Masterson, Caleb G.
2012-01-01
Objective The goal of this study was to better understand the cellular mechanisms involved in proton stimulation of calcitonin gene-related peptide (CGRP) secretion from cultured trigeminal neurons by investigating the effects of two anti-migraine therapies, onabotulinumtoxin A and rizatriptan. Background Stimulated CGRP release from peripheral and central terminating processes of trigeminal ganglia neurons is implicated in migraine pathology by promoting inflammation and nociception. Based on models of migraine pathology, several inflammatory molecules including protons are thought to facilitate sensitization and activation of trigeminal nociceptive neurons and stimulate CGRP secretion. Despite the reported efficacy of triptans and onabotulinumtoxinA to treat acute and chronic migraine, respectively, a substantial number of migraneurs do not get adequate relief with these therapies. A possible explanation is that triptans and onabutulinumtoxinA are not able to block proton mediated CGRP secretion. Methods CGRP secretion from cultured primary trigeminal ganglia neurons was quantitated by radioimmunoassay while intracellular calcium and sodium levels were measured in neurons via live cell imaging using Fura2-AM and SBFI-AM, respectively. The expression of ASIC3 was determined by immunocytochemistry and western blot analysis. In addition, the involvement of ASICs in mediating proton stimulation of CGRP was investigated using the potent and selective ASIC3 inhibitor APETx2. Results While KCl caused a significant increase in CGRP secretion that was significantly repressed by treatment with EGTA, onabotulinumtoxinA, and rizatriptan, the stimulatory effect of protons (pH 5.5) was not suppressed by EGTA, onabotulinumtoxinA, or rizatriptan. In addition, while KCl caused a transient increase in intracellular calcium levels that was blocked by EGTA, no appreciable change in calcium levels was observed with proton treatment. However, protons did significantly increase the intracellular level of sodium ions. Under our culture conditions, ASIC3 was shown to be expressed in most trigeminal ganglion neurons. Importantly, proton stimulation of CGRP secretion was repressed by pretreatment with the ASIC3 inhibitor APETx2, but not the TRPV1 antagonist capsazepine. Conclusions Our findings provide evidence that proton regulated release of CGRP from trigeminal neurons utilizes a different mechanism than the calcium and SNAP-25 dependent pathways that are inhibited by the anti-migraine therapies rizatriptan and onabotulinumtoxinA. PMID:23095108
Cluster Headache: Epidemiology, Pathophysiology, Clinical Features, and Diagnosis
Wei, Diana Yi-Ting; Yuan Ong, Jonathan Jia; Goadsby, Peter James
2018-01-01
Cluster headache is a primary headache disorder affecting up to 0.1% of the population. Patients suffer from cluster headache attacks lasting from 15 to 180 min up to 8 times a day. The attacks are characterized by the severe unilateral pain mainly in the first division of the trigeminal nerve, with associated prominent unilateral cranial autonomic symptoms and a sense of agitation and restlessness during the attacks. The male-to-female ratio is approximately 2.5:1. Experimental, clinical, and neuroimaging studies have advanced our understanding of the pathogenesis of cluster headache. The pathophysiology involves activation of the trigeminovascular complex and the trigeminal-autonomic reflex and accounts for the unilateral severe headache, the prominent ipsilateral cranial autonomic symptoms. In addition, the circadian and circannual rhythmicity unique to this condition is postulated to involve the hypothalamus and suprachiasmatic nucleus. Although the clinical features are distinct, it may be misdiagnosed, with patients often presenting to the otolaryngologist or dentist with symptoms. The prognosis of cluster headache remains difficult to predict. Patients with episodic cluster headache can shift to chronic cluster headache and vice versa. Longitudinally, cluster headache tends to remit with age with less frequent bouts and more prolonged periods of remission in between bouts. PMID:29720812
Cluster Headache: Epidemiology, Pathophysiology, Clinical Features, and Diagnosis.
Wei, Diana Yi-Ting; Yuan Ong, Jonathan Jia; Goadsby, Peter James
2018-04-01
Cluster headache is a primary headache disorder affecting up to 0.1% of the population. Patients suffer from cluster headache attacks lasting from 15 to 180 min up to 8 times a day. The attacks are characterized by the severe unilateral pain mainly in the first division of the trigeminal nerve, with associated prominent unilateral cranial autonomic symptoms and a sense of agitation and restlessness during the attacks. The male-to-female ratio is approximately 2.5:1. Experimental, clinical, and neuroimaging studies have advanced our understanding of the pathogenesis of cluster headache. The pathophysiology involves activation of the trigeminovascular complex and the trigeminal-autonomic reflex and accounts for the unilateral severe headache, the prominent ipsilateral cranial autonomic symptoms. In addition, the circadian and circannual rhythmicity unique to this condition is postulated to involve the hypothalamus and suprachiasmatic nucleus. Although the clinical features are distinct, it may be misdiagnosed, with patients often presenting to the otolaryngologist or dentist with symptoms. The prognosis of cluster headache remains difficult to predict. Patients with episodic cluster headache can shift to chronic cluster headache and vice versa. Longitudinally, cluster headache tends to remit with age with less frequent bouts and more prolonged periods of remission in between bouts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giantsoudi, D; Adams, J; MacDonald, S
Purpose: In proton radiation therapy of posterior fossa tumors, to spare other sensitive structures, the preferred beam geometry results in placing the treatment field distal edge within or just beyond the brainstem, including in at least partially in the treatment volume. Concerns for brainstem toxicity are increased and a controversy exists as to weather the beam’s distal edge should be placed within the brainstem or beyond it, to avoid elevated linear energy transfer (LET) and relative biological effectiveness (RBE) within the brainstem. The dosimetric efficacy of these techniques was examined, accounting for LET- and dose-dependent variable RBE distributions. Methods: Threemore » treatment planning techniques were applied in six ependymoma cases: (a) three-field dose-sparing, with beams’ distal edge within the brainstem; (b) three-field LET-sparing, using same beam directions as (a) but extended field ranges beyond the brainstem; (c) two-posterior-oblique LET-sparing, with extended ranges as (b). Monte Carlo calculated dose, LET and RBE-weighted dose distributions were compared. Results: Lower LET values in the brainstem were accompanied by higher median dose: 53.7 Gy[RBE] and 54.3 Gy[RBE] for techniques (b) and (c) versus 52.1 Gy[RBE] for (a). Accounting for variable RBE, a 15% increase of the brainstem volume receiving at least 60 Gy[RBE] was observed for technique (c) versus (a). Maximum variable-RBE-weighted brainstem dose was comparable for all techniques. Conclusion: Extending the treatment beam range beyond the brainstem, significantly increased its volume receiving high dose radiation, even when accounting for the decreased LET values. The dosimetric benefits of techniques limiting the brainstem dose may outweigh the impact of LET reduction achieved through this technique, especially since clinical consequences of increased LET at the end of range have not been proven yet.« less
MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth.
Blanchi, Bruno; Kelly, Louise M; Viemari, Jean-Charles; Lafon, Isabelle; Burnet, Henri; Bévengut, Michelle; Tillmanns, Silke; Daniel, Laurent; Graf, Thomas; Hilaire, Gerard; Sieweke, Michael H
2003-10-01
The genetic basis for the development of brainstem neurons that generate respiratory rhythm is unknown. Here we show that mice deficient for the transcription factor MafB die from central apnea at birth and are defective for respiratory rhythmogenesis in vitro. MafB is expressed in a subpopulation of neurons in the preBötzinger complex (preBötC), a putative principal site of rhythmogenesis. Brainstems from Mafb(-/-) mice are insensitive to preBötC electrolytic lesion or stimulation and modulation of rhythmogenesis by hypoxia or peptidergic input. Furthermore, in Mafb(-/-) mice the preBötC, but not major neuromodulatory groups, presents severe anatomical defects with loss of cellularity. Our results show an essential role of MafB in central respiratory control, possibly involving the specification of rhythmogenic preBötC neurons.
Sabbagh, Abdulrahman J.; Alaqeel, Ahmed M.
2015-01-01
Improved neuronavigation guidance as well as intraoperative imaging and neurophysiologic monitoring technologies have enhanced the ability of neurosurgeons to resect focal brainstem gliomas. In contrast, diffuse brainstem gliomas are considered to be inoperable lesions. This article is a continuation of an article that discussed brainstem glioma diagnostics, imaging, and classification. Here, we address open surgical treatment of and approaches to focal, dorsally exophytic, and cervicomedullary brainstem gliomas. Intraoperative neuronavigation, intraoperative neurophysiologic monitoring, as well as intraoperative imaging are discussed as adjunctive measures to help render these procedures safer, more acute, and closer to achieving surgical goals. PMID:25864061
Kämppi, Antti; Kämppi, Leena; Kemppainen, Pentti; Kanerva, Mari; Toppila, Jussi; Auranen, Mari
2018-05-01
Patients with unknown clinical or radiological asymmetry in the face structures combined with atrophy and weakness of the masticatory muscles should be comprehensively examined clinically and with MRI, neurophysiological measurements, and serologically. Malignant lesions or benign idiopathic unilateral trigeminal motor neuropathy should be considered as an etiological explanation for the asymmetry.
Chronic dysphagia and trigeminal anesthesia after trichloroethylene exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, W.H.; Partyka, E.K.
1981-12-01
A patient is described who inhaled trichloroethylene fumes while working in a closed underground pit. At the time of exposure he developed dysphagia, dysarthria and dyspnea. Assessment of his condition 11 years after the incident indicated major damage of cranial nerves, particularly the trigeminal, chronic involvement of the bulbar cranial nerves, and resultant esophageal and pharnygeal motility impairment. (JMT)
Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.
Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A
2016-02-01
Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.
Poon, C Y
2000-12-01
Trigeminal neuralgia is a unique neuropathic syndrome confined to the trigeminal system with no analog in the somatic dermatomes or the other cranial nerves. Medical treatment remains the first line of treatment with carbamezapine as the drug of choice. Surgery, central or peripheral is indicated when medical treatment fails or its side effects diminishes quality of life. No surgery offers a permanent cure. Recurrence rates are highest in the most peripheral techniques but these also have the lowest morbidity. Cryotherapy produces a reliable, prolonged and reversible nerve block with no aggravation of symptoms. It is a simple and repeatable procedure in patients who want to avoid major surgery or where it is contra-indicated.
Central nervous system lymphoma presenting as trigeminal neuralgia: A diagnostic challenge
Ang, Jensen W. J.; Khanna, Arjun; Walcott, Brian P.; Kahle, Kristopher T.; Eskandar, Emad N.
2015-01-01
We describe an atypical man with diffuse large B cell lymphoma localized to the sphenoid wing and adjacent cavernous sinus, initially presenting with isolated ipsilateral facial pain mimicking trigeminal neuralgia due to invasion of Meckel’s cave but subsequently progressing to intra-axial extension and having synchronous features of systemic lymphoma. Primary central nervous system lymphoma is uncommon, accounting for approximately 2% of all primary intra-cranial tumors, but its incidence has been steadily increasing in some groups [1]. It usually arises in periventricular cerebral white matter, reports of lymphoma in extra-axial regions are rare [2]. This man highlights the importance of maintaining lymphoma in the differential diagnosis of tumors of the skull base presenting with trigeminal neuralgia-like symptoms. PMID:25865026
A two-year longitudinal pilot MRI study of the brainstem in autism.
Jou, Roger J; Frazier, Thomas W; Keshavan, Matcheri S; Minshew, Nancy J; Hardan, Antonio Y
2013-08-15
Research has demonstrated the potential role of the brainstem in the pathobiology of autism. Previous studies have suggested reductions in brainstem volume and a relationship between this structure and sensory abnormalities. However, little is known regarding the developmental aspects of the brainstem across childhood and adolescence. The goal of this pilot study was to examine brainstem development via MRI volumetry using a longitudinal research design. Participants included 23 boys with autism and 23 matched controls (age range=8-17 years), all without intellectual disability. Participants underwent structural MRI scans once at baseline and again at two-year follow-up. Brainstem volumetric measurements were performed using the BRAINS2 software package. There were no significant group differences in age, gender, handedness, and total brain volume; however, full-scale IQ was higher in controls. Autism and control groups showed different patterns of growth in brainstem volume. While whole brainstem volume remained stable in controls over the two-year period, the autism group showed increases with age reaching volumes comparable to controls by age 15 years. This increase of whole brainstem volume was primarily driven by bilateral increases in gray matter volume. Findings from this preliminary study are suggestive of developmental brainstem abnormalities in autism primarily involving gray matter structures. These findings are consistent with autism being conceptualized as a neurodevelopmental disorder with alterations in brain-growth trajectories. More longitudinal MRI studies are needed integrating longitudinal cognitive/behavioral data to confirm and elucidate the clinical significance of these atypical growth patterns. Copyright © 2013 Elsevier B.V. All rights reserved.
Brainstem timing: implications for cortical processing and literacy.
Banai, Karen; Nicol, Trent; Zecker, Steven G; Kraus, Nina
2005-10-26
The search for a unique biological marker of language-based learning disabilities has so far yielded inconclusive findings. Previous studies have shown a plethora of auditory processing deficits in learning disabilities at both the perceptual and physiological levels. In this study, we investigated the association among brainstem timing, cortical processing of stimulus differences, and literacy skills. To that end, brainstem timing and cortical sensitivity to acoustic change [mismatch negativity (MMN)] were measured in a group of children with learning disabilities and normal-learning children. The learning-disabled (LD) group was further divided into two subgroups with normal and abnormal brainstem timing. MMNs, literacy, and cognitive abilities were compared among the three groups. LD individuals with abnormal brainstem timing were more likely to show reduced processing of acoustic change at the cortical level compared with both normal-learning individuals and LD individuals with normal brainstem timing. This group was also characterized by a more severe form of learning disability manifested by poorer reading, listening comprehension, and general cognitive ability. We conclude that abnormal brainstem timing in learning disabilities is related to higher incidence of reduced cortical sensitivity to acoustic change and to deficient literacy skills. These findings suggest that abnormal brainstem timing may serve as a reliable marker of a subgroup of individuals with learning disabilities. They also suggest that faulty mechanisms of neural timing at the brainstem may be the biological basis of malfunction in this group.
Suo-Palosaari, M; Rantala, H; Lehtinen, S; Kumpulainen, T; Salokorpi, N
2016-06-01
We describe a unique case of expansive diffuse brainstem lesion diagnosed prenatally by magnetic resonance imaging (MRI) with long-term survival. Findings of fetal and postpartum MRI were highly consistent with the characteristics of diffuse brainstem glioma. Diagnosis was based on the features of MRI, and histopathology was not confirmed by biopsy. Although the prognosis of diffuse brainstem tumor is usually poor, this child was asymptomatic at birth and the neurological condition is still normal at 4 years of age without any treatment. During routine imaging follow-up, diameters of the expansion have remained stable, while the size of the lesion compared to the posterior fossa size has diminished. In addition to brainstem tumor, a skin lesion of the back was observed and MRI of the thoracic spine showed a large asymptomatic extradural cystic lesion suggesting an arachnoid cyst. The pontine tumor of this infant, in agreement with a few previously reported cases, suggests a subgroup of beneficial outcome of expansive diffuse brainstem lesions, particularly in the neonatal period. In this article, we discuss the prognosis and characteristics of pediatric brainstem tumors and differential diagnosis of neonatal brainstem lesions.
Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan
2016-01-01
Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
High-resolution MRI of cranial nerves in posterior fossa at 3.0 T.
Guo, Zi-Yi; Chen, Jing; Liang, Qi-Zhou; Liao, Hai-Yan; Cheng, Qiong-Yue; Fu, Shui-Xi; Chen, Cai-Xiang; Yu, Dan
2013-02-01
To evaluate the influence of high-resolution imaging obtainable with the higher field strength of 3.0 T on the visualization of the brain nerves in the posterior fossa. In total, 20 nerves were investigated on MRI of 12 volunteers each and selected for comparison, respectively, with the FSE sequences with 5 mm and 2 mm section thicknesses and gradient recalled echo (GRE) sequences acquired with a 3.0-T scanner. The MR images were evaluated by three independent readers who rated image quality according to depiction of anatomic detail and contrast with use of a rating scale. In general, decrease of the slice thickness showed a significant increase in the detection of nerves as well as in the image quality characteristics. Comparing FSE and GRE imaging, the course of brain nerves and brainstem vessels was visualized best with use of the three-dimensional (3D) pulse sequence. The comparison revealed the clear advantage of a thin section. The increased resolution enabled immediate identification of all brainstem nerves. GRE sequence most distinctly and confidently depicted pertinent structures and enables 3D reconstruction to illustrate complex relations of the brainstem. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Optimization behavior of brainstem respiratory neurons. A cerebral neural network model.
Poon, C S
1991-01-01
A recent model of respiratory control suggested that the steady-state respiratory responses to CO2 and exercise may be governed by an optimal control law in the brainstem respiratory neurons. It was not certain, however, whether such complex optimization behavior could be accomplished by a realistic biological neural network. To test this hypothesis, we developed a hybrid computer-neural model in which the dynamics of the lung, brain and other tissue compartments were simulated on a digital computer. Mimicking the "controller" was a human subject who pedalled on a bicycle with varying speed (analog of ventilatory output) with a view to minimize an analog signal of the total cost of breathing (chemical and mechanical) which was computed interactively and displayed on an oscilloscope. In this manner, the visuomotor cortex served as a proxy (homolog) of the brainstem respiratory neurons in the model. Results in 4 subjects showed a linear steady-state ventilatory CO2 response to arterial PCO2 during simulated CO2 inhalation and a nearly isocapnic steady-state response during simulated exercise. Thus, neural optimization is a plausible mechanism for respiratory control during exercise and can be achieved by a neural network with cognitive computational ability without the need for an exercise stimulus.
Ball, Melvyn J.; Lukiw, Walter J.; Kammerman, Eli M.; Hill, James M.
2012-01-01
Background A faulty human protein, abnormally phosphorylated tau, was recently publicized to spread “like a virus” from neuron to neuron in Alzheimer patients' brains. For several decades, we have been amassing arguments showing that herpes simplex virus type 1 (HSV-1), not p-tau, propagates this inter-neuronal, trans-synaptic pathological cascade. Methods We reiterate convincing data from our own (and other) laboratories, reviewing the first anatomic foothold neurofibrillary tangles gain in brainstem and/or entorhinal cortex; the chronic immunosurveillance cellularity of the trigeminal ganglia wherein HSV-1 awakens from latency to reactivate; the inabilities of p-tau protein's physical properties to promote it to jump synapses; the amino-acid homology between human p-tau and VP22, a key target for phosphorylation by HSV serine/threonine-protein kinase UL13; and the exosomic secretion of HSV-1-infected cells' L-particles, attesting to the cell-to-cell passage of microRNAs of herpes viruses. Results The now-maturing construct that reactivated HSV-1 best accounts for the intracerebral propagation of AD changes in the human brain should at last seem highly attractive. This hypothesis might even explain statins' apparent mechanism in some studies for lowering AD incidence. Conclusion Provided that funding agencies will quickly ignite a new realm of investigation, the rejuvenated enthusiasm for testing this optimistic construct holds incalculable potential for rapid, efficacious clinical application, through already available and relatively safe anti-viral therapeutics. PMID:23159044
Control of respiration in fish, amphibians and reptiles.
Taylor, E W; Leite, C A C; McKenzie, D J; Wang, T
2010-05-01
Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG) located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.
Mendak-Ziółko, Magdalena; Konopka, Tomasz; Bogucki, Zdzisław Artur
2012-09-01
The objective of this study was to identify, among an array of potential risk factors for burning mouth syndrome (BMS), those that are potentially the most significant in the development of the disease. Sixty-three participants, divided into group I (with BMS: 33 patients ages 41 to 82 years [mean age: 61.5 ± 9.4]) and group II (without BMS: 30 healthy volunteers ages 42-83 years [mean age: 60.5 ± 10.5]) were studied. All underwent a dental examination and psychological tests. Neurological tests (neurophysiological test, electroneurography, and tests of the autonomic nervous system) were performed. Mean parameters were analyzed by Student t test, Kruskal-Wallis test, and χ(2) test, and multifactor analysis was performed with logistic regression and by calculating the odds ratio. In the logistic regression test, 3 factors were significant in the etiopathogenesis of BMS: a value more than 39 μV for the amplitude of the positive peak of the potential induced by stimulating the trigeminal nerve on the left side (P2-L); a value above 5.96 ms for the latency of wave V of the brainstem auditory evoked potentials on the right side (V-R); and a value over 2.35 ms for the latency of the sensory ulnar nerve response. The BMS sufferer was characterized as having mild sensory and autonomic small fiber neuropathy with concomitant central disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
Axons giving rise to the palisade endings of feline extraocular muscles display motor features.
Zimmermann, Lars; Morado-Díaz, Camilo J; Davis-López de Carrizosa, María A; de la Cruz, Rosa R; May, Paul J; Streicher, Johannes; Pastor, Ángel M; Blumer, Roland
2013-02-13
Palisade endings are nerve specializations found in the extraocular muscles (EOMs) of mammals, including primates. They have long been postulated to be proprioceptors. It was recently demonstrated that palisade endings are cholinergic and that in monkeys they originate from the EOM motor nuclei. Nevertheless, there is considerable difference of opinion concerning the nature of palisade ending function. Palisade endings in EOMs were examined in cats to test whether they display motor or sensory characteristics. We injected an anterograde tracer into the oculomotor or abducens nuclei and combined tracer visualization with immunohistochemistry and α-bungarotoxin staining. Employing immunohistochemistry, we performed molecular analyses of palisade endings and trigeminal ganglia to determine whether cat palisade endings are a cholinergic trigeminal projection. We confirmed that palisade endings are cholinergic and showed, for the first time, that they, like extraocular motoneurons, are also immunoreactive for calcitonin gene-related peptide. Following tracer injection into the EOM nuclei, we observed tracer-positive palisade endings that exhibited choline acetyl transferase immunoreactivity. The tracer-positive nerve fibers supplying palisade endings also established motor terminals along the muscle fibers, as demonstrated by α-bungarotoxin. Neither the trigeminal ganglion nor the ophthalmic branch of the trigeminal nerve contained cholinergic elements. This study confirms that palisade endings originate in the EOM motor nuclei and further indicates that they are extensions of the axons supplying the muscle fiber related to the palisade. The present work excludes the possibility that they receive cholinergic trigeminal projections. These findings call into doubt the proposed proprioceptive function of palisade endings.
Axons Giving Rise to the Palisade Endings of Feline Extraocular Muscles Display Motor Features
Zimmermann, Lars; Morado-Díaz, Camilo J.; de Carrizosa, María A. Davis-López; de la Cruz, Rosa R.; May, Paul J.; Streicher, Johannes; Pastor, Ángel M.; Blumer, Roland
2016-01-01
Palisade endings are nerve specializations found in the extraocular muscles (EOMs) of mammals, including primates. They have long been postulated to be proprioceptors. It was recently demonstrated that palisade endings are cholinergic and that in monkeys they originate from the EOM motor nuclei. Nevertheless, there is considerable difference of opinion concerning the nature of palisade ending function. Palisade endings in EOMs were examined in cats to test whether they display motor or sensory characteristics. We injected an anterograde tracer into the oculomotor or abducens nuclei and combined tracer visualization with immunohistochemistry and α-bungarotoxin staining. Employing immunohistochemistry, we performed molecular analyses of palisade endings and trigeminal ganglia to determine whether cat palisade endings are a cholinergic trigeminal projection. We confirmed that palisade endings are cholinergic and showed, for the first time, that they, like extraocular motoneurons, are also immunoreactive for calcitonin gene-related peptide. Following tracer injection into the EOM nuclei, we observed tracer-positive palisade endings that exhibited choline acetyl transferase immunoreactivity. The tracer-positive nerve fibers supplying palisade endings also established motor terminals along the muscle fibers, as demonstrated by α-bungarotoxin. Neither the trigeminal ganglion nor the ophthalmic branch of the trigeminal nerve contained cholinergic elements. This study confirms that palisade endings originate in the EOM motor nuclei and further indicates that they are extensions of the axons supplying the muscle fiber related to the palisade. The present work excludes the possibility that they receive cholinergic trigeminal projections. These findings call into doubt the proposed proprioceptive function of palisade endings. PMID:23407938
Spontaneous Trigeminal Allodynia in Rats: A Model of Primary Headache
Oshinsky, Michael L.; Sanghvi, Menka M.; Maxwell, Christina R.; Gonzalez, Dorian; Spangenberg, Rebecca J.; Cooper, Marnie; Silberstein, Stephen D.
2014-01-01
Animal models are essential for studying the pathophysiology of headache disorders and as a screening tool for new therapies. Most animal models modify a normal animal in an attempt to mimic migraine symptoms. They require manipulation to activate the trigeminal nerve or dural nociceptors. At best, they are models of secondary headache. No existing model can address the fundamental question: How is a primary headache spontaneously initiated? In the process of obtaining baseline periorbital von Frey thresholds in a wild-type Sprague-Dawley rat, we discovered a rat with spontaneous episodic trigeminal allodynia (manifested by episodically changing periorbital pain threshold). Subsequent mating showed that the trait is inherited. Animals with spontaneous trigeminal allodynia allow us to study the pathophysiology of primary recurrent headache disorders. To validate this as a model for migraine, we tested the effects of clinically proven acute and preventive migraine treatments on spontaneous changes in rat periorbital sensitivity. Sumatriptan, ketorolac, and dihydroergotamine temporarily reversed the low periorbital pain thresholds. Thirty days of chronic valproic acid treatment prevented spontaneous changes in trigeminal allodynia. After discontinuation, the rats returned to their baseline of spontaneous episodic threshold changes. We also tested the effects of known chemical human migraine triggers. On days when the rats did not have allodynia and showed normal periorbital von Frey thresholds, glycerol trinitrate and calcitonin gene related peptide induced significant decreases in the periorbital pain threshold. This model can be used as a predictive model for drug development and for studies of putative biomarkers for headache diagnosis and treatment. PMID:22963523
Role of transcutaneous electric nerve stimulation in the management of trigeminal neuralgia
Singla, Sanju; Prabhakar, Vikram; Singla, Rajan Kumar
2011-01-01
Background: Trigeminal neuralgia typically involves nerves supplying teeth, jaws and face of older females. Though the etiology is usually obscure, different treatment modalities have been tried for it viz. medicinal treatment, injection alcohol, peripheral neurectomy, rhizotomy, and microvascular decompression etc. Transcutaneous electric nerve stimulation (TENS) is an emerging and promising option for management of such patients. Aims and Design: The present study was designed with an aim to study the efficacy of TENS in management of trigeminal neuralgia. Materials and Methods: The study was conducted on 30 patients of trigeminal neuralgia confirmed by diagnostic nerve block. They were given bursts of TENS for 20-40 days over the path of the affected nerve and subsequently evaluated at 1 month and 3 month intervals by visual analogue scale (VAS), verbal pain scale (VPS), a functional outcome scales for main daily activities like sleep, chewing, talking, or washing face. Results: The results showed that, on VAS, the score decreased from 8.9 (Pre TENS) to 3.1 at 1 month and 1.3 at 3 months, and on VPS, the score decreased from 3.5 (Pre TENS) to 1.2 at 1 month and 0.3 at 3 months. Similarly, a considerable decrease in scores was seen on functional outcome scale for different activities. No side effects like irritation or redness of skin were seen in any of the patients. Conclusions: Thus, TENS was found to be a safe, easily acceptable, and non-invasive outdoor patient department procedure for management of trigeminal neuralgia. PMID:21897677
Kakita, Kaede; Tsubouchi, Hirona; Adachi, Mayu; Takehana, Shiori; Shimazu, Yoshihito; Takeda, Mamoru
2017-11-29
Acute administration of chlorogenic acid (CGA) in vitro was recently shown to modulate potassium channel conductance and acid-sensing ion channels (ASICs) in the primary sensory neurons; however, in vivo peripheral effects of CGA on the nociceptive mechanical stimulation of trigeminal neuronal activity remains to be determined. The present study investigated whether local administration of CGA in vivo attenuates mechanical stimulation-induced excitability of trigeminal spinal nucleus caudalis neuronal (SpVc) activity in rats. Extracellular single-unit recordings were made of SpVc wide-dynamic range (WDR) neuronal activity elicited by non-noxious and noxious orofacial mechanical stimulation in pentobarbital anesthetized rats. The mean number of SpVc WDR neuronal firings responding to both non-noxious and noxious mechanical stimuli were significantly and dose-dependently inhibited by local subcutaneous administration of CGA (0.1-10mM), with the maximal inhibition of discharge frequency revealed within 10min and reversed after approximately 30min. The mean frequency of SpVc neuronal discharge inhibition by CGA was comparable to that by a local anesthetic, the sodium channel blocker, 1% lidocaine. These results suggest that local CGA injection into the peripheral receptive field suppresses the excitability of SpVc neurons, possibly via the activation of voltage-gated potassium channels and modulation of ASICs in the nociceptive nerve terminal of trigeminal ganglion neurons. Therefore, local injection of CGA could contribute to local anesthetic agents for the treatment of trigeminal nociceptive pain. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
de Tommaso, M; Ricci, K; Montemurno, A; Vecchio, E
2017-07-01
This study aimed to evaluate age-related changes in laser-evoked potential (LEP) features, including habituation, via trigeminal and hand stimulation in a large group of healthy volunteers. We recorded the LEPs by right-hand stimulation in 237 healthy subjects and by stimulation of the right supraorbital zone in 170 cases. The subjects ranged in age from 7 to 72 years and were divided into six groups by age. At the trigeminal level, the N2 and P2 latencies were significantly shorter and the N2-P2 amplitude was significantly larger in the 7-17 age group than in the other groups. The N2-P2 amplitude of the responses evoked by hand stimulation was significantly larger in the 7-40 age range than in the older subjects. The N1 amplitude and latency were not significantly different among the groups. The N2-P2 habituation increased with age, but no significant changes among groups were revealed by the Bonferroni test. Trigeminal vertex LEPs have greater amplitudes and appear earlier in children, while a progressive age-related amplitude decrease characterizes the N2-P2 waves associated with hand stimulation. The N2-P2 habituation increases in older people. The N1 latency and amplitude seem to remain stable during ageing and are therefore potentially reliable and useful patterns for nociceptive system examination. Standardization of age-related changes in trigeminal and hand LEPs is possible and should improve their reliability in the objective assessment of pain pathways. © 2017 European Pain Federation - EFIC®.
Ban, Ryokuya; Matsuo, Kiyoshi; Ban, Midori; Yuzuriha, Shunsuke
2013-01-01
The mixed levator and frontalis muscles lack the interior muscle spindles normally required to induce involuntary contraction of their slow-twitch fibers. To involuntarily move the eyelid and eyebrow, voluntary contraction of the levator nonskeletal fast-twitch muscle fibers stretches the mechanoreceptors in Müller's muscle to evoke trigeminal proprioception, which then induces reflex contraction of the levator and frontalis skeletal slow-twitch muscle fibers. The trigeminal proprioceptive nerve has a long intraorbital course from the mechanoreceptors in Müller's muscle to the superior orbital fissure. Since external force to the globe may cause impairment of trigeminal proprioceptive evocation, we confirmed how unilateral blowout fracture due to a hydraulic mechanism affects ipsilateral eyebrow movement as compared with unilateral zygomatic fracture. In 16 unilateral blowout fracture patients, eyebrow heights were measured on noninjured and injured sides in primary and 60° upward gaze and statistically compared. Eyebrow heights were also measured in primary gaze in 24 unilateral zygomatic fracture patients and statistically compared. In the blowout fracture patients, eyebrow heights on the injured side were significantly smaller than on the noninjured side in both gaze. In the zygomatic fracture patients, eyebrow heights on the injured side were significantly larger than on the noninjured side in primary gaze. Since 60° upward gaze did not recover the eyebrow ptosis observed in primary gaze in blowout fracture patients, such ptosis indicated impairment of trigeminal proprioceptive evocation and the presence of a hydraulic mechanism that may require ophthalmic examination.
Ban, Ryokuya; Matsuo, Kiyoshi; Ban, Midori; Yuzuriha, Shunsuke
2013-01-01
Objective: The mixed levator and frontalis muscles lack the interior muscle spindles normally required to induce involuntary contraction of their slow-twitch fibers. To involuntarily move the eyelid and eyebrow, voluntary contraction of the levator nonskeletal fast-twitch muscle fibers stretches the mechanoreceptors in Müller's muscle to evoke trigeminal proprioception, which then induces reflex contraction of the levator and frontalis skeletal slow-twitch muscle fibers. The trigeminal proprioceptive nerve has a long intraorbital course from the mechanoreceptors in Müller's muscle to the superior orbital fissure. Since external force to the globe may cause impairment of trigeminal proprioceptive evocation, we confirmed how unilateral blowout fracture due to a hydraulic mechanism affects ipsilateral eyebrow movement as compared with unilateral zygomatic fracture. Methods: In 16 unilateral blowout fracture patients, eyebrow heights were measured on noninjured and injured sides in primary and 60° upward gaze and statistically compared. Eyebrow heights were also measured in primary gaze in 24 unilateral zygomatic fracture patients and statistically compared. Results: In the blowout fracture patients, eyebrow heights on the injured side were significantly smaller than on the noninjured side in both gaze. In the zygomatic fracture patients, eyebrow heights on the injured side were significantly larger than on the noninjured side in primary gaze. Conclusion: Since 60° upward gaze did not recover the eyebrow ptosis observed in primary gaze in blowout fracture patients, such ptosis indicated impairment of trigeminal proprioceptive evocation and the presence of a hydraulic mechanism that may require ophthalmic examination. PMID:23814636
Lundblad, Cornelia; Haanes, Kristian A; Grände, Gustaf; Edvinsson, Lars
2015-01-01
Migraine is a paroxysmal, disabling primary headache that affects 16 % of the adult population. In spite of decades of intense research, the origin and the pathophysiology mechanisms involved are still not fully known. Although triptans and gepants provide effective relief from acute migraine for many patients, their site of action remains unidentified. It has been suggested that during migraine attacks the leakiness of the blood-brain barrier (BBB) is altered, increasing the passage of anti-migraine drugs. This study aimed to investigate the effect of experimental inflammation, following dural application of complete Freund's adjuvant (CFA) or inflammatory soup (IS) on brain and trigeminal microvascular passage. In order to address this issue, we induced local inflammation in male Sprague-Dawley-rats dura mater by the addition of CFA or IS directly on the dural surface. Following 2, 24 or 48 h of inflammation we calculated permeability-surface area product (PS) for [(51)Cr]-EDTA in the trigeminal ganglion (TG), spinal trigeminal nucleus, cortex, periaqueductal grey and cerebellum. We observed that [(51)Cr]-EDTA did not pass into the central nervous system (CNS) in a major way. However, [(51)Cr]-EDTA readily passed the TG by >30 times compared to the CNS. Application of CFA or IS did not show altered transfer constants. With these experiments we show that dural IS/CFA triggered TG inflammation, did not increase the BBB passage, and that the TG is readily exposed to circulating molecules. The TG could provide a site of anti-migraine drug interaction with effect on the trigeminal system.
Results of Percutaneous Balloon Compression in Trigeminal Pain Syndromes.
Grewal, Sanjeet S; Kerezoudis, Panagiotis; Garcia, Oscar; Quinones-Hinojosa, Alfredo; Reimer, Ronald; Wharen, Robert E
2018-06-01
To investigate initial pain relief and subsequent recurrence after percutaneous balloon compression (PBC) and describe its association with the nature of trigeminal pain, previous procedures, or other clinical factors. A total of 222 patients with medically refractory trigeminal pain treated with PBC at Mayo Clinic Florida between 1998 and 2017 were enrolled into this study. Patients were divided into those with typical trigeminal neuralgia (TN) and those with atypical trigeminal pain. The postprocedural rate of pain recurrence and associations between patient characteristics and recurrence were studied. One hundred fifty-two patients had TN and 70 patients had atypical pain. At the last follow-up, 158 patients had excellent pain relief, 37 had good pain relief, 11 had fair pain relief, and 16 had poor pain relief. The median duration of follow-up was 31.1 months. Patients with atypical pain were less likely to have an excellent result compared with patients with typical pain (61.4% vs. 82.9%; P < 0.001). Recurrence was observed in 103 patients (46.4%) and was associated with previous procedures (hazard ratio, 1.658; 95% confidence interval, 1.09-2.49; P = 0.017). Other clinical factors were not significant. Our study demonstrates the safety and efficacy of PBC, with 88% of patients pain-free at last follow-up. Patients with atypical pain have worse outcomes, and patients with previous procedures have a higher risk of recurrence. Repeat surgery does not decrease efficacy. We recommend conservative parameter selection at the initial procedure. Copyright © 2018 Elsevier Inc. All rights reserved.
Singh, Harminder; da Silva, Harley Brito; Zeinalizadeh, Mehdi; Elarjani, Turki; Straus, David; Sekhar, Laligam N
2018-02-01
Microvascular decompression for patients with trigeminal neuralgia (TGN) is widely accepted as one of the modalities of treatment. The standard approach has been retrosigmoid suboccipital craniotomy with placement of a Teflon pledget to cushion the trigeminal nerve from the offending artery, or cauterize and divide the offending vein(s). However, in cases of severe compression caused by a large artery, the standard decompression technique may not be effective. To describe a unique technique of vasculopexy of the ectatic basilar artery to the tentorium in a patient with TGN attributed to a severely ectatic and tortuous basilar artery. A case series of patients who underwent this technique of vasculopexy for arterial compression is presented. The patient underwent a subtemporal transtentorial approach and the basilar artery was mobilized away from the trigeminal nerve. A suture was then passed through the wall of the basilar artery (tunica media) and secured to the tentorial edge, to keep the artery away from the nerve. The neuralgia was promptly relieved after the operation, with no complications. A postoperative magnetic resonance imaging scan showed the basilar artery to be away from the trigeminal root. In a series of 7 patients who underwent this technique of vasculopexy, no arterial complications were noted at short- or long-term follow-up. Repositioning and vasculopexy of an ectatic basilar artery for the treatment of TGN is safe and effective. This technique can also be used for other neuropathies that result from direct arterial compression. Copyright © 2017 by the Congress of Neurological Surgeons
Preemptive application of QX-314 attenuates trigeminal neuropathic mechanical allodynia in rats.
Yoon, Jeong-Ho; Son, Jo-Young; Kim, Min-Ji; Kang, Song-Hee; Ju, Jin-Sook; Bae, Yong-Chul; Ahn, Dong-Kuk
2018-05-01
The aim of the present study was to examine the effects of preemptive analgesia on the development of trigeminal neuropathic pain. For this purpose, mechanical allodynia was evaluated in male Sprague-Dawley rats using chronic constriction injury of the infraorbital nerve (CCI-ION) and perineural application of 2% QX-314 to the infraorbital nerve. CCI-ION produced severe mechanical allodynia, which was maintained until postoperative day (POD) 30. An immediate single application of 2% QX-314 to the infraorbital nerve following CCI-ION significantly reduced neuropathic mechanical allodynia. Immediate double application of QX-314 produced a greater attenuation of mechanical allodynia than a single application of QX-314. Immediate double application of 2% QX-314 reduced the CCI-ION-induced upregulation of GFAP and p-p38 expression in the trigeminal ganglion. The upregulated p-p38 expression was co-localized with NeuN, a neuronal cell marker. We also investigated the role of voltage-gated sodium channels (Navs) in the antinociception produced by preemptive application of QX-314 through analysis of the changes in Nav expression in the trigeminal ganglion following CCI-ION. Preemptive application of QX-314 significantly reduced the upregulation of Nav1.3, 1.7, and 1.9 produced by CCI-ION. These results suggest that long-lasting blockade of the transmission of pain signaling inhibits the development of neuropathic pain through the regulation of Nav isoform expression in the trigeminal ganglion. Importantly, these results provide a potential preemptive therapeutic strategy for the treatment of neuropathic pain after nerve injury.
Durham, Zachary L.; Hawkins, Jordan L.; Durham, Paul L.
2016-01-01
Objective Elevated levels of tumor necrosis factor-alpha (TNF-α) in the capsule of the temporomandibular joint (TMJ) are implicated in the underlying pathology of temporomandibular disorders (TMD). TMD are a group of conditions that result in pain in the TMJ and/or muscles of mastication, and are associated with significant social and economic burdens. The goal of this study was to investigate the effect of elevated TNF-α levels in the TMJ capsule on nocifensive behavioral response to mechanical stimulation of trigeminal neurons and regulation of cytokines within the trigeminal ganglion. Design Male Sprague-Dawley rats were injected bilaterally in the TMJ capsule with TNF-α and changes in nocifensive head withdrawal responses to mechanical stimulation of cutaneous tissue directly over the capsule was determined using von Frey filaments. Cytokine levels in trigeminal ganglia were determined by protein array analysis at several time points post injection and correlated to nocifensive behavior. Results TNF-α caused a significant increase in the average number of nocifensive responses when compared to naive and vehicle treated animals 2 hours post injection, but levels returned to control levels at 24 hours. Based on array analysis, the levels of eight cytokines were significantly elevated above vehicle control levels at 2 hours following TNF-α injection, but all eight had returned to the vehicle control levels after 24 hours. Conclusions Our findings provide evidence that elevated levels of TNF-α in the joint capsule, which is reported to occur in TMD, promotes nociception in trigeminal ganglia neurons via a mechanism that temporally correlates with differential regulation of several cytokines. PMID:27836101
Leshinsky-Silver, E; Lev, D; Tzofi-Berman, Z; Cohen, S; Saada, A; Yanoov-Sharav, M; Gilad, E; Lerman-Sagie, T
2005-08-26
Leigh syndrome can result from both nuclear and mitochondrial DNA defects. Mutations in complex V genes of the respiratory chain were considered until recently as the most frequent cause for mitochondrial inherited Leigh syndrome, while gene defects in complex I were related to recessive Leigh syndrome. Recently few reports of mutations in the mitochondrial-encoded complex I subunit genes causing Leigh syndrome have been reported. We describe a 1-month-old baby who acutely deteriorated, with abrupt onset of brainstem dysfunction, due to basal ganglia lesions extending to the brainstem. A muscle biopsy demonstrated complex I deficiency. Subsequent analysis of the mitochondrial genome revealed a homoplastic T10191C mutation in the ND3 gene (in blood and muscle), resulting in a substitution of serine to proline. Hair root analysis revealed a 50% mutant load, reflecting heteroplasmy in early embryonic stages. The mutation was also detected in his mother (5%). Western blot analysis revealed a decrease of the 20 kDa subunit (likely ND6) and of the 30 kDa subunit (NDUFA9), which is probably due to instability attributed to the inability to form subcomplexes with ND3. This is the first description of infantile Leigh syndrome due to a maternally transmitted T10191C substitution in ND3 and not due to a de novo mutation. This mutation is age and tissue dependent and therefore may not be amenable to prenatal testing.
The Influence of Trigeminal Stimulation on Children's Judgements of Odor.
ERIC Educational Resources Information Center
Engen, Trygg; Moskowitz, Linda
Children's preference for odors, some of which presumably had marked trigeminal (noxious) effects, was assessed with the use of the method of pair comparison. Although the children, from 4 to 7 years old, were able to discriminate between the intensities of the odors, they were neither attracted nor repelled by them as much as the adults. In other…
Evidence for a Role of Connexin 43 in Trigeminal Pain Using RNA Interference In Vivo
Ohara, Peter T.; Vit, Jean-Philippe; Bhargava, Aditi; Jasmin, Luc
2008-01-01
The importance of glial cells in the generation and maintenance of neuropathic pain is becoming widely accepted. We examined the role of glial-specific gap junctions in nociception in the rat trigeminal ganglion in nerve-injured and -uninjured states. The connexin 43 (Cx43) gap-junction subunit was found to be confined to the satellite glial cells (SGCs) that tightly envelop primary sensory neurons in the trigeminal ganglion and we therefore used Cx43 RNA interference (RNAi) to alter gap-junction function in SGCs. Using behavioral evaluation, together with immunocytochemical and Western blot monitoring, we show that Cx43 increased in the trigeminal ganglion in rats with a chronic constriction injury (CCI) of the infraorbital nerve. Reducing Cx43 expression using RNAi in CCI rats reduced painlike behavior, whereas in non-CCI rats, reducing Cx43 expression increased painlike behavior. The degree of painlike behavior in CCI rats and intact, Cx43-silenced rats was similar. Our results support previous suggestions that increases in glial gap junctions after nerve injury increases nociceptive behavior but paradoxically the reduction of gap junctions in normal ganglia also increases nociceptive behavior, possibly a reflection of the multiple functions performed by glia. PMID:18715894
Brazoloto, Thiago Medina; de Siqueira, Silvia Regina Dowgan Tesseroli; Rocha-Filho, Pedro Augusto Sampaio; Figueiredo, Eberval Gadelha; Teixeira, Manoel Jacobsen; de Siqueira, José Tadeu Tesseroli
2017-05-01
Surgical trauma at the temporalis muscle is a potential cause of post-craniotomy headache and temporomandibular disorders (TMD). The aim of this study was to evaluate the prevalence of pain, masticatory dysfunction and trigeminal somatosensory abnormalities in patients who acquired aneurysms following pterional craniotomy. Fifteen patients were evaluated before and after the surgical procedure by a trained dentist. The evaluation consisted of the (1) research diagnostic criteria for TMD, (2) a standardized orofacial pain questionnaire and (3) a systematic protocol for quantitative sensory testing (QST) for the trigeminal nerve. After pterional craniotomy, 80% of the subjects, 12 patients, developed orofacial pain triggered by mandibular function. The pain intensity was measured by using the visual analog scale (VAS), and the mean pain intensity was 3.7. The prevalence of masticatory dysfunction was 86.7%, and there was a significant reduction of the maximum mouth opening. The sensory evaluation showed tactile and thermal hypoesthesia in the area of pterional access in all patients. There was a high frequency of temporomandibular dysfunction, postoperative orofacial pain and trigeminal sensory abnormalities. These findings can help to understand several abnormalities that can contribute to postoperative headache or orofacial pain complaints after pterional surgeries.
Trigeminal neuralgia and chiropractic care: a case report
Rodine, Robert J; Aker, Peter
2010-01-01
The following case describes a 68 year-old woman with a 7½ year history of worsening head and neck pain diagnosed as trigeminal neuralgia following surgical resection of a brain tumor. After years of unsuccessful management with medication and physical therapies, a therapeutic trial of chiropractic was carried out. Chiropractic care included ultrasound, manual therapies (manipulation and mobilization), soft tissue therapies, and home stretching exercises. After an initial treatment period followed by 18 months of supportive care the patient reported satisfactory improvement. It became evident that there were at least three sources of her symptoms: mechanical and/or degenerative neck pain, temporomandibular joint syndrome, and trigeminal neuralgia. While never completely pain-free, the patient continued to report that her pains reduced to minimal at times. At the most recent follow-up, the pain had not returned to pre-treatment intractable levels. This case study demonstrates the importance of diagnosing and treating multiple sources of pain and the positive role chiropractic care can have in the management of patients with these clinical conditions. The potential for convergence of sensory input from the upper three cervical segments and the trigeminal nerve via the trigeminocervical nucleus is discussed. PMID:20808617
Bi, Rui Yun; Ding, Yun; Gan, Ye Hua
2016-03-01
To investigate the association between the analgesic effect of non-steroidal antiinflammatory drugs (NSAIDs) and sodium channel 1.7 (Nav1.7) expression in the trigeminal ganglion (TG). Temporomandibular joint (TMJ) inflammation was induced by complete Freund's adjuvant (CFA) in female rats. Ibuprofen, diclofenac sodium and meloxicam were given intragastrically before induction of TMJ inflammation. Histopathological evaluation and scoring of TMJ inflammation was used to evaluate the level of inflammation. The head withdrawal threshold and food intake were measured to evaluate TMJ nociceptive responses. The mRNA and protein expression of trigeminal ganglionic Nav1.7 was examined using real-time polymerase chain reaction and western blot. Twenty-four hours after the injection of CFA into the TMJs, NSAIDs attenuated hyperalgesia of inflamed TMJ and simultaneously blocked inflammation-induced upregulation of Nav1.7 mRNA and protein expression in the TG. However, ibuprofen and diclofenac sodium slightly attenuated TMJ inflammation and meloxicam did not affect TMJ inflammation. Attenuation of hyperalgesia of inflamed TMJ by NSAIDs might be associated with their role in blocking upregulation of trigeminal ganglionic Nav1.7.
Upper Cervical Spinal Cord Stimulation as an Alternative Treatment in Trigeminal Neuropathy.
Velásquez, Carlos; Tambirajoo, Kantharuby; Franceschini, Paulo; Eldridge, Paul R; Farah, Jibril Osman
2018-06-01
To describe the indications and outcomes of upper cervical cord stimulation in trigeminal neuropathy. A consecutive single-center series of patients was retrospectively reviewed. It included 12 patients with trigeminal neuropathy treated with upper cervical spinal cord stimulation. Clinical features, complications, and outcomes were reviewed. All patients had a successful trial before the definitive implantation of a spinal cord stimulator at the level of the craniocervical junction. The mean follow-up period was 4.4 years (range, 0.3-21.1 years). The average coverage in the pain zone was 72% and the median baseline, trial, and postoperative numeric rating scale (NRS) was 7, 3, and 3, respectively. When compared with the baseline, the mean reduction achieved in the postoperative average numeric rating scale was 4 points, accounting for a 57.1% pain reduction. The long-term failure rate was 25%. Despite there being enough evidence to consider upper cervical spinal cord stimulation as an effective treatment for patients with neuropathic trigeminal pain, a randomized controlled trial is needed to fully assess its indications and outcomes and compare it with other therapeutic approaches. Copyright © 2018 Elsevier Inc. All rights reserved.
No oral-cavity-only discrimination of purely olfactory odorants.
Stephenson, Dejaimenay; Halpern, Bruce P
2009-02-01
The purely olfactory odorants coumarin, octanoic acid, phenylethyl alcohol, and vanillin had been found to be consistently identified when presented retronasally but could not be identified when presented oral-cavity only (OCO). However, OCO discrimination of these odorants was not tested. Consequently, it remained possible that the oral cavity trigeminal system might provide sufficient information to differentiate these purely olfactory odorants. To evaluate this, 20 participants attempted to discriminate vapor-phase coumarin, octanoic acid, phenylethyl alcohol, and vanillin and, as a control, the trigeminal stimulus peppermint extract, from their glycerin solvent, all presented OCO. None of the purely olfactory odorants could be discriminated OCO, but, as expected, peppermint extract was consistently discriminated. This inability to discriminate clarifies and expands the previous report of lack of OCO identification of purely olfactory odorants. Taken together with prior data, these results suggest that the oral cavity trigeminal system is fully unresponsive to these odorants in vapor phase and that coumarin, octanoic acid, phenylethyl alcohol, and vanillin are indeed purely olfactory stimuli. The OCO discrimination of peppermint extract demonstrated that the absence of discrimination for the purely olfactory odorants was odorant dependent and confirmed that the oral cavity trigeminal system will provide differential response information to some vapor-phase stimuli.
JNK1 regulates histone acetylation in trigeminal neurons following chemical stimulation
Wu, Jing; Zhang, Xuan; Nauta, Haring J; Lin, Qing; Li, Junfa; Fang, Li
2008-01-01
Trigeminal nerve fibers in nasal and oral cavities are sensitive to various environmental hazardous stimuli, which trigger many neurotoxic problems such as chronic migraine headache and trigeminal irritated disorders. However, the role of JNK kinase cascade and its epigenetic modulation of histone remodeling in trigeminal ganglion (TG) neurons activated by environmental neurotoxins remains unknown. Here we investigated the role of JNK/c-Jun cascade in the regulation of acetylation of H3 histone in TG neurons following in vitro stimulation by a neuro-inflammatory agent, mustard oil (MO). We found that MO stimulation elicited JNK/c-Jun pathway significantly by enhancing phospho-JNK1, phospho-c-Jun expression, and c-Jun activity, which were correlated with an elevated acetylated H3 histone in TG neurons. However, increases in phospho-c-Jun and c-Jun activity were significantly blocked by a JNK inhibitor, SP600125. We also found that altered H3 histone remodeling, assessed by H3 acetylation in triggered TG neurons, was reduced by SP600125. The study suggests that the activated JNK signaling in regulation of histone remodeling may contribute to neuro-epigentic changes in peripheral sensory neurons following environmental neurotoxic exposure. PMID:18822271
Hernández, C. J.; Ortíz, T.; Foster, C. Rosa K.; Tyagi, M; Lugo, N.; Albrecht, R.; Chinapen, S.
2007-01-01
Mucociliary activity is an important clearance mechanism in the respiratory system of air breathing vertebrates. Substance P (SP) and acetylcholine play a key role in the stimulation of the mucociliary transport in the frog palate. In this study, retrograde neuronal tracing was combined with immunocytochemistry for SP and choline acetyl transferase (ChAT) in the trigeminal ganglion and for neurokinin-1 receptor (NK1R) in the palate of Rana pipiens. The cells of origin of the palatine nerve were identified in the trigeminal ganglion using the retrograde tracer Fluorogold (FG). Optimal labeling of FG cells in the trigeminal ganglion was obtained at 96 h of exposure. Immunoflorescent shows that SP and acetylcholine are co-localized in 92% of the cells labeled with FG in the trigeminal ganglion. NK1 receptors were found in the membrane of epithelial and goblet cells of the palate. Ultrastructural study of the palate showed axonal-like endings with vesicles in connection with epithelial and goblet cells. These results further support the concerted action of both neurotransmitters in the regulation of mucociliary activity in the frog palate. PMID:17276713
Multi-Atlas Based Segmentation of Brainstem Nuclei from MR Images by Deep Hyper-Graph Learning.
Dong, Pei; Guo, Yangrong; Gao, Yue; Liang, Peipeng; Shi, Yonghong; Wang, Qian; Shen, Dinggang; Wu, Guorong
2016-10-01
Accurate segmentation of brainstem nuclei (red nucleus and substantia nigra) is very important in various neuroimaging applications such as deep brain stimulation and the investigation of imaging biomarkers for Parkinson's disease (PD). Due to iron deposition during aging, image contrast in the brainstem is very low in Magnetic Resonance (MR) images. Hence, the ambiguity of patch-wise similarity makes the recently successful multi-atlas patch-based label fusion methods have difficulty to perform as competitive as segmenting cortical and sub-cortical regions from MR images. To address this challenge, we propose a novel multi-atlas brainstem nuclei segmentation method using deep hyper-graph learning. Specifically, we achieve this goal in three-fold. First , we employ hyper-graph to combine the advantage of maintaining spatial coherence from graph-based segmentation approaches and the benefit of harnessing population priors from multi-atlas based framework. Second , besides using low-level image appearance, we also extract high-level context features to measure the complex patch-wise relationship. Since the context features are calculated on a tentatively estimated label probability map, we eventually turn our hyper-graph learning based label propagation into a deep and self-refining model. Third , since anatomical labels on some voxels (usually located in uniform regions) can be identified much more reliably than other voxels (usually located at the boundary between two regions), we allow these reliable voxels to propagate their labels to the nearby difficult-to-label voxels. Such hierarchical strategy makes our proposed label fusion method deep and dynamic. We evaluate our proposed label fusion method in segmenting substantia nigra (SN) and red nucleus (RN) from 3.0 T MR images, where our proposed method achieves significant improvement over the state-of-the-art label fusion methods.
Brainstem response patterns in deeply-sedated critically-ill patients predict 28-day mortality.
Rohaut, Benjamin; Porcher, Raphael; Hissem, Tarik; Heming, Nicholas; Chillet, Patrick; Djedaini, Kamel; Moneger, Guy; Kandelman, Stanislas; Allary, Jeremy; Cariou, Alain; Sonneville, Romain; Polito, Andréa; Antona, Marion; Azabou, Eric; Annane, Djillali; Siami, Shidasp; Chrétien, Fabrice; Mantz, Jean; Sharshar, Tarek
2017-01-01
Deep sedation is associated with acute brain dysfunction and increased mortality. We had previously shown that early-assessed brainstem reflexes may predict outcome in deeply sedated patients. The primary objective was to determine whether patterns of brainstem reflexes might predict mortality in deeply sedated patients. The secondary objective was to generate a score predicting mortality in these patients. Observational prospective multicenter cohort study of 148 non-brain injured deeply sedated patients, defined by a Richmond Assessment sedation Scale (RASS) <-3. Brainstem reflexes and Glasgow Coma Scale were assessed within 24 hours of sedation and categorized using latent class analysis. The Full Outline Of Unresponsiveness score (FOUR) was also assessed. Primary outcome measure was 28-day mortality. A "Brainstem Responses Assessment Sedation Score" (BRASS) was generated. Two distinct sub-phenotypes referred as homogeneous and heterogeneous brainstem reactivity were identified (accounting for respectively 54.6% and 45.4% of patients). Homogeneous brainstem reactivity was characterized by preserved reactivity to nociceptive stimuli and a partial and topographically homogenous depression of brainstem reflexes. Heterogeneous brainstem reactivity was characterized by a loss of reactivity to nociceptive stimuli associated with heterogeneous brainstem reflexes depression. Heterogeneous sub-phenotype was a predictor of increased risk of 28-day mortality after adjustment to Simplified Acute Physiology Score-II (SAPS-II) and RASS (Odds Ratio [95% confidence interval] = 6.44 [2.63-15.8]; p<0.0001) or Sequential Organ Failure Assessment (SOFA) and RASS (OR [95%CI] = 5.02 [2.01-12.5]; p = 0.0005). The BRASS (and marginally the FOUR) predicted 28-day mortality (c-index [95%CI] = 0.69 [0.54-0.84] and 0.65 [0.49-0.80] respectively). In this prospective cohort study, around half of all deeply sedated critically ill patients displayed an early particular neurological sub-phenotype predicting 28-day mortality, which may reflect a dysfunction of the brainstem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanda, Ronica H., E-mail: rhazari@emory.edu; Ganju, Rohit G.; Schreibmann, Edward
Purpose: Radiation-induced brainstem toxicity after treatment of pediatric posterior fossa malignancies is incompletely understood, especially in the era of intensity modulated radiation therapy (IMRT). The rates of, and predictive factors for, brainstem toxicity after photon RT for posterior fossa tumors were examined. Methods and Materials: After institutional review board approval, 60 pediatric patients treated at our institution for nonmetastatic infratentorial ependymoma and medulloblastoma with IMRT were included in the present analysis. Dosimetric variables, including the mean and maximum dose to the brainstem, the dose to 10% to 90% of the brainstem (in 10% increments), and the volume of the brainstemmore » receiving 40, 45, 50, and 55 Gy were recorded for each patient. Acute (onset within 3 months) and late (>3 months of RT completion) RT-induced brainstem toxicities with clinical and radiographic correlates were scored using Common Terminology Criteria for Adverse Events, version 4.0. Results: Patients aged 1.4 to 21.8 years underwent IMRT or volumetric arc therapy postoperatively to the posterior fossa or tumor bed. At a median clinical follow-up period of 2.8 years, 14 patients had developed symptomatic brainstem toxicity (crude incidence 23.3%). No correlation was found between the dosimetric variables examined and brainstem toxicity. Vascular injury or ischemia showed a strong trend toward predicting brainstem toxicity (P=.054). Patients with grade 3 to 5 brainstem toxicity had undergone treatment to significant volumes of the posterior fossa. Conclusion: The results of the present series demonstrate a low, but not negligible, risk of brainstem radiation necrosis for pediatric patients with posterior fossa malignancies treated with IMRT. No specific dose-volume correlations were identified; however, modern treatment volumes might help limit the incidence of severe toxicity. Additional work investigating inherent biologic sensitivity might also provide further insight into this clinical problem.« less
[An evaluation of clinical characteristics and prognosis of brain-stem infarction in diabetics].
Lu, Zheng-qi; Li, Hai-yan; Hu, Xue-qiang; Zhang, Bing-jun
2011-01-01
To analyze the relationship between diabetics and the onset, clinical outcomes and prognosis of brainstem infarction, and to evaluate the impact of diabetes on brainstem infarction. Compare 172 cases of acute brainstem infarction in patients with or without diabetes. Analyze the associated risk factors of patients with brain-stem infarction in diabetics by multi-variate logistic regression analysis. Compare the National Institutes of Health Stroke Scale (NIHSS) and Modified Rankin scale (mRS) Score, pathogenetic condition and the outcome of the two groups in different times. The systolic blood pressure (SBP), TG, LDL-C, apolipoprotein B (Apo B), glutamyl transpeptidase (γ-GT), fibrinogen (Fb), fasting blood glucose (FPG) and glycosylated hemoglobin(HbA1c)in diabetic group were higher than those in non-diabetic group, which was statistically significant (P < 0.05). From multi-variate logistic regression analysis, γ-GT, Apo B and FPG were the risk predictors of diabetes with brainstem infarction(OR = 1.017, 4.667 and 3.173, respectively), while HDL-C was protective (OR = 0.288). HbA1c was a risk predictor of severity for acute brainstem infarction (OR = 1.299), while Apo A was beneficial (OR = 0.212). Compared with brain-stem infarction in non-diabetic group, NIHSS score and intensive care therapy of diabetic groups on the admission had no statistically significance, while the NIHSS score on discharge and the outcome at 6 months' of follow-up were statistically significant. Diabetes is closely associated with brainstem infarction. Brainstem infarction with diabetes cause more rapid progression, poorer prognosis, higher rates of mortality as well as disability and higher recurrence rate of cerebral infarction.
Central nervous system lymphoma presenting as trigeminal neuralgia: A diagnostic challenge.
Ang, Jensen W J; Khanna, Arjun; Walcott, Brian P; Kahle, Kristopher T; Eskandar, Emad N
2015-07-01
We describe an atypical man with diffuse large B cell lymphoma localized to the sphenoid wing and adjacent cavernous sinus, initially presenting with isolated ipsilateral facial pain mimicking trigeminal neuralgia due to invasion of Meckel's cave but subsequently progressing to intra-axial extension and having synchronous features of systemic lymphoma. Primary central nervous system lymphoma is uncommon, accounting for approximately 2% of all primary intracranial tumors, but its incidence has been steadily increasing in some groups [1]. It usually arises in the periventricular cerebral white matter, and reports of lymphoma in extra-axial regions are rare [2]. This man highlights the importance of maintaining lymphoma in the differential diagnosis of tumors of the skull base presenting with trigeminal neuralgia-like symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brainstem Auditory Evoked Potential in HIV-Positive Adults.
Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C
2015-10-20
To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.
Distribution of CGRP in the minipig brainstem.
Lisardo Sánchez, Manuel; Vecino, Elena; Coveñas, Rafael
2014-05-01
For the first time, an in-depth study has been made of the distribution of fibers and cell bodies containing calcitonin gene-related peptide (CGRP) in the minipig brainstem using an indirect immunoperoxidase technique. The animals studied were not treated with colchicine. Cell bodies containing CGRP were found in 20 nuclei/regions of the brainstem. These perikarya were located in somatomotor, brachiomotor and raphae nuclei, nucleus ambiguus, substantia nigra, nucleus reticularis tegmenti pontis, nucleus prepositus hypoglossi, nuclei olivaris inferior and superior, nuclei pontis, formatio reticularis, nucleus dorsalis tegmenti of Gudden, and in the nucleus reticularis lateralis. Fourteen of the 20 brainstem nuclei showed a high density of immunoreactive cell bodies. In comparison with other species, the minipig, together with the rat, show the most widespread distribution of cell bodies containing CGRP in the mammalian brainstem. Immunoreactive fibers were also observed in the brainstem. However, in the minipig brainstem the density of these fibers is low, as in many brainstem nuclei only single immunoreactive fibers were observed. A high density of immunoreactive fibers was only observed in the pars caudalis of the nucleus tractus spinalis nervi trigemini and in the nucleus ventralis tegmenti of Gudden. According to the observed anatomical distribution of the immunoreactive structures containing CGRP, the peptide could be involved in motor, somatosensory, gustative, and autonomic mechanisms. Copyright © 2014 Wiley Periodicals, Inc.
Transcranial sonography of brainstem structures in panic disorder.
Šilhán, Petr; Jelínková, Monika; Walter, Uwe; Pavlov Praško, Ján; Herzig, Roman; Langová, Kateřina; Školoudík, David
2015-10-30
Panic disorder has been associated with altered serotonin metabolism in the brainstem raphe. The aim of study was to evaluate the BR echogenicity on transcranial sonography (TCS) in panic disorder. A total of 96 healthy volunteers were enrolled in the "derivation" cohort, and 26 healthy volunteers and 26 panic disorder patients were enrolled in the "validation" cohort. TCS echogenicity of brainstem raphe and substantia nigra was assessed on anonymized images visually and by means of digitized image analysis. Significantly reduced brainstem raphe echogenicity was detected more frequently in panic disorder patients than in controls using both visual (68% vs. 31%) and digitized image analysis (52% vs. 12%). The optimal cut-off value of digitized brainstem raphe echogenicity indicated the diagnosis of panic disorder with a sensitivity of 64% and a specificity of 73%, and corresponded to the 30th percentile in the derivation cohort. Reduced brainstem raphe echogenicity was associated with shorter treatment duration, and, by trend, lower severity of anxiety. No relationship was found between echogenicity of brainstem raphe or substantia nigra and age, gender, severity of panic disorder, or severity of depression. Patients with panic disorder exhibit changes of brainstem raphe on TCS suggesting an alteration of the central serotonergic system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Auditory brainstem response to complex sounds: a tutorial
Skoe, Erika; Kraus, Nina
2010-01-01
This tutorial provides a comprehensive overview of the methodological approach to collecting and analyzing auditory brainstem responses to complex sounds (cABRs). cABRs provide a window into how behaviorally relevant sounds such as speech and music are processed in the brain. Because temporal and spectral characteristics of sounds are preserved in this subcortical response, cABRs can be used to assess specific impairments and enhancements in auditory processing. Notably, subcortical function is neither passive nor hardwired but dynamically interacts with higher-level cognitive processes to refine how sounds are transcribed into neural code. This experience-dependent plasticity, which can occur on a number of time scales (e.g., life-long experience with speech or music, short-term auditory training, online auditory processing), helps shape sensory perception. Thus, by being an objective and non-invasive means for examining cognitive function and experience-dependent processes in sensory activity, cABRs have considerable utility in the study of populations where auditory function is of interest (e.g., auditory experts such as musicians, persons with hearing loss, auditory processing and language disorders). This tutorial is intended for clinicians and researchers seeking to integrate cABRs into their clinical and/or research programs. PMID:20084007
An Analysis of The Parameters Used In Speech ABR Assessment Protocols.
Sanfins, Milaine D; Hatzopoulos, Stavros; Donadon, Caroline; Diniz, Thais A; Borges, Leticia R; Skarzynski, Piotr H; Colella-Santos, Maria Francisca
2018-04-01
The aim of this study was to assess the parameters of choice, such as duration, intensity, rate, polarity, number of sweeps, window length, stimulated ear, fundamental frequency, first formant, and second formant, from previously published speech ABR studies. To identify candidate articles, five databases were assessed using the following keyword descriptors: speech ABR, ABR-speech, speech auditory brainstem response, auditory evoked potential to speech, speech-evoked brainstem response, and complex sounds. The search identified 1288 articles published between 2005 and 2015. After filtering the total number of papers according to the inclusion and exclusion criteria, 21 studies were selected. Analyzing the protocol details used in 21 studies suggested that there is no consensus to date on a speech-ABR protocol and that the parameters of analysis used are quite variable between studies. This inhibits the wider generalization and extrapolation of data across languages and studies.
Fos-defined activity in rat brainstem following centripetal acceleration.
Kaufman, G D; Anderson, J H; Beitz, A J
1992-11-01
To identify rat brainstem nuclei involved in the initial, short-term response to a change in gravito-inertial force, adult Long-Evans rats were rotated in the horizontal plane for 90 min in complete darkness after they were eccentrically positioned off the axis of rotation (off-axis) causing a centripetal acceleration of 2 g. Neural activation was defined by the brainstem distribution of the c-fos primary response gene protein, Fos, using immunohistochemistry. The Fos labeling in off-axis animals was compared with that of control animals who were rotated on the axis of rotation (on-axis) with no centripetal acceleration, or who were restrained but not rotated. In the off-axis animals there was a significant labeling of neurons: in the inferior, medial, and y-group subnuclei of the vestibular complex; in subnuclei of the inferior olive, especially the dorsomedial cell column; in midbrain nuclei, including the interstitial nucleus of Cajal, nucleus of Darkschewitsch, Edinger-Westphal nucleus, and dorsolateral periaqueductal gray; in autonomic centers including the solitary nucleus, area postrema, and locus coeruleus; and in reticular nuclei including the lateral reticular nucleus and the lateral parabrachial nucleus. Also, there was greater Fos expression in the dorsomedial cell column, the principal inferior olive subnuclei, inferior vestibular nucleus, the dorsolateral central gray, and the locus coeruleus in animals who had their heads restrained compared to animals whose heads were not restrained. As one control, the vestibular neuroepithelium was destroyed by injecting sodium arsanilate into the middle ear, bilaterally. This resulted in a complete lack of Fos labeling in the vestibular nuclei and the inferior olive, and a significant reduction in labeling in other nuclei in the off-axis condition, indicating that these nuclei have a significant labyrinth-sensitive component to their Fos labeling. The data indicate that several novel brainstem regions, including the dorsomedial cell column of the inferior olive and the periaqueductal gray, as well as more traditional brainstem nuclei including vestibular and oculomotor related nuclei, respond to otolith activation during a sustained centripetal acceleration.
Cady, R J; Denson, J E; Sullivan, L Q; Durham, P L
2014-06-06
Sensitization and activation of trigeminal nociceptors is implicated in prevalent and debilitating orofacial pain conditions including temporomandibular joint (TMJ) disorders. Orexins are excitatory neuropeptides that function to regulate many physiological processes and are reported to modulate nociception. To determine the role of orexins in an inflammatory model of trigeminal activation, the effects of a dual orexin receptor antagonist (DORA-12) on levels of proteins that promote peripheral and central sensitization and changes in nocifensive responses were investigated. In adult male Sprague-Dawley rats, mRNA for orexin receptor 1 (OX₁R) and receptor 2 (OX₂R) were detected in trigeminal ganglia and spinal trigeminal nucleus (STN). OX₁R immunoreactivity was localized primarily in neuronal cell bodies in the V3 region of the ganglion and in laminas I-II of the STN. Animals injected bilaterally with complete Freund's adjuvant (CFA) in the TMJ capsule exhibited increased expression of P-p38, P-ERK, and lba1 in trigeminal ganglia and P-ERK and lba1 in the STN at 2 days post injection. However, levels of each of these proteins in rats receiving daily oral DORA-12 were inhibited to near basal levels. Similarly, administration of DORA-12 on days 3 and 4 post CFA injection in the TMJ effectively inhibited the prolonged stimulated expression of protein kinase A, NFkB, and Iba1 in the STN on day 5 post injection. While injection of CFA mediated a nocifensive response to mechanical stimulation of the orofacial region at 2h and 3 and 5 days post injection, treatment with DORA-12 suppressed the nocifensive response on day 5. Somewhat surprisingly, nocifensive responses were again observed on day 10 post CFA stimulation in the absence of daily DORA-12 administration. Our results provide evidence that DORA-12 can inhibit CFA-induced stimulation of trigeminal sensory neurons by inhibiting expression of proteins associated with sensitization of peripheral and central neurons and nociception. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
2013-01-01
Background Nitric oxide (NO) is thought to play an important role in the pathophysiology of migraine. Infusion of the nitrovasodilator glyceroltrinitrate (nitroglycerin, GTN), which mobilizes NO in the organism, is an approved migraine model in humans. Calcitonin gene-related peptide (CGRP) is regarded as another key mediator in migraine. Increased plasma levels of CGRP have been found during spontaneous as well as nitrovasodilator-induced migraine attacks. The nociceptive processes and interactions underlying the NO and CGRP mediated headache are poorly known but can be examined in animal experiments. In the present study we examined changes in immunofluorescence of CGRP receptor components (CLR and RAMP1) and soluble guanylyl cyclase (sGC), the intracellular receptor for NO, in rat trigeminal ganglia after pretreatment with GTN. Methods Isoflurane anaesthetised rats were intravenously infused with GTN (1 mg/kg) or saline for four hours and two hours later the trigeminal ganglia were processed for immunohistochemistry. Different primary antibodies recognizing CLR, RAMP1, CGRP and sGC coupled to fluorescent secondary antibodies were used to examine immunoreactive cells in serial sections of trigeminal ganglia with epifluorescence and confocal laser scanning microscopy. Several staining protocols were examined to yield optimized immunolabeling. Results In vehicle-treated animals, 42% of the trigeminal ganglion neurons were immunopositive for RAMP1 and 41% for CLR. After GTN pretreatment CLR-immunopositivity was unchanged, while there was an increase in RAMP1-immunopositive neurons to 46%. RAMP1 and CLR immunoreactivity was also detected in satellite cells. Neurons immunoreactive for sGC were on average smaller than sGC-immunonegative neurons. The percentage of sGC-immunopositive neurons (51% after vehicle) was decreased after GTN infusion (48%). Conclusions Prolonged infusion of GTN caused increased fractions of RAMP1- and decreased fractions of sGC-immunopositive neurons in the trigeminal ganglion. The observed alterations are likely immunophenotypic correlates of the pathophysiological processes underlying nitrovasodilator-induced migraine attacks and indicate that signalling via CGRP receptors but not sGC-mediated mechanisms may be enhanced through endogenous NO production. PMID:24004534
Forte, Antonio Elia; Etard, Octave; Reichenbach, Tobias
2017-10-10
Humans excel at selectively listening to a target speaker in background noise such as competing voices. While the encoding of speech in the auditory cortex is modulated by selective attention, it remains debated whether such modulation occurs already in subcortical auditory structures. Investigating the contribution of the human brainstem to attention has, in particular, been hindered by the tiny amplitude of the brainstem response. Its measurement normally requires a large number of repetitions of the same short sound stimuli, which may lead to a loss of attention and to neural adaptation. Here we develop a mathematical method to measure the auditory brainstem response to running speech, an acoustic stimulus that does not repeat and that has a high ecological validity. We employ this method to assess the brainstem's activity when a subject listens to one of two competing speakers, and show that the brainstem response is consistently modulated by attention.
An approach to contouring the dorsal vagal complex for radiotherapy planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Steen, Lillie; Amdur, Robert J., E-mail: amdurr@shands.ufl.edu
Multiple studies suggest that radiation dose to the area of the brainstem called the “dorsal vagal complex (DVC)” influences the frequency of nausea and vomiting during radiotherapy. The purpose of this didactic article is to describe the step-by-step process that we use to contour the general area of the DVC on axial computed tomography (CT) images as would be done for radiotherapy planning. The contouring procedure that we describe for contouring the area of the DVC is useful to medical dosimetrists and radiation oncologists.
Tomić, Maja A; Pecikoza, Uroš B; Micov, Ana M; Stepanović-Petrović, Radica M
2015-12-01
Many clinical pain states that are difficult to treat share a common feature of sensitization of nociceptive pathways. Drugs that could normalize hyperexcitable neural activity (e.g., antiepileptic drugs) may be useful in relieving these pain states. Eslicarbazepine acetate (ESL) is a novel antiepileptic drug derived from carbamazepine/oxcarbazepine with a more favorable metabolic profile and potentially better tolerability. We examined the efficacy of ESL in models of inflammatory and neuropathic pain and the potential mechanism involved in its action. The antinociceptive effects of ESL were assessed in mice models of trigeminal (orofacial formalin test), neuropathic (streptozotocin-induced diabetic neuropathy model), and visceral pain (writhing test). The influence of 5-HT1B/1D serotonin receptor (GR 127935) and CB1 (AM251) and CB2 cannabinoid receptor (AM630) antagonists on the antinociceptive effect of ESL was tested in the model of trigeminal pain. ESL exhibited significant and dose-dependent antinociceptive effects in the second phase of the orofacial formalin test (P ≤ 0.011), in the tail-flick test in diabetic mice (P ≤ 0.013), and in the writhing test (P ≤ 0.003). GR 127935 (P ≤ 0.038) and AM251 and AM630 (P ≤ 0.013 for both antagonists) significantly inhibited the antinociceptive effect of ESL in a dose-related manner. ESL exhibited efficacy in models of trigeminal, neuropathic, and visceral pain. In the trigeminal pain model, the antinociceptive effect of ESL is, at least in part, mediated by 5-HT1B/1D serotonin and CB1/CB2 cannabinoid receptors. This study indicates that ESL could be useful in the clinical treatment of inflammatory and neuropathic pain.
Schöbel, Nicole; Radtke, Debbie; Kyereme, Jessica; Wollmann, Nadine; Cichy, Annika; Obst, Katja; Kallweit, Kerstin; Kletke, Olaf; Minovi, Amir; Dazert, Stefan; Wetzel, Christian H; Vogt-Eisele, Angela; Gisselmann, Günter; Ley, Jakob P; Bartoshuk, Linda M; Spehr, Jennifer; Hofmann, Thomas; Hatt, Hanns
2014-07-01
Astringency is an everyday sensory experience best described as a dry mouthfeel typically elicited by phenol-rich alimentary products like tea and wine. The neural correlates and cellular mechanisms of astringency perception are still not well understood. We explored taste and astringency perception in human subjects to study the contribution of the taste as well as of the trigeminal sensory system to astringency perception. Subjects with either a lesion or lidocaine anesthesia of the Chorda tympani taste nerve showed no impairment of astringency perception. Only anesthesia of both the lingual taste and trigeminal innervation by inferior alveolar nerve block led to a loss of astringency perception. In an in vitro model of trigeminal ganglion neurons of mice, we studied the cellular mechanisms of astringency perception. Primary mouse trigeminal ganglion neurons showed robust responses to 8 out of 19 monomeric phenolic astringent compounds and 8 polymeric red wine polyphenols in Ca(2+) imaging experiments. The activating substances shared one or several galloyl moieties, whereas substances lacking the moiety did not or only weakly stimulate responses. The responses depended on Ca(2+) influx and voltage-gated Ca(2+) channels, but not on transient receptor potential channels. Responses to the phenolic compound epigallocatechin gallate as well as to a polymeric red wine polyphenol were inhibited by the Gαs inactivator suramin, the adenylate cyclase inhibitor SQ, and the cyclic nucleotide-gated channel inhibitor l-cis-diltiazem and displayed sensitivity to blockers of Ca(2+)-activated Cl(-) channels. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Trigeminal complications arising after surgery of cranial base meningiomas.
Westerlund, Ulf; Linderoth, Bengt; Mathiesen, Tiit
2012-04-01
Chronic severe facial pain is a feared sequel of cranial base surgery. This study explores the symptomatology, incidence and impact on the individual of postoperative de novo trigeminal nerve affection as well as the recovery potential. Out of 231 patients operated for cranial base meningiomas at the Karolinska University Hospital during 7 years, 25 complained of de novo trigeminal symptoms at clinical follow-up 3 months after surgery. Six were later lost to follow-up leaving 19 participants in the study, which was conducted using a questionnaire and a structured telephone interview. All patients complained of facial numbness, affecting the V1 branch in 10/19 patients (53%), the V2 branch in 18/19 (95%) and the V3 branch in 9/19 (47%). Surprisingly, only three (16%) suffered from trigeminal pain, which could be adequately managed by pharmacotherapy. However, five patients (26%) demonstrated ocular dysaesthetic problems. Twelve (63%) described their handicap to be mild, while seven (37%) had daily or severe symptoms. Five patients (26%) reported no improvement over time, while nine (47%) showed improvement and four (21%) stated good recovery. Only one patient (5%) claimed complete symptom remission. In the present study, 11% of the patients presented with a de novo postoperative affection of the trigeminal nerve after removal of a cranial base meningioma; 37% of these reported daily/severe symptoms. Only 26% showed good recovery, observed in patients without tumour infiltration of the nerve or intraoperative nerve damage. In spite of frequent complaints of numbness, pain was uncommon (16%) and often manageable by pharmacotherapy, while ocular symptoms turned out to be more frequent and more disabling than expected.
Broggi, G; Ferroli, P; Franzini, A; Servello, D; Dones, I
2000-01-01
To examine surgical findings and results of microvascular decompression (MVD) for trigeminal neuralgia (TN), including patients with multiple sclerosis, to bring new insight about the role of microvascular compression in the pathogenesis of the disorder and the role of MVD in its treatment. Between 1990 and 1998, 250 patients affected by trigeminal neuralgia underwent MVD in the Department of Neurosurgery of the "Istituto Nazionale Neurologico C Besta" in Milan. Limiting the review to the period 1991-6, to exclude the "learning period" (the first 50 cases) and patients with less than 1 year follow up, surgical findings and results were critically analysed in 148 consecutive cases, including 10 patients with multiple sclerosis. Vascular compression of the trigeminal nerve was found in all cases. The recurrence rate was 15.3% (follow up 1-7 years, mean 38 months). In five of 10 patients with multiple sclerosis an excellent result was achieved (follow up 12-39 months, mean 24 months). Patients with TN for more than 84 months did significantly worse than those with a shorter history (p<0.05). There was no mortality and most complications occurred in the learning period. Surgical complications were not related to age of the patients. Aetiopathogenesis of trigeminal neuralgia remains a mystery. These findings suggest a common neuromodulatory role of microvascular compression in both patients with or without multiple sclerosis rather than a direct causal role. MVD was found to be a safe and effective procedure to relieve typical TN in patients of all ages. It should be proposed as first choice surgery to all patients affected by TN, even in selected cases with multiple sclerosis, to give them the opportunity of pain relief without sensory deficits.
Broggi, G.; Ferroli, P.; Franzini, A.; Servello, D.; Dones, I.
2000-01-01
OBJECTIVE—To examine surgical findings and results of microvascular decompression (MVD) for trigeminal neuralgia (TN), including patients with multiple sclerosis, to bring new insight about the role of microvascular compression in the pathogenesis of the disorder and the role of MVD in its treatment. METHODS—Between 1990 and 1998, 250 patients affected by trigeminal neuralgia underwent MVD in the Department of Neurosurgery of the "Istituto Nazionale Neurologico C Besta" in Milan. Limiting the review to the period 1991-6, to exclude the "learning period" (the first 50 cases) and patients with less than 1 year follow up, surgical findings and results were critically analysed in 148 consecutive cases, including 10 patients with multiple sclerosis. RESULTS—Vascular compression of the trigeminal nerve was found in all cases. The recurrence rate was 15.3% (follow up 1-7 years, mean 38 months). In five of 10 patients with multiple sclerosis an excellent result was achieved (follow up 12-39 months, mean 24months). Patients with TN for more than 84 months did significantly worse than those with a shorter history (p<0.05). There was no mortality and most complications occurred in the learning period. Surgical complications were not related to age of the patients. CONCLUSIONS—Aetiopathogenesis of trigeminal neuralgia remains a mystery. These findings suggest a common neuromodulatory role of microvascular compression in both patients with or without multiple sclerosis rather than a direct causal role. MVD was found to be a safe and effective procedure to relieve typical TN in patients of all ages. It should be proposed as first choice surgery to all patients affected by TN, even in selected cases with multiple sclerosis, to give them the opportunity of pain relief without sensory deficits. PMID:10601403
An experimental animal model for percutaneous procedures used in trigeminal neuralgia.
Herta, Johannes; Wang, Wei-Te; Höftberger, Romana; Breit, Sabine; Kneissl, Sibylle; Bergmeister, Helga; Ferraz-Leite, Heber
2017-07-01
This study describes an experimental rabbit model that allows the reproduction of percutaneous operations that are used in patients with trigeminal neuralgia (TN). Attention was given to an exact anatomical description of the rabbit's middle cranial fossa as well as the establishment of conditions for a successful procedure. Morphometric measurements were taken from 20 rabbit skulls and CT scans. The anatomy of the trigeminal nerve, as well as its surrounding structures, was assessed by bilateral dissection of 13 New Zealand white rabbits (NWR). An ideal approach of placing a needle through the foramen ovale to reach the TG was sought. Validation of correct placement was realized by fluoroscopy and confirmed by dissection. Precise instructions for successful reproduction of percutaneous procedures in NWR were described. According to morphological measurements, for balloon compression of the trigeminal ganglion (TG) the maximal diameter of an introducing cannula is 1.85 mm. The diameter of an empty balloon catheter should not exceed 1.19 mm, and the length of the inflatable part of the balloon can range up to 4 mm. For thermocoagulation the needle electrodes must not exceed an external diameter of 1.39, mm and the length of the non-insolated tip can range up to 4 mm. Glycerol rhizolysis can be achieved because the trigeminal cistern in the NWR is a closed space that allows a long dwelling time (>10 min) of the contrast agent. An experimental NWR model intended for the reproduction of percutaneous procedures on the TG has been meticulously described. This provides a tool that enables further standardized animal research in the field of surgical treatment of TN.
Ban, Ryokuya; Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Midori; Yuzuriha, Shunsuke
2010-01-01
We have proposed a hypothetical mechanism to involuntarily sustain the effective eyelid retraction, which consists of not only voluntary but also reflexive contractions of the levator palpebrae superior muscle (LPSM). Voluntary contraction of fast-twitch fibres of the LPSM stretches the mechanoreceptors in Mueller's muscle to evoke trigeminal proprioception, which induces continuous reflexive contraction of slow-twitch fibres of the LPSM through the trigeminal proprioceptive nerve fibres innervating the mechanoreceptors in Mueller's muscle via the oculomotor neurons, as a tonic trigemino-oculomotor reflex. In the common skeletal mixed muscles, electrical stimulation of the proprioceptive nerve, which apparently connects the mechanoreceptors in muscle spindles to the motoneurons, induces the electromyographic response as the Hoffmann reflex. To verify the presence of the trigemino-oculomotor reflex, we confirmed whether intra-operative electrical simulation of the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle evokes an electromyographic response in the LPSM under general anaesthesia in 12 patients. An ipsilateral, phasic, short-latency response (latency: 2.8+/-0.3 ms) was induced in the ipsilateral LPSM in 10 of 12 subjects. As successful induction of the short-latency response in the ipsilateral LPSM corresponds to the Hoffmann reflex in the common skeletal mixed muscles, the present study is the first electromyographic verification of the presence of the monosynaptic trigemino-oculomotor reflex to induce reflexive contraction of the LPSM. The presence of the trigemino-oculomotor reflex may elucidate the unexplainable blepharoptosis due to surgery, trauma and tumour, all of which may damage the trigeminal proprioceptive nerve fibres to impair the trigemino-oculomotor reflex. Copyright (c) 2008. Published by Elsevier Ltd.
Palacios Ceña, María; Castaldo, Matteo; Kelun Wang; Torelli, Paola; Pillastrini, Paolo; Fernández-de-Las-Peñas, César; Arendt-Nielsen, Lars
2017-02-01
To investigate differences in widespread pressure pain hyperalgesia in the trigemino-cervical and extra-trigeminal (distant pain-free) regions in women with frequent episodic (FETTH) and chronic (CTTH) tension-type headache. It seems that people with tension-type headache exhibit central sensitization. No study has investigated differences between FETTH and CTTH in terms of widespread pressure pain hypersensitivity. Forty-three women with FETTH, 42 with CTTH, and 45 women without headache diagnosis were recruited. Pressure pain thresholds (PPTs) were bilaterally assessed over trigeminal area (ie, temporalis muscle), extra-trigeminal (ie, C5/C6 zygapophyseal joint), and two distant points (ie, second metacarpal and tibialis anterior muscle) by a blinded assessor. Clinical features of the headache were collected with a 4-week headache diary. Anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). The ANCOVA revealed that PPTs were significantly decreased bilaterally over trigeminal (mean differences ranging from 97.5 to 101.5 kPa), extra-trigeminal (from 94.3 to 114.5 kPa), and distant points (from 99.4 to 208.6 kPa) in both FETTH and CTTH groups compared with controls (all, P < .001). No differences between FETTH and CTTH were observed (all points, P > .217). Anxiety (all, P > .803) or depression (P > .206) did not influence pressure pain hyperalgesia. No associations between widespread pressure hypersensitivity and headache features were observed (all, P > .110). Current results suggest the presence of similar local and widespread pressure hyperalgesia, not associated with anxiety or depression, in women with FETTH and CTTH supporting that localized and central manifestations are involved in both the episodic and chronic forms of tension-type headache. © 2016 American Headache Society.
Wang, Shuya; Liu, Kun; Wang, Yuan; Wang, Shuyou; He, Xun; Cui, Xiang; Gao, Xinyan; Zhu, Bing
2017-10-01
Objective: Scalp acupuncture is a somatic stimulation therapy that produces prominent clinical effects when used to treat cerebral diseases. However, this acupuncture's therapeutic mechanisms have not yet been well-addressed. Scalp acupoints are innervated by the trigeminal nerve, which is coincident with the intracranial sensory afferents as well as with the meningeal vessels. In recent years, cerebrospinal fluid-contacting neurons have been found and proved to transmit allergic substances between brain the parenchyma and meninges, representing a possible network between scalp acupuncture and the brain. The aim of the current study was to observe the connections between scalp acupoints and the meninges and to establish a possible mechanism for scalp acupuncture. Materials and Methods: Twenty-five adult Sprague-Dawley rats were used for the present study. Evans Blue dye (Sigma Chemical Co, St. Louis, MO) was injected though each rat's caudal vein after trigeminal stimulation for plasma extravasation observation. Cerebral blood flow (CBF) values of the rat's brain surface were measured at different timepoints before and after electroacupuncture (EA) on GB 15 ( Toulinqi ) or ST 36 ( Zusanli ). Results: These preliminary studies indicated that neurogenic plasma extravasation on a rat's skin and dura mater after mechanical or electrical stimulation of the trigeminal nerves is a reliable way to show the pathologic connection between scalp acupoints and the meninges. Moreover, CBF of the rat's brain surface is increased significantly after EA stimulation at GB 15 ( Toulinqi ), which is located in the receptive field of the supraorbital nerve. Conclusions: These findings suggest that the mechanism of scalp acupuncture might lie in the specific neurologic pathway that could be termed as trigeminal nerve-meninges-cerebrospinal fluid-contacting neurons-brain , which is a possible shortcut to brain functional regulation and cerebral disease treatment.
Ferrari, Giulio; Chauhan, Sunil K; Ueno, Hiroki; Nallasamy, Nambi; Gandolfi, Stefano; Borges, Lawrence; Dana, Reza
2011-04-01
To develop a mouse model of neurotrophic keratopathy by approaching the trigeminal nerve through the brain and to evaluate changes in corneal cell apoptosis and proliferation. Six- to 8-week-old male C57BL/6 mice underwent trigeminal stereotactic electrolysis (TSE) to destroy the ophthalmic branch of the trigeminal nerve. Clinical follow-up using biomicroscopy of the cornea was performed at days 2, 4, 5, and 7. To confirm the effectiveness of the procedure, we examined the gross nerve pathology, blink reflex, and immunohistochemistry of the corneal nerves. TUNEL-positive apoptotic and Ki-67-positive proliferating corneal cells were evaluated to detect changes from the contralateral normal eye. TSE was confirmed by gross histology of the trigeminal nerve and was considered effective if the corneal blink reflex was completely abolished. TSE totally abolished the blink reflex in 70% of mice and significantly reduced it in the remaining 30%. Animals with absent blink reflex were used for subsequent experiments. In these mice, a progressive corneal degeneration developed, with thinning of the corneal epithelium and eventually perforation after 7 days. In all mice, 48 hours after TSE, corneal nerves were not recognizable histologically. Seven days after TSE, an increase in cellular apoptosis in all the corneal layers and a reduction in proliferation in basal epithelial cells were detected consistently in all mice. TSE was able, in most cases, to induce a disease state that reflected clinical neurotrophic keratitis without damaging the periocular structures. Moreover, corneal denervation led to increased apoptosis and reduced proliferation of epithelial cells, formally implicating intact nerve function in regulating epithelial survival and turnover.
Ferrari, Giulio; Chauhan, Sunil K.; Ueno, Hiroki; Nallasamy, Nambi; Gandolfi, Stefano; Borges, Lawrence
2011-01-01
Purpose. To develop a mouse model of neurotrophic keratopathy by approaching the trigeminal nerve through the brain and to evaluate changes in corneal cell apoptosis and proliferation. Methods. Six- to 8-week-old male C57BL/6 mice underwent trigeminal stereotactic electrolysis (TSE) to destroy the ophthalmic branch of the trigeminal nerve. Clinical follow-up using biomicroscopy of the cornea was performed at days 2, 4, 5, and 7. To confirm the effectiveness of the procedure, we examined the gross nerve pathology, blink reflex, and immunohistochemistry of the corneal nerves. TUNEL-positive apoptotic and Ki-67–positive proliferating corneal cells were evaluated to detect changes from the contralateral normal eye. Results. TSE was confirmed by gross histology of the trigeminal nerve and was considered effective if the corneal blink reflex was completely abolished. TSE totally abolished the blink reflex in 70% of mice and significantly reduced it in the remaining 30%. Animals with absent blink reflex were used for subsequent experiments. In these mice, a progressive corneal degeneration developed, with thinning of the corneal epithelium and eventually perforation after 7 days. In all mice, 48 hours after TSE, corneal nerves were not recognizable histologically. Seven days after TSE, an increase in cellular apoptosis in all the corneal layers and a reduction in proliferation in basal epithelial cells were detected consistently in all mice. Conclusions. TSE was able, in most cases, to induce a disease state that reflected clinical neurotrophic keratitis without damaging the periocular structures. Moreover, corneal denervation led to increased apoptosis and reduced proliferation of epithelial cells, formally implicating intact nerve function in regulating epithelial survival and turnover. PMID:21071731
Daiutolo, Brittany V.; Tyburski, Ashley; Clark, Shannon W.
2016-01-01
Abstract The pain-signaling molecules, nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP), are implicated in the pathophysiology of post-traumatic headache (PTH) as they are for migraine. This study assessed the changes of inducible NOS (iNOS) and its cellular source in the trigeminal pain circuit, as well as the relationship between iNOS and CGRP after controlled cortical impact (CCI) injury in mice. The effects of a CGRP antagonist (MK8825) and sumatriptan on iNOS messenger RNA (mRNA) and protein were compared to vehicle at 2 weeks postinjury. Changes in CGRP levels in the trigeminal nucleus caudalis (TNC) in iNOS knockouts with CCI were compared to wild-type (WT) mice at 3 days and 2 weeks post injury. Trigeminal allodynia and photosensitivity were measured. MK8825 and sumatriptan increased allodynic thresholds in CCI groups compared to vehicle (p < 0.01), whereas iNOS knockouts were not different from WT. Photosensitivity was attenuated in MK8825 mice and iNOS knockouts compared to WT (p < 0.05). MK8825 and sumatriptan reduced levels of iNOS mRNA and iNOS immunoreactivity in the TNC and ganglia (p < 0.01). Differences in iNOS cellular localization were found between the trigeminal ganglia and TNC. Although the knockout of iNOS attenuated CGRP at 3 days (p < 0.05), it did not reduce CGRP at 2 weeks. CGRP immunoreactivity was found in the meningeal layers post-CCI, while negligible in controls. Findings support the importance of interactions between CGRP and iNOS in mediating allodynia, as well as the individual roles in photosensitivity. Mitigating prolonged increases in CGRP may be a promising intervention for treating acute PTH. PMID:26472135
Pang, You-Wang; Ge, Shun-Nan; Nakamura, Kouichi C; Li, Jin-Lian; Xiong, Kang-Hui; Kaneko, Takeshi; Mizuno, Noboru
2009-02-10
Little is known about the significance of the two types of glutamatergic neurons (those expressing vesicular glutamate transporter VGLUT1 or VGLUT2) in the control of jaw movements. We thus examined the origin and distribution of axon terminals with VGLUT1 or VGLUT2 immunoreactivity within the trigeminal motor nucleus (Vm) in the rat. The Vm was divided into the dorsolateral division (Vm.dl; jaw-closing motoneuron pool) and the ventromedial division (Vm.vm; jaw-opening motoneuron pool). VGLUT1-immunopositive terminals were seen within the Vm.dl only, whereas VGLUT2-immunopositive ones were distributed to both the Vm.dl and the Vm.vm. Transection of the motor root eliminated almost all VGLUT1-immunopositive axons in the Vm.dl, with no changes of VGLUT2 immunoreactivity in the two divisions, indicating that the VGLUT1- and VGLUT2-immunopositive axons came from primary afferents in the mesencephalic trigeminal nucleus and premotor neurons for the Vm, respectively. In situ hybridization histochemistry revealed that VGLUT2 neurons were much more numerous than VGLUT1 neurons in the regions corresponding to the reported premotoneuron pool for the Vm. The results of immunofluorescence labeling combined with anterograde tract tracing further indicated that premotor neurons with VGLUT2 in the trigeminal sensory nuclei, the supratrigeminal region, and the reticular region ventral to the Vm sent axon terminals contacting trigeminal motoneurons and that some of the VGLUT1-expressing premotor neurons in the reticular region ventral to the Vm sent axon terminals to jaw-closing motoneurons. The present results suggested that the roles played by glutamatergic neurons in controlling jaw movements might be different between VGLUT1- and VGLUT2-expressing neurons.
A probabilistic atlas of human brainstem pathways based on connectome imaging data.
Tang, Yuchun; Sun, Wei; Toga, Arthur W; Ringman, John M; Shi, Yonggang
2018-04-01
The brainstem is a critical structure that regulates vital autonomic functions, houses the cranial nerves and their nuclei, relays motor and sensory information between the brain and spinal cord, and modulates cognition, mood, and emotions. As a primary relay center, the fiber pathways of the brainstem include efferent and afferent connections among the cerebral cortex, spinal cord, and cerebellum. While diffusion MRI has been successfully applied to map various brain pathways, its application for the in vivo imaging of the brainstem pathways has been limited due to inadequate resolution and large susceptibility-induced distortion artifacts. With the release of high-resolution data from the Human Connectome Project (HCP), there is increasing interest in mapping human brainstem pathways. Previous works relying on HCP data to study brainstem pathways, however, did not consider the prevalence (>80%) of large distortions in the brainstem even after the application of correction procedures from the HCP-Pipeline. They were also limited in the lack of adequate consideration of subject variability in either fiber pathways or region of interests (ROIs) used for bundle reconstruction. To overcome these limitations, we develop in this work a probabilistic atlas of 23 major brainstem bundles using high-quality HCP data passing rigorous quality control. For the large-scale data from the 500-Subject release of HCP, we conducted extensive quality controls to exclude subjects with severe distortions in the brainstem area. After that, we developed a systematic protocol to manually delineate 1300 ROIs on 20 HCP subjects (10 males; 10 females) for the reconstruction of fiber bundles using tractography techniques. Finally, we leveraged our novel connectome modeling techniques including high order fiber orientation distribution (FOD) reconstruction from multi-shell diffusion imaging and topography-preserving tract filtering algorithms to successfully reconstruct the 23 fiber bundles for each subject, which were then used to calculate the probabilistic atlases in the MNI152 space for public release. In our experimental results, we demonstrate that our method yielded anatomically faithful reconstruction of the brainstem pathways and achieved improved performance in comparison with an existing atlas of cerebellar peduncles based on HCP data. These atlases have been publicly released on NITRIC (https://www.nitrc.org/projects/brainstem_atlas/) and can be readily used by brain imaging researchers interested in studying brainstem pathways. Copyright © 2017 Elsevier Inc. All rights reserved.
Brainstem involvement in subacute sclerosing panencephalitis.
Sharma, Pawan; Singh, Dileep; Singh, Maneesh Kumar; Garg, Ravindra Kumar; Kohli, Neera
2011-01-01
The parieto-occipital region of the brain is most frequently and severely affected in subacute sclerosing panencephalitis (SSPE). The basal ganglia, cerebellum and corpus callosum are less commonly involved. Brainstem involvement is rarely described in SSPE, and usually there is involvement of other regions of the brain. We describe a patient with subacute sclerosing panencephalitis with brain magnetic resonance imaging showing extensive brainstem involvement without significant involvement of other cortical structures. Though rarely described in SSPE, one should be aware of such brainstem and cerebellum involvement, and SSPE should be kept in mind when brainstem signal changes are seen in brain MRI with or without involvement of other regions of brain to avoid erroneous reporting.
Spices: the savory and beneficial science of pungency.
Nilius, Bernd; Appendino, Giovanni
2013-01-01
Spicy food does not only provide an important hedonic input in daily life, but has also been anedoctically associated to beneficial effects on our health. In this context, the discovery of chemesthetic trigeminal receptors and their spicy ligands has provided the mechanistic basis and the pharmacological means to investigate this enticing possibility. This review discusses in molecular terms the connection between the neurophysiology of pungent spices and the "systemic" effects associated to their trigeminality. It commences with a cultural and historical overview on the Western fascination for spices, and, after analysing in detail the mechanisms underlying the trigeminality of food, the main dietary players from the transient receptor potential (TRP) family of cation channels are introduced, also discussing the "alien" distribution of taste receptors outside the oro-pharingeal cavity. The modulation of TRPV1 and TRPA1 by spices is next described, discussing how spicy sensations can be turned into hedonic pungency, and analyzing the mechanistic bases for the health benefits that have been associated to the consumption of spices. These include, in addition to a beneficial modulation of gastro-intestinal and cardio-vascular function, slimming, the optimization of skeletal muscle performance, the reduction of chronic inflammation, and the prevention of metabolic syndrome and diabetes. We conclude by reviewing the role of electrophilic spice constituents on cancer prevention in the light of their action on pro-inflammatory and pro-cancerogenic nuclear factors like NFκB, and on their interaction with the electrophile sensor protein Keap1 and the ensuing Nrf2-mediated transcriptional activity. Spicy compounds have a complex polypharmacology, and just like any other bioactive agent, show a balance of beneficial and bad actions. However, at least for moderate consumption, the balance seems definitely in favour of the positive side, suggesting that a spicy diet, a caveman-era technology, could be seriously considered in addition to caloric control and exercise as a measurement to prevent and control many chronic diseases associate to malnutrition from a Western diet.
[Microvascular descompression for trigeminal neuralgia: prognostic [corrected] factors].
Alberione, F; Arena, A; Matera, R
2008-06-01
We describe our experience of the MVD in the typical trigeminal neuralgia and identify the prognostic factors. A retrospective studio of 89 cases between 1995-2005 was used. The prognostic significant data evaluated were demographics data; duration of neuralgia; the affected divisions involved; surgical findings; used material for the decompression. The data analysis was made with the chi(2) test. We have found an excellent outcome in 77% one year later. The age and the antecedent of hypertension disease were not statistically significant. A poor outcome was observed for: female sex, neuralgia lasting longer than two years, the three divisions involved, venous compression and the muscle used as surgical material. The MVD is an effective and reliable technique. The use of muscle is not recommended. When the three trigeminal divisions are involved we should choose another technique.
Schwerdtner, O; Damaskos, T; Kage, A; Weitzel-Kage, D; Klein, M
2005-06-01
Trigeminal trophic syndrome is an extremely rare complication following surgical ablation of the trigeminal nerve or after alcohol injection or thermocoagulation of the Gasserian ganglion. These lesions show a poor healing tendency and sometimes persist for years. The therapeutic results of local wound care with ointments and wound dressings are often unsatisfactory, and those of plastic surgery are variable. In the case presented, the skin area affected by neurotrophic ulceration is successfully treated with autologous cultivated epidermal cells. This form of tissue engineering is already a clinically established procedure for treating burns and chronic wounds. The results show for the first time that transplantation of in vitro cultivated epidermal cells can induce tissue regeneration and may be an effective tool in the treatment of neurotrophic ulcerations in the facial region.
Unilateral nasal pain with migraine features.
Alvarez, Mónica; Montojo, Teresa; de la Casa, Beatriz; Vela, Lydia; Pareja, Juan A
2013-09-01
Migraine attacks exclusively felt in the face are very rare, the pain involving the territories supplied by the second and third branches of the trigeminal nerve. Two patients suffering from heminasal pain attacks accompanied with typical migrainous features and responsive to oral or intranasal triptans - but not to intranasal lidocaine or oxymetazoline. In one patient, the attacks could be precipitated upon slight touching on the tip of the nose, in the other attacks were preceded by the nasal sensation typically heralding sneezing. Migraine pain mostly develops within the innervation territory of the first branch of the trigeminal nerve, which includes the nose. Therefore, episodes of unilateral nasal pain with migrainous features could be considered a migraine with unusual topography (nasal migraine). Painful nasal attacks occasionally preceded by stimulation of trigeminal afferents in the nose, could be conceived of as migraine-tic syndrome.
Brainstem cavernous malformations: anatomical, clinical, and surgical considerations.
Giliberto, Giuliano; Lanzino, Desiree J; Diehn, Felix E; Factor, David; Flemming, Kelly D; Lanzino, Giuseppe
2010-09-01
Symptomatic brainstem cavernous malformations carry a high risk of permanent neurological deficit related to recurrent hemorrhage, which justifies aggressive management. Detailed knowledge of the microscopic and surface anatomy is important for understanding the clinical presentation, predicting possible surgical complications, and formulating an adequate surgical plan. In this article the authors review and illustrate the surgical and microscopic anatomy of the brainstem, provide anatomoclinical correlations, and illustrate a few clinical cases of cavernous malformations in the most common brainstem areas.
Brainstem Encoding of Aided Speech in Hearing Aid Users with Cochlear Dead Region(s).
Hassaan, Mohammad Ramadan; Ibraheem, Ola Abdallah; Galhom, Dalia Helal
2016-07-01
Neural encoding of speech begins with the analysis of the signal as a whole broken down into its sinusoidal components in the cochlea, which has to be conserved up to the higher auditory centers. Some of these components target the dead regions of the cochlea causing little or no excitation. Measuring aided speech-evoked auditory brainstem response elicited by speech stimuli with different spectral maxima can give insight into the brainstem encoding of aided speech with spectral maxima at these dead regions. This research aims to study the impact of dead regions of the cochlea on speech processing at the brainstem level after a long period of hearing aid use. This study comprised 30 ears without dead regions and 46 ears with dead regions at low, mid, or high frequencies. For all ears, we measured the aided speech-evoked auditory brainstem response using speech stimuli of low, mid, and high spectral maxima. Aided speech-evoked auditory brainstem response was producible in all subjects. Responses evoked by stimuli with spectral maxima at dead regions had longer latencies and smaller amplitudes when compared with the control group or the responses of other stimuli. The presence of cochlear dead regions affects brainstem encoding of speech with spectral maxima perpendicular to these regions. Brainstem neuroplasticity and the extrinsic redundancy of speech can minimize the impact of dead regions in chronic hearing aid users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, G; Liu, C; Liu, C
Purpose: To analyze the error in contouring the brainstem for patients with head and neck cancer who underwent radiotherapy based on computed tomography (CT) and magnetic resonance (MR) images. Methods: 20 brain tumor and 17 nasopharyngeal cancer patients were randomly selected. Each patient underwent MR and CT scanning. For each patient, one observer contoured the brainstem on CT and MR images for 10 times, and 10 observers from five centers delineated the brainstem on CT and MR images only one time. The inter- and intra-observers volume and outline variations were compared. Results: The volumes of brainstem contoured by inter- andmore » intra-observers on CT and MR images were similar (p>0.05). The reproducibility of contouring brainstem on MR images was better than that on CT images (p<0.05) for both inter- and intra-observer variability. The inter- and intra-observer for contouring on CT images reached mean values of 0.81±0.05 (p>0.05) and of 0.85±0.05 (p>0.05), respectively, while on MR images these respective values were 0.90±0.05 (p>0.05) and 0.92±0.04 (p>0.05). Conclusion: Contouring the brainstem on MR images was more accurate and reproducible than that on CT images. Precise information might be more helpful for protecting the brainstem radiation injury the patients whose lesion were closed to brainstem.« less
Hao, Bo; Gao, Di; Tang, Da-Wei; Wang, Xiao-Guang; Liu, Shui-Ping; Kong, Xiao-Ping; Liu, Chao; Huang, Jing-Lu; Bi, Qi-Ming; Quan, Li; Luo, Bin
2012-04-01
To explore the mechanism that how human enterovirus 71 (EV71) invades the brainstem and how intercellular adhesion molecules-1 (ICAM-1) participates by analyzing the expression and distribution of human EV71, and ICAM-1 in brainstem of infants with brain stem encephalitis. Twenty-two brainstem of infants with brain stem encephalitis were collected as the experimental group and 10 brainstems of fatal congenital heart disease were selected as the control group. The sections with perivascular cuffings were selected to observe EV71-VP1 expression by immunohistochemistry method and ICAM-1 expression was detected for the sections with EV71-VP1 positive expression. The staining image analysis and statistics analysis were performed. The experiment and control groups were compared. (1) EV71-VP1 positive cells in the experimental group were mainly astrocytes in brainstem with nigger-brown particles, and the control group was negative. (2) ICAM-1 positive cells showed nigger-brown. The expression in inflammatory cells (around blood vessels of brain stem and in glial nodules) and gliocytes increased. The results showed statistical difference comparing with control group (P < 0.05). The brainstem encephalitis can be used to diagnose fatal EV71 infection in infants. EV71 can invade the brainstem via hematogenous route. ICAM-1 may play an important role in the pathogenic process.
Sensory-Cognitive Interaction in the Neural Encoding of Speech in Noise: A Review
Anderson, Samira; Kraus, Nina
2011-01-01
Background Speech-in-noise (SIN) perception is one of the most complex tasks faced by listeners on a daily basis. Although listening in noise presents challenges for all listeners, background noise inordinately affects speech perception in older adults and in children with learning disabilities. Hearing thresholds are an important factor in SIN perception, but they are not the only factor. For successful comprehension, the listener must perceive and attend to relevant speech features, such as the pitch, timing, and timbre of the target speaker’s voice. Here, we review recent studies linking SIN and brainstem processing of speech sounds. Purpose To review recent work that has examined the ability of the auditory brainstem response to complex sounds (cABR), which reflects the nervous system’s transcription of pitch, timing, and timbre, to be used as an objective neural index for hearing-in-noise abilities. Study Sample We examined speech-evoked brainstem responses in a variety of populations, including children who are typically developing, children with language-based learning impairment, young adults, older adults, and auditory experts (i.e., musicians). Data Collection and Analysis In a number of studies, we recorded brainstem responses in quiet and babble noise conditions to the speech syllable /da/ in all age groups, as well as in a variable condition in children in which /da/ was presented in the context of seven other speech sounds. We also measured speech-in-noise perception using the Hearing-in-Noise Test (HINT) and the Quick Speech-in-Noise Test (QuickSIN). Results Children and adults with poor SIN perception have deficits in the subcortical spectrotemporal representation of speech, including low-frequency spectral magnitudes and the timing of transient response peaks. Furthermore, auditory expertise, as engendered by musical training, provides both behavioral and neural advantages for processing speech in noise. Conclusions These results have implications for future assessment and management strategies for young and old populations whose primary complaint is difficulty hearing in background noise. The cABR provides a clinically applicable metric for objective assessment of individuals with SIN deficits, for determination of the biologic nature of disorders affecting SIN perception, for evaluation of appropriate hearing aid algorithms, and for monitoring the efficacy of auditory remediation and training. PMID:21241645
Simon, Emilie; Thézé, Nadine; Fédou, Sandrine; Thiébaud, Pierre
2017-01-01
ABSTRACT Drosophila Vestigial is the founding member of a protein family containing a highly conserved domain, called Tondu, which mediates their interaction with members of the TEAD family of transcription factors (Scalloped in Drosophila). In Drosophila, the Vestigial/Scalloped complex controls wing development by regulating the expression of target genes through binding to MCAT sequences. In vertebrates, there are four Vestigial-like genes, the functions of which are still not well understood. Here, we describe the regulation and function of vestigial-like 3 (vgll3) during Xenopus early development. A combination of signals, including FGF8, Wnt8a, Hoxa2, Hoxb2 and retinoic acid, limits vgll3 expression to hindbrain rhombomere 2. We show that vgll3 regulates trigeminal placode and nerve formation and is required for normal neural crest development by affecting their migration and adhesion properties. At the molecular level, vgll3 is a potent activator of pax3, zic1, Wnt and FGF, which are important for brain patterning and neural crest cell formation. Vgll3 interacts in the embryo with Tead proteins but unexpectedly with Ets1, with which it is able to stimulate a MCAT driven luciferase reporter gene. Our findings highlight a critical function for vgll3 in vertebrate early development. PMID:28870996
Shoja, Mohammadali M; Oyesiku, Nelson M; Griessenauer, Christoph J; Radcliff, Virginia; Loukas, Marios; Chern, Joshua J; Benninger, Brion; Rozzelle, Curtis J; Shokouhi, Ghaffar; Tubbs, R Shane
2014-01-01
Descriptions of the anatomy of the neural communications among the cranial nerves and their branches is lacking in the literature. Knowledge of the possible neural interconnections found among these nerves may prove useful to surgeons who operate in these regions to avoid inadvertent traction or transection. We review the literature regarding the anatomy, function, and clinical implications of the complex neural networks formed by interconnections among the lower cranial and upper cervical nerves. A review of germane anatomic and clinical literature was performed. The review is organized in two parts. Part I concerns the anastomoses between the trigeminal, facial, and vestibulocochlear nerves or their branches with any other nerve trunk or branch in the vicinity. Part II concerns the anastomoses among the glossopharyngeal, vagus, accessory and hypoglossal nerves and their branches or among these nerves and the first four cervical spinal nerves; the contribution of the autonomic nervous system to these neural plexuses is also briefly reviewed. Part I is presented in this article. An extensive anastomotic network exists among the lower cranial nerves. Knowledge of such neural intercommunications is important in diagnosing and treating patients with pathology of the skull base. Copyright © 2013 Wiley Periodicals, Inc.
Du, Zhuo-Ying; Gao, Xiang; Zhang, Xiao-Luo; Wang, Zhi-Qiu; Tang, Wei-Jun
2010-09-01
In this paper the authors' goal was to evaluate the feasibility and efficacy of a virtual reality (VR) system in preoperative planning for microvascular decompression (MVD) procedures treating idiopathic trigeminal neuralgia and hemifacial spasm. The system's role in surgical simulation and training was also assessed. Between May 2008 and April 2009, the authors used the Dextroscope system to visualize the neurovascular complex and simulate MVD in the cerebellopontine angle in a VR environment in 16 patients (6 patients had trigeminal neuralgia and 10 had hemifacial spasm). Reconstructions were carried out 2-3 days before MVD. Images were printed in a red-blue stereoscopic format for teaching and discussion and were brought into the operating room to be compared with real-time intraoperative findings. The VR environment was a powerful aid for spatial understanding of the neurovascular relationship in MVD for operating surgeons and trainees. Through an initial series of comparison/confirmation experiences, the senior neurosurgeon became accustomed to the system. He could predict intraoperative problems and simulate surgical maneuvering, which increased his confidence in performing the procedure. The Dextroscope system is an easy and rapid method to create a stereoscopic neurovascular model for MVD that is highly concordant with intraoperative findings. It effectively shortens the learning curve and adds to the surgeon's confidence.
Hebestreit, Julia M; May, Arne
2017-12-19
Beta-blockers are a first choice migraine preventive medication. So far it is unknown how they exert their therapeutic effect in migraine. To this end we examined the neural effect of metoprolol on trigeminal pain processing in 19 migraine patients and 26 healthy controls. All participants underwent functional magnetic resonance imaging (fMRI) during trigeminal pain twice: Healthy subjects took part in a placebo-controlled, randomized and double-blind study, receiving a single dose of metoprolol and placebo. Patients were examined with a baseline scan before starting the preventive medication and 3 months later whilst treated with metoprolol. Mean pain intensity ratings were not significantly altered under metoprolol. Functional imaging revealed no significant differences in nociceptive processing in both groups. Contrary to earlier findings from animal studies, we did not find an effect of metoprolol on the thalamus in either group. However, using a more liberal and exploratory threshold, hypothalamic activity was slightly increased under metoprolol in patients and migraineurs. No significant effect of metoprolol on trigeminal pain processing was observed, suggesting a peripheral effect of metoprolol. Exploratory analyses revealed slightly enhanced hypothalamic activity under metoprolol in both groups. Given the emerging role of the hypothalamus in migraine attack generation, these data need further examination.
2014-01-01
Background Transcranial direct current stimulation (tDCS) of the primary motor cortex has been shown to modulate pain and trigeminal nociceptive processing. Methods Ten patients with classical trigeminal neuralgia (TN) were stimulated daily for 20 minutes over two weeks using anodal (1 mA) or sham tDCS over the primary motor cortex (M1) in a randomized double-blind cross-over design. Primary outcome variable was pain intensity on a verbal rating scale (VRS 0–10). VRS and attack frequency were assessed for one month before, during and after tDCS. The impact on trigeminal pain processing was assessed with pain-related evoked potentials (PREP) and the nociceptive blink reflex (nBR) following electrical stimulation on both sides of the forehead before and after tDCS. Results Anodal tDCS reduced pain intensity significantly after two weeks of treatment. The attack frequency reduction was not significant. PREP showed an increased N2 latency and decreased peak-to-peak amplitude after anodal tDCS. No severe adverse events were reported. Conclusion Anodal tDCS over two weeks ameliorates intensity of pain in TN. It may become a valuable treatment option for patients unresponsive to conventional treatment. PMID:25424567
Kern, Kai-Uwe; Nalamachu, Srinivas; Brasseur, Louis; Zakrzewska, Joanna M
2013-01-01
An expert group of 40 pain specialists from 16 countries performed a first assessment of the value of predictors for treatment success with 5% lidocaine-medicated plaster in the management of cancer pain with neuropathic components and trigeminal neuropathic pain. Results were based on the retrospective analysis of 68 case reports (sent in by participants in the 4 weeks prior to the conference) and the practical experience of the experts. Lidocaine plaster treatment was mostly successful for surgery or chemotherapy-related cancer pain with neuropathic components. A dose reduction of systemic pain treatment was observed in at least 50% of all cancer pain patients using the plaster as adjunct treatment; the presence of allodynia, hyperalgesia or pain quality provided a potential but not definitively clear indication of treatment success. In trigeminal neuropathic pain, continuous pain, severe allodynia, hyperalgesia, or postherpetic neuralgia or trauma as the cause of orofacial neuropathic pain were perceived as potential predictors of treatment success with lidocaine plaster. In conclusion, these findings provide a first assessment of the likelihood of treatment benefits with 5% lidocaine-medicated plaster in the management of cancer pain with neuropathic components and trigeminal neuropathic pain and support conducting large, well-designed multicenter studies. PMID:23630431
Synthetic Neurotensin Analogues Are Nontoxic Analgesics for the Rabbit Cornea
Kim, Charles; Barbut, Denise; Heinemann, Murk H.; Pasternak, Gavril; Rosenblatt, Mark I.
2014-01-01
Purpose. To characterize the analgesic potency and toxicity of topical synthetic neurotensin analogues, and localize neurotensin receptors in the cornea and trigeminal ganglion. Methods. Cochet-Bonnet esthesiometry was performed on the rabbit cornea to test the analgesic dose response and duration of effect for two synthetic neurotensin analogues: NT71 and NT72. Receptors for neurotensin were localized in the murine cornea and trigeminal ganglion using quantitative PCR (qPCR), Western blotting, and immunohistochemistry. In vitro toxicity of NT71, NT72, and sodium channel blockers was evaluated using cytotoxicity, single-cell migration, and scratch closure assays performed on rabbit corneal epithelial cells. In vivo toxicity of these agents was assessed using a rabbit laser phototherapeutic keratectomy (PTK) model and histology. Results. NT71 and NT72 induced potent analgesic effects on the rabbit cornea at concentrations between 1.0 and 2.5 mg/mL, lasting up to 180 minutes. A site-specific distribution of neurotensin receptors was observed in the murine cornea and trigeminal ganglion. NT71 and NT72 did not cause any significant in vitro or in vivo toxicity, in contrast to sodium channel blockers. Conclusions. Synthetic neurotensin analogues are potent analgesics that avoid the toxicities associated with established topical analgesic agents. Receptors for neurotensin are present in both the cornea and trigeminal ganglion. PMID:24825106
Tramonti Fantozzi, Maria Paola; De Cicco, Vincenzo; Barresi, Massimo; Cataldo, Enrico; Faraguna, Ugo; Bruschini, Luca; Manzoni, Diego
2017-01-01
Trigeminal input to the ascending activating system is important for the maintenance of arousal and may affect the discharge of the noradrenergic neurons of the locus coeruleus (LC), whose activity influences both vigilance state and pupil size, inducing mydriasis. For this reason, pupil size evaluation is now considered an indicator of LC activity. Since mastication activates trigeminal afferent neurons, the aims of the present study, conducted on healthy adult participants, were to investigate whether chewing a bolus of different hardness may: (1) differentially affect the performance on a cognitive task (consisting in the retrieval of specific target numbers within numerical matrices) and (2) increase the dilatation of the pupil (mydriasis) induced by a haptic task, suggesting a change in LC activation. Results show that chewing significantly increased both the velocity of number retrieval (without affecting the number of errors) and the mydriasis associated with the haptic task, whereas simple task repetition did not modify either retrieval or mydriasis. Handgrip exercise, instead, significantly decreased both parameters. Effects were significantly stronger and longer lasting when subjects chewed hard pellets. Finally, chewing-induced improvements in performance and changes in mydriasis were positively correlated, which suggests that trigeminal signals enhanced by chewing may boost the cognitive performance by increasing LC activity. PMID:28848404
Dalewski, B; Chruściel-Nogalska, M; Frączak, B
2015-12-01
An occlusal splint and a modified nociceptive trigeminal inhibition splint (AMPS, anterior deprogrammer, Kois deprogrammer, Lucia jig, etc.) are commonly and quite frequently used in the treatment of masticatory muscle disorders, although their sustainable and long-lasting effect on these muscles' function is still not very well known. Results of scant surface electromyography studies in patients with temporomandibular disorders have been contradictory. The aim of this study was to evaluate both devices in bruxism therapy; EMG activity levels during postural activity and maximum voluntary contraction of the superficial temporal and masseter muscles were compared before and after 30 days of treatment. Surface electromyography of the examined muscles was performed in two groups of bruxers (15 patients each). Patients in the first group used occlusal splints, while those in the second used modified nociceptive trigeminal inhibition splints. The trial was randomized, controlled and semi-blind. Neither device affected the asymmetry index or postural activity/maximum voluntary contraction ratio after 1 month of treatment. Neither the occlusal nor the nociceptive trigeminal inhibition splint showed any significant influence on the examined muscles. Different scientific methods should be considered in clinical applications that require either direct influence on the muscles' bioelectrical activity or a quantitative measurement of the treatment quality. © 2015 Australian Dental Association.
Iatrogenic trigeminal post-traumatic neuropathy: a retrospective two-year cohort study.
Klazen, Y; Van der Cruyssen, F; Vranckx, M; Van Vlierberghe, M; Politis, C; Renton, T; Jacobs, R
2018-06-01
With the growing demand for dental work, trigeminal nerve injuries are increasingly common. This retrospective cohort study examined 53 cases of iatrogenic trigeminal nerve injury seen at the Department of Oral and Maxillofacial Surgery, University Hospitals of Leuven between 2013 and 2014 (0.6% among 8845 new patient visits). Patient records were screened for post-traumatic trigeminal nerve neuropathy caused by nerve injury incurred during implant surgery, endodontic treatment, local anaesthesia, tooth extraction, or specifically third molar removal. The patients ranged in age from 15 to 80years (mean age 42.1years) and 68% were female. The referral delay ranged from 1day to 6.5years (average 10months). The inferior alveolar nerve (IAN) was most frequently injured (28 cases), followed by the lingual nerve (LN) (21 cases). Most nerve injuries were caused during third molar removal (24 cases), followed by implant placement (nine cases) and local anaesthesia injuries (nine cases). Pain symptoms were experienced by 54% of patients suffering IAN injury, compared to 10% of patients with LN injury. Persistent neurosensory disturbances were identified in 60% of patients. While prevention remains the key issue, timely referral seems to be a critical factor for the successful treatment of post-traumatic neuropathy. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Turco, Domenico Del; Seidel, Kay; Dunnen, Wilfred den; Korf, Horst-Werner
2016-01-01
The human brainstem is involved in the regulation of the sleep/waking cycle and normal sleep architectonics and is crucial for the performance of a variety of somatomotor, vital autonomic, oculomotor, vestibular, auditory, ingestive and somatosensory functions. It harbors the origins of the ascending dopaminergic, cholinergic, noradrenergic, serotonergic systems, as well the home base of the descending serotonergic system. In contrast to the cerebral cortex the affection of the brainstem in Alzheimer's disease (AD) by the neurofibrillary or tau cytoskeletal pathology was recognized only approximately fourty years ago in initial brainstem studies. Detailed pathoanatomical investigations of silver stained or tau immunostained brainstem tissue sections revealed nerve cell loss and prominent ADrelated cytoskeletal changes in the raphe nuclei, locus coeruleus, and in the compact parts of the substantia nigra and pedunculopontine nucleus. An additional conspicuous AD-related cytoskeletal pathology was also detected in the auditory brainstem system of AD patients (i.e. inferior colliculus, superior olive, dorsal cochlear nucleus), in the oculomotor brainstem network (i.e. rostral interstitial nucleus of the medial longitudinal fascicle, Edinger-Westphal nucleus, reticulotegmental nucleus of pons), autonomic system (i.e. central and periaqueductal grays, parabrachial nuclei, gigantocellular reticular nucleus, dorsal motor vagal and solitary nuclei, intermediate reticular zone). The alterations in these brainstem nuclei offered for the first time adequate explanations for a variety of less understood disease symptoms of AD patients: Parkinsonian extrapyramidal motor signs, depression, hallucinations, dysfunctions of the sleep/wake cycle, changes in sleeping patterns, attentional deficits, exaggerated pupil dilatation, autonomic dysfunctions, impairments of horizontal and vertical saccades, dysfunctional smooth pursuits. The very early occurrence of the AD-related cytoskeletal pathology in some of these brainstem nuclei points to a major and strategic role of the brainstem in the induction and brain spread of the AD-related cytoskeletal pathology.
Mandalà, Marco; Colletti, Liliana; Colletti, Giacomo; Colletti, Vittorio
2014-12-01
To compare the outcomes (auditory threshold and open-set speech perception at 48-month follow-up) of a new near-field monitoring procedure, electrical compound action potential, on positioning the auditory brainstem implant electrode array on the surface of the cochlear nuclei versus the traditional far-field electrical auditory brainstem response. Retrospective study. Tertiary referral center. Among the 202 patients with auditory brainstem implants fitted and monitored with electrical auditory brainstem response during implant fitting, 9 also underwent electrical compound action potential recording. These subjects were matched retrospectively with a control group of 9 patients in whom only the electrical auditory brainstem response was recorded. Electrical compound action potentials were obtained using a cotton-wick recording electrode located near the surface of the cochlear nuclei and on several cranial nerves. Significantly lower potential thresholds were observed with the recording electrode located on the cochlear nuclei surface compared with the electrical auditory brainstem response (104.4 ± 32.5 vs 158.9 ± 24.2, P = .0030). Electrical brainstem response and compound action potentials identified effects on the neighboring cranial nerves on 3.2 ± 2.4 and 7.8 ± 3.2 electrodes, respectively (P = .0034). Open-set speech perception outcomes at 48-month follow-up had improved significantly in the near- versus far-field recording groups (78.9% versus 56.7%; P = .0051). Electrical compound action potentials during auditory brainstem implantation significantly improved the definition of the potential threshold and the number of auditory and extra-auditory waves generated. It led to the best coupling between the electrode array and cochlear nuclei, significantly improving the overall open-set speech perception. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
Melcher, J R; Guinan, J J; Knudson, I M; Kiang, N Y
1996-04-01
Brainstem regions involved in generating the brainstem auditory evoked potential (BAEP) were identified by examining the effects of lesions on the click-evoked BAEP in cats. An excitotoxin, kainic acid, was injected into various parts of the cochlear nucleus (CN) or into the superior olivary complex (SOC). The locations of the resulting lesions were correlated with the changes produced in the various extrema of the BAEP waveforms. The results indicate that: (1) the earliest BAEP extrema (P1, N1 (recorded between vertex and the earbar ipsilateral to the stimulus) and P1a, P1b, (vertex to contralateral earbar)) are generated by cells with somata peripheral to the CN; (2) P2 is primarily generated by posterior anteroventral CN (AVCNp) and anterior posteroventral CN (PVCNa) cells; (3) SOC, anterior anteroventral CN (AVCNa), AVCNp, and PVCNa cells are involved in generating P3; (4) AVCNa cells are the main CN cells involved in P4, N4, and P5 generation; (5) both ipsilateral and contralateral SOC cells have a role in generating monaurally evoked P4 and P5; and (6) P5 is generated by cells with characteristic frequencies below 10 kHz. From (2) and (4), it is clear that P2 and P4-P5 are generated by cells in distinct, parallel pathways.
Zakaria, Mohd Normani; Jalaei, Bahram
2017-11-01
Auditory brainstem responses evoked by complex stimuli such as speech syllables have been studied in normal subjects and subjects with compromised auditory functions. The stability of speech-evoked auditory brainstem response (speech-ABR) when tested over time has been reported but the literature is limited. The present study was carried out to determine the test-retest reliability of speech-ABR in healthy children at a low sensation level. Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level. As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR. The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Xie, Yuhuan; Chen, Yian Ann; De Bellis, Michael D.
2011-01-01
In healthy children, there is a paucity of information on the growth of the brainstem and thalamus measured by anatomical magnetic resonance imaging. The relationships of age, gender, and age by gender with brainstem and thalamus volumes were analyzed from magnetic resonance brain images of 122 healthy children and adolescents (62 males, 60 females; ages four to seventeen). Results showed that age is a significant predictor of brainstem and thalamus volumes. The volume of the brainstem increases with age, while thalamus volume declines with age. The volumes of right thalami are significantly larger than that of left in both genders with greater rightward asymmetry and greater thalamus/grey matter ratio in females. Males have larger brainstems, but these differences are not significant when covarying for cerebral volumes. Larger thalami were associated with higher verbal IQ. This normative pediatric data is of value to researchers who study these regions in neurodevelopmental disorders. PMID:21954432
Xie, Yuhuan; Chen, Yian Ann; De Bellis, Michael D
2012-03-01
In healthy children, there is a paucity of information on the growth of the brainstem and thalamus measured anatomically magnetic resonance imaging. The relations of age, gender, and age by gender with brainstem and thalamus volumes were analyzed from magnetic resonance brain images of 122 healthy children and adolescents (62 males, 60 females; ages 4 to 17). Results showed that age is a significant predictor of brainstem and thalamus volumes. The volume of the brainstem increases with age, while thalamus volume declines with age. The volume of the right thalamus is significantly larger than that of the left in both genders, with greater rightward asymmetry and greater thalamus to grey matter ratio in females. Males have larger brainstems, but these differences are not significant when covarying for cerebral volume. Larger thalami were associated with higher Verbal IQ. These normative pediatric data are of value to researchers who study these regions in neurodevelopmental disorders.
Das, Kuntal Kanti; Bettaswamy, Guru Prasad; Mehrotra, Anant; Jaiswal, Sushila; Jaiswal, Awadhesh Kumar; Behari, Sanjay
2017-01-01
Brainstem gliomas are relatively rare in adults (<2% of all gliomas). Exophytic gliomas are focal brainstem lesions, which project into the 4 th ventricle or cerebellopontine angles. These exophytic lesions are usually of low-grade histology (pilocytic astrocytoma or ganglioglioma) and have a relatively better outcome compared with brainstem gliomas as a whole. Glioblastoma is the commonest primary glial cell neoplasm and mostly occurs in the supratentorial compartment. It is rather uncommon in the brainstem and seldom has been described as having an exophytic growth pattern. Here we describe an exophytic brainstem glioblastoma arising from the medulla oblongata in a 55-year-old lady who presented with a 4 th ventricular mass, and present a brief review of the literature. Till now, six cases of glioblastoma arising from the medulla oblongata have been reported. So, ours is the seventh such report. To the best of our knowledge, it also happens to be the sixth reported case of dorsally exophytic brainstem glioblastoma till date.
Brainstem Encoding of Aided Speech in Hearing Aid Users with Cochlear Dead Region(s)
Hassaan, Mohammad Ramadan; Ibraheem, Ola Abdallah; Galhom, Dalia Helal
2016-01-01
Introduction Neural encoding of speech begins with the analysis of the signal as a whole broken down into its sinusoidal components in the cochlea, which has to be conserved up to the higher auditory centers. Some of these components target the dead regions of the cochlea causing little or no excitation. Measuring aided speech-evoked auditory brainstem response elicited by speech stimuli with different spectral maxima can give insight into the brainstem encoding of aided speech with spectral maxima at these dead regions. Objective This research aims to study the impact of dead regions of the cochlea on speech processing at the brainstem level after a long period of hearing aid use. Methods This study comprised 30 ears without dead regions and 46 ears with dead regions at low, mid, or high frequencies. For all ears, we measured the aided speech-evoked auditory brainstem response using speech stimuli of low, mid, and high spectral maxima. Results Aided speech-evoked auditory brainstem response was producible in all subjects. Responses evoked by stimuli with spectral maxima at dead regions had longer latencies and smaller amplitudes when compared with the control group or the responses of other stimuli. Conclusion The presence of cochlear dead regions affects brainstem encoding of speech with spectral maxima perpendicular to these regions. Brainstem neuroplasticity and the extrinsic redundancy of speech can minimize the impact of dead regions in chronic hearing aid users. PMID:27413404
Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu
2013-01-01
A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125–255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong grey-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of grey matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. PMID:23384518
The Structural Connectome of the Human Central Homeostatic Network.
Edlow, Brian L; McNab, Jennifer A; Witzel, Thomas; Kinney, Hannah C
2016-04-01
Homeostatic adaptations to stress are regulated by interactions between the brainstem and regions of the forebrain, including limbic sites related to respiratory, autonomic, affective, and cognitive processing. Neuroanatomic connections between these homeostatic regions, however, have not been thoroughly identified in the human brain. In this study, we perform diffusion spectrum imaging tractography using the MGH-USC Connectome MRI scanner to visualize structural connections in the human brain linking autonomic and cardiorespiratory nuclei in the midbrain, pons, and medulla oblongata with forebrain sites critical to homeostatic control. Probabilistic tractography analyses in six healthy adults revealed connections between six brainstem nuclei and seven forebrain regions, several over long distances between the caudal medulla and cerebral cortex. The strongest evidence for brainstem-homeostatic forebrain connectivity in this study was between the brainstem midline raphe and the medial temporal lobe. The subiculum and amygdala were the sampled forebrain nodes with the most extensive brainstem connections. Within the human brainstem-homeostatic forebrain connectome, we observed that a lateral forebrain bundle, whose connectivity is distinct from that of rodents and nonhuman primates, is the primary conduit for connections between the brainstem and medial temporal lobe. This study supports the concept that interconnected brainstem and forebrain nodes form an integrated central homeostatic network (CHN) in the human brain. Our findings provide an initial foundation for elucidating the neuroanatomic basis of homeostasis in the normal human brain, as well as for mapping CHN disconnections in patients with disorders of homeostasis, including sudden and unexpected death, and epilepsy.
[Occipital neuralgia with visual obscurations: a case report].
Selekler, Hamit Macit; Dündar, Gülmine; Kutlu, Ayşe
2010-07-01
Vertigo, dizziness and visual blurring have been reported in painful conditions in trigeminal innervation zones such as in idiopathic stabbing headache, supraorbital neuralgia or trigeminal nerve ophthalmic branch neuralgia. Although not common, pain in occipital neuralgia can spread through the anterior parts of the head. In this article, we present a case whose occipital neuralgiform paroxysms spread to the ipsilateral eye with simultaneous visual obscuration; the mechanisms of propagation and visual obscuration are discussed.
Diamond, S; Freitag, F G; Cohen, J S
1984-02-01
Cluster headache and trigeminal neuralgia (tic douloureux) share a common pattern of exacerbation and remission of pain that is described in similar terms by patients. Although the treatment of these conditions is markedly different, the results of adequate prophylaxis can be extremely impressive in both. The physician who treats headache patients should be aware of the common characteristics of each condition and of the possibility of their concomitant occurrence.
[Muscle relaxants in the treatment of idiopathic trigeminal neuralgia (author's transl)].
von Albert, H H
1975-08-29
In 195 patients with idiopathic trigeminal neuralgias, atypical facial neuralgia or zoster neuralgia in the face it was shown that, in the initial stages of these diseases, the efficacy of the always satisfactory medicinal treatment with an anticonvulsant (hydantoin or carbamezathine) can be increased by combination with a muscle relaxant (especially chlormezanone). Medicinal therapy is then still frequently possible without side effects and operative treatment (Frazier-Spiller's retrogasserian neurotomy) can be postponed.
Post-traumatic external nasal pain syndrome (a trigeminal based pain disorder).
Rozen, Todd
2009-09-01
Little has been written about persistent external nasal pain after injury to the nose in the neurologic or headache literature. In clinical practice, this can be a disabling and treatment refractory condition. The external portion of the nose is highly innervated by branches of the ophthalmic and maxillary divisions of the trigeminal nerve including the nasociliary nerve, external nasal nerve, infratrochlear nerve, anterior ethmoidal nerve, and infraorbital nerve. As these nerves are located on the external portion of the nose just deep enough to the skin they can be easily traumatized with any impact to the nose. Four patients with what is termed the post-traumatic external nasal pain syndrome are reported in this paper, describing the clinical presentation of the disorder and providing treatment options. Post-traumatic external nasal pain syndrome appears to be a novel form of trigeminal-based pain not previously reported in the neurologic literature.
Hassan, Samih; Lagrata, Susie; Levy, Andrew; Matharu, Manjit; Zrinzo, Ludvic
2018-02-01
Objectives To assess the effectiveness of neuromodulation and trigeminal microvascular decompression (MVD) in patients with medically-intractable short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT). Methods Two patients with medically refractory SUNCT underwent MVD following beneficial but incomplete response to neuromodulation (occipital nerve stimulation and deep brain stimulation). MRI confirmed neurovascular conflict with the ipsilateral trigeminal nerve in both patients. Results Although neuromodulation provided significant benefit, it did not deliver complete relief from pain and management required numerous postoperative visits with adjustment of medication and stimulation parameters. Conversely, MVD was successful in eliminating symptoms of SUNCT in both patients with no need for further medical treatment or neuromodulation. Conclusion Neuromodulation requires expensive hardware and lifelong follow-up and maintenance. These case reports highlight that microvascular decompression may be preferable to neuromodulation in the subset of SUNCT patients with ipsilateral neurovascular conflict.
Electrophysiology of Cranial Nerve Testing: Trigeminal and Facial Nerves.
Muzyka, Iryna M; Estephan, Bachir
2018-01-01
The clinical examination of the trigeminal and facial nerves provides significant diagnostic value, especially in the localization of lesions in disorders affecting the central and/or peripheral nervous system. The electrodiagnostic evaluation of these nerves and their pathways adds further accuracy and reliability to the diagnostic investigation and the localization process, especially when different testing methods are combined based on the clinical presentation and the electrophysiological findings. The diagnostic uniqueness of the trigeminal and facial nerves is their connectivity and their coparticipation in reflexes commonly used in clinical practice, namely the blink and corneal reflexes. The other reflexes used in the diagnostic process and lesion localization are very nerve specific and add more diagnostic yield to the workup of certain disorders of the nervous system. This article provides a review of commonly used electrodiagnostic studies and techniques in the evaluation and lesion localization of cranial nerves V and VII.
The biology of herpes simplex virus infection in humans.
Baringer, J R
1976-01-01
Herpes simplex virus is a frequent cause of recurrent ocular, oral, genital or cutaneous eruptions in man. Lesions are highly localized and tend to recur at the same site. Among the most consistent factors provoking recurrence is root section of the trigeminal nerve. Clinical and experimental data suggest that herpes simplex virus is commonly resident within the trigeminal ganglia of man, where it may be responsible for recurrent oral or lip lesions, and is less frequently a resident of the second or third sacral ganglia where it might be responsible for genital eruptions. Generally, the trigeminal virus is type 1 and the sacral virus is type 2; the virus is only rarely recoverable from other sensory ganglia. Factors provoking the reactivation from the virus' latent site and the mechanism for reactivation remain largely unknown. Further study is needed to understand the behavior of HSV and other viruses in nervous system tissue.
2010-01-01
Background Pain due to temporomandibular disorders (TMDs) often has the same clinical symptoms and signs as other types of orofacial pain (OP). The possible presence of serious neurological and/or systemic organic pathologies makes differential diagnosis difficult, especially in early disease stages. In the present study, we performed a qualitative and quantitative electrophysiological evaluation of the neuromuscular responses of the trigeminal nervous system. Using the jaw jerk reflex (JJ) and the motor evoked potentials of the trigeminal roots (bR-MEPs) tests, we investigated the functional and organic responses of healthy subjects (control group) and patients with TMD symptoms (TMD group). Method Thirty-three patients with temporomandibular disorder (TMD) symptoms and 36 control subjects underwent two electromyographic (EMG) tests: the jaw jerk reflex test and the motor evoked potentials of the trigeminal roots test using bilateral electrical transcranial stimulation. The mean, standard deviation, median, minimum, and maximum values were computed for the EMG absolute values. The ratio between the EMG values obtained on each side was always computed with the reference side as the numerator. For the TMD group, this side was identified as the painful side (pain side), while for the control group this was taken as the non-preferred masticatory side (non-preferred side). The 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles were also calculated. Results Analysis of the ratios (expressed as percentages) between the values obtained on both sides revealed a high degree of symmetry in the bR-MEPs % in the control (0.93 ± 0.12%) and TMD (0.91 ± 0.22%) groups. This symmetry indicated organic integrity of the trigeminal root motor fibers and correct electrode arrangement. A degree of asymmetry of the jaw jerk's amplitude between sides (ipJJ%), when the mandible was kept in the intercuspal position, was found in the TMD group (0.24% ± 0.14%) with a statistically significant difference in relation to the control group (0.61% ± 0.2%). This asymmetry seemed to be primarily due to a failure to facilitate the reflex on the painful side in intercuspal position. Conclusions In this 2 × 2 matrix diagnostic model, three different types of headache may be identified: 1) those due to organic pathologies directly and indirectly involving the trigeminal nervous system denoted as "Organic Damage"; 2) those in TMD patients; 3) other types of orofacial pain in subjects who could erroneously be considered healthy, denoted as Orofacial Pain "OP". This category of patient should be considered at risk, as organic neurological pathologies could be present and yet not directly affect the trigeminal system, at least in the early stages of the disease. PMID:20594304
Auditory Brainstem Responses in Childhood Psychosis.
ERIC Educational Resources Information Center
Gillberg, Christopher; And Others
1983-01-01
Auditory brainstem responses (ABR) were compared in 24 autistic children, seven children with other childhood psychoses, and 31 normal children. One-third of the autistic Ss showed abnormal ABR indicating brainstem dysfunction and correlating with muscular hypotonia and severe language impairment. Ss with other psychoses and normal Ss showed…
Brainstem Auditory Evoked Potential Study in Children with Autistic Disorder.
ERIC Educational Resources Information Center
Wong, Virginia; Wong, Sik Nin
1991-01-01
Brainstem auditory evoked potentials were compared in 109 children with infantile autism, 38 with autistic condition, 19 with mental retardation, and 20 normal children. Children with infantile autism or autistic condition had significantly longer brainstem transmission time than normal children suggesting neurological damage as the basis of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Charles, E-mail: charles.mayo@umassmemorial.or; Yorke, Ellen; Merchant, Thomas E.
Publications relating brainstem radiation toxicity to quantitative dose and dose-volume measures derived from three-dimensional treatment planning were reviewed. Despite the clinical importance of brainstem toxicity, most studies reporting brainstem effects after irradiation have fewer than 100 patients. There is limited evidence relating toxicity to small volumes receiving doses above 60-64 Gy using conventional fractionation and no definitive criteria regarding more subtle dose-volume effects or effects after hypofractionated treatment. On the basis of the available data, the entire brainstem may be treated to 54 Gy using conventional fractionation using photons with limited risk of severe or permanent neurological effects. Smaller volumesmore » of the brainstem (1-10 mL) may be irradiated to maximum doses of 59 Gy for dose fractions <=2 Gy; however, the risk appears to increase markedly at doses >64 Gy.« less
Embryonic Origins of the Mouse Superior Olivary Complex
Howell, David M.; Spirou, George A.; Mathers, Peter H.
2014-01-01
Many areas of the central nervous system are organized into clusters of cell groups, with component cell groups exhibiting diverse but related functions. One such cluster, the superior olivary complex (SOC), is located in the ventral auditory brainstem in mammals. The SOC is an obligatory contact point for most projection neurons of the ventral cochlear nucleus and plays central roles in many aspects of monaural and binaural information processing. Despite their important interrelated functions, little is known about the embryonic origins of SOC nuclei, due in part to a paucity of developmental markers to distinguish individual cell groups. In this report, we present a collection of novel markers for the developing SOC nuclei in mice, including the transcription factors FoxP1, MafB, and Sox2, and the lineage-marking transgenic line En1-Cre. We use these definitive markers to examine the rhombic lip and rhombomeric origins of SOC nuclei and demonstrate that they can serve to uniquely identify SOC nuclei and subnuclei in newborn pups. The markers are also useful in identifying distinct nuclear domains within the presumptive SOC as early as embryonic day (E) 14.5, well before morphological distinction of individual nuclei is evident. These findings indicate that the mediolateral and dorsoventral position of SOC nuclei characteristic of the adult brainstem is established during early neurogenesis. PMID:23303740
Deep Temporal Nerve Transfer for Facial Reanimation: Anatomic Dissections and Surgical Case Report.
Mahan, Mark A; Sivakumar, Walavan; Weingarten, David; Brown, Justin M
2017-09-08
Facial nerve palsy is a disabling condition that may arise from a variety of injuries or insults and may occur at any point along the nerve or its intracerebral origin. To examine the use of the deep temporal branches of the motor division of the trigeminal nerve for neural reconstruction of the temporal branches of the facial nerve for restoration of active blink and periorbital facial expression. Formalin-fixed human cadaver hemifaces were dissected to identify landmarks for the deep temporal branches and the tension-free coaptation lengths. This technique was then utilized in 1 patient with a history of facial palsy due to a brainstem cavernoma. Sixteen hemifaces were dissected. The middle deep temporal nerve could be consistently identified on the deep side of the temporalis, within 9 to 12 mm posterior to the jugal point of the zygoma. From a lateral approach through the temporalis, the middle deep temporal nerve could be directly coapted to facial temporal branches in all specimens. Our patient has recovered active and independent upper facial muscle contraction, providing the first case report of a distinct distal nerve transfer for upper facial function. The middle deep temporal branches can be readily identified and utilized for facial reanimation. This technique provided a successful reanimation of upper facial muscles with independent activation. Utilizing multiple sources for neurotization of the facial muscles, different potions of the face can be selectively reanimated to reduce the risk of synkinesis and improved control. Copyright © 2017 by the Congress of Neurological Surgeons
Central pattern generation involved in oral and respiratory control for feeding in the term infant
Barlow, Steven M.
2009-01-01
Purpose of review Drinking and eating are essential skills for survival and benefit from the coordination of several pattern generating networks and their musculoskeletal effectors to achieve safe swallows. Oral-pharyngo-esophageal motility develops during infancy and early childhood, and is influenced by various factors, including neuromuscular maturation, dietary and postural habits, arousal state, ongoing illnesses, congenital anomalies, and the effects of medical or surgical interventions. Gastroesophageal reflux is frequent in neonates and infants, and its role in neonatal morbidity including dysphagia, chronic lung disease, or apparent life-threatening events is not well understood. This review highlights recent studies aimed at understanding the development of oral feeding skills, and cross-system interactions among the brainstem, spinal, and cerebral networks involved in feeding. Recent Findings Functional linkages between suck-swallow and swallow-respiration manifest transitional forms during late gestation through the first year of life which can be delayed or modified by sensory experience and/or disease processes. Relevant central pattern generator (CPG) networks and their neuromuscular targets attain functional status at different rates, which ultimately influences cross-system CPG interactions. Entrainment of trigeminal primary afferents accelerates pattern genesis for the suck CPG and transition-to-oral feed in the RDS preterm infant. Summary The genesis of within-system CPG control for rate and amplitude scaling matures differentially for suck, mastication, swallow, and respiration. Cross-system interactions among these CPGs represent targets of opportunity for new interventions which optimize experience-dependent mechanisms to promote safe swallows among newborn and pediatric patients. PMID:19417662
Dehmel, Susanne; Pradhan, Shashwati; Koehler, Seth; Bledsoe, Sanford; Shore, Susan
2012-01-01
The dorsal cochlear nucleus (DCN) is the first neural site of bimodal auditory-somatosensory integration. Previous studies have shown that stimulation of somatosensory pathways results in immediate suppression or enhancement of subsequent acoustically-evoked discharges. In the unimpaired auditory system suppression predominates. However, damage to the auditory input pathway leads to enhancement of excitatory somatosensory inputs to the cochlear nucleus, changing their effects on DCN neurons (Zeng et al., 2009; Shore et al., 2008). Given the well described connection between the somatosensory system and tinnitus in patients we sought to determine if plastic changes in long lasting bimodal somatosensory-auditory processing accompany tinnitus. Here we demonstrate for the first time in vivo long-term effects of somatosensory inputs on acoustically-evoked discharges of DCN neurons in guinea pigs. The effects of trigeminal nucleus stimulation are compared between normal-hearing animals and animals overexposed with narrow band noise and behaviorally tested for tinnitus. The noise exposure resulted in a temporary threshold shift (TTS) in auditory brainstem responses but a persistent increase in spontaneous and sound-evoked DCN unit firing rates and increased steepness of rate-level functions (RLFs). Rate increases were especially prominent in buildup units. The long-term somatosensory enhancement of sound-evoked responses was strengthened while suppressive effects diminished in noise-exposed animals, especially those that developed tinnitus. Damage to the auditory nerve (ANF) is postulated to trigger compensatory long-term synaptic plasticity of somatosensory inputs that might be an important underlying mechanism for tinnitus generation. PMID:22302808