Sample records for trigger circuits

  1. Detonation control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Bronisz, Lawrence E.

    2016-10-25

    Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.

  2. Secure RFID tag or sensor with self-destruction mechanism upon tampering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekoogar, Faranak; Dowla, Farid; Twogood, Richard

    A circuit board anti-tamper mechanism comprises a circuit board having a frangible portion, a trigger having a trigger spring, a trigger arming mechanism actuated by the trigger wherein the trigger arming mechanism is initially non-actuated, a force producing mechanism, a latch providing mechanical communication between the trigger arming mechanism and the force producing mechanism, wherein the latch initially retains the force producing mechanism in a refracted position. Arming pressure applied to the trigger sufficient to overcome the trigger spring force will actuate the trigger arming mechanism, causing the anti-tamper mechanism to be armed. Subsequent tampering with the anti-tamper mechanism resultsmore » in a decrease of pressure on the trigger below the trigger spring force, thereby causing the trigger arming mechanism to actuate the latch, thereby releasing the force producing mechanism to apply force to the frangible portion of the circuit board, thereby breaking the circuit board.« less

  3. Geologic fracturing method and resulting fractured geologic structure

    DOEpatents

    Mace, Jonathan L.; Bradley, Christopher R.; Greening, Doran R.; Steedman, David W.

    2016-11-08

    Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.

  4. Development, Integration and Testing of Automated Triggering Circuit for Hybrid DC Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Kanabar, Deven; Roy, Swati; Dodiya, Chiragkumar; Pradhan, Subrata

    2017-04-01

    A novel concept of Hybrid DC circuit breaker having combination of mechanical switch and static switch provides arc-less current commutation into the dump resistor during quench in superconducting magnet operation. The triggering of mechanical and static switches in Hybrid DC breaker can be automatized which can effectively reduce the overall current commutation time of hybrid DC circuit breaker and make the operation independent of opening time of mechanical switch. With this view, a dedicated control circuit (auto-triggering circuit) has been developed which can decide the timing and pulse duration for mechanical switch as well as static switch from the operating parameters. This circuit has been tested with dummy parameters and thereafter integrated with the actual test set up of hybrid DC circuit breaker. This paper deals with the conceptual design of the auto-triggering circuit, its control logic and operation. The test results of Hybrid DC circuit breaker using this circuit have also been discussed.

  5. Dual amplitude pulse generator for radiation detectors

    DOEpatents

    Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  6. Study on the characteristics of a two gap capillary discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, D.; Yang, L. J., E-mail: yanglj@mail.xjtu.edu.cn; Huo, P.

    2015-02-15

    The paper presents a new two-gap capillary (TGC) discharge structure. The prominent innovation is the introduction of the middle electrode, which divides the capillary into the trigger gap and the main gap. The discharge circuit of the TGC comprises the trigger circuit and the main circuit. The two circuits are used for the pre-ionization of the trigger gap and providing energy of 450 J for the main gap arc discharging, respectively. When the discharge initiates, the trigger gap is pre-ionized under high voltage pulse produced by trigger circuit, and meanwhile, the weakly ionized plasma is generated. The main circuit then maintainsmore » the expansion of the plasma, which is called soft capillary discharge. Afterwards, the main gap is shorted and discharges under a relatively low voltage. With the optimization of the circuit parameter, both the energy deposition ratio in main gap and the degree of plasma ionization are enhanced. The efficiency of the energy deposition is almost twice higher compared with that of the conventional capillary structure. The life performance test indicates that the erosion of the middle electrode and the trigger gap carbonization are the key factors that limit the life performance of the TGC.« less

  7. UWB transmitter

    DOEpatents

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-01-15

    An ultra-wideband (UWB) dual impulse transmitter is made up of a trigger edge selection circuit actuated by a single trigger input pulse; a first step recovery diode (SRD) based pulser connected to the trigger edge selection circuit to generate a first impulse output; and a second step recovery diode (SRD) based pulser connected to the trigger edge selection circuit in parallel to the first pulser to generate a second impulse output having a selected delay from the first impulse output.

  8. Sensitivity and Switching Delay in Trigger Circuits; SENSIBILITA E RITARDO ENI CIRCUITI A SCATTO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lotto, I.; Stanchi, L.

    The problem of regeneration in trigger circuits is studied, particularly in relation to switching delay and switching time. The factors that affect the speed, such as the threshold as a function of the input signal duration, are examined. The sensitivity of the circuit is also discussed. The characteristics of the dipole equivalent to a trigger circuit are determined, and the switching delay and switching rise time are examined using considerable simplifications (circuits with constant parameters) and graphical methods. For the particular case of a transistor circuit, the equation of the equivalent circuit is derived taking into account the nonlinearity ofmore » the parameters. This equation is processed by means of an analog computer. Using experimental data, the circuits are classified according to their sensitivity and the switching delay. A merit figure is obtained for synthetically evaluating different circuits and optimizing circuit sensitivity and speed. (auth)« less

  9. Sampling and Control Circuit Board for an Inertial Measurement Unit

    NASA Technical Reports Server (NTRS)

    Chelmins, David T (Inventor); Sands, Obed (Inventor); Powis, Richard T., Jr. (Inventor)

    2016-01-01

    A circuit board that serves as a control and sampling interface to an inertial measurement unit ("IMU") is provided. The circuit board is also configured to interface with a local oscillator and an external trigger pulse. The circuit board is further configured to receive the external trigger pulse from an external source that time aligns the local oscillator and initiates sampling of the inertial measurement device for data at precise time intervals based on pulses from the local oscillator. The sampled data may be synchronized by the circuit board with other sensors of a navigation system via the trigger pulse.

  10. Damping Resonant Current in a Spark-Gap Trigger Circuit to Reduce Noise

    DTIC Science & Technology

    2009-06-01

    DAMPING RESONANT CURRENT IN A SPARK- GAP TRIGGER CIRCUIT TO REDUCE NOISE E. L. Ruden Air Force Research Laboratory, Directed Energy Directorate, AFRL...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Damping Resonant Current In A Spark- Gap Trigger Circuit To Reduce Noise 5a...thereby triggering 2 after delay 0, is 1. Each of the two rail- gaps (represented by 2) is trig- gered to close after the spark- gap (1) in the

  11. AMPLITUDE DISCRIMINATOR HAVING SEPARATE TRIGGERING AND RECOVERY CONTROLS UTILIZING AUTOMATIC TRIGGERING

    DOEpatents

    Chase, R.L.

    1962-01-23

    A transistorized amplitude discriminator circuit is described in which the initial triggering sensitivity and the recovery threshold are separately adjustable in a convenient manner. The discriminator is provided with two independent bias components, one of which is for circuit hysteresis (recovery) and one of which is for trigger threshold level. A switching circuit is provided to remove the second bias component upon activation of the trigger so that the recovery threshold is always at the point where the trailing edge of the input signal pulse goes through zero or other desired value. (AEC)

  12. ELECTRONIC TRIGGER CIRCUIT

    DOEpatents

    Russell, J.A.G.

    1958-01-01

    An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

  13. Optically triggered high voltage switch network and method for switching a high voltage

    DOEpatents

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  14. SiC/Si diode trigger circuit provides automatic range switching for log amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    SiC/Si diode pair provides automatic range change to extend the operating range of a logarithmic amplifier-conversion circuit and assures stability at or near the range switch-over point. the diode provides hysteresis for a trigger circuit that actuates a relay at the desired range extension point.

  15. High-voltage crowbar circuit with cascade-triggered series ignitrons

    DOEpatents

    Baker, William R. [Orinda, CA

    1980-11-04

    A series string of ignitrons for switching a large current at high voltage to ground. Switching is initiated by means of a negative trigger pulse applied to the cathode of the lowest voltage level ignitron next to ground to draw ground current through diodes in the ignitor circuit. The trigger pulse is applied thereby to the next higher ignitron cathode and sequentially to the remainder of the ignitrons in the string through diodes in respective ignitor circuits. Full line voltage is held off of nonconducting diodes and ignitrons by means of varistors.

  16. High-voltage crowbar circuit with cascade-triggered series ignitrons

    DOEpatents

    Baker, W.R.

    A series string of ignitrons for switching a large current at high voltage to ground is discussed. Switching is initiated by means of a negative trigger pulse applied to the cathode of the lowest voltage level ignitron next to ground to draw ground current through diodes in the ignitor circuit. The trigger pulse is applied thereby to the next higher ignitron cathode and sequentially to the remainder of the ignitrons in the string through diodes in respective ignitor circuits. Full line voltage is held off of nonconducting diodes and ignitrons by means of varistors.

  17. High-voltage crowbar circuit with cascade-triggered series ignitrons

    DOEpatents

    Baker, W.R.

    1980-11-04

    A series string of ignitrons for switching a large current at high voltage to ground. Switching is initiated by means of a negative trigger pulse applied to the cathode of the lowest voltage level ignitron next to ground to draw ground current through diodes in the ignitor circuit. The trigger pulse is applied thereby to the next higher ignitron cathode and sequentially to the remainder of the ignitrons in the string through diodes in respective ignitor circuits. Full line voltage is held off of nonconducting diodes and ignitrons by means of varistors. 1 fig.

  18. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, A.D.; Haigh, R.E.; Hugenberg, K.F.

    1995-09-26

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place. 7 figs.

  19. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, Alan D.; Haigh, Ronald E.; Hugenberg, Keith F.

    1995-01-01

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.

  20. Trigger circuit forces immediate synchronization of free-running oscillator

    NASA Technical Reports Server (NTRS)

    Nagano, S.

    1975-01-01

    Device provides positive triggering for inverter synchronization in uninterruptible power supplies. Integrated-circuit oscillator frequency may be higher, lower, or the same as that of the synch pulse and is always synchronized by first clock pulse.

  1. ONE SHAKE GATE FORMER

    DOEpatents

    Kalibjian, R.; Perez-Mendez, V.

    1957-08-20

    An improved circuit for forming square pulses having substantially short and precise durations is described. The gate forming circuit incorporates a secondary emission R. F. pentode adapted to receive input trigger pulses amd having a positive feedback loop comnected from the dynode to the control grid to maintain conduction in response to trigger pulses. A short circuited pulse delay line is employed to precisely control the conducting time of the tube and a circuit for squelching spurious oscillations is provided in the feedback loop.

  2. Compact high voltage solid state switch

    DOEpatents

    Glidden, Steven C.

    2003-09-23

    A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

  3. ELECTRICAL CIRCUITS USING COLD-CATHODE TRIODE VALVES

    DOEpatents

    Goulding, F.S.

    1957-11-26

    An electrical circuit which may be utilized as a pulse generator or voltage stabilizer is presented. The circuit employs a cold-cathode triode valve arranged to oscillate between its on and off stages by the use of selected resistance-capacitance time constant components in the plate and trigger grid circuits. The magnitude of the d-c voltage applied to the trigger grid circuit effectively controls the repetition rate of the output pulses. In the voltage stabilizer arrangement the d-c control voltage is a portion of the supply voltage and the rectified output voltage is substantially constant.

  4. One-shot pulse shaper circuit

    NASA Technical Reports Server (NTRS)

    Radys, R. G.

    1968-01-01

    Pulse shaper circuit exhibits low power dissipation, self setting, and easy triggering. It is basically a magnetic one-shot multivibrator consisting of two blocking oscillators and an inhibit circuit.

  5. PARALYZER FOR PULSE HEIGHT DISTRIBUTION ANALYZER

    DOEpatents

    Fairstein, E.

    1960-01-19

    A paralyzer circuit is described for use with a pulseheight distribution analyzer to prevent the analyzer from counting overlapping pulses where they would serve to provide a false indication. The paralyzer circuit comprises a pair of cathode-coupled amplifiers for amplifying pulses of opposite polarity. Diodes are provided having their anodes coupled to the separate outputs of the amplifiers to produce only positive signals, and a trigger circuit is coupled to the diodes ior operation by input pulses of either polarity from the amplifiers. A delay network couples the output of the trigger circuit for delaying the pulses.

  6. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  7. High-frequency trigger generators for CuBr-laser high voltage pumping source

    NASA Astrophysics Data System (ADS)

    Torgaev, S.; Kozhemyak, O.; Yaroslavtsev, E.; Trigub, M.; Musorov, I.; Chertikhina, D.

    2016-04-01

    In this paper the circuits of high frequency trigger generators of pulses of the nanosecond duration are presented. A detailed study of a generator based on the avalanche transistor with the use of a coaxial cable instead of a capacitor is described. This circuit showed advanced characteristics of the output pulses. A circuit of a generator built on high-speed digital components is also considered. The basic advantages and disadvantages of both generators are presented in this paper.

  8. A high voltage pulse generator based on silicon-controlled rectifier for field-reversed configuration experiment.

    PubMed

    Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan

    2017-08-01

    A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.

  9. A high voltage pulse generator based on silicon-controlled rectifier for field-reversed configuration experiment

    NASA Astrophysics Data System (ADS)

    Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan

    2017-08-01

    A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.

  10. Pulse transmission receiver with higher-order time derivative pulse generator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-12

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  11. System for Multiplexing Acoustic Emission (AE) Instrumentation

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)

    2003-01-01

    An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.

  12. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  13. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  14. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOEpatents

    van den Engh, Gerrit J.; Stokdijk, Willem

    1992-01-01

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate.

  15. Apparatus for controlling the firing of rectifiers in polyphase rectifying circuits

    DOEpatents

    Yarema, R.J.

    1979-09-18

    A polyphase rectifier is controlled with precision by a circuit that filters and shifts a reference signal associated with each phase and that starts a ramp signal at a zero crossing of the shifted reference signal. The difference between the ramp signal and an external trigger signal is used to generate a pulse that switches power rectifiers into conduction. The circuit reduces effects of variations that introduce subharmonics into a rectified signal and it can be used for constant or time-varying external trigger signals.

  16. High voltage pulse generator. [Patent application

    DOEpatents

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  17. Tester Detects Steady-Short Or Intermittent-Open Circuits

    NASA Technical Reports Server (NTRS)

    Anderson, Bobby L.

    1990-01-01

    Momentary open circuits or steady short circuits trigger buzzer. Simple, portable, lightweight testing circuit sounds long-duration alarm when it detects steady short circuit or momentary open circuit in coaxial cable or other two-conductor transmission line. Tester sensitive to discontinuities lasting 10 microseconds or longer. Used extensively for detecting intermittent open shorts in accelerometer and extensometer cables. Also used as ordinary buzzer-type continuity checker to detect steady short or open circuits.

  18. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOEpatents

    Engh, G.J. van den; Stokdijk, W.

    1992-09-22

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate. 17 figs.

  19. Solid-state circuit breaker with current-limiting characteristic using a superconducting coil

    DOEpatents

    Boenig, H.J.

    1982-08-16

    A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two eyeles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.

  20. Solid-state circuit breaker with current limiting characteristic using a superconducting coil

    DOEpatents

    Boenig, Heinrich J.

    1984-01-01

    A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two cycles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.

  1. Stability of the Baseline Holder in Readout Circuits For Radiation Detectors

    PubMed Central

    Chen, Y.; Cui, Y.; O’Connor, P.; Seo, Y.; Camarda, G. S.; Hossain, A.; Roy, U.; Yang, G.; James, R. B.

    2016-01-01

    Baseline holder (BLH) circuits are used widely to stabilize the analog output of application-specific integrated circuits (ASICs) for high-count-rate applications. The careful design of BLH circuits is vital to the overall stability of the analog-signal-processing chain in ASICs. Recently, we observed self-triggered fluctuations in an ASIC in which the shaping circuits have a BLH circuit in the feedback loop. In fact, further investigations showed that methods of enhancing small-signal stabilities cause an even worse situation. To resolve this problem, we used large-signal analyses to study the circuit’s stability. We found that a relatively small gain for the error amplifier and a small current in the non-linear stage of the BLH are required to enhance stability in large-signal analysis, which will compromise the properties of the BLH. These findings were verified by SPICE simulations. In this paper, we present our detailed analysis of the BLH circuits, and propose an improved version of them that have only minimal self-triggered fluctuations. We summarize the design considerations both for the stability and the properties of the BLH circuits. PMID:27182081

  2. Heart-Rate and Breath-Rate Monitor

    NASA Technical Reports Server (NTRS)

    Cooper, T. G.

    1983-01-01

    Circuit requiring only four integrated circuits (IC's) measures both heart rate and breath rate. Phase-locked loops lock on heart-rate and respiration-rate input signals. Each loop IC contains two phase comparators. Positive-edge-triggered circuit used in making monitors insensitive to dutycycle variations.

  3. MOSFET analog memory circuit achieves long duration signal storage

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Memory circuit maintains the signal voltage at the output of an analog signal amplifier when the input signal is interrupted or removed. The circuit uses MOSFET /Metal Oxide Semiconductor Field Effect Transistor/ devices as voltage-controlled switches, triggered by an external voltage-sensing device.

  4. NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Dirk; Ireland, John; Pesaran, Ahmad

    NREL has developed a device to test one of the most challenging failure mechanisms of lithium-ion (Li-ion) batteries -- a battery internal short circuit. Many members of the technical community believe that this type of failure is caused by a latent flaw that results in a short circuit between electrodes during use. As electric car manufacturers turn to Li-ion batteries for energy storage, solving the short circuit problem becomes more important. To date, no reliable and practical method exists to create on-demand internal shorts in Li-ion cells that produce a response that is relevant to the ones produced by fieldmore » failures. NREL and NASA have worked to establish an improved ISC cell-level test method that simulates an emergent internal short circuit, is capable of triggering the four types of cell internal shorts, and produces consistent and reproducible results. Internal short circuit device design is small, low-profile and implantable into Li-ion cells, preferably during assembly. The key component is an electrolyte-compatible phase change material (PCM). The ISC is triggered by heating the cell above PCM melting temperature (presently 40 degrees C – 60 degrees C). In laboratory testing, the activated device can handle currents in excess of 300 A to simulate hard shorts (< 2 mohms). Phase change from non-conducting to conducting has been 100% successful during trigger tests.« less

  5. Series resonance inverter with triggered vacuum gaps

    NASA Astrophysics Data System (ADS)

    Damstra, Geert C.; Zhang, X.

    1994-05-01

    Series resonance inverters based on semi-conductor switching elements are well-known and have a wide range of application, mainly for lower voltages. For high voltage application many switching elements have to be put in series to obtain sufficient blocking voltage. Voltage grinding and multiple gate control elements are needed. There is much experience with the triggered vacuum gaps as high voltage/high current single shot elements, for example in reignition circuits for synthetic circuit breaker tests. These elements have a blocking voltage of 50 - 100 kV and are triggerable by a light fiber control device. A prototype inverter has been developed that generates 0.1 Hz, 30 kV AC voltages with a flat top for tests on cables and capacitors of many micro farads fed from a low voltage supply of about 600 V. Only two TVG elements are needed to switch the resonant circuit alternatively on the positive or negative supply. The resonant circuit itself consists of the capacitance of the testobject and a high quality inductor that determines the frequency and the peak current of the voltage reversing process.

  6. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  7. A novel high performance ESD power clamp circuit with a small area

    NASA Astrophysics Data System (ADS)

    Zhaonian, Yang; Hongxia, Liu; Li, Li; Qingqing, Zhuo

    2012-09-01

    A MOSFET-based electrostatic discharge (ESD) power clamp circuit with only a 10 ns RC time constant for a 0.18-μm process is proposed. A diode-connected NMOSFET is used to maintain a long delay time and save area. The special structure overcomes other shortcomings in this clamp circuit. Under fast power-up events, the gate voltage of the clamp MOSFET does not rise as quickly as under ESD events, the special structure can keep the clamp MOSFET thoroughly off. Under a falsely triggered event, the special structure can turn off the clamp MOSFET in a short time. The clamp circuit can also reject the power supply noise effectively. Simulation results show that the clamp circuit avoids fast false triggering events such as a 30 ns/1.8 V power-up, maintains a 1.2 μs delay time and a 2.14 μs turn-off time, and reduces to about 70% of the RC time constant. It is believed that the proposed clamp circuit can be widely used in high-speed integrated circuits.

  8. Design and test of a flat-top magnetic field system driven by capacitor banks.

    PubMed

    Jiang, Fan; Peng, Tao; Xiao, Houxiu; Zhao, Jianlong; Pan, Yuan; Herlach, Fritz; Li, Liang

    2014-04-01

    An innovative method for generating a flat-top pulsed magnetic field by means of capacitor banks is developed at the Wuhan National High Magnetic Field Center (WHMFC). The system consists of two capacitor banks as they are normally used to generate a pulsed field. The two discharge circuits (the magnet circuit and the auxiliary circuit) are coupled by a pulse transformer such that the electromotive force (EMF) induced via the transformer in the magnet circuit containing the magnet coil is opposed to the EMF of the capacitor bank. At a certain point before the current pulse in the coil reaches its peak, the auxiliary circuit is triggered. With optimized parameters for charging voltage and trigger delay, the current in the magnet circuit can be approximately kept constant to obtain a flat-top. A prototype was developed at the WHMFC; the magnet circuit was energized by seven 1 MJ (3.2 mF/25 kV) capacitor modules and the auxiliary circuit by four 1 MJ modules. Fields up to 41 T with 6 ms flat-top have been obtained with a conventional user magnet used at the WHMFC.

  9. Electronic gating circuit and ultraviolet laser excitation permit improved dosimeter sensitivity

    NASA Technical Reports Server (NTRS)

    Eggenberger, D.; King, D.; Longnecker, A.; Schutt, D.

    1968-01-01

    Standard dosimeter reader, modified by adding an electronic gating circuit to trigger the intensity level photomultiplier, increases readout sensitivity of photoluminescent dosimeter systems. The gating circuit is controlled by a second photomultiplier which senses a short ultraviolet pulse from a laser used to excite the dosimeter.

  10. Solid state switch

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  11. A Photogate Flash Trigger and a Demonstration of Inertia.

    ERIC Educational Resources Information Center

    Winters, Loren

    1992-01-01

    Describes a photogate electronic flash trigger that synchronizes flash discharge with high-speed events. Presents a photographic study of a high-speed collision demonstrating the passage of a BB through an elastic strip. Provides the schematic of the delay circuit utilized in the trigger. (MDH)

  12. Binary selectable detector holdoff circuit: Design, testing, and application. [to laser radar data acquisition system

    NASA Technical Reports Server (NTRS)

    Kadrmas, K. A.

    1973-01-01

    A very high speed switching circuit, part of a laser radar data acquisition system, has been designed and tested. The primary function of this circuit was to provide computer controlled switching of photodiode detector preamplifier power supply voltages, typically less than plus or minus 20 volts, in approximately 10 nanoseconds. Thus, in actual use, detector and/or detector preamplifier damage can be avoided as a result of sudden extremely large values of backscattered radiation being detected, such as might be due to short range, very thin atmospheric dust layers. Switching of the power supply voltages was chosen over direct switching the photodiode detector input to the preamplifier, based on system noise considerations. Also, the circuit provides a synchronized trigger pulse output for triggering devices such as the Biomation Model 8100 100 MHz analog to digital converter.

  13. Taped Random Spectra for Reliability Demonstration Testing

    DTIC Science & Technology

    1981-04-01

    circuit , barrier strip terminals 9A and 9B. Closure of the normally-open contacts provides the gate current necessary to trigger the control TRIAC ... Circuit contains a TRIAC , DIAC, Reed Relay (R3) and the Tape Running Relay Driver. The Cam on/off switching is accomplished through the barrier strip...2-25 2I; Input Power Circuit .. .. .... ...... ...... ...... ........... 2-26 2-13 Typical Control Circuit

  14. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, Wallace J.

    1999-01-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  15. Programmable full-adder computations in communicating three-dimensional cell cultures.

    PubMed

    Ausländer, David; Ausländer, Simon; Pierrat, Xavier; Hellmann, Leon; Rachid, Leila; Fussenegger, Martin

    2018-01-01

    Synthetic biologists have advanced the design of trigger-inducible gene switches and their assembly into input-programmable circuits that enable engineered human cells to perform arithmetic calculations reminiscent of electronic circuits. By designing a versatile plug-and-play molecular-computation platform, we have engineered nine different cell populations with genetic programs, each of which encodes a defined computational instruction. When assembled into 3D cultures, these engineered cell consortia execute programmable multicellular full-adder logics in response to three trigger compounds.

  16. Evaluation of a 10 kV, 400 kA Si SGTO at High dI/dt

    DTIC Science & Technology

    2006-05-01

    inspection and high-potting of each component module prior to pulsing. The complete unit was then switched in a low inductance RLC circuit to test...during triggering. A ring down RLC circuit (Fig. 3) was designed with minimum inductance to test for peak dI/dt of anode-cathode flowing current. A...single 860 µF capacitor was charged to a chosen high voltage, then the power supply was disconnected and the switch was triggered to rapidly

  17. LINEAR COUNT-RATE METER

    DOEpatents

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  18. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  19. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    PubMed

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  20. Materials for electrochemical device safety

    DOEpatents

    Vissers, Daniel R.; Amine, Khalil; Thackeray, Michael M.; Kahaian, Arthur J.; Johnson, Christopher S.

    2015-04-07

    An electrochemical device includes a thermally-triggered intumescent material or a gas-triggered intumescent material. Such devices prevent or minimize short circuits in a device that could lead to thermal run-away. Such devices may include batteries or supercapacitors.

  1. Tunnel diode circuit used as nanosecond-range time marker

    NASA Technical Reports Server (NTRS)

    Larsen, R. N.; Shear, E. B.

    1968-01-01

    Simple tunnel diode time marker circuit determines the time at which an event occurs in a scintillation crystal. It is capable of triggering at voltages as low as the noise level of a 10-stage PM tube.

  2. Complementary Paired G4FETs as Voltage-Controlled NDR Device

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Chen, Suheng; Blalock, Ben; Britton, Chuck; Prothro, Ben; Vandersand, James; Schrimph, Ron; Cristoloveanu, Sorin; Akavardar, Kerem; Gentil, P.

    2009-01-01

    It is possible to synthesize a voltage-controlled negative-differential-resistance (NDR) device or circuit by use of a pair of complementary G4FETs (four-gate field-effect transistors). [For more information about G4FETs, please see the immediately preceding article]. As shown in Figure 1, the present voltage-controlled NDR device or circuit is an updated version of a prior NDR device or circuit, known as a lambda diode, that contains a pair of complementary junction field-effect transistors (JFETs). (The lambda diode is so named because its current-versus- voltage plot bears some resemblance to an upper-case lambda.) The present version can be derived from the prior version by substituting G4FETs for the JFETs and connecting both JFET gates of each G4FET together. The front gate terminals of the G4FETs constitute additional terminals (that is, terminals not available in the older JFET version) to which one can apply control voltages VN and VP. Circuits in which NDR devices have been used include (1) Schmitt triggers and (2) oscillators containing inductance/ capacitance (LC) resonant circuits. Figure 2 depicts such circuits containing G4FET NDR devices like that of Figure 1. In the Schmitt trigger shown here, the G4FET NDR is loaded with an ordinary inversion-mode, p-channel, metal oxide/semiconductor field-effect transistor (inversion-mode PMOSFET), the VN terminal of the G4FET NDR device is used as an input terminal, and the input terminals of the PMOSFET and the G4FET NDR device are connected. VP can be used as an extra control voltage (that is, a control voltage not available in a typical prior Schmitt trigger) for adjusting the pinch-off voltage of the p-channel G4FET and thereby adjusting the trigger-voltage window. In the oscillator, a G4FET NDR device is loaded with a conventional LC tank circuit. As in other LC NDR oscillators, oscillation occurs because the NDR counteracts the resistance in the tank circuit. The advantage of this G4FET-NDR LC oscillator over a conventional LC NDR oscillator is that one can apply a time-varying signal to one of the extra control input terminals (VN or VP) to modulate the conductance of the NDR device and thereby amplitude-modulate the output signal.

  3. [A novel serial port auto trigger system for MOSFET dose acquisition].

    PubMed

    Luo, Guangwen; Qi, Zhenyu

    2013-01-01

    To synchronize the radiation of microSelectron-HDR (Nucletron afterloading machine) and measurement of MOSFET dose system, a trigger system based on interface circuit was designed and corresponding monitor and trigger program were developed on Qt platform. This interface and control system was tested and showed stable operate and reliable work. This adopted serial port detect technique may expand to trigger application of other medical devices.

  4. 76 FR 61429 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Volatility) (i) To reflect changes to market-wide circuit breaker triggers for NMS stocks, and (ii) amend... trading in all OTC Equity Securities when a market-wide circuit breaker is in effect for NMS stocks. The... Equity Securities pursuant to its authority under Rule 6440(a)(3) \\3\\ until the market-wide circuit...

  5. Visual Confirmation of Voice Takeoff Clearance (VICON) Operational Evaluation. Volume 2. Operations and Maintenance Manual

    DTIC Science & Technology

    1981-02-01

    cabinet and the field. The momentary contacts from the switches of the control panel trigger the respective circuits in module I. This circuit then... module (approximately 40 milliamperes at 70-100 detector, filter, threshold circuit and alarm relay. A block volts) Into microwave energy at X-band...advantageous to use different N.C. Terminals. NOTE: If open circuit tamper switch is modulation frequencies on links operating within close prox

  6. Safety and performance enhancement circuit for primary explosive detonators

    DOEpatents

    Davis, Ronald W [Tracy, CA

    2006-04-04

    A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

  7. A remotely triggered fast neutron detection instrument based on a plastic organic scintillator

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Aspinall, M. D.; Joyce, M. J.

    2018-02-01

    A detector system for the characterization of radiation fields of both fast neutrons and γ rays is described comprising of a gated photomultiplier tube (PMT), an EJ299-33 solid organic scintillator detector, and an external trigger circuit. The objective of this development was to conceive a means by which the PMT in such a system can be actuated remotely during the high-intensity bursts of pulsed γ-ray contamination that can arise during active interrogation procedures. The system is used to detect neutrons and γ rays using established pulse-shape discrimination (PSD) techniques. The gating circuit enables the PMT to be switched off remotely. This is compatible with use during intense radiation transients to avoid saturation and the disruption of the operation of the PMT during the burst. Data are presented in the form of pulse-height spectra and PSD scatter plots for the system triggered with a strobed light source. These confirm that the gain of the system and the throughput for both triggered and un-triggered scenarios are as expected, given the duty cycle of the stimulating radiation. This demonstrates that the triggering function does not perturb the system response of the detector.

  8. A remotely triggered fast neutron detection instrument based on a plastic organic scintillator.

    PubMed

    Jones, A R; Aspinall, M D; Joyce, M J

    2018-02-01

    A detector system for the characterization of radiation fields of both fast neutrons and γ rays is described comprising of a gated photomultiplier tube (PMT), an EJ299-33 solid organic scintillator detector, and an external trigger circuit. The objective of this development was to conceive a means by which the PMT in such a system can be actuated remotely during the high-intensity bursts of pulsed γ-ray contamination that can arise during active interrogation procedures. The system is used to detect neutrons and γ rays using established pulse-shape discrimination (PSD) techniques. The gating circuit enables the PMT to be switched off remotely. This is compatible with use during intense radiation transients to avoid saturation and the disruption of the operation of the PMT during the burst. Data are presented in the form of pulse-height spectra and PSD scatter plots for the system triggered with a strobed light source. These confirm that the gain of the system and the throughput for both triggered and un-triggered scenarios are as expected, given the duty cycle of the stimulating radiation. This demonstrates that the triggering function does not perturb the system response of the detector.

  9. Workshop on data acquisition and trigger system simulations for high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    This report discusses the following topics: DAQSIM: A data acquisition system simulation tool; Front end and DCC Simulations for the SDC Straw Tube System; Simulation of Non-Blocklng Data Acquisition Architectures; Simulation Studies of the SDC Data Collection Chip; Correlation Studies of the Data Collection Circuit & The Design of a Queue for this Circuit; Fast Data Compression & Transmission from a Silicon Strip Wafer; Simulation of SCI Protocols in Modsim; Visual Design with vVHDL; Stochastic Simulation of Asynchronous Buffers; SDC Trigger Simulations; Trigger Rates, DAQ & Online Processing at the SSC; Planned Enhancements to MODSEM II & SIMOBJECT -- anmore » Overview -- R.; DAGAR -- A synthesis system; Proposed Silicon Compiler for Physics Applications; Timed -- LOTOS in a PROLOG Environment: an Algebraic language for Simulation; Modeling and Simulation of an Event Builder for High Energy Physics Data Acquisition Systems; A Verilog Simulation for the CDF DAQ; Simulation to Design with Verilog; The DZero Data Acquisition System: Model and Measurements; DZero Trigger Level 1.5 Modeling; Strategies Optimizing Data Load in the DZero Triggers; Simulation of the DZero Level 2 Data Acquisition System; A Fast Method for Calculating DZero Level 1 Jet Trigger Properties and Physics Input to DAQ Studies.« less

  10. Safe arming system for two-explosive munitions

    DOEpatents

    Jaroska, Miles F.; Niven, William A.; Morrison, Jasper J.

    1978-01-01

    A system for safely and positively detonating high-explosive munitions, including a source of electrical signals, a split-phase square-loop transformer responsive solely to a unique series of signals from the source for charging an energy storage circuit through a voltage doubling circuit, and a spark-gap trigger for initiating discharge of the energy in the storage circuit to actuate a detonator and thereby fire the munitions.

  11. Single-Event Transients in Voltage Regulators

    NASA Technical Reports Server (NTRS)

    Johnston, Allan H.; Miyahira, Tetsuo F.; Irom, F.; Laird, Jamie S.

    2006-01-01

    Single-event transients are investigated for two voltage regulator circuits that are widely used in space. A circuit-level model is developed that can be used to determine how transients are affected by different circuit application conditions. Internal protection circuits-which are affected by load as well as internal thermal effects-can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. Although conventional output transients can be reduced by adding load capacitance, that approach is ineffective for dropouts from protection circuitry.

  12. Development of Boolean calculus and its applications. [digital systems design

    NASA Technical Reports Server (NTRS)

    Tapia, M. A.

    1980-01-01

    The development of Boolean calculus for its application to developing digital system design methodologies that would reduce system complexity, size, cost, speed, power requirements, etc., is discussed. Synthesis procedures for logic circuits are examined particularly asynchronous circuits using clock triggered flip flops.

  13. UWB dual burst transmit driver

    DOEpatents

    Dallum, Gregory E [Livermore, CA; Pratt, Garth C [Discovery Bay, CA; Haugen, Peter C [Livermore, CA; Zumstein, James M [Livermore, CA; Vigars, Mark L [Livermore, CA; Romero, Carlos E [Livermore, CA

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  14. Submicrosecond Power-Switching Test Circuit

    NASA Technical Reports Server (NTRS)

    Folk, Eric N.

    2006-01-01

    A circuit that changes an electrical load in a switching time shorter than 0.3 microsecond has been devised. This circuit can be used in testing the regulation characteristics of power-supply circuits . especially switching power-converter circuits that are supposed to be able to provide acceptably high degrees of regulation in response to rapid load transients. The combination of this power-switching circuit and a known passive constant load could be an attractive alternative to a typical commercially available load-bank circuit that can be made to operate in nominal constant-voltage, constant-current, and constant-resistance modes. The switching provided by a typical commercial load-bank circuit in the constant-resistance mode is not fast enough for testing of regulation in response to load transients. Moreover, some test engineers do not trust the test results obtained when using commercial load-bank circuits because the dynamic responses of those circuits are, variously, partly unknown and/or excessively complex. In contrast, the combination of this circuit and a passive constant load offers both rapid switching and known (or at least better known) load dynamics. The power-switching circuit (see figure) includes a signal-input section, a wide-hysteresis Schmitt trigger that prevents false triggering in the event of switch-contact bounce, a dual-bipolar-transistor power stage that drives the gate of a metal oxide semiconductor field-effect transistor (MOSFET), and the MOSFET, which is the output device that performs the switching of the load. The MOSFET in the specific version of the circuit shown in the figure is rated to stand off a potential of 100 V in the "off" state and to pass a current of 20 A in the "on" state. The switching time of this circuit (the characteristic time of rise or fall of the potential at the drain of the MOSFET) is .300 ns. The circuit can accept any of three control inputs . which one depending on the test that one seeks to perform: a repetitive waveform from a signal generator, momentary closure of a push-button switch, or closure or opening of a manually operated on/off switch. In the case of a signal generator, one can adjust the frequency and duty cycle as needed to obtain the desired AC power-supply response, which one could display on an oscilloscope. Momentary switch closure could be useful for obtaining (and, if desired, displaying on an oscilloscope set to trigger on an event) the response of a power supply to a single load transient. The on/off switch can be used to switch between load states in which static-load regulation measurements are performed.

  15. Pulse Detecting Genetic Circuit – A New Design Approach

    PubMed Central

    Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C.

    2016-01-01

    A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse–analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event. PMID:27907045

  16. Pulse Detecting Genetic Circuit - A New Design Approach.

    PubMed

    Noman, Nasimul; Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C

    2016-01-01

    A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse-analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event.

  17. Superconducting FCL using a combined inducted magnetic field trigger and shunt coil

    DOEpatents

    Tekletsadik, Kasegn D.

    2007-10-16

    A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.

  18. Microcircuit Modeling and Simulation beyond Ohm's Law

    ERIC Educational Resources Information Center

    Saxena, T.; Chek, D. C. Y.; Tan, M. L. P.; Arora, V. K.

    2011-01-01

    Circuit theory textbooks rely heavily on the applicability of Ohm's law, which collapses as electronic components reach micro- and nanoscale dimensions. Circuit analysis is examined in the regime where the applied voltage V is greater than the critical voltage V[subscript c], which triggers the nonlinear behavior. The critical voltage is infinity…

  19. GATING CIRCUITS

    DOEpatents

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  20. VARIABLE TIME-INTERVAL GENERATOR

    DOEpatents

    Gross, J.E.

    1959-10-31

    This patent relates to a pulse generator and more particularly to a time interval generator wherein the time interval between pulses is precisely determined. The variable time generator comprises two oscillators with one having a variable frequency output and the other a fixed frequency output. A frequency divider is connected to the variable oscillator for dividing its frequency by a selected factor and a counter is used for counting the periods of the fixed oscillator occurring during a cycle of the divided frequency of the variable oscillator. This defines the period of the variable oscillator in terms of that of the fixed oscillator. A circuit is provided for selecting as a time interval a predetermined number of periods of the variable oscillator. The output of the generator consists of a first pulse produced by a trigger circuit at the start of the time interval and a second pulse marking the end of the time interval produced by the same trigger circuit.

  1. Automatic sweep circuit

    DOEpatents

    Keefe, Donald J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found.

  2. Event-triggered consensus tracking of multi-agent systems with Lur'e nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Na; Duan, Zhisheng; Wen, Guanghui; Zhao, Yu

    2016-05-01

    In this paper, distributed consensus tracking problem for networked Lur'e systems is investigated based on event-triggered information interactions. An event-triggered control algorithm is designed with the advantages of reducing controller update frequency and sensor energy consumption. By using tools of ?-procedure and Lyapunov functional method, some sufficient conditions are derived to guarantee that consensus tracking is achieved under a directed communication topology. Meanwhile, it is shown that Zeno behaviour of triggering time sequences is excluded for the proposed event-triggered rule. Finally, some numerical simulations on coupled Chua's circuits are performed to illustrate the effectiveness of the theoretical algorithms.

  3. PULSE COUNTER

    DOEpatents

    Trumbo, D.E.

    1959-02-10

    A transistorized pulse-counting circuit adapted for use with nuclear radiation detecting detecting devices to provide a small, light weight portable counter is reported. The small size and low power requirements of the transistor are of particular value in this instance. The circuit provides an adjustable count scale with a single transistor which is triggered by the accumulated charge on a storage capacitor.

  4. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  5. Apparatus including a plurality of spaced transformers for locating short circuits in cables

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J. (Inventor)

    1978-01-01

    A cable fault locator is described for sensing faults such as short circuits in power cables. The apparatus includes a plurality of current transformers strategically located along a cable. Trigger circuits are connected to each of the current transformers for placing a resistor in series with a resistive element responsive to an abnormally high current flowing through that portion of the cable. By measuring the voltage drop across the resistive element, the location of the fault can be determined.

  6. SHORT PULSE STRETCHER

    DOEpatents

    Branum, D.R.; Cummins, W.F.

    1962-12-01

    >A short pulse stretching circuit capable of stretching a short puise to enable it to be displayed on a relatively slow sweeping oscilloscope is described. Moreover, the duration of the pulse is increased by charging a capacitor through a diode and thereafter discharging the capacitor at such time as is desired. In the circuit the trigger pulse alone passes through a delay line, whereas the main signal passes through the diode only, and results in over-all circuit losses which are proportional to the low losses of the diode only. (AEC)

  7. Trigger Circuit.

    DTIC Science & Technology

    A wire of Nitinol can be stretched up to a given amount and will remain in this stretched state until heated to a critical temperature. When heated...circuit of this invention provides a current pulse for the required time period to heat the Nitinol wire to its critical temperature to thereby restore the...wire to its original length. The circuit includes a high power transistor which is gated on for a controlled time to provide the required power to heat the Nitinol wire to its critical temperature. (Author)

  8. Simulation Approach for Timing Analysis of Genetic Logic Circuits.

    PubMed

    Baig, Hasan; Madsen, Jan

    2017-07-21

    Constructing genetic logic circuits is an application of synthetic biology in which parts of the DNA of a living cell are engineered to perform a dedicated Boolean function triggered by an appropriate concentration of certain proteins or by different genetic components. These logic circuits work in a manner similar to electronic logic circuits, but they are much more stochastic and hence much harder to characterize. In this article, we introduce an approach to analyze the threshold value and timing of genetic logic circuits. We show how this approach can be used to analyze the timing behavior of single and cascaded genetic logic circuits. We further analyze the timing sensitivity of circuits by varying the degradation rates and concentrations. Our approach can be used not only to characterize the timing behavior but also to analyze the timing constraints of cascaded genetic logic circuits, a capability that we believe will be important for design automation in synthetic biology.

  9. A 7.8 kV nanosecond pulse generator with a 500 Hz repetition rate

    NASA Astrophysics Data System (ADS)

    Lin, M.; Liao, H.; Liu, M.; Zhu, G.; Yang, Z.; Shi, P.; Lu, Q.; Sun, X.

    2018-04-01

    Pseudospark switches are widely used in pulsed power applications. In this paper, we present the design and performance of a 500 Hz repetition rate high-voltage pulse generator to drive TDI-series pseudospark switches. A high-voltage pulse is produced by discharging an 8 μF capacitor through a primary windings of a setup isolation transformer using a single metal-oxide-semiconductor field-effect transistor (MOSFET) as a control switch. In addition, a self-break spark gap is used to steepen the pulse front. The pulse generator can deliver a high-voltage pulse with a peak trigger voltage of 7.8 kV, a peak trigger current of 63 A, a full width at half maximum (FWHM) of ~30 ns, and a rise time of 5 ns to the trigger pin of the pseudospark switch. During burst mode operation, the generator achieved up to a 500 Hz repetition rate. Meanwhile, we also provide an AC heater power circuit for heating a H2 reservoir. This pulse generator can be used in circuits with TDI-series pseudospark switches with either a grounded cathode or with a cathode electrically floating operation. The details of the circuits and their implementation are described in the paper.

  10. A PVDF Trigger and Tilt Detector for Projectile Impact Experiments

    DTIC Science & Technology

    1991-11-01

    trigger include a fast rise time signal and a predictable signal magnitude. The circuit of a piezoelectric PVDF trigger is modeled in Figure 2-1; the...TR 91-640 DISTRIBUTION Copies Copies Chief of Naval Research Chairman Attn: ONR 1132P (R. Miller ) 1 Department of Defense Explosives ONT 20T (L. V...C. S. Coffey) 1 Washington, DC 20540 (J. Davis) 1 (D. L. Demske) 1 Socidth Nationale des Poudres (J. W. Forbes) 1 et Explosifs (R. H. Guirguis ) 1 Attn

  11. Engineering dynamical control of cell fate switching using synthetic phospho-regulons

    PubMed Central

    Gordley, Russell M.; Williams, Reid E.; Bashor, Caleb J.; Toettcher, Jared E.; Yan, Shude; Lim, Wendell A.

    2016-01-01

    Many cells can sense and respond to time-varying stimuli, selectively triggering changes in cell fate only in response to inputs of a particular duration or frequency. A common motif in dynamically controlled cells is a dual-timescale regulatory network: although long-term fate decisions are ultimately controlled by a slow-timescale switch (e.g., gene expression), input signals are first processed by a fast-timescale signaling layer, which is hypothesized to filter what dynamic information is efficiently relayed downstream. Directly testing the design principles of how dual-timescale circuits control dynamic sensing, however, has been challenging, because most synthetic biology methods have focused solely on rewiring transcriptional circuits, which operate at a single slow timescale. Here, we report the development of a modular approach for flexibly engineering phosphorylation circuits using designed phospho-regulon motifs. By then linking rapid phospho-feedback with slower downstream transcription-based bistable switches, we can construct synthetic dual-timescale circuits in yeast in which the triggering dynamics and the end-state properties of the ON state can be selectively tuned. These phospho-regulon tools thus open up the possibility to engineer cells with customized dynamical control. PMID:27821768

  12. BLOCKING OSCILLATOR DOUBLE PULSE GENERATOR CIRCUIT

    DOEpatents

    Haase, J.A.

    1961-01-24

    A double-pulse generator, particuiarly a double-pulse generator comprising a blocking oscillator utilizing a feedback circuit to provide means for producing a second pulse within the recovery time of the blocking oscillator, is described. The invention utilized a passive network which permits adjustment of the spacing between the original pulses derived from the blocking oscillator and further utilizes the original pulses to trigger a circuit from which other pulses are initiated. These other pulses are delayed and then applied to the input of the blocking oscillator, with the result that the output from the oscillator circuit contains twice the number of pulses originally initiated by the blocking oscillator itself.

  13. Logic circuits based on molecular spider systems.

    PubMed

    Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko

    2016-08-01

    Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. PHOTOSENSITIVE RELAY CONTROL CIRCUIT

    DOEpatents

    Martin, C.F.

    1958-01-14

    adapted for the measurement of the time required for an oscillating member to pass through a preselected number of oscillations, after being damped to a certain maximum amplitude of oscillation. A mirror is attached to the moving member and directs light successively to a photocell which is part of a trigger unit and to first and second photocells which are part of a starter unit, as the member swings to its maximum amplitude. The starter and trigger units comprise thyratrons and relays so interconnected that the trigger circuit, although generating a counter pulse, does not register a count in the counter when the light traverses both photocells of the starter unit. When the amplitude of oscillation of the member decreases to where the second photocell is not transversed, the triggei pulse is received by the counter. The counter taen operates to register the desired number of oscillations and initiates and terminates a timer for measuring the time irterval for the preselected number of oscillations.

  15. Functional differences in bi-level pressure preset ventilators.

    PubMed

    Highcock, M P; Shneerson, J M; Smith, I E

    2001-02-01

    The performance of four bilevel positive pressure preset ventilators was compared. The ventilators tested were; BiPAP ST30 (Respironics); Nippy2 (B + D Electrical); Quantum PSV (Healthdyne); and Sullivan VPAP H ST (Resmed). A patient simulator was used to determine the sensitivity of the triggering mechanisms and the responses to a leak within the patient circuit, and to changes in patient effort. Significant differences (p <0.05) between the devices were seen in the trigger delay time and inspiratory trigger pressure. When a leak was introduced into the patient circuit, the fall in tidal volume (VT) was less than ten per cent for each ventilator. The addition of patient effort produced a number of changes in the ventilation delivered. Patient efforts of 0.25 s induced a variable fall in VT. An increase in VT was seen with some ventilators with patient efforts of 1 s but the effect was variable. Trigger failures and subsequent falls in minute volume were seen with the BiPAP and the Nippy2 at the highest respiratory frequency. Differences in the responses of the ventilators are demonstrated that may influence the selection of a ventilator, particularly in the treatment of breathless patients with ventilatory failure.

  16. Tethered Pyrotechnic Apparatus for Acquiring a Ground Sample

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Zimmerman, Wayne; Wu, Jiunn Jenq; Badescu, Mircea; Sherrit, Stewart

    2009-01-01

    A proposed alternative design for the balloon-borne ground-sampling system described in the immediately preceding article would not rely on free fall to drive a harpoonlike sample-collecting device into the ground. Instead, the harpoon-like sample-collecting device would be a pyrotechnically driven, tethered projectile. The apparatus would include a tripod that would be tethered to the gondola. A gun for shooting the projectile into the ground would be mounted at the apex of the tripod. The gun would include an electronic trigger circuit, a chamber at the breech end containing a pyrotechnic charge, and a barrel. A sabot would be placed in the barrel just below the pyrotechnic charge, and the tethered projectile would be placed in the barrel just below the sabot. The tripod feet would be equipped with contact sensors connected to the trigger circuit. In operation, the tripod would be lowered to the ground on its tether. Once contact with the ground was detected by the sensors on all three tripod feet, the trigger circuit would fire the pyrotechnic charge to drive the projectile into the ground. (Requiring contact among all three tripod feet and the ground would ensure that the projectile would be fired into the ground, rather than up toward the gondola or the balloon.) The tethered projectile would then be reeled back up to the gondola for analysis of the sample.

  17. Effectiveness of a worker-worn electric-field sensor to detect power-line proximity and electrical-contact.

    PubMed

    Zeng, Shengke; Powers, John R; Newbraugh, Bradley H

    2010-06-01

    Construction workers suffer the most electrocutions among all industries. Currently, there are no electrical contact warning devices on the market to protect workers. This paper proposes a worker-worn electric-field sensor. As the worker is in proximity to, or in contact with, a live power-circuit, the sensor sets off an audible/visual warning alarm. The sensor also has the potential to wirelessly trip a wireless-capable circuit breaker, and to trigger a wireless transmitter to notify emergency response of an electrical contact. An experiment was conducted to measure electric-field variation on simulated human-wrists (10 defrosted hog-legs) in various proximities and in electrical-contact to a simulated power-circuit. The purpose of these tests was to determine the feasibility of developing a worker-worn electric-field detection sensor for use in protecting workers from contact with energized electrical conductors. This study observed a significant electric-field-magnitude increase as a hog-leg approaches the live-circuit, and the distinct electric-field-magnitude jump as the leg contacts with the live-circuit. The observation indicates that this sensor can be an effective device to warn the workers of electrical hazards. Additionally, the sensor has the potential to wirelessly trip a wireless-capable circuit-breaker and trigger a wireless transmitter (such as a cell phone) to notify an emergency response. The prompt notification prevents the worker from further injury caused by postponed medical-care. Widespread use of this sensor could lower electrocution and electrically related injury rates in the construction industry. (c) 2010 Elsevier Ltd. All rights reserved.

  18. Blood leak alarm interference by hydoxocobalamin is hemodialysis machine dependent.

    PubMed

    Sutter, M E; Clarke, M E; Cobb, J; Daubert, G P; Rathore, V S; Aston, L S; Poppenga, R H; Ford, J B; Owen, K P; Albertson, T E

    2012-12-01

    Hydroxocobalamin has been reported to interfere with the blood leak alarm on hemodialysis machines making it difficult to use this treatment modality after hydroxocobalamin infusion. The objective was to determine if this interference with hydroxocobalamin occurs across hemodialysis machines by different manufacturers. Additionally, we aimed to see if this represented a colorimetric interference alone or if it is the optical properties of hydroxocobalamin. Hydroxocobalamin was reconstituted per package insert. Food coloring was added to 0.9% saline to create the colors of the visual spectrum. Optical properties of absorbance and transmittance were measured. Hydroxocobalamin and the saline solutions were infused into the Fresenius 2008K™ and the Gambro Phoenix X36™ machines. Times were recorded from the start of the machine until the solution finished or the alarm triggered. When evaluating the Gambro Phoenix X36™ machine and dialysis circuit; the alarm did not trigger. In contrast, the blood leak alarm on the Fresenius 2008K™ machine was tripped by both the red solution and hydoxocobalamin infused per the package insert. The alarm stopped the machine between 128 and 132 seconds for the red solution and between 30 and 35 seconds with the hydroxocobalamin. Membranes of the circuits where the alarm tripped were examined and remained intact without blood. Results were validated on different machines with new circuits. Hydroxocobalamin infusion per package insert and the red saline solution prepared with Red Dye 40 both triggered the blood leak alarm and stopped the Fresenius 2008K™ machine. However, this was not true for the Gambro Phoenix X36™ machine as the alarm never triggered. The interference with the Fresenius 2008K™ appears colorimetric due to normal saline with Red Dye 40 triggering the alarm. We alert physicians to become familiar with the properties of individual dialysis machines prior to use of hydroxocobalamin. When facing difficulties with hemodialysis after the administration of hydroxocobalamin, consider attempting with a different manufactures machine or model if available or contact the manufacturer directly.

  19. [Research progress of mammalian synthetic biology in biomedical field].

    PubMed

    Yang, Linfeng; Yin, Jianli; Wang, Meiyan; Ye, Haifeng

    2017-03-25

    Although still in its infant stage, synthetic biology has achieved remarkable development and progress during the past decade. Synthetic biology applies engineering principles to design and construct gene circuits uploaded into living cells or organisms to perform novel or improved functions, and it has been widely used in many fields. In this review, we describe the recent advances of mammalian synthetic biology for the treatment of diseases. We introduce common tools and design principles of synthetic gene circuits, and then we demonstrate open-loop gene circuits induced by different trigger molecules used in disease diagnosis and close-loop gene circuits used for biomedical applications. Finally, we discuss the perspectives and potential challenges of synthetic biology for clinical applications.

  20. Unstable behaviour of normally-off GaN E-HEMT under short-circuit

    NASA Astrophysics Data System (ADS)

    Martínez, P. J.; Maset, E.; Sanchis-Kilders, E.; Esteve, V.; Jordán, J.; Bta Ejea, J.; Ferreres, A.

    2018-04-01

    The short-circuit capability of power switching devices plays an important role in fault detection and the protection of power circuits. In this work, an experimental study on the short-circuit (SC) capability of commercial 600 V Gallium Nitride enhancement-mode high-electron-mobility transistors (E-HEMT) is presented. A different failure mechanism has been identified for commercial p-doped GaN gate (p-GaN) HEMT and metal-insulator-semiconductor (MIS) HEMT. In addition to the well known thermal breakdown, a premature breakdown is shown on both GaN HEMTs, triggered by hot electron trapping at the surface, which demonstrates that current commercial GaN HEMTs has requirements for improving their SC ruggedness.

  1. Multi-GHz Synchronous Waveform Acquisition With Real-Time Pattern-Matching Trigger Generation

    NASA Astrophysics Data System (ADS)

    Kleinfelder, Stuart A.; Chiang, Shiuh-hua Wood; Huang, Wei

    2013-10-01

    A transient waveform capture and digitization circuit with continuous synchronous 2-GHz sampling capability and real-time programmable windowed trigger generation has been fabricated and tested. Designed in 0.25 μm CMOS, the digitizer contains a circular array of 128 sample and hold circuits for continuous sample acquisition, and attains 2-GHz sample speeds with over 800-MHz analog bandwidth. Sample clock generation is synchronous, combining a phase-locked loop for high-speed clock generation and a high-speed fully-differential shift register for distributing clocks to all 128 sample circuits. Using two comparators per sample, the sampled voltage levels are compared against two reference levels, a high threshold and a low threshold, that are set via per-comparator digital to analog converters (DACs). The 256 per-comparator 5-bit DACs compensate for comparator offsets and allow for fine reference level adjustment. The comparator results are matched in 8-sample-wide windows against up to 72 programmable patterns in real time using an on-chip programmable logic array. Each 8-sample trigger window is equivalent to 4 ns of acquisition, overlapped sample by sample in a circular fashion through the entire 128-sample array. The 72 pattern-matching trigger criteria can be programmed to be any combination of High-above the high threshold, Low-below the low threshold, Middle-between the two thresholds, or “Don't Care”-any state is accepted. A trigger pattern of “HLHLHLHL,” for example, watches for a waveform that is oscillating at about 1 GHz given the 2-GHz sample rate. A trigger is flagged in under 20 ns if there is a match, after which sampling is stopped, and on-chip digitization can proceed via 128 parallel 10-bit converters, or off-chip conversion can proceed via an analog readout. The chip exceeds 11 bits of dynamic range, nets over 800-MHz -3-dB bandwidth in a realistic system, and jitter in the PLL-based sampling clock has been measured to be about 1 part per million, RMS.

  2. ELECTRICAL PROTECTIVE DEVICE

    DOEpatents

    Baker, W.R.

    1958-05-01

    A protective system for high-energy resonant cavities is described. It is particularly directed to the discharging of resonant cavities for preventing energy back flow through associated equipment as a result of faults. The invention in general provides means defining a spark gap communicating with the interior of a cavity or waveguide adapted for high-power energization or an evacuated chamber containing an electrode having a large power differential from the wall or other electrode. A control or trigger circuit is connected between a power supply energizing the cavity and the spark gap whereby reverse current flow in the power supply circuit instantaneously triggers the spark gap to initiate discharge within the cavity, whereupon cavity energy discharges across the gap, or with an electrode present the electrode discharges to one of the spark gap elements.

  3. Characterization of CNRS Fizeau wedge laser tuner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom-fabricated circuit board which contains a high-speed fringe detection and locating circuit. This board includes a dc level-discriminator-type fringe detector, a counter circuit to determine fringe center, a pulsed lasermore » triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data-collection process and interprets the results.« less

  4. Multimodal Chemosensory Circuits Controlling Male Courtship in Drosophila.

    PubMed

    Clowney, E Josephine; Iguchi, Shinya; Bussell, Jennifer J; Scheer, Elias; Ruta, Vanessa

    2015-09-02

    Throughout the animal kingdom, internal states generate long-lasting and self-perpetuating chains of behavior. In Drosophila, males instinctively pursue females with a lengthy and elaborate courtship ritual triggered by activation of sexually dimorphic P1 interneurons. Gustatory pheromones are thought to activate P1 neurons but the circuit mechanisms that dictate their sensory responses to gate entry into courtship remain unknown. Here, we use circuit mapping and in vivo functional imaging techniques to trace gustatory and olfactory pheromone circuits to their point of convergence onto P1 neurons and reveal how their combined input underlies selective tuning to appropriate sexual partners. We identify inhibition, even in response to courtship-promoting pheromones, as a key circuit element that tunes and tempers P1 neuron activity. Our results suggest a circuit mechanism in which balanced excitation and inhibition underlie discrimination of prospective mates and stringently regulate the transition to courtship in Drosophila. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Multimodal chemosensory circuits controlling male courtship in Drosophila

    PubMed Central

    Clowney, E. Josephine; Iguchi, Shinya; Bussell, Jennifer J.; Scheer, Elias; Ruta, Vanessa

    2015-01-01

    Summary Throughout the animal kingdom, internal states generate long-lasting and self-perpetuating chains of behavior. In Drosophila, males instinctively pursue females with a lengthy and elaborate courtship ritual triggered by activation of sexually dimorphic P1 interneurons. Gustatory pheromones are thought to activate P1 neurons but the circuit mechanisms that dictate their sensory responses to gate entry into courtship remain unknown. Here, we use circuit mapping and in vivo functional imaging techniques to trace gustatory and olfactory pheromone circuits to their point of convergence onto P1 neurons and reveal how their combined input underlies selective tuning to appropriate sexual partners. We identify inhibition, even in response to courtship-promoting pheromones, as a key circuit element that tunes and tempers P1 neuron activity. Our results suggest a circuit mechanism in which balanced excitation and inhibition underlie discrimination of prospective mates and stringently regulate the transition to courtship in Drosophila. PMID:26279475

  6. Characterization of CNRS Fizeau wedge laser tuner

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  7. Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light.

    PubMed

    Chen, Xianjun; Li, Ting; Wang, Xue; Du, Zengmin; Liu, Renmei; Yang, Yi

    2016-04-07

    Programmable transcription factors can enable precise control of gene expression triggered by a chemical inducer or light. To obtain versatile transgene system with combined benefits of a chemical inducer and light inducer, we created various chimeric promoters through the assembly of different copies of the tet operator and Gal4 operator module, which simultaneously responded to a tetracycline-responsive transcription factor and a light-switchable transactivator. The activities of these chimeric promoters can be regulated by tetracycline and blue light synergistically or antagonistically. Further studies of the antagonistic genetic circuit exhibited high spatiotemporal resolution and extremely low leaky expression, which therefore could be used to spatially and stringently control the expression of highly toxic protein Diphtheria toxin A for light regulated gene therapy. When transferring plasmids engineered for the gene switch-driven expression of a firefly luciferase (Fluc) into mice, the Fluc expression levels of the treated animals directly correlated with the tetracycline and light input program. We suggest that dual-input genetic circuits using TET and light that serve as triggers to achieve expression profiles may enable the design of robust therapeutic gene circuits for gene- and cell-based therapies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Digital time delay

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.

  9. UWB multi-burst transmit driver for averaging receivers

    DOEpatents

    Dallum, Gregory E

    2012-11-20

    A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).

  10. Synchronizing A Stroboscope With A Video Camera

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Dismond, Harriet R.

    1993-01-01

    Circuit synchronizes flash of light from stroboscope with frame and field periods of video camera. Sync stripper sends vertical-synchronization signal to delay generator, which generates trigger signal. Flashlamp power supply accepts delayed trigger signal and sends pulse of power to flash lamp. Designed for use in making short-exposure images that "freeze" flow in wind tunnel. Also used for making longer-exposure images obtained by use of continuous intense illumination.

  11. Photomultiplier circuit including means for rapidly reducing the sensitivity thereof. [and protection from radiation damage

    NASA Technical Reports Server (NTRS)

    Mcclenahan, J. O. (Inventor)

    1974-01-01

    A simple, reliable and inexpensive control circuit is described for rapidly reducing the bias voltage across one or more of the dynode stages of a photomultiplier, to substantially decrease its sensitivity to incoming light at those times where excess light intensity might damage the tube. The control circuit comprises a switching device, such as a silicon controlled rectifier (SCR), coupled between a pair of the electrodes in the tube, preferably the cathode and first dynode, or the first and second dynodes, the switching device operating in response to a trigger pulse applied to its gate to short circuit the two electrodes. To insure the desired reduction in sensitivity, two switching stages, the devices be employed between two of the electrode stages, the devices being operated simultaneously to short circuit both stages.

  12. Over-voltage protection system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Song; Dong, Dong; Lai, Rixin

    An over-voltage protection system includes an electronic valve connected across two terminals of a circuit and an over-voltage detection circuit connected across one of the plurality of semiconductor devices for detecting an over-voltage across the circuit. The electronic valve includes a plurality of semiconductor devices connected in series. The over-voltage detection circuit includes a voltage divider circuit connected to a break-over diode in a way to provide a representative low voltage to the break-over diode and an optocoupler configured to receive a current from the break-over diode when the representative low voltage exceeds a threshold voltage of the break-over diodemore » indicating an over-voltage condition. The representative low voltage provided to the break-over diode represents a voltage across the one semiconductor device. A plurality of self-powered gate drive circuits are connected to the plurality of semiconductor devices, wherein the plurality of self-powered gate drive circuits receive over-voltage triggering pulses from the optocoupler during the over-voltage condition and switch on the plurality of semiconductor devices to bypass the circuit.« less

  13. Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis.

    PubMed

    Li, Yong; Sun, Sujuan; Fan, Lin; Hu, Shanfang; Huang, Yan; Zhang, Ke; Nie, Zhou; Yao, Shouzhou

    2017-11-20

    A novel and versatile peptide-based bio-logic system capable of regulating cell function is developed using sortase A (SrtA), a peptide ligation enzyme, as a generic processor. By modular peptide design, we demonstrate that mammalian cells apoptosis can be programmed by peptide-based logic operations, including binary and combination gates (AND, INHIBIT, OR, and AND-INHIBIT), and a complex sequential logic circuit (multi-input keypad lock). Moreover, a proof-of-concept peptide regulatory circuit was developed to analyze the expression profile of cell-secreted protein biomarkers and trigger cancer-cell-specific apoptosis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Multi-objective optimization of MOSFETs channel widths and supply voltage in the proposed dual edge-triggered static D flip-flop with minimum average power and delay by using fuzzy non-dominated sorting genetic algorithm-II.

    PubMed

    Keivanian, Farshid; Mehrshad, Nasser; Bijari, Abolfazl

    2016-01-01

    D Flip-Flop as a digital circuit can be used as a timing element in many sophisticated circuits. Therefore the optimum performance with the lowest power consumption and acceptable delay time will be critical issue in electronics circuits. The newly proposed Dual-Edge Triggered Static D Flip-Flop circuit layout is defined as a multi-objective optimization problem. For this, an optimum fuzzy inference system with fuzzy rules is proposed to enhance the performance and convergence of non-dominated sorting Genetic Algorithm-II by adaptive control of the exploration and exploitation parameters. By using proposed Fuzzy NSGA-II algorithm, the more optimum values for MOSFET channel widths and power supply are discovered in search space than ordinary NSGA types. What is more, the design parameters involving NMOS and PMOS channel widths and power supply voltage and the performance parameters including average power consumption and propagation delay time are linked. To do this, the required mathematical backgrounds are presented in this study. The optimum values for the design parameters of MOSFETs channel widths and power supply are discovered. Based on them the power delay product quantity (PDP) is 6.32 PJ at 125 MHz Clock Frequency, L = 0.18 µm, and T = 27 °C.

  15. Spark gaps synchronization using electrical trigger pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Ritu; Saroj, P.C.; Sharma, Archana

    In pulse power systems, it is required to have synchronized triggering of two or more high voltage spark gaps capable of switching large currents, using electrical trigger pulses. This paper intends to study the synchronization of spark gaps using electrical trigger. The trigger generator consists of dc supply, IGBT switch and driver circuit which generates 8kV, 400ns (FWHM) pulses. The experiment was carried out using two 0.15uF/50kV energy storage capacitors charged to 12kV and discharged through stainless steel spark gaps of diameter 9 mm across 10 ohm non inductive load. The initial experiment shows that synchronization has been achieved withmore » jitter of 50 to 100ns. Further studies carried out to reduce the jitter time by varying various electrical parameters will be presented. (author)« less

  16. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch

    PubMed Central

    Lou, Chunbo; Liu, Xili; Ni, Ming; Huang, Yiqi; Huang, Qiushi; Huang, Longwen; Jiang, Lingli; Lu, Dan; Wang, Mingcong; Liu, Chang; Chen, Daizhuo; Chen, Chongyi; Chen, Xiaoyue; Yang, Le; Ma, Haisu; Chen, Jianguo; Ouyang, Qi

    2010-01-01

    Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and ‘memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch. PMID:20212522

  17. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch.

    PubMed

    Lou, Chunbo; Liu, Xili; Ni, Ming; Huang, Yiqi; Huang, Qiushi; Huang, Longwen; Jiang, Lingli; Lu, Dan; Wang, Mingcong; Liu, Chang; Chen, Daizhuo; Chen, Chongyi; Chen, Xiaoyue; Yang, Le; Ma, Haisu; Chen, Jianguo; Ouyang, Qi

    2010-01-01

    Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and 'memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch.

  18. Genetically Encoded Catalytic Hairpin Assembly for Sensitive RNA Imaging in Live Cells.

    PubMed

    Mudiyanselage, Aruni P K K Karunanayake; Yu, Qikun; Leon-Duque, Mark A; Zhao, Bin; Wu, Rigumula; You, Mingxu

    2018-06-26

    DNA and RNA nanotechnology has been used for the development of dynamic molecular devices. In particular, programmable enzyme-free nucleic acid circuits, such as catalytic hairpin assembly, have been demonstrated as useful tools for bioanalysis and to scale up system complexity to an extent beyond current cellular genetic circuits. However, the intracellular functions of most synthetic nucleic acid circuits have been hindered by challenges in the biological delivery and degradation. On the other hand, genetically encoded and transcribed RNA circuits emerge as alternative powerful tools for long-term embedded cellular analysis and regulation. Herein, we reported a genetically encoded RNA-based catalytic hairpin assembly circuit for sensitive RNA imaging inside living cells. The split version of Broccoli, a fluorogenic RNA aptamer, was used as the reporter. One target RNA can catalytically trigger the fluorescence from tens-to-hundreds of Broccoli. As a result, target RNAs can be sensitively detected. We have further engineered our circuit to allow easy programming to image various target RNA sequences. This design principle opens the arena for developing a large variety of genetically encoded RNA circuits for cellular applications.

  19. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.

    PubMed

    Safavieh, Roozbeh; Juncker, David

    2013-11-07

    Microfluidic capillary systems employ surface tension effects to manipulate liquids, and are thus self-powered and self-regulated as liquid handling is structurally and chemically encoded in microscale conduits. However, capillary systems have been limited to perform simple fluidic operations. Here, we introduce complex capillary flow circuits that encode sequential flow of multiple liquids with distinct flow rates and flow reversal. We first introduce two novel microfluidic capillary elements including (i) retention burst valves and (ii) robust low aspect ratio trigger valves. These elements are combined with flow resistors, capillary retention valves, capillary pumps, and open and closed reservoirs to build a capillary circuit that, following sample addition, autonomously delivers a defined sequence of multiple chemicals according to a preprogrammed and predetermined flow rate and time. Such a circuit was used to measure the concentration of C-reactive protein. This work illustrates that as in electronics, complex capillary circuits may be built by combining simple capillary elements. We define such circuits as "capillarics", and introduce symbolic representations. We believe that more complex circuits will become possible by expanding the library of building elements and formulating abstract design rules.

  20. SHOCK-EXCITED OSCILLATOR

    DOEpatents

    Creveling, R.

    1957-12-17

    S> A shock-excited quartz crystal oscillator is described. The circuit was specifically designed for application in micro-time measuring work to provide an oscillator which immediately goes into oscillation upon receipt of a trigger pulse and abruptly ceases oscillation when a second pulse is received. To achieve the instant action, the crystal has a prestressing voltage applied across it. A monostable multivibrator receives the on and off trigger pulses and discharges a pulse through the crystal to initiate or terminate oscillation instantly.

  1. [Digital acoustic burglar alarm system using infrared radio remote control].

    PubMed

    Wang, Song-De; Zhao, Yan; Yao, Li-Ping; Zhang, Shuan-Ji

    2009-03-01

    Using butt emission infrared sensors, radio receiving and sending modules, double function integrated circuit with code and code translation, LED etc, a digital acoustic burglar alarm system using infrared radio to realize remote control was designed. It uses infrared ray invisible to eyes, composing area of radio distance. Once people and objects shelter the infrared ray, a testing signal will be output by the tester, and the sender will be triggered to work. The radio coding signal that sender sent is received by the receiver, then processed by a serial circuit. The control signal is output to trigger the sounder to give out an alarm signal, and the operator will be cued to notice this variation. At the same time, the digital display will be lighted and the alarm place will be watched. Digital coding technology is used, and a number of sub alarm circuits can joint the main receiver, so a lot of places can be monitored. The whole system features a module structure, with the property of easy alignment, stable operation, debug free and so on. The system offers an alarm range reaching 1 000 meters in all directions, and can be widely used in family, shop, storehouse, orchard and so on.

  2. Synthetic gene network restoring endogenous pituitary–thyroid feedback control in experimental Graves’ disease

    PubMed Central

    Saxena, Pratik; Charpin-El Hamri, Ghislaine; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin

    2016-01-01

    Graves’ disease is an autoimmune disorder that causes hyperthyroidism because of autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the thyroid gland, triggering thyroid hormone release. The physiological control of thyroid hormone homeostasis by the feedback loops involving the hypothalamus–pituitary–thyroid axis is disrupted by these stimulating autoantibodies. To reset the endogenous thyrotrophic feedback control, we designed a synthetic mammalian gene circuit that maintains thyroid hormone homeostasis by monitoring thyroid hormone levels and coordinating the expression of a thyroid-stimulating hormone receptor antagonist (TSHAntag), which competitively inhibits the binding of thyroid-stimulating hormone or the human autoantibody to TSHR. This synthetic control device consists of a synthetic thyroid-sensing receptor (TSR), a yeast Gal4 protein/human thyroid receptor-α fusion, which reversibly triggers expression of the TSHAntag gene from TSR-dependent promoters. In hyperthyroid mice, this synthetic circuit sensed pathological thyroid hormone levels and restored the thyrotrophic feedback control of the hypothalamus–pituitary–thyroid axis to euthyroid hormone levels. Therapeutic plug and play gene circuits that restore physiological feedback control in metabolic disorders foster advanced gene- and cell-based therapies. PMID:26787873

  3. Light-Triggered Ternary Device and Inverter Based on Heterojunction of van der Waals Materials.

    PubMed

    Shim, Jaewoo; Jo, Seo-Hyeon; Kim, Minwoo; Song, Young Jae; Kim, Jeehwan; Park, Jin-Hong

    2017-06-27

    Multivalued logic (MVL) devices/circuits have received considerable attention because the binary logic used in current Si complementary metal-oxide-semiconductor (CMOS) technology cannot handle the predicted information throughputs and energy demands of the future. To realize MVL, the conventional transistor platform needs to be redesigned to have two or more distinctive threshold voltages (V TH s). Here, we report a finding: the photoinduced drain current in graphene/WSe 2 heterojunction transistors unusually decreases with increasing gate voltage under illumination, which we refer to as the light-induced negative differential transconductance (L-NDT) phenomenon. We also prove that such L-NDT phenomenon in specific bias ranges originates from a variable potential barrier at a graphene/WSe 2 junction due to a gate-controllable graphene electrode. This finding allows us to conceive graphene/WSe 2 -based MVL logic circuits by using the I D -V G characteristics with two distinctive V TH s. Based on this finding, we further demonstrate a light-triggered ternary inverter circuit with three stable logical states (ΔV out of each state <0.05 V). Our study offers the pathway to substantialize MVL systems.

  4. Hyperbranched Hybridization Chain Reaction for Triggered Signal Amplification and Concatenated Logic Circuits.

    PubMed

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying; Wang, Zonghua

    2015-07-06

    A hyper-branched hybridization chain reaction (HB-HCR) is presented herein, which consists of only six species that can metastably coexist until the introduction of an initiator DNA to trigger a cascade of hybridization events, leading to the self-sustained assembly of hyper-branched and nicked double-stranded DNA structures. The system can readily achieve ultrasensitive detection of target DNA. Moreover, the HB-HCR principle is successfully applied to construct three-input concatenated logic circuits with excellent specificity and extended to design a security-mimicking keypad lock system. Significantly, the HB-HCR-based keypad lock can alarm immediately if the "password" is incorrect. Overall, the proposed HB-HCR with high amplification efficiency is simple, homogeneous, fast, robust, and low-cost, and holds great promise in the development of biosensing, in the programmable assembly of DNA architectures, and in molecular logic operations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Performance Evaluation of CMUT-Based Ultrasonic Transformers for Galvanic Isolation.

    PubMed

    Heller, Jacques; Boulme, Audren; Alquier, Daniel; Ngo, Sophie; Certon, Dominique

    2018-04-01

    This paper presents the development of a novel acoustic transformer with high galvanic isolation dedicated to power switch triggering. The transformer is based on two capacitive micromachined ultrasonic transducers layered on each side of a silicon substrate; one is the primary circuit, and the other is the secondary circuit. The thickness mode resonance of the substrate is leveraged to transmit the triggering signal. The fabrication and characterization of an initial prototype is presented in this paper. All experimental results are discussed, from the electrical impedance measurements to the power efficiency measurements, for different electrical load conditions. A comparison with a specifically developed finite-element method model is done. Simulations are finally used to identify the optimization rules of this initial prototype. It is shown that the power efficiency can be increased from 35% to 60%, and the transmitted power can be increased from 1.6 to 45 mW/Volt.

  6. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  7. On Demand Internal Short Circuit Device Enables Verification of Safer, Higher Performing Battery Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darcy, Eric; Keyser, Matthew

    The Internal Short Circuit (ISC) device enables critical battery safety verification. With the aluminum interstitial heat sink between the cells, normal trigger cells cannot be driven into thermal runaway without excessive temperature bias of adjacent cells. With an implantable, on-demand ISC device, thermal runaway tests show that the conductive heat sinks protected adjacent cells from propagation. High heat dissipation and structural support of Al heat sinks show high promise for safer, higher performing batteries.

  8. Using a PFET To Commutate an SCR

    NASA Technical Reports Server (NTRS)

    Edwards, D. B.; Ripple, W. E.

    1984-01-01

    Accidental turn-on prevented. PFET diverts load current around SCR to prevent false SCR triggering from current and voltage switching transients. New circuit used in all types of single phase and polyphase inverters and in buck-boost-, and flyback regulators.

  9. Flash protection controller

    DOEpatents

    Galbraith, L.K.

    1979-12-07

    A controller provides a high voltage to maintain an electro-optic shutter in a transparent condition until a flash of light which would be harmful to personnel is sensed by a phototransistor. The controller then shorts the shutter to ground to minimize light transmission to the user and maintains light transmission at the pre-flash level for a predetermined time to allow the flash to subside. A log converter and differential trigger circuit keep the controller from being triggered by other light flashes which are not dangerous.

  10. Flash protection controller

    DOEpatents

    Galbraith, Lee K.

    1981-01-01

    A controller provides a high voltage to maintain an electro-optic shutter in a transparent condition until a flash of light which would be harmful to personnel is sensed by a phototransistor. The controller then shorts the shutter to ground to minimize light transmission to the user and maintains light transmission at the pre-flash level for a predetermined time to allow the flash to subside. A log converter and differential trigger circuit keep the controller from being triggered by other light flashes which are not dangerous.

  11. Implementation of Wireless Input Methods (Game Controllers and Accelerometers) for Simulated Weapon Trigger Fire in the Computer Assisted Rehabilitation Environment (CAREN)

    DTIC Science & Technology

    2013-08-22

    software. Using this weapon, two ways of sending trigger fire response to the D-Flow software were proposed. One was to integrate a wireless game...Logitech International, S.A., Romanel-sur- Morges, Switzerland) and the Xbox 360 wireless controller for Windows (Microsoft, Redmond, WA). The circuit board...power on and off the game controller so that the batteries do not drain (though these devices will time out after approximately 10 minutes of

  12. RNA signal amplifier circuit with integrated fluorescence output.

    PubMed

    Akter, Farhima; Yokobayashi, Yohei

    2015-05-15

    We designed an in vitro signal amplification circuit that takes a short RNA input that catalytically activates the Spinach RNA aptamer to produce a fluorescent output. The circuit consists of three RNA strands: an internally blocked Spinach aptamer, a fuel strand, and an input strand (catalyst), as well as the Spinach aptamer ligand 3,5-difluoro-4-hydroxylbenzylidene imidazolinone (DFHBI). The input strand initially displaces the internal inhibitory strand to activate the fluorescent aptamer while exposing a toehold to which the fuel strand can bind to further displace and recycle the input strand. Under a favorable condition, one input strand was able to activate up to five molecules of the internally blocked Spinach aptamer in 185 min at 30 °C. The simple RNA circuit reported here serves as a model for catalytic activation of arbitrary RNA effectors by chemical triggers.

  13. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  14. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor

    PubMed Central

    Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities. PMID:29342178

  15. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor.

    PubMed

    Ma, Jun; Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities.

  16. RF lockout circuit for electronic locking system

    NASA Astrophysics Data System (ADS)

    Becker, Earl M., Jr.; Miller, Allen

    1991-02-01

    An electronics lockout circuit was invented that includes an antenna adapted to receive radio frequency signals from a transmitter, and a radio frequency detector circuit which converts the radio frequency signals into a first direct current voltage indicative of the relative strength of the field resulting from the radio frequency signals. The first direct current voltage is supplied to a trigger circuit which compares this direct current voltage to an adjustable direct current reference voltage. This provides a second direct current voltage at the output whenever the amplitude of the first direct current voltage exceeds the amplitude of the reference voltage provided by the comparator circuit. This is supplied to a disconnect relay circuit which, upon receiving a signal from the electronic control unit of an electronic combination lock during the time period at which the second direct current voltage is present, isolates the door strike coil of a security door from the electronic control unit. This prevents signals falsely generated by the electronic control unit because of radio frequency signals in the vicinity of the electronic control unit energizing the door strike coil and accidentally opening a security door.

  17. Implement an adjustable delay time digital trigger for an NI data acquisition card in a high-speed demodulation system

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Fan, Lingling; Wang, Pengfei; Park, Seong-Wook

    2012-06-01

    A National Instruments (NI) DAQ card PCI 5105 is installed in a high-speed demodulation system based on Fiber Fabry-Pérot Tunable Filter. The instability of the spectra of Fiber Bragg Grating sensors caused by intrinsic drifts of FFP-TF needs an appropriate, flexible trigger. However, the driver of the DAQ card in the current development environment does not provide the functions of analog trigger but digital trigger type. Moreover, the high level of the trigger signal from the tuning voltage of FFP-TF is larger than the maximum input overload voltage of PCI 5105 card. To resolve this incompatibility, a novel converter to change an analog trigger signal into a digital trigger signal has been reported previously. However, the obvious delay time between input and output signals limits the function of demodulation system. Accordingly, we report an improved low-cost, small-size converter with an adjustable delay time. This new scheme can decline the delay time to or close to zero when the frequency of trigger signal is less than 3,000 Hz. This method might be employed to resolve similar problems or to be applied in semiconductor integrated circuits.

  18. Method and apparatus for determining viscosity

    DOEpatents

    Chu, Benjamin; Dhadwal, Harbans S.

    1990-01-01

    A capillary viscometer is provided which includes a fiber-optic probe and a phototransistor which produces an output signal as a liquid meniscus falls through the field of view of a detecting fiber bundle. An analog circuit is employed for receiving the signal and starting or stopping a digital counter in response thereto. The circuit includes first and second differentiators and a zero detection portion for detecting zero value outputs from the second differentiator. The counter is started or stopped upon the generation of a triggering pulse at the time such zero value is detected.

  19. Design of a Compact Coaxial Magnetized Plasma Gun for Magnetic Bubble Expansion Experiments

    DTIC Science & Technology

    2009-06-01

    a peak a current Igun~ 80 kA and gun voltages Vgun~1 kV utine operation at a bank voltage of 7.5 kV yiel plasm after breakdown. Typical Igun and...and D2 are power electronic diodes, SW is the dump relay and C is the bias flux capacitor bank. The SCR, controlled by a 1 kV Trigger Pulse...capacitor charging circuit is shown in Figure 8. Figure 8. Gas valve capacitor charging circuit diagram 0 kΩ. 1, D2 and D3 are power electronic

  20. BK channels are required for multisensory plasticity in the oculomotor system

    PubMed Central

    Nelson, Alexandra; Faulstich, Michael; Moghadam, Setareh; Onori, Kimberly; Meredith, Andrea; du Lac, Sascha

    2017-01-01

    SUMMARY Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually-evoked eye movements rapidly restore oculomotor function in wildtype mice but are profoundly impaired in BK channel null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits. PMID:27989457

  1. Single Event Transients in Voltage Regulators for FPGA Power Supply Applications

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Sanders, Anthony; Kim, Hak; Phan, Anthony; Forney, Jim; LaBel, Kenneth A.; Karsh, Jeremy; Pursley, Scott; Kleyner, Igor; Katz, Richard

    2006-01-01

    As with other bipolar analog devices, voltage regulators are known to be sensitive to single event transients (SET). In typical applications, large output capacitors are used to provide noise immunity. Therefore, since SET amplitude and duration are generally small, they are often of secondary importance due to this capacitance filtering. In low voltage applications, however, even small SET are a concern. Over-voltages may cause destructive conditions. Under-voltages may cause functional interrupts and may also trigger electrical latchup conditions. In addition, internal protection circuits which are affected by load as well as internal thermal effects can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. In the case of FPGA power supplies applications, SETS are critical. For example, in the case of Actel FPGA RTAX family, core power supply voltage is 1.5V. Manufacturer specifies an absolute maximum rating of 1.6V and recommended operating conditions between 1.425V and 1.575V. Therefore, according to the manufacturer, any transient of amplitude greater than 75 mV can disrupt normal circuit functions, and overvoltages greater than 100 mV may damage the FPGA. We tested five low dropout voltage regulators for SET sensitivity under a large range of circuit application conditions.

  2. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production.

    PubMed

    Kobayashi, Toshihiko; Shimabukuro-Demoto, Shiho; Yoshida-Sugitani, Reiko; Furuyama-Tanaka, Kaori; Karyu, Hitomi; Sugiura, Yuki; Shimizu, Yukiko; Hosaka, Toshiaki; Goto, Motohito; Kato, Norihiro; Okamura, Tadashi; Suematsu, Makoto; Yokoyama, Shigeyuki; Toyama-Sorimachi, Noriko

    2014-09-18

    SLC15A4 is a lysosome-resident, proton-coupled amino-acid transporter that moves histidine and oligopeptides from inside the lysosome to the cytosol of eukaryotic cells. SLC15A4 is required for Toll-like receptor 7 (TLR7)- and TLR9-mediated type I interferon (IFN-I) productions in plasmacytoid dendritic cells (pDCs) and is involved in the pathogenesis of certain diseases including lupus-like autoimmunity. How SLC15A4 contributes to diseases is largely unknown. Here we have shown that B cell SLC15A4 was crucial for TLR7-triggered IFN-I and autoantibody productions in a mouse lupus model. SLC15A4 loss disturbed the endolysosomal pH regulation and probably the v-ATPase integrity, and these changes were associated with disruption of the mTOR pathway, leading to failure of the IFN regulatory factor 7 (IRF7)-IFN-I regulatory circuit. Importantly, SLC15A4's transporter activity was necessary for the TLR-triggered cytokine production. Our findings revealed that SLC15A4-mediated optimization of the endolysosomal state is integral to a TLR7-triggered, mTOR-dependent IRF7-IFN-I circuit that leads to autoantibody production. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Method and apparatus for signal processing in a sensor system for use in spectroscopy

    DOEpatents

    O'Connor, Paul [Bellport, NY; DeGeronimo, Gianluigi [Nesconset, NY; Grosholz, Joseph [Natrona Heights, PA

    2008-05-27

    A method for processing pulses arriving randomly in time on at least one channel using multiple peak detectors includes asynchronously selecting a non-busy peak detector (PD) in response to a pulse-generated trigger signal, connecting the channel to the selected PD in response to the trigger signal, and detecting a pulse peak amplitude. Amplitude and time of arrival data are output in first-in first-out (FIFO) sequence. An apparatus includes trigger comparators to generate the trigger signal for the pulse-receiving channel, PDs, a switch for connecting the channel to the selected PD, and logic circuitry which maintains the write pointer. Also included, time-to-amplitude converters (TACs) convert time of arrival to analog voltage and an analog multiplexer provides FIFO output. A multi-element sensor system for spectroscopy includes detector elements, channels, trigger comparators, PDs, a switch, and a logic circuit with asynchronous write pointer. The system includes TACs, a multiplexer and analog-to-digital converter.

  4. Synthesizing genetic sequential logic circuit with clock pulse generator.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  5. Electronic Model of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  6. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  7. Mechanism-specific effects of adenosine on ventricular tachycardia.

    PubMed

    Lerman, Bruce B; Ip, James E; Shah, Bindi K; Thomas, George; Liu, Christopher F; Ciaccio, Edward J; Wit, Andrew L; Cheung, Jim W; Markowitz, Steven M

    2014-12-01

    There is no universally accepted method by which to diagnose clinical ventricular tachycardia (VT) due to cAMP-mediated triggered activity. Based on cellular and clinical data, adenosine termination of VT is thought to be consistent with a diagnosis of triggered activity. However, a major gap in evidence mitigates the validity of this proposal, namely, defining the specificity of adenosine response in well-delineated reentrant VT circuits. To this end, we systematically studied the effects of adenosine in a model of canine reentrant VT and in human reentrant VT, confirmed by 3-dimensional, pace- and substrate mapping. Adenosine (12 mg [IQR 12-24]) failed to terminate VT in 31 of 31 patients with reentrant VT due to structural heart disease, and had no effect on VT cycle length (age, 67 years [IQR 53-74]); ejection fraction, 35% [IQR 20-55]). In contrast, adenosine terminated VT in 45 of 50 (90%) patients with sustained focal right or left outflow tract tachycardia. The sensitivity of adenosine for identifying VT due to triggered activity was 90% (95% CI, 0.78-0.97) and its specificity was 100% (95% CI, 0.89-1.0). Additionally, reentrant circuits were mapped in the epicardial border zone of 4-day-old infarcts in mongrel dogs. Adenosine (300-400 μg/kg) did not terminate sustained VT or have any effect on VT cycle length. These data support the concept that adenosine's effects on ventricular myocardium are mechanism specific, such that termination of VT in response to adenosine is diagnostic of cAMP-mediated triggered activity. © 2014 Wiley Periodicals, Inc.

  8. Photon-triggered nanowire transistors

    NASA Astrophysics Data System (ADS)

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J.; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 106. A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  9. Photon-triggered nanowire transistors.

    PubMed

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 10 6 . A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  10. Interlocked DNA nanostructures controlled by a reversible logic circuit.

    PubMed

    Li, Tao; Lohmann, Finn; Famulok, Michael

    2014-09-17

    DNA nanostructures constitute attractive devices for logic computing and nanomechanics. An emerging interest is to integrate these two fields and devise intelligent DNA nanorobots. Here we report a reversible logic circuit built on the programmable assembly of a double-stranded (ds) DNA [3]pseudocatenane that serves as a rigid scaffold to position two separate branched-out head-motifs, a bimolecular i-motif and a G-quadruplex. The G-quadruplex only forms when preceded by the assembly of the i-motif. The formation of the latter, in turn, requires acidic pH and unhindered mobility of the head-motif containing dsDNA nanorings with respect to the central ring to which they are interlocked, triggered by release oligodeoxynucleotides. We employ these features to convert the structural changes into Boolean operations with fluorescence labelling. The nanostructure behaves as a reversible logic circuit consisting of tandem YES and AND gates. Such reversible logic circuits integrated into functional nanodevices may guide future intelligent DNA nanorobots to manipulate cascade reactions in biological systems.

  11. Interlocked DNA nanostructures controlled by a reversible logic circuit

    PubMed Central

    Li, Tao; Lohmann, Finn; Famulok, Michael

    2014-01-01

    DNA nanostructures constitute attractive devices for logic computing and nanomechanics. An emerging interest is to integrate these two fields and devise intelligent DNA nanorobots. Here we report a reversible logic circuit built on the programmable assembly of a double-stranded (ds) DNA [3]pseudocatenane that serves as a rigid scaffold to position two separate branched-out head-motifs, a bimolecular i-motif and a G-quadruplex. The G-quadruplex only forms when preceded by the assembly of the i-motif. The formation of the latter, in turn, requires acidic pH and unhindered mobility of the head-motif containing dsDNA nanorings with respect to the central ring to which they are interlocked, triggered by release oligodeoxynucleotides. We employ these features to convert the structural changes into Boolean operations with fluorescence labelling. The nanostructure behaves as a reversible logic circuit consisting of tandem YES and AND gates. Such reversible logic circuits integrated into functional nanodevices may guide future intelligent DNA nanorobots to manipulate cascade reactions in biological systems. PMID:25229207

  12. Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact

    PubMed Central

    Ray, Thomas A; Roy, Suva; Kozlowski, Christopher; Wang, Jingjing; Cafaro, Jon; Hulbert, Samuel W; Wright, Christopher V; Field, Greg D

    2018-01-01

    A common strategy by which developing neurons locate their synaptic partners is through projections to circuit-specific neuropil sublayers. Once established, sublayers serve as a substrate for selective synapse formation, but how sublayers arise during neurodevelopment remains unknown. Here, we identify the earliest events that initiate formation of the direction-selective circuit in the inner plexiform layer of mouse retina. We demonstrate that radially migrating newborn starburst amacrine cells establish homotypic contacts on arrival at the inner retina. These contacts, mediated by the cell-surface protein MEGF10, trigger neuropil innervation resulting in generation of two sublayers comprising starburst-cell dendrites. This dendritic scaffold then recruits projections from circuit partners. Abolishing MEGF10-mediated contacts profoundly delays and ultimately disrupts sublayer formation, leading to broader direction tuning and weaker direction-selectivity in retinal ganglion cells. Our findings reveal a mechanism by which differentiating neurons transition from migratory to mature morphology, and highlight this mechanism’s importance in forming circuit-specific sublayers. PMID:29611808

  13. Hunger and Satiety Signaling: Modeling Two Hypothalamomedullary Pathways for Energy Homeostasis.

    PubMed

    Nakamura, Kazuhiro; Nakamura, Yoshiko

    2018-06-04

    The recent discovery of the medullary circuit driving "hunger responses" - reduced thermogenesis and promoted feeding - has greatly expanded our knowledge on the central neural networks for energy homeostasis. However, how hypothalamic hunger and satiety signals generated under fasted and fed conditions, respectively, control the medullary autonomic and somatic motor mechanisms remains unknown. Here, in reviewing this field, we propose two hypothalamomedullary neural pathways for hunger and satiety signaling. To trigger hunger signaling, neuropeptide Y activates a group of neurons in the paraventricular hypothalamic nucleus (PVH), which then stimulate an excitatory pathway to the medullary circuit to drive the hunger responses. In contrast, melanocortin-mediated satiety signaling activates a distinct group of PVH neurons, which then stimulate a putatively inhibitory pathway to the medullary circuit to counteract the hunger signaling. The medullary circuit likely contains inhibitory and excitatory premotor neurons whose alternate phasic activation generates the coordinated masticatory motor rhythms to promote feeding. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  14. BK Channels Are Required for Multisensory Plasticity in the Oculomotor System.

    PubMed

    Nelson, Alexandra B; Faulstich, Michael; Moghadam, Setareh; Onori, Kimberly; Meredith, Andrea; du Lac, Sascha

    2017-01-04

    Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium-activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually evoked eye movements rapidly restore oculomotor function in wild-type mice but are profoundly impaired in BK channel-null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Sleep Drive Is Encoded by Neural Plastic Changes in a Dedicated Circuit.

    PubMed

    Liu, Sha; Liu, Qili; Tabuchi, Masashi; Wu, Mark N

    2016-06-02

    Prolonged wakefulness leads to an increased pressure for sleep, but how this homeostatic drive is generated and subsequently persists is unclear. Here, from a neural circuit screen in Drosophila, we identify a subset of ellipsoid body (EB) neurons whose activation generates sleep drive. Patch-clamp analysis indicates these EB neurons are highly sensitive to sleep loss, switching from spiking to burst-firing modes. Functional imaging and translational profiling experiments reveal that elevated sleep need triggers reversible increases in cytosolic Ca(2+) levels, NMDA receptor expression, and structural markers of synaptic strength, suggesting these EB neurons undergo "sleep-need"-dependent plasticity. Strikingly, the synaptic plasticity of these EB neurons is both necessary and sufficient for generating sleep drive, indicating that sleep pressure is encoded by plastic changes within this circuit. These studies define an integrator circuit for sleep homeostasis and provide a mechanism explaining the generation and persistence of sleep drive. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  17. Development of a low-power, low-cost front end electronics module for large scale distributed neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James J. Beatty

    2008-03-08

    A number of concepts have been presented for distributed neutrino detectors formed of large numbers of autonomous detectors. Examples include the Antarctic Ross Ice Shelf Antenna Neutrino Array (ARIANNA) [Barwick 2006], as well as proposed radio extensions to the IceCube detector at South Pole Station such as AURA and IceRay. [Besson 2008]. We have focused on key enabling technical developments required by this class of experiments. The radio Cherenkov signal, generated by the Askaryan mechanism [Askaryan 1962, 1965], is impulsive and coherent up to above 1 GHz. In the frequency domain, the impulsive character of the emission results in simultaneousmore » increase of the power detected in multiple frequency bands. This multiband triggering approach has proven fruitful, especially as anthropogenic interference often results from narrowband communications signals. A typical distributed experiment of this type consists of a station responsible for the readout of a cluster of antennas either near the surface of the ice or deployed in boreholes. Each antenna is instrumented with a broadband low-noise amplifier, followed by an array of filters to facilitate multi-band coincidence trigger schemes at the antenna level. The power in each band is detected at the output of each band filter, using either square-law diode detectors or log-power detectors developed for the cellular telephone market. The use of multiple antennas per station allows a local coincidence among antennas to be used as the next stage of the trigger. Station triggers can then be combined into an array trigger by comparing timestamps of triggers among stations and identifying space-time clusters of station triggers. Data from each station is buffered and can be requested from the individual stations when a multi-station coincidence occurs. This approach has been successfully used in distributed experiments such as the Pierre Auger Observatory. [Abraham et al. 2004] We identified the filters as being especially critical. The frequency range of interest, {approx}200 MHz to {approx}1.2 GHz, is a transitional region where the lumped circuit element approach taken at low frequencies begins to reach limitations due to component tolerances, component losses, and parasitic effects. Active circuits can help to mitigate against these effects at the cost of added power consumption that becomes prohibitive for distributed experiments across the band of interest. At higher frequency microstrip, stripline, and other microwave techniques come to the fore. We have developed designs and design tools for passive filters extending the high frequency techniques to the frequency range of interest. Microstrip and stripline techniques are not usually attractive here because of the large physical dimensions of the resulting circuits, but in this application the tradeoff of size against power consumption favors this choice. These techniques are also intrinsically low-cost, as the filter is built into the circuit boards and the cost of components and their assembly onto the board is avoided. The basic element of the filter tree is an impedance matched wideband diplexer. This consists of a pair of low pass and high pass filters with a shared cutoff frequency and complementary frequency responses. These are designing the lowpass filter as a high order LC filter, which can be implemented as a series of transmission line segments of varying width. This can be transformed in to a CL high pass filter with a complementary frequency response. When the two filters are coupled to a common input, the input impedances of the networks add in parallel to give a constant input impedance as a function of frequency, with power flowing into one leg or the other of the filter pair. These filters can be cascaded to divide the band into the frequency ranges of interest; the broadband impedance matching at the inputs makes coupling of successive stages straightforward. These circuits can be produced in quantity at low cost using standard PCB fabrication techniques. We have determined that to achieve best performance the circuits should be built on a low loss-tangent RF substrate. We are working in cooperation with our colleagues in condensed matter who also have a need for this capability to purchase the equipment for in-house fabrication of prototype quantities of these circuits. We plan to continue the work on these filtersusing internal funds, and produce and characterize the performance of prototypes. We also participated in deployment of a prototype detector station near McMurdo Station, Antarctica in collaboration with colleagues at UCLA and UC-Irvine. The prototype station includes a single-board computer, GPS receiver, ADC board, and Iridium satellite modem powered by an omnidirectional solar array. We operated this station in the austral summer of 2006-2007, and used the Iridium SMS mode to transmit the status of the station until the end of the daylight season.« less

  18. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers

    PubMed Central

    2014-01-01

    Background The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer’s sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems. The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. Methods The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. Results We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers. Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. Conclusions The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications. PMID:24924595

  19. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers. Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications.

  20. A CRTCal link between energy and life span.

    PubMed

    Brunet, Anne

    2011-04-06

    Cutting down calories prolongs life, but how this works remains largely unknown. A recent study in Nature (Mair et al., 2011) shows that life span extension triggered by the energy-sensing protein kinase AMPK is mediated by an evolutionarily conserved transcriptional circuit involving CRTC-1 and CREB. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. 78 FR 60334 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ...'') for extension and approval. Rule 201 is a short sale-related circuit breaker rule that, if triggered... trading centers do not execute or display any impermissibly priced short sale orders, unless an order is... or display a short sale order without regard to whether the short sale order is at a price that is...

  2. RANDOM PULSE GENERATOR PRODUCING FIDUCIAL MARKS

    DOEpatents

    Nielsen, W.F.

    1960-02-01

    The apparatus for automatically applying a fiducial marking, having a nonrepetitive pattern, to a plurality of simultaneously made records comprises, in series, a bypass filter, a trigger circuit, and a pulse generator, with printing means connected to and controlled by the pulse generator for simultaneously making the visible fiducial marks on a plurality of simultaneously produced records.

  3. PRECISION TIME-DELAY GENERATOR

    DOEpatents

    Carr, B.J.; Peckham, V.D.

    1959-06-16

    A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)

  4. Updating Procedures Can Reorganize the Neural Circuit Supporting a Fear Memory.

    PubMed

    Kwapis, Janine L; Jarome, Timothy J; Ferrara, Nicole C; Helmstetter, Fred J

    2017-07-01

    Established memories undergo a period of vulnerability following retrieval, a process termed 'reconsolidation.' Recent work has shown that the hypothetical process of reconsolidation is only triggered when new information is presented during retrieval, suggesting that this process may allow existing memories to be modified. Reconsolidation has received increasing attention as a possible therapeutic target for treating disorders that stem from traumatic memories, yet little is known about how this process changes the original memory. In particular, it is unknown whether reconsolidation can reorganize the neural circuit supporting an existing memory after that memory is modified with new information. Here, we show that trace fear memory undergoes a protein synthesis-dependent reconsolidation process following exposure to a single updating trial of delay conditioning. Further, this reconsolidation-dependent updating process appears to reorganize the neural circuit supporting the trace-trained memory, so that it better reflects the circuit supporting delay fear. Specifically, after a trace-to-delay update session, the amygdala is now required for extinction of the updated memory but the retrosplenial cortex is no longer required for retrieval. These results suggest that updating procedures could be used to force a complex, poorly defined memory circuit to rely on a better-defined neural circuit that may be more amenable to behavioral or pharmacological manipulation. This is the first evidence that exposure to new information can fundamentally reorganize the neural circuit supporting an existing memory.

  5. A Compact Cosmic Ray Telescope using Silicon Photomultipliers for use in High Schools

    NASA Astrophysics Data System (ADS)

    Castro, Luis; Elizondo, Leonardo; Shelor, Mark; Cervantes, Omar; Fan, Sewan; Ritt, Stefan

    2016-03-01

    Over the years, the QuarkNet and the LBL Cosmic Ray Project have helped trained thousands of high school students and teachers to explore cosmic ray physics. To get high school students in the Salinas, CA area also excited about cosmic rays, we constructed a cosmic ray telescope as a physics outreach apparatus. Our apparatus includes a pair of plastic scintillators coupled to silicon photomultipliers (SiPM) and a coincidence circuit board. We designed and constructed custom circuit boards for mounting the SiPM detectors, the high voltage power supplies and coincidence AND circuit. The AND logic signals can be used for triggering data acquisition devices including an oscilloscope, a waveform digitizer or an Arduino microcontroller. To properly route the circuit wire traces, the circuit boards were layout in Eagle and fabricated in-house using a circuit board maker from LPKF LASER, model Protomat E33. We used a Raspberry Pi computer to control a fast waveform sampler, the DRS4 to digitize the SiPM signal waveforms. The CERN PAW software package was used to analyze the amplitude and time distributions of SiPM detector signals. At this conference, we present our SiPM experimental setup, circuit board fabrication procedures and the data analysis work flow. AIP Megger's Award, Dept. of Ed. Title V Grant PO31S090007.

  6. Design, Modeling, and Fabrication of Chemical Vapor Deposition Grown MoS2 Circuits with E-Mode FETs for Large-Area Electronics.

    PubMed

    Yu, Lili; El-Damak, Dina; Radhakrishna, Ujwal; Ling, Xi; Zubair, Ahmad; Lin, Yuxuan; Zhang, Yuhao; Chuang, Meng-Hsi; Lee, Yi-Hsien; Antoniadis, Dimitri; Kong, Jing; Chandrakasan, Anantha; Palacios, Tomas

    2016-10-12

    Two-dimensional electronics based on single-layer (SL) MoS 2 offers significant advantages for realizing large-scale flexible systems owing to its ultrathin nature, good transport properties, and stable crystalline structure. In this work, we utilize a gate first process technology for the fabrication of highly uniform enhancement mode FETs with large mobility and excellent subthreshold swing. To enable large-scale MoS 2 circuit, we also develop Verilog-A compact models that accurately predict the performance of the fabricated MoS 2 FETs as well as a parametrized layout cell for the FET to facilitate the design and layout process using computer-aided design (CAD) tools. Using this CAD flow, we designed combinational logic gates and sequential circuits (AND, OR, NAND, NOR, XNOR, latch, edge-triggered register) as well as switched capacitor dc-dc converter, which were then fabricated using the proposed flow showing excellent performance. The fabricated integrated circuits constitute the basis of a standard cell digital library that is crucial for electronic circuit design using hardware description languages. The proposed design flow provides a platform for the co-optimization of the device fabrication technology and circuits design for future ubiquitous flexible and transparent electronics using two-dimensional materials.

  7. Effect of groove width of modified current collector on internal short circuit of abused lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Shi, Yang; Noelle, Daniel J.; Le, Anh V.; Qiao, Yu

    2017-10-01

    In a lithium-ion battery (LIB), mechanical abuse often leads to internal short circuits (ISC) that trigger thermal runaway. We investigated a thermal-runaway mitigation (TRM) technique using a modified current collector. By generating surface grooves on the current collector, the area of electrodes directly involved in ISC could be largely reduced, which decreased the ISC current. The TRM mechanism took effect immediately after the LIB was damaged. The testing data indicate that the groove width is a critical factor. With optimized groove width, this technique may enable robust and multifunctional design of LIB cells for large-scale energy-storage units.

  8. A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper.

    PubMed

    Chen, Hong; Cogswell, Jeremy; Anagnostopoulos, Constantine; Faghri, Mohammad

    2012-08-21

    Current microfluidic paper-based devices lack crucial components for fluid manipulation. We created a fluidic diode fabricated entirely on a single layer of paper to control the wicking of fluids. The fluidic diode is a two-terminal component that promotes or stops wicking along a paper channel. We further constructed a trigger and a delay valve based on the fluidic diode. Furthermore, we demonstrated a high-level functional circuit, consisting of a diode and a delay valve, to manipulate two fluids in a sequential manner. Our study provides new, transformative tools to manipulate fluid in microfluidic paper-based devices.

  9. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?

    PubMed Central

    Hallett, Mark; Deuschl, Günther; Toni, Ivan; Bloem, Bastiaan R.

    2012-01-01

    Tremor in Parkinson's disease has several mysterious features. Clinically, tremor is seen in only three out of four patients with Parkinson's disease, and tremor-dominant patients generally follow a more benign disease course than non-tremor patients. Pathophysiologically, tremor is linked to altered activity in not one, but two distinct circuits: the basal ganglia, which are primarily affected by dopamine depletion in Parkinson's disease, and the cerebello-thalamo-cortical circuit, which is also involved in many other tremors. The purpose of this review is to integrate these clinical and pathophysiological features of tremor in Parkinson's disease. We first describe clinical and pathological differences between tremor-dominant and non-tremor Parkinson's disease subtypes, and then summarize recent studies on the pathophysiology of tremor. We also discuss a newly proposed ‘dimmer-switch model’ that explains tremor as resulting from the combined actions of two circuits: the basal ganglia that trigger tremor episodes and the cerebello-thalamo-cortical circuit that produces the tremor. Finally, we address several important open questions: why resting tremor stops during voluntary movements, why it has a variable response to dopaminergic treatment, why it indicates a benign Parkinson's disease subtype and why its expression decreases with disease progression. PMID:22382359

  10. A novel trigger for pseudospark switch with high repetition rate, low jitter, and compact structure

    NASA Astrophysics Data System (ADS)

    Yan, Jiaqi; Shen, Saikang; Wang, Yanan; Zhang, Siyu; Cheng, Le; Ding, Weidong

    2018-06-01

    This paper presents the design and development of a trigger with a high repetition rate, low jitter, and compact structure for the pseudospark switch (PSS), which includes an improved Marx generator based on avalanche transistors and a corona-plasma trigger unit. The generator adopted a novel 3 × 12-stage Marx circuit based on avalanche transistors in which the failure rate of transistors in the first and second stages was significantly reduced by connecting the parallel capacitors compared to the previous similar generator. The reason for the improved performance was also discussed. The main parameters of output pulses were an amplitude of -7 kV, rise time of 6 ns, jitter of 0.2 ns, and repetition rate of 2 kHz. The corona-plasma trigger unit adopted BaTiO3 ceramics with high ɛr as the dielectric and was arranged in the hollow cathode of the PSS. The experiments of triggering a PSS prototype were conducted. The influence of anode voltage and pressure on the trigger delay and jitter was studied, and the minimum trigger jitter achieved <1 ns. This trigger worked for 107 shots at the repetition rate of 2 kHz continuously without obvious performance degradation and any failure of the generator. The main advantage of this trigger is the simultaneous combination of the high repetition rate, low jitter, long lifetime, and great simplicity in a compact structure.

  11. Addiction and brain reward and antireward pathways.

    PubMed

    Gardner, Eliot L

    2011-01-01

    Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly), and that they enhance the functioning of the reward circuitry of the brain (producing the 'high' that the drug user seeks). The core reward circuitry consists of an 'in-series' circuit linking the ventral tegmental area, nucleus accumbens and ventral pallidum via the medial forebrain bundle. Although originally believed to simply encode the set point of hedonic tone, these circuits are now believed to be functionally far more complex, also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. 'Hedonic dysregulation' within these circuits may lead to addiction. The 'second-stage' dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dop-aminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g. opiates), tolerance to the euphoric effects develops with chronic use. Postuse dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get high, but simply to get back to normal ('get straight'). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the 'bio-psycho-social' model of etiology holds very well for addiction. Addiction appears to correlate with a hypodopaminergic dysfunctional state within the reward circuitry of the brain. Neuroimaging studies in humans add credence to this hypothesis. Credible evidence also implicates serotonergic, opioid, endocannabinoid, GABAergic and glutamatergic mechanisms in addiction. Critically, drug addiction progresses from occasional recreational use to impulsive use to habitual compulsive use. This correlates with a progression from reward-driven to habit-driven drug-seeking behavior. This behavioral progression correlates with a neuroanatomical progression from ventral striatal (nucleus accumbens) to dorsal striatal control over drug-seeking behavior. The three classical sets of craving and relapse triggers are (a) reexposure to addictive drugs, (b) stress, and (c) reexposure to environmental cues (people, places, things) previously associated with drug-taking behavior. Drug-triggered relapse involves the nucleus accumbens and the neurotransmitter dopamine. Stress-triggered relapse involves (a) the central nucleus of the amygdala, the bed nucleus of the stria terminalis, and the neurotransmitter corticotrophin-releasing factor, and (b) the lateral tegmental noradrenergic nuclei of the brain stem and the neurotransmitter norepinephrine. Cue-triggered relapse involves the basolateral nucleus of the amygdala, the hippocampus and the neurotransmitter glutamate. Knowledge of the neuroanatomy, neurophysiology, neurochemistry and neuropharmacology of addictive drug action in the brain is currently producing a variety of strategies for pharmacotherapeutic treatment of drug addiction, some of which appear promising. Copyright © 2011 S. Karger AG, Basel.

  12. Robust Measurements of Phase Response Curves Realized via Multicycle Weighted Spike-Triggered Averages

    NASA Astrophysics Data System (ADS)

    Imai, Takashi; Ota, Kaiichiro; Aoyagi, Toshio

    2017-02-01

    Phase reduction has been extensively used to study rhythmic phenomena. As a result of phase reduction, the rhythm dynamics of a given system can be described using the phase response curve. Measuring this characteristic curve is an important step toward understanding a system's behavior. Recently, a basic idea for a new measurement method (called the multicycle weighted spike-triggered average method) was proposed. This paper confirms the validity of this method by providing an analytical proof and demonstrates its effectiveness in actual experimental systems by applying the method to an oscillating electric circuit. Some practical tips to use the method are also presented.

  13. The latency validation of the optical link for the ATLAS Liquid Argon Calorimeter Phase-I trigger upgrade

    NASA Astrophysics Data System (ADS)

    Deng, B.; Xiao, L.; Zhao, X.; Baker, E.; Gong, D.; Guo, D.; He, H.; Hou, S.; Liu, C.; Liu, T.; Sun, Q.; Thomas, J.; Wang, J.; Xiang, A. C.; Yang, D.; Ye, J.; Zhou, W.

    2018-05-01

    Two optical data link data transmission Application Specific Integrated Circuits (ASICs), the baseline and its backup, have been designed for the ATLAS Liquid Argon (LAr) Calorimeter Phase-I trigger upgrade. The latency of each ASIC and that of its corresponding receiver implemented in a back-end Field-Programmable Gate Array (FPGA) are critical specifications. In this paper, we present the latency measurements and simulation of two ASICs. The measurement results indicate that both ASICs achieve their design goals and meet the latency specifications. The consistency between the simulation and measurements validates the ASIC latency characterization.

  14. pH-programmable DNA logic arrays powered by modular DNAzyme libraries.

    PubMed

    Elbaz, Johann; Wang, Fuan; Remacle, Francoise; Willner, Itamar

    2012-12-12

    Nature performs complex information processing circuits, such the programmed transformations of versatile stem cells into targeted functional cells. Man-made molecular circuits are, however, unable to mimic such sophisticated biomachineries. To reach these goals, it is essential to construct programmable modular components that can be triggered by environmental stimuli to perform different logic circuits. We report on the unprecedented design of artificial pH-programmable DNA logic arrays, constructed by modular libraries of Mg(2+)- and UO(2)(2+)-dependent DNAzyme subunits and their substrates. By the appropriate modular design of the DNA computation units, pH-programmable logic arrays of various complexities are realized, and the arrays can be erased, reused, and/or reprogrammed. Such systems may be implemented in the near future for nanomedical applications by pH-controlled regulation of cellular functions or may be used to control biotransformations stimulated by bacteria.

  15. A common neural circuit mechanism for internally guided and externally reinforced forms of motor learning.

    PubMed

    Hisey, Erin; Kearney, Matthew Gene; Mooney, Richard

    2018-04-01

    The complex skills underlying verbal and musical expression can be learned without external punishment or reward, indicating their learning is internally guided. The neural mechanisms that mediate internally guided learning are poorly understood, but a circuit comprising dopamine-releasing neurons in the midbrain ventral tegmental area (VTA) and their targets in the basal ganglia are important to externally reinforced learning. Juvenile zebra finches copy a tutor song in a process that is internally guided and, in adulthood, can learn to modify the fundamental frequency (pitch) of a target syllable in response to external reinforcement with white noise. Here we combined intersectional genetic ablation of VTA neurons, reversible blockade of dopamine receptors in the basal ganglia, and singing-triggered optogenetic stimulation of VTA terminals to establish that a common VTA-basal ganglia circuit enables internally guided song copying and externally reinforced syllable pitch learning.

  16. Arabidopsis sodium dependent and independent phenotypes triggered by H+-PPase up-regulation are SOS1 dependent

    USDA-ARS?s Scientific Manuscript database

    The goal of the study and research was to coordinate regulation of transporters at both the plasma membrane and vacuole contribute to plant cell’s ability to adapt to a changing environment and play a key role in the maintenance of the chemiosmotic circuits required for cellular growth. In this stud...

  17. Social Isolation Co-opts Fear and Aggression Circuits.

    PubMed

    Rodriguez-Romaguera, Jose; Stuber, Garret D

    2018-05-17

    Social isolation is a stressful condition that often leads to maladaptive behaviors. In this issue of Cell, Zelikowsky et al. find that chronic social isolation stress triggers an increase in neuronal tachykinin signaling across distinct brain regions that mediate fear and aggression, elucidating the neural basis of these maladaptive responses. Copyright © 2018. Published by Elsevier Inc.

  18. Understanding disease mechanisms with models of signaling pathway activities.

    PubMed

    Sebastian-Leon, Patricia; Vidal, Enrique; Minguez, Pablo; Conesa, Ana; Tarazona, Sonia; Amadoz, Alicia; Armero, Carmen; Salavert, Francisco; Vidal-Puig, Antonio; Montaner, David; Dopazo, Joaquín

    2014-10-25

    Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine. Here we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements into probabilities of activation of such signal transmission circuits. Using this model, differential activation of such circuits between biological conditions can be estimated. Thus, circuit activation statuses can be interpreted as biomarkers that discriminate among the compared conditions. This type of mechanism-based biomarkers accounts for cell functional activities and can easily be associated to disease or drug action mechanisms. The accuracy of the proposed model is demonstrated with simulations and real datasets. The proposed model provides detailed information that enables the interpretation disease mechanisms as a consequence of the complex combinations of altered gene expression values. Moreover, it offers a framework for suggesting possible ways of therapeutic intervention in a pathologically perturbed system.

  19. A time- and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies

    PubMed Central

    Wang, Chun-Chao; Bajikar, Sameer S.; Jamal, Leen; Atkins, Kristen A.; Janes, Kevin A.

    2014-01-01

    Basal-like breast carcinoma is characterized by poor prognosis and high intratumor heterogeneity. In an immortalized basal-like breast epithelial cell line, we identified two anti-correlated gene-expression programs that arise among single extracellular matrix (ECM)-attached cells during organotypic 3D culture. The first contains multiple TGFβ-related genes including TGFBR3, whereas the second contains JUND and the basal-like marker, KRT5. TGFBR3 and JUND interconnect through four negative-feedback loops to form a circuit that exhibits spontaneous damped oscillations in 3D culture. The TGFBR3–JUND circuit appears conserved in some premalignant lesions that heterogeneously express KRT5. The circuit depends on ECM engagement, as detachment causes a rewiring that is triggered by RPS6 dephosphorylation and maintained by juxtacrine tenascin C, which is critical for intraductal colonization of basal-like breast cancer cells in vivo. Intratumor heterogeneity need not stem from partial differentiation and could instead reflect dynamic toggling of cells between expression states that are not cell autonomous. PMID:24658685

  20. Synaptic communication and signal processing among sensory cells in taste buds.

    PubMed

    Chaudhari, Nirupa

    2014-08-15

    Taste buds (sensory structures embedded in oral epithelium) show a remarkable diversity of transmitters synthesized and secreted locally. The known transmitters accumulate in a cell type selective manner, with 5-HT and noradrenaline being limited to presynaptic cells, GABA being synthesized in both presynaptic and glial-like cells, and acetylcholine and ATP used for signalling by receptor cells. Each of these transmitters participates in local negative or positive feedback circuits that target particular cell types. Overall, the role of ATP is the best elucidated. ATP serves as a principal afferent transmitter, and also is the key trigger for autocrine positive feedback and paracrine circuits that result in potentiation (via adenosine) or inhibition (via GABA or 5-HT). While many of the cellular receptors and mechanisms for these circuits are known, their impact on sensory detection and perception remains to be elaborated in most instances. This brief review examines what is known, and some of the open questions and controversies surrounding the transmitters and circuits of the taste periphery. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  1. The Mechanism of Cortico-Striato-Thalamo-Cortical Neurocircuitry in Response Inhibition and Emotional Responding in Attention Deficit Hyperactivity Disorder with Comorbid Disruptive Behavior Disorder.

    PubMed

    Zhu, Yuncheng; Jiang, Xixi; Ji, Weidong

    2018-06-01

    The neurocircuitries that constitute the cortico-striato-thalamo-cortical (CSTC) circuit provide a framework for bridging gaps between neuroscience and executive function in attention deficit hyperactivity disorder (ADHD), but it has been difficult to identify the mechanisms for regulating emotional problems from the understanding of ADHD comorbidity with disruptive behavior disorders (DBD). Research based on "cool" and "hot" executive functional theory and the dual pathway models, which are thought of as applied response inhibition and delay aversion, respectively, within the neuropsychological view of ADHD, has shed light on emotional responding before and after decontextualized stimuli, while CSTC circuit-related domains have been suggested to explain the different emotional symptoms of ADHD with or without comorbid DBD. This review discusses the role of abnormal connections in each CSTC circuit, especially in the emotion circuit, which may be responsible for targeted executive dysfunction at the neuroscience level. Thus, the two major domains - abstract thinking (cool) and emotional trait (hot) - trigger the mechanism of onset of ADHD.

  2. Engineering a Cell-surface Aptamer Circuit for Targeted and Amplified Photodynamic Cancer Therapy

    PubMed Central

    Han, Da; Zhu, Guizhi; Wu, Cuichen; Zhu, Zhi; Chen, Tao; Zhang, Xiaobing

    2013-01-01

    Photodynamic therapy (PDT) is one of the most promising and noninvasive methods for clinical treatment of different malignant diseases. Here, we present a novel strategy of designing an aptamer-based DNA nanocircuit capable of the selective recognition of cancer cells, controllable activation of photosensitizer and amplification of photodynamic therapeutic effect. The aptamers can selectively recognize target cancer cells and bind to the specific proteins on cell membranes. Then the overhanging catalyst sequence on aptamer can trigger a toehold-mediated catalytic strand displacement to activate photosensitizer and achieve amplified therapeutic effect. The specific binding-induced activation allows the DNA circuit to distinguish diseased cells from healthy cells, reducing damage to nearby healthy cells. Moreover, the catalytic amplification reaction will only take place close to the target cancer cells, resulting in a high local concentration of singlet oxygen to selectively kill the target cells. The principle employed in this study demonstrated the feasibility of assembling a DNA circuit on cell membranes and could further broaden the utility of DNA circuits for applications in biology, biotechnology, and biomedicine. PMID:23397942

  3. Vehicle security apparatus and method

    DOEpatents

    Veligdan, James T.

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

  4. Novel circuits for energizing manganin stress gauges

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas G.

    2017-01-01

    This paper describes the design of a novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. The Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 mΩ and are energized with pulsed currents of 50 A. Conventional pulsed, constant current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to changing load impedances. The new circuit corrects these issues. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory in explosive experiments. [LA-UR-15-24819

  5. Developing a pulse trigger generator for a three-electrode spark-gap switch in a transversely excited atmospheric CO2 laser.

    PubMed

    Wang, Jingyuan; Guo, Lihong; Zhang, Xingliang

    2016-04-01

    To improve the probability and stability of breakdown discharge in a three-electrode spark-gap switch for a high-power transversely excited atmospheric CO2 laser and to improve the efficiency of its trigger system, we developed a high-voltage pulse trigger generator based on a two-transistor forward converter topology and a multiple-narrow-pulse trigger method. Our design uses a narrow high-voltage pulse (10 μs) to break down the hyperbaric gas between electrodes of the spark-gap switch; a dry high-voltage transformer is used as a booster; and a sampling and feedback control circuit (mainly consisting of a SG3525 and a CD4098) is designed to monitor the spark-gap switch and control the frequency and the number of output pulses. Our experimental results show that this pulse trigger generator could output high-voltage pulses (number is adjusted) with an amplitude of >38 kV and a width of 10 μs. Compared to a conventional trigger system, our design had a breakdown probability increased by 2.7%, an input power reduced by 1.5 kW, an efficiency increased by 0.12, and a loss reduced by 1.512 kW.

  6. Design of portable valuables touch alarm circuit

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao

    2017-03-01

    In this paper, the name of the alarm is portable touch burglar alarm. It not only has the advantages of high sensitivity, small size and light weight, but it is easy on the trigger, the circuit is simple and easy to be implemented, besides, it works stably. This alarm is featured with simple design, convenient use, strong flexibility and reliable performance, thus it can be installed on the door or window and even can be carried on human's body. When the human body touches the metal valuables that need to be protected, the device will start the alarm equipment so as to make the bell keep ringing, and the alarm sound stops until the power is cut off.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ling-Jian

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and processmore » the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.« less

  8. Consistent chronostasis effects across saccade categories imply a subcortical efferent trigger

    PubMed Central

    Yarrow, Kielan; Johnson, Helen; Haggard, Patrick; Rothwell, John C

    2005-01-01

    Saccadic chronostasis refers to the subjective temporal lengthening of the first visual stimulus perceived after an eye movement, and is most commonly experienced as the “stopped clock” illusion. Other temporal illusions arising in the context of movement (e.g. “intentional binding”) appear to depend upon the volitional nature of the preceding motor act. Here we assess chronostasis across different saccade types, ranging from highly volitional (self-timed saccades, anti saccades) to highly reflexive (peripherally-cued saccades, express saccades). Chronostasis was similar in magnitude across all these conditions, despite wide variations in their neural bases. The illusion must therefore be triggered by a “lowest common denominator” signal common to all the conditions tested and their respective neural circuits. Specifically, it is suggested that chronostasis is triggered by a low-level signal arising in response to efferent signals generated in the superior colliculus. PMID:15200711

  9. Programmable single-cell mammalian biocomputers.

    PubMed

    Ausländer, Simon; Ausländer, David; Müller, Marius; Wieland, Markus; Fussenegger, Martin

    2012-07-05

    Synthetic biology has advanced the design of standardized control devices that program cellular functions and metabolic activities in living organisms. Rational interconnection of these synthetic switches resulted in increasingly complex designer networks that execute input-triggered genetic instructions with precision, robustness and computational logic reminiscent of electronic circuits. Using trigger-controlled transcription factors, which independently control gene expression, and RNA-binding proteins that inhibit the translation of transcripts harbouring specific RNA target motifs, we have designed a set of synthetic transcription–translation control devices that could be rewired in a plug-and-play manner. Here we show that these combinatorial circuits integrated a two-molecule input and performed digital computations with NOT, AND, NAND and N-IMPLY expression logic in single mammalian cells. Functional interconnection of two N-IMPLY variants resulted in bitwise intracellular XOR operations, and a combinatorial arrangement of three logic gates enabled independent cells to perform programmable half-subtractor and half-adder calculations. Individual mammalian cells capable of executing basic molecular arithmetic functions isolated or coordinated to metabolic activities in a predictable, precise and robust manner may provide new treatment strategies and bio-electronic interfaces in future gene-based and cell-based therapies.

  10. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  11. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  12. Signal processor for processing ultrasonic receiver signals

    DOEpatents

    Fasching, George E.

    1980-01-01

    A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.

  13. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface.

    PubMed

    Lajoie, Guillaume; Krouchev, Nedialko I; Kalaska, John F; Fairhall, Adrienne L; Fetz, Eberhard E

    2017-02-01

    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.

  14. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface

    PubMed Central

    Lajoie, Guillaume; Kalaska, John F.; Fairhall, Adrienne L.; Fetz, Eberhard E.

    2017-01-01

    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity. PMID:28151957

  15. Introduction: Addiction and Brain Reward and Anti-Reward Pathways

    PubMed Central

    Gardner, Eliot L.

    2013-01-01

    Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly) and that they enhance the functioning of the reward circuitry of the brain (producing the “high” that the drug-user seeks). The core reward circuitry consists of an “in series” circuit linking the ventral tegmental area, nucleus accumbens, and ventral pallidum - via the medial forebrain bundle. Although originally believed to encode simply the set-point of hedonic tone, these circuits are now believed to be functionally far more complex - also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. “Hedonic dysregulation” within these circuits may lead to addiction. The “second-stage” dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dopaminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g., opiates), tolerance to the euphoric effects develops with chronic use. Post-use dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get “high,” but simply to get back to normal (“get straight”). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically, and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the “bio-psycho-social” model of etiology holds very well for addiction. Addiction appears to correlate with a hypo-dopaminergic dysfunctional state within the reward circuitry of the brain. Neuroimaging studies in humans add credence to this hypothesis. Credible evidence also implicates serotonergic, opioid, endocannabinoid, GABAergic, and glutamatergic mechanisms in addiction. Critically, drug addiction progresses from occasional recreational use to impulsive use to habitual compulsive use. This correlates with a progression from reward-driven to habit-driven drug-seeking behavior. This behavioral progression correlates with a neuroanatomical progression from ventral striatal (nucleus accumbens) to dorsal striatal control over drug-seeking behavior. The three classical sets of craving and relapse triggers are a) re-exposure to addictive drugs, b) stress, and c) re-exposure to environmental cues (“people, places, things”) previously associated with drug-taking behavior. Drug-triggered relapse involves the nucleus accumbens and the neurotransmitter dopamine. Stress-triggered relapse involves a) the central nucleus of the amygdala, the bed nucleus of the stria terminalis, and the neurotransmitter CRF; and b) the lateral tegmental noradrenergic nuclei of the brain stem and the neurotransmitter norepinephrine. Cue-triggered relapse involves the basolateral nucleus of the amygdala, the hippocampus, and the neurotransmitter glutamate. Knowledge of the neuroanatomy, neurophysiology, neurochemistry, and neuropharmacology of addictive drug action in the brain is currently producing a variety of strategies for pharmacotherapeutic treatment of drug addiction, some of which appear promising. PMID:21508625

  16. Synthetic biology: applying biological circuits beyond novel therapies.

    PubMed

    Dobrin, Anton; Saxena, Pratik; Fussenegger, Martin

    2016-04-18

    Synthetic biology, an engineering, circuit-driven approach to biology, has developed whole new classes of therapeutics. Unfortunately, these advances have thus far been undercapitalized upon by basic researchers. As discussed herein, using synthetic circuits, one can undertake exhaustive investigations of the endogenous circuitry found in nature, develop novel detectors and better temporally and spatially controlled inducers. One could detect changes in DNA, RNA, protein or even transient signaling events, in cell-based systems, in live mice, and in humans. Synthetic biology has also developed inducible systems that can be induced chemically, optically or using radio waves. This induction has been re-wired to lead to changes in gene expression, RNA stability and splicing, protein stability and splicing, and signaling via endogenous pathways. Beyond simple detectors and inducible systems, one can combine these modalities and develop novel signal integration circuits that can react to a very precise pre-programmed set of conditions or even to multiple sets of precise conditions. In this review, we highlight some tools that were developed in which these circuits were combined such that the detection of a particular event automatically triggered a specific output. Furthermore, using novel circuit-design strategies, circuits have been developed that can integrate multiple inputs together in Boolean logic gates composed of up to 6 inputs. We highlight the tools available and what has been developed thus far, and highlight how some clinical tools can be very useful in basic science. Most of the systems that are presented can be integrated together; and the possibilities far exceed the number of currently developed strategies.

  17. Single Event Effect Hardware Trojans with Remote Activation

    DTIC Science & Technology

    2017-03-01

    kinetically as in the SDI approach. These high-energy directed energy weapons have been studied and developed largely for the purpose remote sensing and...Single Event Effect Hardware Trojans with Remote Activation Paul A. Quintana; John McCollum; William A. Hill Microsemi Corporation, San Jose...space qualified semiconductors the use of SEE sensitive circuits may represents a latent and remotely -triggered hardware Trojan which would be

  18. Test apparatus for locating shorts during assembly of electrical buses

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Devine, D. L. (Inventor)

    1981-01-01

    A test apparatus is described for locating electrical shorts that is especially suited for use while an electrical circuit is being fabricated or assembled. A ring counter derives input pulses from a square wave oscillator. The outputs of the counter are fed through transistors to an array of light emitting diodes. Each diode is connected to an electrical conductor, such as a bus bar, that is to be tested. In the absence of a short between the electrical conductors the diodes are sequentially illuminated. When a short occurs, a comparator/multivibrator circuit triggers an alarm and stops the oscillator and the sequential energization of the diodes. The two diodes that remain illuminated identify the electrical conductors that are shorted.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Kedar G.; Pannu, Satinderpall S.

    An integrated circuit system having an integrated circuit (IC) component which is able to have its functionality destroyed upon receiving a command signal. The system may involve a substrate with the IC component being supported on the substrate. A module may be disposed in proximity to the IC component. The module may have a cavity and a dissolving compound in a solid form disposed in the cavity. A heater component may be configured to heat the dissolving compound to a point of sublimation where the dissolving compound changes from a solid to a gaseous dissolving compound. A triggering mechanism maymore » be used for initiating a dissolution process whereby the gaseous dissolving compound is allowed to attack the IC component and destroy a functionality of the IC component.« less

  20. The Implementation Of Solid State Switches In A Parallel Configuration To Gain Output Current Capacity In A High Current Capacitive Discharge Unit (CDU).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaves, Mario Paul

    2017-07-01

    For my project I have selected to research and design a high current pulse system, which will be externally triggered from a 5V pulse. The research will be conducted in the region of paralleling the solid state switches for a higher current output, as well as to see if there will be any other advantages in doing so. The end use of the paralleled solid state switches will be used on a Capacitive Discharge Unit (CDU). For the first part of my project, I have set my focus on the design of the circuit, selection of components, and simulation ofmore » the circuit.« less

  1. High frequency, high time resolution time-to-digital converter employing passive resonating circuits.

    PubMed

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  2. Integrating DNA strand-displacement circuitry with DNA tile self-assembly

    PubMed Central

    Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik

    2013-01-01

    DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381

  3. Synthetic biology devices and circuits for RNA-based 'smart vaccines': a propositional review.

    PubMed

    Andries, Oliwia; Kitada, Tasuku; Bodner, Katie; Sanders, Niek N; Weiss, Ron

    2015-02-01

    Nucleic acid vaccines have been gaining attention as an alternative to the standard attenuated pathogen or protein based vaccine. However, an unrealized advantage of using such DNA or RNA based vaccination modalities is the ability to program within these nucleic acids regulatory devices that would provide an immunologist with the power to control the production of antigens and adjuvants in a desirable manner by administering small molecule drugs as chemical triggers. Advances in synthetic biology have resulted in the creation of highly predictable and modular genetic parts and devices that can be composed into synthetic gene circuits with complex behaviors. With the recent advent of modified RNA gene delivery methods and developments in the RNA replicon platform, we foresee a future in which mammalian synthetic biologists will create genetic circuits encoded exclusively on RNA. Here, we review the current repertoire of devices used in RNA synthetic biology and propose how programmable 'smart vaccines' will revolutionize the field of RNA vaccination.

  4. Tracing Activity Across the Whole Brain Neural Network with Optogenetic Functional Magnetic Resonance Imaging

    PubMed Central

    Lee, Jin Hyung

    2011-01-01

    Despite the overwhelming need, there has been a relatively large gap in our ability to trace network level activity across the brain. The complex dense wiring of the brain makes it extremely challenging to understand cell-type specific activity and their communication beyond a few synapses. Recent development of the optogenetic functional magnetic resonance imaging (ofMRI) provides a new impetus for the study of brain circuits by enabling causal tracing of activities arising from defined cell types and firing patterns across the whole brain. Brain circuit elements can be selectively triggered based on their genetic identity, cell body location, and/or their axonal projection target with temporal precision while the resulting network response is monitored non-invasively with unprecedented spatial and temporal accuracy. With further studies including technological innovations to bring ofMRI to its full potential, ofMRI is expected to play an important role in our system-level understanding of the brain circuit mechanism. PMID:22046160

  5. A rapid, maskless 3D prototyping for fabrication of capillary circuits: Toward urinary protein detection.

    PubMed

    Yan, Sheng; Zhu, Yuanqing; Tang, Shi-Yang; Li, Yuxing; Zhao, Qianbin; Yuan, Dan; Yun, Guolin; Zhang, Jun; Zhang, Shiwu; Li, Weihua

    2018-04-01

    Proteinuria is an established risk marker for progressive renal function loss and patients would significantly benefit from a point-of-care testing. Although extensive work has been done to develop the microfluidic devices for the detection of urinary protein, they need the complicated operation and bulky peripherals. Here, we present a rapid, maskless 3D prototyping for fabrication of capillary fluidic circuits using laser engraving. The capillary circuits can be fabricated in a short amount of time (<10 min) without the requirements of clean-room facilities and photomasks. The advanced capillary components (e.g., trigger valves, retention valves and retention bursting valves) were fabricated, enabling the sequential liquid delivery and sample-reagent mixing. With the integration of smartphone-based detection platform, the microfluidic device can quantify the urinary protein via a colorimetric analysis. By eliminating the bulky and expensive equipment, this smartphone-based detection platform is portable for on-site quantitative detection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optically Isolated Control of the MOCHI LabJet High Power Pulsed Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Carroll, Evan; Quinley, Morgan; von der Linden, Jens; You, Setthivoine

    2014-10-01

    The MOCHI LabJet experiment designed to investigate the dynamics of astrophysical jets at the University of Washington, requires high energy pulsed power supplies for plasma generation and sustainment. Two 600 μ F, 10 kV DC, pulse forming, power supplies have been specifically developed for this application. For safe and convenient user operation, the power supplies are controlled remotely with optical isolation. Three input voltage signals are required for relay actuation, adjusting bank charging voltage, and to fire the experiment: long duration DC signals, long duration user adjustable DC signals and fast trigger pulses with < μ s rise times. These voltage signals are generated from National Instruments timing cards via LabVIEW and are converted to optical signals by coupling photodiodes with custom electronic circuits. At the experiment, the optical signals are converted back to usable voltage signals using custom circuits. These custom circuits and experimental set-up are presented. This work is supported by US DOE Grant DE-SC0010340.

  7. Increased CRF signaling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal

    PubMed Central

    Zhao-Shea, Rubing; DeGroot, Steven R.; Liu, Liwang; Vallaster, Markus; Pang, Xueyan; Su, Qin; Gao, Guangping; Rando, Oliver J.; Martin, Gilles E.; George, Olivier; Gardner, Paul D.; Tapper, Andrew R.

    2015-01-01

    Increased anxiety is a predominant withdrawal symptom in abstinent smokers, yet the neuroanatomical and molecular bases underlying it are unclear. Here, we show that withdrawal-induced anxiety increases activity of neurons in the interpeduncular intermediate (IPI), a subregion of the interpeduncular nucleus (IPN). IPI activation during nicotine withdrawal was mediated by increased corticotropin releasing factor (CRF) receptor-1 expression and signaling, which modulated glutamatergic input from the medial habenula (MHb). Pharmacological blockade of IPN CRF1 receptors or optogenetic silencing of MHb input reduced IPI activation and alleviated withdrawal-induced anxiety; whereas IPN CRF infusion in mice increased anxiety. We identified a meso-interpeduncular circuit, consisting of ventral tegmental area (VTA) dopaminergic neurons projecting to the IPN, as a potential source of CRF. Knock-down of CRF synthesis in the VTA prevented IPI activation and anxiety during nicotine withdrawal. These data indicate that increased CRF receptor signaling within a VTA-IPN-MHb circuit triggers anxiety during nicotine withdrawal. PMID:25898242

  8. Novel Circuits for Energizing Manganin Stress Gauges

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas

    2015-06-01

    This paper describes the design, manufacture and testing of novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 m Ω and are energized with pulsed currents of 50 A. Conventional pulsed current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to finite and changing source impedances. To correct these issues a novel MOSFET circuit was designed and will be described. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory and selected explosive tests will be described together with their results. LA-UR-15-20613.

  9. Vehicle security apparatus and method

    DOEpatents

    Veligdan, J.T.

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  10. An active drop counting device using condenser microphone for superheated emulsion detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Mala; Marick, C.; Kanjilal, D.

    2008-11-15

    An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of {sup 252}Cf fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrummore » of {sup 252}Cf. Frequency analysis of the detected signals was also carried out.« less

  11. An active drop counting device using condenser microphone for superheated emulsion detector

    NASA Astrophysics Data System (ADS)

    Das, Mala; Arya, A. S.; Marick, C.; Kanjilal, D.; Saha, S.

    2008-11-01

    An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of C252f fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrum of C252f. Frequency analysis of the detected signals was also carried out.

  12. A reconfigurable NAND/NOR genetic logic gate

    PubMed Central

    2012-01-01

    Background Engineering genetic Boolean logic circuits is a major research theme of synthetic biology. By altering or introducing connections between genetic components, novel regulatory networks are built in order to mimic the behaviour of electronic devices such as logic gates. While electronics is a highly standardized science, genetic logic is still in its infancy, with few agreed standards. In this paper we focus on the interpretation of logical values in terms of molecular concentrations. Results We describe the results of computational investigations of a novel circuit that is able to trigger specific differential responses depending on the input standard used. The circuit can therefore be dynamically reconfigured (without modification) to serve as both a NAND/NOR logic gate. This multi-functional behaviour is achieved by a) varying the meanings of inputs, and b) using branch predictions (as in computer science) to display a constrained output. A thorough computational study is performed, which provides valuable insights for the future laboratory validation. The simulations focus on both single-cell and population behaviours. The latter give particular insights into the spatial behaviour of our engineered cells on a surface with a non-homogeneous distribution of inputs. Conclusions We present a dynamically-reconfigurable NAND/NOR genetic logic circuit that can be switched between modes of operation via a simple shift in input signal concentration. The circuit addresses important issues in genetic logic that will have significance for more complex synthetic biology applications. PMID:22989145

  13. A reconfigurable NAND/NOR genetic logic gate.

    PubMed

    Goñi-Moreno, Angel; Amos, Martyn

    2012-09-18

    Engineering genetic Boolean logic circuits is a major research theme of synthetic biology. By altering or introducing connections between genetic components, novel regulatory networks are built in order to mimic the behaviour of electronic devices such as logic gates. While electronics is a highly standardized science, genetic logic is still in its infancy, with few agreed standards. In this paper we focus on the interpretation of logical values in terms of molecular concentrations. We describe the results of computational investigations of a novel circuit that is able to trigger specific differential responses depending on the input standard used. The circuit can therefore be dynamically reconfigured (without modification) to serve as both a NAND/NOR logic gate. This multi-functional behaviour is achieved by a) varying the meanings of inputs, and b) using branch predictions (as in computer science) to display a constrained output. A thorough computational study is performed, which provides valuable insights for the future laboratory validation. The simulations focus on both single-cell and population behaviours. The latter give particular insights into the spatial behaviour of our engineered cells on a surface with a non-homogeneous distribution of inputs. We present a dynamically-reconfigurable NAND/NOR genetic logic circuit that can be switched between modes of operation via a simple shift in input signal concentration. The circuit addresses important issues in genetic logic that will have significance for more complex synthetic biology applications.

  14. NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth

    Science.gov Websites

    and in Space | News | NREL NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth and in Space NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth and in Space . NREL joined forces with NASA in finding new, more precise ways to trigger internal short circuits

  15. Optically triggered fire set/detonator system

    DOEpatents

    Chase, Jay B.; Pincosy, Philip A.; Chato, Donna M.; Kirbie, Hugh; James, Glen F.

    2007-03-20

    The present invention is directed to a system having a plurality of capacitor discharge units (CDUs) that includes electrical bridge type detonators operatively coupled to respective explosives. A pulse charging circuit is adapted to provide a voltage for each respective capacitor in each CDU. Such capacitors are discharged through the electrical bridge type detonators upon receiving an optical signal to detonate respective operatively coupled explosives at substantially the same time.

  16. Portable battery-free charger for radiation dosimeters

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  17. Chemogenetic Activation of an Extinction Neural Circuit Reduces Cue-Induced Reinstatement of Cocaine Seeking.

    PubMed

    Augur, Isabel F; Wyckoff, Andrew R; Aston-Jones, Gary; Kalivas, Peter W; Peters, Jamie

    2016-09-28

    The ventromedial prefrontal cortex (vmPFC) has been shown to negatively regulate cocaine-seeking behavior, but the precise conditions by which vmPFC activity can be exploited to reduce cocaine relapse are currently unknown. We used viral-mediated gene transfer of designer receptors (DREADDs) to activate vmPFC neurons and examine the consequences on cocaine seeking in a rat self-administration model of relapse. Activation of vmPFC neurons with the Gq-DREADD reduced reinstatement of cocaine seeking elicited by cocaine-associated cues, but not by cocaine itself. We used a retro-DREADD approach to confine the Gq-DREADD to vmPFC neurons that project to the medial nucleus accumbens shell, confirming that these neurons are responsible for the decreased cue-induced reinstatement of cocaine seeking. The effects of vmPFC activation on cue-induced reinstatement depended on prior extinction training, consistent with the reported role of this structure in extinction memory. These data help define the conditions under which chemogenetic activation of extinction neural circuits can be exploited to reduce relapse triggered by reminder cues. The ventromedial prefrontal cortex (vmPFC) projection to the nucleus accumbens shell is important for extinction of cocaine seeking, but its anatomical proximity to the relapse-promoting projection from the dorsomedial prefrontal cortex to the nucleus accumbens core makes it difficult to selectively enhance neuronal activity in one pathway or the other using traditional pharmacotherapy (e.g., systemically administered drugs). Viral-mediated gene delivery of an activating Gq-DREADD to vmPFC and/or vmPFC projections to the nucleus accumbens shell allows the chemogenetic exploitation of this extinction neural circuit to reduce cocaine seeking and was particularly effective against relapse triggered by cocaine reminder cues. Copyright © 2016 the authors 0270-6474/16/3610174-07$15.00/0.

  18. Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered 'wanting' for reward: entire core and medial shell mapped as substrates for PIT enhancement.

    PubMed

    Peciña, Susana; Berridge, Kent C

    2013-05-01

    Pavlovian cues [conditioned stimulus (CS+)] often trigger intense motivation to pursue and consume related reward [unconditioned stimulus (UCS)]. But cues do not always trigger the same intensity of motivation. Encountering a reward cue can be more tempting on some occasions than on others. What makes the same cue trigger more intense motivation to pursue reward on a particular encounter? The answer may be the level of incentive salience ('wanting') that is dynamically generated by mesocorticolimbic brain systems, influenced especially by dopamine and opioid neurotransmission in the nucleus accumbens (NAc) at that moment. We tested the ability of dopamine stimulation (by amphetamine microinjection) vs. mu opioid stimulation [by d-Ala, nMe-Phe, Glyol-enkephalin (DAMGO) microinjection] of either the core or shell of the NAc to amplify cue-triggered levels of motivation to pursue sucrose reward, measured with a Pavlovian-Instrumental Transfer (PIT) procedure, a relatively pure assay of incentive salience. Cue-triggered 'wanting' in PIT was enhanced by amphetamine or DAMGO microinjections equally, and also equally at nearly all sites throughout the entire core and medial shell (except for a small far-rostral strip of shell). NAc dopamine/opioid stimulations specifically enhanced CS+ ability to trigger phasic peaks of 'wanting' to obtain UCS, without altering baseline efforts when CS+ was absent. We conclude that dopamine/opioid stimulation throughout nearly the entire NAc can causally amplify the reactivity of mesocorticolimbic circuits, and so magnify incentive salience or phasic UCS 'wanting' peaks triggered by a CS+. Mesolimbic amplification of incentive salience may explain why a particular cue encounter can become irresistibly tempting, even when previous encounters were successfully resisted before. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Axial-Centrifugal Compressor Program

    DTIC Science & Technology

    1975-10-01

    chip detector, but they were not large enough to trigger the alarm circuit. These chips we-e analyzed as M50 bearing material, which was a positive...but an analysis of these particles indicated M50 bearing material and positively identified a thrust bearing problem. 50 ’ ! i VI Figure 18. Load Cel...load cell readout became erratic and the vehicle was shut down. An inspection showed that the aft bearing sump chip detector contained M50 bearing

  20. Addiction to the IGF2-ID1-IGF2 circuit for maintenance of the breast cancer stem-like cells

    PubMed Central

    Tominaga, K; Shimamura, T; Kimura, N; Murayama, T; Matsubara, D; Kanauchi, H; Niida, A; Shimizu, S; Nishioka, K; Tsuji, E-i; Yano, M; Sugano, S; Shimono, Y; Ishii, H; Saya, H; Mori, M; Akashi, K; Tada, K-i; Ogawa, T; Tojo, A; Miyano, S; Gotoh, N

    2017-01-01

    The transcription factor nuclear factor-κB (NF-κB) has important roles for tumorigenesis, but how it regulates cancer stem cells (CSCs) remains largely unclear. We identified insulin-like growth factor 2 (IGF2) is a key target of NF-κB activated by HER2/HER3 signaling to form tumor spheres in breast cancer cells. The IGF2 receptor, IGF1 R, was expressed at high levels in CSC-enriched populations in primary breast cancer cells. Moreover, IGF2-PI3K (IGF2-phosphatidyl inositol 3 kinase) signaling induced expression of a stemness transcription factor, inhibitor of DNA-binding 1 (ID1), and IGF2 itself. ID1 knockdown greatly reduced IGF2 expression, and tumor sphere formation. Finally, treatment with anti-IGF1/2 antibodies blocked tumorigenesis derived from the IGF1Rhigh CSC-enriched population in a patient-derived xenograft model. Thus, NF-κB may trigger IGF2-ID1-IGF2-positive feedback circuits that allow cancer stem-like cells to appear. Then, they may become addicted to the circuits. As the circuits are the Achilles' heels of CSCs, it will be critical to break them for eradication of CSCs. PMID:27546618

  1. Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong

    2018-06-01

    A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.

  2. The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit

    PubMed Central

    Shankar, Shruti; Chua, Jia Yi; Tan, Kah Junn; Calvert, Meredith EK; Weng, Ruifen; Ng, Wan Chin; Mori, Kenji; Yew, Joanne Y

    2015-01-01

    Gustatory pheromones play an essential role in shaping the behavior of many organisms. However, little is known about the processing of taste pheromones in higher order brain centers. Here, we describe a male-specific gustatory circuit in Drosophila that underlies the detection of the anti-aphrodisiac pheromone (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol (CH503). Using behavioral analysis, genetic manipulation, and live calcium imaging, we show that Gr68a-expressing neurons on the forelegs of male flies exhibit a sexually dimorphic physiological response to the pheromone and relay information to the central brain via peptidergic neurons. The release of tachykinin from 8 to 10 cells within the subesophageal zone is required for the pheromone-triggered courtship suppression. Taken together, this work describes a neuropeptide-modulated central brain circuit that underlies the programmed behavioral response to a gustatory sex pheromone. These results will allow further examination of the molecular basis by which innate behaviors are modulated by gustatory cues and physiological state. DOI: http://dx.doi.org/10.7554/eLife.06914.001 PMID:26083710

  3. Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light.

    PubMed

    Bertolesi, Gabriel E; Vazhappilly, Sherene T; Hehr, Carrie L; McFarlane, Sarah

    2016-03-01

    Light-regulated skin colour change is an important physiological process in invertebrates and lower vertebrates, and includes daily circadian variation and camouflage (i.e. background adaptation). The photoactivation of melanopsin-expressing retinal ganglion cells (mRGCs) in the eye initiates an uncharacterized neuroendocrine circuit that regulates melanin dispersion/aggregation through the secretion of alpha-melanocyte-stimulating hormone (α-MSH). We developed experimental models of normal or enucleated Xenopus embryos, as well as in situ cultures of skin of isolated dorsal head and tails, to analyse pharmacological induction of skin pigmentation and α-MSH synthesis. Both processes are triggered by a melanopsin inhibitor, AA92593, as well as chloride channel modulators. The AA9253 effect is eye-dependent, while functional data in vivo point to GABAA receptors expressed on pituitary melanotrope cells as the chloride channel blocker target. Based on the pharmacological data, we suggest a neuroendocrine circuit linking mRGCs with α-MSH secretion, which is used normally during background adaptation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Microfluidics with fluid walls.

    PubMed

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  5. Nanoscale Photosynthesis and the Photophysics of Neural Cells

    NASA Astrophysics Data System (ADS)

    Greenbaum, Elias; Kuritz, Tanya; Owens, Elizabeth; Lee, Ida; Humayun, Mark

    2004-03-01

    We extracted and purified integral membrane Photosystem I (PSI) reaction centers from spinach leaves and measured their open and closed circuit photovoltages. The open circuit value is at least 1 V whereas the closed circuit value is at least 0.6 V. A quantitative analysis of the physical properties of PSI reaction centers and voltage-gated ion channels indicates that PSI should be able to trigger the opening of the channels. The cell membrane can be depolarized or hyperpolarized depending on the orientation of the PSI reaction center in the membrane. PSI-proteoliposomes were used as the delivery vehicle. We inserted PSI reaction centers into liposome membranes and, using P700 absorption spectroscopy, demonstrated that the reaction centers retain their functional activity in the liposomes. We have also obtained microscopic evidence that the liposomes are capable of fusing with the membranes of retinoblastoma cells. We report the creation of photoreceptor activity in retinoblastoma cells by PSI reaction centers as indicated by light-induced movement of calcium ions. These results may have application in the field of artificial sight in treating age-related macular degeneration and retinitis pigmentosa.

  6. Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration

    PubMed Central

    Yu, Jun; Yan, Yijin; Li, King-Lun; Wang, Yao; Huang, Yanhua H.; Urban, Nathaniel N.; Nestler, Eric J.; Schlüter, Oliver M.; Dong, Yan

    2017-01-01

    The basolateral amygdala (BLA) sends excitatory projections to the nucleus accumbens (NAc) and regulates motivated behaviors partially by activating NAc medium spiny neurons (MSNs). Here, we characterized a feedforward inhibition circuit, through which BLA-evoked activation of NAc shell (NAcSh) MSNs was fine-tuned by GABAergic monosynaptic innervation from adjacent fast-spiking interneurons (FSIs). Specifically, BLA-to-NAcSh projections predominantly innervated NAcSh FSIs compared with MSNs and triggered action potentials in FSIs preceding BLA-mediated activation of MSNs. Due to these anatomical and temporal properties, activation of the BLA-to-NAcSh projection resulted in a rapid FSI-mediated inhibition of MSNs, timing-contingently dictating BLA-evoked activation of MSNs. Cocaine self-administration selectively and persistently up-regulated the presynaptic release probability of BLA-to-FSI synapses, entailing enhanced FSI-mediated feedforward inhibition of MSNs upon BLA activation. Experimentally enhancing the BLA-to-FSI transmission in vivo expedited the acquisition of cocaine self-administration. These results reveal a previously unidentified role of an FSI-embedded circuit in regulating NAc-based drug seeking and taking. PMID:28973852

  7. N channel JFET based digital logic gate structure

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J. (Inventor)

    2010-01-01

    A circuit topography is presented which is used to create usable digital logic gates using N (negatively doped) channel Junction Field Effect Transistors (JFETs) and load resistors, level shifting resistors, and supply rails whose values are based on the direct current (DC) parametric distributions of those JFETs. This method has direct application to the current state of the art in high temperature, for example 300.degree. C. to 500.degree. C. and higher, silicon carbide (SiC) device production. The ability to produce inverting and combinatorial logic enables the production of pulse and edge triggered latches. This scale of logic synthesis would bring digital logic and state machine capabilities to devices operating in extremely hot environments, such as the surface of Venus, near hydrothermal vents, within nuclear reactors (SiC is inherently radiation hardened), and within internal combustion engines. The basic logic gate can be configured as a driver for oscillator circuits allowing for time bases and simple digitizers for resistive or reactive sensors. The basic structure of this innovation, the inverter, can be reconfigured into various analog circuit topographies through the use of feedback structures.

  8. Genetically increased cell-intrinsic excitability enhances neuronal integration into adult brain circuits

    PubMed Central

    Lin, Chia-Wei; Sim, Shuyin; Ainsworth, Alice; Okada, Masayoshi; Kelsch, Wolfgang; Lois, Carlos

    2009-01-01

    New neurons are added to the adult brain throughout life, but only half ultimately integrate into existing circuits. Sensory experience is an important regulator of the selection of new neurons but it remains unknown whether experience provides specific patterns of synaptic input, or simply a minimum level of overall membrane depolarization critical for integration. To investigate this issue, we genetically modified intrinsic electrical properties of adult-generated neurons in the mammalian olfactory bulb. First, we observed that suppressing levels of cell-intrinsic neuronal activity via expression of ESKir2.1 potassium channels decreases, whereas enhancing activity via expression of NaChBac sodium channels increases survival of new neurons. Neither of these modulations affects synaptic formation. Furthermore, even when neurons are induced to fire dramatically altered patterns of action potentials, increased levels of cell-intrinsic activity completely blocks cell death triggered by NMDA receptor deletion. These findings demonstrate that overall levels of cell-intrinsic activity govern survival of new neurons and precise firing patterns are not essential for neuronal integration into existing brain circuits. PMID:20152111

  9. A High Performance Delta-Sigma Modulator for Neurosensing

    PubMed Central

    Xu, Jian; Zhao, Menglian; Wu, Xiaobo; Islam, Md. Kafiul; Yang, Zhi

    2015-01-01

    Recorded neural data are frequently corrupted by large amplitude artifacts that are triggered by a variety of sources, such as subject movements, organ motions, electromagnetic interferences and discharges at the electrode surface. To prevent the system from saturating and the electronics from malfunctioning due to these large artifacts, a wide dynamic range for data acquisition is demanded, which is quite challenging to achieve and would require excessive circuit area and power for implementation. In this paper, we present a high performance Delta-Sigma modulator along with several design techniques and enabling blocks to reduce circuit area and power. The modulator was fabricated in a 0.18-μm CMOS process. Powered by a 1.0-V supply, the chip can achieve an 85-dB peak signal-to-noise-and-distortion ratio (SNDR) and an 87-dB dynamic range when integrated over a 10-kHz bandwidth. The total power consumption of the modulator is 13 μW, which corresponds to a figure-of-merit (FOM) of 45 fJ/conversion step. These competitive circuit specifications make this design a good candidate for building high precision neurosensors. PMID:26262623

  10. New Magneto-Inductive DC Magnetometer for Space Missions

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Bronner, B.; Regoli, L.; Thoma, J.; Shen, A.; Jenkins, G.; Cutler, J.

    2017-12-01

    A new magneto-inductive DC magnetometer is being developed at the University of Michigan that provides fluxgate quality measurements in a low mass, volume, power and cost package. The magnetometer enables constellation-class missions not only due to its low-resource requirements, but also its potential for commercial integrated circuit fabrication. The magneto-inductive operating principle is based on a simple resistance-inductor (RL) circuit and involves measurement of the time it takes to charge and discharge the inductor between an upper and lower threshold by means of a Schmitt trigger oscillator. This time is proportional to the inductance that in turn is proportional to the field strength. We have modeled the operating principle in the circuit simulator SPICE and have built a proto-type using modified commercial sensors. The performance specifications include a dynamic range over the full-Earth's field, sampling rates up to 80 Hz, sensor and electronics mass of about 30 g, circuit board and sensor housing volume of < 100 cm3, and power consumption of about 5 mW. This system's noise levels are predicted to be about 100 pT /√Hz @ 1 Hz with a precision of about 100 pT. Due to the simple circuit design, lack of an analog-to-digital converter, and choice of oscillator, we anticipate that it will be extremely temperature stable and radiation tolerant. This presentation will describe the constellation mission enabling design, the development status and the testing results of this new magnetometer.

  11. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    PubMed

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that eADO acts at low-affinity A3 receptors in addition to high-affinity A1 receptors to suppress coordinated responses triggered by immune-histamine H2 receptor activation. The short interplexus circuit activated by histamine involves adenosine, acetylcholine, substance P, and serotonin. We postulate that A3 receptor modulation may occur in gut inflammatory diseases or allergic responses involving mast cell and histamine release.

  12. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine

    PubMed Central

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H.; Alhaj, Mazin; Cooke, Helen J.; Grants, Iveta; Ren, Tianhua

    2009-01-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl− secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (Isc, Cl− secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC50 for IB-MECA was 0.8 μM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex Isc responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that eADO acts at low-affinity A3 receptors in addition to high-affinity A1 receptors to suppress coordinated responses triggered by immune-histamine H2 receptor activation. The short interplexus circuit activated by histamine involves adenosine, acetylcholine, substance P, and serotonin. We postulate that A3 receptor modulation may occur in gut inflammatory diseases or allergic responses involving mast cell and histamine release. PMID:19808660

  13. Synchronous Phase-Resolving Flash Range Imaging

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Hancock, Bruce

    2007-01-01

    An apparatus, now undergoing development, for range imaging based on measurement of the round-trip phase delay of a pulsed laser beam is described. The apparatus would operate in a staring mode. A pulsed laser would illuminate a target. Laser light reflected from the target would be imaged on a verylarge- scale integrated (VLSI)-circuit image detector, each pixel of which would contain a photodetector and a phase-measuring circuit. The round-trip travel time for the reflected laser light incident on each pixel, and thus the distance to the portion of the target imaged in that pixel, would be measured in terms of the phase difference between (1) the photodetector output pulse and (2) a local-oscillator signal that would have a frequency between 10 and 20 MHz and that would be synchronized with the laser-pulse-triggering signal.

  14. A front end readout electronics ASIC chip for position sensitive solid state detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravis, S.D.; Tuemer, T.O.; Visser, G.J.

    1998-12-31

    A mixed signal Application Specific Integrated Circuit (ASIC) chip for front end readout electronics of position sensitive solid state detectors has been manufactured. It is called RENA (Readout Electronics for Nuclear Applications). This chip can be used for both medical and industrial imaging of X-rays and gamma rays. The RENA chip is a monolithic integrated circuit and has 32 channels with low noise high input impedance charge sensitive amplifiers. It works in pulse counting mode with good energy resolution. It also has a self triggering output which is essential for nuclear applications when the incident radiation arrives at random. Different,more » externally selectable, operational modes that includes a sparse readout mode is available to increase data throughput. It also has externally selectable shaping (peaking) times.« less

  15. DC circuits: I. Evidence for fine grained contextual dependence

    NASA Astrophysics Data System (ADS)

    John, lgnatius; Allie, Saalih

    2017-01-01

    This is the first part of a broader study, exploring the contextual variations of the responses of 149 first year (non-physics major) university students at two South African universities in Cape Town. The data analysis was done in terms of the (i) forced choice responses (FCR), (ii) free written responses and (iii) personal interviews. This paper presents the development of the instrument (aspects of circuits questionnaire, or ACQ) used in the exploratory study and the results obtained from the FCR analysis of 60 students. The results showed that the student responses are triggered by the context framed by the questions and the results obtained from investigations using light bulbs cannot be generalised and may be reinterpreted. This article was extracted from the PhD thesis submitted to Faculty of Science, University of Cape Town.

  16. Expanding Biosensing Abilities through Computer-Aided Design of Metabolic Pathways.

    PubMed

    Libis, Vincent; Delépine, Baudoin; Faulon, Jean-Loup

    2016-10-21

    Detection of chemical signals is critical for cells in nature as well as in synthetic biology, where they serve as inputs for designer circuits. Important progress has been made in the design of signal processing circuits triggering complex biological behaviors, but the range of small molecules recognized by sensors as inputs is limited. The ability to detect new molecules will increase the number of synthetic biology applications, but direct engineering of tailor-made sensors takes time. Here we describe a way to immediately expand the range of biologically detectable molecules by systematically designing metabolic pathways that transform nondetectable molecules into molecules for which sensors already exist. We leveraged computer-aided design to predict such sensing-enabling metabolic pathways, and we built several new whole-cell biosensors for molecules such as cocaine, parathion, hippuric acid, and nitroglycerin.

  17. Prevention of Ca(2+)-mediated action potentials in GABAergic local circuit neurones of rat thalamus by a transient K+ current.

    PubMed Central

    Pape, H C; Budde, T; Mager, R; Kisvárday, Z F

    1994-01-01

    1. Neurones enzymatically dissociated from the rat dorsal lateral geniculate nucleus (LGN) were identified as GABAergic local circuit interneurones and geniculocortical relay cells, based upon quantitative analysis of soma profiles, immunohistochemical detection of GABA or glutamic acid decarboxylase, and basic electrogenic behaviour. 2. During whole-cell current-clamp recording, isolated LGN neurones generated firing patterns resembling those in intact tissue, with the most striking difference relating to the presence in relay cells of a Ca2+ action potential with a low threshold of activation, capable of triggering fast spikes, and the absence of a regenerative Ca2+ response with a low threshold of activation in local circuit cells. 3. Whole-cell voltage-clamp experiments demonstrated that both classes of LGN neurones possess at least two voltage-dependent membrane currents which operate in a range of membrane potentials negative to the threshold for generation of Na(+)-K(+)-mediated spikes: the T-type Ca2+ current (IT) and an A-type K+ current (IA). Taking into account the differences in membrane surface area, the average size of IT was similar in the two types of neurones, and interneurones possessed a slightly larger A-conductance. 4. In local circuit neurones, the ranges of steady-state inactivation and activation of IT and IA were largely overlapping (VH = 81.1 vs. -82.8 mV), both currents activated at around -70 mV, and they rapidly increased in amplitude with further depolarization. In relay cells, the inactivation curve of IT was negatively shifted along the voltage axis by about 20 mV compared with that of IA (Vh = -86.1 vs. -69.2 mV), and the activation threshold for IT (at -80 mV) was 20 mV more negative than that for IA. In interneurones, the activation range of IT was shifted to values more positive than that in relay cells (Vh = -54.9 vs. -64.5 mV), whereas the activation range of IA was more negative (Vh = -25.2 vs. -14.5 mV). 5. Under whole-cell voltage-clamp conditions that allowed the combined activation of Ca2+ and K+ currents, depolarizing voltage steps from -110 mV evoked inward currents resembling IT in relay cells and small outward currents indicative of IA in local circuit neurones. After blockade of IA with 4-aminopyridine (4-AP), the same pulse protocol produced IT in both types of neurones. Under current clamp, 4-AP unmasked a regenerative membrane depolarization with a low threshold of activation capable of triggering fast spikes in local circuit neurones.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 1 PMID:7965855

  18. A single chip 2 Gbit/s clock recovery subsystem for digital communications

    NASA Astrophysics Data System (ADS)

    Hickling, Ronald M.

    A self-contained clock recovery/data resynchronizer phase locked loop (PLL) for use in microwave and fiber optic digital communications has been fabricated using GaAs integrated circuit technology. The IC contains the analog and digital components for the PLL: an edge-triggered phase detector based on a 1.2 GHz phase/frequency comparator, an op amp for creating the loop filter, and a VCO based on a differential source-coupled pair amplifier.

  19. A Integrated Circuit for a Biomedical Capacitive Pressure Transducer

    NASA Astrophysics Data System (ADS)

    Smith, Michael John Sebastian

    Medical research has an urgent need for a small, accurate, stable, low-power, biocompatible and inexpensive pressure sensor with a zero to full-scale range of 0-300 mmHg. An integrated circuit (IC) for use with a capacitive pressure transducer was designed, built and tested. The random pressure measurement error due to resolution and non-linearity is (+OR-)0.4 mmHg (at mid-range with a full -scale of 300 mmHg). The long-term systematic error due to falling battery voltage is (+OR-)0.6 mmHg. These figures were calculated from measurements of temperature, supply dependence and non-linearity on completed integrated circuits. The sensor IC allows measurement of temperature to (+OR-)0.1(DEGREES)C to allow for temperature compensation of the transducer. Novel micropower circuit design of the system components enabled these levels of accuracy to be reached. Capacitance is measured by a new ratiometric scheme employing an on -chip reference capacitor. This method greatly reduces the effects of voltage supply, temperature and manufacturing variations on the sensor circuit performance. The limits on performance of the bandgap reference circuit fabricated with a standard bipolar process using ion-implanted resistors were determined. Measurements confirm the limits of temperature stability as approximately (+OR-)300 ppm/(DEGREES)C. An exact analytical expression for the period of the Schmitt trigger oscillator, accounting for non-constant capacitor charging current, was formulated. Experiments to test agreement with theory showed that prediction of the oscillator period was very accurate. The interaction of fundamental and practical limits on the scaling of the transducer size was investigated including a correction to previous theoretical analysis of jitter in an RC oscillator. An areal reduction of 4 times should be achievable.

  20. A 65-kV insulated gate bipolar transistor switch applied in damped AC voltages partial discharge detection system.

    PubMed

    Jiang, J; Ma, G M; Luo, D P; Li, C R; Li, Q M; Wang, W

    2014-02-01

    Damped AC voltages detection system (DAC) is a productive way to detect the faults in power cables. To solve the problems of large volume, complicated structure and electromagnetic interference in existing switches, this paper developed a compact solid state switch based on electromagnetic trigger, which is suitable for DAC test system. Synchronous electromagnetic trigger of 32 Insulated Gate Bipolar Transistors (IGBTs) in series was realized by the topological structure of single line based on pulse width modulation control technology. In this way, external extension was easily achieved. Electromagnetic trigger and resistor-capacitor-diode snubber circuit were optimized to reduce the switch turn-on time and circular layout. Epoxy encapsulating was chosen to enhance the level of partial discharge initial voltage (PDIV). The combination of synchronous trigger and power supply is proposed to reduce the switch volume. Moreover, we have overcome the drawback of the electromagnetic interference and improved the detection sensitivity of DAC by using capacitor storage energy to maintain IGBT gate driving voltage. The experimental results demonstrated that the solid-state switch, with compact size, whose turn-on time was less than 400 ns and PDIV was more than 65 kV, was able to meet the actual demands of 35 kV DAC test system.

  1. Performance of a 512 x 512 Gated CMOS Imager with a 250 ps Exposure Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teruya, A T; Moody, J D; Hsing, W W

    2012-10-01

    We describe the performance of a 512x512 gated CMOS read out integrated circuit (ROIC) with a 250 ps exposure time. A low-skew, H-tree trigger distribution system is used to locally generate individual pixel gates in each 8x8 neighborhood of the ROIC. The temporal width of the gate is voltage controlled and user selectable via a precision potentiometer. The gating implementation was first validated in optical tests of a 64x64 pixel prototype ROIC developed as a proof-of-concept during the early phases of the development program. The layout of the H-Tree addresses each quadrant of the ROIC independently and admits operation ofmore » the ROIC in two modes. If “common mode” triggering is used, the camera provides a single 512x512 image. If independent triggers are used, the camera can provide up to four 256x256 images with a frame separation set by the trigger intervals. The ROIC design includes small (sub-pixel) optical photodiode structures to allow test and characterization of the ROIC using optical sources prior to bump bonding. Reported test results were obtained using short pulse, second harmonic Ti:Sapphire laser systems operating at λ~ 400 nm at sub-ps pulse widths.« less

  2. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  3. Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous synaptic transmission.

    PubMed

    Xu, Wei; Morishita, Wade; Buckmaster, Paul S; Pang, Zhiping P; Malenka, Robert C; Südhof, Thomas C

    2012-03-08

    Neurons encode information by firing spikes in isolation or bursts and propagate information by spike-triggered neurotransmitter release that initiates synaptic transmission. Isolated spikes trigger neurotransmitter release unreliably but with high temporal precision. In contrast, bursts of spikes trigger neurotransmission reliably (i.e., boost transmission fidelity), but the resulting synaptic responses are temporally imprecise. However, the relative physiological importance of different spike-firing modes remains unclear. Here, we show that knockdown of synaptotagmin-1, the major Ca(2+) sensor for neurotransmitter release, abrogated neurotransmission evoked by isolated spikes but only delayed, without abolishing, neurotransmission evoked by bursts of spikes. Nevertheless, knockdown of synaptotagmin-1 in the hippocampal CA1 region did not impede acquisition of recent contextual fear memories, although it did impair the precision of such memories. In contrast, knockdown of synaptotagmin-1 in the prefrontal cortex impaired all remote fear memories. These results indicate that different brain circuits and types of memory employ distinct spike-coding schemes to encode and transmit information. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Radial current high power dummy load for characterizing the high power laser triggered transformer-type accelerator.

    PubMed

    Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang

    2010-09-01

    A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.

  5. Radial current high power dummy load for characterizing the high power laser triggered transformer-type accelerator

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang

    2010-09-01

    A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.

  6. Establishment of a universal and rational gene detection strategy through three-way junction-based remote transduction.

    PubMed

    Tang, Yidan; Lu, Baiyang; Zhu, Zhentong; Li, Bingling

    2018-01-21

    The polymerase chain reaction and many isothermal amplifications are able to achieve super gene amplification. Unfortunately, most commonly-used transduction methods, such as dye staining and Taqman-like probing, still suffer from shortcomings including false signals or difficult probe design, or are incompatible with multi-analysis. Here a universal and rational gene detection strategy has been established by translating isothermal amplicons to enzyme-free strand displacement circuits via three-way junction-based remote transduction. An assistant transduction probe was imported to form a partial hybrid with the target single-stranded nucleic acid. After systematic optimization the hybrid could serve as an associative trigger to activate a downstream circuit detector via a strand displacement reaction across the three-way junction. By doing so, the detection selectivity can be double-guaranteed through both amplicon-transducer recognition and the amplicon-circuit reaction. A well-optimized circuit can be immediately applied to a new target detection through simply displacing only 10-12 nt on only one component, according to the target. More importantly, this property for the first time enables multi-analysis and logic-analysis in a single reaction, sharing a single fluorescence reporter. In an applicable model, trace amounts of Cronobacter and Enterobacteria genes have been clearly distinguished from samples with no bacteria or one bacterium, with ultra-high sensitivity and selectivity.

  7. Characteristics of switching plasma in an inverse-pinch switch

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Choi, Sang H.; Venable, Demetrius D.; Han, Kwang S.; Nam, Sang H.

    1993-01-01

    Characteristics of the plasma that switches on tens of giga volt-ampere in an inverse-pinch plasma switch (INPIStron) have been made. Through optical and spectroscopic diagnostics of the current carrying plasma, the current density, the motion of current paths, dominant ionic species have been determined in order to access their effects on circuit parameters and material erosion. Also the optimum operational condition of the plasma-puff triggering method required for azimuthally uniform conduction in the INPIStron has been determined.

  8. Electronic computers and telephone exchanges

    NASA Astrophysics Data System (ADS)

    Flowers, T. H.

    1980-01-01

    A retrospective on the telephone, with emphasis on development of digital methods, is presented. Starting with its invention in 1876, major breakthroughs in transmission and switching circuitry are reviewed. The thermionic valve (1917), the Eccles-Jordan trigger circuit (1921), copper oxide rectifiers (1920's), and the gas-tube binary counter (1931) are highlighted. The evolution of logic design in telephone exchanges and the interaction this had with electronic computers is then traced up to the appearance of COLOSSUS, a specialized electronic computer used for cryptanalysis (1943).

  9. Programmable autonomous synthesis of single-stranded DNA

    NASA Astrophysics Data System (ADS)

    Kishi, Jocelyn Y.; Schaus, Thomas E.; Gopalkrishnan, Nikhil; Xuan, Feng; Yin, Peng

    2018-02-01

    DNA performs diverse functional roles in biology, nanotechnology and biotechnology, but current methods for autonomously synthesizing arbitrary single-stranded DNA are limited. Here, we introduce the concept of primer exchange reaction (PER) cascades, which grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis happens in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal-processing and actuation capabilities. We experimentally demonstrate a nanodevice that transduces the detection of a trigger RNA into the production of a DNAzyme that degrades an independent RNA substrate, a signal amplifier that conditionally synthesizes long fluorescent strands only in the presence of a particular RNA signal, molecular computing circuits that evaluate logic (AND, OR, NOT) combinations of RNA inputs, and a temporal molecular event recorder that records in the PER transcript the order in which distinct RNA inputs are sequentially detected.

  10. Programmable autonomous synthesis of single-stranded DNA.

    PubMed

    Kishi, Jocelyn Y; Schaus, Thomas E; Gopalkrishnan, Nikhil; Xuan, Feng; Yin, Peng

    2018-02-01

    DNA performs diverse functional roles in biology, nanotechnology and biotechnology, but current methods for autonomously synthesizing arbitrary single-stranded DNA are limited. Here, we introduce the concept of primer exchange reaction (PER) cascades, which grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis happens in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal-processing and actuation capabilities. We experimentally demonstrate a nanodevice that transduces the detection of a trigger RNA into the production of a DNAzyme that degrades an independent RNA substrate, a signal amplifier that conditionally synthesizes long fluorescent strands only in the presence of a particular RNA signal, molecular computing circuits that evaluate logic (AND, OR, NOT) combinations of RNA inputs, and a temporal molecular event recorder that records in the PER transcript the order in which distinct RNA inputs are sequentially detected.

  11. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

    NASA Astrophysics Data System (ADS)

    Hutsel, B. T.; Corcoran, P. A.; Cuneo, M. E.; Gomez, M. R.; Hess, M. H.; Hinshelwood, D. D.; Jennings, C. A.; Laity, G. R.; Lamppa, D. C.; McBride, R. D.; Moore, J. K.; Myers, A.; Rose, D. V.; Slutz, S. A.; Stygar, W. A.; Waisman, E. M.; Welch, D. R.; Whitney, B. A.

    2018-03-01

    We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator configurations and load-impedance time histories. For these experiments, the apparent fractional current loss varies from 0% to 20%. Results of the circuit simulations agree with data acquired on 52 shots to within 2%.

  12. Development of circuit model for arcing on solar panels

    NASA Astrophysics Data System (ADS)

    Mehta, Bhoomi K.; Deshpande, S. P.; Mukherjee, S.; Gupta, S. B.; Ranjan, M.; Rane, R.; Vaghela, N.; Acharya, V.; Sudhakar, M.; Sankaran, M.; Suresh, E. P.

    2010-02-01

    The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 μs duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between insulator and conductor, arc resistance, stored charge in the solar cell coverglass and the external capacitor that simulates wire harness. A close correlation between the experiments and circuit model results has been observed.

  13. Pathological circuit function underlying addiction and anxiety disorders.

    PubMed

    Lüthi, Andreas; Lüscher, Christian

    2014-12-01

    Current models of addiction and anxiety stem from the idea that aberrant function and remodeling of neural circuits cause the pathological behaviors. According to this hypothesis, a disease-defining experience (for example, drug reward or stress) would trigger specific forms of synaptic plasticity, which in susceptible subjects would become persistent and lead to the disease. While the notion of synaptic diseases has received much attention, no candidate disorder has been sufficiently investigated to yield new, rational therapies that could be tested in the clinic. Here we review the arguments in favor of abnormal neuronal plasticity underlying addiction and anxiety disorders, with a focus on the functional diversity of neurons that make up the circuits involved. We argue that future research must strive to obtain a comprehensive description of the relevant functional anatomy. This will allow identification of molecular mechanisms that govern the induction and expression of disease-relevant plasticity in identified neurons. To establish causality, one will have to test whether normalization of function can reverse pathological behavior. With these elements in hand, it will be possible to propose blueprints for manipulations to be tested in translational studies. The challenge is daunting, but new techniques, above all optogenetics, may enable decisive advances.

  14. INVESTIGATION OF THE SUN'S X-RAYS. III. ELECTRONIC APPARATUS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasil'ev, B.N.; Shurigin, A.I.; Tindo, I.P.

    1963-01-01

    The electronic portion of an apparatus constructed for the investigation of soft x rays being emitted by the sun is described. The apparatus is used in geophysical rockets and in cosmic space ships and earth satellites. In the geophysical rockets two separate detection channels are employed, one for the working counters and the other for the control counters. The working counter is always directed towards the sun while the control counter is turned 15 deg away from the sun. In the second Sputnik six identical counters were used and arranged so that their line of sight was oriented along threemore » mutually perpendicular axes. In the third Sputnik the working and contour counters were distributed in a system which was self-orienting with respect to the sun. In addition, two stationary counters were enrployed; their direction with respect to the sun changed during the course of the flight. The electronic apparatus consists of the following basic components: a circuit that forms the amplitude and shape of the counter pulses, the triggering device, the separating cascade circuit, and the coding set-up. Each of these circuits is described in detail; block diagrams are shown. (TTT)« less

  15. High-voltage isolation transformer for sub-nanosecond rise time pulses constructed with annular parallel-strip transmission lines.

    PubMed

    Homma, Akira

    2011-07-01

    A novel annular parallel-strip transmission line was devised to construct high-voltage high-speed pulse isolation transformers. The transmission lines can easily realize stable high-voltage operation and good impedance matching between primary and secondary circuits. The time constant for the step response of the transformer was calculated by introducing a simple low-frequency equivalent circuit model. Results show that the relation between the time constant and low-cut-off frequency of the transformer conforms to the theory of the general first-order linear time-invariant system. Results also show that the test transformer composed of the new transmission lines can transmit about 600 ps rise time pulses across the dc potential difference of more than 150 kV with insertion loss of -2.5 dB. The measured effective time constant of 12 ns agreed exactly with the theoretically predicted value. For practical applications involving the delivery of synchronized trigger signals to a dc high-voltage electron gun station, the transformer described in this paper exhibited advantages over methods using fiber optic cables for the signal transfer system. This transformer has no jitter or breakdown problems that invariably occur in active circuit components.

  16. [Study on the application of pyroelectric infrared sensor to safety protection system].

    PubMed

    Wang, Song-de; Zhang, Shuan-ji; Zhu, Xiao-long; Yang, Jie-hui

    2006-11-01

    Using the infrared ray of human body, which is received and magnified by pyroelectric infrared sensor to form a certain voltage control signal, and using the control signal to trigger a voice recording-reproducing circuit, a pyroelectric infrared detector voice device with auto-control function designed. The circuit adopted new pyroelectric infrared detector assembly and voice recording-reproducing assembly. When someone is present in the detectable range of the pyroelectric infrared detector, first, the pyroelectric infrared sensor will transform the incepted radiation energy to a electric signal, which is then magnified and compared by an inside circuit, and an output control signal, touches off the voice recording-reproducing assembly with the reproducer sending out a beforehand transcribed caution voice to wise the man who does not know well the surrounding condition that the frontage is a danger zone and should not be approched. With the design of integrated structures, the distance-warning device has the advantages of strong anti-jamming ability, low temperature resistance, working stability and use-convenience, and it can be suitably installed and used in several locations which may endanger person safety, such as substation, high voltage switch panel, electric transformer, etc.

  17. Gigantic jets between a thundercloud and the ionosphere.

    PubMed

    Su, H T; Hsu, R R; Chen, A B; Wang, Y C; Hsiao, W S; Lai, W C; Lee, L C; Sato, M; Fukunishi, H

    2003-06-26

    Transient luminous events in the atmosphere, such as lighting-induced sprites and upwardly discharging blue jets, were discovered recently in the region between thunderclouds and the ionosphere. In the conventional picture, the main components of Earth's global electric circuit include thunderstorms, the conducting ionosphere, the downward fair-weather currents and the conducting Earth. Thunderstorms serve as one of the generators that drive current upward from cloud tops to the ionosphere, where the electric potential is hundreds of kilovolts higher than Earth's surface. It has not been clear, however, whether all the important components of the global circuit have even been identified. Here we report observations of five gigantic jets that establish a direct link between a thundercloud (altitude approximately 16 km) and the ionosphere at 90 km elevation. Extremely-low-frequency radio waves in four events were detected, while no cloud-to-ground lightning was observed to trigger these events. Our result indicates that the extremely-low-frequency waves were generated by negative cloud-to-ionosphere discharges, which would reduce the electrical potential between ionosphere and ground. Therefore, the conventional picture of the global electric circuit needs to be modified to include the contributions of gigantic jets and possibly sprites.

  18. Climacteric ripening of apple fruit is regulated by transcriptional circuits stimulated by cross-talks between ethylene and auxin.

    PubMed

    Busatto, Nicola; Tadiello, Alice; Trainotti, Livio; Costa, Fabrizio

    2017-01-02

    Apple is a fleshy fruit distinguished by a climacteric type of ripening, since most of the relevant physiological changes are triggered and governed by the action of ethylene. After its production, this hormone is perceived by a series of receptors to regulate, through a signaling cascade, downstream ethylene related genes. The possibility to control the effect of ethylene opened new horizons to the improvement of the postharvest fruit quality. To this end, 1-methylcyclopropene (1-MCP), an ethylene antagonist, is routinely used to modulate the ripening progression increasing storage life. In a recent work published in The Plant Journal, the whole transcriptome variation throughout fruit development and ripening, with the adjunct comparison between normal and impaired postharvest ripening, has been illustrated. In particular, besides the expected downregulation of ethylene-regulated genes, we shed light on a regulatory circuit leading to de-repressing the expression of a specific set of genes following 1-MCP treatment, such as AUX/IAA, NAC and MADS. These findings suggested the existence of a possible ethylene/auxin cross-talk in apple, regulated by a transcriptional circuit stimulated by the interference at the ethylene receptor level.

  19. Thermal blinding of gated detectors in quantum cryptography.

    PubMed

    Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim

    2010-12-20

    It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [Nat. Photonics 4, 686 (2010)]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.

  20. A neural network for intermale aggression to establish social hierarchy.

    PubMed

    Stagkourakis, Stefanos; Spigolon, Giada; Williams, Paul; Protzmann, Jil; Fisone, Gilberto; Broberger, Christian

    2018-06-01

    Intermale aggression is used to establish social rank. Several neuronal populations have been implicated in aggression, but the circuit mechanisms that shape this innate behavior and coordinate its different components (including attack execution and reward) remain elusive. We show that dopamine transporter-expressing neurons in the hypothalamic ventral premammillary nucleus (PMv DAT neurons) organize goal-oriented aggression in male mice. Activation of PMv DAT neurons triggers attack behavior; silencing these neurons interrupts attacks. Regenerative PMv DAT membrane conductances interacting with recurrent and reciprocal excitation explain how a brief trigger can elicit a long-lasting response (hysteresis). PMv DAT projections to the ventrolateral part of the ventromedial hypothalamic and the supramammillary nuclei control attack execution and aggression reward, respectively. Brief manipulation of PMv DAT activity switched the dominance relationship between males, an effect persisting for weeks. These results identify a network structure anchored in PMv DAT neurons that organizes aggressive behavior and, as a consequence, determines intermale hierarchy.

  1. Second Law based definition of passivity/activity of devices

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B.

    2017-10-01

    Recently, our efforts to clarify the old question, if a memristor is a passive or active device [1], triggered debates between engineers, who have had advanced definitions of passivity/activity of devices, and physicists with significantly different views about this seemingly simple question. This debate triggered our efforts to test the well-known engineering concepts about passivity/activity in a deeper way, challenging them by statistical physics. It is shown that the advanced engineering definition of passivity/activity of devices is self-contradictory when a thermodynamical system executing Johnson-Nyquist noise is present. A new, statistical physical, self-consistent definition based on the Second Law of Thermodynamics is introduced. It is also shown that, in a system with uniform temperature distribution, any rectifier circuitry that can rectify thermal noise must contain an active circuit element, according to both the engineering and statistical physical definitions.

  2. Missing pulse detector for a variable frequency source

    DOEpatents

    Ingram, Charles B.; Lawhorn, John H.

    1979-01-01

    A missing pulse detector is provided which has the capability of monitoring a varying frequency pulse source to detect the loss of a single pulse or total loss of signal from the source. A frequency-to-current converter is used to program the output pulse width of a variable period retriggerable one-shot to maintain a pulse width slightly longer than one-half the present monitored pulse period. The retriggerable one-shot is triggered at twice the input pulse rate by employing a frequency doubler circuit connected between the one-shot input and the variable frequency source being monitored. The one-shot remains in the triggered or unstable state under normal conditions even though the source period is varying. A loss of an input pulse or single period of a fluctuating signal input will cause the one-shot to revert to its stable state, changing the output signal level to indicate a missing pulse or signal.

  3. System and method for optically locating microchannel positions

    DOEpatents

    Brewer, Laurence R.; Kimbrough, Joseph; Balch, Joseph; Davidson, J. Courtney

    2001-01-01

    A system and method is disclosed for optically locating a microchannel position. A laser source generates a primary laser beam which is directed at a microchannel plate. The microchannel plates include microchannels at various locations. A back-reflectance beam detector receives a back-reflected beam from the plate. The back-reflected beam is generated when the primary beam reflects off of the plate. A photodiode circuit generates a trigger signal when the back-reflected beam exceeds a predetermined threshold, indicating a presence of the microchannel. The method of the present invention includes the steps of generating a primary beam, directing the primary beam to a plate containing a microchannel, receiving from the plate a back-reflected beam generated in response to the primary beam, and generating a trigger signal when the back-reflected beam exceeds a predetermined threshold which corresponds to a presence of the microchannel.

  4. Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization

    NASA Astrophysics Data System (ADS)

    Slongo, L. K.; Martínez, S. V.; Eiterer, B. V. B.; Pereira, T. G.; Bezerra, E. A.; Paiva, K. V.

    2018-06-01

    The number of tasks that a satellite may execute in orbit is strongly related to the amount of energy its Electrical Power System (EPS) is able to harvest and to store. The manner the stored energy is distributed within the satellite has also a great impact on the CubeSat's overall efficiency. Most CubeSat's EPS do not prioritize energy constraints in their formulation. Unlike that, this work proposes an innovative energy-driven scheduling algorithm based on energy harvesting maximization policy. The energy harvesting circuit is mathematically modeled and the solar panel I-V curves are presented for different temperature and irradiance levels. Considering the models and simulations, the scheduling algorithm is designed to keep solar panels working close to their maximum power point by triggering tasks in the appropriate form. Tasks execution affects battery voltage, which is coupled to the solar panels through a protection circuit. A software based Perturb and Observe strategy allows defining the tasks to be triggered. The scheduling algorithm is tested in FloripaSat, which is an 1U CubeSat. A test apparatus is proposed to emulate solar irradiance variation, considering the satellite movement around the Earth. Tests have been conducted to show that the scheduling algorithm improves the CubeSat energy harvesting capability by 4.48% in a three orbit experiment and up to 8.46% in a single orbit cycle in comparison with the CubeSat operating without the scheduling algorithm.

  5. cAMP Stimulates Transepithelial Short-Circuit Current and Fluid Transport Across Porcine Ciliary Epithelium.

    PubMed

    Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai

    2016-12-01

    To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.

  6. Clock and trigger synchronization between several chassis of digital data acquisition modules

    NASA Astrophysics Data System (ADS)

    Hennig, W.; Tan, H.; Walby, M.; Grudberg, P.; Fallu-Labruyere, A.; Warburton, W. K.; Vaman, C.; Starosta, K.; Miller, D.

    2007-08-01

    In applications with segmented high purity Ge detectors or other detector arrays with tens or hundreds of channels, the high development cost and limited flexibility of application specific integrated circuits outweigh their benefits of low power and small size. The readout electronics typically consist of multi-channel data acquisition modules in a common chassis for power, clock and trigger distribution, and data readout. As arrays become larger and reach several hundred channels, the readout electronics have to be divided over several chassis, but still must maintain precise synchronization of clocks and trigger signals across all channels. This division becomes necessary not only because of limits given by the instrumentation standards on module size and chassis slot numbers, but also because data readout times increase when more modules share the same data bus and because power requirements approach the limits of readily available power supplies. In this paper, we present a method for distributing clocks and triggers between 4 PXI chassis containing DGF Pixie-16 modules with up to 226 acquisition channels per chassis. The data acquisition system is intended to instrument the over 600 channels of the SeGA detector array at the National Superconducting Cyclotron Laboratory. Our solution is designed to achieve synchronous acquisition of detector waveforms from all channels with a jitter of less than 1 ns, and can be extended to a larger number of chassis if desired.

  7. Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations

    NASA Astrophysics Data System (ADS)

    Lan, Chunbo; Tang, Lihua; Qin, Weiyang

    2017-07-01

    Nonlinear energy harvesters have attracted wide research attentions to achieve broadband performances in recent years. Nonlinear structures have multiple solutions in certain frequency region that contains high-energy and low-energy orbits. It is effectively the frequency region of capturing a high-energy orbit that determines the broadband performance. Thus, maintaining large-amplitude high-energy-orbit oscillations is highly desired. In this paper, a voltage impulse perturbation approach based on negative resistance is applied to trigger high-energy-orbit responses of piezoelectric nonlinear energy harvesters. First, the mechanism of the voltage impulse perturbation and the implementation of the synthetic negative resistance circuit are discussed in detail. Subsequently, numerical simulation and experiment are conducted and the results demonstrate that the high-energy-orbit oscillations can be triggered by the voltage impulse perturbation method for both monostable and bistable configurations given various scenarios. It is revealed that the perturbation levels required to trigger and maintain high-energy-orbit oscillations are different for various excitation frequencies in the region where multiple solutions exist. The higher gain in voltage output when high-energy-orbit oscillations are captured is accompanied with the demand of a higher voltage impulse perturbation level.

  8. ETIOLOGY, TRIGGERS AND NEUROCHEMICAL CIRCUITS ASSOCIATED WITH UNEXPECTED, EXPECTED, AND LABORATORY-INDUCED PANIC ATTACKS

    PubMed Central

    Johnson, Philip L.; Federici, Lauren M.; Shekhar, Anantha

    2014-01-01

    Panic disorder (PD) is a severe anxiety disorder that is characterized by recurrent panic attacks (PA), which can be unexpected (uPA, i.e., no clear identifiable trigger) or expected (ePA). Panic typically involves an abrupt feeling of catastrophic fear or distress accompanied by physiological symptoms such as palpitations, racing heart, thermal sensations, and sweating. Recurrent uPA and ePA can also lead to agoraphobia, where subjects with PD avoid situations that were associated with PA. Here we will review recent developments in our understanding of PD, which includes discussions on: symptoms and signs associated with uPA and ePAs; Diagnosis of PD and the new DSM-V; biological etiology such as heritability and gene x environment and gene x hormonal development interactions; comparisons between laboratory and naturally occurring uPAs and ePAs; neurochemical systems that are associated with clinical PAs (e.g. gene associations; targets for triggering or treating PAs), adaptive fear and panic response concepts in the context of new NIH RDoc approach; and finally strengths and weaknesses of translational animal models of adaptive and pathological panic states. PMID:25130976

  9. Onboard calibration circuit for the DAMPE BGO calorimeter front-end electronics

    NASA Astrophysics Data System (ADS)

    Zhang, De-Liang; Feng, Chang-Qing; Zhang, Jun-Bin; Wang, Qi; Ma, Si-Yuan; Shen, Zhong-Tao; Jiang, Di; Gao, Shan-Shan; Zhang, Yun-Long; Guo, Jian-Hua; Liu, Shu-Bin; An, Qi

    2016-05-01

    DAMPE (DArk Matter Particle Explorer) is a scientific satellite which is mainly aimed at indirectly searching for dark matter in space. One critical sub-detector of the DAMPE payload is the BGO (bismuth germanium oxide) calorimeter, which contains 1848 PMT (photomultiplier tube) dynodes and 16 FEE (Front-End Electronics) boards. VA160 and VATA160, two 32-channel low power ASICs (Application Specific Integrated Circuits), are adopted as the key components on the FEEs to perform charge measurement for the PMT signals. In order to monitor the parameter drift which may be caused by temperature variation, aging, or other environmental factors, an onboard calibration circuit is designed for the VA160 and VATA160 ASICs. It is mainly composed of a 12-bit DAC (Digital to Analog Converter), an operational amplifier and an analog switch. Test results showed that a dynamic range of 0-30 pC with a precision of 5 fC (Root Meam Square, RMS) was achieved, which covers the VA160’s input range. It can be used to compensate for the temperature drift and test the trigger function of the FEEs. The calibration circuit has been implemented for the front-end electronics of the BGO Calorimeter and verified by all the environmental tests for both Qualification Model and Flight Model of DAMPE. The DAMPE satellite was launched at the end of 2015 and the calibration circuit will operate periodically in space. Supported by Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA04040202-4), and National Basic Research Program (973 Program) of China (2010CB833002) and National Natural Science Foundation of China (11273070)

  10. Tryptophan circuit in fatigue: From blood to brain and cognition.

    PubMed

    Yamashita, Masatoshi; Yamamoto, Takanobu

    2017-11-15

    Brain tryptophan and its neuroactive metabolites play key roles in central fatigue. However, previous brain function analysis targets may have included both glia and neurons together. Here, we clarified the fatigue-cognitive circuit of the central-peripheral linkage, including the role of glial-neuronal interaction in cognition. Using a rat model of central fatigue induced by chronic sleep disorder (CFSD), we isolated presynaptic terminals and oligodendrocytes. Results showed that compared to control group, presynaptic levels of tryptophan, kynurenine, and kynurenic acid, but not serotonin, in the CFSD group were higher in the hypothalamus and hippocampus. Moreover, CFSD group had higher oligodendrocytic levels of tryptophan, and impaired spatial cognitive memory accuracy and increased hyperactivity and impulsivity. These findings suggest that dynamic change in glial-neuronal interactions within the hypothalamus-hippocampal circuit causes central fatigue, and increased tryptophan-kynurenic acid pathway activity in this circuit causes reduced cognitive function. Additionally, CFSD group had 1.5 times higher plasma levels of tryptophan and kynurenine. Furthermore, in rats undergoing intraperitoneal administration of kynurenine (100mg/kg) versus vehicle, kynurenine-treated rats showed enhanced production of kynurenic acid in the hippocampus, with suppressed recall of retained spatial cognitive memory. The study revealed that uptake of periphery-derived kynurenine and tryptophan into the brain enhances kynurenic acid production in the brain, and the three factors produce amplification effect involved in the role of central-peripheral linkage in central fatigue, triggering cognitive dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Circuit models and three-dimensional electromagnetic simulations of a 1-MA linear transformer driver stage

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Miller, C. L.; Welch, D. R.; Clark, R. E.; Madrid, E. A.; Mostrom, C. B.; Stygar, W. A.; Lechien, K. R.; Mazarakis, M. A.; Langston, W. L.; Porter, J. L.; Woodworth, J. R.

    2010-09-01

    A 3D fully electromagnetic (EM) model of the principal pulsed-power components of a high-current linear transformer driver (LTD) has been developed. LTD systems are a relatively new modular and compact pulsed-power technology based on high-energy density capacitors and low-inductance switches located within a linear-induction cavity. We model 1-MA, 100-kV, 100-ns rise-time LTD cavities [A. A. Kim , Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402] which can be used to drive z-pinch and material dynamics experiments. The model simulates the generation and propagation of electromagnetic power from individual capacitors and triggered gas switches to a radially symmetric output line. Multiple cavities, combined to provide voltage addition, drive a water-filled coaxial transmission line. A 3D fully EM model of a single 1-MA 100-kV LTD cavity driving a simple resistive load is presented and compared to electrical measurements. A new model of the current loss through the ferromagnetic cores is developed for use both in circuit representations of an LTD cavity and in the 3D EM simulations. Good agreement between the measured core current, a simple circuit model, and the 3D simulation model is obtained. A 3D EM model of an idealized ten-cavity LTD accelerator is also developed. The model results demonstrate efficient voltage addition when driving a matched impedance load, in good agreement with an idealized circuit model.

  12. Suppression of Instability of High Pressure DC Microplasma Operating in the Negative Differential Resistance (NDR) Regime

    NASA Astrophysics Data System (ADS)

    Mahamud, Rajib; Farouk, Tanvir I.

    2015-09-01

    Microplasma devices have been the subject of considerable interest and research during the last decade. In a DC system most of the operation regime of the plasma discharges studied fall in the ``abnormal,'' ``normal'' and ``corona'' modes - where a quasi-steady state is achieved. It is well known that even in a DC system the negative differential resistance (NDR) regime can trigger self pulsing discharges. These pulsations are initiated by the parasitic capacitance of the system hence governed by the response time of the power circuit. The circuit response time is required to be larger than the ion transit time to initiate the oscillations. In this present study a suppressor circuit element in the form of an inductor is used to restrain the plasma from switching to a self pulsing mode. It has been identified that the combined response time of the inductor and the plasma discharge (L/Rplasma) has to be larger than the power circuit time constant (RC) to achieve suppression. Inhibition of oscillation has been observed in both experiments and numerical simulations. The obtained voltage-current characteristics show that the inductor element extends the normal glow regime to lower current. Additional parametric simulations are conducted to map out a ``stable'' operation regime. The author would like to thank DARPA (ARO Grant No. W911NF1210007) and University of South Carolina (USC) for the financial support of the work.

  13. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit.

    PubMed

    Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng

    2014-10-07

    We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins.

  14. Signal processing method of the diameter measurement system based on CCD parallel light projection method

    NASA Astrophysics Data System (ADS)

    Song, Qing; Zhu, Sijia; Yan, Han; Wu, Wenqian

    2008-03-01

    Parallel light projection method for the diameter measurement is to project the workpiece to be measured on the photosensitive units of CCD, but the original signal output from CCD cannot be directly used for counting or measurement. The weak signal with high-frequency noise should be filtered and amplified firstly. This paper introduces RC low-pass filter and multiple feed-back second-order low-pass filter with infinite gain. Additionally there is always dispersion on the light band and the output signal has a transition between the irradiant area and the shadow, because of the instability of the light source intensity and the imperfection of the light system adjustment. To obtain exactly the shadow size related to the workpiece diameter, binary-value processing is necessary to achieve a square wave. Comparison method and differential method can be adopted for binary-value processing. There are two ways to decide the threshold value when using voltage comparator: the fixed level method and the floated level method. The latter has a high accuracy. Deferential method is to output two spike pulses with opposite pole by the rising edge and the failing edge of the video signal related to the differential circuit firstly, then the rising edge of the signal output from the differential circuit is acquired by half-wave rectifying circuit. After traveling through the zero passing comparator and the maintain- resistance edge trigger, the square wave which indicates the measured size is acquired at last. And then it is used for filling through standard pulses and for counting through the counter. Data acquisition and information processing is accomplished by the computer and the control software. This paper will introduce in detail the design and analysis of the filter circuit, binary-value processing circuit and the interface circuit towards the computer.

  15. Electronic readout system for the Belle II imaging Time-Of-Propagation detector

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-07-01

    The imaging Time-Of-Propagation (iTOP) detector, constructed for the Belle II experiment at the SuperKEKB e+e- collider, is an 8192-channel high precision Cherenkov particle identification detector with timing resolution below 50 ps. To acquire data from the iTOP, a novel front-end electronic readout system was designed, built, and integrated. Switched-capacitor array application-specific integrated circuits are used to sample analog signals. Triggering, digitization, readout, and data transfer are controlled by Xilinx Zynq-7000 system on a chip devices.

  16. PULSE SYNTHESIZING GENERATOR

    DOEpatents

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  17. A versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy.

    NASA Technical Reports Server (NTRS)

    Tarr, C. E.; Nickerson, M. A.

    1972-01-01

    A digital pulse programmer producing the standard pulse sequences required for pulsed nuclear magnetic resonance spectroscopy is described. In addition, a 'saturation burst' sequence, useful in the measurement of long relaxation times in solids, is provided. Both positive and negative 4 V trigger pulses are produced that are fully synchronous with a crystal-controlled time base, and the pulse programmer may be phase-locked with a maximum pulse jitter of 3 ns to the oscillator of a coherent pulse spectrometer. Medium speed TTL integrated circuits are used throughout.

  18. Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors

    NASA Astrophysics Data System (ADS)

    Fujiwara, Kosuke; Oogane, Mikihiko; Kanno, Akitake; Imada, Masahiro; Jono, Junichi; Terauchi, Takashi; Okuno, Tetsuo; Aritomi, Yuuji; Morikawa, Masahiro; Tsuchida, Masaaki; Nakasato, Nobukazu; Ando, Yasuo

    2018-02-01

    Magnetocardiography (MCG) and magnetoencephalography (MEG) signals were detected at room temperature using tunnel magneto-resistance (TMR) sensors. TMR sensors developed with low-noise amplifier circuits detected the MCG R wave without averaging, and the QRS complex was clearly observed with averaging at a high signal-to-noise ratio. Spatial mapping of the MCG was also achieved. Averaging of MEG signals triggered by electroencephalography (EEG) clearly observed the phase inversion of the alpha rhythm with a correlation coefficient as high as 0.7 between EEG and MEG.

  19. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  20. Quick-disconnect harness system for helmet-mounted displays

    NASA Astrophysics Data System (ADS)

    Bapu, P. T.; Aulds, M. J.; Fuchs, Steven P.; McCormick, David M.

    1992-10-01

    We have designed a pilot's harness-mounted, high voltage quick-disconnect connectors with 62 pins, to transmit voltages up to 13.5 kV and video signals with 70 MHz bandwidth, for a binocular helmet-mounted display system. It connects and disconnects with power off, and disconnects 'hot' without pilot intervention and without producing external sparks or exposing hot embers to the explosive cockpit environment. We have implemented a procedure in which the high voltage pins disconnect inside a hermetically-sealed unit before the physical separation of the connector. The 'hot' separation triggers a crowbar circuit in the high voltage power supplies for additional protection. Conductor locations and shields are designed to reduce capacitance in the circuit and avoid crosstalk among adjacent circuits. The quick- disconnect connector and wiring harness are human-engineered to ensure pilot safety and mobility. The connector backshell is equipped with two hybrid video amplifiers to improve the clarity of the video signals. Shielded wires and coaxial cables are molded as a multi-layered ribbon for maximum flexibility between the pilot's harness and helmet. Stiff cabling is provided between the quick-disconnect connector and the aircraft console to control behavior during seat ejection. The components of the system have been successfully tested for safety, performance, ergonomic considerations, and reliability.

  1. Compensated pulsed alternator

    DOEpatents

    Weldon, William F.; Driga, Mircea D.; Woodson, Herbert H.

    1980-01-01

    This invention relates to an electromechanical energy converter with inertial energy storage. The device, a single phase, two or multi-pole alternator with stationary field coils, and a rotating armature is provided. The rotor itself may be of laminated steel for slower pulses or for faster pulses should be nonmagnetic and electrically nonconductive in order to allow rapid penetration of the field as the armature coil rotates. The armature coil comprises a plurality of power generating conductors mounted on the rotor. The alternator may also include a stationary or counterrotating compensating coil to increase the output voltage thereof and to reduce the internal impedance of the alternator at the moment of peak outout. As the machine voltage rises sinusoidally, an external trigger switch is adapted to be closed at the appropriate time to create the desired output current from said alternator to an external load circuit, and as the output current passes through zero a self-commutating effect is provided to allow the switch to disconnect the generator from the external circuit.

  2. The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation.

    PubMed

    McLaughlin, Ian; Dani, John A; De Biasi, Mariella

    2017-08-01

    Abstinence from chronic use of addictive drugs triggers an aversive withdrawal syndrome that compels relapse and deters abstinence. Many features of this syndrome are common across multiple drugs, involving both affective and physical symptoms. Some of the network signaling underlying withdrawal symptoms overlaps with activity that is associated with aversive mood states, including anxiety and depression. Given these shared features, it is not surprising that a particular circuit, the dorsal diencephalic conduction system, and the medial habenula (MHb) and interpeduncular nucleus (IPN), in particular, have been identified as critical to the emergence of aversive states that arise both as a result and, independently, of drug addiction. As the features of this circuit continue to be characterized, the MHb-IPN axis is emerging as a viable target for therapeutics to aid in the treatment of addiction to multiple drugs of abuse as well as mood-associated disorders. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  3. The biopsychology of salt hunger and sodium deficiency

    PubMed Central

    Hurley, Seth W.; Johnson, Alan Kim

    2015-01-01

    Sodium is a necessary dietary macromineral that tended to be sparsely distributed in mankind’s environment in the past. Evolutionary selection pressure shaped physiological mechanisms including hormonal systems and neural circuits that serve to promote sodium ingestion. Sodium deficiency triggers the activation of these hormonal systems and neural circuits to engage motivational processes that elicit a craving for salty substances and a state of reward when salty foods are consumed. Sodium deficiency also appears to be associated with aversive psychological states including anhedonia, impaired cognition, and fatigue. Under certain circumstances the psychological processes that promote salt intake can become powerful enough to cause “salt gluttony,” or salt intake far in excess of physiological need. The present review discusses three aspects of the biopsychology of salt hunger and sodium deficiency: 1) the psychological processes that promote salt intake during sodium deficiency, 2) the effects of sodium deficiency on mood and cognition, and 3) the sensitization of sodium appetite as a possible cause of salt gluttony. PMID:25572931

  4. Series-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, Emanuel M.

    1986-01-01

    A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The load pulse is initiated simultaneously with the initiation of the counterpulse which is used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is first discharged and then recharged in the opposite polarity with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is triggered closed again to terminate the load pulse, the counterpulse capacitor discharges in the reverse direction through the load switch and through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.

  5. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography.

    PubMed

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-11

    The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

  6. Choice-specific sequences in parietal cortex during a virtual-navigation decision task

    PubMed Central

    Harvey, Christopher D.; Coen, Philip; Tank, David W.

    2012-01-01

    The posterior parietal cortex (PPC) plays an important role in many cognitive behaviors; however, the neural circuit dynamics underlying PPC function are not well understood. Here we optically imaged the spatial and temporal activity patterns of neuronal populations in mice performing a PPC-dependent task that combined a perceptual decision and memory-guided navigation in a virtual environment. Individual neurons had transient activation staggered relative to one another in time, forming a sequence of neuronal activation spanning the entire length of a task trial. Distinct sequences of neurons were triggered on trials with opposite behavioral choices and defined divergent, choice-specific trajectories through a state space of neuronal population activity. Cells participating in the different sequences and at distinct time points in the task were anatomically intermixed over microcircuit length scales (< 100 micrometers). During working memory decision tasks the PPC may therefore perform computations through sequence-based circuit dynamics, rather than long-lived stable states, implemented using anatomically intermingled microcircuits. PMID:22419153

  7. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves.

    PubMed

    Wen, Xiaonan; Yang, Weiqing; Jing, Qingshen; Wang, Zhong Lin

    2014-07-22

    We invented a triboelectric nanogenerator (TENG) that is based on a wavy-structured Cu-Kapton-Cu film sandwiched between two flat nanostructured PTFE films for harvesting energy due to mechanical vibration/impacting/compressing using the triboelectrification effect. This structure design allows the TENG to be self-restorable after impact without the use of extra springs and converts direct impact into lateral sliding, which is proved to be a much more efficient friction mode for energy harvesting. The working mechanism has been elaborated using the capacitor model and finite-element simulation. Vibrational energy from 5 to 500 Hz has been harvested, and the generator's resonance frequency was determined to be ∼100 Hz at a broad full width at half-maximum of over 100 Hz, producing an open-circuit voltage of up to 72 V, a short-circuit current of up to 32 μA, and a peak power density of 0.4 W/m(2). Most importantly, the wavy structure of the TENG can be easily packaged for harvesting the impact energy from water waves, clearly establishing the principle for ocean wave energy harvesting. Considering the advantages of TENGs, such as cost-effectiveness, light weight, and easy scalability, this approach might open the possibility for obtaining green and sustainable energy from the ocean using nanostructured materials. Lastly, different ways of agitating water were studied to trigger the packaged TENG. By analyzing the output signals and their corresponding fast Fourier transform spectra, three ways of agitation were evidently distinguished from each other, demonstrating the potential of the TENG for hydrological analysis.

  8. Brain activation associated with pride and shame.

    PubMed

    Roth, Lilian; Kaffenberger, Tina; Herwig, Uwe; Brühl, Annette B

    2014-01-01

    Self-referential emotions such as shame/guilt and pride provide evaluative information about persons themselves. In addition to emotional aspects, social and self-referential processes play a role in self-referential emotions. Prior studies have rather focused on comparing self-referential and other-referential processes of one valence, triggered mostly by external stimuli. In the current study, we aimed at investigating the valence-specific neural correlates of shame/guilt and pride, evoked by the remembrance of a corresponding autobiographical event during functional magnetic resonance imaging. A total of 25 healthy volunteers were studied. The task comprised a negative (shame/guilt), a positive (pride) and a neutral condition (expecting the distractor). Each condition was initiated by a simple cue, followed by the remembrance and finished by a distracting picture. Pride and shame/guilt conditions both activated typical emotion-processing circuits including the amygdala, insula and ventral striatum, as well as self-referential brain regions such as the bilateral dorsomedial prefrontal cortex. Comparing the two emotional conditions, emotion-processing circuits were more activated by pride than by shame, possibly due to either hedonic experiences or stronger involvement of the participants in positive self-referential emotions due to a self-positivity bias. However, the ventral striatum was similarly activated by pride and shame/guilt. In the whole-brain analysis, both self-referential emotion conditions activated medial prefrontal and posterior cingulate regions, corresponding to the self-referential aspect and the autobiographical evocation of the respective emotions. Autobiographically evoked self-referential emotions activated basic emotional as well as self-referential circuits. Except for the ventral striatum, emotional circuits were more active with pride than with shame.

  9. Early Correlated Network Activity in the Hippocampus: Its Putative Role in Shaping Neuronal Circuits.

    PubMed

    Griguoli, Marilena; Cherubini, Enrico

    2017-01-01

    Synchronized neuronal activity occurring at different developmental stages in various brain structures represents a hallmark of developmental circuits. This activity, which differs in its specific patterns among animal species may play a crucial role in de novo formation and in shaping neuronal networks. In the rodent hippocampus in vitro , the so-called giant depolarizing potentials (GDPs) constitute a primordial form of neuronal synchrony preceding more organized forms of activity such as oscillations in the theta and gamma frequency range. GDPs are generated at the network level by the interaction of the neurotransmitters glutamate and GABA which, immediately after birth, exert both a depolarizing and excitatory action on their targets. GDPs are triggered by GABAergic interneurons, which in virtue of their extensive axonal branching operate as functional hubs to synchronize large ensembles of cells. Intrinsic bursting activity, driven by a persistent sodium conductance and facilitated by the low expression of Kv7.2 and Kv7.3 channel subunits, responsible for I M , exerts a permissive role in GDP generation. Here, we discuss how GDPs are generated in a probabilistic way when neuronal excitability within a local circuit reaches a certain threshold and how GDP-associated calcium transients act as coincident detectors for enhancing synaptic strength at emerging GABAergic and glutamatergic synapses. We discuss the possible in vivo correlate of this activity. Finally, we debate recent data showing how, in several animal models of neuropsychiatric disorders including autism, a GDPs dysfunction is associated to morphological alterations of neuronal circuits and behavioral deficits reminiscent of those observed in patients.

  10. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats.

    PubMed

    Johnson, Paul M; Kenny, Paul J

    2010-05-01

    We found that development of obesity was coupled with emergence of a progressively worsening deficit in neural reward responses. Similar changes in reward homeostasis induced by cocaine or heroin are considered to be crucial in triggering the transition from casual to compulsive drug-taking. Accordingly, we detected compulsive-like feeding behavior in obese but not lean rats, measured as palatable food consumption that was resistant to disruption by an aversive conditioned stimulus. Striatal dopamine D2 receptors (D2Rs) were downregulated in obese rats, as has been reported in humans addicted to drugs. Moreover, lentivirus-mediated knockdown of striatal D2Rs rapidly accelerated the development of addiction-like reward deficits and the onset of compulsive-like food seeking in rats with extended access to palatable high-fat food. These data demonstrate that overconsumption of palatable food triggers addiction-like neuroadaptive responses in brain reward circuits and drives the development of compulsive eating. Common hedonic mechanisms may therefore underlie obesity and drug addiction.

  11. NOTE: A method for controlling image acquisition in electronic portal imaging devices

    NASA Astrophysics Data System (ADS)

    Glendinning, A. G.; Hunt, S. G.; Bonnett, D. E.

    2001-02-01

    Certain types of camera-based electronic portal imaging devices (EPIDs) which initiate image acquisition based on sensing a change in video level have been observed to trigger unreliably at the beginning of dynamic multileaf collimation sequences. A simple, novel means of controlling image acquisition with an Elekta linear accelerator (Elekta Oncology Systems, Crawley, UK) is proposed which is based on illumination of a photodetector (ORP-12, Silonex Inc., Plattsburgh, NY, USA) by the electron gun of the accelerator. By incorporating a simple trigger circuit it is possible to derive a beam on/off status signal which changes at least 100 ms before any dose is measured by the accelerator. The status signal does not return to the beam-off state until all dose has been delivered and is suitable for accelerator pulse repetition frequencies of 50-400 Hz. The status signal is thus a reliable means of indicating the initiation and termination of radiation exposure, and thus controlling image acquisition of such EPIDs for this application.

  12. Integrated action of pheromone signals in promoting courtship behavior in male mice

    PubMed Central

    Haga-Yamanaka, Sachiko; Ma, Limei; He, Jie; Qiu, Qiang; Lavis, Luke D; Looger, Loren L; Yu, C Ron

    2014-01-01

    The mammalian vomeronasal organ encodes pheromone information about gender, reproductive status, genetic background and individual differences. It remains unknown how pheromone information interacts to trigger innate behaviors. In this study, we identify vomeronasal receptors responsible for detecting female pheromones. A sub-group of V1re clade members recognizes gender-identifying cues in female urine. Multiple members of the V1rj clade are cognate receptors for urinary estrus signals, as well as for sulfated estrogen (SE) compounds. In both cases, the same cue activates multiple homologous receptors, suggesting redundancy in encoding female pheromone cues. Neither gender-specific cues nor SEs alone are sufficient to promote courtship behavior in male mice, whereas robust courtship behavior can be induced when the two cues are applied together. Thus, integrated action of different female cues is required in pheromone-triggered mating behavior. These results suggest a gating mechanism in the vomeronasal circuit in promoting specific innate behavior. DOI: http://dx.doi.org/10.7554/eLife.03025.001 PMID:25073926

  13. An open-source, extensible system for laboratory timing and control

    NASA Astrophysics Data System (ADS)

    Gaskell, Peter E.; Thorn, Jeremy J.; Alba, Sequoia; Steck, Daniel A.

    2009-11-01

    We describe a simple system for timing and control, which provides control of analog, digital, and radio-frequency signals. Our system differs from most common laboratory setups in that it is open source, built from off-the-shelf components, synchronized to a common and accurate clock, and connected over an Ethernet network. A simple bus architecture facilitates creating new and specialized devices with only moderate experience in circuit design. Each device operates independently, requiring only an Ethernet network connection to the controlling computer, a clock signal, and a trigger signal. This makes the system highly robust and scalable. The devices can all be connected to a single external clock, allowing synchronous operation of a large number of devices for situations requiring precise timing of many parallel control and acquisition channels. Provided an accurate enough clock, these devices are capable of triggering events separated by one day with near-microsecond precision. We have achieved precisions of ˜0.1 ppb (parts per 109) over 16 s.

  14. Mechanosensitive neurons on the internal reproductive tract contribute to egg-laying-induced acetic acid attraction in Drosophila

    PubMed Central

    Gou, Bin; Liu, Ying; Guntur, Ananya R.; Stern, Ulrich; Yang, Chung-Hui

    2014-01-01

    Selecting a suitable site to deposit their eggs is an important reproductive need of Drosophila females. While their choosiness towards egg-laying sites is well documented, the specific neural mechanism that activates females’ search for attractive egg-laying sites is not known. Here we show that distention/contraction of females’ internal reproductive tract triggered by egg-delivery through the tract plays a critical role in activating such search. We found that females start to exhibit acetic acid attraction prior to depositing each egg but no attraction when they are not laying eggs. Artificially distending the reproductive tract triggers acetic acid attraction in non-egg-laying females whereas silencing the mechanosensitive neurons we identified that can sense the contractile status of the tract eliminates such attraction. Our work uncovers the circuit basis of an important reproductive need of Drosophila females and provides a simple model to dissect the neural mechanism that underlies a reproductive need-induced behavioral modification. PMID:25373900

  15. Light driven optofluidic switch developed in a ZnO-overlaid microstructured optical fiber.

    PubMed

    Konidakis, Ioannis; Konstantaki, Maria; Tsibidis, George D; Pissadakis, Stavros

    2015-11-30

    A great challenge of Optofluidics remains the control of the fluidic properties of a photonic circuit by solely utilizing light. In this study, the development of a ZnO nanolayered microstructured optical fiber (MOF) Fabry-Perot interferometer is demonstrated, along with its fully reversible optofluidic switching behaviour. The actuation and switching principle is entirely based on the employment of light sources, i.e. UV 248 nm and green 532 nm lasers, while using modest irradiation doses. The synthesized ZnO within the MOF capillaries acts as a light triggered wettability transducer, allowing the controlled water filling and draining of the MOF Fabry-Perot cavity. The progression of the optofluidic cycle is monitored in situ with optical microscopy, while Fabry-Perot reflection spectra are monitored in real time to probe temporal infiltration behaviour. Finally, a first insight on the light triggered switching mechanism, employing photoluminescence and spectrophotometric measurements is presented. Results appear highly promising towards the design of smart in-fiber optofluidic light switching devices, suitable for actuating and sensing applications.

  16. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R.

    2013-01-01

    Column-parallel analog-to-digital converters (ADCs) for imagers involve simultaneous operation of many ADCs. Single-slope ADCs are well adapted to this use because of their simplicity. Each ADC contains a comparator, comparing its input signal level to an increasing reference signal (ramp). When the ramp is equal to the input, the comparator triggers a latch that captures an encoded counter value (code). Knowing the captured code, the ramp value and hence the input signal are determined. In a column-parallel ADC, each column contains only the comparator and the latches; the ramp and code generation are shared. In conventional latch or flip-flop circuits, there is an input stage that tracks the input signal, and this stage consumes switching current every time the input changes. With many columns, many bits, and high code rates, this switching current can be substantial. It will also generate noise that may corrupt the analog signals. A latch was designed that does not track the input, and consumes power only at the instant of latching the data value. The circuit consists of two S-R (set-reset) latches, gated by the comparator. One is set by high data values and the other by low data values. The latches are cross-coupled so that the first one to set blocks the other. In order that the input data not need an inversion, which would consume power, the two latches are made in complementary polarity. This requires complementary gates from the comparator, instead of complementary data values, but the comparator only triggers once per conversion, and usually has complementary outputs to begin with. An efficient CMOS (complementary metal oxide semiconductor) implementation of this circuit is shown in the figure, where C is the comparator output, D is the data (code), and Q0 and Q1 are the outputs indicating the capture of a zero or one value. The latch for Q0 has a negative-true set signal and output, and is implemented using OR-AND-INVERT logic, while the latch for Q1 uses positive- true signals and is implemented using AND-OR-INVERT logic. In this implementation, both latches are cleared when the comparator is reset. Two redundant transistors are removed from the reset side of each latch, making for a compact layout. CMOS imagers with column-parallel ADCs have demonstrated high performance for remote sensing applications. With this latch circuit, the power consumption and noise can be further reduced. This innovation can be used in CMOS imagers and very-low-power electronics

  17. Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations.

    PubMed

    Lichtenberg, Nina T; Pennington, Zachary T; Holley, Sandra M; Greenfield, Venuz Y; Cepeda, Carlos; Levine, Michael S; Wassum, Kate M

    2017-08-30

    To make an appropriate decision, one must anticipate potential future rewarding events, even when they are not readily observable. These expectations are generated by using observable information (e.g., stimuli or available actions) to retrieve often quite detailed memories of available rewards. The basolateral amygdala (BLA) and orbitofrontal cortex (OFC) are two reciprocally connected key nodes in the circuitry supporting such outcome-guided behaviors. But there is much unknown about the contribution of this circuit to decision making, and almost nothing known about the whether any contribution is via direct, monosynaptic projections, or the direction of information transfer. Therefore, here we used designer receptor-mediated inactivation of OFC→BLA or BLA→OFC projections to evaluate their respective contributions to outcome-guided behaviors in rats. Inactivation of BLA terminals in the OFC, but not OFC terminals in the BLA, disrupted the selective motivating influence of cue-triggered reward representations over reward-seeking decisions as assayed by Pavlovian-to-instrumental transfer. BLA→OFC projections were also required when a cued reward representation was used to modify Pavlovian conditional goal-approach responses according to the reward's current value. These projections were not necessary when actions were guided by reward expectations generated based on learned action-reward contingencies, or when rewards themselves, rather than stored memories, directed action. These data demonstrate that BLA→OFC projections enable the cue-triggered reward expectations that can motivate the execution of specific action plans and allow adaptive conditional responding. SIGNIFICANCE STATEMENT Deficits anticipating potential future rewarding events are associated with many psychiatric diseases. Presently, we know little about the neural circuits supporting such reward expectation. Here we show that basolateral amygdala to orbitofrontal cortex projections are required for expectations of specific available rewards to influence reward seeking and decision making. The necessity of these projections was limited to situations in which expectations were elicited by reward-predictive cues. These projections therefore facilitate adaptive behavior by enabling the orbitofrontal cortex to use environmental stimuli to generate expectations of potential future rewarding events. Copyright © 2017 the authors 0270-6474/17/378374-11$15.00/0.

  18. Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations

    PubMed Central

    Lichtenberg, Nina T.; Pennington, Zachary T.; Holley, Sandra M.; Greenfield, Venuz Y.; Levine, Michael S.

    2017-01-01

    To make an appropriate decision, one must anticipate potential future rewarding events, even when they are not readily observable. These expectations are generated by using observable information (e.g., stimuli or available actions) to retrieve often quite detailed memories of available rewards. The basolateral amygdala (BLA) and orbitofrontal cortex (OFC) are two reciprocally connected key nodes in the circuitry supporting such outcome-guided behaviors. But there is much unknown about the contribution of this circuit to decision making, and almost nothing known about the whether any contribution is via direct, monosynaptic projections, or the direction of information transfer. Therefore, here we used designer receptor-mediated inactivation of OFC→BLA or BLA→OFC projections to evaluate their respective contributions to outcome-guided behaviors in rats. Inactivation of BLA terminals in the OFC, but not OFC terminals in the BLA, disrupted the selective motivating influence of cue-triggered reward representations over reward-seeking decisions as assayed by Pavlovian-to-instrumental transfer. BLA→OFC projections were also required when a cued reward representation was used to modify Pavlovian conditional goal-approach responses according to the reward's current value. These projections were not necessary when actions were guided by reward expectations generated based on learned action-reward contingencies, or when rewards themselves, rather than stored memories, directed action. These data demonstrate that BLA→OFC projections enable the cue-triggered reward expectations that can motivate the execution of specific action plans and allow adaptive conditional responding. SIGNIFICANCE STATEMENT Deficits anticipating potential future rewarding events are associated with many psychiatric diseases. Presently, we know little about the neural circuits supporting such reward expectation. Here we show that basolateral amygdala to orbitofrontal cortex projections are required for expectations of specific available rewards to influence reward seeking and decision making. The necessity of these projections was limited to situations in which expectations were elicited by reward-predictive cues. These projections therefore facilitate adaptive behavior by enabling the orbitofrontal cortex to use environmental stimuli to generate expectations of potential future rewarding events. PMID:28743727

  19. Metal vapor arc switch electromagnetic accelerator technology

    NASA Technical Reports Server (NTRS)

    Mongeau, P. P.

    1984-01-01

    A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.

  20. Some Aspects of an Air-Core Single-Coil Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Hamlet, Irvin L.; Kilgore, Robert A.

    1966-01-01

    This paper presents some of the technical aspects in the development at the Langley Research Center of an air-cove, dual-wound, single-coil, magnetic-suspension system with one-dimensional control. Overall electrical system design features and techniques are discussed in addition to the problems of control and stability. Special treatment is given to the operation of a dual-wound, high-current support coil which provides the bias fields and superimposed modulated field. Other designs features include a six-phase, solid-state power stage for modulation of the relatively large magnitude control current, and an associated six-phase trigger circuit.

  1. High Aspect-Ratio Neural Probes using Conventional Blade Dicing

    NASA Astrophysics Data System (ADS)

    Goncalves, S. B.; Ribeiro, J. F.; Silva, A. F.; Correia, J. H.

    2016-10-01

    Exploring deep neural circuits has triggered the development of long penetrating neural probes. Moreover, driven by brain displacement, the long neural probes require also a high aspect-ratio shafts design. In this paper, a simple and reproducible method of manufacturing long-shafts neural probes using blade dicing technology is presented. Results shows shafts up to 8 mm long and 200 µm wide, features competitive to the current state-of-art, being its outline simply accomplished by a single blade dicing program. Therefore, conventional blade dicing presents itself as a viable option to manufacture long neural probes.

  2. Evidence of Altered Brain Responses to Nicotine in an Animal Model of Attention Deficit/Hyperactivity Disorder.

    PubMed

    Poirier, Guillaume L; Huang, Wei; Tam, Kelly; DiFranza, Joseph R; King, Jean A

    2017-09-01

    Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that nicotine may normalize abnormal brain activity in ADHD, and that nicotine may be more rewarding for individuals with ADHD. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila

    PubMed Central

    Nässel, Dick R.

    2018-01-01

    It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs). Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a systematic search for colocalized neuroactive compounds in further neurons in anatomically defined circuits is of interest for the near future. PMID:29651236

  4. Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach.

    PubMed

    van Roekel, Hendrik W H; Rosier, Bas J H M; Meijer, Lenny H H; Hilbers, Peter A J; Markvoort, Albert J; Huck, Wilhelm T S; de Greef, Tom F A

    2015-11-07

    Living cells are able to produce a wide variety of biological responses when subjected to biochemical stimuli. It has become apparent that these biological responses are regulated by complex chemical reaction networks (CRNs). Unravelling the function of these circuits is a key topic of both systems biology and synthetic biology. Recent progress at the interface of chemistry and biology together with the realisation that current experimental tools are insufficient to quantitatively understand the molecular logic of pathways inside living cells has triggered renewed interest in the bottom-up development of CRNs. This builds upon earlier work of physical chemists who extensively studied inorganic CRNs and showed how a system of chemical reactions can give rise to complex spatiotemporal responses such as oscillations and pattern formation. Using purified biochemical components, in vitro synthetic biologists have started to engineer simplified model systems with the goal of mimicking biological responses of intracellular circuits. Emulation and reconstruction of system-level properties of intracellular networks using simplified circuits are able to reveal key design principles and molecular programs that underlie the biological function of interest. In this Tutorial Review, we present an accessible overview of this emerging field starting with key studies on inorganic CRNs followed by a discussion of recent work involving purified biochemical components. Finally, we review recent work showing the versatility of programmable biochemical reaction networks (BRNs) in analytical and diagnostic applications.

  5. The experimental set-up of the RIB in-flight facility EXOTIC

    NASA Astrophysics Data System (ADS)

    Pierroutsakou, D.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Mazzocco, M.; Nicoletto, M.; Parascandolo, C.; Signorini, C.; Soramel, F.; Strano, E.; Toniolo, N.; Torresi, D.; Tortone, G.; Anastasio, A.; Bettini, M.; Cassese, C.; Castellani, L.; Corti, D.; Costa, L.; De Fazio, B.; Galet, G.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Pontoriere, G.; Rocco, R.; Romoli, M.; Roscilli, L.; Sandoli, M.; Stroe, L.; Tessaro, M.; Zatti, P. G.

    2016-10-01

    We describe the experimental set-up of the Radioactive Ion Beam (RIB) in-flight facility EXOTIC consisting of: (a) two position-sensitive Parallel Plate Avalanche Counters (PPACs), dedicated to the event-by-event tracking of the produced RIBs and to time of flight measurements and (b) the new high-granularity compact telescope array EXPADES (EXotic PArticle DEtection System), designed for nuclear physics and nuclear astrophysics experiments employing low-energy light RIBs. EXPADES consists of eight ΔE -Eres telescopes arranged in a cylindrical configuration around the target. Each telescope is made up of two Double Sided Silicon Strip Detectors (DSSSDs) with a thickness of 40/60 μm and 300 μm for the ΔE and Eres layer, respectively. Additionally, eight ionization chambers were constructed to be used as an alternative ΔE stage or, in conjunction with the entire DSSSD array, to build up more complex triple telescopes. New low-noise multi-channel charge-sensitive preamplifiers and spectroscopy amplifiers, associated with constant fraction discriminators, peak-and-hold and Time to Amplitude Converter circuits were developed for the electronic readout of the ΔE stage. Application Specific Integrated Circuit-based electronics was employed for the treatment of the Eres signals. An 8-channel, 12-bit multi-sampling 50 MHz Analog to Digital Converter, a Trigger Supervisor Board for handling the trigger signals of the whole experimental set-up and an ad hoc data acquisition system were also developed. The performance of the PPACs, EXPADES and of the associated electronics was obtained offline with standard α calibration sources and in-beam by measuring the scattering process for the systems 17O+58Ni and 17O+208Pb at incident energies around their respective Coulomb barriers and, successively, during the first experimental runs with the RIBs of the EXOTIC facility.

  6. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

    PubMed Central

    Fabbiani, Gabriela; Rehermann, María I.; Aldecosea, Carina; Trujillo-Cenóz, Omar; Russo, Raúl E.

    2018-01-01

    Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI) in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT) and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+) increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU) and did not express the proliferating cell nuclear antigen (PCNA) indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process. PMID:29593503

  7. New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites

    NASA Astrophysics Data System (ADS)

    Rycroft, Michael J.; Odzimek, Anna; Arnold, Neil F.; Füllekrug, Martin; Kułak, Andrzej; Neubert, Torsten

    2007-12-01

    Several processes acting below, in and above thunderstorms and in electrified shower clouds drive upward currents which close through the global atmospheric electric circuit. These are all simulated in a novel way using the software package PSpice. A moderate negative cloud-to-ground lightning discharge from the base of a thunderstorm increases the ionospheric potential above the thundercloud by 0.0013%. Assuming the ionosphere to be an equipotential surface, this discharge increases the current flowing in the global circuit and the fair-weather electric field also by 0.0013%. A moderate positive cloud-to-ground lightning discharge from the bottom of a thunderstorm decreases the ionospheric potential by 0.014%. Such a discharge may trigger a sprite, causing the ionospheric potential to decrease by ˜1V. The time scales for the recovery of the ionospheric potential are shown to be ˜250s, which is of the same order as the CR time constant for the global circuit. Knowing the global average rate of lightning discharges, it is found that negative cloud-to-ground discharges increase the ionospheric potential by only ˜4%, and that positive cloud-to-ground discharges reduce it by ˜3%. Thus, overall, lightning contributes only ˜1%—an almost insignificant proportion—to maintaining the high potential of the ionosphere. It is concluded that the net upward current to the ionosphere due to lightning is only ˜20A. Further, it is concluded that conduction and convection currents associated with “batteries” within thunderclouds and electrified shower clouds contribute essentially equally (˜500A each) to maintaining the ionospheric potential.

  8. Generating single microwave photons in a circuit.

    PubMed

    Houck, A A; Schuster, D I; Gambetta, J M; Schreier, J A; Johnson, B R; Chow, J M; Frunzio, L; Majer, J; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-09-20

    Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting of single photons, for example. However, conventional sources can generate only classical light, not single photons. One way to realize a single-photon source is to collect the fluorescence of a single atom. Early experiments measured the quantum nature of continuous radiation, and further advances allowed triggered sources of photons on demand. To allow efficient photon collection, emitters are typically placed inside optical or microwave cavities, but these sources are difficult to employ for quantum communication on wires within an integrated circuit. Here we demonstrate an on-chip, on-demand single-photon source, where the microwave photons are injected into a wire with high efficiency and spectral purity. This is accomplished in a circuit quantum electrodynamics architecture, with a microwave transmission line cavity that enhances the spontaneous emission of a single superconducting qubit. When the qubit spontaneously emits, the generated photon acts as a flying qubit, transmitting the quantum information across a chip. We perform tomography of both the qubit and the emitted photons, clearly showing that both the quantum phase and amplitude are transferred during the emission. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single-photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.

  9. Status of the Consolidation of the LHC Superconducting Magnets and Circuits

    NASA Astrophysics Data System (ADS)

    Tock, J. Ph; Atieh, S.; Bodart, D.; Bordry, F.; Bourcey, N.; Cruikshank, P.; Dahlerup-Petersen, K.; Dalin, J. M.; Garion, C.; Musso, A.; Ostojic, R.; Perin, A.; Pojer, M.; Savary, F.; Scheuerlein, C.

    2014-05-01

    The first LHC long shutdown (LS1) started in February 2013. It was triggered by the need to consolidate the 13 kA splices between the superconducting magnets to allow the LHC to reach safely its design energy of 14 TeV center of mass. The final design of the consolidated splices is recalled. 1695 interconnections containing 10 170 splices have to be opened. In addition to the work on the 13 kA splices, the other interventions performed during the first long shut-down on all the superconducting circuits are described. All this work has been structured in a project, gathering about 280 persons. The opening of the interconnections started in April 2013 and consolidation works are planned to be completed by August 2014. This paper describes first the preparation phase with the building of the teams and the detailed planning of the operation. Then, it gives feedback from the worksite, namely lessons learnt and adaptations that were implemented, both from the technical and organizational points of view. Finally, perspectives for the completion of this consolidation campaign are given.

  10. Contrasting motivational orientation and evaluative coding accounts: on the need to differentiate the effectors of approach/avoidance responses.

    PubMed

    Kozlik, Julia; Neumann, Roland; Lozo, Ljubica

    2015-01-01

    Several emotion theorists suggest that valenced stimuli automatically trigger motivational orientations and thereby facilitate corresponding behavior. Positive stimuli were thought to activate approach motivational circuits which in turn primed approach-related behavioral tendencies whereas negative stimuli were supposed to activate avoidance motivational circuits so that avoidance-related behavioral tendencies were primed (motivational orientation account). However, recent research suggests that typically observed affective stimulus-response compatibility phenomena might be entirely explained in terms of theories accounting for mechanisms of general action control instead of assuming motivational orientations to mediate the effects (evaluative coding account). In what follows, we explore to what extent this notion is applicable. We present literature suggesting that evaluative coding mechanisms indeed influence a wide variety of affective stimulus-response compatibility phenomena. However, the evaluative coding account does not seem to be sufficient to explain affective S-R compatibility effects. Instead, several studies provide clear evidence in favor of the motivational orientation account that seems to operate independently of evaluative coding mechanisms. Implications for theoretical developments and future research designs are discussed.

  11. Contrasting motivational orientation and evaluative coding accounts: on the need to differentiate the effectors of approach/avoidance responses

    PubMed Central

    Kozlik, Julia; Neumann, Roland; Lozo, Ljubica

    2015-01-01

    Several emotion theorists suggest that valenced stimuli automatically trigger motivational orientations and thereby facilitate corresponding behavior. Positive stimuli were thought to activate approach motivational circuits which in turn primed approach-related behavioral tendencies whereas negative stimuli were supposed to activate avoidance motivational circuits so that avoidance-related behavioral tendencies were primed (motivational orientation account). However, recent research suggests that typically observed affective stimulus–response compatibility phenomena might be entirely explained in terms of theories accounting for mechanisms of general action control instead of assuming motivational orientations to mediate the effects (evaluative coding account). In what follows, we explore to what extent this notion is applicable. We present literature suggesting that evaluative coding mechanisms indeed influence a wide variety of affective stimulus–response compatibility phenomena. However, the evaluative coding account does not seem to be sufficient to explain affective S–R compatibility effects. Instead, several studies provide clear evidence in favor of the motivational orientation account that seems to operate independently of evaluative coding mechanisms. Implications for theoretical developments and future research designs are discussed. PMID:25983718

  12. Passive fault current limiting device

    DOEpatents

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  13. Design of resolution/power controllable Asynchronous Sigma-Delta Modulator

    NASA Astrophysics Data System (ADS)

    Deshmukh, Anita Arvind; Deshmukh, Raghvendra B.

    2016-12-01

    This paper presents the design of a Programmable Asynchronous Modulator (PAM) with field control of resolution and power. A novel variable hysteresis Schmitt Trigger (ST) is used for external programmability. Asynchronous Sigma-Delta Modulator (ASDM) implementation with external control voltages is proposed to supervise the resolution and power. This architecture with reduced circuit complexity considerably improves the earlier realizations by eliminating multiple current sources as well switched capacitor circuits and results in power saving up to 87 %. Proposed PAM design demonstrates an improved SNDR of 115 dB, DR of 96 dB, and power consumption below 280 μW. It illustrates Effective Number of Bits (ENOB) to 18.81 and Figure of Merit (FoM) to 0.15 fJ/conversion step. Modulator is implemented in Cadence UMC Hspice 0.18 μm CMOS analog technology. Off-chip PAM control for resolution/power performance has potential applications in battery operated ultra low power applications like IoT; where ADC is one of the major power consuming components. It offers the promise for an efficient performance with power saving.

  14. A compact, low cost Marx bank for generating capillary discharge plasmas.

    PubMed

    Dyson, A E; Thornton, C; Hooker, S M

    2016-09-01

    We describe in detail a low power Compact Marx Bank (CMB) circuit that can provide 20 kV, 500 A pulses of approximately 100-200 ns duration. One application is the generation of capillary discharge plasmas of density ≈10 18 cm -3 used in laser plasma accelerators. The CMB is triggered with a high speed solid state switch and gives a high voltage output pulse with a ns scale rise time into a 50 Ω load (coaxial cable) with <4 ns voltage jitter. Its small size (10 cm  ×  25 cm  ×  5 cm) means that it can be placed right next to the capillary discharge in the target chamber to avoid the need to impedance match. The electrical energy required per discharge is <1 J, and the CMB can be run at shot repetition rates of ≳1 Hz. This low power requirement means that the circuit can easily be powered by a small lead acid battery and, therefore, can be floated relative to laboratory earth. The CMB is readily scalable and pulses >45 kV are demonstrated in air discharges.

  15. A compact, low cost Marx bank for generating capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Dyson, A. E.; Thornton, C.; Hooker, S. M.

    2016-09-01

    We describe in detail a low power Compact Marx Bank (CMB) circuit that can provide 20 kV, 500 A pulses of approximately 100-200 ns duration. One application is the generation of capillary discharge plasmas of density ≈1018 cm-3 used in laser plasma accelerators. The CMB is triggered with a high speed solid state switch and gives a high voltage output pulse with a ns scale rise time into a 50 Ω load (coaxial cable) with <4 ns voltage jitter. Its small size (10 cm × 25 cm × 5 cm) means that it can be placed right next to the capillary discharge in the target chamber to avoid the need to impedance match. The electrical energy required per discharge is <1 J, and the CMB can be run at shot repetition rates of ≳1 Hz. This low power requirement means that the circuit can easily be powered by a small lead acid battery and, therefore, can be floated relative to laboratory earth. The CMB is readily scalable and pulses >45 kV are demonstrated in air discharges.

  16. Neurexin dysfunction in adult neurons results in autistic-like behavior in mice.

    PubMed

    Rabaneda, Luis G; Robles-Lanuza, Estefanía; Nieto-González, José Luis; Scholl, Francisco G

    2014-07-24

    Autism spectrum disorders (ASDs) comprise a group of clinical phenotypes characterized by repetitive behavior and social and communication deficits. Autism is generally viewed as a neurodevelopmental disorder where insults during embryonic or early postnatal periods result in aberrant wiring and function of neuronal circuits. Neurexins are synaptic proteins associated with autism. Here, we generated transgenic βNrx1ΔC mice in which neurexin function is selectively impaired during late postnatal stages. Whole-cell recordings in cortical neurons show an impairment of glutamatergic synaptic transmission in the βNrx1ΔC mice. Importantly, mutant mice exhibit autism-related symptoms, such as increased self-grooming, deficits in social interactions, and altered interaction for nonsocial olfactory cues. The autistic-like phenotype of βNrx1ΔC mice can be reversed after removing the mutant protein in aged animals. The defects resulting from disruption of neurexin function after the completion of embryonic and early postnatal development suggest that functional impairment of mature circuits can trigger autism-related phenotypes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit.

    PubMed

    Shiromani, Priyattam J; Peever, John H

    2017-04-01

    The complexity of the brain is yielding to technology. In the area of sleep neurobiology, conventional neuroscience tools such as lesions, cell recordings, c-Fos, and axon-tracing methodologies have been instrumental in identifying the complex and intermingled populations of sleep- and arousal-promoting neurons that orchestrate and generate wakefulness, NREM, and REM sleep. In the last decade, new technologies such as optogenetics, chemogenetics, and the CRISPR-Cas system have begun to transform how biologists understand the finer details associated with sleep-wake regulation. These additions to the neuroscience toolkit are helping to identify how discrete populations of brain cells function to trigger and shape the timing and transition into and out of different sleep-wake states, and how glia partner with neurons to regulate sleep. Here, we detail how some of the newest technologies are being applied to understand the neural circuits underlying sleep and wake. Published by Oxford University Press on behalf of Sleep Research Society (SRS) 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Passive fault current limiting device

    DOEpatents

    Evans, D.J.; Cha, Y.S.

    1999-04-06

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

  19. Common key-signals in learning and neurodegeneration: focus on excito-amino acids, beta-amyloid peptides and alpha-synuclein.

    PubMed

    Agnati, L F; Leo, G; Genedani, S; Piron, L; Rivera, A; Guidolin, D; Fuxe, K

    2009-08-01

    In this paper a hypothesis that some special signals ("key-signals" excito-amino acids, beta-amyloid peptides and alpha-synuclein) are not only involved in information handling by the neuronal circuits, but also trigger out substantial structural and/or functional changes in the Central Nervous System (CNS) is introduced. This forces the neuronal circuits to move from one stable state towards a new state, but in doing so these signals became potentially dangerous. Several mechanisms are put in action to protect neurons and glial cells from these potentially harmful signals. However, in agreement with the Red Queen Theory of Ageing (Agnati et al. in Acta Physiol Scand 145:301-309, 1992), it is proposed that during ageing these neuroprotective processes become less effective while, in the meantime, a shortage of brain plasticity occurs together with an increased need of plasticity for repairing the wear and tear of the CNS. The paper presents findings supporting the concept that such key-signals in instances such as ageing may favour neurodegenerative processes in an attempt of maximizing neuronal plasticity.

  20. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-01

    The development of multi-node quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of pre-selected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multi-mode interference beamsplitter via in-situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with $g^{(2)}(0) = 0.13\\pm 0.02$. Due to its high patterning resolution as well as spectral and spatial control, in-situ electron beam lithography allows for integration of pre-selected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way towards multi-node, fully integrated quantum photonic chips.

  1. Ultraviolet Events Observed in Active Regions. 2; An Interpretation of Flaring Arches and Associated Small Flares

    NASA Technical Reports Server (NTRS)

    Fontenla, J.; Rovira, M.; Tandberg-Hanssen, E.

    1997-01-01

    We analyze Hz, UV, and X-ray emissions in and around the spectacular arch system seen in the corona on 1980 March 27 during the Solar Maximum Mission. The flaring of the arch plasma is studied, and its dependence on triggering mechanisms related to the observed small limb flare in the arch footpoint is analyzed. To drive these events, we propose a mechanism in which small electric current circuits and the localized magnetic free energy are continuously generated at a magnetic null by a pressure gradient, which then compress or expand the plasma. This free energy dissipates by Joule effect and upward transport.

  2. Implications of arcing due to spacecraft charging on spacecraft EMI margins of immunity

    NASA Technical Reports Server (NTRS)

    Inouye, G. T.

    1981-01-01

    Arcing due to spacecraft charging on spacecraft EMI margins of immunity was determined. The configuration of the P78-2 spacecraft of the SCATHA program was analyzed. A brushfire arc discharge model was developed, and a technique for initiating discharges with a spark plug trigger was for data configuration. A set of best estimate arc discharge parameters was defined. The effects of spacecraft potentials in limiting the discharge current blowout component are included. Arc discharge source models were incorporated into a SEMCAP EMI coupling analysis code for the DSP spacecraft. It is shown that with no mission critical circuits will be affected.

  3. Acoustical Detection Of Leakage In A Combustor

    NASA Technical Reports Server (NTRS)

    Puster, Richard L.; Petty, Jeffrey L.

    1993-01-01

    Abnormal combustion excites characteristic standing wave. Acoustical leak-detection system gives early warning of failure, enabling operating personnel to stop combustion process and repair spray bar before leak grows large enough to cause damage. Applicable to engines, gas turbines, furnaces, and other machines in which acoustic emissions at known frequencies signify onset of damage. Bearings in rotating machines monitored for emergence of characteristic frequencies shown in previous tests associated with incipient failure. Also possible to monitor for signs of trouble at multiple frequencies by feeding output of transducer simultaneously to multiple band-pass filters and associated circuitry, including separate trigger circuit set to appropriate level for each frequency.

  4. A transparent ultraviolet triggered amorphous selenium p-n junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Ichitaro; Soga, Kenichi; Overend, Mauro

    2011-04-11

    This paper will introduce a semitransparent amorphous selenium (a-Se) film exhibiting photovoltaic effects under ultraviolet light created through a simple and inexpensive method. We found that chlorine can be doped into a-Se through electrolysis of saturated salt water, and converts the weak p-type material into an n-type material. Furthermore, we found that a p-n diode fabricated through this process has shown an open circuit voltage of 0.35 V toward ultraviolet illumination. Our results suggest the possibility of doping control depending on the electric current during electrolysis and the possibility of developing a simple doping method for amorphous photoconductors.

  5. Influences of Duration of Inspiratory Effort, Respiratory Mechanics, and Ventilator Type on Asynchrony With Pressure Support and Proportional Assist Ventilation.

    PubMed

    Vasconcelos, Renata S; Sales, Raquel P; Melo, Luíz H de P; Marinho, Liégina S; Bastos, Vasco Pd; Nogueira, Andréa da Nc; Ferreira, Juliana C; Holanda, Marcelo A

    2017-05-01

    Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (V T ). Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. V T was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics profiles, and it was associated with a lower V T . Copyright © 2017 by Daedalus Enterprises.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, E.; De Geronimo, G.; Ackley, K.

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discriminationmore » with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.« less

  7. Excitation-transcription coupling in parvalbumin-positive interneurons employs a novel CaM Kinase-dependent pathway distinct from excitatory neurons

    PubMed Central

    Cohen, Samuel M.; Ma, Huan; Kuchibhotla, Kishore V.; Watson, Brendon O.; Buzsáki, György; Froemke, Robert C.; Tsien, Richard W.

    2016-01-01

    Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. Here, we report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease. PMID:27041500

  8. PULSE HEIGHT ANALYZER

    DOEpatents

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  9. Distinct unfolded protein responses mitigate or mediate effects of nonlethal deprivation of C. elegans sleep in different tissues.

    PubMed

    Sanders, Jarred; Scholz, Monika; Merutka, Ilaria; Biron, David

    2017-08-28

    Disrupting sleep during development leads to lasting deficits in chordates and arthropods. To address lasting impacts of sleep deprivation in Caenorhabditis elegans, we established a nonlethal deprivation protocol. Deprivation triggered protective insulin-like signaling and two unfolded protein responses (UPRs): the mitochondrial (UPR mt ) and the endoplasmic reticulum (UPR ER ) responses. While the latter is known to be triggered by sleep deprivation in rodent and insect brains, the former was not strongly associated with sleep deprivation previously. We show that deprivation results in a feeding defect when the UPR mt is deficient and in UPR ER -dependent germ cell apoptosis. In addition, when the UPR ER is deficient, deprivation causes excess twitching in vulval muscles, mirroring a trend caused by loss of egg-laying command neurons. These data show that nonlethal deprivation of C. elegans sleep causes proteotoxic stress. Unless mitigated, distinct types of deprivation-induced proteotoxicity can lead to anatomically and genetically separable lasting defects. The relative importance of different UPRs post-deprivation likely reflects functional, developmental, and genetic differences between the respective tissues and circuits.

  10. Repetition priming of motor activity mediated by a central pattern generator: the importance of extrinsic vs. intrinsic program initiators

    PubMed Central

    Siniscalchi, Michael J.; Jing, Jian; Weiss, Klaudiusz R.

    2016-01-01

    Repetition priming is characterized by increased performance as a behavior is repeated. Although this phenomenon is ubiquitous, mediating mechanisms are poorly understood. We address this issue in a model system, the feeding network of Aplysia. This network generates both ingestive and egestive motor programs. Previous data suggest a chemical coding model: ingestive and egestive inputs to the feeding central pattern generator (CPG) release different modulators, which act via different second messengers to prime motor activity in different ways. The ingestive input to the CPG (neuron CBI-2) releases the peptides feeding circuit activating peptide and cerebral peptide 2, which produce an ingestive pattern of activity. The egestive input to the CPG (the esophageal nerve) releases the peptide small cardioactive peptide. This model is based on research that focused on a single aspect of motor control (radula opening). Here we ask whether repetition priming is observed if activity is triggered with a neuron within the core CPG itself and demonstrate that it is not. Moreover, previous studies demonstrated that effects of modulatory neurotransmitters that induce repetition priming persist. This suggests that it should be possible to “prime” motor programs triggered from within the CPG by first stimulating extrinsic modulatory inputs. We demonstrate that programs triggered after ingestive input activation are ingestive and programs triggered after egestive input activation are egestive. We ask where this priming occurs and demonstrate modifications within the CPG itself. This arrangement is likely to have important consequences for “task” switching, i.e., the cessation of one type of motor activity and the initiation of another. PMID:27466134

  11. Eating 'Junk-Food' Produces Rapid and Long-Lasting Increases in NAc CP-AMPA Receptors: Implications for Enhanced Cue-Induced Motivation and Food Addiction.

    PubMed

    Oginsky, Max F; Goforth, Paulette B; Nobile, Cameron W; Lopez-Santiago, Luis F; Ferrario, Carrie R

    2016-12-01

    Urges to eat are influenced by stimuli in the environment that are associated with food (food cues). Obese people are more sensitive to food cues, reporting stronger craving and consuming larger portions after food cue exposure. The nucleus accumbens (NAc) mediates cue-triggered motivational responses, and activations in the NAc triggered by food cues are stronger in people who are susceptible to obesity. This has led to the idea that alterations in NAc function similar to those underlying drug addiction may contribute to obesity, particularly in obesity-susceptible individuals. Motivational responses are mediated in part by NAc AMPA receptor (AMPAR) transmission, and recent work shows that cue-triggered motivation is enhanced in obesity-susceptible rats after 'junk-food' diet consumption. Therefore, here we determined whether NAc AMPAR expression and function is increased by 'junk-food' diet consumption in obesity-susceptible vs -resistant populations using both outbred and selectively bred models of susceptibility. In addition, cocaine-induced locomotor activity was used as a general 'read out' of mesolimbic function after 'junk-food' consumption. We found a sensitized locomotor response to cocaine in rats that gained weight on a 'junk-food' diet, consistent with greater responsivity of mesolimbic circuits in obesity-susceptible groups. In addition, eating 'junk-food' increased NAc calcium-permeable-AMPAR (CP-AMPAR) function only in obesity-susceptible rats. This increase occurred rapidly, persisted for weeks after 'junk-food' consumption ceased, and preceded the development of obesity. These data are considered in light of enhanced cue-triggered motivation and striatal function in obesity-susceptible rats and the role of NAc CP-AMPARs in enhanced motivation and addiction.

  12. Eating ‘Junk-Food' Produces Rapid and Long-Lasting Increases in NAc CP-AMPA Receptors: Implications for Enhanced Cue-Induced Motivation and Food Addiction

    PubMed Central

    Oginsky, Max F; Goforth, Paulette B; Nobile, Cameron W; Lopez-Santiago, Luis F; Ferrario, Carrie R

    2016-01-01

    Urges to eat are influenced by stimuli in the environment that are associated with food (food cues). Obese people are more sensitive to food cues, reporting stronger craving and consuming larger portions after food cue exposure. The nucleus accumbens (NAc) mediates cue-triggered motivational responses, and activations in the NAc triggered by food cues are stronger in people who are susceptible to obesity. This has led to the idea that alterations in NAc function similar to those underlying drug addiction may contribute to obesity, particularly in obesity-susceptible individuals. Motivational responses are mediated in part by NAc AMPA receptor (AMPAR) transmission, and recent work shows that cue-triggered motivation is enhanced in obesity-susceptible rats after ‘junk-food' diet consumption. Therefore, here we determined whether NAc AMPAR expression and function is increased by ‘junk-food' diet consumption in obesity-susceptible vs -resistant populations using both outbred and selectively bred models of susceptibility. In addition, cocaine-induced locomotor activity was used as a general ‘read out' of mesolimbic function after ‘junk-food' consumption. We found a sensitized locomotor response to cocaine in rats that gained weight on a ‘junk-food' diet, consistent with greater responsivity of mesolimbic circuits in obesity-susceptible groups. In addition, eating ‘junk-food' increased NAc calcium-permeable-AMPAR (CP-AMPAR) function only in obesity-susceptible rats. This increase occurred rapidly, persisted for weeks after ‘junk-food' consumption ceased, and preceded the development of obesity. These data are considered in light of enhanced cue-triggered motivation and striatal function in obesity-susceptible rats and the role of NAc CP-AMPARs in enhanced motivation and addiction. PMID:27383008

  13. A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events

    NASA Astrophysics Data System (ADS)

    Xu, Dacheng; Li, Suiqiong; Li, Mengyang; Xie, Danpeng; Dong, Chuan; Li, Xinxin

    2017-09-01

    This paper presents a self-powered wireless alarming sensor node (SWASN), which was designed to monitor the occurrence of concerning vibratory events. The major components of the sensor node include a vibration-threshold-triggered energy harvester (VTTEH) that powers the sensor node, a dual threshold voltage control circuit (DTVCC) for power management and a radio frequency (RF) signal transmitting module. The VTTEH generates significant electric energy only when the input vibration reaches certain amplitude. Thus, the VTTEH serves as both the power source and the vibration-event-sensing element for the sensor node. The DTVCC was specifically designed to utilize the limited power supply from the VTTEH to operate the sensor node. Constructed with only voltage detectors and MOSFETs, the DTVCC achieved low power consumption, which was 65% lower compared with the power management circuit designed in our previous work. Meanwhile, a RF transmit circuit was constructed based on the commercially available CC1110-F32 wireless transceiver chip and a compact planar antenna was designed to improve the signal transmission distance. The sensor node was fabricated and was characterized both in the laboratory and in the field. Experimental results showed that the SWASN could automatically send out alarming signals when the simulated concerning event occurred. The waiting time between two consecutive transmission periods is less than 125 s and the transmission distance can reach 1.31 km. The SWASN will have broad applications in field surveillances.

  14. Task Allocation of Wasps Governed by Common Stomach: A Model Based on Electric Circuits

    PubMed Central

    2016-01-01

    Simple regulatory mechanisms based on the idea of the saturable ‘common stomach’ can control the regulation of construction behavior and colony-level responses to environmental perturbations in Metapolybia wasp societies. We mapped the different task groups to mutual inductance electrical circuits and used Kirchoff’s basic voltage laws to build a model that uses master equations from physics, yet is able to provide strong predictions for this complex biological phenomenon. Similar to real colonies, independently of the initial conditions, the system shortly sets into an equilibrium, which provides optimal task allocation for a steady construction, depending on the influx of accessible water. The system is very flexible and in the case of perturbations, it reallocates its workforce and adapts to the new situation with different equilibrium levels. Similar to the finding of field studies, decreasing any task groups caused decrease of construction; increasing or decreasing water inflow stimulated or reduced the work of other task groups while triggering compensatory behavior in water foragers. We also showed that only well connected circuits are able to produce adequate construction and this agrees with the finding that this type of task partitioning only exists in larger colonies. Studying the buffer properties of the common stomach and its effect on the foragers revealed that it provides stronger negative feedback to the water foragers, while the connection between the pulp foragers and the common stomach has a strong fixed-point attractor, as evidenced by the dissipative trajectory. PMID:27861633

  15. Integration and manufacture of multifunctional planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Lipscomb, George F.; Ticknor, Anthony J.; Stiller, Marc A.; Chen, Wenjie; Schroeter, Paul

    2001-11-01

    The demands of exponentially growing Internet traffic, coupled with the advent of Dense Wavelength Division Multiplexing (DWDM) fiber optic systems to meet those demands, have triggered a revolution in the telecommunications industry. This dramatic change has been built upon, and has driven, improvements in fiber optic component technology. The next generation of systems for the all optical network will require higher performance components coupled with dramatically lower costs. One approach to achieve significantly lower costs per function is to employ Planar Lightwave Circuits (PLC) to integrate multiple optical functions in a single package. PLCs are optical circuits laid out on a silicon wafer, and are made using tools and techniques developed to extremely high levels by the semi-conductor industry. In this way multiple components can be fabricated and interconnected at once, significantly reducing both the manufacturing and the packaging/assembly costs. Currently, the predominant commercial application of PLC technology is arrayed-waveguide gratings (AWG's) for multiplexing and demultiplexing multiple wavelength channels in a DWDM system. Although this is generally perceived as a single-function device, it can be performing the function of more than 100 discrete fiber-optic components and already represents a considerable degree of integration. Furthermore, programmable functions such as variable-optical attenuators (VOAs) and switches made with compatible PLC technology are now moving into commercial production. In this paper, we present results on the integration of active and passive functions together using PLC technology, e.g. a 40 channel AWG multiplexer with 40 individually controllable VOAs.

  16. Influence of sex steroid hormones on the adolescent brain and behavior: An update

    PubMed Central

    Vigil, Pilar; del Río, Juan Pablo; Carrera, BÁrbara; ArÁnguiz, Florencia C.

    2016-01-01

    This review explains the main effects exerted by sex steroids and other hormones on the adolescent brain. During the transition from puberty to adolescence, these hormones participate in the organizational phenomena that structurally shape some brain circuits. In adulthood, this will propitiate some specific behavior as responses to the hormones now activating those neural circuits. Adolescence is, then, a critical “organizational window” for the brain to develop adequately, since steroid hormones perform important functions at this stage. For this reason, the adolescent years are very important for future behaviors in human beings. Changes that occur or fail to occur during adolescence will determine behaviors for the rest of one's lifetime. Consequently, understanding the link between adolescent behavior and brain development as influenced by sex steroids and other hormones and compounds is very important in order to interpret various psycho-affective pathologies. Lay Summary: The effect of steroid hormones on the development of the adolescent brain, and therefore, on adolescent behavior, is noticeable. This review presents their main activational and organizational effects. During the transition from puberty to adolescence, organizational phenomena triggered by steroids structurally affect the remodeling of brain circuits. Later in adulthood, these changes will be reflected in behavioral responses to such hormones. Adolescence can then be seen as a fundamental “organizational window” during which sex steroids and other hormones and compounds play relevant roles. The understanding of the relationship between adolescent behavior and the way hormones influence brain development help understand some psychological disorders. PMID:27833209

  17. Neural Control of the Lower Urinary Tract

    PubMed Central

    de Groat, William C.; Griffiths, Derek; Yoshimura, Naoki

    2015-01-01

    This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed. PMID:25589273

  18. Prefire identification for pulse-power systems

    DOEpatents

    Longmire, J.L.; Thuot, M.E.; Warren, D.S.

    1982-08-23

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  19. Current to the ionosphere following a lightning stroke

    NASA Technical Reports Server (NTRS)

    Hale, L. C.; Baginski, M. E.

    1987-01-01

    A simple analytical expression for calculating the total current waveform to the ionosphere after a lightning stroke is derived. The validity of this expression is demonstrated by comparison with a more rigorous computer solution of Maxwell's equations. The analytic model demonstrates that the temporal variation of the current induced in the ionosphere and global circuit and the corresponding return current in the earth depends on the conductivity profile at intervening altitudes in the middle atmosphere. A conclusion is that capacitative coupling may provide tighter coupling between the lower atmosphere and the ionosphere than usually considered, in both directions, which may help to explain observations which seem to indicate that magnetospheric phenomena may in some instances trigger lightning.

  20. Prefire identification for pulse power systems

    DOEpatents

    Longmire, Jerry L.; Thuot, Michael E.; Warren, David S.

    1985-01-01

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  1. Modeling and Characterization of cMUT-based Devices Applied to Galvanic Isolation

    NASA Astrophysics Data System (ADS)

    Heller, Jacques; Boulmé, Audren; Alquier, Daniel; Ngo, Sophie; Perroteau, Marie; Certon, Domnique

    This paper describes a new way of using cMUT technology: galvanic isolation for power electronics. These devices work like acoustic transformers, except that piezoelectricity is replaced by cMUT technology. Primary and secondary circuits are two cMUT-based transducers respectively layered on each side of a silicon substrate, through which the ultrasonic triggering signal is transmitted. A specific model based on a commercial finite element code was implemented to simulate these devices. A particular attention was paid on the modeling of the cMUT/substrate coupling which is a key feature for the intended application. First experimental results performed for model validation are presented here and discussed.

  2. Curiosity Arm Holding Steady, Sol 915

    NASA Image and Video Library

    2015-03-06

    This image from the Navigation Camera (Navcam) on NASA's Curiosity Mars rover shows the position in which the rover held its arm for several days after a transient short circuit triggered onboard fault-protection programming to halt arm activities on Feb. 27, 2015, the 911th Martian day, or sol, of the rover's work on Mars. The rover team chose to hold the arm in the same position for several days of tests to diagnose the underlying cause of the Sol 911 event. Observations with instruments on the rover's mast continued during this period. The Navcam took this image on March 4, 2015, during Sol 915. http://photojournal.jpl.nasa.gov/catalog/PIA19147

  3. Mimicking subsecond neurotransmitter dynamics with femtosecond laser stimulated nanosystems.

    PubMed

    Nakano, Takashi; Chin, Catherine; Myint, David Mo Aung; Tan, Eng Wui; Hale, Peter John; Krishna M, Bala Murali; Reynolds, John N J; Wickens, Jeff; Dani, Keshav M

    2014-06-23

    Existing nanoscale chemical delivery systems target diseased cells over long, sustained periods of time, typically through one-time, destructive triggering. Future directions lie in the development of fast and robust techniques capable of reproducing the pulsatile chemical activity of living organisms, thereby allowing us to mimic biofunctionality. Here, we demonstrate that by applying programmed femtosecond laser pulses to robust, nanoscale liposome structures containing dopamine, we achieve sub-second, controlled release of dopamine--a key neurotransmitter of the central nervous system--thereby replicating its release profile in the brain. The fast delivery system provides a powerful new interface with neural circuits, and to the larger range of biological functions that operate on this short timescale.

  4. FPGA Based Adaptive Rate and Manifold Pattern Projection for Structured Light 3D Camera System †

    PubMed Central

    Lee, Sukhan

    2018-01-01

    The quality of the captured point cloud and the scanning speed of a structured light 3D camera system depend upon their capability of handling the object surface of a large reflectance variation in the trade-off of the required number of patterns to be projected. In this paper, we propose and implement a flexible embedded framework that is capable of triggering the camera single or multiple times for capturing single or multiple projections within a single camera exposure setting. This allows the 3D camera system to synchronize the camera and projector even for miss-matched frame rates such that the system is capable of projecting different types of patterns for different scan speed applications. This makes the system capturing a high quality of 3D point cloud even for the surface of a large reflectance variation while achieving a high scan speed. The proposed framework is implemented on the Field Programmable Gate Array (FPGA), where the camera trigger is adaptively generated in such a way that the position and the number of triggers are automatically determined according to camera exposure settings. In other words, the projection frequency is adaptive to different scanning applications without altering the architecture. In addition, the proposed framework is unique as it does not require any external memory for storage because pattern pixels are generated in real-time, which minimizes the complexity and size of the application-specific integrated circuit (ASIC) design and implementation. PMID:29642506

  5. Portable Optical Epidural Needle-A CMOS-Based System Solution and Its Circuit Design

    PubMed Central

    Gong, Cihun-Siyong Alex; Lin, Shih-Pin; Mandell, M. Susan; Tsou, Mei-Yung; Chang, Yin; Ting, Chien-Kun

    2014-01-01

    Epidural anesthesia is a common anesthesia method yet up to 10% of procedures fail to provide adequate analgesia. This is usually due to misinterpreting the tactile information derived from the advancing needle through the complex tissue planes. Incorrect placement also can cause dural puncture and neural injury. We developed an optic system capable of reliably identifying tissue planes surrounding the epidural space. However the new technology was too large and cumbersome for practical clinical use. We present a miniaturized version of our optic system using chip technology (first generation CMOS-based system) for logic functions. The new system was connected to an alarm that was triggered once the optic properties of the epidural were identified. The aims of this study were to test our miniaturized system in a porcine model and describe the technology to build this new clinical tool. Our system was tested in a porcine model and identified the epidural space in the lumbar, low and high thoracic regions of the spine. The new technology identified the epidural space in all but 1 of 46 attempts. Experimental results from our fabricated integrated circuit and animal study show the new tool has future clinical potential. PMID:25162150

  6. Electrotonic and action potentials in the Venus flytrap.

    PubMed

    Volkov, Alexander G; Vilfranc, Chrystelle L; Murphy, Veronica A; Mitchell, Colee M; Volkova, Maia I; O'Neal, Lawrence; Markin, Vladislav S

    2013-06-15

    The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Effect of cAMP on short-circuit current in isolated human ciliary body.

    PubMed

    Wu, Ren-yi; Ma, Ning; Hu, Qian-qian

    2013-07-01

    Cyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current, Isc) across the ciliary processes in pigs. The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change. In an Ussing-type chamber system, the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed. The involvement of Cl(-) component in the bath solution was investigated. The effect of Cl(-) channel (10 µmol/L niflumic acid and 1 mmol/L 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)), K(+) channel (10 mmol/L tetraethylammonium chloride (TEA)), or Na(+) channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied. Dose-dependently, 8-bromo-cAMP (10 nmol/L-30 µmol/L) or forskolin (10 nmol/L-3 µmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue. Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side. When the tissue was bathed in low Cl(-) solutions, the Isc increase was significantly inhibited. Finally, niflumic acid and DIDS, but not TEA or amiloride, significantly prevented the Isc increase induced by 8-bromo-cAMP. cAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes. Chloride is likely to be among the ions, the transportation of which across the tissue is triggered by cAMP, suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.

  8. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    PubMed

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  9. Generator and Setup for Emulating Exposures of Biological Samples to Lightning Strokes.

    PubMed

    Rebersek, Matej; Marjanovic, Igor; Begus, Samo; Pillet, Flavien; Rols, Marie-Pierre; Miklavcic, Damijan; Kotnik, Tadej

    2015-10-01

    We aimed to develop a system for controlled exposure of biological samples to conditions they experience when lightning strikes their habitats. We based the generator on a capacitor charged via a bridge rectifier and a dc-dc converter, and discharged via a relay, delivering arcs similar to natural lightning strokes in electric current waveform and similarly accompanied by acoustic shock waves. We coupled the generator to our exposure chamber described previously, measured electrical and acoustic properties of arc discharges delivered, and assessed their ability to inactivate bacterial spores. Submicrosecond discharges descended vertically from the conical emitting electrode across the air gap, entering the sample centrally and dissipating radially toward the ring-shaped receiving electrode. In contrast, longer discharges tended to short-circuit the electrodes. Recording at 341 000 FPS with Vision Research Phantom v2010 camera revealed that initial arc descent was still vertical, but became accompanied by arcs leaning increasingly sideways; after 8-12 μs, as the first of these arcs formed direct contact with the receiving electrode, it evolved into a channel of plasmified air and short-circuited the electrodes. We eliminated this artefact by incorporating an insulating cylinder concentrically between the electrodes, precluding short-circuiting between them. While bacterial spores are highly resistant to electric pulses delivered through direct contact, we showed that with arc discharges accompanied by an acoustic shock wave, spore inactivation is readily obtained. The presented system allows scientific investigation of effects of arc discharges on biological samples. This system will allow realistic experimental studies of lightning-triggered horizontal gene transfer and assessment of its role in evolution.

  10. Brain Stimulation Studies of Social Norm Compliance: Implications for Personality Disorders?

    PubMed

    Ruff, Christian C

    2018-01-01

    Several personality disorders involve pathological behaviors that violate social norms, commonly held expectations about what ought to be done in specific situations. These symptoms usually emerge early in development, are persistent and hard to treat, and are often ego-syntonic. Here I present some recent brain stimulation studies suggesting that pathological changes in different aspects of norm-compliant behavior reflect dysfunctions of brain circuits involving distinct prefrontal brain areas. One set of studies shows that transcranial direct current stimulation of the right lateral prefrontal cortex changes the behavioral sensitivity to social incentives for norm-compliant behavior. Crucially, social norm compliance in response to such incentives could even be increased during excitatory stimulation, demonstrating that the affected neural process is a biological prerequisite for appropriate reaction to social signals that trigger norm compliance. In another set of studies, we show that stimulation of a different (more dorsal) part of the right prefrontal cortex enhances honesty in a realistic setting where participants had the opportunity to cheat for real monetary gains. Interestingly, these stimulation-induced increases in both socially cued or purely voluntary norm compliance were not linked to changes in other aspects of decision- making (such as risk or impatience), and they did not reflect changes in beliefs about what is appropriate behavior. These results suggest that disorders of distinct brain circuits may causally underlie egosyntotic changes in norm-compliant behavior. This raises the tantalizing possibility that pathologies of norm-compliant behavior may be ameliorated by interventions targeting the function of these brain circuits. © 2018 S. Karger AG, Basel.

  11. Efficient bioconversion of organic wastes to high optical activity of l-lactic acid stimulated by cathode in mixed microbial consortium.

    PubMed

    Xue, Gang; Lai, Sizhou; Li, Xiang; Zhang, Wenjuan; You, Jiguang; Chen, Hong; Qian, Yajie; Gao, Pin; Liu, Zhenhong; Liu, Yanan

    2017-12-12

    Lactic acid is one of the emerging top biomass derived platform chemicals that can be fermented from organic wastes. This study evaluated the potential of Cathodic Electro-Fermentation (CEF) as a novel approach to enhance the yield of high optical activity (OA) of l-lactic acid from organic wastes using mixed microbial consortium. The fermentation process was stimulated through the cathode applied with -100 mV versus standard hydrogen electrode (SHE), which contributed to 4.73 times higher lactic acid productivity (0.6578 g L -1 h -1 ) compared to that in the open circuit control (0.1392 g L -1 h -1 ), and an improved OA of l-lactic acid was also observed (42.3% vs. 3.6% of the open circuit control). The study elucidated that the optimal voltage at -100 mV promoted the conversion of pyruvate to l-lactate by 77.9% compared to the Blank, which triggered the generation of l-lactic acid to occur rapidly even at low concentration of pyruvate. The significant variation of microbial community in family- and genus-level distributions were observed in CEF system. Furthermore, the open-circuit operation test demonstrated that the cathode providing in-situ electron supply was essential to achieve high efficient bioconversion of organic wastes to lactic acid. Our work highlights the feasibility of CEF to steer high value-added fermentation products deriving from organic wastes by the mixed microbial consortium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Lubiprostone targets prostanoid EP₄ receptors in ovine airways.

    PubMed

    Cuthbert, A W

    2011-01-01

    Lubiprostone, a prostaglandin E₁ derivative, is reported to activate ClC-2 chloride channels located in the apical membranes of a number of transporting epithelia. Lack of functioning CFTR chloride channels in epithelia is responsible for the genetic disease cystic fibrosis, therefore, surrogate channels that can operate independently of CFTR are of interest. This study explores the target receptor(s) for lubiprostone in airway epithelium. All experiments were performed on the ventral tracheal epithelium of sheep. Epithelia were used to measure anion secretion from the apical surface as short circuit current or as fluid secretion from individual airway submucosal glands, using an optical method. The EP₄ antagonists L-161982 and GW627368 inhibited short circuit current responses to lubiprostone, while EP₁(,)₂(&)₃ receptor antagonists were without effect. Similarly, lubiprostone induced secretion in airway submucosal glands was inhibited by L-161982. L-161982 effectively competed with lubiprostone with a K(d) value of 0.058 µM, close to its value for binding to human EP₄ receptors (0.024 µM). The selective EP₄ agonist L-902688 and lubiprostone behaved similarly with respect to EP₄ receptor antagonists. Results of experiments with H89, a protein kinase A inhibitor, were consistent with lubiprostone acting through a G(s) -protein coupled EP₄ receptor/cAMP cascade. Lubiprostone-induced short-circuit currents and submucosal gland secretions were inhibited by selective EP₄ receptor antagonists. The results suggest EP₄ receptor activation by lubiprostone triggers cAMP production necessary for CFTR activation and the secretory responses, a possibility precluded in CF tissues. © 2010 The Author. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  13. Hippocampal-medial prefrontal circuit supports memory updating during learning and post-encoding rest

    PubMed Central

    Schlichting, Margaret L.; Preston, Alison R.

    2015-01-01

    Learning occurs in the context of existing memories. Encountering new information that relates to prior knowledge may trigger integration, whereby established memories are updated to incorporate new content. Here, we provide a critical test of recent theories suggesting hippocampal (HPC) and medial prefrontal (MPFC) involvement in integration, both during and immediately following encoding. Human participants with established memories for a set of initial (AB) associations underwent fMRI scanning during passive rest and encoding of new related (BC) and unrelated (XY) pairs. We show that HPC-MPFC functional coupling during learning was more predictive of trial-by-trial memory for associations related to prior knowledge relative to unrelated associations. Moreover, the degree to which HPC-MPFC functional coupling was enhanced following overlapping encoding was related to memory integration behavior across participants. We observed a dissociation between anterior and posterior MPFC, with integration signatures during post-encoding rest specifically in the posterior subregion. These results highlight the persistence of integration signatures into post-encoding periods, indicating continued processing of interrelated memories during rest. We also interrogated the coherence of white matter tracts to assess the hypothesis that integration behavior would be related to the integrity of the underlying anatomical pathways. Consistent with our predictions, more coherent HPC-MPFC white matter structure was associated with better performance across participants. This HPC-MPFC circuit also interacted with content-sensitive visual cortex during learning and rest, consistent with reinstatement of prior knowledge to enable updating. These results show that the HPC-MPFC circuit supports on- and offline integration of new content into memory. PMID:26608407

  14. Design and implementation of the ATLAS TRT front end electronics

    NASA Astrophysics Data System (ADS)

    Newcomer, Mitch; Atlas TRT Collaboration

    2006-07-01

    The ATLAS TRT subsystem is comprised of 380,000 4 mm straw tube sensors ranging in length from 30 to 80 cm. Polypropelene plastic layers between straws and a xenon-based gas mixture in the straws allow the straws to be used for both tracking and transition radiation detection. Detector-mounted electronics with data sparsification was chosen to minimize the cable plant inside the super-conducting solenoid of the ATLAS inner tracker. The "on detector" environment required a small footprint, low noise, low power and radiation-tolerant readout capable of triggering at rates up to 20 MHz with an analog signal dynamic range of >300 times the discriminator setting. For tracking, a position resolution better than 150 μm requires leading edge trigger timing with ˜1 ns precision and for transition radiation detection, a charge collection time long enough to integrate the direct and reflected signal from the unterminated straw tube is needed for position-independent energy measurement. These goals have been achieved employing two custom Application-specific integrated circuits (ASICS) and board design techniques that successfully separate analog and digital functionality while providing an integral part of the straw tube shielding.

  15. Multifunctional pulse generator for high-intensity focused ultrasound system

    NASA Astrophysics Data System (ADS)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  16. Electrochemically Driven Fermentation of Organic Substrates with Undefined Mixed Microbial Cultures.

    PubMed

    Villano, Marianna; Paiano, Paola; Palma, Enza; Miccheli, Alfredo; Majone, Mauro

    2017-08-10

    Growing scientific interest in mixed microbial culture-based anaerobic biotechnologies for the production of value-added chemicals and fuels from organic waste residues requires a parallel focus on the development and implementation of strategies to control the distribution of products. This study examined the feasibility of an electrofermentation approach, based on the introduction of a polarized (-700 mV vs. the standard hydrogen electrode) graphite electrode in the fermentation medium, to steer the product distribution during the conversion of organic substrates (glucose, ethanol, and acetate supplied as single compounds or in mixtures) by undefined mixed microbial cultures. In batch experiments, the polarized electrode triggered a nearly 20-fold increase (relative to open circuit controls) in the yield of isobutyrate production (0.43±0.01 vs. 0.02±0.02 mol mol -1 glucose) during the anaerobic fermentation of the ternary mixture of substrates, without adversely affecting the rate of substrate bioconversion. The observed change in the fermentative metabolism was most likely triggered by the (potentiostatic) regulation of the oxidation-reduction potential of the reaction medium rather than by the electrode serving as an electron donor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The role of stress in the pathogenesis and maintenance of obsessive-compulsive disorder.

    PubMed

    Adams, T G; Kelmendi, B; Brake, C A; Gruner, P; Badour, C L; Pittenger, C

    2018-01-01

    Individuals with OCD often identify psychosocial stress as a factor that exacerbates their symptoms, and many trace the onset of symptoms to a stressful period of life or a discrete traumatic incident. However, the pathophysiological relationship between stress and OCD remains poorly characterized: it is unclear whether trauma or stress is an independent cause of OCD symptoms, a triggering factor that interacts with a preexisting diathesis, or simply a nonspecific factor that can exacerbate OCD along with other aspects of psychiatric symptomatology. Nonetheless, preclinical research has demonstrated that stress has conspicuous effects on corticostriatal and limbic circuitry. Specifically, stress can lead to neuronal atrophy in frontal cortices (particularly the medial prefrontal cortex), the dorsomedial striatum (caudate), and the hippocampus. Stress can also result in neuronal hypertrophy in the dorsolateral striatum (putamen) and amygdala. These neurobiological effects mirror reported neural abnormalities in OCD and may contribute to an imbalance between goal-directed and habitual behavior, an imbalance that is implicated in the pathogenesis and expression of OCD symptomatology. The modulation of corticostriatal and limbic circuits by stress and the resultant imbalance between habit and goal-directed learning and behavior offers a framework for investigating how stress may exacerbate or trigger OCD symptomatology.

  18. How schizophrenia develops: cognitive and brain mechanisms underlying onset of psychosis

    PubMed Central

    Cannon, Tyrone D.

    2015-01-01

    Identifying cognitive and neural mechanisms involved in the development of schizophrenia requires longitudinal observation of individuals prior to onset. Here recent studies of prodromal individuals who progress to full psychosis are briefly reviewed in relation to models of schizophrenia pathophysiology. Together, this body of work suggests that disruption in brain connectivity, driven primarily by a progressive reduction in dendritic spines on cortical pyramidal neurons, may represent a key triggering mechanism. The earliest disruptions appear to be in circuits involved in referencing experiences according to time, place, and agency, which may result in a failure to recognize particular cognitions as self-generated or to constrain interpretations of the meaning of events based on prior experiences, providing the scaffolding for faulty reality testing. PMID:26493362

  19. pH-Controlled Assembly of DNA Tiles

    DOE PAGES

    Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo; ...

    2016-09-15

    We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less

  20. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Weitemier, Adam Z.; Zeng, Xiao; He, Linmeng; Wang, Xiyu; Tao, Yanqiu; Huang, Arthur J. Y.; Hashimotodani, Yuki; Kano, Masanobu; Iwasaki, Hirohide; Parajuli, Laxmi Kumar; Okabe, Shigeo; Teh, Daniel B. Loong; All, Angelo H.; Tsutsui-Kimura, Iku; Tanaka, Kenji F.; Liu, Xiaogang; McHugh, Thomas J.

    2018-02-01

    Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.

  1. Generating A Strobed Laser Light Sheet

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Franke, John M.; Rhodes, David B.; Jones, Stephen B.

    1994-01-01

    An optoelectronic system generating synchronous, strobed sheet of laser light developed for use in making visible flow of air about model helicopter rotor. Used in wind-tunnel tests to determine actual locations of vortices for comparison with locations predicted by mathematical models to validate models. Each blade tip produces vortex. By establishing successive vortex locations, researcher determines trajectory of vortex pattern. Light-sheet strobe circuits provide selection of blade positions, strobe-pulse durations, and multiple pulses per revolution for rotors having two to nine blades. To make flow visible, vaporizing propylene glycol injected upstream of model. System also provides calibrated trigger delay of strobe pulses, adjustable strobe-pulse durations, selectable number of blades, and slip-sync mode to make flow visible as though in slow motion.

  2. Management of Postoperative Fever in Adult Cardiac Surgical Patients.

    PubMed

    O'Mara, Susan K

    Postoperative fever after cardiac surgery is a common occurrence. Most fevers are benign and self-limiting resulting from inflammation caused by surgical trauma and blood contact with cardiopulmonary bypass circuit resulting in the release of cytokines. Only a small percentage of time is postoperative fever due to an infection complicating surgery. The presence of fever frequently triggers a battery of diagnostic tests that are costly, could expose the patient to unnecessary risks, and can produce misleading or inconclusive results. It is therefore important that fever be evaluated in a systematic, prudent, clinically appropriate, and cost-effective manner. This article focuses on the current evidence regarding pathophysiology, incidence, causes, evaluation, and management of fever in postoperative adult cardiac surgical patients.

  3. Reliability of the quench protection system for the LHC superconducting elements

    NASA Astrophysics Data System (ADS)

    Vergara Fernández, A.; Rodríguez-Mateos, F.

    2004-06-01

    The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed.

  4. Chronic pain. Decreased motivation during chronic pain requires long-term depression in the nucleus accumbens.

    PubMed

    Schwartz, Neil; Temkin, Paul; Jurado, Sandra; Lim, Byung Kook; Heifets, Boris D; Polepalli, Jai S; Malenka, Robert C

    2014-08-01

    Several symptoms associated with chronic pain, including fatigue and depression, are characterized by reduced motivation to initiate or complete goal-directed tasks. However, it is unknown whether maladaptive modifications in neural circuits that regulate motivation occur during chronic pain. Here, we demonstrate that the decreased motivation elicited in mice by two different models of chronic pain requires a galanin receptor 1-triggered depression of excitatory synaptic transmission in indirect pathway nucleus accumbens medium spiny neurons. These results demonstrate a previously unknown pathological adaption in a key node of motivational neural circuitry that is required for one of the major sequela of chronic pain states and syndromes. Copyright © 2014, American Association for the Advancement of Science.

  5. pH-Controlled Assembly of DNA Tiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo

    We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less

  6. Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line.

    PubMed

    Houston, Charles; Tzortzis, Konstantinos N; Roney, Caroline; Saglietto, Andrea; Pitcher, David S; Cantwell, Chris D; Chowdhury, Rasheda A; Ng, Fu Siong; Peters, Nicholas S; Dupont, Emmanuel

    2018-06-01

    Fibrillation is the most common arrhythmia observed in clinical practice. Understanding of the mechanisms underlying its initiation and maintenance remains incomplete. Functional re-entries are potential drivers of the arrhythmia. Two main concepts are still debated, the "leading circle" and the "spiral wave or rotor" theories. The homogeneous subclone of the HL1 atrial-derived cardiomyocyte cell line, HL1-6, spontaneously exhibits re-entry on a microscopic scale due to its slow conduction velocity and the presence of triggers, making it possible to examine re-entry at the cellular level. We therefore investigated the re-entry cores in cell monolayers through the use of fluorescence optical mapping at high spatiotemporal resolution in order to obtain insights into the mechanisms of re-entry. Re-entries in HL1-6 myocytes required at least two triggers and a minimum colony area to initiate (3.5 to 6.4 mm 2 ). After electrical activity was completely stopped and re-started by varying the extracellular K + concentration, re-entries never returned to the same location while 35% of triggers re-appeared at the same position. A conduction delay algorithm also allows visualisation of the core of the re-entries. This work has revealed that the core of re-entries is conduction blocks constituted by lines and/or groups of cells rather than the round area assumed by the other concepts of functional re-entry. This highlights the importance of experimentation at the microscopic level in the study of re-entry mechanisms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Lie group model neuromorphic geometric engine for real-time terrain reconstruction from stereoscopic aerial photos

    NASA Astrophysics Data System (ADS)

    Tsao, Thomas R.; Tsao, Doris

    1997-04-01

    In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.

  8. Design and Development of a Series Switch for High Voltage in RF Heating

    NASA Astrophysics Data System (ADS)

    Patel, Himanshu K.; Shah, Deep; Thacker, Mauli; Shah, Atman

    2013-02-01

    Plasma is the fourth state of matter. To sustain plasma in its ionic form very high temperature is essential. RF heating systems are used to provide the required temperature. Arching phenomenon in these systems can cause enormous damage to the RF tube. Heavy current flows across the anode-cathode junction, which need to be suppressed in minimal time for its protection. Fast-switching circuit breakers are used to cut-off the load from the supply in cases of arching. The crowbar interrupts the connection between the high voltage power supply (HVPS) and the RF tube for a temporary period between which the series switch has to open. The crowbar shunts the current across the load but in the process leads to short circuiting the HVPS. Thus, to protect the load as well as the HVPS a series switch is necessary. This paper presents the design and development of high voltage Series Switch for the high power switching applications. Fiber optic based Optimum triggering scheme is designed and tested to restrict the time delay well within the stipulated limits. The design is well supported with the experimental results for the whole set-up along with the series switch at various voltage level before its approval for operation at 5.2 kV.

  9. Ultrafast Reverse Recovery Time Measurement for Wide-Bandgap Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.

    A system is presented that is capable of measuring sub-nanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 – 1 A) and reverse voltages (0 – 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultra Short Pulse Laser (USPL), a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode,more » which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. Furthermore, this system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride (GaN) diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50 – 100 V and forward current of 1 – 100 mA.« less

  10. Ultrafast Reverse Recovery Time Measurement for Wide-Bandgap Diodes

    DOE PAGES

    Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.; ...

    2017-03-01

    A system is presented that is capable of measuring sub-nanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 – 1 A) and reverse voltages (0 – 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultra Short Pulse Laser (USPL), a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode,more » which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. Furthermore, this system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride (GaN) diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50 – 100 V and forward current of 1 – 100 mA.« less

  11. Ferroelectric Plasma Sources for Ion Beam Neutralization

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L. R.; Davidson, R. C.

    2014-10-01

    A 40 keV Ar+ beam with a dimensionless perveance of 4 ×10-4 is propagated through a Ferroelectric Plasma Source (FEPS) to determine the effects of charge neutralization on the transverse beam profile. Neutralization is established 5 μs after the FEPS is triggered, and lasts between 10 and 35 μs. When the beam is fully neutralized, the profile has a Gaussian shape with a half-angle divergence of 0.87°, which is attributed to ion optics. The effects of the resistance and capacitance in the pulser circuit on the FEPS discharge are studied. The electron current emitted by the FEPS is calculated from measurements of the forward and return currents in the circuit. Electron emission typically begins 0.5 μs after the driving pulse, lasting for tens of μs, which is similar to the duration of ion beam neutralization. The total emitted charge does not depend significantly on the resistance, but depends strongly on the storage capacitance. Lowering the capacitance from 141 nF to 47 nF results in a near-complete shut-off of charge emission, although the amplitude of the applied voltage pulse is as high as when high-density plasma is produced. Overall, the data suggest that ferroelectric effects are significant in the physics of the FEPS discharge.

  12. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  13. A synthetic biology-based device prevents liver injury in mice.

    PubMed

    Bai, Peng; Ye, Haifeng; Xie, Mingqi; Saxena, Pratik; Zulewski, Henryk; Charpin-El Hamri, Ghislaine; Djonov, Valentin; Fussenegger, Martin

    2016-07-01

    The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. Frequency-specific alterations in functional connectivity in treatment-resistant and -sensitive major depressive disorder.

    PubMed

    He, Zongling; Cui, Qian; Zheng, Junjie; Duan, Xujun; Pang, Yajing; Gao, Qing; Han, Shaoqiang; Long, Zhiliang; Wang, Yifeng; Li, Jiao; Wang, Xiao; Zhao, Jingping; Chen, Huafu

    2016-11-01

    Major depressive disorder (MDD) may involve alterations in brain functional connectivity in multiple neural circuits and present large-scale network dysfunction. Patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) show different responses to antidepressants and aberrant brain functions. This study aims to investigate functional connectivity patterns of TRD and TSD at the whole brain resting state. Seventeen patients with TRD, 17 patients with TSD, and 17 healthy controls matched with age, gender, and years of education were recruited in this study. The brain was divided using an automated anatomical labeling atlas into 90 regions of interest, which were used to construct the entire brain functional networks. An analysis method called network-based statistic was used to explore the dysconnected subnetworks of TRD and TSD at different frequency bands. At resting state, TSD and TRD present characteristic patterns of network dysfunction at special frequency bands. The dysconnected subnetwork of TSD mainly lies in the fronto-parietal top-down control network. Moreover, the abnormal neural circuits of TRD are extensive and complex. These circuits not only depend on the abnormal affective network but also involve other networks, including salience network, auditory network, visual network, and language processing cortex. Our findings reflect that the pathological mechanism of TSD may refer to impairment in cognitive control, whereas TRD mainly triggers the dysfunction of emotion processing and affective cognition. This study reveals that differences in brain functional connectivity at resting state reflect distinct pathophysiological mechanisms in TSD and TRD. These findings may be helpful in differentiating two types of MDD and predicting treatment responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Genetic determinants of aggression and impulsivity in humans.

    PubMed

    Pavlov, Konstantin A; Chistiakov, Dimitry A; Chekhonin, Vladimir P

    2012-02-01

    Human aggression/impulsivity-related traits have a complex background that is greatly influenced by genetic and non-genetic factors. The relationship between aggression and anxiety is regulated by highly conserved brain regions including amygdala, which controls neural circuits triggering defensive, aggressive, or avoidant behavioral models. The dysfunction of neural circuits responsible for emotional control was shown to represent an etiological factor of violent behavior. In addition to the amygdala, these circuits also involve the anterior cingulated cortex and regions of the prefrontal cortex. Excessive reactivity in the amygdala coupled with inadequate prefrontal regulation serves to increase the likelihood of aggressive behavior. Developmental alterations in prefrontal-subcortical circuitry as well as neuromodulatory and hormonal abnormality appear to play a role. Imbalance in testosterone/serotonin and testosterone/cortisol ratios (e.g., increased testosterone levels and reduced cortisol levels) increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation. Serotonin facilitates prefrontal inhibition, and thus insufficient serotonergic activity can enhance aggression. Genetic predisposition to aggression appears to be deeply affected by the polymorphic genetic variants of the serotoninergic system that influences serotonin levels in the central and peripheral nervous system, biological effects of this hormone, and rate of serotonin production, synaptic release and degradation. Among these variants, functional polymorphisms in the monoamine oxidase A (MAOA) and serotonin transporter (5-HTT) may be of particular importance due to the relationship between these polymorphic variants and anatomical changes in the limbic system of aggressive people. Furthermore, functional variants of MAOA and 5-HTT are capable of mediating the influence of environmental factors on aggression-related traits. In this review, we consider genetic determinants of human aggression, with special emphasis on genes involved in serotonin and dopamine metabolism and function.

  16. Presynaptic Inputs to Any CNS Projection Neuron Identified by Dual Recombinant Virus Infection

    PubMed Central

    Bráz, João M.; Wang, Fan; Basbaum, Allan I.

    2015-01-01

    Although neuroanatomical tracing studies have defined the origin and targets of major projection neurons (PN) of the central nervous system (CNS), there is much less information about the circuits that influence these neurons. Recently, genetic approaches that use Cre recombinase-dependent viral vectors have greatly facilitated such circuit analysis, but these tracing approaches are limited by the availability of Cre-expressing mouse lines and the difficulty in restricting Cre expression to discrete regions of the CNS. Here, we illustrate an alternative approach to drive Cre expression specifically in defined subsets of CNS projection neurons, so as to map both direct and indirect presynaptic inputs to these cells. The method involves a combination of Cre-dependent transneuronal viral tracers that can be used in the adult and that does not require genetically modified mice. To trigger Cre-expression we inject a Cre-expressing adenovirus that is retrogradely transported to the projection neurons of interest. The region containing the retrogradely labeled projection neurons is next injected with Cre-dependent pseudorabies or rabies vectors, which results in labeling of poly- and monosynaptic neuronal inputs, respectively. In proof-of-concept experiments, we used this novel tracing system to study the circuits that engage projection neurons of the superficial dorsal horn of the spinal cord and trigeminal nucleus caudalis, neurons of the parabrachial nucleus of the dorsolateral pons that project to the amygdala and cortically-projecting neurons of the lateral geniculate nucleus. Importantly, because this dual viral tracing method does not require genetically derived Cre-expressing mouse lines, inputs to almost any projection system can be studied and the analysis can be performed in larger animals, such as the rat. PMID:26470056

  17. Lubiprostone targets prostanoid EP4 receptors in ovine airways

    PubMed Central

    Cuthbert, AW

    2011-01-01

    BACKGROUND AND PURPOSE Lubiprostone, a prostaglandin E1 derivative, is reported to activate ClC-2 chloride channels located in the apical membranes of a number of transporting epithelia. Lack of functioning CFTR chloride channels in epithelia is responsible for the genetic disease cystic fibrosis, therefore, surrogate channels that can operate independently of CFTR are of interest. This study explores the target receptor(s) for lubiprostone in airway epithelium. EXPERIMENTAL APPROACH All experiments were performed on the ventral tracheal epithelium of sheep. Epithelia were used to measure anion secretion from the apical surface as short circuit current or as fluid secretion from individual airway submucosal glands, using an optical method. KEY RESULTS The EP4 antagonists L-161982 and GW627368 inhibited short circuit current responses to lubiprostone, while EP1,2&3 receptor antagonists were without effect. Similarly, lubiprostone induced secretion in airway submucosal glands was inhibited by L-161982. L-161982 effectively competed with lubiprostone with a Kd value of 0.058 µM, close to its value for binding to human EP4 receptors (0.024 µM). The selective EP4 agonist L-902688 and lubiprostone behaved similarly with respect to EP4 receptor antagonists. Results of experiments with H89, a protein kinase A inhibitor, were consistent with lubiprostone acting through a Gs-protein coupled EP4 receptor/cAMP cascade. CONCLUSIONS AND IMPLICATIONS Lubiprostone-induced short-circuit currents and submucosal gland secretions were inhibited by selective EP4 receptor antagonists. The results suggest EP4 receptor activation by lubiprostone triggers cAMP production necessary for CFTR activation and the secretory responses, a possibility precluded in CF tissues. PMID:20883477

  18. Immobilized rolling circle amplification on extended-gate field-effect transistors with integrated readout circuits for early detection of platelet-derived growth factor.

    PubMed

    Lin, Ming-Yu; Hsu, Wen-Yang; Yang, Yuh-Shyong; Huang, Jo-Wen; Chung, Yueh-Lin; Chen, Hsin

    2016-07-01

    Detection of tumor-related proteins with high specificity and sensitivity is important for early diagnosis and prognosis of cancers. While protein sensors based on antibodies are not easy to keep for a long time, aptamers (single-stranded DNA) are found to be a good alternative for recognizing tumor-related protein specifically. This study investigates the feasibility of employing aptamers to recognize the platelet-derived growth factor (PDGF) specifically and subsequently triggering rolling circle amplification (RCA) of DNAs on extended-gate field-effect transistors (EGFETs) to enhance the sensitivity. The EGFETs are fabricated by the standard CMOS technology and integrated with readout circuits monolithically. The monolithic integration not only avoids the wiring complexity for a large sensor array but also enhances the sensor reliability and facilitates massive production for commercialization. With the RCA primers immobilized on the sensory surface, the protein signal is amplified as the elongation of DNA, allowing the EGFET to achieve a sensitivity of 8.8 pM, more than three orders better than that achieved by conventional EGFETs. Moreover, the responses of EGFETs are able to indicate quantitatively the reaction rates of RCA, facilitating the estimation on the protein concentration. Our experimental results demonstrate that immobilized RCA on EGFETs is a useful, label-free method for early diagnosis of diseases related to low-concentrated tumor makers (e.g., PDGF) for serum sample, as well as for monitoring the synthesis of various DNA nanostructures in real time. Graphical Abstract The tumor-related protein, PDGF, is detected by immobilizing rolling circle amplification on an EGFET with integrated readout circuit.

  19. A novel NF-κB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis

    PubMed Central

    Mu, Nan; Gu, Jintao; Huang, Tonglie; Zhang, Cun; Shu, Zhen; Li, Meng; Hao, Qiang; Li, Weina; Zhang, Wangqian; Zhao, Jinkang; Zhang, Yong; Huang, Luyu; Wang, Shuning; Jin, Xiaohang; Xue, Xiaochang; Zhang, Wei; Zhang, Yingqi

    2016-01-01

    The main etiopathogenesis of rheumatoid arthritis (RA) is overexpressed inflammatory cytokines and tissue injury mediated by persistent NF-κB activation. MicroRNAs widely participate in the regulation of target gene expression and play important roles in various diseases. Here, we explored the mechanisms of microRNAs in RA. We found that microRNA (miR)-10a was downregulated in the fibroblast-like synoviocytes (FLSs) of RA patients compared with osteoarthritis (OA) controls, and this downregulation could be triggered by TNF-α and IL-1β in an NF-κB-dependent manner through promoting the expression of the YingYang 1 (YY1) transcription factor. Downregulated miR-10a could accelerate IκB degradation and NF-κB activation by targeting IRAK4, TAK1 and BTRC. This miR-10a-mediated NF-κB activation then significantly promoted the production of various inflammatory cytokines, including TNF-α, IL-1β, IL-6, IL-8, and MCP-1, and matrix metalloproteinase (MMP)-1 and MMP-13. In addition, transfection of a miR-10a inhibitor accelerated the proliferation and migration of FLSs. Collectively, our data demonstrates the existence of a novel NF-κB/YY1/miR-10a/NF-κB regulatory circuit that promotes the excessive secretion of NF-κB-mediated inflammatory cytokines and the proliferation and migration of RA FLSs. Thus, miR-10a acts as a switch to control this regulatory circuit and may serve as a diagnostic and therapeutic target for RA treatment. PMID:26821827

  20. 512-Channel and 13-Region Simultaneous Recordings Coupled with Optogenetic Manipulation in Freely Behaving Mice

    PubMed Central

    Xie, Kun; Fox, Grace E.; Liu, Jun; Tsien, Joe Z.

    2016-01-01

    The development of technologies capable of recording both single-unit activity and local field potentials (LFPs) over a wide range of brain circuits in freely behaving animals is the key to constructing brain activity maps. Although mice are the most popular mammalian genetic model, in vivo neural recording has been traditionally limited to smaller channel count and fewer brain structures because of the mouse’s small size and thin skull. Here, we describe a 512-channel tetrode system that allows us to record simultaneously over a dozen cortical and subcortical structures in behaving mice. This new technique offers two major advantages – namely, the ultra-low cost and the do-it-yourself flexibility for targeting any combination of many brain areas. We show the successful recordings of both single units and LFPs from 13 distinct neural circuits of the mouse brain, including subregions of the anterior cingulate cortices, retrosplenial cortices, somatosensory cortices, secondary auditory cortex, hippocampal CA1, dentate gyrus, subiculum, lateral entorhinal cortex, perirhinal cortex, and prelimbic cortex. This 512-channel system can also be combined with Cre-lox neurogenetics and optogenetics to further examine interactions between genes, cell types, and circuit dynamics across a wide range of brain structures. Finally, we demonstrate that complex stimuli – such as an earthquake and fear-inducing foot-shock – trigger firing changes in all of the 13 brain regions recorded, supporting the notion that neural code is highly distributed. In addition, we show that localized optogenetic manipulation in any given brain region could disrupt network oscillations and caused changes in single-unit firing patterns in a brain-wide manner, thereby raising the cautionary note of the interpretation of optogenetically manipulated behaviors. PMID:27378865

  1. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus.

    PubMed

    Sedlacek, Miloslav; Brenowitz, Stephan D

    2014-01-01

    Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.

  2. Graded, Dynamically Routable Information Processing with Synfire-Gated Synfire Chains.

    PubMed

    Wang, Zhuo; Sornborger, Andrew T; Tao, Louis

    2016-06-01

    Coherent neural spiking and local field potentials are believed to be signatures of the binding and transfer of information in the brain. Coherent activity has now been measured experimentally in many regions of mammalian cortex. Recently experimental evidence has been presented suggesting that neural information is encoded and transferred in packets, i.e., in stereotypical, correlated spiking patterns of neural activity. Due to their relevance to coherent spiking, synfire chains are one of the main theoretical constructs that have been appealed to in order to describe coherent spiking and information transfer phenomena. However, for some time, it has been known that synchronous activity in feedforward networks asymptotically either approaches an attractor with fixed waveform and amplitude, or fails to propagate. This has limited the classical synfire chain's ability to explain graded neuronal responses. Recently, we have shown that pulse-gated synfire chains are capable of propagating graded information coded in mean population current or firing rate amplitudes. In particular, we showed that it is possible to use one synfire chain to provide gating pulses and a second, pulse-gated synfire chain to propagate graded information. We called these circuits synfire-gated synfire chains (SGSCs). Here, we present SGSCs in which graded information can rapidly cascade through a neural circuit, and show a correspondence between this type of transfer and a mean-field model in which gating pulses overlap in time. We show that SGSCs are robust in the presence of variability in population size, pulse timing and synaptic strength. Finally, we demonstrate the computational capabilities of SGSC-based information coding by implementing a self-contained, spike-based, modular neural circuit that is triggered by streaming input, processes the input, then makes a decision based on the processed information and shuts itself down.

  3. Direct current hybrid breakers: A design and its realization

    NASA Astrophysics Data System (ADS)

    Atmadji, Ali Mahfudz Surya

    2000-12-01

    The use of semiconductors for electric power circuit breakers instead of conventional breakers remains a utopia when designing fault current interrupters for high power networks. The major problems concerning power semiconductor circuit breakers are the excessive heat losses and their sensitivity to transients. However, conventional breakers are capable of dealing with such matters. A combination of the two methods, or so-called `hybrid breakers', would appear to be a solution; however, hybrid breakers use separate parallel branches for conducting the main current and interrupting the short-circuit current. Such breakers are intended for protecting direct current (DC) traction systems. In this thesis hybrid switching techniques for current limitation and purely solidstate current interruption are investigated for DC breakers. This work analyzes the transient behavior of hybrid breakers and compares their operations with conventional breakers and similar solid-state devices in DC systems. Therefore a hybrid breaker was constructed and tested in a specially designed high power test circuit. A vacuum breaker was chosen as the main breaker in the main conducting path; then a commutation path was connected across the vacuum breaker where it provided current limitation and interruption. The commutation path operated only during any current interruption and the process required additional circuits. These included a certain energy storage, overvoltage suppressor and commutation switch. So that when discharging this energy, a controlled counter-current injection could be produced. That counter-current opposed the main current in the breaker by superposition in order to create a forced current-zero. One-stage and two-stage commutation circuits have been treated extensively. This study project contains both theoretical and experimental investigations. A direct current shortcircuit source was constructed capable of delivering power equivalent to a fault. It supplied a direct voltage of 1kVDC which was rectified having been obtained from a 3-phase lOkV/380V supply. The source was successfully tested to deliver a fault current of 7kA with a time constant of 5ms. The hybrid breaker that was developed could provide protection for 750VDC traction systems. The breaker was equipped with a fault- recognizing circuit based on a current level triggering. An electronic circuit was built for this need and was included in the system. It monitored the system continuously and took action by generating trip signals when a fault was recognized. Interruption was followed by a suitable timing of the fast contact separation in the main breaker and the current-zero creation. An electrodynamically driven mechanism was successfully tested having a dead-time of 300μs to separate the main breaker contacts. Furthermore, a maximum peak current injection of RA at a frequency of 500Hz could be obtained in order to produce an artificial current-zero in the vacuum breaker. A successful current interruption with a prospective value of RA was achieved by the hybrid switching technique. In addition, measures were taken to prevent overvoltages. Experimentally, the concept of a hybrid breaker was compared with the functioning of all mechanical (air breaker) and all electronical (IGCT breaker) versions. Although a single stage interrupting method was verified experimentally, two two-stage interrupting methods were analyzed theoretically.

  4. Instant tough bonding of hydrogels for soft machines and electronics

    PubMed Central

    Wirthl, Daniela; Pichler, Robert; Drack, Michael; Kettlguber, Gerald; Moser, Richard; Gerstmayr, Robert; Hartmann, Florian; Bradt, Elke; Kaltseis, Rainer; Siket, Christian M.; Schausberger, Stefan E.; Hild, Sabine; Bauer, Siegfried; Kaltenbrunner, Martin

    2017-01-01

    Introducing methods for instant tough bonding between hydrogels and antagonistic materials—from soft to hard—allows us to demonstrate elastic yet tough biomimetic devices and machines with a high level of complexity. Tough hydrogels strongly attach, within seconds, to plastics, elastomers, leather, bone, and metals, reaching unprecedented interfacial toughness exceeding 2000 J/m2. Healing of severed ionic hydrogel conductors becomes feasible and restores function instantly. Soft, transparent multilayered hybrids of elastomers and ionic hydrogels endure biaxial strain with more than 2000% increase in area, facilitating soft transducers, generators, and adaptive lenses. We demonstrate soft electronic devices, from stretchable batteries, self-powered compliant circuits, and autonomous electronic skin for triggered drug delivery. Our approach is applicable in rapid prototyping and in delicate environments inaccessible for extended curing and cross-linking. PMID:28691092

  5. Energy-efficient human body communication receiver chipset using wideband signaling scheme.

    PubMed

    Song, Seong-Jun; Cho, Namjun; Kim, Sunyoung; Yoo, Hoi-Jun

    2007-01-01

    This paper presents an energy-efficient wideband signaling receiver for communication channels using the human body as a data transmission medium. The wideband signaling scheme with the direct-coupled interface provides the energy-efficient transmission of multimedia data around the human body. The wideband signaling receiver incorporates with a receiver AFE exploiting wideband symmetric triggering technique and an all-digital CDR circuit with quadratic sampling technique. The AFE operates at 10-Mb/s data rate with input sensitivity of -27dBm and the operational bandwidth of 200-MHz. The CDR recovers clock and data of 2-Mb/s at a bit error rate of 10(-7). The receiver chipset consumes only 5-mW from a 1-V supply, thereby achieving the bit energy of 2.5-nJ/bit.

  6. Field-Programmable Gate Array-based fluxgate magnetometer with digital integration

    NASA Astrophysics Data System (ADS)

    Butta, Mattia; Janosek, Michal; Ripka, Pavel

    2010-05-01

    In this paper, a digital magnetometer based on printed circuit board fluxgate is presented. The fluxgate is pulse excited and the signal is extracted by gate integration. We investigate the possibility to perform integration on very narrow gates (typically 500 ns) by using digital techniques. The magnetometer is based on field-programmable gate array (FPGA) card: we will show all the advantages and disadvantages, given by digitalization of fluxgate output voltage by means of analog-to-digital converter on FPGA card, as well as digitalization performed by external digitizer. Due to very narrow gate, it is shown that a magnetometer entirely based on a FPGA card is preferable, because it avoids noise due to trigger instability. Both open loop and feedback operative mode are described and achieved results are presented.

  7. Spinal Endocannabinoids and CB1 Receptors Mediate C-Fiber-Induced Heterosynaptic Pain Plasticity

    PubMed Central

    Pernía-Andrade, Alejandro J.; Kato, Ako; Witschi, Robert; Nyilas, Rita; Katona, István; Freund, Tamás F.; Watanabe, Masahiko; Filitz, Jörg; Koppert, Wolfgang; Schüttler, Jürgen; Ji, Guangchen; Neugebauer, Volker; Marsicano, Giovanni; Lutz, Beat; Vanegas, Horacio; Zeilhofer, Hanns Ulrich

    2010-01-01

    Diminished synaptic inhibition in the spinal dorsal horn is a major contributor to chronic pain. Pathways, which reduce synaptic inhibition in inflammatory and neuropathic pain states, have been identified, but central hyperalgesia and diminished dorsal horn synaptic inhibition also occur in the absence of inflammation or neuropathy, solely triggered by intense nociceptive (C–fiber) input to the spinal dorsal horn. We found that endocannabinoids produced upon strong nociceptive stimulation activated CB1 receptors on inhibitory dorsal horn neurons to reduce the synaptic release of GABA and glycine and thus rendered nociceptive neurons excitable by non-painful stimuli. Spinal endocannabinoids and CB1 receptors on inhibitory dorsal horn interneurons act as mediators of heterosynaptic pain sensitization and play an unexpected role in dorsal horn pain controlling circuits. PMID:19661434

  8. Instant tough bonding of hydrogels for soft machines and electronics.

    PubMed

    Wirthl, Daniela; Pichler, Robert; Drack, Michael; Kettlguber, Gerald; Moser, Richard; Gerstmayr, Robert; Hartmann, Florian; Bradt, Elke; Kaltseis, Rainer; Siket, Christian M; Schausberger, Stefan E; Hild, Sabine; Bauer, Siegfried; Kaltenbrunner, Martin

    2017-06-01

    Introducing methods for instant tough bonding between hydrogels and antagonistic materials-from soft to hard-allows us to demonstrate elastic yet tough biomimetic devices and machines with a high level of complexity. Tough hydrogels strongly attach, within seconds, to plastics, elastomers, leather, bone, and metals, reaching unprecedented interfacial toughness exceeding 2000 J/m 2 . Healing of severed ionic hydrogel conductors becomes feasible and restores function instantly. Soft, transparent multilayered hybrids of elastomers and ionic hydrogels endure biaxial strain with more than 2000% increase in area, facilitating soft transducers, generators, and adaptive lenses. We demonstrate soft electronic devices, from stretchable batteries, self-powered compliant circuits, and autonomous electronic skin for triggered drug delivery. Our approach is applicable in rapid prototyping and in delicate environments inaccessible for extended curing and cross-linking.

  9. Neuroendocrine mechanisms for immune system regulation during stress in fish.

    PubMed

    Nardocci, Gino; Navarro, Cristina; Cortés, Paula P; Imarai, Mónica; Montoya, Margarita; Valenzuela, Beatriz; Jara, Pablo; Acuña-Castillo, Claudio; Fernández, Ricardo

    2014-10-01

    In the last years, the aquaculture crops have experienced an explosive and intensive growth, because of the high demand for protein. This growth has increased fish susceptibility to diseases and subsequent death. The constant biotic and abiotic changes experienced by fish species in culture are challenges that induce physiological, endocrine and immunological responses. These changes mitigate stress effects at the cellular level to maintain homeostasis. The effects of stress on the immune system have been studied for many years. While acute stress can have beneficial effects, chronic stress inhibits the immune response in mammals and teleost fish. In response to stress, a signaling cascade is triggered by the activation of neural circuits in the central nervous system because the hypothalamus is the central modulator of stress. This leads to the production of catecholamines, corticosteroid-releasing hormone, adrenocorticotropic hormone and glucocorticoids, which are the essential neuroendocrine mediators for this activation. Because stress situations are energetically demanding, the neuroendocrine signals are involved in metabolic support and will suppress the "less important" immune function. Understanding the cellular mechanisms of the neuroendocrine regulation of immunity in fish will allow the development of new pharmaceutical strategies and therapeutics for the prevention and treatment of diseases triggered by stress at all stages of fish cultures for commercial production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes.

    PubMed

    Brunet, Thibaut; Arendt, Detlev

    2016-01-05

    Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization-contraction-secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an 'emergency response' to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory-effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system. © 2015 The Authors.

  11. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes

    PubMed Central

    Brunet, Thibaut; Arendt, Detlev

    2016-01-01

    Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization–contraction–secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an ‘emergency response’ to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory–effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system. PMID:26598726

  12. Engine flow visualization using a copper vapor laser

    NASA Technical Reports Server (NTRS)

    Regan, Carolyn A.; Chun, Kue S.; Schock, Harold J., Jr.

    1987-01-01

    A flow visualization system has been developed to determine the air flow within the combustion chamber of a motored, axisymmetric engine. The engine has been equipped with a transparent quartz cylinder, allowing complete optical access to the chamber. A 40-Watt copper vapor laser is used as the light source. Its beam is focused down to a sheet approximately 1 mm thick. The light plane is passed through the combustion chamber, and illuminates oil particles which were entrained in the intake air. The light scattered off of the particles is recorded by a high speed rotating prism movie camera. A movie is then made showing the air flow within the combustion chamber for an entire four-stroke engine cycle. The system is synchronized so that a pulse generated by the camera triggers the laser's thyratron. The camera is run at 5,000 frames per second; the trigger drives one laser pulse per frame. This paper describes the optics used in the flow visualization system, the synchronization circuit, and presents results obtained from the movie. This is believed to be the first published study showing a planar observation of airflow in a four-stroke piston-cylinder assembly. These flow visualization results have been used to interpret flow velocity measurements previously obtained with a laser Doppler velocimetry system.

  13. Fully Digital Arrays of Silicon Photomultipliers (dSiPM) - a Scalable Alternative to Vacuum Photomultiplier Tubes (PMT)

    NASA Astrophysics Data System (ADS)

    Haemisch, York; Frach, Thomas; Degenhardt, Carsten; Thon, Andreas

    Silicon Photomultipliers (SiPMs) have emerged as promising alternative to fast vacuum photomultiplier tubes (PMT). A fully digital implementation of the Silicon Photomultiplier (dSiPM) has been developed in order to overcome the deficiencies and limitations of the so far only analog SiPMs (aSiPMs). Our sensor is based on arrays of single photon avalanche photodiodes (SPADs) integrated in a standard CMOS process. Photons are detected directly by sensing the voltage at the SPAD anode using a dedicated cell electronics block next to each diode. This block also contains active quenching and recharge circuits as well as a one bit memory for the selective inhibit of detector cells. A balanced trigger network is used to propagate the trigger signal from all cells to the integrated time-to-digital converter. In consequence, photons are detected and counted as digital signals, thus making the sensor less susceptible to temperature variations and electronic noise. The integration with CMOS logic provides the added benefit of low power consumption and possible integration of data post-processing directly in the sensor. In this overview paper, we discuss the sensor architecture together with its characteristics with a focus on scalability and practicability aspects for applications in medical imaging, high energy- and astrophysics.

  14. A novel power-efficient high-speed clock management unit using quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Abutaleb, M. M.

    2017-04-01

    Quantum-dot cellular automata (QCA) is one of the most attractive alternatives for complementary metal-oxide semiconductor technology. The QCA widely supports a new paradigm in the field of nanotechnology that has the potential for high density, low power, and high speed. The clock manager is an essential building block in the new microwave and radio frequency integrated circuits. This paper describes a novel QCA-based clock management unit (CMU) that provides innovative clocking capabilities. The proposed CMU is achieved by utilizing edge-triggered D-type flip-flops (D-FFs) in the design of frequency synthesizer and phase splitter. Edge-triggered D-FF structures proposed in this paper have the successful QCA implementation and simulation with the least complexity and power dissipation as compared to earlier structures. The frequency synthesizer is used to generate new clock frequencies from the reference clock frequency based on a combination of power-of-two frequency dividers. The phase splitter is integrated with the frequency synthesizer to generate four clock signals that are 90o out of phase with each other. This paper demonstrates that the proposed QCA CMU structure has a superior performance. Furthermore, the proposed CMU is straightforwardly scalable due to the use of modular component architecture.

  15. Roadmap evolution: from NTRS to ITRS, from ITRS 2.0 to IRDS

    NASA Astrophysics Data System (ADS)

    Gargini, Paolo A.

    2017-10-01

    The semiconductor industry benefitted from roadmap guidance since the mid-60s. The roadmap anticipated and outlined the main needs of the semiconductor industry for years to come and identified future challenges and possible solutions. Making transistor smaller by means of advanced lithographic technologies enabled both increased integration levels and improved IC performance. The roadmap methodology allowed the removal of multiple "red brick walls". The NTRS and the ITRS constituted primarily a "bottom up" approach as standard microprocessors and memories where introduced at a blistering pace barely allowing time for system houses to integrate them in their products. The 1998 ITRS provided the vision that triggered research, development and manufacturing communities to develop a completely new transistor structure in addition to replacing aluminum interconnects with a more advanced technology. The advent of Foundries and Fabless companies transformed the electronics industry into a "top down" driven industry in the past 15 years. The ITRS adjusted to this new ecosystem and morphed into the International Roadmap for Devices and Systems (IRDS) sponsored by IEEE. The IRDS is addressing the requirements and needs of the renewed electronics industry. Furthermore, by the middle of the next decade the ability to layout integrated circuits in a 2D geometry grid will reach fundamental physical limits and the aggressive conversion to 3D architecture for integrated circuit must be pursued across the board as an avenue to continuously increasing transistor count and improving performance. EUV technology is finally approaching the manufacturing stage but with the advent of 3D monolithically integrated heterogeneous circuits approaching in the not-toodistant future should the semiconductor industry concentrate its resources on the next lithographic technology generation in order to enhance resolution or on providing a smooth transition to the new revolutionary 3D architecture of integrated circuits? It is essential for the whole semiconductor industry to come together and make fundamental choices leading to a cooperative and synchronized allocation of adequate resources to produce viable solutions that once introduced in a timely manner into manufacturing will enable the continuation of the growth of the electronic industry at a pace comparable or exceeding historical trends.

  16. I'll take the low road: the evolutionary underpinnings of visually triggered fear

    PubMed Central

    Carr, James A.

    2015-01-01

    Although there is general agreement that the central nucleus of the amygdala (CeA) is critical for triggering the neuroendocrine response to visual threats, there is uncertainty about the role of subcortical visual pathways in this process. Primates in general appear to depend less on subcortical visual pathways than other mammals. Yet, imaging studies continue to indicate a role for the superior colliculus and pulvinar nucleus in fear activation, despite disconnects in how these brain structures communicate not only with each other but with the amygdala. Studies in fish and amphibians suggest that the neuroendocrine response to visual threats has remained relatively unchanged for hundreds of millions of years, yet there are still significant data gaps with respect to how visual information is relayed to telencephalic areas homologous to the CeA, particularly in fish. In fact ray finned fishes may have evolved an entirely different mechanism for relaying visual information to the telencephalon. In part because they lack a pathway homologous to the lateral geniculate-striate cortex pathway of mammals, amphibians continue to be an excellent model for studying how stress hormones in turn modulate fear activating visual pathways. Glucocorticoids, melanocortin peptides, and CRF all appear to play some role in modulating sensorimotor processing in the optic tectum. These observations, coupled with data showing control of the hypothalamus-pituitary-adrenal axis by the superior colliculus, suggest a fear/stress/anxiety neuroendocrine circuit that begins with first order synapses in subcortical visual pathways. Thus, comparative studies shed light not only on how fear triggering visual pathways came to be, but how hormones released as a result of this activation modulate these pathways. PMID:26578871

  17. Multiple Independent Oscillatory Networks in the Degenerating Retina

    PubMed Central

    Euler, Thomas; Schubert, Timm

    2015-01-01

    During neuronal degenerative diseases, microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. This can be particularly well observed in the retina, where photoreceptor degeneration triggers rewiring of connections in the retina’s first synaptic layer (e.g., Strettoi et al., 2003; Haq et al., 2014), while the synaptic organization of inner retinal circuits appears to be little affected (O’Brien et al., 2014; Figures 1A,B). Remodeling of (outer) retinal circuits and diminishing light-driven activity due to the loss of functional photoreceptors lead to spontaneous activity that can be observed at different retinal levels (Figure 1C), including the retinal ganglion cells, which display rhythmic spiking activity in the degenerative retina (Margolis et al., 2008; Stasheff, 2008; Menzler and Zeck, 2011; Stasheff et al., 2011). Two networks have been suggested to drive the oscillatory activity in the degenerating retina: a network of remnant cone photoreceptors, rod bipolar cells (RBCs) and horizontal cells in the outer retina (Haq et al., 2014), and the AII amacrine cell-cone bipolar cell network in the inner retina (Borowska et al., 2011). Notably, spontaneous rhythmic activity in the inner retinal network can be triggered in the absence of synaptic remodeling in the outer retina, for example, in the healthy retina after photo-bleaching (Menzler et al., 2014). In addition, the two networks show remarkable differences in their dominant oscillation frequency range as well as in the types and numbers of involved cells (Menzler and Zeck, 2011; Haq et al., 2014). Taken together this suggests that the two networks are self-sustained and can be active independently from each other. However, it is not known if and how they modulate each other. In this mini review, we will discuss: (i) commonalities and differences between these two oscillatory networks as well as possible interaction pathways; (ii) how multiple self-sustained networks may hamper visual restoration strategies employing, for example, microelectronic implants, optogenetics or stem cells, and briefly; and (iii) how the finding of diverse (independent) networks in the degenerative retina may relate to other parts of the neurodegenerative central nervous system. PMID:26617491

  18. Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Bo; Wei, Tingcun; Gao, Wu

    Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of themore » whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for a power consumption of 8 mW per channel. The linearity error is lower than 1% and the overall gain of the readout channel is 165 V/pC. The crosstalk between the channels is less than 3%. By connecting the readout ASIC to a CdZnTe detector, we obtained a γ-ray spectrum, the energy resolution is 5.1% at the 59.5-keV line of {sup 241}Am source. (authors)« less

  19. Design, Fabrication and Testing of Two Different Laboratory Prototypes of CSI-based Induction Heating Units

    NASA Astrophysics Data System (ADS)

    Roy, M.; Sengupta, M.

    2012-09-01

    Induction heating is a non-contact heating process which became popular due to its energy efficiency. Current source inverter (CSI) based induction heating units are commonly used in the industry. Most of these CSIs are thyristor based, since thyristors of higher ratings are easily available. These being load commutated apparatus a start-up circuit is needed to initiate commutation. In this paper the design and fabrication of two laboratory prototypes have been presented. The first one, a SCR-based CSI fed controlled induction heating unit (IHU), has been tested with two different types of start-up procedures. Thereafter the fabrication and performance of another IGBT-based CSI is compared with the thyristor-based CSI for a 2 kW, 10 kHz application. These two types of CSIs are fully fabricated in laboratory along with the IHU. Performance analysis and simulation of two different CSIs has been done by using SequelGUI2. The triggering pulses for the inverter devices (for both CSI devices as well as auxilliary thyristor of start-up circuit) have been generated and closed-loop control has been done in FPGA platform built around an Altera make cyclone EPIC12Q240C processor which can be programmed using Quartus II software. Close agreement between simulated and experimental results highlight the accuracy of the experimental work.

  20. Development of a hybrid mode linear transformer driver stage

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Wang, Meng; Zhou, Liangji; Tian, Qing; Guo, Fan; Wang, Lingyun; Qing, Yanling; Zhao, Yue; Dai, Yingmin; Han, Wenhui; Chen, Lin; Xie, Weiping

    2018-02-01

    At present, the mainstream technologies of primary power sources of large pulse power devices adopt Marx or linear transformer driver (LTD) designs. Based on the analysis of the characteristics of these two types of circuit topologies, the concept of a hybrid mode LTD stage based on Marx branches is proposed. The analysis shows that the hybrid mode LTD stage can realize the following goals: (a) to reduce the energy and power handled by the basic components (switch and capacitor) to lengthen their lifetime; (b) to reduce the requirements of the multipath synchronous trigger system; and (c) to improve the maintainability of the LTD stage by using independent Marx generators instead of "traditional LTD bricks." To verify the technique, a hybrid mode LTD stage consisting of 50 branches (four-stage compact Marx generators) was designed, manufactured and tested. The stage has a radius of about 3.3 m and a height of 0.6 m. The single Marx circuit's load current is about 21 kA, with a rise time of ˜90 ns (10%-90%), under the conditions of capacitors charged to ±40 kV and a 6.9 Ω matched load. The whole stage's load current is ˜1 MA , with a rise time of ˜112 ns (10%-90%), when the capacitors are charged to ±45 kV and the matched load is 0.14 Ω .

  1. Transient digitizer with displacement current samplers

    DOEpatents

    McEwan, T.E.

    1996-05-21

    A low component count, high speed sample gate, and digitizer architecture using the sample gates is based on use of a signal transmission line, a strobe transmission line and a plurality of sample gates connected to the sample transmission line at a plurality of positions. The sample gates include a strobe pickoff structure near the strobe transmission line which generates a charge displacement current in response to propagation of the strobe signal on the strobe transmission line sufficient to trigger the sample gate. The sample gate comprises a two-diode sampling bridge and is connected to a meandered signal transmission line at one end and to a charge-holding cap at the other. The common cathodes are reverse biased. A voltage step is propagated down the strobe transmission line. As the step propagates past a capacitive pickoff, displacement current i=c(dv/dT), flows into the cathodes, driving the bridge into conduction and thereby charging the charge-holding capacitor to a value related to the signal. A charge amplifier converts the charge on the charge-holding capacitor to an output voltage. The sampler is mounted on a printed circuit board, and the sample transmission line and strobe transmission line comprise coplanar microstrips formed on a surface of the substrate. Also, the strobe pickoff structure may comprise a planar pad adjacent the strobe transmission line on the printed circuit board. 16 figs.

  2. Transient digitizer with displacement current samplers

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A low component count, high speed sample gate, and digitizer architecture using the sample gates is based on use of a signal transmission line, a strobe transmission line and a plurality of sample gates connected to the sample transmission line at a plurality of positions. The sample gates include a strobe pickoff structure near the strobe transmission line which generates a charge displacement current in response to propagation of the strobe signal on the strobe transmission line sufficient to trigger the sample gate. The sample gate comprises a two-diode sampling bridge and is connected to a meandered signal transmission line at one end and to a charge-holding cap at the other. The common cathodes are reverse biased. A voltage step is propagated down the strobe transmission line. As the step propagates past a capacitive pickoff, displacement current i=c(dv/dT), flows into the cathodes, driving the bridge into conduction and thereby charging the charge-holding capacitor to a value related to the signal. A charge amplifier converts the charge on the charge-holding capacitor to an output voltage. The sampler is mounted on a printed circuit board, and the sample transmission line and strobe transmission line comprise coplanar microstrips formed on a surface of the substrate. Also, the strobe pickoff structure may comprise a planar pad adjacent the strobe transmission line on the printed circuit board.

  3. An aberrant parasympathetic response: a new perspective linking chronic stress and itch.

    PubMed

    Kim, Hei Sung; Yosipovitch, Gil

    2013-04-01

    Perceived stress has long been known to alter the dynamic equilibrium established between the nervous, endocrine and immune system and is widely recognised to trigger or enhance pruritus. However, the exact mechanism of how the major stress response systems, such as the hypothalamus-pituitary adrenal (HPA) axis and the autonomic nervous system induce or aggravate chronic itch, has not been elucidated. The limbic regions of the brain such as the prefrontal cortex and hippocampus are deeply involved in the regulation of the stress response and intersect with circuits that are responsible for memory and reward. According to the 'Polyvagal Theory', certain limbic structures that serve as a 'higher brain equivalent of the parasympathetic nervous system' play a foremost role in maintaining body homoeostasis by functioning as an active vagal brake. In addition, the limbic system has been postulated to regulate two distinct, yet related aspects of itch: (i) the sensory-discriminative aspect; and (ii) the affective-cognitive aspect. Chronic stress-induced itch is hypothesised to be caused by stress-related changes in limbic structure with subsequent rewiring of both the peripheral and central pruriceptive circuits. Herein, we review data suggesting that a dysfunctional parasympathetic nervous system associated with chronic stress may play a critical role in the regulatory control of key candidate molecules, receptors and brain structures involved in chronic itch. © 2012 John Wiley & Sons A/S.

  4. Tactile priming modulates the activation of the fronto-parietal circuit during tactile angle match and non-match processing: an fMRI study

    PubMed Central

    Yang, Jiajia; Yu, Yinghua; Kunita, Akinori; Huang, Qiang; Wu, Jinglong; Sawamoto, Nobukatsu; Fukuyama, Hidenao

    2014-01-01

    The repetition of a stimulus task reduces the neural activity within certain cortical regions responsible for working memory (WM) processing. Although previous evidence has shown that repeated vibrotactile stimuli reduce the activation in the ventrolateral prefrontal cortex, whether the repeated tactile spatial stimuli triggered the priming effect correlated with the same cortical region remains unclear. Therefore, we used event-related functional magnetic resonance imaging (fMRI) and a delayed match-to-sample task to investigate the contributions of the priming effect to tactile spatial WM processing. Fourteen healthy volunteers were asked to encode three tactile angle stimuli during the encoding phase and one tactile angle stimulus during the recognition phase. Then, they answered whether the last angle stimulus was presented during the encoding phase. As expected, both the Match and Non-Match tasks activated a similar cerebral network. The critical new finding was decreased brain activity in the left inferior frontal gyrus (IFG), the right posterior parietal cortex (PPC) and bilateral medial frontal gyri (mFG) for the match task compared to the Non-Match task. Therefore, we suggest that the tactile priming engaged repetition suppression mechanisms during tactile angle matching, and this process decreased the activation of the fronto-parietal circuit, including IFG, mFG and PPC. PMID:25566010

  5. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes.

    PubMed

    Xue, Shuai; Yin, Jianli; Shao, Jiawei; Yu, Yuanhuan; Yang, Linfeng; Wang, Yidan; Xie, Mingqi; Fussenegger, Martin; Ye, Haifeng

    2017-02-01

    Hepatogenous diabetes is a complex disease that is typified by the simultaneous presence of type 2 diabetes and many forms of liver disease. The chief pathogenic determinant in this pathophysiological network is insulin resistance (IR), an asymptomatic disease state in which impaired insulin signaling in target tissues initiates a variety of organ dysfunctions. However, pharmacotherapies targeting IR remain limited and are generally inapplicable for liver disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment in many liver disorders. Here, we utilized the congruent pharmacological activities of OA and glucagon-like-peptide 1 (GLP-1) in relieving IR and improving liver and pancreas functions and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs. In particular, OA-triggered short human GLP-1 (shGLP-1) expression in hepatogenous diabetic mice rapidly and simultaneously attenuated many disease-specific metabolic failures, whereas OA or shGLP-1 monotherapy failed to achieve corresponding therapeutic effects. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficacies of single therapeutics. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  6. Pseudospin Dependent One-Way Transmission in Graphene-Based Topological Plasmonic Crystals

    NASA Astrophysics Data System (ADS)

    Qiu, Pingping; Qiu, Weibin; Ren, Junbo; Lin, Zhili; Wang, Zeyu; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2018-04-01

    Originating from the investigation of condensed matter states, the concept of quantum Hall effect and quantum spin Hall effect (QSHE) has recently been expanded to other field of physics and engineering, e.g., photonics and phononics, giving rise to strikingly unconventional edge modes immune to scattering. Here, we present the plasmonic analog of QSHE in graphene plasmonic crystal (GPC) in mid-infrared frequencies. The band inversion occurs when deforming the honeycomb lattice GPCs, which further leads to the topological band gaps and pseudospin features of the edge states. By overlapping the band gaps with different topologies, we numerically simulated the pseudospin-dependent one-way propagation of edge states. The designed GPC may find potential applications in the fields of topological plasmonics and trigger the exploration of the technique of the pseudospin multiplexing in high-density nanophotonic integrated circuits.

  7. Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia

    PubMed Central

    Do, Kim Q.; Cuenod, Michel; Hensch, Takao K.

    2015-01-01

    Schizophrenia is a neurodevelopmental disorder reflecting a convergence of genetic risk and early life stress. The slow progression to first psychotic episode represents both a window of vulnerability as well as opportunity for therapeutic intervention. Here, we consider recent neurobiological insight into the cellular and molecular components of developmental critical periods and their vulnerability to redox dysregulation. In particular, the consistent loss of parvalbumin-positive interneuron (PVI) function and their surrounding perineuronal nets (PNNs) as well as myelination in patient brains is consistent with a delayed or extended period of circuit instability. This linkage to critical period triggers (PVI) and brakes (PNN, myelin) implicates mistimed trajectories of brain development in mental illness. Strategically introduced antioxidant treatment or later reinforcement of molecular brakes may then offer a novel prophylactic psychiatry. PMID:26032508

  8. An unusual burn injury caused by a car battery.

    PubMed

    Nisanci, Mustafa; Sengezer, Mustafa; Durmuş, Muzaffer

    2005-01-01

    In a car battery accident, a 21-year old man sustained a band of deep burn involving the dorsoradial aspect of the wrist. He was treated by excision and grafting on the third day after injury. A metal watchstrap that the patient was wearing, with evidence of the arching phenomenon on it, short-circuited the battery of the vehicle. Although the underlying etiology that triggered the events leading to thermal injury was an electrical accident, the current did not pass through any part of the patient's body, as what happens in an electrical injury. In our current understanding, the pathophysiology of electrical injury dictates the transmission of current through living tissues, leading to a specific type of tissue damage that should be distinguishable from the type that results from a usual thermal injury, as it happened in our case.

  9. Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides.

    PubMed

    Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard

    2015-06-01

    Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.

  10. High pulse rate high resolution optical radar system

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Burns, R. H.; Chi, K. (Inventor)

    1973-01-01

    The system is composed of an optical cavity with a laser and a mode locking means to build up an optical pulse. An optical switch is also provided within the cavity to convert the polarization of the optical pulse generated within the cavity. The optical switch comprises an electro-optical crystal driven by a time delayed driver circuit which is triggered by a coincident signal made from an optical pulse signal and a gating pulse signal. The converted optical pulse strikes a polarization sensitive prism and is deflected out of the cavity toward the pending target in the form of a pulse containing most of the optical energy generated by the laser in the pulse build-up period. After striking the target, the reflected energy is picked up by a transceiver with the total travel time of the pulse being recorded.

  11. Piezoelectric-based self-powered electronic adjustable impulse switches

    NASA Astrophysics Data System (ADS)

    Rastegar, Jahangir; Kwok, Philip

    2018-03-01

    Novel piezoelectric-based self-powered impulse detecting switches are presented. The switches are designed to detect shock loading events resulting in acceleration or deceleration above prescribed levels and durations. The prescribed acceleration level and duration thresholds are adjustable. They are provided with false trigger protection logic. The impulse switches are provided with electronic and logic circuitry to detect prescribed impulse events and reject events such as high amplitude but short duration shocks, and transportation vibration and similar low amplitude and relatively long duration events. They can be mounted directly onto electronics circuit boards, thereby significantly simplifying the electrical and electronic circuitry, simplifying the assembly process and total cost, significantly reducing the occupied volume, and in some applications eliminating the need for physical wiring to and from the impulse switches. The design of prototypes and testing under realistic conditions are presented.

  12. Design of Timer Circuit for Dynamic Data System

    NASA Technical Reports Server (NTRS)

    Young, Nathaniel, III

    2004-01-01

    The Branch That I work in is in the Aero Electronic Test Branch, which is part of the Research and Testing Division. The Aero Electronic Test Branch deals with electronic control and instrumentation systems. This branch supports the research and test study of wind tunnels such as the l0x10,9x15, and 8x6. Wind tunnels are used in research to test certain parts of a jet, plane, shuttle or any other flying object in certain test conditions. My assignment is to design a programmable trigger circuit on a 19 standard rack mount that will allow the circuit to latch and hold for a predefined amount of time entered by the user when receiving a signal. It should then re-arm itself within 0.25 seconds after the time is finished. The time should be able to be seen on a display showing the time entered. The time range has to be from 0-600 seconds in 0.01 second increments (600.00). From the information given, counters will be needed to design and build this circuit. A counter, in it s simplest form, is a group of flip flops that can temporarily store bits of information put into the circuit. They can be constructed in many different ways, such as in 4 flip flops (4-bit counter) or 8 flip flops and even higher. Counters are usually cascaded with other counters to reach higher bits, such as 16 or 24 bit counters. The application in which I will use the counters will be to count down from any programmable number that I input either by a keyboard or a thumbwheel. Also, I will use counters that will be used specifically as a frequency divider to divide the pulses that enter the circuit through an input signal from a crystal clock. The pulses will need to be divided so that it will function as a 100Hz clock putting out 100 pulses per second. A switch will be used to load my inputs in and more than likely a button also so that I can stop and hold the count at any point of time. I will use 5 BCD up/down programmable counters, and a certain amount (depending on what kind of "divide by N" counter I use) of frequency dividing counters for the assignment. After the design is carefully made, a task order will be written and then given to the manufacturer to create a rack mount circuit board that will match my specifications given. The applications in which this design will be used for is in the use of the six-component balance signal conditioner for measurement and electronic system control. It can be used as a timer system for the balance signal conditioner in which it does numerous tests for the Wind tunnel research, in which a preset time can be set for how long it performs its tests. Specifically, my design should be applied to the balance signal conditioner used for the 8x6 wind tunnel research. Hopefully this design should aid in more efficient research for the 8x6 wind tunnel.

  13. Reward-based hypertension control by a synthetic brain-dopamine interface.

    PubMed

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-11-05

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.

  14. Rehabilitation-triggered cortical plasticity after stroke: in vivo imaging at multiple scales (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, Anna Letizia; Conti, Emilia; Lai, Stefano; Spalletti, Cristina; Di Giovanna, Antonino Paolo; Alia, Claudia; Panarese, Alessandro; Sacconi, Leonardo; Micera, Silvestro; Caleo, Matteo; Pavone, Francesco S.

    2017-02-01

    Neurorehabilitation protocols based on the use of robotic devices provide a highly repeatable therapy and have recently shown promising clinical results. Little is known about how rehabilitation molds the brain to promote motor recovery of the affected limb. We used a custom-made robotic platform that provides quantitative assessment of forelimb function in a retraction test. Complementary imaging techniques allowed us to access to the multiple facets of robotic rehabilitation-induced cortical plasticity after unilateral photothrombotic stroke in mice Primary Motor Cortex (Caudal Forelimb Area - CFA). First, we analyzed structural features of vasculature and dendritic reshaping in the peri-infarct area with two-photon fluorescence microscopy. Longitudinal analysis of dendritic branches and spines of pyramidal neurons suggests that robotic rehabilitation promotes the stabilization of peri-infarct cortical excitatory circuits, which is not accompanied by consistent vascular reorganization towards pre-stroke conditions. To investigate if this structural stabilization was linked to functional remapping, we performed mesoscale wide-field imaging on GCaMP6 mice while performing the motor task on the robotic platform. We revealed temporal and spatial features of the motor-triggered cortical activation, shining new light on rehabilitation-induced functional remapping of the ipsilesional cortex. Finally, by using an all-optical approach that combines optogenetic activation of the contralesional hemisphere and wide-field functional imaging of peri-infarct area, we dissected the effect of robotic rehabilitation on inter-hemispheric cortico-cortical connectivity.

  15. Trends and new developments in gaseous detectors

    NASA Astrophysics Data System (ADS)

    Hoch, M.

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  16. Electronics for a prototype variable field of view PET camera using the PMT-quadrant-sharing detector array

    NASA Astrophysics Data System (ADS)

    Li, H.; Wong, Wai-Hoi; Zhang, N.; Wang, J.; Uribe, J.; Baghaei, H.; Yokoyama, S.

    1999-06-01

    Electronics for a prototype high-resolution PET camera with eight position-sensitive detector modules has been developed. Each module has 16 BGO (Bi/sub 4/Ge/sub 3/O/sub 12/) blocks (each block is composed of 49 crystals). The design goals are component and space reduction. The electronics is composed of five parts: front-end analog processing, digital position decoding, fast timing, coincidence processing and master data acquisition. The front-end analog circuit is a zone-based structure (each zone has 3/spl times/3 PMTs). Nine ADCs digitize integration signals of an active zone identified by eight trigger clusters; each cluster is composed of six photomultiplier tubes (PMTs). A trigger corresponding to a gamma ray is sent to a fast timing board to obtain a time-mark, and the nine digitized signals are passed to the position decoding board, where a real block (four PMTs) can be picked out from the zone for position decoding. Lookup tables are used for energy discrimination and to identify the gamma-hit crystal location. The coincidence board opens a 70-ns initial timing window, followed by two 20-ns true/accidental time-mark lookup table windows. The data output from the coincidence board can be acquired either in sinogram mode or in list mode with a Motorola/IRONICS VME-based system.

  17. Hello from the Other Side: How Autoantibodies Circumvent the Blood-Brain Barrier in Autoimmune Encephalitis.

    PubMed

    Platt, Maryann P; Agalliu, Dritan; Cutforth, Tyler

    2017-01-01

    Antibodies against neuronal receptors and synaptic proteins are associated with autoimmune encephalitides (AE) that produce movement and psychiatric disorders. In order to exert their pathological effects on neural circuits, autoantibodies against central nervous system (CNS) targets must gain access to the brain and spinal cord by crossing the blood-brain barrier (BBB), a tightly regulated gateway formed by endothelial cells lining CNS blood vessels. To date, the pathogenic mechanisms that underlie autoantibody-triggered encephalitic syndromes are poorly understood, and how autoantibodies breach the barrier remains obscure for almost all AE syndromes. The relative importance of cellular versus humoral immune mechanisms for disease pathogenesis also remains largely unexplored. Here, we review the proposed triggers for various autoimmune encephalopathies and their animal models, as well as basic structural features of the BBB and how they differ among various CNS regions, a feature that likely underlies some regional aspects of autoimmune encephalitis pathogenesis. We then discuss the routes that antibodies and immune cells employ to enter the CNS and their implications for AE. Finally, we explore future therapeutic strategies that may either preserve or restore barrier function and thereby limit immune cell and autoantibody infiltration into the CNS. Recent mechanistic insights into CNS autoantibody entry indicate promising future directions for therapeutic intervention beyond current, short-lived therapies that eliminate circulating autoantibodies.

  18. Hello from the Other Side: How Autoantibodies Circumvent the Blood–Brain Barrier in Autoimmune Encephalitis

    PubMed Central

    Platt, Maryann P.; Agalliu, Dritan; Cutforth, Tyler

    2017-01-01

    Antibodies against neuronal receptors and synaptic proteins are associated with autoimmune encephalitides (AE) that produce movement and psychiatric disorders. In order to exert their pathological effects on neural circuits, autoantibodies against central nervous system (CNS) targets must gain access to the brain and spinal cord by crossing the blood–brain barrier (BBB), a tightly regulated gateway formed by endothelial cells lining CNS blood vessels. To date, the pathogenic mechanisms that underlie autoantibody-triggered encephalitic syndromes are poorly understood, and how autoantibodies breach the barrier remains obscure for almost all AE syndromes. The relative importance of cellular versus humoral immune mechanisms for disease pathogenesis also remains largely unexplored. Here, we review the proposed triggers for various autoimmune encephalopathies and their animal models, as well as basic structural features of the BBB and how they differ among various CNS regions, a feature that likely underlies some regional aspects of autoimmune encephalitis pathogenesis. We then discuss the routes that antibodies and immune cells employ to enter the CNS and their implications for AE. Finally, we explore future therapeutic strategies that may either preserve or restore barrier function and thereby limit immune cell and autoantibody infiltration into the CNS. Recent mechanistic insights into CNS autoantibody entry indicate promising future directions for therapeutic intervention beyond current, short-lived therapies that eliminate circulating autoantibodies. PMID:28484451

  19. Hairpin assembly circuit-based fluorescence cooperative amplification strategy for enzyme-free and label-free detection of small molecule.

    PubMed

    Feng, Chunjing; Zhu, Jing; Sun, Jiewei; Jiang, Wei; Wang, Lei

    2015-10-01

    Here, we developed an enzyme-free, label-free, and sensitive fluorescence cooperative amplification strategy based on a hairpin assembly circuit which coupled catalytic hairpin assembly (CHA) with hybridization chain reaction (HCR) for small molecule adenosine. A double-strand DNA probe with aptamer-catalysis strand (Apt-C) and inhibit strand (Inh) was designed for adenosine recognition and signal transduction which was named as Apt-C/Inh. Hairpins H1 and H2 were employed for constructing the CHA, and hairpins H3 and H4 for the HCR. Through the binding of adenosine and the Apt-C, the Inh was released from the Apt-C/Inh. Then the free Apt-C initiated the CHA through successively opening H1 and H2, generating H1/H2 complex and recyclable Apt-C. Next, the released Apt-C entered another CHA cycle, and the H1/H2 complex further initiated the HCR of H3 and H4 which induced the formation of the concatemers of H3/H4 complex. Such a process brought the two ends of hairpins H3 into close proximity, yielding numerous integrated G-quadruplexes which were initially sequestered in the stem and two terminals of H3. Finally, N-methyl mesoporphyrin IX (NMM) was added to generate an enhanced fluorescence signal. In the proposed strategy, driven only by the energy from hybridization, one target could trigger multiple HCR events via CHA-based target-cycle, leading to a remarkable enzyme-free amplification for adenosine. The detection limit could achieve as low as 9.7 × 10(-7) mol L(-1). Furthermore, G-quadruplexes were applied to construct label-free hairpin assembly circuit, which made it more simple and cost-effective. The satisfactory recoveries were obtained when detecting adenosine in spiked human serum and urine samples, demonstrating the feasibility of this detection strategy in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Strength of word-specific neural memory traces assessed electrophysiologically.

    PubMed

    Alexandrov, Alexander A; Boricheva, Daria O; Pulvermüller, Friedemann; Shtyrov, Yury

    2011-01-01

    Memory traces for words are frequently conceptualized neurobiologically as networks of neurons interconnected via reciprocal links developed through associative learning in the process of language acquisition. Neurophysiological reflection of activation of such memory traces has been reported using the mismatch negativity brain potential (MMN), which demonstrates an enhanced response to meaningful words over meaningless items. This enhancement is believed to be generated by the activation of strongly intraconnected long-term memory circuits for words that can be automatically triggered by spoken linguistic input and that are absent for unfamiliar phonological stimuli. This conceptual framework critically predicts different amounts of activation depending on the strength of the word's lexical representation in the brain. The frequent use of words should lead to more strongly connected representations, whereas less frequent items would be associated with more weakly linked circuits. A word with higher frequency of occurrence in the subject's language should therefore lead to a more pronounced lexical MMN response than its low-frequency counterpart. We tested this prediction by comparing the event-related potentials elicited by low- and high-frequency words in a passive oddball paradigm; physical stimulus contrasts were kept identical. We found that, consistent with our prediction, presenting the high-frequency stimulus led to a significantly more pronounced MMN response relative to the low-frequency one, a finding that is highly similar to previously reported MMN enhancement to words over meaningless pseudowords. Furthermore, activation elicited by the higher-frequency word peaked earlier relative to low-frequency one, suggesting more rapid access to frequently used lexical entries. These results lend further support to the above view on word memory traces as strongly connected assemblies of neurons. The speed and magnitude of their activation appears to be linked to the strength of internal connections in a memory circuit, which is in turn determined by the everyday use of language elements.

  1. Reflection on solutions in the form of refutation texts versus problem solving: the case of 8th graders studying simple electric circuits

    NASA Astrophysics Data System (ADS)

    Safadi, Rafi'; Safadi, Ekhlass; Meidav, Meir

    2017-01-01

    This study compared students’ learning in troubleshooting and problem solving activities. The troubleshooting activities provided students with solutions to conceptual problems in the form of refutation texts; namely, solutions that portray common misconceptions, refute them, and then present the accepted scientific ideas. They required students to individually diagnose these solutions; that is, to identify the erroneous and correct parts of the solutions and explain in what sense they differed, and later share their work in whole class discussions. The problem solving activities required the students to individually solve these same problems, and later share their work in whole class discussions. We compared the impact of the individual work stage in the troubleshooting and problem solving activities on promoting argumentation in the subsequent class discussions, and the effects of these activities on students’ engagement in self-repair processes; namely, in learning processes that allowed the students to self-repair their misconceptions, and by extension on advancing their conceptual knowledge. Two 8th grade classes studying simple electric circuits with the same teacher took part. One class (28 students) carried out four troubleshooting activities and the other (31 students) four problem solving activities. These activities were interwoven into a twelve lesson unit on simple electric circuits that was spread over a period of 2 months. The impact of the troubleshooting activities on students’ conceptual knowledge was significantly higher than that of the problem solving activities. This result is consistent with the finding that the troubleshooting activities engaged students in self-repair processes whereas the problem solving activities did not. The results also indicated that diagnosing solutions to conceptual problems in the form of refutation texts, as opposed to solving these same problems, apparently triggered argumentation in subsequent class discussions, even though the teacher was unfamiliar with the best ways to conduct argumentative classroom discussions. We account for these results and suggest possible directions for future research.

  2. Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo

    NASA Astrophysics Data System (ADS)

    Bolus, M. F.; Willats, A. A.; Whitmire, C. J.; Rozell, C. J.; Stanley, G. B.

    2018-04-01

    Objective. Controlling neural activity enables the possibility of manipulating sensory perception, cognitive processes, and body movement, in addition to providing a powerful framework for functionally disentangling the neural circuits that underlie these complex phenomena. Over the last decade, optogenetic stimulation has become an increasingly important and powerful tool for understanding neural circuit function, owing to the ability to target specific cell types and bidirectionally modulate neural activity. To date, most stimulation has been provided in open-loop or in an on/off closed-loop fashion, where previously-determined stimulation is triggered by an event. Here, we describe and demonstrate a design approach for precise optogenetic control of neuronal firing rate modulation using feedback to guide stimulation continuously. Approach. Using the rodent somatosensory thalamus as an experimental testbed for realizing desired time-varying patterns of firing rate modulation, we utilized a moving average exponential filter to estimate firing rate online from single-unit spiking measured extracellularly. This estimate of instantaneous rate served as feedback for a proportional integral (PI) controller, which was designed during the experiment based on a linear-nonlinear Poisson (LNP) model of the neuronal response to light. Main results. The LNP model fit during the experiment enabled robust closed-loop control, resulting in good tracking of sinusoidal and non-sinusoidal targets, and rejection of unmeasured disturbances. Closed-loop control also enabled manipulation of trial-to-trial variability. Significance. Because neuroscientists are faced with the challenge of dissecting the functions of circuit components, the ability to maintain control of a region of interest in spite of changes in ongoing neural activity will be important for disambiguating function within networks. Closed-loop stimulation strategies are ideal for control that is robust to such changes, and the employment of continuous feedback to adjust stimulation in real-time can improve the quality of data collected using optogenetic manipulation.

  3. Does somatostatin have a role to play in migraine headache?

    PubMed

    Lambert, Geoffrey A; Zagami, Alessandro S

    2018-06-01

    Migraine is a condition without apparent pathology. Its cardinal symptom is the prolonged excruciating headache. Theories about this pain have posited pathologies which run the gamut from neural to vascular to neurovascular, but no observations have detected a plausible pathology. We believe that no pathology can be found for migraine headache because none exists. Migraine is not driven by pathology - it is driven by neural events produced by triggers - or simply by neural noise- noise that has crossed a critical threshold. If these ideas are true, how does the pain arise? We hypothesise that migraine headache is a consequence of withdrawal of descending pain control, produced by "noise" in the cerebral cortex. Nevertheless, there has to be a neural circuit to transform cortical noise to withdrawal of pain control. In our hypothesis, this neural circuit extends from the cortex, synapses in two brainstem nuclei (the periaqueductal gray matter and the raphe magnus nucleus) and ultimately reaches the first synapse of the trigeminal sensory system. The second stage of this circuit uses serotonin (5HT) as a neurotransmitter, but the neuronal projection from the cortex to the brainstem seems to involve relatively uncommon neurotransmitters. We believe that one of these is somatostatin (SST). Temporal changes in levels of circulating SST mirror the temporal changes in the incidence of migraine, particularly in women. The SST 2 receptor agonist octreotide has been used with some success in migraine and cluster headache. A cortical to PAG/NRM neural projection certainly exists and we briefly review the anatomical and neurophysiological evidence for it and provide preliminary evidence that SST may the critical neurotransmitter in this pathway. We therefore suggest that the withdrawal of descending tone in SST-containing neurons, might create a false pain signal and hence the headache of migraine. Copyright © 2018. Published by Elsevier Ltd.

  4. OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency

    PubMed Central

    Ullrich, M; Weber, M; Post, A M; Popp, S; Grein, J; Zechner, M; Guerrero González, H; Kreis, A; Schmitt, A G; Üçeyler, N; Lesch, K-P; Schuh, K

    2018-01-01

    Obsessive-compulsive disorder (OCD) is a common neuropsychiatric disease affecting about 2% of the general population. It is characterized by persistent intrusive thoughts and repetitive ritualized behaviors. While gene variations, malfunction of cortico-striato-thalamo-cortical (CSTC) circuits, and dysregulated synaptic transmission have been implicated in the pathogenesis of OCD, the underlying mechanisms remain largely unknown. Here we show that OCD-like behavior in mice is caused by deficiency of SPRED2, a protein expressed in various brain regions and a potent inhibitor of Ras/ERK-MAPK signaling. Excessive self-grooming, reflecting OCD-like behavior in rodents, resulted in facial skin lesions in SPRED2 knockout (KO) mice. This was alleviated by treatment with the selective serotonin reuptake inhibitor fluoxetine. In addition to the previously suggested involvement of cortico-striatal circuits, electrophysiological measurements revealed altered transmission at thalamo-amygdala synapses and morphological differences in lateral amygdala neurons of SPRED2 KO mice. Changes in synaptic function were accompanied by dysregulated expression of various pre- and postsynaptic proteins in the amygdala. This was a result of altered gene transcription and triggered upstream by upregulated tropomyosin receptor kinase B (TrkB)/ERK-MAPK signaling in the amygdala of SPRED2 KO mice. Pathway overactivation was mediated by increased activity of TrkB, Ras, and ERK as a specific result of SPRED2 deficiency and not elicited by elevated brain-derived neurotrophic factor levels. Using the MEK inhibitor selumetinib, we suppressed TrkB/ERK-MAPK pathway activity in vivo and reduced OCD-like grooming in SPRED2 KO mice. Altogether, this study identifies SPRED2 as a promising new regulator, TrkB/ERK-MAPK signaling as a novel mediating mechanism, and thalamo-amygdala synapses as critical circuitry involved in the pathogenesis of OCD. PMID:28070119

  5. ECG Holter monitor with alert system and mobile application

    NASA Astrophysics Data System (ADS)

    Teron, Abigail C.; Rivera, Pedro A.; Goenaga, Miguel A.

    2016-05-01

    This paper proposes a new approach on the Holter monitor by creating a portable Electrocardiogram (ECG) Holter monitor that will alert the user by detecting abnormal heart beats using a digital signal processing software. The alarm will be triggered when the patient experiences arrhythmias such as bradycardia and tachycardia. The equipment is simple, comfortable and small in size that fit in the hand. It can be used at any time and any moment by placing three leads to the person's chest which is connected to an electronic circuit. The ECG data will be transmitted via Bluetooth to the memory of a selected mobile phone using an application that will store the collected data for up to 24 hrs. The arrhythmia is identified by comparing the reference signals with the user's signal. The diagnostic results demonstrate that the ECG Holter monitor alerts the user when an arrhythmia is detected thru the Holter monitor and mobile application.

  6. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil.

    PubMed

    Knobelspies, Stefan; Bierer, Benedikt; Daus, Alwin; Takabayashi, Alain; Salvatore, Giovanni Antonio; Cantarella, Giuseppe; Ortiz Perez, Alvaro; Wöllenstein, Jürgen; Palzer, Stefan; Tröster, Gerhard

    2018-01-26

    We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO₂ gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.

  7. Polariton condensation in solitonic gap states in a one-dimensional periodic potential

    PubMed Central

    Tanese, D.; Flayac, H.; Solnyshkov, D.; Amo, A.; Lemaître, A.; Galopin, E.; Braive, R.; Senellart, P.; Sagnes, I.; Malpuech, G.; Bloch, J.

    2013-01-01

    Manipulation of nonlinear waves in artificial periodic structures leads to spectacular spatial features, such as generation of gap solitons or onset of the Mott insulator phase transition. Cavity exciton–polaritons are strongly interacting quasiparticles offering large possibilities for potential optical technologies. Here we report their condensation in a one-dimensional microcavity with a periodic modulation. The resulting mini-band structure dramatically influences the condensation process. Contrary to non-modulated cavities, where condensates expand, here, we observe spontaneous condensation in localized gap soliton states. Depending on excitation conditions, we access different dynamical regimes: we demonstrate the formation of gap solitons either moving along the ridge or bound to the potential created by the reservoir of uncondensed excitons. We also find Josephson oscillations of gap solitons triggered between the two sides of the reservoir. This system is foreseen as a building block for polaritonic circuits, where propagation and localization are optically controlled and reconfigurable. PMID:23612290

  8. Microtubule-dependent regulation of mitotic protein degradation

    PubMed Central

    Song, Ling; Craney, Allison; Rape, Michael

    2014-01-01

    Accurate cell division depends on tightly regulated ubiquitylation events catalyzed by the anaphase-promoting complex. Among its many substrates, the APC/C triggers the degradation of proteins that stabilize the mitotic spindle, and loss or accumulation of such spindle assembly factors can result in aneuploidy and cancer. Although critical for cell division, it has remained poorly understood how the timing of spindle assembly factor degradation is established during mitosis. Here, we report that active spindle assembly factors are protected from APC/C-dependent degradation by microtubules. In contrast, those molecules that are not bound to microtubules are highly susceptible to proteolysis and turned over immediately after APC/C-activation. The correct timing of spindle assembly factor degradation, as achieved by this regulatory circuit, is required for accurate spindle structure and function. We propose that the localized stabilization of APC/C-substrates provides a mechanism for the selective disposal of cell cycle regulators that have fulfilled their mitotic roles. PMID:24462202

  9. Behavioral methods to study anxiety in rodents

    PubMed Central

    Lezak, Kimberly R.; Missig, Galen; Carlezon Jr, William A.

    2017-01-01

    Stress is a precipitating factor for anxiety-related disorders, which are among the leading forms of psychiatric illness and impairment in the modern world. Rodent-based behavioral tests and models are widely used to understand the mechanisms by which stress triggers anxiety-related behaviors and to identify new treatments for anxiety-related disorders. Although substantial progress has been made and many of the key neural circuits and molecular pathways mediating stress responsiveness have been characterized, these advances have thus far failed to translate into fundamentally new treatments that are safer and more efficacious in humans. The purpose of this article is to describe methods that have been historically used for this type of research and to highlight new approaches that align with recent conceptualizations of disease symptomatology and that may ultimately prove to be more fruitful in facilitating the development of improved therapeutics. PMID:28867942

  10. Increased Resistance to Flow and Ventilator Failure Secondary to Faulty CO2 Absorbent Insert Not Detected During Automated Anesthesia Machine Check: A Case Report.

    PubMed

    Moreno-Duarte, Ingrid; Montenegro, Julio; Balonov, Konstantin; Schumann, Roman

    2017-04-15

    Most modern anesthesia workstations provide automated checkout, which indicates the readiness of the anesthesia machine. In this case report, an anesthesia machine passed the automated machine checkout. Minutes after the induction of general anesthesia, we observed a mismatch between the selected and delivered tidal volumes in the volume auto flow mode with increased inspiratory resistance during manual ventilation. Endotracheal tube kinking, circuit obstruction, leaks, and patient-related factors were ruled out. Further investigation revealed a broken internal insert within the CO2 absorbent canister that allowed absorbent granules to cause a partial obstruction to inspiratory and expiratory flow triggering contradictory alarms. We concluded that even when the automated machine checkout indicates machine readiness, unforeseen equipment failure due to unexpected events can occur and require providers to remain vigilant.

  11. Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors.

    PubMed

    Zhang, Hongtao; Guo, Xuefeng; Hui, Jingshu; Hu, Shuxin; Xu, Wei; Zhu, Daoben

    2011-11-09

    Interface modification is an effective and promising route for developing functional organic field-effect transistors (OFETs). In this context, however, researchers have not created a reliable method of functionalizing the interfaces existing in OFETs, although this has been crucial for the technological development of high-performance CMOS circuits. Here, we demonstrate a novel approach that enables us to reversibly photocontrol the carrier density at the interface by using photochromic spiropyran (SP) self-assembled monolayers (SAMs) sandwiched between active semiconductors and gate insulators. Reversible changes in dipole moment of SPs in SAMs triggered by lights with different wavelengths produce two distinct built-in electric fields on the OFET that can modulate the channel conductance and consequently threshold voltage values, thus leading to a low-cost noninvasive memory device. This concept of interface functionalization offers attractive new prospects for the development of organic electronic devices with tailored electronic and other properties.

  12. The vomeronasal system mediates sick conspecific avoidance.

    PubMed

    Boillat, Madlaina; Challet, Ludivine; Rossier, Daniel; Kan, Chenda; Carleton, Alan; Rodriguez, Ivan

    2015-01-19

    Although sociability offers many advantages, a major drawback is the increased risk of exposure to contagious pathogens, like parasites, viruses, or bacteria. Social species have evolved various behavioral strategies reducing the probability of pathogen exposure. In rodents, sick conspecific avoidance can be induced by olfactory cues emitted by parasitized or infected conspecifics. The neural circuits involved in this behavior remain largely unknown. We observed that olfactory cues present in bodily products of mice in an acute inflammatory state or infected with a viral pathogen are aversive to conspecifics. We found that these chemical signals trigger neural activity in the vomeronasal system, an olfactory subsystem controlling various innate behaviors. Supporting the functional relevance of these observations, we show that preference toward healthy individuals is abolished in mice with impaired vomeronasal function. These findings reveal a novel function played by the vomeronasal system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Feasibility and limitations of anti-fuses based on bistable non-volatile switches for power electronic applications

    NASA Astrophysics Data System (ADS)

    Erlbacher, T.; Huerner, A.; Bauer, A. J.; Frey, L.

    2012-09-01

    Anti-fuse devices based on non-volatile memory cells and suitable for power electronic applications are demonstrated for the first time using silicon technology. These devices may be applied as stand alone devices or integrated using standard junction-isolation into application-specific and smart-power integrated circuits. The on-resistance of such devices can be permanently switched by nine orders of magnitude by triggering the anti-fuse with a positive voltage pulse. Extrapolation of measurement data and 2D TCAD process and device simulations indicate that 20 A anti-fuses with 10 mΩ can be reliably fabricated in 0.35 μm technology with a footprint of 2.5 mm2. Moreover, this concept offers distinguished added-values compared to existing mechanical relays, e.g. pre-test, temporary and permanent reset functions, gradual turn-on mode, non-volatility, and extendibility to high voltage capability.

  14. Special report: Occlusive cuff controller

    NASA Technical Reports Server (NTRS)

    Baker, J. T.

    1975-01-01

    A mechanical occlusive cuff controller suitable for blood flow experiments in space shuttle flights is described. The device requires 115 volt ac power and a pressurized gas source. Two occluding cuff pressures (30 and 50 mmHg) are selectable by a switch on the front panel. A screw driver adjustment allows accurate cuff pressurization levels for under or oversized limbs. Two pressurization cycles (20 second and 2 minutes) can be selected by a front panel switch. Adjustment of the timing cycles is also available through the front panel. A pushbutton hand switch allows remote start of the cuff inflation cycle. A stop/reset switch permits early termination of the cycle and disabling of the controller to prevent inadvertent reactivation. Pressure in the cuff is monitored by a differential aneroid barometer. In addition, an electrocardiogram trigger circuit permits the initiation of the pressurization cycle by an externally supplied ECG cycle.

  15. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease.

    PubMed

    Lüscher, Christian; Huber, Kimberly M

    2010-02-25

    Many excitatory synapses express Group 1, or Gq coupled, metabotropic glutamate receptors (Gp1 mGluRs) at the periphery of their postsynaptic density. Activation of Gp1 mGluRs typically occurs in response to strong activity and triggers long-term plasticity of synaptic transmission in many brain regions, including the neocortex, hippocampus, midbrain, striatum, and cerebellum. Here we focus on mGluR-induced long-term synaptic depression (LTD) and review the literature that implicates Gp1 mGluRs in the plasticity of behavior, learning, and memory. Moreover, recent studies investigating the molecular mechanisms of mGluR-LTD have discovered links to mental retardation, autism, Alzheimer's disease, Parkinson's disease, and drug addiction. We discuss how mGluRs lead to plasticity of neural circuits and how the understanding of the molecular mechanisms of mGluR plasticity provides insight into brain disease.

  16. Memory and modularity in cell-fate decision making

    NASA Astrophysics Data System (ADS)

    Norman, Thomas M.; Lord, Nathan D.; Paulsson, Johan; Losick, Richard

    2013-11-01

    Genetically identical cells sharing an environment can display markedly different phenotypes. It is often unclear how much of this variation derives from chance, external signals, or attempts by individual cells to exert autonomous phenotypic programs. By observing thousands of cells for hundreds of consecutive generations under constant conditions, we dissect the stochastic decision between a solitary, motile state and a chained, sessile state in Bacillus subtilis. We show that the motile state is `memoryless', exhibiting no autonomous control over the time spent in the state. In contrast, the time spent as connected chains of cells is tightly controlled, enforcing coordination among related cells in the multicellular state. We show that the three-protein regulatory circuit governing the decision is modular, as initiation and maintenance of chaining are genetically separable functions. As stimulation of the same initiating pathway triggers biofilm formation, we argue that autonomous timing allows a trial commitment to multicellularity that external signals could extend.

  17. Molecular Regulation of Parturition: The Role of the Decidual Clock.

    PubMed

    Norwitz, Errol R; Bonney, Elizabeth A; Snegovskikh, Victoria V; Williams, Michelle A; Phillippe, Mark; Park, Joong Shin; Abrahams, Vikki M

    2015-04-27

    The timing of birth is a critical determinant of perinatal outcome. Despite intensive research, the molecular mechanisms responsible for the onset of labor both at term and preterm remain unclear. It is likely that a "parturition cascade" exists that triggers labor at term, that preterm labor results from mechanisms that either prematurely stimulate or short-circuit this cascade, and that these mechanisms involve the activation of proinflammatory pathways within the uterus. It has long been postulated that the fetoplacental unit is in control of the timing of birth through a "placental clock." We suggest that it is not a placental clock that regulates the timing of birth, but rather a "decidual clock." Here, we review the evidence in support of the endometrium/decidua as the organ primarily responsible for the timing of birth and discuss the molecular mechanisms that prime this decidual clock. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Molecular Regulation of Parturition: The Role of the Decidual Clock

    PubMed Central

    Norwitz, Errol R.; Bonney, Elizabeth A.; Snegovskikh, Victoria V.; Williams, Michelle A.; Phillippe, Mark; Park, Joong Shin; Abrahams, Vikki M.

    2015-01-01

    The timing of birth is a critical determinant of perinatal outcome. Despite intensive research, the molecular mechanisms responsible for the onset of labor both at term and preterm remain unclear. It is likely that a “parturition cascade” exists that triggers labor at term, that preterm labor results from mechanisms that either prematurely stimulate or short-circuit this cascade, and that these mechanisms involve the activation of proinflammatory pathways within the uterus. It has long been postulated that the fetoplacental unit is in control of the timing of birth through a “placental clock.” We suggest that it is not a placental clock that regulates the timing of birth, but rather a “decidual clock.” Here, we review the evidence in support of the endometrium/decidua as the organ primarily responsible for the timing of birth and discuss the molecular mechanisms that prime this decidual clock. PMID:25918180

  19. Conserved nonsense-prone CpG sites in apoptosis-regulatory genes: conditional stop signs on the road to cell death.

    PubMed

    Zhao, Yongzhong; Epstein, Richard J

    2013-01-01

    Methylation-prone CpG dinucleotides are strongly conserved in the germline, yet are also predisposed to somatic mutation. Here we quantify the relationship between germline codon mutability and somatic carcinogenesis by comparing usage of the nonsense-prone CGA (→TGA) codons in gene groups that differ in apoptotic function; to this end, suppressor genes were subclassified as either apoptotic (gatekeepers) or repair (caretakers). Mutations affecting CGA codons in sporadic tumors proved to be highly asymmetric. Moreover, nonsense mutations were 3-fold more likely to affect gatekeepers than caretakers. In addition, intragenic CGA clustering nonrandomly affected functionally critical regions of gatekeepers. We conclude that human gatekeeper suppressor genes are enriched for nonsense-prone codons, and submit that this germline vulnerability to tumors could reflect in utero selection for a methylation-dependent capability to short-circuit environmental insults that otherwise trigger apoptosis and fetal loss.

  20. Data acquisition system

    DOEpatents

    Shapiro, Stephen L.; Mani, Sudhindra; Atlas, Eugene L.; Cords, Dieter H. W.; Holbrook, Britt

    1997-01-01

    A data acquisition circuit for a particle detection system that allows for time tagging of particles detected by the system. The particle detection system screens out background noise and discriminate between hits from scattered and unscattered particles. The detection system can also be adapted to detect a wide variety of particle types. The detection system utilizes a particle detection pixel array, each pixel containing a back-biased PIN diode, and a data acquisition pixel array. Each pixel in the particle detection pixel array is in electrical contact with a pixel in the data acquisition pixel array. In response to a particle hit, the affected PIN diodes generate a current, which is detected by the corresponding data acquisition pixels. This current is integrated to produce a voltage across a capacitor, the voltage being related to the amount of energy deposited in the pixel by the particle. The current is also used to trigger a read of the pixel hit by the particle.

  1. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil

    PubMed Central

    Bierer, Benedikt; Takabayashi, Alain; Ortiz Perez, Alvaro; Wöllenstein, Jürgen

    2018-01-01

    We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium–Gallium–Zinc–Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO2 gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits. PMID:29373524

  2. Presynaptic learning and memory with a persistent firing neuron and a habituating synapse: a model of short term persistent habituation.

    PubMed

    Ramanathan, Kiruthika; Ning, Ning; Dhanasekar, Dhiviya; Li, Guoqi; Shi, Luping; Vadakkepat, Prahlad

    2012-08-01

    Our paper explores the interaction of persistent firing axonal and presynaptic processes in the generation of short term memory for habituation. We first propose a model of a sensory neuron whose axon is able to switch between passive conduction and persistent firing states, thereby triggering short term retention to the stimulus. Then we propose a model of a habituating synapse and explore all nine of the behavioral characteristics of short term habituation in a two neuron circuit. We couple the persistent firing neuron to the habituation synapse and investigate the behavior of short term retention of habituating response. Simulations show that, depending on the amount of synaptic resources, persistent firing either results in continued habituation or maintains the response, both leading to longer recovery times. The effectiveness of the model as an element in a bio-inspired memory system is discussed.

  3. A Primer on Hemodialysis From an Interventional Radiology Perspective.

    PubMed

    Sheth, Rahul A; Sheth, Anil U

    2017-03-01

    Interventional radiologists play a central role in the care of patients with end-stage renal disease receiving renal replacement therapy. Ensuring that a patient׳s dialysis access remains suitable for high-quality dialysis is of paramount importance. However, although much has been spoken and written about endovascular techniques and outcomes based on angiographic criteria, little is generally known regarding the function and therefore the requirements of hemodialysis. In this article, we provide a heuristic overview of the mechanics of hemodialysis, with an emphasis on the "breaking points" in the extracorporeal circuit that trigger a patient׳s referral to Interventional Radiology. We also describe how dialysis quality is increasingly becoming linked with dialysis reimbursements. It is thus becoming progressively incumbent on the interventional radiologist to not only ensure that a patient receives high-quality outpatient dialysis but also that the patient׳s dialysis center meets its performance metrics. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. An enzyme-free catalytic DNA circuit for amplified detection of aflatoxin B1 using gold nanoparticles as colorimetric indicators

    NASA Astrophysics Data System (ADS)

    Chen, Junhua; Wen, Junlin; Zhuang, Li; Zhou, Shungui

    2016-05-01

    An enzyme-free biosensor for the amplified detection of aflatoxin B1 has been constructed based on a catalytic DNA circuit. Three biotinylated hairpin DNA probes (H1, H2, and H3) were designed as the assembly components to construct the sensing system (triplex H1-H2-H3 product). Cascaded signal amplification capability was obtained through toehold-mediated strand displacement reactions to open the hairpins and recycle the trigger DNA. By the use of streptavidin-functionalized gold nanoparticles as the signal indicators, the colorimetric readout can be observed by the naked eye. In the presence of a target, the individual nanoparticles (red) aggregate into a cross-linked network of nanoparticles (blue) via biotin-streptavidin coupling. The colorimetric assay is ultrasensitive, enabling the visual detection of trace levels of aflatoxin B1 (AFB1) as low as 10 pM without instrumentation. The calculated limit of detection (LOD) is 2 pM in terms of 3 times standard deviation over the blank response. The sensor is robust and works even when challenged with complex sample matrices such as rice samples. Our sensing platform is simple and convenient in operation, requiring only the mixing of several solutions at room temperature to achieve visible and intuitive results, and holds great promise for the point-of-use monitoring of AFB1 in environmental and food samples.An enzyme-free biosensor for the amplified detection of aflatoxin B1 has been constructed based on a catalytic DNA circuit. Three biotinylated hairpin DNA probes (H1, H2, and H3) were designed as the assembly components to construct the sensing system (triplex H1-H2-H3 product). Cascaded signal amplification capability was obtained through toehold-mediated strand displacement reactions to open the hairpins and recycle the trigger DNA. By the use of streptavidin-functionalized gold nanoparticles as the signal indicators, the colorimetric readout can be observed by the naked eye. In the presence of a target, the individual nanoparticles (red) aggregate into a cross-linked network of nanoparticles (blue) via biotin-streptavidin coupling. The colorimetric assay is ultrasensitive, enabling the visual detection of trace levels of aflatoxin B1 (AFB1) as low as 10 pM without instrumentation. The calculated limit of detection (LOD) is 2 pM in terms of 3 times standard deviation over the blank response. The sensor is robust and works even when challenged with complex sample matrices such as rice samples. Our sensing platform is simple and convenient in operation, requiring only the mixing of several solutions at room temperature to achieve visible and intuitive results, and holds great promise for the point-of-use monitoring of AFB1 in environmental and food samples. Electronic supplementary information (ESI) available: Experimental details and additional data. See DOI: 10.1039/c6nr01381c

  5. Pyro-phototronic nanogenerator based on flexible 2D ZnO/graphene heterojunction and its application in self-powered near infrared photodetector and active analog frequency modulation.

    PubMed

    Sahatiya, Parikshit; Shinde, Akash; Badhulika, Sushmee

    2018-08-10

    Even though 2D ZnO has been utilized for enhanced self-powered sensing by strain modulation due to its piezoelectric property, study on utilizing the pyroelectric property of ZnO remains unexplored. The piezoelectric property of 2D ZnO works on mechanical strain, which disrupts the structure of ZnO leading to the failure of the device. For a pyroelectric nanogenerator, the temperature difference can be triggered by an external light source, which does not disrupt the ZnO structure and also avoids the need for physical bending/pressing, as in the case of a piezoelectric nanogenerator. This work represents the first demonstration of the fabrication of a flexible 2D ZnO/Gr pyro-phototronic diode where the pyro-potential generated in the 2D ZnO due to the near infrared (NIR) illumination adds to or subtracts from the built-in electric field of the heterojunction and modulates the depletion region of the heterojunction thereby enabling bias-free operation. Furthermore, the variation in the depletion width of the heterojunction was utilized as a variable capacitor in the frequency modulator, wherein, with the increasing intensity, the frequency of oscillations increased from 9.8 to 10.42 MHz. The work presented provides an alternative approach for a self-powered NIR photodetector and the utilization of the same at circuit level, having potential applications in the fields of optothermal detection, electronic tuning circuits, etc.

  6. Balanced Cortical Microcircuitry for Spatial Working Memory Based on Corrective Feedback Control

    PubMed Central

    2014-01-01

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory–inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. PMID:24828633

  7. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology.

    PubMed

    Roy, Sukanta; Ramiah, Harikrishnan; Reza, Ahmed Wasif; Lim, Chee Cheow; Ferrer, Eloi Marigo

    2016-01-01

    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator's high motion losses due to the possibility of their 'system-on-chip' integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design's applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications.

  8. Transplantation of prokaryotic two-component signaling pathways into mammalian cells.

    PubMed

    Hansen, Jonathan; Mailand, Erik; Swaminathan, Krishna Kumar; Schreiber, Joerg; Angelici, Bartolomeo; Benenson, Yaakov

    2014-11-04

    Signaling pathway engineering is a promising route toward synthetic biological circuits. Histidine-aspartate phosphorelays are thought to have evolved in prokaryotes where they form the basis for two-component signaling. Tyrosine-serine-threonine phosphorelays, exemplified by MAP kinase cascades, are predominant in eukaryotes. Recently, a prokaryotic two-component pathway was implemented in a plant species to sense environmental trinitrotoluene. We reasoned that "transplantation" of two-component pathways into mammalian host could provide an orthogonal and diverse toolkit for a variety of signal processing tasks. Here we report that two-component pathways could be partially reconstituted in mammalian cell culture and used for programmable control of gene expression. To enable this reconstitution, coding sequences of histidine kinase (HK) and response regulator (RR) components were codon-optimized for human cells, whereas the RRs were fused with a transactivation domain. Responsive promoters were furnished by fusing DNA binding sites in front of a minimal promoter. We found that coexpression of HKs and their cognate RRs in cultured mammalian cells is necessary and sufficient to strongly induce gene expression even in the absence of pathways' chemical triggers in the medium. Both loss-of-function and constitutive mutants behaved as expected. We further used the two-component signaling pathways to implement two-input logical AND, NOR, and OR gene regulation. Thus, two-component systems can be applied in different capacities in mammalian cells and their components can be used for large-scale synthetic gene circuits.

  9. THE FAULT DIVERTER-A PROTECTIVE DEVICE FOR HIGH-POWER ELECTRON TUBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, B.H.

    1957-08-01

    Fault diverters, or crowbars, have proven to be very effective protection against transient-induced power arcs within accelerator oscillator tubes. This device short circuits the oscillator-plate power supply in the event of an over-current, thus removing the power flow from the fault within a few microseconds. Ignitrons, thyratrons, and triggered spark gaps are used for this purpose. The power supply is protected from the short circuit either by a current-limiting device or a high-speed contactor which removes the system from the power lines within a few milliseconds. The fault diverters, and associated circuitry, used on several of the accelerators in Berkeleymore » and Livermore are described. (auth) l73O Studies of pi -meson and K-meson interactions were continued with counters, emulsions, and the 10-inch liquid hydrogen bubble chanmber. Six emulsion exposures were made for external groups to a pi -meson beam, three to Kmeson beams, two to a neutral-particle beanm, and three to the internal proton beam. An H-D reaction, catalyzed by mu mesons, was observed in the 10-inch liquid hydrogen bubble chamber. Absorption cross-section measurements for antiprotons were continued, using counters. Nineteen target bombardments were made for the chemistry group. A technique of producing two or more secondary-particle beam pulses per acceleration cycle, using different targets, has been successfully tried and used. (For preceding period see UCRL- 36l4.1 (auth)« less

  10. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    PubMed

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  11. Attacking the Multi-tiered Proteolytic Pathology of COPD: New Insights from Basic and Translational Studies

    PubMed Central

    Djekic, Uros V; Gaggar, Amit; Weathington, Nathaniel M

    2015-01-01

    Protease activity in inflammation is complex. Proteases released by cells in response to infection, cytokines, or environmental triggers like cigarette smoking cause breakdown of the extracellular matrix (ECM). In chronic inflammatory diseases like chronic obstructive pulmonary disease (COPD), current findings indicate that pathology and morbidity are driven by dysregulation of protease activity, either through hyperactivity of proteases or deficiency or dysfunction their antiprotease regulators. Animal studies demonstrate the accuracy of this hypothesis through genetic and pharmacologic tools. New work shows that ECM destruction generates peptide fragments active on leukocytes via neutrophil or macrophage chemotaxis towards collagen and elastin derived peptides respectively. Such fragments now have been isolated and characterized in vivo in each case. Collectively, this describes a biochemical circuit in which protease activity leads to activation of local immunocytes, which in turn release cytokines and more proteases, leading to further leukocyte infiltration and cyclical disease progression that is chronic. This circuit concept is well known, and is intrinsic to the protease-antiprotease hypothesis; recently analytic techniques have become sensitive enough to establish fundamental mechanisms of this hypothesis, and basic and clinical data now implicate protease activity and peptide signaling as pathologically significant pharmacologic targets. This review discusses targeting protease activity for chronic inflammatory disease with special attention to COPD, covering important basic and clinical findings in the field; novel therapeutic strategies in animal or human studies; and a perspective on the successes and failures of agents with a focus on clinical potential in human disease. PMID:19026684

  12. CaV3.1 is a tremor rhythm pacemaker in the inferior olive

    PubMed Central

    Park, Young-Gyun; Park, Hye-Yeon; Lee, C. Justin; Choi, Soonwook; Jo, Seonmi; Choi, Hansol; Kim, Yang-Hann; Shin, Hee-Sup; Llinas, Rodolfo R.; Kim, Daesoo

    2010-01-01

    The rhythmic motor pathway activation by pacemaker neurons or circuits in the brain has been proposed as the mechanism for the timing of motor coordination, and the abnormal potentiation of this mechanism may lead to a pathological tremor. Here, we show that the potentiation of CaV3.1 T-type Ca2+ channels in the inferior olive contributes to the onset of the tremor in a pharmacological model of essential tremor. After administration of harmaline, 4- to 10-Hz synchronous neuronal activities arose from the IO and then propagated to cerebellar motor circuits in wild-type mice, but those rhythmic activities were absent in mice lacking CaV3.1 gene. Intracellular recordings in brain-stem slices revealed that the CaV3.1-deficient inferior olive neurons lacked the subthreshold oscillation of membrane potentials and failed to trigger 4- to 10-Hz rhythmic burst discharges in the presence of harmaline. In addition, the selective knockdown of CaV3.1 gene in the inferior olive by shRNA efficiently suppressed the harmaline-induced tremor in wild-type mice. A mathematical model constructed based on data obtained from patch-clamping experiments indicated that harmaline could efficiently potentiate CaV3.1 channels by changing voltage-dependent responsiveness in the hyperpolarizing direction. Thus, CaV3.1 is a molecular pacemaker substrate for intrinsic neuronal oscillations of inferior olive neurons, and the potentiation of this mechanism can be considered as a pathological cause of essential tremor. PMID:20498062

  13. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.

    PubMed

    Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham

    2011-03-23

    Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.

  14. PET/MR Synchronization by Detection of Switching Gradients

    NASA Astrophysics Data System (ADS)

    Weissler, Bjoern; Gebhardt, Pierre; Lerche, Christoph W.; Soultanidis, Georgios M.; Wehner, Jakob; Heberling, Dirk; Schulz, Volkmar

    2015-06-01

    The full potential of simultaneous Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) acquisition, such as dynamic studies or motion compensation, can only be explored if the data of both modalities is temporally synchronized. As such hybrid imaging systems are commonly realized as custom-made PET inserts for commercially available MRI scanner, a synchronization solution has to be implemented (depending on the vendor of the MRI system). In contrast, we demonstrate a simple method for temporal synchronization, which does not require a connection to the MRI. It uses the normally undesired effect of induced voltages on the PET electronics from switching MRI gradients. The electronic circuit needs very few components and the gradient pick-up coils are made from PCB traces and vias on the PET detector boards. Neither programming the MRI nor any physical connection to the MR scanner is needed, thus avoiding electromagnetic compatibility problems. This method works inherently with most MRI sequences and is a vendor- independent solution. A characterization of the sensors in an MRI scanner showed that the MRI gradients are detected with a precision of 120 μs (with the current implementation). Using different trigger thresholds, it is possible to trigger selectively on certain MRI sequences, depending on their gradient slew rate settings. Timings and pulse diagrams of MRI sequences can be recognized from the generated data. The method was successfully used for temporal alignment between PET and MRI in an MRI-based PET-motion-compensation application.

  15. Pulsed power accelerator for material physics experiments

    DOE PAGES

    Reisman, D.  B.; Stoltzfus, B.  S.; Stygar, W.  A.; ...

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered tomore » the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.« less

  16. Aspirin-triggered lipoxin A4 and lipoxin A4 up-regulate transcriptional corepressor NAB1 in human neutrophils.

    PubMed

    Qiu, F H; Devchand, P R; Wada, K; Serhan, C N

    2001-12-01

    Aspirin-triggered 15-epi-lipoxin A4 (ATL) is an endogenous lipid mediator that mimics the actions of native lipoxin A4, a putative "stop signal" involved in regulating resolution of inflammation. A metabolically more stable analog of ATL, 15-epi-16-(para-fluoro)-phenoxy-lipoxin A4 analog (ATLa), inhibits neutrophil recruitment in vitro and in vivo and displays potent anti-inflammatory actions. ATLa binds with high affinity to the lipoxin A4 receptor, a G protein-coupled receptor on the surface of leukocytes. In this study, we used freshly isolated human neutrophils to examine ATLa's potential for initiating rapid nuclear responses. Using differential display reverse transcription polymerase chain reaction, we identified a subset of genes that was selectively up-regulated upon short exposure of polymorphonuclear leukocytes to ATLa but not to the chemoattractant leukotriene B4 or vehicle alone. We further investigated ATLa regulation of one of the genes, NAB1, a transcriptional corepressor identified previously as a glucocorticoid-responsive gene in hamster smooth muscle cells. Treatment of human neutrophils with pertussis toxin blocked ATLa up-regulation of NAB1. In addition, ATLa stimulated NAB1 gene expression in murine lung vascular smooth muscle in vivo. These findings provide evidence for rapid transcriptional induction of a cassette of genes via an ATLa-stimulated G protein-coupled receptor pathway that is potentially protective and overlaps with the anti-inflammatory glucocorticoid regulatory circuit.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Geronimo, Gianluigi

    Embodiments of comparator circuits are disclosed. A comparator circuit may include a differential input circuit, an output circuit, a positive feedback circuit operably coupled between the differential input circuit and the output circuit, and a hysteresis control circuit operably coupled with the positive feedback circuit. The hysteresis control circuit includes a switching device and a transistor. The comparator circuit provides sub-hysteresis discrimination and high speed discrimination.

  18. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction.

    PubMed

    Sharp, B M

    2017-08-08

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.

  19. A fast, robust and tunable synthetic gene oscillator.

    PubMed

    Stricker, Jesse; Cookson, Scott; Bennett, Matthew R; Mather, William H; Tsimring, Lev S; Hasty, Jeff

    2008-11-27

    One defining goal of synthetic biology is the development of engineering-based approaches that enable the construction of gene-regulatory networks according to 'design specifications' generated from computational modelling. This approach provides a systematic framework for exploring how a given regulatory network generates a particular phenotypic behaviour. Several fundamental gene circuits have been developed using this approach, including toggle switches and oscillators, and these have been applied in new contexts such as triggered biofilm development and cellular population control. Here we describe an engineered genetic oscillator in Escherichia coli that is fast, robust and persistent, with tunable oscillatory periods as fast as 13 min. The oscillator was designed using a previously modelled network architecture comprising linked positive and negative feedback loops. Using a microfluidic platform tailored for single-cell microscopy, we precisely control environmental conditions and monitor oscillations in individual cells through multiple cycles. Experiments reveal remarkable robustness and persistence of oscillations in the designed circuit; almost every cell exhibited large-amplitude fluorescence oscillations throughout observation runs. The oscillatory period can be tuned by altering inducer levels, temperature and the media source. Computational modelling demonstrates that the key design principle for constructing a robust oscillator is a time delay in the negative feedback loop, which can mechanistically arise from the cascade of cellular processes involved in forming a functional transcription factor. The positive feedback loop increases the robustness of the oscillations and allows for greater tunability. Examination of our refined model suggested the existence of a simplified oscillator design without positive feedback, and we construct an oscillator strain confirming this computational prediction.

  20. Balanced cortical microcircuitry for spatial working memory based on corrective feedback control.

    PubMed

    Lim, Sukbin; Goldman, Mark S

    2014-05-14

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory-inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. Copyright © 2014 the authors 0270-6474/14/346790-17$15.00/0.

  1. Design of a Multichannel Low-Noise Front-End Readout ASIC Dedicated to CZT Detectors for PET Imaging

    NASA Astrophysics Data System (ADS)

    Gao, W.; Liu, H.; Gan, B.; Wei, T.; Gao, D.; Hu, Y.

    2014-10-01

    In this paper, we present the design and preliminary results of a novel low-noise front-end readout application-specific integrated circuit (ASIC) for a PET imaging system whose objective is to achieve the following performances: the spatial resolution of 1 mm3, the detection efficiency of 15% and the time resolution of 1 ns. A cascode amplifier based on the PMOS input transistor is selected to realize the charge-sensitive amplifier (CSA) for the sake of good noise performances. The output of the CSA is split into two branches. One is connected to a slow shaper for energy measurements. The other is connected to a fast shaper for time acquisition. A novel monostable circuits is designed to adjust the time delay of the trigger signals so that the peak value of the shaped voltages can be sampled and stored. An eight-channel front-end readout prototype chip is designed and implemented in 0.35 μm CMOS process. The die size is 2.286 mm ×2.282 mm. The input range of the ASIC is from 2000 e- to 180000 e-, reflecting to the energy level of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC. The tested result of ENC is 86.5 e- at zero farad plus 9.3 e- per picofarad. The nonlinearity is less than 3%. The crosstalk is less than 2%. The power dissipation is about 3 mW/channel.

  2. Cracking Down on Inhibition: Selective Removal of GABAergic Interneurons from Hippocampal Networks

    PubMed Central

    Antonucci, Flavia; Alpár, Alán; Kacza, Johannes; Caleo, Matteo; Verderio, Claudia; Giani, Alice; Martens, Henrik; Chaudhry, Farrukh A.; Allegra, Manuela; Grosche, Jens; Michalski, Dominik; Erck, Christian; Hoffmann, Anke; Härtig, Wolfgang

    2012-01-01

    Inhibitory (GABAergic) interneurons entrain assemblies of excitatory principal neurons to orchestrate information processing in the hippocampus. Disrupting the dynamic recruitment as well as the temporally precise activity of interneurons in hippocampal circuitries can manifest in epileptiform seizures, and impact specific behavioral traits. Despite the importance of GABAergic interneurons during information encoding in the brain, experimental tools to selectively manipulate GABAergic neurotransmission are limited. Here, we report the selective elimination of GABAergic interneurons by a ribosome inactivation approach through delivery of saporin-conjugated anti-vesicular GABA transporter antibodies (SAVAs) in vitro as well as in the mouse and rat hippocampus in vivo. We demonstrate the selective loss of GABAergic—but not glutamatergic—synapses, reduced GABA release, and a shift in excitation/inhibition balance in mixed cultures of hippocampal neurons exposed to SAVAs. We also show the focal and indiscriminate loss of calbindin+, calretinin+, parvalbumin/system A transporter 1+, somatostatin+, vesicular glutamate transporter 3 (VGLUT3)/cholecystokinin/CB1 cannabinoid receptor+ and neuropeptide Y+ local-circuit interneurons upon SAVA microlesions to the CA1 subfield of the rodent hippocampus, with interneuron debris phagocytosed by infiltrating microglia. SAVA microlesions did not affect VGLUT1+ excitatory afferents. Yet SAVA-induced rearrangement of the hippocampal circuitry triggered network hyperexcitability associated with the progressive loss of CA1 pyramidal cells and the dispersion of dentate granule cells. Overall, our data identify SAVAs as an effective tool to eliminate GABAergic neurons from neuronal circuits underpinning high-order behaviors and cognition, and whose manipulation can recapitulate pathogenic cascades of epilepsy and other neuropsychiatric illnesses. PMID:22323713

  3. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology

    PubMed Central

    Roy, Sukanta; Ramiah, Harikrishnan; Reza, Ahmed Wasif; Lim, Chee Cheow; Ferrer, Eloi Marigo

    2016-01-01

    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator’s high motion losses due to the possibility of their ‘system-on-chip’ integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design’s applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications. PMID:27391136

  4. Reward Contingencies Improve Goal-Directed Behavior by Enhancing Posterior Brain Attentional Regions and Increasing Corticostriatal Connectivity in Cocaine Addicts.

    PubMed

    Rosell-Negre, Patricia; Bustamante, Juan-Carlos; Fuentes-Claramonte, Paola; Costumero, Víctor; Llopis-Llacer, Juan-José; Barrós-Loscertales, Alfonso

    2016-01-01

    The dopaminergic system provides the basis for the interaction between motivation and cognition. It is triggered by the possibility of obtaining rewards to initiate the neurobehavioral adaptations necessary to achieve them by directing the information from motivational circuits to cognitive and action circuits. In drug addiction, the altered dopamine (DA) modulation of the meso-cortico-limbic reward circuitry, such as the prefrontal cortex (PFC), underlies the disproportionate motivational value of drug use at the expense of other non-drug reinforcers and the user's loss of control over his/her drug intake. We examine how the magnitude of the reward affects goal-directed processes in healthy control (HC) subjects and abstinent cocaine dependent (ACD) patients by using functional magnetic resonance imaging (fMRI) during a counting Stroop task with blocked levels of monetary incentives of different magnitudes (€0, €0.01, €0.5, €1 or €1.5). Our results showed that increasing reward magnitude enhances (1) performance facilitation in both groups; (2) left dorsolateral prefrontal cortex (DLPFC) activity in HC and left superior occipital cortex activity in ACD; and (3) left DLPFC and left putamen connectivity in ACD compared to HC. Moreover, we observed that (4) dorsal striatal and pallidum activity was associated with craving and addiction severity during the parametric increases in the monetary reward. In conclusion, the brain response to gradients in monetary value was different in HC and ACD, but both groups showed improved task performance due to the possibility of obtaining greater monetary rewards.

  5. THE OXYTOCIN-BONE AXIS

    PubMed Central

    Colaianni, G.; Tamma, R.; Di Benedetto, A.; Yuen, T.; Sun, L.; Zaidi, M.; Zallone, A.

    2014-01-01

    We recently demonstrated a direct action of oxytocin (OT) on skeletal homeostasis mainly mediated through stimulation of osteoblasts (OBs) formation and through the reciprocal modulation of osteoclast (OCs) formation and function. Thus, mice lacking the hormone or its receptor develop a low turnover osteoporosis that worsens with age in both sexes. The skeleton of OT and OT receptor (Oxtr) null mice display a pronounced decrease in vertebral and femoral trabecular volume. At cellular level OBs from OT−/− and Oxtr−/− mice exhibit lower mineralization activity and, at mRNA level, all master genes for osteoblast differentiation are down regulated. Moreover, OT has dual effects on OCs: it increases osteoclast formation both directly, by activating NF-kB and MAP kinase signaling, and indirectly, through the up-regulation of RANK-L synthesis by OBs. On the other hand, it inhibits bone resorption by triggering cytosolic Ca2+ release and nitric oxide synthesis in mature OCs. OT is locally produced by osteoblasts acting as paracrine-autocrine regulator of bone formation modulated by estrogens. The estrogen signal involved in this feed forward circuit is non genomic, since it requires an intact MAPK kinase signal transduction pathway, instead of the classical nuclear translocation of estrogen receptor. The ability of estrogen to increase bone mass in vivo is to an extent OTR-dependent. Thus Oxtr−/− mice injected 17β-estradiol did not show any effects on bone formation parameters, while the same treatment increases trabecular and cortical bone in wild type mice. An intact OT autocrine-paracrine circuit seems to be essential for optimal skeletal remodeling. PMID:24219627

  6. Reward Contingencies Improve Goal-Directed Behavior by Enhancing Posterior Brain Attentional Regions and Increasing Corticostriatal Connectivity in Cocaine Addicts

    PubMed Central

    Rosell-Negre, Patricia; Bustamante, Juan-Carlos; Fuentes-Claramonte, Paola; Costumero, Víctor; Llopis-Llacer, Juan-José; Barrós-Loscertales, Alfonso

    2016-01-01

    The dopaminergic system provides the basis for the interaction between motivation and cognition. It is triggered by the possibility of obtaining rewards to initiate the neurobehavioral adaptations necessary to achieve them by directing the information from motivational circuits to cognitive and action circuits. In drug addiction, the altered dopamine (DA) modulation of the meso-cortico-limbic reward circuitry, such as the prefrontal cortex (PFC), underlies the disproportionate motivational value of drug use at the expense of other non-drug reinforcers and the user’s loss of control over his/her drug intake. We examine how the magnitude of the reward affects goal-directed processes in healthy control (HC) subjects and abstinent cocaine dependent (ACD) patients by using functional magnetic resonance imaging (fMRI) during a counting Stroop task with blocked levels of monetary incentives of different magnitudes (€0, €0.01, €0.5, €1 or €1.5). Our results showed that increasing reward magnitude enhances (1) performance facilitation in both groups; (2) left dorsolateral prefrontal cortex (DLPFC) activity in HC and left superior occipital cortex activity in ACD; and (3) left DLPFC and left putamen connectivity in ACD compared to HC. Moreover, we observed that (4) dorsal striatal and pallidum activity was associated with craving and addiction severity during the parametric increases in the monetary reward. In conclusion, the brain response to gradients in monetary value was different in HC and ACD, but both groups showed improved task performance due to the possibility of obtaining greater monetary rewards. PMID:27907134

  7. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction

    PubMed Central

    Sharp, B M

    2017-01-01

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable. PMID:28786979

  8. The laminar and temporal structure of stimulus information in the phase of field potentials of auditory cortex.

    PubMed

    Szymanski, Francois D; Rabinowitz, Neil C; Magri, Cesare; Panzeri, Stefano; Schnupp, Jan W H

    2011-11-02

    Recent studies have shown that the phase of low-frequency local field potentials (LFPs) in sensory cortices carries a significant amount of information about complex naturalistic stimuli, yet the laminar circuit mechanisms and the aspects of stimulus dynamics responsible for generating this phase information remain essentially unknown. Here we investigated these issues by means of an information theoretic analysis of LFPs and current source densities (CSDs) recorded with laminar multi-electrode arrays in the primary auditory area of anesthetized rats during complex acoustic stimulation (music and broadband 1/f stimuli). We found that most LFP phase information originated from discrete "CSD events" consisting of granular-superficial layer dipoles of short duration and large amplitude, which we hypothesize to be triggered by transient thalamocortical activation. These CSD events occurred at rates of 2-4 Hz during both stimulation with complex sounds and silence. During stimulation with complex sounds, these events reliably reset the LFP phases at specific times during the stimulation history. These facts suggest that the informativeness of LFP phase in rat auditory cortex is the result of transient, large-amplitude events, of the "evoked" or "driving" type, reflecting strong depolarization in thalamo-recipient layers of cortex. Finally, the CSD events were characterized by a small number of discrete types of infragranular activation. The extent to which infragranular regions were activated was stimulus dependent. These patterns of infragranular activations may reflect a categorical evaluation of stimulus episodes by the local circuit to determine whether to pass on stimulus information through the output layers.

  9. Thalamic atrophy in antero-medial and dorsal nuclei correlates with six-month outcome after severe brain injury☆

    PubMed Central

    Lutkenhoff, Evan S.; McArthur, David L.; Hua, Xue; Thompson, Paul M.; Vespa, Paul M.; Monti, Martin M.

    2013-01-01

    The primary and secondary damage to neural tissue inflicted by traumatic brain injury is a leading cause of death and disability. The secondary processes, in particular, are of great clinical interest because of their potential susceptibility to intervention. We address the dynamics of tissue degeneration in cortico-subcortical circuits after severe brain injury by assessing volume change in individual thalamic nuclei over the first six-months post-injury in a sample of 25 moderate to severe traumatic brain injury patients. Using tensor-based morphometry, we observed significant localized thalamic atrophy over the six-month period in antero-dorsal limbic nuclei as well as in medio-dorsal association nuclei. Importantly, the degree of atrophy in these nuclei was predictive, even after controlling for full-brain volume change, of behavioral outcome at six-months post-injury. Furthermore, employing a data-driven decision tree model, we found that physiological measures, namely the extent of atrophy in the anterior thalamic nucleus, were the most predictive variables of whether patients had regained consciousness by six-months, followed by behavioral measures. Overall, these findings suggest that the secondary non-mechanical degenerative processes triggered by severe brain injury are still ongoing after the first week post-trauma and target specifically antero-medial and dorsal thalamic nuclei. This result therefore offers a potential window of intervention, and a specific target region, in agreement with the view that specific cortico-thalamo-cortical circuits are crucial to the maintenance of large-scale network neural activity and thereby the restoration of cognitive function after severe brain injury. PMID:24273723

  10. Coupling of ELF/ULF energy from lightning and MeV particles to the middle atmosphere, inosphere, and global circuit

    NASA Technical Reports Server (NTRS)

    Hale, Leslie C.

    1994-01-01

    In an attempt to explain numerous atmospheric electrical phenomena, the elements of the global electrical circuit are reexamined. In addition to being a 'quasi-static 'DC' generator' and source of radiated energy at VLF and higher, the thunderstorm is found to be a pulse generator, with most of the external energy contained in ELF and ULF pulse currents to the ionosphere (and Earth). The pulse energy is found to deposit largely in the middle atmosphere above the thunderstorm. The VLF and above components are well understood, as are the ULF components due to the conductivity gradient. However, a previously poorly understood ELF component on the millsecond timescale, or 'slow tail,' contains a large fraction of the electrical energy. This component couples strongly to the ionosphere and also launches a unipolar transverse electromagnetic (TEM) wavelet in the radial Earth-ionosphere transmission line. The increase in charge with distance associated with such wavelets, and their ensemble sum at a point, may explain some large mesospheric 'DC' fields but there are still difficulties explaining other than rare occurrences, except for antipodal reconvergence. These millisecond duration unipolar wavelets also coupled to the ionosphere and may trigger other lightning at a distance. A schema is elucidated by which the charge of MeV particles deposited in the middle atmosphere persists for much longer than the local relaxation time. This also gives rise to unipolar waves of global extent which may explain lower-latitude field perturbations associated with solar/geomagnetic events.

  11. A Theoretical and Experimental Study of DNA Self-assembly

    NASA Astrophysics Data System (ADS)

    Chandran, Harish

    The control of matter and phenomena at the nanoscale is fast becoming one of the most important challenges of the 21st century with wide-ranging applications from energy and health care to computing and material science. Conventional top-down approaches to nanotechnology, having served us well for long, are reaching their inherent limitations. Meanwhile, bottom-up methods such as self-assembly are emerging as viable alternatives for nanoscale fabrication and manipulation. A particularly successful bottom up technique is DNA self-assembly where a set of carefully designed DNA strands form a nanoscale object as a consequence of specific, local interactions among the different components, without external direction. The final product of the self-assembly process might be a static nanostructure or a dynamic nanodevice that performs a specific function. Over the past two decades, DNA self-assembly has produced stunning nanoscale objects such as 2D and 3D lattices, polyhedra and addressable arbitrary shaped substrates, and a myriad of nanoscale devices such as molecular tweezers, computational circuits, biosensors and molecular assembly lines. In this dissertation we study multiple problems in the theory, simulations and experiments of DNA self-assembly. We extend the Turing-universal mathematical framework of self-assembly known as the Tile Assembly Model by incorporating randomization during the assembly process. This allows us to reduce the tile complexity of linear assemblies. We develop multiple techniques to build linear assemblies of expected length N using far fewer tile types than previously possible. We abstract the fundamental properties of DNA and develop a biochemical system, which we call meta-DNA, based entirely on strands of DNA as the only component molecule. We further develop various enzyme-free protocols to manipulate meta-DNA systems and provide strand level details along with abstract notations for these mechanisms. We simulate DNA circuits by providing detailed designs for local molecular computations that involve spatially contiguous molecules arranged on addressable substrates via enzyme-free DNA hybridization reaction cascades. We use the Visual DSD simulation software in conjunction with localized reaction rates obtained from biophysical modeling to create chemical reaction networks of localized hybridization circuits that are then model checked using the PRISM model checking software. We develop a DNA detection system employing the triggered self-assembly of a novel DNA dendritic nanostructure. Detection begins when a specific, single-stranded target DNA strand triggers a hybridization chain reaction between two distinct DNA hairpins. Each hairpin opens and hybridizes up to two copies of the other, and hence each layer of the growing dendritic nanostructure can in principle accommodate an exponentially increasing number of cognate molecules, generating a nanostructure with high molecular weight. We build linear activatable assemblies employing a novel protection/deprotection strategy to strictly enforce the direction of tiling assembly growth to ensure the robustness of the assembly process. Our system consists of two tiles that can form a linear co-polymer. These tiles, which are initially protected such that they do not react with each other, can be activated to form linear co-polymers via the use of a strand displacing enzyme.

  12. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  13. Acute Fasting Regulates Retrograde Synaptic Enhancement through a 4E-BP-Dependent Mechanism.

    PubMed

    Kauwe, Grant; Tsurudome, Kazuya; Penney, Jay; Mori, Megumi; Gray, Lindsay; Calderon, Mario R; Elazouzzi, Fatima; Chicoine, Nicole; Sonenberg, Nahum; Haghighi, A Pejmun

    2016-12-21

    While beneficial effects of fasting on organismal function and health are well appreciated, we know little about the molecular details of how fasting influences synaptic function and plasticity. Our genetic and electrophysiological experiments demonstrate that acute fasting blocks retrograde synaptic enhancement that is normally triggered as a result of reduction in postsynaptic receptor function at the Drosophila larval neuromuscular junction (NMJ). This negative regulation critically depends on transcriptional enhancement of eukaryotic initiation factor 4E binding protein (4E-BP) under the control of the transcription factor Forkhead box O (Foxo). Furthermore, our findings indicate that postsynaptic 4E-BP exerts a constitutive negative input, which is counteracted by a positive regulatory input from the Target of Rapamycin (TOR). This combinatorial retrograde signaling plays a key role in regulating synaptic strength. Our results provide a mechanistic insight into how cellular stress and nutritional scarcity could acutely influence synaptic homeostasis and functional stability in neural circuits. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Interplay between population firing stability and single neuron dynamics in hippocampal networks

    PubMed Central

    Slomowitz, Edden; Styr, Boaz; Vertkin, Irena; Milshtein-Parush, Hila; Nelken, Israel; Slutsky, Michael; Slutsky, Inna

    2015-01-01

    Neuronal circuits' ability to maintain the delicate balance between stability and flexibility in changing environments is critical for normal neuronal functioning. However, to what extent individual neurons and neuronal populations maintain internal firing properties remains largely unknown. In this study, we show that distributions of spontaneous population firing rates and synchrony are subject to accurate homeostatic control following increase of synaptic inhibition in cultured hippocampal networks. Reduction in firing rate triggered synaptic and intrinsic adaptive responses operating as global homeostatic mechanisms to maintain firing macro-stability, without achieving local homeostasis at the single-neuron level. Adaptive mechanisms, while stabilizing population firing properties, reduced short-term facilitation essential for synaptic discrimination of input patterns. Thus, invariant ongoing population dynamics emerge from intrinsically unstable activity patterns of individual neurons and synapses. The observed differences in the precision of homeostatic control at different spatial scales challenge cell-autonomous theory of network homeostasis and suggest the existence of network-wide regulation rules. DOI: http://dx.doi.org/10.7554/eLife.04378.001 PMID:25556699

  15. Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Lara-Curzio, Edgar; Rule, Evan T.; Winchester, Clinton S.

    2017-02-01

    Internal short circuit of large-format Li-ion pouch cells induced by mechanical abuse was simulated using a modified mechanical pinch test. A torsion force was added manually at ∼40% maximum compressive loading force during the pinch test. The cell was twisted about 5° to the side by horizontally pulling a wire attached to the anode tab. The combined torsion-compression force created small failure at the separator yet allowed testing of fully charged large format Li-ion cells without triggering thermal runaway. Two types of commercial cells were tested using 4-6 cells at each state-of-charge (SOC). Commercially available 18 Ahr LiFePO4 (LFP) and 25 Ahr Li(NiMnCo)1/3O2 (NMC) cells were tested, and a thermal runaway risk (TRR) score system was used to evaluate the safety of the cells under the same testing conditions. The aim was to provide the cell manufacturers and end users with a tool to compare different designs and safety features.

  16. VMM - An ASIC for Micropattern Detectors

    NASA Astrophysics Data System (ADS)

    Iakovidis, George

    2018-02-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) that can be used in a variety of charge interpolating tracking detectors. It is designed to be used with the resistive strip micromegas and sTGC detectors in the New Small Wheel upgrade of the ATLAS Muon spectrometer. The ASIC is designed at Brookhaven National Laboratory and fabricated in the 130 nm Global Foundries 8RF-DM process. It is packaged in a Ball Grid Array with outline dimensions of 21×21 mm2. It integrates 64 channels, each providing charge amplification, discrimination, neighbour logic, amplitude and timing measurements, analog-to-digital conversions, and either direct output for trigger or multiplexed readout. The front-end amplifier can operate with a wide range of input capacitances, has adjustable polarity, gain and peaking time. The VMM1 and VMM2 are the first two versions of the VMM ASIC family fabricated in 2012 and 2014 respectively. The design, tests and qualification of the VMM1, VMM2 and roadmap to VMM3 are described.

  17. Syntactic sequencing in Hebbian cell assemblies.

    PubMed

    Wennekers, Thomas; Palm, Günther

    2009-12-01

    Hebbian cell assemblies provide a theoretical framework for the modeling of cognitive processes that grounds them in the underlying physiological neural circuits. Recently we have presented an extension of cell assemblies by operational components which allows to model aspects of language, rules, and complex behaviour. In the present work we study the generation of syntactic sequences using operational cell assemblies timed by unspecific trigger signals. Syntactic patterns are implemented in terms of hetero-associative transition graphs in attractor networks which cause a directed flow of activity through the neural state space. We provide regimes for parameters that enable an unspecific excitatory control signal to switch reliably between attractors in accordance with the implemented syntactic rules. If several target attractors are possible in a given state, noise in the system in conjunction with a winner-takes-all mechanism can randomly choose a target. Disambiguation can also be guided by context signals or specific additional external signals. Given a permanently elevated level of external excitation the model can enter an autonomous mode, where it generates temporal grammatical patterns continuously.

  18. A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers

    NASA Astrophysics Data System (ADS)

    Du, Yan; Hughes, Randall A.; Bhadra, Sanchita; Jiang, Yu Sherry; Ellington, Andrew D.; Li, Bingling

    2015-06-01

    Strand exchange nucleic acid circuitry can be used to transduce isothermal nucleic acid amplification products into signals that can be readable on an off-the-shelf glucometer. Loop-mediated isothermal amplification (LAMP) is limited by the accumulation of non-specific products, but nucleic acid circuitry can be used to probe and distinguish specific amplicons. By combining this high temperature isothermal amplification method with a thermostable invertase, we can directly transduce Middle-East respiratory syndrome coronavirus and Zaire Ebolavirus templates into glucose signals, with a sensitivity as low as 20-100 copies/μl, equating to atto-molar (or low zepto-mole). Virus from cell lysates and synthetic templates could be readily amplified and detected even in sputum or saliva. An OR gate that coordinately triggered on viral amplicons further guaranteed fail-safe virus detection. The method describes has potential for accelerating point-of-care applications, in that biological samples could be applied to a transducer that would then directly interface with an off-the-shelf, approved medical device.

  19. Thirst Driving and Suppressing Signals Encoded by Distinct Neural Populations in the Brain

    PubMed Central

    Oka, Yuki; Ye, Mingyu; Zuker, Charles S.

    2014-01-01

    Thirst is the basic instinct to drink water. Previously, it was shown that neurons in several circumventricular organs (CVO) of the hypothalamus are activated by thirst-inducing conditions 1. Here, we identify two distinct, genetically-separable neural populations in the subfornical organ (SFO) that trigger or suppress thirst. We show that optogenetic activation of SFO excitatory neurons, marked by the expression of the transcription factor ETV-1, evokes intense drinking behavior, and does so even in fully water-satiated animals. The light-induced response is highly specific for water, immediate, and strictly locked to the laser stimulus. In contrast, activation of a second population of SFO neurons, marked by expression of the vesicular GABA transporter VGAT, drastically suppressed drinking, even in water-craving thirsty animals. These results reveal an innate brain circuit that can turn on and off an animal’s water-drinking behavior, and likely functions as a center for thirst control in the mammalian brain. PMID:25624099

  20. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    NASA Astrophysics Data System (ADS)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  1. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes.

    PubMed

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  2. Standard design for National Ignition Facility x-ray streak and framing cameras.

    PubMed

    Kimbrough, J R; Bell, P M; Bradley, D K; Holder, J P; Kalantar, D K; MacPhee, A G; Telford, S

    2010-10-01

    The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.

  3. Sensitivity to image recurrence across eye-movement-like image transitions through local serial inhibition in the retina

    PubMed Central

    Krishnamoorthy, Vidhyasankar; Weick, Michael; Gollisch, Tim

    2017-01-01

    Standard models of stimulus encoding in the retina postulate that image presentations activate neurons according to the increase of preferred contrast inside the receptive field. During natural vision, however, images do not arrive in isolation, but follow each other rapidly, separated by sudden gaze shifts. We here report that, contrary to standard models, specific ganglion cells in mouse retina are suppressed after a rapid image transition by changes in visual patterns across the transition, but respond with a distinct spike burst when the same pattern reappears. This sensitivity to image recurrence depends on opposing effects of glycinergic and GABAergic inhibition and can be explained by a circuit of local serial inhibition. Rapid image transitions thus trigger a mode of operation that differs from the processing of simpler stimuli and allows the retina to tag particular image parts or to detect transition types that lead to recurring stimulus patterns. DOI: http://dx.doi.org/10.7554/eLife.22431.001 PMID:28230526

  4. Electromechanical response of silicone dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Cârlescu, V.; Prisăcaru, G.; Olaru, D.

    2016-08-01

    This paper presents an experimental technique to investigate the electromechanical properties of silicone dielectric elastomers actuated with high DC electric fields. A non-contact measurement technique is used to capture and monitor the thickness strain (contraction) of a circular film placed between two metallic disks electrodes. Two active fillers such as silica (10, 15 and 30 wt%) and barium titanate (5 and 15 wt%) were incorporated in order to increase the actuation performance. Thickness strain was measured at HV stimuli up to 4.5 kV and showed a quadratic dependence against applied electric field indicating that the induced strain is triggered by the Maxwell effect and/or electrostriction phenomenon as reported in literature. The actuation process evidences a rapid contraction upon HV activation and a slowly relaxation when the electrodes are short-circuit due to visco-elastic nature of elastomers. A maximum of 1.22 % thickness strain was obtained at low actuating field intensity (1.5 V/pm) comparable with those reported in literature for similar dielectric elastomer materials.

  5. Diagnostic layer integration in FPGA-based pipeline measurement systems for HEP experiments

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2007-08-01

    Integrated triggering and data acquisition systems for high energy physics experiments may be considered as fast, multichannel, synchronous, distributed, pipeline measurement systems. A considerable extension of functional, technological and monitoring demands, which has recently been imposed on them, forced a common usage of large field-programmable gate array (FPGA), digital signal processing-enhanced matrices and fast optical transmission for their realization. This paper discusses modelling, design, realization and testing of pipeline measurement systems. A distribution of synchronous data stream flows is considered in the network. A general functional structure of a single network node is presented. A suggested, novel block structure of the node model facilitates full implementation in the FPGA chip, circuit standardization and parametrization, as well as integration of functional and diagnostic layers. A general method for pipeline system design was derived. This method is based on a unified model of the synchronous data network node. A few examples of practically realized, FPGA-based, pipeline measurement systems were presented. The described systems were applied in ZEUS and CMS.

  6. Neuroprotection mediated by inhibition of calpain during acute viral encephalitis

    PubMed Central

    Howe, Charles L.; LaFrance-Corey, Reghann G.; Mirchia, Kanish; Sauer, Brian M.; McGovern, Renee M.; Reid, Joel M.; Buenz, Eric J.

    2016-01-01

    Neurologic complications associated with viral encephalitis, including seizures and cognitive impairment, are a global health issue, especially in children. We previously showed that hippocampal injury during acute picornavirus infection in mice is associated with calpain activation and is the result of neuronal death triggered by brain-infiltrating inflammatory monocytes. We therefore hypothesized that treatment with a calpain inhibitor would protect neurons from immune-mediated bystander injury. C57BL/6J mice infected with the Daniel’s strain of Theiler’s murine encephalomyelitis virus were treated with the FDA-approved drug ritonavir using a dosing regimen that resulted in plasma concentrations within the therapeutic range for calpain inhibition. Ritonavir treatment significantly reduced calpain activity in the hippocampus, protected hippocampal neurons from death, preserved cognitive performance, and suppressed seizure escalation, even when therapy was initiated 36 hours after disease onset. Calpain inhibition by ritonavir may be a powerful tool for preserving neurons and cognitive function and preventing neural circuit dysregulation in humans with neuroinflammatory disorders. PMID:27345730

  7. An assessment of memristor intrinsic fluctuations: a measurement of single atomic motion

    NASA Astrophysics Data System (ADS)

    Borghetti, Julien; Yang, J. Joshua; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2010-03-01

    Memristors provides electrically tunable resistance for upcoming non-volatile memory and future neuromorphic computing. One of the key benefits of such a device is its scalability, which can be demonstrated from an architectural perspective as well as from a fundamental physics limit. 4D addressing schemes utilizing cross bar structures that can be stacked several layers high above the chip embodies unlimited addressing space. On the other limit, the basic operating principles of memristive devices allow one to reach storage of information in a single atom. In this report of nanoscale (sub 50nm) devices, we detect single atom fluctuations, which would then represent the ultimate limit for noise sources thus delineating the boundary conditions for circuit design. We show that electrically induced individual atom migrations do not affect the overall device atomic configuration until a critical bias where a single local fluctuation triggers a general atomic reconfiguration. This instability illustrates the robustness of the device non-volatility upon small electrical stress.

  8. Integral control of plant gravitropism through the interplay of hormone signaling and gene regulation.

    PubMed

    Rodrigo, Guillermo; Jaramillo, Alfonso; Blázquez, Miguel A

    2011-08-17

    The interplay between hormone signaling and gene regulatory networks is instrumental in promoting the development of living organisms. In particular, plants have evolved mechanisms to sense gravity and orient themselves accordingly. Here, we present a mathematical model that reproduces plant gravitropic responses based on known molecular genetic interactions for auxin signaling coupled with a physical description of plant reorientation. The model allows one to analyze the spatiotemporal dynamics of the system, triggered by an auxin gradient that induces differential growth of the plant with respect to the gravity vector. Our model predicts two important features with strong biological implications: 1), robustness of the regulatory circuit as a consequence of integral control; and 2), a higher degree of plasticity generated by the molecular interplay between two classes of hormones. Our model also predicts the ability of gibberellins to modulate the tropic response and supports the integration of the hormonal role at the level of gene regulation. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Group 1 mGluR-dependent synaptic long-term depression (mGluR-LTD): mechanisms and implications for circuitry & disease

    PubMed Central

    Lüscher, Christian; Huber, Kimberly M.

    2010-01-01

    Many excitatory synapses express Group 1, or Gq coupled, metabotropic glutamate receptors (Gp1 mGluRs) at the periphery of their postsynaptic density. Activation of Gp1 mGluRs typically occurs in response to strong activity and triggers long-term plasticity of synaptic transmission in many brain regions including the neocortex, hippocampus, midbrain, striatum and cerebellum. Here we focus on mGluR-induced long-term synaptic depression (LTD) and review the literature that implicates Gp1 mGluRs in the plasticity of behavior, learning and memory. Moreover, recent studies investigating the molecular mechanisms of mGluR-LTD have discovered links to mental retardation, autism, Alzheimer’s disease, Parkinson’s disease and drug addiction. We discuss how mGluRs lead to plasticity of neural circuits and how the understanding of the molecular mechanisms of mGluR plasticity provides insight into brain disease. PMID:20188650

  10. Different requirements of functional telomeres in neural stem cells and terminally differentiated neurons.

    PubMed

    Lobanova, Anastasia; She, Robert; Pieraut, Simon; Clapp, Charlie; Maximov, Anton; Denchi, Eros Lazzerini

    2017-04-01

    Telomeres have been studied extensively in peripheral tissues, but their relevance in the nervous system remains poorly understood. Here, we examine the roles of telomeres at distinct stages of murine brain development by using lineage-specific genetic ablation of TRF2, an essential component of the shelterin complex that protects chromosome ends from the DNA damage response machinery. We found that functional telomeres are required for embryonic and adult neurogenesis, but their uncapping has surprisingly no detectable consequences on terminally differentiated neurons. Conditional knockout of TRF2 in post-mitotic immature neurons had virtually no detectable effect on circuit assembly, neuronal gene expression, and the behavior of adult animals despite triggering massive end-to-end chromosome fusions across the brain. These results suggest that telomeres are dispensable in terminally differentiated neurons and provide mechanistic insight into cognitive abnormalities associated with aberrant telomere length in humans. © 2017 Lobanova et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Low-inductance switch and capacitor energy storage modules made of packages of industrial condensers IK50-3

    NASA Astrophysics Data System (ADS)

    Bykov, Yu A.; Krastelev, E. G.; Sedin, A. A.; Feduschak, V. F.

    2017-05-01

    A low-inductance module of a high-current capacitive energy storage with an operating voltage of 40 kV is developed. The design of the module is based on the application of capacitive sections of the industrial condenser IK50-3. The module includes two capacitors of 0.35 μF each, one common low-jitter triggered gas switch and 2 groups of output cables of 4 from each capacitor. A bus bars topology developed for the switch and cables connections provides a small total inductance of the discharge circuit, for the module with the output cables KVIM of 0.5 m long, it is lower than 40 nH. The set of 10 modules is now used for driving the 20 stages linear transformer for a fast charging of the pulse forming line of the high-current nanosecond accelerator. A design of the module and the results of tests of a single module and a set of 10 are presented.

  12. Ecological feedback in quorum-sensing microbial populations can induce heterogeneous production of autoinducers

    PubMed Central

    Bauer, Matthias; Knebel, Johannes; Lechner, Matthias; Pickl, Peter; Frey, Erwin

    2017-01-01

    Autoinducers are small signaling molecules that mediate intercellular communication in microbial populations and trigger coordinated gene expression via ‘quorum sensing’. Elucidating the mechanisms that control autoinducer production is, thus, pertinent to understanding collective microbial behavior, such as virulence and bioluminescence. Recent experiments have shown a heterogeneous promoter activity of autoinducer synthase genes, suggesting that some of the isogenic cells in a population might produce autoinducers, whereas others might not. However, the mechanism underlying this phenotypic heterogeneity in quorum-sensing microbial populations has remained elusive. In our theoretical model, cells synthesize and secrete autoinducers into the environment, up-regulate their production in this self-shaped environment, and non-producers replicate faster than producers. We show that the coupling between ecological and population dynamics through quorum sensing can induce phenotypic heterogeneity in microbial populations, suggesting an alternative mechanism to stochastic gene expression in bistable gene regulatory circuits. DOI: http://dx.doi.org/10.7554/eLife.25773.001 PMID:28741470

  13. Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning.

    PubMed

    Gao, Zhenyu; Proietti-Onori, Martina; Lin, Zhanmin; Ten Brinke, Michiel M; Boele, Henk-Jan; Potters, Jan-Willem; Ruigrok, Tom J H; Hoebeek, Freek E; De Zeeuw, Chris I

    2016-02-03

    Closed-loop circuitries between cortical and subcortical regions can facilitate precision of output patterns, but the role of such networks in the cerebellum remains to be elucidated. Here, we characterize the role of internal feedback from the cerebellar nuclei to the cerebellar cortex in classical eyeblink conditioning. We find that excitatory output neurons in the interposed nucleus provide efference-copy signals via mossy fibers to the cerebellar cortical zones that belong to the same module, triggering monosynaptic responses in granule and Golgi cells and indirectly inhibiting Purkinje cells. Upon conditioning, the local density of nucleocortical mossy fiber terminals significantly increases. Optogenetic activation and inhibition of nucleocortical fibers in conditioned animals increases and decreases the amplitude of learned eyeblink responses, respectively. Our data show that the excitatory nucleocortical closed-loop circuitry of the cerebellum relays a corollary discharge of premotor signals and suggests an amplifying role of this circuitry in controlling associative motor learning. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Modulation of UK lightning and the atmospheric electric circuit by heliospheric magnetic field polarity

    NASA Astrophysics Data System (ADS)

    Owens, Mathew; Scott, Chris; Lockwood, Mike; Barnard, Luke; Harrison, Giles; Nicoll, Keri; Watt, Clare; Bennett, Alec

    2015-04-01

    Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40 to 60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.

  15. Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Petruzzella, M.; Pagliano, F. M.; Zobenica, Ž.; Birindelli, S.; Cotrufo, M.; van Otten, F. W. M.; van der Heijden, R. W.; Fiore, A.

    2017-12-01

    A single quantum dot deterministically coupled to a photonic crystal environment constitutes an indispensable elementary unit to both generate and manipulate single-photons in next-generation quantum photonic circuits. To date, the scaling of the number of these quantum nodes on a fully integrated chip has been prevented by the use of optical pumping strategies that require a bulky off-chip laser along with the lack of methods to control the energies of nano-cavities and emitters. Here, we concurrently overcome these limitations by demonstrating electrical injection of single excitonic lines within a nano-electro-mechanically tuneable photonic crystal cavity. When an electrically driven dot line is brought into resonance with a photonic crystal mode, its emission rate is enhanced. Anti-bunching experiments reveal the quantum nature of these on-demand sources emitting in the telecom range. These results represent an important step forward in the realization of integrated quantum optics experiments featuring multiple electrically triggered Purcell-enhanced single-photon sources embedded in a reconfigurable semiconductor architecture.

  16. Activity-induced histone modifications govern Neurexin-1 mRNA splicing and memory preservation.

    PubMed

    Ding, Xinlu; Liu, Sanxiong; Tian, Miaomiao; Zhang, Wenhao; Zhu, Tao; Li, Dongdong; Wu, Jiawei; Deng, HaiTeng; Jia, Yichang; Xie, Wei; Xie, Hong; Guan, Ji-Song

    2017-05-01

    Epigenetic mechanisms regulate the formation, consolidation and reconsolidation of memories. However, the signaling path from neuronal activation to epigenetic modifications within the memory-related brain circuit remains unknown. We report that learning induces long-lasting histone modifications in hippocampal memory-activated neurons to regulate memory stability. Neuronal activity triggers a late-onset shift in Nrxn1 splice isoform choice at splicing site 4 by accumulating a repressive histone marker, H3K9me3, to modulate the splicing process. Activity-dependent phosphorylation of p66α via AMP-activated protein kinase recruits HDAC2 and Suv39h1 to establish repressive histone markers and changes the connectivity of the activated neurons. Removal of Suv39h1 abolished the activity-dependent shift in Nrxn1 splice isoform choice and reduced the stability of established memories. We uncover a cell-autonomous process for memory preservation in which memory-related neurons initiate a late-onset reduction of their rewiring capacities through activity-induced histone modifications.

  17. Evaluation of the effects of electric fields on implanted cardiac pacemakers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, A.J.; Carstensen, E.

    1985-02-01

    The effects of extra high voltage (EHV) transmission line electric fields on pacemaker function were evaluated in 11 patients with seven different implanted pacemaker models from four manufacturers. Alteration in pacemaker function was demonstrated in five unipolar units (three different models) from two manufacturers during exposure to electric fields ranging from 2 to 9 kV/m, with total body currents from 47 to 175 ..mu..A. These electric fields and body currents are representative of values that can be encountered by individuals standing beneath EHV transmission lines. Transient alterations in pacemaker function observed in this study included inappropriate triggered activity, inhibition ofmore » impulse generation, reduction in rate, and reversion from demand to asynchronous mode. Electromagnetic interference from high voltage transmission lines can induce alterations in pacemaker function in certain designs of these devices. However, pacemaker manufacturers can incorporate appropriate circuits in the pacemaker design to eliminate this problem. 8 references.« less

  18. Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1.

    PubMed

    Levine, Emily S; Zam, Azhar; Zhang, Pengfei; Pechko, Alina; Wang, Xinlei; FitzGerald, Paul; Pugh, Edward N; Zawadzki, Robert J; Burns, Marie E

    2014-09-01

    Microglia dynamically prune synaptic contacts during development, and digest waste that accumulates in degeneration and aging. In many neurodegenerative diseases, microglial activation and phagocytosis gradually increase over months or years, with poorly defined initial triggering events. Here, we describe rapid retinal microglial activation in response to physiological light levels in a mouse model of photoreceptor degeneration that arises from defective rhodopsin deactivation and prolonged signaling. Activation, migration and proliferation of microglia proceeded along a well-defined time course apparent within 12 h of light onset. Retinal imaging in vivo with optical coherence tomography revealed dramatic increases in light-scattering from photoreceptors prior to the outer nuclear layer thinning classically used as a measure of retinal neurodegeneration. This model is valuable for mechanistic studies of microglial activation in a well-defined and optically accessible neural circuit, and for the development of novel methods for detecting early signs of pending neurodegeneration in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs

    PubMed Central

    Ferry, Quentin R. V.; Lyutova, Radostina; Fulga, Tudor A.

    2017-01-01

    CRISPR-based transcription regulators (CRISPR-TRs) have transformed the current synthetic biology landscape by allowing specific activation or repression of any target gene. Here we report a modular and versatile framework enabling rapid implementation of inducible CRISPR-TRs in mammalian cells. This strategy relies on the design of a spacer-blocking hairpin (SBH) structure at the 5′ end of the single guide RNA (sgRNA), which abrogates the function of CRISPR-transcriptional activators. By replacing the SBH loop with ligand-controlled RNA-cleaving units, we demonstrate conditional activation of quiescent sgRNAs programmed to respond to genetically encoded or externally delivered triggers. We use this system to couple multiple synthetic and endogenous target genes with specific inducers, and assemble gene regulatory modules demonstrating parallel and orthogonal transcriptional programs. We anticipate that this ‘plug and play' approach will be a valuable addition to the synthetic biology toolkit, facilitating the understanding of natural gene circuits and the design of cell-based therapeutic strategies. PMID:28256578

  20. MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor

    PubMed Central

    Wu, Kaichun; Liu, Jie; Sun, Shiren; Guo, Xuegang; Wang, Biaoluo; Gang, Yi; Zhang, Yongguo; Li, Quanjiang; Qiao, Taidong; Zhao, Qingchuan; Nie, Yongzhan; Fan, Daiming

    2010-01-01

    MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis. PMID:20300657

Top