Sample records for trigger deep tremors

  1. Tremor evidence for dynamically triggered creep events on the deep San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Shelly, D. R.; Hill, D. P.; Aiken, C.

    2010-12-01

    Deep tectonic tremor has been observed along major subduction zones and the San Andreas fault (SAF) in central and southern California. It appears to reflect deep fault slip, and it is often seen to be triggered by small stresses, including passing seismic waves from large regional and teleseismic earthquakes. Here we examine tremor activity along the Parkfield-Cholame section of the SAF from mid-2001 to early 2010, scrutinizing its relationship with regional and teleseismic earthquakes. Based on similarities in the shape and timing of seismic waveforms, we conclude that triggered and ambient tremor share common sources and a common physical mechanism. Utilizing this similarity in waveforms, we detect tremor triggered by numerous large events, including previously unreported triggering from the recent 2009 Mw7.3 Honduras, 2009 Mw8.1 Samoa, and 2010 Mw8.8 Chile earthquakes at teleseismic distances, and the relatively small 2007 Mw5.4 Alum Rock and 2008 Mw5.4 Chino Hills earthquakes at regional distances. We also find multiple examples of systematic migration in triggered tremor, similar to ambient tremor migration episodes observed at other times. Because these episodes propagate much more slowly than the triggering waves, the migration likely reflects a small, triggered creep event. As with ambient tremor bursts, triggered tremor at times persists for multiple days, probably indicating a somewhat larger creep event. This activity provides a clear example of delayed dynamic triggering, with a mechanism perhaps also relevant for triggering of regular earthquakes.

  2. Delayed dynamic triggering of deep tremor along the Parkfield-Cholame section of the San Andreas Fault following the 2014 M6.0 South Napa earthquake

    USGS Publications Warehouse

    Peng, Zhigang; Shelly, David R.; Ellsworth, William L.

    2015-01-01

    Large, distant earthquakes are known to trigger deep tectonic tremor along the San Andreas Fault and in subduction zones. However, there are relatively few observations of triggering from regional distance earthquakes. Here we show that a small tremor episode about 12–18 km NW of Parkfield was triggered during and immediately following the passage of surface waves from the 2014 Mw 6.0 South Napa main shock. More notably, a major tremor episode followed, beginning about 12 h later, and centered SE of Parkfield near Cholame. This major episode is one of the largest seen over the past several years, containing intense activity for ~3 days and taking more than 3 weeks to return to background levels. This episode showed systematic along-strike migration at ~5 km/d, suggesting that it was driven by a slow-slip event. Our results suggest that moderate-size earthquakes are capable of triggering major tremor and deep slow slip at regional distances.

  3. Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault

    USGS Publications Warehouse

    Shelly, David R.; Bradley, Andrew M.; Johnson, Kaj M.

    2013-01-01

    Deep aseismic roots of faults play a critical role in transferring tectonic loads to shallower, brittle crustal faults that rupture in large earthquakes. Yet, until the recent discovery of deep tremor and creep, direct inference of the physical properties of lower-crustal fault roots has remained elusive. Observations of tremor near Parkfield, CA provide the first evidence for present-day localized slip on the deep extension of the San Andreas Fault and triggered transient creep events. We develop numerical simulations of fault slip to show that the spatiotemporal evolution of triggered tremor near Parkfield is consistent with triggered fault creep governed by laboratory-derived friction laws between depths of 20–35 km on the fault. Simulated creep and observed tremor northwest of Parkfield nearly ceased for 20–30 days in response to small coseismic stress changes of order 104 Pa from the 2003 M6.5 San Simeon Earthquake. Simulated afterslip and observed tremor following the 2004 M6.0 Parkfield earthquake show a coseismically induced pulse of rapid creep and tremor lasting for 1 day followed by a longer 30 day period of sustained accelerated rates due to propagation of shallow afterslip into the lower crust. These creep responses require very low effective normal stress of ~1 MPa on the deep San Andreas Fault and near-neutral-stability frictional properties expected for gabbroic lower-crustal rock.

  4. Global Search of Triggered Tectonic Tremor

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Aiken, C.; Chao, K.; Gonzalez-Huizar, H.; Wang, B.; Ojha, L.; Yang, H.

    2013-05-01

    Deep tectonic tremor has been observed at major plate-boundary faults around the Pacific Rim. While regular or ambient tremor occurs spontaneously or accompanies slow-slip events, tremor could be also triggered by large distant earthquakes and solid earth tides. Because triggered tremor occurs on the same fault patches as ambient tremor and is relatively easy to identify, a systematic global search of triggered tremor could help to identify the physical mechanisms and necessary conditions for tremor generation. Here we conduct a global search of tremor triggered by large teleseismic earthquakes. We mainly focus on major faults with significant strain accumulations where no tremor has been reported before. These includes subduction zones in Central and South America, strike-slip faults around the Caribbean plate, the Queen Charlotte-Fairweather fault system and the Denali fault in the western Canada and Alaska, the Sumatra-Java subduction zone, the Himalaya frontal thrust faults, as well as major strike-slip faults around Tibet. In each region, we first compute the predicted dynamic stresses σd from global earthquakes with magnitude>=5.0 in the past 20 years, and select events with σd > 1 kPa. Next, we download seismic data recorded by stations from local or global seismic networks, and identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. In cases where station distributions are dense enough, we also locate tremor based on the standard envelope cross-correlation techniques. Finally, we calculate the triggering potential for the Love and Rayleigh waves with the local fault orientation and surface-wave incident angles. So far we have found several new places that are capable of generating triggered tremor. We will summarize these observations and discuss their implications on physical mechanisms of tremor and remote triggering.

  5. Deep Tectonic Tremor in Haiti triggered by the 2010/02/27 Mw8.8 Maule, Chile earthquake

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.; Douilly, R.; Calais, E.; Deschamps, A.; Haase, J. S.

    2013-05-01

    Tectonic tremors have been observed along major plate-boundary faults around the world. In most of these regions, tremors occur spontaneously (i.e. ambient) or as a result of small stress perturbations from passing surface waves (i.e. triggered). Because tremors are located below the seismogenic zone, a detailed study of their behavior could help to better understand how tectonic movement is accommodated in the deep root of major faults, and the relationship with large earthquakes. Here, we present evidence of triggered tremor in southern Haiti around the aftershock zone of the 2010/01/12 Mw7.0 Haiti earthquake. Following the January mainshock, several groups have installed land and ocean bottom seismometers to record aftershock activity (e.g., De Lepinay et al., 2011). In the following month, the 2010/02/27 Mw8.8 Maule, Chile earthquake occurred and was recorded in the southern Haiti region by these seismic stations. We apply a 5-15 Hz band-pass filter to all seismograms to identify local high-frequency signals during the Chile teleseismic waves. Tremor is identified as non-impulsive bursts with 10-20 s durations that is coherent among different stations and is modulated by surface waves. We also convert the seismic data into audible sounds and use them to distinguish between local aftershocks and deep tremor. We locate the source of the tremor bursts using an envelope cross-correlation method based on travel time differences. Because tremor depth is not well constrained with this method, we set it to 20 km, close to the recent estimate of Moho depth in this region (McNamara et al., 2012). Most tremors are located south of the surface expression of the Enriquillo-Plantain Garden Fault (EPGF), a high-angle southward dipping left-lateral strike-slip fault that marks the boundary between the Gonave microplate and the Caribbean plate, although the location errors are large. Tremor peaks are mostly modulated by Love wave velocity, which is consistent with left-lateral shear motion induced by the normal incidence of Love wave on a near-vertical strike-slip fault. Our ongoing efforts include comparing tremor and aftershock locations with the same envelope techniques, and identifying tremor at other times. If the tremor locations are reliable, the results pose interesting questions about stress changes following the Haiti mainshock that lead to triggered seismicity on the shallow south dipping Trois Baies fault (De Lepinay et al., 2011, Douilly et al, 2013), and triggered tremor on the EPGF, where no aftershocks were recorded.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar, Ana C.; Chao, Kevin; Beroza, Gregory C.

    In this paper, we compare low-frequency earthquakes (LFEs) from triggered and ambient tremor under the southern Central Range, Taiwan. We apply the PageRank algorithm used by Aguiar and Beroza (2014) that exploits the repetitive nature of the LFEs to find repeating LFEs in both ambient and triggered tremor. We use these repeaters to create LFE templates and find that the templates created from both tremor types are very similar. To test their similarity, we use both interchangeably and find that most of both the ambient and triggered tremor match the LFE templates created from either data set, suggesting that LFEsmore » for both events have a common origin. Finally, we locate the LFEs by using local earthquake P wave and S wave information and find that LFEs from triggered and ambient tremor locate to between 20 and 35 km on what we interpret as the deep extension of the Chaochou-Lishan Fault.« less

  7. Tectonic tremor and LFEs on a reverse fault in Taiwan

    DOE PAGES

    Aguiar, Ana C.; Chao, Kevin; Beroza, Gregory C.

    2017-06-16

    In this paper, we compare low-frequency earthquakes (LFEs) from triggered and ambient tremor under the southern Central Range, Taiwan. We apply the PageRank algorithm used by Aguiar and Beroza (2014) that exploits the repetitive nature of the LFEs to find repeating LFEs in both ambient and triggered tremor. We use these repeaters to create LFE templates and find that the templates created from both tremor types are very similar. To test their similarity, we use both interchangeably and find that most of both the ambient and triggered tremor match the LFE templates created from either data set, suggesting that LFEsmore » for both events have a common origin. Finally, we locate the LFEs by using local earthquake P wave and S wave information and find that LFEs from triggered and ambient tremor locate to between 20 and 35 km on what we interpret as the deep extension of the Chaochou-Lishan Fault.« less

  8. Tremors Triggered along the Queen Charlotte Fault

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.; Chao, K.

    2012-12-01

    In the past decade, deep tectonic tremors have been observed in numerous tectonic environments surrounding the Pacific and Caribbean plates. In these regions, tremors triggered by both regional and distant earthquakes have also been observed. Despite the ubiquitous observations of triggered tremors, tremors triggered in differing strike-slip environments are less understood. Here, we conduct a preliminary search of tremors triggered by teleseismic earthquakes along the transpressive Queen Charlotte Fault (QCF) located between the Cascadia subduction zone and Alaska. Tectonic tremors have not been previously reported along the QCF. We select teleseismic earthquakes during the 1990-2012 period as having magnitude M ≥ 6.5 and occurring at least 1,000 km away from the region. We reduce the number of mainshocks by selecting those that generate greater than 1 kPa dynamic stress estimated from surface-wave magnitude equations [e.g. van der Elst and Brodsky, 2010]. Our mainshock waveforms are retrieved from the Canadian National Seismograph Network (CNSN), processed, and filtered for triggered tremor observations. We characterize triggered tremors as high-frequency signals visible among several stations and coincident with broadband surface wave peaks. So far, we have found tremors triggered along the QCF by surface waves of five great earthquakes - the 2002/11/03 Mw7.9 Denali Fault, 2004/12/26 Mw9.0 Sumatra, 2010/02/27 Mw8.8 Chile, 2011/03/11 Mw9.0 Japan, and 2012/04/11 Mw8.6 Sumatra earthquakes. We compare our results to tremors triggered by teleseismic earthquakes on strike-slip faults in central and southern California, as well as Cuba [Peng et al., 2012]. Among strike-slip faults in these regions, we also compare triggered tremor amplitudes to peak ground velocities from the mainshocks and compute dynamic stresses to determine a triggering threshold for the QCF. We find that in most cases tremors in the QCF are triggered primarily by the Love waves, and additional tremors are triggered by the subsequent Rayleigh waves. This is consistent with the near strike-parallel incidence for many triggering earthquakes, which tends to produce maximum triggering potential for vertical strike-slip faults. These results suggest a shear faulting mechanism is responsible for the triggered tremor on the QCF. The triggering threshold of dynamic stress is higher than that found at the Parkfield-Cholame section of the San Andreas Fault (2-3 KPa). This could be due to the sparse network coverage in the QCF, which may miss weak tremor signals triggered by smaller-size events. Our observations suggest that triggered tremor could occur in many places on major strike-slip faults around the world, although the necessary conditions for tremor generation are still not clear at this stage.

  9. Global search of triggered non-volcanic tremor

    NASA Astrophysics Data System (ADS)

    Chao, Tzu-Kai Kevin

    Deep non-volcanic tremor is a newly discovered seismic phenomenon with low amplitude, long duration, and no clear P- and S-waves as compared with regular earthquake. Tremor has been observed at many major plate-boundary faults, providing new information about fault slip behaviors below the seismogenic zone. While tremor mostly occurs spontaneously (ambient tremor) or during episodic slow-slip events (SSEs), sometimes tremor can also be triggered during teleseismic waves of distance earthquakes, which is known as "triggered tremor". The primary focus of my Ph.D. work is to understand the physical mechanisms and necessary conditions of triggered tremor by systematic investigations in different tectonic regions. In the first chapter of my dissertation, I conduct a systematic survey of triggered tremor beneath the Central Range (CR) in Taiwan for 45 teleseismic earthquakes from 1998 to 2009 with Mw ≥ 7.5. Triggered tremors are visually identified as bursts of high-frequency (2-8 Hz), non-impulsive, and long-duration seismic energy that are coherent among many seismic stations and modulated by the teleseismic surface waves. A total of 9 teleseismic earthquakes has triggered clear tremor in Taiwan. The peak ground velocity (PGV) of teleseismic surface waves is the most important factor in determining tremor triggering potential, with an apparent threshold of ˜0.1 cm/s, or 7-8 kPa. However, such threshold is partially controlled by the background noise level, preventing triggered tremor with weaker amplitude from being observed. In addition, I find a positive correlation between the PGV and the triggered tremor amplitude, which is consistent with the prediction of the 'clock-advance' model. This suggests that triggered tremor can be considered as a sped-up occurrence of ambient tremor under fast loading from the passing surface waves. Finally, the incident angles of surface waves also play an important rule in controlling the tremor triggering potential. The next chapter focuses on a systematic comparison of triggered tremor around the Calaveras Fault (CF) in northern California (NC), the Parkfield-Cholame section of the San Andreas Fault (SAF) in central California (CC), and the San Jacinto Fault (SJF) in southern California (SC). Out of 42 large (Mw ≥7.5) earthquakes between 2001 and 2010, only the 2002 Mw 7.9 Denali fault earthquake triggered clear tremor in NC and SC. In comparison, abundant triggered and ambient tremor has been observed in CC. Further analysis reveal that the lack of triggered tremor observations in SC and NC is not simply a consequence of their different background noise levels as compared to CC, but rather reflects different background tremor rates in these regions. In the final chapter, I systematically search for triggered tremor following the 2011 Mw9.0 Tohoku-Oki earthquake in the regions where ambient or triggered tremor has been found before. The main purpose is to check whether triggered tremor is observed in regions when certain conditions (e.g., surface wave amplitudes) are met. Triggered tremor is observed in southwest Japan, Taiwan, the Aleutian Arc, south-central Alaska, northern Vancouver Island, the Parkfield-Cholame section of the SAF in CC and the SJF in SC, and the North Island of New Zealand. Such a widespread triggering of tremor is not too surprising because of the large amplitude surface waves (minimum peak value of ˜0.1 cm/s) and the associated dynamic stresses (at least ˜7-8 kPa), which is one of the most important factors in controlling the triggering threshold. The triggered tremor in different region is located close to or nearby the ambient tremor active area. In addition, the amplitudes of triggered tremor have positive correlations with the amplitudes of teleseismic surface waves among many regions. Moreover, both Love and Rayleigh waves participate in triggering tremor in different regions, and their triggering potential is somewhat controlled by the incident angles. In summary, systematically surveys of triggered tremor in different tectonic regions reveal that triggered tremor shares similar physical mechanism (shear failure on the fault interface) as ambient tremor but with different loading conditions. The amplitude of the teleseismic surface wave is one of the most important factors in controlling the tremor triggering threshold. In addition, the frequency contents and incident angles of the triggering waves, and local fault geometry and ambient conditions also play certain roles in determining the triggering potential. On the other hand, the background noise level and seismic network coverage and station quality also could affect the apparent triggering threshold. (Abstract shortened by UMI.).

  10. Tremor, remote triggering and earthquake cycle

    NASA Astrophysics Data System (ADS)

    Peng, Z.

    2012-12-01

    Deep tectonic tremor and episodic slow-slip events have been observed at major plate-boundary faults around the Pacific Rim. These events have much longer source durations than regular earthquakes, and are generally located near or below the seismogenic zone where regular earthquakes occur. Tremor and slow-slip events appear to be extremely stress sensitive, and could be instantaneously triggered by distant earthquakes and solid earth tides. However, many important questions remain open. For example, it is still not clear what are the necessary conditions for tremor generation, and how remote triggering could affect large earthquake cycle. Here I report a global search of tremor triggered by recent large teleseismic earthquakes. We mainly focus on major subduction zones around the Pacific Rim. These include the southwest and northeast Japan subduction zones, the Hikurangi subduction zone in New Zealand, the Cascadia subduction zone, and the major subduction zones in Central and South America. In addition, we examine major strike-slip faults around the Caribbean plate, the Queen Charlotte fault in northern Pacific Northwest Coast, and the San Andreas fault system in California. In each place, we first identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. We also calculate the dynamic stress and check the triggering relationship with the Love and Rayleigh waves. Finally, we calculate the triggering potential with the local fault orientation and surface-wave incident angles. Our results suggest that tremor exists at many plate-boundary faults in different tectonic environments, and could be triggered by dynamic stress as low as a few kPas. In addition, we summarize recent observations of slow-slip events and earthquake swarms triggered by large distant earthquakes. Finally, we propose several mechanisms that could explain apparent clustering of large earthquakes around the world.

  11. Nonvolcanic Deep Tremors in the Transform Plate Bounding San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Nadeau, R. M.; Dolenc, D.

    2004-12-01

    Recently, deep ( ˜ 20 to 40 km) nonvolcanic tremor activity has been observed on convergent plate boundaries in Japan and in the Cascadia region of North America (Obara, 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). Because of the abundance of available fluids from subduction processes in these convergent zones, fluids are believed to play an important role in the generation of the tremor activity. The transient rates of tremor activity in these regions are also observed to correlate either with the occurrence of larger earthquakes (Obara, 2002) or with geodetically determined transient creep events that release large amounts of strain energy deep beneath the locked Cascadia megathrust (M.M. Miller et al., 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). These associations suggest that nonvolcanic tremor activity may participate in a fundamental mode of deep moment release and in the triggering of large subduction zone events (Rodgers and Dragert, 2003). We report the discovery of deep ( ˜ 20 to 45 km) nonvolcanic tremor activity on the transform plate bounding San Andreas Fault (SAF) in central California where, in contrast to subduction zones, long-term deformation directions are horizontal and fluid availability from subduction zone processes is absent. The source region of the SAF tremors lies beneath the epicentral region of the great 1857 magnitude (M) ˜ 8, Fort Tejon earthquake whose rupture zone is currently locked (Sieh, 1978). Activity rate transients of the tremors occurring since early 2001 also correlate with seismicity rate variations above the tremor source region.

  12. The Role of Deep Creep in the Timing of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Sammis, C. G.; Smith, S. W.

    2012-12-01

    The observed temporal clustering of the world's largest earthquakes has been largely discounted for two reasons: a) it is consistent with Poisson clustering, and b) no physical mechanism leading to such clustering has been proposed. This lack of a mechanism arises primarily because the static stress transfer mechanism, commonly used to explain aftershocks and the clustering of large events on localized fault networks, does not work at global distances. However, there is recent observational evidence that the surface waves from large earthquakes trigger non-volcanic tremor at the base of distant fault zones at global distances. Based on these observations, we develop a simple non-linear coupled oscillator model that shows how the triggering of such tremor can lead to the synchronization of large earthquakes on a global scale. A basic assumption of the model is that induced tremor is a proxy for deep creep that advances the seismic cycle of the fault. We support this hypothesis by demonstrating that the 2010 Maule Chile and the 2011 Fukushima Japan earthquakes, which have been shown to induce tremor on the Parkfield segment of the San Andreas Fault, also produce changes in off-fault seismicity that are spatially and temporally consistent with episodes of deep creep on the fault. The observed spatial pattern can be simulated using an Okada dislocation model for deep creep (below 20 km) on the fault plane in which the slip rate decreases from North to South consistent with surface creep measurements and deepens south of the "Parkfield asperity" as indicated by recent tremor locations. The model predicts the off-fault events should have reverse mechanism consistent with observed topography.

  13. Remote Love Wave Triggering of Tremor in the Nankai Subduction Zone: New Observations and Dynamic Stress Modeling

    NASA Astrophysics Data System (ADS)

    Enescu, B.; Chao, K.; Obara, K.; Peng, Z.; Matsuzawa, T.; Yagi, Y.

    2013-12-01

    The triggering of deep non-volcanic tremor (NVT) in the Nankai region, southwest Japan, by the surface waves of several large teleseismic earthquakes has been well documented (e.g., Miyazawa & Mori, 2005). These previous studies report that the Nankai NVT is primarily triggered by the passage of Rayleigh waves from the teleseismic events (e.g., Miyazawa & Brodsky, 2008). The relative lack of Love wave triggering in Nankai would be, however, an exception to the general observation that triggered tremor shows a positive correlation with the triggering potential, defined using the Coulomb failure criteria (Hill, 2012). To clarify the Nankai NVT triggering mechanism, we have systematically searched for triggered tremor due to large teleseismic events (Mw ≥ 7.5) occurred from 2001 to 2012. Our present analysis focuses on western Shikoku, where triggered NVT has been previously reported (e.g., Miyazawa & Mori, 2006). From a total of 55 teleseismic events, 18 show associated triggered NVT. Our analysis presents clear evidence of triggered NVT that correlates well with the passage of Love waves. The most outstanding example is that of the 2012 M8.6 Sumatra earthquake, a strike-slip event characterized by relatively large amplitude Love waves. The incoming surface waves from this earthquake are almost strike-parallel to the Nankai subduction zone, which corresponds to a higher Love wave triggering potential (Hill, 2012). The 2001 M7.8 Kunlun, the 2003 M8.3 Tokachi-oki, the 2004 M9.2 & 2007 M8.5 Sumatra, the 2006 M8.3 Kuril-Islands and the 2008 M7.9 Wenchuan earthquakes show as well Love-wave associated NVT triggering. In most of these cases the tremor is initiated by the incoming, faster-traveling Love waves and continues during the latter, larger-amplitude Rayleigh waves. We are also conducting dynamic stress modeling to better understand the triggering mechanism of tremor. Our approach builds up on the methods of Gonzalez-Huizar & Velasco (2011) and Obara (2012). In the case of the 2012 Sumatra earthquake, we found a high correlation between the Love waves dynamic Coulomb stress change at the tremor source and the triggered NVT, for a time period of about 400s, which starts from the first Love wave cycles. Afterwards, the tremor bursts have slightly larger amplitudes and the correlation with the surface waves becomes poor. Preliminary results indicate a shallower location for these later tremors. Our results indicate that the triggering mechanism of NVT in western Shikoku is essentially the same with the one operating (e.g., Hill, 2012) in other subduction regions around the world (e.g., Cascadia). The tremor responds to excitation by both Love and Rayleigh waves according to the Coulomb failure criterion; failure, once underway, might be controlled by other mechanisms (e.g., some form of rate-state friction), which we plan to address in future studies.

  14. Global Examination of Triggered Tectonic Tremor following the 2017 Mw8.1 Tehuantepec Earthquake in Mexico

    NASA Astrophysics Data System (ADS)

    Chao, K.; Gonzalez-Huizar, H.; Tang, V.; Klaeser, R. D.; Mattia, M.; Van der Lee, S.

    2017-12-01

    Triggered tremor is one type of slow earthquake that activated by teleseismic surfaces waves of large magnitude earthquake. Observations of triggered tremor can help to evaluate the background ambient tremor rate and slow slip events in the surrounding region. The Mw 8.1 Tehuantepec earthquake in Mexico is an ideal tremor-triggering candidate for a global search for triggered tremor. Here, we examine triggered tremor globally following the M8.1 event and model the tremor-triggering potential. We examine 7,000 seismic traces and found a widely spread triggered tremor along the western coast of the North America occur during the surface waves of the Mw 8.1 event. Triggered tremor appeared in the San Jacinto Fault, San Andreas Fault around Parkfield, and Calaveras Fault in California, in Vancouver Island in Cascadia subduction zone, in Queen Charlotte Margin and Eastern Denali Fault in Canada, and in Alaska and Aleutian Arc. In addition, we observe a newly found triggered tremor source in Mt. Etna in Sicily Island, Italy. However, we do not find clear triggered tremor evidences in the tremor active regions in Japan, Taiwan, and in New Zealand. We model tremor-triggering potential at the triggering earthquake source and triggered tremor sources. Our modeling results suggest the source parameters of the M8.1 triggering events and the stress at the triggered fault zone are two critical factors to control tremor-triggering threshold.

  15. Lessons from (triggered) tremor

    USGS Publications Warehouse

    Gomberg, Joan

    2010-01-01

    I test a “clock-advance” model that implies triggered tremor is ambient tremor that occurs at a sped-up rate as a result of loading from passing seismic waves. This proposed model predicts that triggering probability is proportional to the product of the ambient tremor rate and a function describing the efficacy of the triggering wave to initiate a tremor event. Using data mostly from Cascadia, I have compared qualitatively a suite of teleseismic waves that did and did not trigger tremor with ambient tremor rates. Many of the observations are consistent with the model if the efficacy of the triggering wave depends on wave amplitude. One triggered tremor observation clearly violates the clock-advance model. The model prediction that larger triggering waves result in larger triggered tremor signals also appears inconsistent with the measurements. I conclude that the tremor source process is a more complex system than that described by the clock-advance model predictions tested. Results of this and previous studies also demonstrate that (1) conditions suitable for tremor generation exist in many tectonic environments, but, within each, only occur at particular spots whose locations change with time; (2) any fluid flow must be restricted to less than a meter; (3) the degree to which delayed failure and secondary triggering occurs is likely insignificant; and 4) both shear and dilatational deformations may trigger tremor. Triggered and ambient tremor rates correlate more strongly with stress than stressing rate, suggesting tremor sources result from time-dependent weakening processes rather than simple Coulomb failure.

  16. Investigation of Potential Triggered Tremor in Latin America and the Caribbean

    NASA Astrophysics Data System (ADS)

    Gonzalez-Huizar, H.; Velasco, A. A.; Peng, Z.

    2012-12-01

    Recent observations have shown that seismic waves generate transient stresses capable of triggering earthquakes and tectonic (or non-volcanic) tremor far away from the original earthquake source. However, the mechanisms behind remotely triggered seismicity still remain unclear. Triggered tremor signals can be particularly useful in investigating remote triggering processes, since in many cases, the tremor pulses are very clearly modulated by the passing surface waves. The temporal stress changes (magnitude and orientation) caused by seismic waves at the tremor source region can be calculated and correlated with tremor pulses, which allows for exploring the stresses involved in the triggering process. Some observations suggest that triggered and ambient tremor signals are generated under similar physical conditions; thus, investigating triggered tremor might also provide important clues on how and under what conditions ambient tremor signals generate. In this work we present some of the results and techniques we employ in the research of potential cases of triggered tectonic tremor in Latin America and the Caribbean. This investigation includes: (1) the triggered tremor detection, with the use of specific signal filters; (2) localization of the sources, using uncommon techniques like time reversal signals; (3) and the analysis of the stress conditions under which they are generated, by modeling the triggering waves related dynamic stress. Our results suggest that tremor can be dynamically triggered by both Love and Rayleigh waves and in broad variety of tectonic environments depending strongly on the dynamic stress amplitude and orientation. Investigating remotely triggered seismicity offers the opportunity to improve our knowledge about deformation mechanisms and the physics of rupture.

  17. Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island

    NASA Astrophysics Data System (ADS)

    Rubinstein, Justin L.; Gomberg, Joan; Vidale, John E.; Wech, Aaron G.; Kao, Honn; Creager, Kenneth C.; Rogers, Garry

    2009-02-01

    We explore the physical conditions that enable triggering of nonvolcanic tremor and earthquakes by considering local seismic activity on Vancouver Island, British Columbia during and immediately after the arrival of large-amplitude seismic waves from 30 teleseismic and 17 regional or local earthquakes. We identify tremor triggered by four of the teleseismic earthquakes. The close temporal and spatial proximity of triggered tremor to ambient tremor and aseismic slip indicates that when a fault is close to or undergoing failure, it is particularly susceptible to triggering of further events. The amplitude of the triggering waves also influences the likelihood of triggering both tremor and earthquakes such that large amplitude waves triggered tremor in the absence of detectable aseismic slip or ambient tremor. Tremor and energy radiated from regional/local earthquakes share the same frequency passband so that tremor cannot be identified during these smaller, more frequent events. We confidently identify triggered local earthquakes following only one teleseism, that with the largest amplitude, and four regional or local events that generated vigorous aftershock sequences in their immediate vicinity. Earthquakes tend to be triggered in regions different from tremor and with high ambient seismicity rates. We also note an interesting possible correlation between large teleseismic events and episodic tremor and slip (ETS) episodes, whereby ETS events that are "late" and have built up more stress than normal are susceptible to triggering by the slight nudge of the shaking from a large, distant event, while ETS events that are "early" or "on time" are not.

  18. Seismic Study of Tremor, Deep Long-Period Earthquakes, and Basin Amplification of Ground Motion

    NASA Astrophysics Data System (ADS)

    Han, Jiangang

    In this thesis, we use seismic data and seismological tools to investigate three topics, (1) triggering between slow slip (tremor as proxy) and nearby small earthquakes, (2) mechanisms of deep-long period earthquakes beneath Mount St. Helens, and (3) ground motion amplification in Seattle Basin. In Chapter 1, we investigate 12-year earthquake and tremor catalogs for southwest Japan, and find nearby small intraslab earthquakes are weakly correlated with tremor. In particular, intraslab earthquakes tend to be followed by tremor more often than expected at random, while the excess number of tremor before earthquakes is not as significant. The underlying triggering mechanism of tremor and inferred slow slip by earthquakes is most likely to be the dynamic stress changes (several to several tens of kPa) rather than the much smaller static stress changes. In Chapter 2, we use the catalog DLPs as templates to search for repeating events at Mount St. Helens (MSH). We have detected 277 DLPs, compared to only 22 events previously in the catalog from 2007 to 2016. Three templates from the catalog are single events, while all other templates produced matches, identifying loci of repeated activity. Overall, the detected DLPs show no significant correlation with either the subduction zone tremor and slow slip (ETS) west of MSH, or the shallow seismicity. Temporal analysis shows an elevated rate of DLPs at time of compressional tidal stress, suggesting their possible association with magmatic and/or fluid activity. We observed variable S wave polarization of the DLPs from the most productive DLP source region, indicating their source mechanisms are not identical. In Chapter 3, we use noise correlation to retrieve the empirical green's functions (EGFs) in Seattle Basin. Consistent amplitudes measured from noise EGFs, teleseismic S wave and numerical simulations all suggest the usefulness of the amplitude of EGFs. For surface wave with period of 5-10 sec propagating from west to east, the ground motion is amplified by a factor of up to 3 within the basin. The bias of EGFs from noise heterogeneity and uncertainties of synthetics due to inaccuracy of velocity model are still to be investigated.

  19. Ambient Tremor, But No Triggered Tremor at the Northern Costa Rica Subduction Zone

    NASA Astrophysics Data System (ADS)

    Swiecki, Z.; Schwartz, S. Y.

    2010-12-01

    Non-volcanic tremor (NVT) has been found to be triggered during the passage of surface waves from various teleseismic events in locations around the world including Cascadia, Southwest Japan, Taiwan, and California. In this study we examine the northern Costa Rica subduction zone for evidence of triggered tremor. The Nicoya Peninsula segment of the northern Costa Rica margin experiences both slow-slip and tremor and is thus a prime candidate for triggered tremor observations. Eleven teleseismic events with magnitudes (Mw) greater than 8 occurring between 2006 and 2010 were examined using data from both broadband and short period sensors deployed on the Nicoya Peninsula, Costa Rica. Waveforms from several large regional events were also considered. The largest teleseismic and regional events (27 February 2010 Chile, Mw 8.8 and 28 May 2009 Honduras, Mw 7.3) induced peak ground velocities (PGV) at the NIcoya stations of ~2 and 6 mm/s, respectively; larger than PGVs in other locations that have triggered tremor. Many of the earthquakes examined occurred during small episodes of background ambient tremor. In spite of this, no triggered tremor was observed during the passage of seismic waves from any event. This is significant because other studies have demonstrated that NVT is not triggered everywhere by all events above some threshold magnitude, indicating that unique conditions are required for its occurrence. The lack of triggered tremor at the Costa Rica margin can help to better quantify the requisite conditions and triggering mechanisms. An inherent difference between the Costa Rica margin and the other subduction zones where triggered tremor exists is its erosional rather than accretionary nature. Its relatively low sediment supply likely results in a drier, lower pore fluid pressure, stronger and less compliant thrust interface that is less receptive to triggering tremor from external stresses generated by teleseismic or strong local earthquakes. Another important factor is Costa Rica’s relatively cool subduction zone structure where temperatures required for the fluid generating basalt/ecloginte reaction are not reached until far below tremor producing depths.

  20. Remotely triggered microearthquakes and tremor in central California following the 2010 Mw 8.8 Chile earthquake

    USGS Publications Warehouse

    Peng, Zhigang; Hill, David P.; Shelly, David R.; Aiken, Chastity

    2010-01-01

    We examine remotely triggered microearthquakes and tectonic tremor in central California following the 2010 Mw 8.8 Chile earthquake. Several microearthquakes near the Coso Geothermal Field were apparently triggered, with the largest earthquake (Ml 3.5) occurring during the large-amplitude Love surface waves. The Chile mainshock also triggered numerous tremor bursts near the Parkfield-Cholame section of the San Andreas Fault (SAF). The locally triggered tremor bursts are partially masked at lower frequencies by the regionally triggered earthquake signals from Coso, but can be identified by applying high-pass or matched filters. Both triggered tremor along the SAF and the Ml 3.5 earthquake in Coso are consistent with frictional failure at different depths on critically-stressed faults under the Coulomb failure criteria. The triggered tremor, however, appears to be more phase-correlated with the surface waves than the triggered earthquakes, likely reflecting differences in constitutive properties between the brittle, seismogenic crust and the underlying lower crust.

  1. Remotely triggered nonvolcanic tremor in Sumbawa, Indonesia

    NASA Astrophysics Data System (ADS)

    Fuchs, Florian; Lupi, Matteo; Miller, Stephen

    2015-04-01

    Nonvolcanic (or tectonic) tremor is a seismic phenomenom which can provide important information about dynamics of plate boundaries but the underlying mechanisms are not well understood. Tectonic tremor is often associated with slow-slip (termed episodic tremor and slip) and understanding the mechanisms driving tremor presents an important challenge because it is likely a dominant aspect of the evolutionary processes leading to tsunamigenic, megathrust subduction zone earthquakes. Tectonic tremor is observed worldwide, mainly along major subduction zones and plate boundaries such as in Alaska/Aleutians, Cascadia, the San Andreas Fault, Japan or Taiwan. We present, for the first time, evidence for triggered tremor beneath the island of Sumbawa, Indonesia. The island of Sumbawa, Indonesia, is part of the Lesser Sunda Group about 250 km north of the Australian/Eurasian plate collision at the Java Trench with a convergence rate of approximately 70 mm/yr. We show surface wave triggered tremor beneath Sumbawa in response to three teleseismic earthquakes: the Mw9.0 2011 Tohoku earthquake and two oceanic strike-slip earthquakes (Mw 8.6 and Mw8.2) offshore of Sumatra in 2012. Tremor amplitudes scale with ground motion and peak at 180 nm/s ground velocity on the horizontal components. A comparison of ground motion of the three triggering events and a similar (nontriggering) Mw7.6 2012 Philippines event constrains an apparent triggering threshold of approximately 1 mm/s ground velocity or 8 kPa dynamic stress. Surface wave periods of 45-65 s appear optimal for triggering tremor at Sumbawa which predominantly correlates with Rayleigh waves, even though the 2012 oceanic events have stronger Love wave amplitudes and triggering potential. Rayleigh wave triggering, low-triggering amplitudes, and the tectonic setting all favor a model of tremor generated by localized fluid transport. We could not locate the tremor because of minimal station coverage, but data indicate several potential source volumes including the Flores Thrust, the Java subduction zone, or Tambora volcano.

  2. Infrequent triggering of tremor along the San Jacinto Fault near Anza, California

    USGS Publications Warehouse

    Wang, Tien-Huei; Cochran, Elizabeth S.; Agnew, Duncan Carr; Oglesby, David D.

    2013-01-01

    We examine the conditions necessary to trigger tremor along the San Jacinto fault (SJF) near Anza, California, where previous studies suggest triggered tremor occurs, but observations are sparse. We investigate the stress required to trigger tremor using continuous broadband seismograms from 11 stations located near Anza, California. We examine 44 Mw≥7.4 teleseismic events between 2001 and 2011; these events occur at a wide range of back azimuths and hypocentral distances. In addition, we included one smaller‐magnitude, regional event, the 2009 Mw 6.5 Gulf of California earthquake, because it induced extremely high strains at Anza. We find the only episode of triggered tremor occurred during the 3 November 2002 Mw 7.8 Denali earthquake. The tremor episode lasted 300 s, was composed of 12 tremor bursts, and was located along SJF at the northwestern edge of the Anza gap at approximately 13 km depth. The tremor episode started at the Love‐wave arrival, when surface‐wave particle motions are primarily in the transverse direction. We find that the Denali earthquake induced the second highest stress (~35  kPa) among the 44 teleseismic events and 1 regional event. The dominant period of the Denali surface wave was 22.8 s, at the lower end of the range observed for all events (20–40 s), similar to periods shown to trigger tremor in other locations. The surface waves from the 2009 Mw 6.5 Gulf of California earthquake had the highest observed strain, yet a much shorter dominant period of 10 s and did not trigger tremor. This result suggests that not only the amplitude of the induced strain, but also the period of the incoming surface wave, may control triggering of tremors near Anza. In addition, we find that the transient‐shear stress (17–35 kPa) required to trigger tremor along the SJF at Anza is distinctly higher than what has been reported for the well‐studied San Andreas fault.

  3. Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes

    USGS Publications Warehouse

    Shelly, David R.; Peng, Zhigang; Hill, David P.; Aiken, Chastity

    2011-01-01

    The passage of radiating seismic waves generates transient stresses in the Earth's crust that can trigger slip on faults far away from the original earthquake source. The triggered fault slip is detectable in the form of earthquakes and seismic tremor. However, the significance of these triggered events remains controversial, in part because they often occur with some delay, long after the triggering stress has passed. Here we scrutinize the location and timing of tremor on the San Andreas fault between 2001 and 2010 in relation to distant earthquakes. We observe tremor on the San Andreas fault that is initiated by passing seismic waves, yet migrates along the fault at a much slower velocity than the radiating seismic waves. We suggest that the migrating tremor records triggered slow slip of the San Andreas fault as a propagating creep event. We find that the triggered tremor and fault creep can be initiated by distant earthquakes as small as magnitude 5.4 and can persist for several days after the seismic waves have passed. Our observations of prolonged tremor activity provide a clear example of the delayed dynamic triggering of seismic events. Fault creep has been shown to trigger earthquakes, and we therefore suggest that the dynamic triggering of prolonged fault creep could provide a mechanism for the delayed triggering of earthquakes. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  4. Complex Non-volcanic Tremor in Guerrero Mexico Triggered by the 2010 Mw 8.8 Chilean Earthquake

    NASA Astrophysics Data System (ADS)

    Zigone, D.; Campillo, M.; Husker, A. L.; Kostoglodov, V.; Payero, J. S.; Frank, W.; Shapiro, N. M.; Voisin, C.; Cougoulat, G.; Cotte, N.

    2010-12-01

    In this study we analyze the tremors triggered in Guerrero region (Mexico) by the 2010 magnitude 8.8 Chilean Earthquake using mini-seismic array data from the French-Mexican G-GAP project and broadband data from the Servicio Sismologico Nacional of Mexico. The strong dynamic shaking by the earthquake produced the first observed triggered non-volcanic tremors (NVT) in Mexico so far with at least 3 different types of tremors at different time scales. There was a slow slip event (SSE) occurring at the time of the earthquake, which may have increased the probability of tremor triggering in the region. The first type of observed triggered tremors occurred during the S waves, Love waves and Rayleigh waves as already reported in other subductions zones and continental faults (Miyazawa and Mori, 2005, 2006; Rubinstein et al., 2007; Gomberg et al., 2008; Peng et al, 2009…). The greatest amount of energy and duration accompanies the long-period Rayleigh waves, with smaller bursts during the S and Love waves. For this particular tremor we observed the dispersion of Rayleigh waves in the envelopes of triggered tremors, which indicates a very strong modulation of the source by the passing surface wave. An unexpected short-term tremor occurred approximately one hour later of the arrival of the surface waves on the coastal stations. The NVT has only been previously observed at distances > 100 km inland. It also has a shorter frequency range (3-6 Hz) than other NVT (1-10 Hz) observed in the region. Finally, we observed a significant increase of so-called ambient tremor activity with higher intensity than all triggered NVT during the days after the earthquake. This study adds new types of tremors to the lexicon of triggered NVT observed in the world.

  5. Triggered tremor sweet spots in Alaska

    NASA Astrophysics Data System (ADS)

    Gomberg, Joan; Prejean, Stephanie

    2013-12-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor "sweet spots"—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (< 0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  6. Triggered tremor sweet spots in Alaska

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (<~0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  7. Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake

    NASA Astrophysics Data System (ADS)

    Zigone, Dimitri; Rivet, Diane; Radiguet, Mathilde; Campillo, Michel; Voisin, Christophe; Cotte, Nathalie; Walpersdorf, Andrea; Shapiro, Nikolai M.; Cougoulat, Glenn; Roux, Philippe; Kostoglodov, Vladimir; Husker, Allen; Payero, Juan S.

    2012-09-01

    We investigate the triggering of seismic tremor and slow slip event in Guerrero (Mexico) by the February 27, 2010 Maule earthquake (Mw 8.8). Triggered tremors start with the arrival of S wave generated by the Maule earthquake, and keep occurring during the passing of ScS, SS, Love and Rayleigh waves. The Rayleigh wave dispersion curve footprints the high frequency energy envelope of the triggered tremor, indicating a strong modulation of the source of tremors by the passing surface wave. This correlation and modulation by the passing waves is progressively lost with time over a few hours. The tremor activity continues during the weeks/months after the earthquake. GPS time series suggest that the second sub-event of the 2009-2010 SSE in Guerrero is actually triggered by the Maule earthquake. The southward displacement of the GPS stations starts coincidently with the earthquake and tremors. The long duration of tremors indicate a continuing deformation process at depth, which we propose to be the second sub-event of the 2009-2010 SSE. We show a quasi-systematic correlation between surface displacement rate measured by GPS and tremor activity, suggesting that the NVT are controlled by the variations in the slip history of the SSE. This study shows that two types of tremors emerge: (1) Those directly triggered by the passing waves and (2) those triggered by the stress variations associated with slow slip. This indicates the prominent role of aseismic creep in the Mexican subduction zone response to a large teleseismic earthquake, possibly leading to large-scale stress redistribution.

  8. A 15 year catalog of more than 1 million low-frequency earthquakes: Tracking tremor and slip along the deep San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Shelly, David R.

    2017-05-01

    Low-frequency earthquakes (LFEs) are small, rapidly recurring slip events that occur on the deep extensions of some major faults. Their collective activation is often observed as a semicontinuous signal known as tectonic (or nonvolcanic) tremor. This manuscript presents a catalog of more than 1 million LFEs detected along the central San Andreas Fault from 2001 to 2016. These events have been detected via a multichannel matched-filter search, cross-correlating waveform templates representing 88 different LFE families with continuous seismic data. Together, these source locations span nearly 150 km along the central San Andreas Fault, ranging in depth from 16 to 30 km. This accumulating catalog has been the source for numerous studies examining the behavior of these LFE sources and the inferred slip behavior of the deep fault. The relatively high temporal and spatial resolutions of the catalog have provided new insights into properties such as tremor migration, recurrence, and triggering by static and dynamic stress perturbations. Collectively, these characteristics are inferred to reflect a very weak fault likely under near-lithostatic fluid pressure, yet the physical processes controlling the stuttering rupture observed as tremor and LFE signals remain poorly understood. This paper aims to document the LFE catalog assembly process and associated caveats, while also updating earlier observations and inferred physical constraints. The catalog itself accompanies this manuscript as part of the electronic supplement, with the goal of providing a useful resource for continued future investigations.

  9. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  10. Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  11. Deep brain stimulation for the treatment of uncommon tremor syndromes.

    PubMed

    Ramirez-Zamora, Adolfo; Okun, Michael S

    2016-08-01

    Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson's disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. In this article, we conducted a PubMed search using different combinations between the terms 'Uncommon tremors', 'Dystonic tremor', 'Holmes tremor' 'Midbrain tremor', 'Rubral tremor', 'Cerebellar tremor', 'outflow tremor', 'Multiple Sclerosis tremor', 'Post-traumatic tremor', 'Neuropathic tremor', and 'Deep Brain Stimulation/DBS'. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expert commentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features.

  12. Deep volcanic tremor and magma ascent mechanism under Kilauea, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aki, K.; Koyanagi, R.

    1981-08-10

    Deep harmonic tremor originating at depths around 40 km under Kilauea was studied using records accumulated since 1962 at the Hawaii Volcano Observatory of the U. S. Geological Survey. The deep source of the tremor was determined by onset times and confirmed by the relative amplitude across the island-wide network of seismometers. The period of tremor was conclusively shown to be determined by the source effect and not by the path or station site effect because the period would change considerably in time but maintained uniformity across the seismic net during the tremor episode. The tremor appeared to be primarilymore » composed of P waves. We interpret the observation period and amplitude in terms of the stationary crack model of Aki et al. (1977) and find that the seismic moment rates for deep tremors are considerably larger than those for shallow-tremors suggesting mor vigorous transport for the former. We propose a kinematic source model which may be more appropriate for deep tremor. According to this model, a measurable quantity called 'reduced displacement' is directly proportional to the rate of magma flow. A systematic search for deep tremor episodes was made for the period from 1962 through 1979, and the amplitude, period, and duration of the tremor were tabulated. We then constructed a cumulative reduced-displacement plot over the 18-year period. The result shows a generally steady process which does not seem to be significantly affected by major eruptions and large earthquakes near the surface. The total magma flow estimated from the reduced displacement is however, one order of magnitude smaller than that estimated by Swanson (1972). It may be that most channels transport magma aseismically, and only those with strong barriers generate tremor.« less

  13. Deep volcanic tremor and magma ascent mechanism under Kilauea, Hawaii

    USGS Publications Warehouse

    Aki, Keiiti; Koyanagi, Robert Y

    1981-01-01

    Deep harmonic tremor originating at depths around 40 km under Kilauea was studied using records accumulated since 1962 at the Hawaii Volcano Observatory of the U.S. Geological Survey. The deep source of the tremor was determined by onset times and confirmed by the relative amplitude across the island-wide network of seismometers. The period of tremor was conclusively shown to be determined by the source effect and not by the path or station site effect because the period would change considerably in time but maintained uniformity across the seismic net during the tremor episode. The tremor appeared to be primarily composed of P waves. We interpret the observed period and amplitude in terms of the stationary crack model of Aki et al. (1977) and find that the seismic moment rates for deep tremors are considerably larger than those for shallow-tremors suggesting more vigorous transport for the former. We propose a kinematic source model which may be more appropriate for deep tremor. According to this model, a measurable quantity called ‘reduced displacement’ is directly proportional to the rate of magma flow. A systematic search for deep tremor episodes was made for the period from 1962 through 1979, and the amplitude, period, and duration of the tremor were tabulated. We then constructed a cumulative reduced-displacement plot over the 18-year period. The result shows a generally steady process which does not seem to be significantly affected by major eruptions and large earthquakes near the surface. The total magma flow estimated from the reduced displacement is however, one order of magnitude smaller than that estimated by Swanson (1972). It may be that most channels transport magma aseismically, and only those with strong barriers generate tremor.

  14. Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation

    PubMed Central

    Cagnan, Hayriye; Brittain, John-Stuart; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Joint, Carole; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu

    2013-01-01

    High frequency deep brain stimulation of the thalamus can help ameliorate severe essential tremor. Here we explore how the efficacy, efficiency and selectivity of thalamic deep brain stimulation might be improved in this condition. We started from the hypothesis that the effects of electrical stimulation on essential tremor may be phase dependent, and that, in particular, there are tremor phases at which stimuli preferentially lead to a reduction in the amplitude of tremor. The latter could be exploited to improve deep brain stimulation, particularly if tremor suppression could be reinforced by cumulative effects. Accordingly, we stimulated 10 patients with essential tremor and thalamic electrodes, while recording tremor amplitude and phase. Stimulation near the postural tremor frequency entrained tremor. Tremor amplitude was also modulated depending on the phase at which stimulation pulses were delivered in the tremor cycle. Stimuli in one half of the tremor cycle reduced median tremor amplitude by ∼10%, while those in the opposite half of the tremor cycle increased tremor amplitude by a similar amount. At optimal phase alignment tremor suppression reached 27%. Moreover, tremor amplitude showed a non-linear increase in the degree of suppression with successive stimuli; tremor suppression was increased threefold if a stimulus was preceded by four stimuli with a similar phase relationship with respect to the tremor, suggesting cumulative, possibly plastic, effects. The present results pave the way for a stimulation system that tracks tremor phase to control when deep brain stimulation pulses are delivered to treat essential tremor. This would allow treatment effects to be maximized by focussing stimulation on the optimal phase for suppression and by ensuring that this is repeated over many cycles so as to harness cumulative effects. Such a system might potentially achieve tremor control with far less power demand and greater specificity than current high frequency stimulation approaches, and may lower the risk for tolerance and rebound. PMID:24038075

  15. Study of Tectonic Tremor in Depth: Triggering Stress Observation and Model of the Triggering Mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Tien-Huei

    Non-volcanic tremor (NVT) has been discovered in recent years due to advances in seismic instruments and increased density of seismic networks. The NVT is a special kind of seismic signal indicative of the physical conditions and the failure mechanism on the source on the fault where NVT occurs. The detection methods used and the sensitivity of them relies on the density, distance and instrumentation of the station network available. How accurately the tremor is identified in different regions varies greatly among different studies. Therefore, there has not been study that rigorously documents tectonic tremors in different regions under limited methods and data. Meanwhile, many incidences of NVTs are observed during or after small but significant strain change induced by teleseismic, regional or local earthquake. The understanding of the triggering mechanisms critical for tremor remains unclear. In addition, characteristics of the triggering of NVT in different regions are rarely compared because of the short time frame after the discovery of the triggered NVTs. We first explore tectonic tremor based on observations to learn about its triggering, frequency of occurrence, location and spectral characteristics. Then, we numerically model the triggering of instability on the estimated tremor-source, under assumptions fine-tuned according to previous studies (Thomas et al., 2009; Miyazawa et al., 2005; Hill, 2008; Ito, 2009; Rubinstein et al., 2007; Peng and Chao, 2008). The onset of the slip reveals that how and when the external loading triggers tremor. It also holds the information to the background stress conditions under which tremor source starts with. We observe and detect tremor in two regions: Anza and Cholame, along San Jacinto Fault (SJF) and San Andreas Fault (SAF) respectively. These two sections of the faults, relative to general fault zone on which general earthquakes occur, are considered transition zones where slip of slow rates occurs. Slip events including NVT occur on these sections have slower slip rates than that of the general earthquakes (Rubin, 2008; Ide, 2008). In Azna region, we use envelope and waveform cross-correlation to detect tremor. We investigate the stress required to trigger tremor and tremor spectrum using continuous broadband seismograms from 11 stations located near Anza, California. We examine 44 Mw≥7.4 teleseismic events between 2001 and 2011, in addition to one regional earthquake of smaller-magnitude, the 2009 Mw 6.5 Gulf of California earthquake, because it induced extremely high strain at Anza. The result suggests that not only the amplitude of the induced strain, but also the period of the incoming surface wave, may control triggering of tremor near Anza. In addition, we find that the transient-shear stress (17--35 kPa) required to trigger tremor along the SJF at Anza is distinctly higher than what has been reported for the well-studied SAF (Gulihem et al. 2010). We model slip initiation using the analytical solution of rate-and-state friction. We verify the correctness of this method by comparing the results with that from the dynamic model, implemented using the Multi-Dimensional Spectral Boundary Integral Code (MDSBI) written by Eric M. Dunham from Sanford University. We find that the analytical result is consistent with that of the dynamic model. We set up a patch model with which the source stress and frictional conditions best resemble the current estimates of the tremor source. The frictional regime of this patch is rate-weakening. The initial normal and shear stress, and friction parameters are suggested by previous observations of tectonic tremors both in this and other studies (Brown et al., 2005; Shelly et al., 2006; Miyazawa, 2008; Ben-Zion, 2012). Our dynamic loading first consists of simple harmonic stress change with fixed periods, simplifying the transient stress history to resemble teleseismic earthquakes. We tested the period and amplitude of such periodic loading. We find that the period of the transient shear stress is less important relative to the amplitude. The triggering depends mainly on the ratio between amplitude of the shear stress loading and the background normal stress. We define a range of ratio indicative of the occurrence of the triggering. We later test the triggering of the instability using the shear stress history from 44 large teleseismic earthquakes (data equivalent to those used in Chapter 1). With the constraints of these observations, we find that the background normal stress should be in the range of ˜400-700 kPa. The background normal stress suggested agrees with the common hypothesis that the tremor source is under low normal stress. In addition, our results provide a first estimation of the background normal stress with numerical method. We also demonstrate how our model find constrains on the background physical stress or frictional conditions, with several true incidences that transient shear stress triggers or not-triggers tremor. (Abstract shortened by UMI.).

  16. Long-term detection of Parkinsonian tremor activity from subthalamic nucleus local field potentials.

    PubMed

    Houston, Brady; Blumenfeld, Zack; Quinn, Emma; Bronte-Stewart, Helen; Chizeck, Howard

    2015-01-01

    Current deep brain stimulation paradigms deliver continuous stimulation to deep brain structures to ameliorate the symptoms of Parkinson's disease. This continuous stimulation has undesirable side effects and decreases the lifespan of the unit's battery, necessitating earlier replacement. A closed-loop deep brain stimulator that uses brain signals to determine when to deliver stimulation based on the occurrence of symptoms could potentially address these drawbacks of current technology. Attempts to detect Parkinsonian tremor using brain signals recorded during the implantation procedure have been successful. However, the ability of these methods to accurately detect tremor over extended periods of time is unknown. Here we use local field potentials recorded during a deep brain stimulation clinical follow-up visit 1 month after initial programming to build a tremor detection algorithm and use this algorithm to detect tremor in subsequent visits up to 8 months later. Using this method, we detected the occurrence of tremor with accuracies between 68-93%. These results demonstrate the potential of tremor detection methods for efficacious closed-loop deep brain stimulation over extended periods of time.

  17. Power spectral density analysis of physiological, rest and action tremor in Parkinson’s disease patients treated with deep brain stimulation

    PubMed Central

    2013-01-01

    Background Observation of the signals recorded from the extremities of Parkinson’s disease patients showing rest and/or action tremor reveal a distinct high power resonance peak in the frequency band corresponding to tremor. The aim of the study was to investigate, using quantitative measures, how clinically effective and less effective deep brain stimulation protocols redistribute movement power over the frequency bands associated with movement, pathological and physiological tremor, and whether normal physiological tremor may reappear during those periods that tremor is absent. Methods The power spectral density patterns of rest and action tremor were studied in 7 Parkinson’s disease patients treated with (bilateral) deep brain stimulation of the subthalamic nucleus. Two tests were carried out: 1) the patient was sitting at rest; 2) the patient performed a hand or foot tapping movement. Each test was repeated four times for each extremity with different stimulation settings applied during each repetition. Tremor intermittency was taken into account by classifying each 3-second window of the recorded angular velocity signals as a tremor or non-tremor window. Results The distribution of power over the low frequency band (<3.5 Hz – voluntary movement), tremor band (3.5-7.5 Hz) and high frequency band (>7.5 Hz – normal physiological tremor) revealed that rest and action tremor show a similar power-frequency shift related to tremor absence and presence: when tremor is present most power is contained in the tremor frequency band; when tremor is absent lower frequencies dominate. Even under resting conditions a relatively large low frequency component became prominent, which seemed to compensate for tremor. Tremor absence did not result in the reappearance of normal physiological tremor. Conclusion Parkinson’s disease patients continuously balance between tremor and tremor suppression or compensation expressed by power shifts between the low frequency band and the tremor frequency band during rest and voluntary motor actions. This balance shows that the pathological tremor is either on or off, with the latter state not resembling that of a healthy subject. Deep brain stimulation can reverse the balance thereby either switching tremor on or off. PMID:23834737

  18. Long-Term Efficacy of Constant Current Deep Brain Stimulation in Essential Tremor.

    PubMed

    Rezaei Haddad, Ali; Samuel, Michael; Hulse, Natasha; Lin, Hsin-Ying; Ashkan, Keyoumars

    2017-07-01

    Ventralis intermedius deep brain stimulation is an established intervention for medication-refractory essential tremor. Newer constant current stimulation technology offers theoretical advantage over the traditional constant voltage systems in terms of delivering a more biologically stable therapy. There are no previous reports on the outcomes of constant current deep brain stimulation in the treatment of essential tremor. This study aimed to evaluate the long-term efficacy of ventralis intermedius constant current deep brain stimulation in patients diagnosed with essential tremor. Essential tremor patients implanted with constant current deep brain stimulation for a minimum of three years were evaluated. Clinical outcomes were assessed using the Fahn-Tolosa-Marin tremor rating scale at baseline and postoperatively at the time of evaluation. The quality of life in the patients was assessed using the Quality of Life in Essential Tremor questionnaire. Ten patients were evaluated with a median age at evaluation of 74 years (range 66-79) and a mean follow up time of 49.7 (range 36-78) months since starting stimulation. Constant current ventralis intermedius deep brain stimulation was well tolerated and effective in all patients with a mean score improvement from 50.7 ± 5.9 to 17.4 ± 5.7 (p = 0.0020) in the total Fahn-Tolosa-Marin rating scale score (65.6%). Furthermore, the total combined mean Quality of Life in Essential Tremor score was improved from 56.2 ± 4.9 to 16.8 ± 3.5 (p value = 0.0059) (70.1%). This report shows that long-term constant current ventralis intermedius deep brain stimulation is a safe and effective intervention for essential tremor patients. © 2017 International Neuromodulation Society.

  19. Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones

    USGS Publications Warehouse

    Brown, Justin R.; Beroza, Gregory C.; Ide, Satoshi; Ohta, Kazuaki; Shelly, David R.; Schwartz, Susan Y.; Rabbel, Wolfgang; Thorwart, M.; Kao, Honn

    2009-01-01

    Deep tremor under Shikoku, Japan, consists primarily, and perhaps entirely, of swarms of low-frequency earthquakes (LFEs) that occur as shear slip on the plate interface. Although tremor is observed at other plate boundaries, the lack of cataloged low-frequency earthquakes has precluded a similar conclusion about tremor in those locales. We use a network autocorrelation approach to detect and locate LFEs within tremor recorded at three subduction zones characterized by different thermal structures and levels of interplate seismicity: southwest Japan, northern Cascadia, and Costa Rica. In each case we find that LFEs are the primary constituent of tremor and that they locate on the deep continuation of the plate boundary. This suggests that tremor in these regions shares a common mechanism and that temperature is not the primary control on such activity.

  20. A search in strainmeter data for slow slip associated with triggered and ambient tremor near Parkfield, California

    USGS Publications Warehouse

    Smith, E.F.; Gomberg, J.

    2009-01-01

    We test the hypothesis that, as in subduction zones, slow slip facilitates triggered and ambient tremor in the transform boundary setting of California. Our study builds on the study of Peng et al. (2009) of triggered and ambient tremor near Parkfield, California during time intervals surrounding 31, potentially triggering, M ≥ 7.5 teleseismic earthquakes; waves from 10 of these triggered tremor and 29 occurred in periods of ambient tremor activity. We look for transient slow slip during 3-month windows that include 11 of these triggering and nontriggering teleseisms, using continuous strain data recorded on two borehole Gladwin tensor strainmeters (GTSM) located within the distribution of tremor epicenters. We model the GTSM data assuming only tidal and “drift” signals are present and find no detectable slow slip, either ongoing when the teleseismic waves passed or triggered by them. We infer a conservative detection threshold of about 5 nanostrain for abrupt changes and about twice this for slowly evolving signals. This could be lowered slightly by adding analyses of other data types, modeled slow slip signals, and GTSM data calibration. Detection of slow slip also depends on the slipping fault's location and size, which we describe in terms of equivalent earthquake moment magnitude, M. In the best case of the GTSM above a very shallow slipping fault, detectable slip events must exceed M~2, and if the slow slip is beneath the seismogenic zone (below ~15 km depth), even M~5 events are likely to remain hidden.

  1. Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor

    USGS Publications Warehouse

    Shelly, David R.

    2009-01-01

    Earthquake predictability depends, in part, on the degree to which sudden slip is preceded by slow aseismic slip. Recently, observations of deep tremor have enabled inferences of deep slow slip even when detection by other means is not possible, but these data are limited to certain areas and mostly the last decade. The region near Parkfield, California, provides a unique convergence of several years of high-quality tremor data bracketing a moderate earthquake, the 2004 magnitude 6.0 event. Here, I present detailed observations of tectonic tremor from mid-2001 through 2008 that indicate deep fault slip both before and after the Parkfield earthquake that cannot be detected with surface geodetic instruments. While there is no obvious short-term precursor, I find unidirectional tremor migration accompanied by elevated tremor rates in the 3 months prior to the earthquake, which suggests accelerated creep on the fault ∼16 km beneath the eventual earthquake hypocenter.

  2. Tectonic tremor activity associated with teleseismic and nearby earthquakes

    NASA Astrophysics Data System (ADS)

    Chao, K.; Obara, K.; Peng, Z.; Pu, H. C.; Frank, W.; Prieto, G. A.; Wech, A.; Hsu, Y. J.; Yu, C.; Van der Lee, S.; Apley, D. W.

    2016-12-01

    Tectonic tremor is an extremely stress-sensitive seismic phenomenon located in the brittle-ductile transition section of a fault. To better understand the stress interaction between tremor and earthquake, we conduct the following studies: (1) search for triggered tremor globally, (2) examine ambient tremor activities associated with distant earthquakes, and (3) quantify the temporal variation of ambient tremor activity before and after nearby earthquakes. First, we developed a Matlab toolbox to enhance the searching of triggered tremor globally. We have discovered new tremor sources in the inland faults in Kyushu, Kanto, and Hokkaido in Japan, southern Chile, Ecuador, and central Colombia in South America, and in South Italy. Our findings suggest that tremor is more common than previously believed and indicate the potential existence of ambient tremor in the triggered tremor active regions. Second, we adapt the statistical analysis to examine whether the long-term ambient tremor rate may affect by the dynamic stress of teleseismic earthquakes. We analyzed the data in Nankai, Hokkaido, Cascadia, and Taiwan. Our preliminary results did not show an apparent increase of ambient tremor rate after the passing of surface waves. Third, we quantify temporal changes in ambient tremor activity before and after the occurrence of local earthquakes under the southern Central Range of Taiwan with magnitudes of >=5.5 from 2004 to 2016. For a particular case, we found a temporal variation of tremor rate before and after the 2010/03/04 Mw6.3 earthquake, located about 20 km away from the active tremor source. The long-term increase in the tremor rate after the earthquake could have been caused by an increase in static stress following the mainshock. For comparison, clear evidence from seismic and GPS observations indicate a short-term increase in the tremor rate a few weeks before the mainshock. The increase in the tremor rate before the mainshock could correlate with stress changes in the earthquake rupture zone. Our study provides direct observations to imply that the stress-sensitive tectonic tremor may reflect stress variation during the nucleation process of a nearby earthquake.

  3. Tremor-genic slow slip regions may be deeper and warmer and may slip slower than non-tremor-genic regions

    USGS Publications Warehouse

    Montgomery-Brown, Emily; Syracuse, Ellen M.

    2015-01-01

    Slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kīlauea Volcano, Hawaii, the Boso Peninsula, Japan, near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead, they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor, including slip velocity, pressure, temperature, fluids, and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kīlauea Volcano (∼10−6 m/s) and Boso Peninsula (∼10−7 m/s) are among the fastest SSEs worldwide. Kīlauea Volcano, the Boso Peninsula, and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. Fluids also likely contribute to tremor generation, and no corresponding zone of high vp/vs has been noted at Kīlauea or Boso. We suggest that the relatively faster slip velocities at Kīlauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.

  4. Evolving Concepts in Posterior Subthalamic Area Deep Brain Stimulation for Treatment of Tremor: Surgical Neuroanatomy and Practical Considerations.

    PubMed

    Ramirez-Zamora, Adolfo; Smith, Heather; Kumar, Vignessh; Prusik, Julia; Phookan, Sujoy; Pilitsis, Julie G

    2016-01-01

    Although thalamic deep brain stimulation (DBS) has been established as an effective therapy for refractory tremor in Parkinson's disease and essential tremor, reports investigating the efficacy of posterior subthalamic area (PSA) DBS for severe, debilitating tremors continue to emerge. However, questions regarding the optimal anatomical target, surgical approach, programming paradigms and effectiveness compared to other targets remain. In this report, we aimed to review the current literature to assess different stereotactic techniques, anatomical considerations, adverse effects and stimulation settings in PSA DBS. A comprehensive literature review was performed searching for articles discussing tremors and PSA stimulation. We performed a quantitative analysis comparing different DBS tremor targets. Tremor improvement is consistently documented in most reports with an average reduction in tremor of 79% depending on the specific tremor syndrome. Tremor benefit in patients with multiple sclerosis (MS) tremor was significantly higher than for other stimulation targets. Transient paresthesias, imbalance, dizziness and dysarthria are the most common side effects with PSA DBS. PSA DBS is an effective and safe treatment for tremor control and should be considered in patients with refractory tremors with associated cerebellar or dystonic features, proximal tremors and MS tremor. © 2016 S. Karger AG, Basel.

  5. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report.

    PubMed

    Ho, Allen L; Choudhri, Omar; Sung, C Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-03-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS).

  6. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report

    PubMed Central

    Choudhri, Omar; Sung, C. Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-01-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS). PMID:26180680

  7. S-wave triggering of tremor beneath the Parkfield, California, section of the San Andreas fault by the 2011 Tohoku, Japan earthquake: observations and theory

    USGS Publications Warehouse

    Hill, David P.; Peng, Zhigang; Shelly, David R.; Aiken, Chastity

    2013-01-01

    The dynamic stresses that are associated with the energetic seismic waves generated by the Mw 9.0 Tohoku earthquake off the northeast coast of Japan triggered bursts of tectonic tremor beneath the Parkfield section of the San Andreas fault (SAF) at an epicentral distance of ∼8200  km. The onset of tremor begins midway through the ∼100‐s‐period S‐wave arrival, with a minor burst coinciding with the SHSH arrival, as recorded on the nearby broadband seismic station PKD. A more pronounced burst coincides with the Love arrival, followed by a series of impulsive tremor bursts apparently modulated by the 20‐ to 30‐s‐period Rayleigh wave. The triggered tremor was located at depths between 20 and 30 km beneath the surface trace of the fault, with the burst coincident with the S wave centered beneath the fault 30 km northwest of Parkfield. Most of the subsequent activity, including the tremor coincident with the SHSH arrival, was concentrated beneath a stretch of the fault extending from 10 to 40 km southeast of Parkfield. The seismic waves from the Tohoku epicenter form a horizontal incidence angle of ∼14°, with respect to the local strike of the SAF. Computed peak dynamic Coulomb stresses on the fault at tremor depths are in the 0.7–10 kPa range. The apparent modulation of tremor bursts by the small, strike‐parallel Rayleigh‐wave stresses (∼0.7  kPa) is likely enabled by pore pressure variations driven by the Rayleigh‐wave dilatational stress. These results are consistent with the strike‐parallel dynamic stresses (δτs) associated with the S, SHSH, and surface‐wave phases triggering small increments of dextral slip on the fault with a low friction (μ∼0.2). The vertical dynamic stresses δτd do not trigger tremor with vertical or oblique slip under this simple Coulomb failure model.

  8. Striations, duration, migration and tidal response in deep tremor.

    PubMed

    Ide, Satoshi

    2010-07-15

    Deep tremor in subduction zones is thought to be caused by small repeating shear slip events on the plate interface with significant slow components. It occurs at a depth of about 30 kilometres and provides valuable information on deep plate motion and shallow stress accumulation on the fault plane of megathrust earthquakes. Tremor has been suggested to repeat at a regular interval, migrate at various velocities and be modulated by tidal stress. Here I show that some time-invariant interface property controls tremor behaviour, using precise location of tremor sources with event duration in western Shikoku in the Nankai subduction zone, Japan. In areas where tremor duration is short, tremor is more strongly affected by tidal stress and migration is inhibited. Where tremor lasts longer, diffusive migration occurs with a constant diffusivity of 10(4) m(2) s(-1). The control property may be the ratio of brittle to ductile areas, perhaps determined by the influence of mantle wedge serpentinization on the plate interface. The spatial variation of the controlling property seems to be characterized by striations in tremor source distribution, which follows either the current or previous plate subduction directions. This suggests that the striations and corresponding interface properties are formed through the subduction of inhomogeneous structure, such as seamounts, for periods as long as ten million years.

  9. The nature of tremor circuits in parkinsonian and essential tremor

    PubMed Central

    Cagnan, Hayriye; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Cheeran, Binith; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu

    2014-01-01

    Tremor is a cardinal feature of Parkinson’s disease and essential tremor, the two most common movement disorders. Yet, the mechanisms underlying tremor generation remain largely unknown. We hypothesized that driving deep brain stimulation electrodes at a frequency closely matching the patient’s own tremor frequency should interact with neural activity responsible for tremor, and that the effect of stimulation on tremor should reveal the role of different deep brain stimulation targets in tremor generation. Moreover, tremor responses to stimulation might reveal pathophysiological differences between parkinsonian and essential tremor circuits. Accordingly, we stimulated 15 patients with Parkinson’s disease with either thalamic or subthalamic electrodes (13 male and two female patients, age: 50–77 years) and 10 patients with essential tremor with thalamic electrodes (nine male and one female patients, age: 34–74 years). Stimulation at near-to tremor frequency entrained tremor in all three patient groups (ventrolateral thalamic stimulation in Parkinson’s disease, P = 0.0078, subthalamic stimulation in Parkinson’s disease, P = 0.0312; ventrolateral thalamic stimulation in essential tremor, P = 0.0137; two-tailed paired Wilcoxon signed-rank tests). However, only ventrolateral thalamic stimulation in essential tremor modulated postural tremor amplitude according to the timing of stimulation pulses with respect to the tremor cycle (e.g. P = 0.0002 for tremor amplification, two-tailed Wilcoxon rank sum test). Parkinsonian rest and essential postural tremor severity (i.e. tremor amplitude) differed in their relative tolerance to spontaneous changes in tremor frequency when stimulation was not applied. Specifically, the amplitude of parkinsonian rest tremor remained unchanged despite spontaneous changes in tremor frequency, whereas that of essential postural tremor reduced when tremor frequency departed from median values. Based on these results we conclude that parkinsonian rest tremor is driven by a neural network, which includes the subthalamic nucleus and ventrolateral thalamus and has broad frequency-amplitude tolerance. We propose that it is this tolerance to changes in tremor frequency that dictates that parkinsonian rest tremor may be significantly entrained by low frequency stimulation without stimulation timing-dependent amplitude modulation. In contrast, the circuit influenced by low frequency thalamic stimulation in essential tremor has a narrower frequency-amplitude tolerance so that tremor entrainment through extrinsic driving is necessarily accompanied by amplitude modulation. Such differences in parkinsonian rest and essential tremor will be important in selecting future strategies for closed loop deep brain stimulation for tremor control. PMID:25200741

  10. Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?

    USGS Publications Warehouse

    Shelly, D.R.; Ellsworth, W.L.; Ryberg, T.; Haberland, C.; Fuis, G.S.; Murphy, J.; Nadeau, R.M.; Burgmann, R.

    2009-01-01

    We examine a 24-hour period of active San Andreas Fault (SAF) tremor and show that this tremor is largely composed of repeated similar events. Utilizing this similarity, we locate the subset of the tremor with waveforms similar to an identified low frequency earthquake (LFE) "master template," located using P and S wave arrivals to be ???26 km deep. To compensate for low signal-to-noise, we estimate event-pair differential times at "clusters" of nearby stations rather than at single stations. We find that the locations form a near-linear structure in map view, striking parallel to the SAF and near the surface trace. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, likely reflecting shear slip, similar to subduction zone tremor. If so, the SAF may extend to the base of the crust, ???10 km below the deepest regular earthquakes on the fault. ?? 2009 by the American Geophysical Union.

  11. Spontaneous non-volcanic tremor detected in the Anza Seismic Gap of San Jacinto Fault

    NASA Astrophysics Data System (ADS)

    Hutchison, A. A.; Ghosh, A.

    2017-12-01

    Non-volcanic tremor (NVT), a type of slow earthquake, is becoming more frequently detected along plate boundaries, particularly in subduction zones, and is also observed along the San Andreas Fault [e.g. Nadeau & Dolenc, 2005]. NVT is typically associated with transient deformation (i.e. slow slip) in the transition zone [e.g. Ide et al., 2007], and at times it is observed with deep creep along faults [e.g. Beroza & Ide, 2011]. Using several independent location and detection methods including multi-beam backprojection [Ghosh et al., 2009a; 2012], envelope cross correlation [Wech & Creager, 2008], spectral analyses and visual inspection of existing network stations and high-density mini seismic array data, we detect multiple discrete spontaneous tremor events in the Anza Gap of the San Jacinto Fault (SJF) in June, 2011. The events occur on the SJF where the Hot Springs Fault terminates, on the northwestern boundary of the Anza Gap, below the inferred seismogenic zone characterized by velocity weakening frictional behavior [e.g. Lindsay et al., 2014]. The location methods provide consistent locations for each event in our catalog. Low slowness values help rule-out surface noise that may result in false detections. Analyses of frequency spectra show these time windows are depleted in high frequency energy in the displacement amplitude spectrum compared to small local regular (fast) earthquakes. This spectral pattern is characteristic of tremor [Shelly et al., 2007]. We interpret this tremor to be a seismic manifestation of slow-slip events below the seismogenic zone. Recently, an independent geodetic study suggests that the 2010 El Mayor-Cucupah earthquake triggered a slow-slip event in the Anza Gap [Inbal et al., 2017]. In addition, multiple studies infer deep creep in the SJF [e.g. Meng & Peng et al., 2016; Jiang & Fialko, 2016] indicating that this fault is capable of producing slow slip events. Transient tectonic behavior like tremor and slow slip may be playing an important role in seismic cycle of the Anza Gap in particular, and the SJF in general. [Hutchison & Ghosh, 2017

  12. Hear it, See it, Explore it: Visualizations and Sonifications of Seismic Signals

    NASA Astrophysics Data System (ADS)

    Fisher, M.; Peng, Z.; Simpson, D. W.; Kilb, D. L.

    2010-12-01

    Sonification of seismic data is an innovative way to represent seismic data in the audible range (Simpson, 2005). Seismic waves with different frequency and temporal characteristics, such as those from teleseismic earthquakes, deep “non-volcanic” tremor and local earthquakes, can be easily discriminated when time-compressed to the audio range. Hence, sonification is particularly useful for presenting complicated seismic signals with multiple sources, such as aftershocks within the coda of large earthquakes, and remote triggering of earthquakes and tremor by large teleseismic earthquakes. Previous studies mostly focused on converting the seismic data into audible files by simple time compression or frequency modulation (Simpson et al., 2009). Here we generate animations of the seismic data together with the sounds. We first read seismic data in the SAC format into Matlab, and generate a sequence of image files and an associated WAV sound file. Next, we use a third party video editor, such as the QuickTime Pro, to combine the image sequences and the sound file into an animation. We have applied this simple procedure to generate animations of remotely triggered earthquakes, tremor and low-frequency earthquakes in California, and mainshock-aftershock sequences in Japan and California. These animations clearly demonstrate the interactions of earthquake sequences and the richness of the seismic data. The tool developed in this study can be easily adapted for use in other research applications and to create sonification/animation of seismic data for education and outreach purpose.

  13. Deep brain stimulation for the treatment of uncommon tremor syndromes

    PubMed Central

    Ramirez-Zamora, Adolfo; Okun, Michael S.

    2016-01-01

    ABSTRACT Introduction: Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson’s disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. Areas covered: In this article, we conducted a PubMed search using different combinations between the terms ‘Uncommon tremors’, ‘Dystonic tremor’, ‘Holmes tremor’ ‘Midbrain tremor’, ‘Rubral tremor’, ‘Cerebellar tremor’, ‘outflow tremor’, ‘Multiple Sclerosis tremor’, ‘Post-traumatic tremor’, ‘Neuropathic tremor’, and ‘Deep Brain Stimulation/DBS’. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expert c ommentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features. PMID:27228280

  14. Linking magma transport structures at Kīlauea volcano

    USGS Publications Warehouse

    Wech, Aaron G.; Thelen, Weston A.

    2015-01-01

    Identifying magma pathways is important for understanding and interpreting volcanic signals. At Kīlauea volcano, seismicity illuminates subsurface plumbing, but the broad spectrum of seismic phenomena hampers event identification. Discrete, long-period events (LPs) dominate the shallow (5-10 km) plumbing, and deep (40+ km) tremor has been observed offshore. However, our inability to routinely identify these events limits their utility in tracking ascending magma. Using envelope cross-correlation, we systematically catalog non-earthquake seismicity between 2008-2014. We find the LPs and deep tremor are spatially distinct, separated by the 15-25 km deep, horizontal mantle fault zone (MFZ). Our search corroborates previous observations, but we find broader-band (0.5-20 Hz) tremor comprising collocated earthquakes and reinterpret the deep tremor as earthquake swarms in a volume surrounding and responding to magma intruding from the mantle plume beneath the MFZ. We propose the overlying MFZ promotes lateral magma transport, linking this deep intrusion with Kīlauea’s shallow magma plumbing.

  15. Repeating Earthquake and Nonvolcanic Tremor Observations of Aseismic Deep Fault Transients in Central California.

    NASA Astrophysics Data System (ADS)

    Nadeau, R. M.; Traer, M.; Guilhem, A.

    2005-12-01

    Seismic indicators of fault zone deformation can complement geodetic measurements by providing information on aseismic transient deformation: 1) from deep within the fault zone, 2) on a regional scale, 3) with intermediate temporal resolution (weeks to months) and 4) that spans over 2 decades (1984 to early 2005), including pre- GPS and INSAR coverage. Along the San Andreas Fault (SAF) in central California, two types of seismic indicators are proving to be particularly useful for providing information on deep fault zone deformation. The first, characteristically repeating microearthquakes, provide long-term coverage (decades) on the evolution of aseismic fault slip rates at seismogenic depths along a large (~175 km) stretch of the SAF between the rupture zones of the ~M8 1906 San Francisco and 1857 Fort Tejon earthquakes. In Cascadia and Japan the second type of seismic indicator, nonvolcanic tremors, have shown a remarkable correlation between their activity rates and GPS and tiltmeter measurements of transient deformation in the deep (sub-seismogenic) fault zone. This correlation suggests that tremor rate changes and deep transient deformation are intimately related and that deformation associated with the tremor activity may be stressing the seismogenic zone in both areas. Along the SAF, nonvolcanic tremors have only recently been discovered (i.e., in the Parkfield-Cholame area), and knowledge of their full spatial extent is still relatively limited. Nonetheless the observed temporal correlation between earthquake and tremor activity in this area is consistent with a model in which sub-seismogenic deformation and seismogenic zone stress changes are closely related. We present observations of deep aseismic transient deformation associated with the 28 September 2004, M6 Parkfield earthquake from both repeating earthquake and nonvolcanic tremor data. Also presented are updated deep fault slip rate estimates from prepeating quakes in the San Juan Bautista area with an assessment of their significance to previously reported quasi-periodic slip rate pulses and small to moderate magnitude (> M3.5) earthquake occurrence in the area.

  16. Tremor reveals stress shadowing, deep postseismic creep, and depth-dependent slip recurrence on the lower-crustal San Andreas fault near Parkfield

    USGS Publications Warehouse

    Shelly, David R.; Johnson, Kaj M.

    2011-01-01

    The 2003 magnitude 6.5 San Simeon and the 2004 magnitude 6.0 Parkfield earthquakes induced small, but significant, static stress changes in the lower crust on the central San Andreas fault, where recently detected tectonic tremor sources provide new constraints on deep fault creep processes. We find that these earthquakes affect tremor rates very differently, consistent with their differing transferred static shear stresses. The San Simeon event appears to have cast a "stress shadow" north of Parkfield, where tremor activity was stifled for 3-6 weeks. In contrast, the 2004 Parkfield earthquake dramatically increased tremor activity rates both north and south of Parkfield, allowing us to track deep postseismic slip. Following this event, rates initially increased by up to two orders of magnitude for the relatively shallow tremor sources closest to the rupture, with activity in some sources persisting above background rates for more than a year. We also observe strong depth dependence in tremor recurrence patterns, with shallower sources generally exhibiting larger, less-frequent bursts, possibly signaling a transition toward steady creep with increasing temperature and depth. Copyright 2011 by the American Geophysical Union.

  17. Long-Term Effective Thalamic Deep Brain Stimulation for Neuropathic Tremor in Two Patients with Charcot-Marie-Tooth Disease.

    PubMed

    Cabañes-Martínez, Lidia; Del Álamo de Pedro, Marta; de Blas Beorlegui, Gema; Bailly-Bailliere, Ignacio Regidor

    2017-01-01

    It has been described that many Charcot-Marie-Tooth syndrome type 2 patients are affected by a very disabling type of tremor syndrome, the pathophysiology of which remains unclear. Deep brain stimulation (DBS) has been successfully applied to treat most types of tremors by implanting electrodes in the ventral intermediate nucleus of the thalamus (Vim). We used DBS applied to the Vim in 2 patients with severe axonal inherited polyneuropathies who developed a disabling tremor. Both patients responded positively to stimulation, with a marked reduction of the tremor and with an improvement of their quality of life. We report 2 cases of tremor associated with a hereditary neuropathy with a good response to DBS. © 2017 S. Karger AG, Basel.

  18. San Andreas tremor cascades define deep fault zone complexity

    USGS Publications Warehouse

    Shelly, David R.

    2015-01-01

    Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  19. Long-term outcome of deep brain stimulation in fragile X-associated tremor/ataxia syndrome.

    PubMed

    Weiss, Daniel; Mielke, Carina; Wächter, Tobias; Bender, Benjamin; Liscic, Rajka M; Scholten, Marlieke; Naros, Georgios; Plewnia, Christian; Gharabaghi, Alireza; Krüger, Rejko

    2015-03-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) presents as complex movement disorder including tremor and cerebellar ataxia. The efficacy and safety of deep brain stimulation of the nucleus ventralis intermedius of the thalamus in atypical tremor syndromes like FXTAS remains to be determined. Here, we report the long-term outcome of three male genetically confirmed FXTAS patients treated with bilateral neurostimulation of the nucleus ventralis intermedius for up to four years. All patients demonstrated sustained improvement of both tremor and ataxia - the latter included improvement of intention tremor and axial tremor. Kinematic gait analyses further demonstrated a regularization of the gait cycle. Initial improvements of hand functional disability were not sustained and reached the preoperative level of impairment within one to two years from surgery. Our data on patients with a genetic cause of tremor show favorable outcome and may contribute to improved patient stratification for neurostimulation therapy in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Tremor–genic slow slip regions may be deeper and warmer and may slip slower than non–tremor–genic regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery-Brown, E. K.; Syracuse, E. M.

    The slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kilauea Volcano, Hawaii, the Boso Peninsula, Japan, {near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor including: slip velocity, pressure, temperature, fluidsmore » and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kilauea Volcano (~10⁻⁶ m/s) and Boso Peninsula (~10⁻⁷ m/s) are among the fastest SSEs worldwide. Kilauea Volcano, the Boso Peninsula and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. {Fluids also likely contribute to tremor generation, and no corresponding zone of high v p/v s has been noted at Kilauea or Boso. We suggest that the relatively faster slip velocities at Kilauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.« less

  1. Tremor–genic slow slip regions may be deeper and warmer and may slip slower than non–tremor–genic regions

    DOE PAGES

    Montgomery-Brown, E. K.; Syracuse, E. M.

    2015-09-17

    The slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kilauea Volcano, Hawaii, the Boso Peninsula, Japan, {near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor including: slip velocity, pressure, temperature, fluidsmore » and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kilauea Volcano (~10⁻⁶ m/s) and Boso Peninsula (~10⁻⁷ m/s) are among the fastest SSEs worldwide. Kilauea Volcano, the Boso Peninsula and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. {Fluids also likely contribute to tremor generation, and no corresponding zone of high v p/v s has been noted at Kilauea or Boso. We suggest that the relatively faster slip velocities at Kilauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.« less

  2. Harmaline Tremor: Underlying Mechanisms in a Potential Animal Model of Essential Tremor

    PubMed Central

    Handforth, Adrian

    2012-01-01

    Background Harmaline and harmine are tremorigenic β-carbolines that, on administration to experimental animals, induce an acute postural and kinetic tremor of axial and truncal musculature. This drug-induced action tremor has been proposed as a model of essential tremor. Here we review what is known about harmaline tremor. Methods Using the terms harmaline and harmine on PubMed, we searched for papers describing the effects of these β-carbolines on mammalian tissue, animals, or humans. Results Investigations over four decades have shown that harmaline induces rhythmic burst-firing activity in the medial and dorsal accessory inferior olivary nuclei that is transmitted via climbing fibers to Purkinje cells and to the deep cerebellar nuclei, then to brainstem and spinal cord motoneurons. The critical structures required for tremor expression are the inferior olive, climbing fibers, and the deep cerebellar nuclei; Purkinje cells are not required. Enhanced synaptic norepinephrine or blockade of ionic glutamate receptors suppresses tremor, whereas enhanced synaptic serotonin exacerbates tremor. Benzodiazepines and muscimol suppress tremor. Alcohol suppresses harmaline tremor but exacerbates harmaline-associated neural damage. Recent investigations on the mechanism of harmaline tremor have focused on the T-type calcium channel. Discussion Like essential tremor, harmaline tremor involves the cerebellum, and classic medications for essential tremor have been found to suppress harmaline tremor, leading to utilization of the harmaline model for preclinical testing of antitremor drugs. Limitations are that the model is acute, unlike essential tremor, and only approximately half of the drugs reported to suppress harmaline tremor are subsequently found to suppress tremor in clinical trials. PMID:23440018

  3. Deep brain stimulation in uncommon tremor disorders: indications, targets, and programming.

    PubMed

    Artusi, Carlo Alberto; Farooqi, Ashar; Romagnolo, Alberto; Marsili, Luca; Balestrino, Roberta; Sokol, Leonard L; Wang, Lily L; Zibetti, Maurizio; Duker, Andrew P; Mandybur, George T; Lopiano, Leonardo; Merola, Aristide

    2018-03-06

    In uncommon tremor disorders, clinical efficacy and optimal anatomical targets for deep brain stimulation (DBS) remain inadequately studied and insufficiently quantified. We performed a systematic review of PubMed.gov and ClinicalTrials.gov. Relevant articles were identified using the following keywords: "tremor", "Holmes tremor", "orthostatic tremor", "multiple sclerosis", "multiple sclerosis tremor", "neuropathy", "neuropathic tremor", "fragile X-associated tremor/ataxia syndrome", and "fragile X." We identified a total of 263 cases treated with DBS for uncommon tremor disorders. Of these, 44 had Holmes tremor (HT), 18 orthostatic tremor (OT), 177 multiple sclerosis (MS)-associated tremor, 14 neuropathy-associated tremor, and 10 fragile X-associated tremor/ataxia syndrome (FXTAS). DBS resulted in favorable, albeit partial, clinical improvements in HT cases receiving Vim-DBS alone or in combination with additional targets. A sustained improvement was reported in OT cases treated with bilateral Vim-DBS, while the two cases treated with unilateral Vim-DBS demonstrated only a transient effect. MS-associated tremor responded to dual-target Vim-/VO-DBS, but the inability to account for the progression of MS-associated disability impeded the assessment of its long-term clinical efficacy. Neuropathy-associated tremor substantially improved with Vim-DBS. In FXTAS patients, while Vim-DBS was effective in improving tremor, equivocal results were observed in those with ataxia. DBS of select targets may represent an effective therapeutic strategy for uncommon tremor disorders, although the level of evidence is currently in its incipient form and based on single cases or limited case series. An international registry is, therefore, warranted to clarify selection criteria, long-term results, and optimal surgical targets.

  4. Effects of peripheral cooling on intention tremor in multiple sclerosis

    PubMed Central

    Feys, P; Helsen, W; Liu, X; Mooren, D; Albrecht, H; Nuttin, B; Ketelaer, P

    2005-01-01

    Objective: To investigate the effect of peripheral sustained cooling on intention tremor in patients with multiple sclerosis (MS). MS induced upper limb intention tremor affects many functional activities and is extremely difficult to treat. Materials/Methods: Deep (18°C) and moderate (25°C) cooling interventions were applied for 15 minutes to 23 and 11 tremor arms of patients with MS, respectively. Deep and moderate cooling reduced skin temperature at the elbow by 13.5°C and 7°C, respectively. Evaluations of physiological variables, the finger tapping test, and a wrist step tracking task were performed before and up to 30 minutes after cooling. Results: The heart rate and the central body temperature remained unchanged throughout. Both cooling interventions reduced overall tremor amplitude and frequency proportional to cooling intensity. Tremor reduction persisted during the 30 minute post cooling evaluation period. Nerve conduction velocity was decreased after deep cooling, but this does not fully explain the reduction in tremor amplitude or the effects of moderate cooling. Cooling did not substantially hamper voluntary movement control required for accurate performance of the step tracking task. However, changes in the mechanical properties of muscles may have contributed to the tremor amplitude reduction. Conclusions: Cooling induced tremor reduction is probably caused by a combination of decreased nerve conduction velocity, changed muscle properties, and reduced muscle spindle activity. Tremor reduction is thought to relate to decreased long loop stretch reflexes, because muscle spindle discharge is temperature dependent. These findings are clinically important because applying peripheral cooling might enable patients to perform functional activities more efficiently. PMID:15716530

  5. Quantitative methods for evaluating the efficacy of thalamic deep brain stimulation in patients with essential tremor.

    PubMed

    Wastensson, Gunilla; Holmberg, Björn; Johnels, Bo; Barregard, Lars

    2013-01-01

    Deep brain stimulation (DBS) of the thalamus is a safe and efficient method for treatment of disabling tremor in patient with essential tremor (ET). However, successful tremor suppression after surgery requires careful selection of stimulus parameters. Our aim was to examine the possible use of certain quantitative methods for evaluating the efficacy of thalamic DBS in ET patients in clinical practice, and to compare these methods with traditional clinical tests. We examined 22 patients using the Essential Tremor Rating Scale (ETRS) and quantitative assessment of tremor with the stimulator both activated and deactivated. We used an accelerometer (CATSYS tremor Pen) for quantitative measurement of postural tremor, and a eurythmokinesimeter (EKM) to evaluate kinetic tremor in a rapid pointing task. The efficacy of DBS on tremor suppression was prominent irrespective of the method used. The agreement between clinical rating of postural tremor and tremor intensity as measured by the CATSYS tremor pen was relatively high (rs = 0.74). The agreement between kinetic tremor as assessed by the ETRS and the main outcome variable from the EKM test was low (rs = 0.34). The lack of agreement indicates that the EKM test is not comparable with the clinical test. Quantitative methods, such as the CATSYS tremor pen, could be a useful complement to clinical tremor assessment in evaluating the efficacy of DBS in clinical practice. Future studies should evaluate the precision of these methods and long-term impact on tremor suppression, activities of daily living (ADL) function and quality of life.

  6. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault

    USGS Publications Warehouse

    Shelly, David R.

    2010-01-01

    The San Andreas fault is one of the most extensively studied faults in the world, yet its physical character and deformation mode beneath the relatively shallow earthquake-generating portion remain largely unconstrained. Tectonic ‘non-volcanic’ tremor, a recently discovered seismic signal probably generated by shear slip on the deep extension of some major faults, can provide new insight into the deep fate of such faults, including that of the San Andreas fault near Parkfield, California. Here I examine continuous seismic data from mid-2001 to 2008, identifying tremor and decomposing the signal into different families of activity based on the shape and timing of the waveforms at multiple stations. This approach allows differentiation between activities from nearby patches of the deep fault and begins to unveil rich and complex patterns of tremor occurrence. I find that tremor exhibits nearly continuous migration, with the most extensive episodes propagating more than 20 kilometres along fault strike at rates of 15–80 kilometres per hour. This suggests that the San Andreas fault remains a localized through-going structure, at least to the base of the crust, in this area. Tremor rates and recurrence behaviour changed markedly in the wake of the 2004 magnitude-6.0 Parkfield earthquake, but these changes were far from uniform within the tremor zone, probably reflecting heterogeneous fault properties and static and dynamic stresses decaying away from the rupture. The systematic recurrence of tremor demonstrated here suggests the potential to monitor detailed time-varying deformation on this portion of the deep San Andreas fault, deformation which unsteadily loads the shallower zone that last ruptured in the 1857 magnitude-7.9 Fort Tejon earthquake.

  7. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning.

    PubMed

    LeMoyne, Robert; Tomycz, Nestor; Mastroianni, Timothy; McCandless, Cyrus; Cozza, Michael; Peduto, David

    2015-01-01

    Essential tremor (ET) is a highly prevalent movement disorder. Patients with ET exhibit a complex progressive and disabling tremor, and medical management often fails. Deep brain stimulation (DBS) has been successfully applied to this disorder, however there has been no quantifiable way to measure tremor severity or treatment efficacy in this patient population. The quantified amelioration of kinetic tremor via DBS is herein demonstrated through the application of a smartphone (iPhone) as a wireless accelerometer platform. The recorded acceleration signal can be obtained at a setting of the subject's convenience and conveyed by wireless transmission through the Internet for post-processing anywhere in the world. Further post-processing of the acceleration signal can be classified through a machine learning application, such as the support vector machine. Preliminary application of deep brain stimulation with a smartphone for acquisition of a feature set and machine learning for classification has been successfully applied. The support vector machine achieved 100% classification between deep brain stimulation in `on' and `off' mode based on the recording of an accelerometer signal through a smartphone as a wireless accelerometer platform.

  8. Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor

    PubMed Central

    Gibson, William S.; Jo, Hang Joon; Testini, Paola; Cho, Shinho; Felmlee, Joel P.; Welker, Kirk M.; Klassen, Bryan T.; Min, Hoon-Ki

    2016-01-01

    Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation. PMID:27329768

  9. The tremorolytic action of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is mediated by beta-adrenoceptors located in a deep peripheral compartment.

    PubMed

    Abila, B; Wilson, J F; Marshall, R W; Richens, A

    1985-10-01

    The effects of intravenous propranolol 100 micrograms kg-1, sotalol 500 micrograms kg-1, timolol 7.8 micrograms kg-1, atenolol 125 micrograms kg-1 and placebo on essential, physiological and isoprenaline-induced tremor were studied. These beta-adrenoceptor blocker doses produced equal reduction of standing-induced tachycardia in essential tremor patients. Atenolol produced significantly less reduction of essential and isoprenaline-induced tremor than the non-selective drugs, confirming the importance of beta 2-adrenoceptor blockade in these effects. Propranolol and sotalol produced equal maximal inhibition of isoprenaline-induced tremor but propranolol was significantly more effective in reducing essential tremor. The rate of development of the tremorolytic effect was similar in essential, physiological and isoprenaline-induced tremors but all tremor responses developed significantly more slowly than the heart rate responses. It is proposed that these results indicate that the tremorolytic activity of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is exerted via the same beta 2-adrenoceptors located in a deep peripheral compartment which is thought to be in the muscle spindles.

  10. The tremorolytic action of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is mediated by beta-adrenoceptors located in a deep peripheral compartment.

    PubMed Central

    Abila, B; Wilson, J F; Marshall, R W; Richens, A

    1985-01-01

    The effects of intravenous propranolol 100 micrograms kg-1, sotalol 500 micrograms kg-1, timolol 7.8 micrograms kg-1, atenolol 125 micrograms kg-1 and placebo on essential, physiological and isoprenaline-induced tremor were studied. These beta-adrenoceptor blocker doses produced equal reduction of standing-induced tachycardia in essential tremor patients. Atenolol produced significantly less reduction of essential and isoprenaline-induced tremor than the non-selective drugs, confirming the importance of beta 2-adrenoceptor blockade in these effects. Propranolol and sotalol produced equal maximal inhibition of isoprenaline-induced tremor but propranolol was significantly more effective in reducing essential tremor. The rate of development of the tremorolytic effect was similar in essential, physiological and isoprenaline-induced tremors but all tremor responses developed significantly more slowly than the heart rate responses. It is proposed that these results indicate that the tremorolytic activity of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is exerted via the same beta 2-adrenoceptors located in a deep peripheral compartment which is thought to be in the muscle spindles. PMID:2866785

  11. Antarctic icequakes triggered by the 2010 Maule earthquake in Chile

    NASA Astrophysics Data System (ADS)

    Peng, Zhigang; Walter, Jacob I.; Aster, Richard C.; Nyblade, Andrew; Wiens, Douglas A.; Anandakrishnan, Sridhar

    2014-09-01

    Seismic waves from distant, large earthquakes can almost instantaneously trigger shallow micro-earthquakes and deep tectonic tremor as they pass through Earth's crust. Such remotely triggered seismic activity mostly occurs in tectonically active regions. Triggered seismicity is generally considered to reflect shear failure on critically stressed fault planes and is thought to be driven by dynamic stress perturbations from both Love and Rayleigh types of surface seismic wave. Here we analyse seismic data from Antarctica in the six hours leading up to and following the 2010 Mw 8.8 Maule earthquake in Chile. We identify many high-frequency seismic signals during the passage of the Rayleigh waves generated by the Maule earthquake, and interpret them as small icequakes triggered by the Rayleigh waves. The source locations of these triggered icequakes are difficult to determine owing to sparse seismic network coverage, but the triggered events generate surface waves, so are probably formed by near-surface sources. Our observations are consistent with tensile fracturing of near-surface ice or other brittle fracture events caused by changes in volumetric strain as the high-amplitude Rayleigh waves passed through. We conclude that cryospheric systems can be sensitive to large distant earthquakes.

  12. Brittle and ductile friction modeling of triggered tremor in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Daub, E. G.; Wu, C.

    2017-12-01

    Low frequency earthquakes (LFEs), which make up the highest amplitude portions of non-volcanic tremor, are mostly found along subduction zones at a depth of 30-40km which is typically within the brittle-ductile transition zone. Previous studies in Guerrero, Mexico demonstrated a relationship between the bursts of LFEs and the contact states of fault interfaces, and LFEs that triggered by different mechanisms were observed along different parts of the subduction zone. To better understand the physics of fault interfaces at depth, especially the influence of contact states of these asperities, we use a brittle-ductile friction model to simulate the occurrence of LFE families from a model of frictional failure and slip. This model takes the stress state, slip rate, perturbation force, fault area, and brittle-ductile frictional contact characteristics and simulates the times and amplitudes of LFE occurrence for a single family. We examine both spontaneous and triggered tremor occurrence by including stresses due to external seismic waves, such as the 2010 Maule Earthquake, which triggered tremor and slow slip on the Guerrero section of the subduction zone. By comparing our model output with detailed observations of LFE occurrence, we can determine valuable constraints on the frictional properties of subduction zones at depth.

  13. Deep brain stimulation or thalamotomy in fragile X-associated tremor/ataxia syndrome? Case report.

    PubMed

    Tamás, Gertrúd; Kovács, Norbert; Varga, Noémi Ágnes; Barsi, Péter; Erőss, Loránd; Molnár, Mária Judit; Balás, István

    2016-01-01

    We present the case of a 66-year-old man who has been treated for essential tremor since the age of 58. He developed mild cerebellar gait ataxia seven years after tremor onset. Moderate, global brain atrophy was identified on MRI scans. At the age of 68, only temporary tremor relief could be achieved by bilateral deep brain stimulation of the ventral intermedius nucleus of the thalamus. Bilateral stimulation of the subthalamic nucleus also resulted only in transient improvement. In the meantime, progressive gait ataxia and tetraataxia developed accompanied by other cerebellar symptoms, such as nystagmus and scanning speech. These correlated with progressive development of bilateral symmetric hyperintensity of the middle cerebellar peduncles on T2 weighted MRI scans. Genetic testing revealed premutation of the FMR1 gene, establishing the diagnosis of fragile X-associated tremor/ataxia syndrome. Although this is a rare disorder, it should be taken into consideration during preoperative evaluation of essential tremor. Postural tremor ceased two years later after thalamotomy on the left side, while kinetic tremor of the right hand also improved. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. Stimulating at the right time: phase-specific deep brain stimulation.

    PubMed

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  15. Stimulating at the right time: phase-specific deep brain stimulation

    PubMed Central

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    Abstract See Moll and Engel (doi:10.1093/aww308) for a scientific commentary on this article. Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson’s disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient’s tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. PMID:28007997

  16. Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault.

    PubMed

    Thomas, Amanda M; Nadeau, Robert M; Bürgmann, Roland

    2009-12-24

    Since its initial discovery nearly a decade ago, non-volcanic tremor has provided information about a region of the Earth that was previously thought incapable of generating seismic radiation. A thorough explanation of the geologic process responsible for tremor generation has, however, yet to be determined. Owing to their location at the plate interface, temporal correlation with geodetically measured slow-slip events and dominant shear wave energy, tremor observations in southwest Japan have been interpreted as a superposition of many low-frequency earthquakes that represent slip on a fault surface. Fluids may also be fundamental to the failure process in subduction zone environments, as teleseismic and tidal modulation of tremor in Cascadia and Japan and high Poisson ratios in both source regions are indicative of pressurized pore fluids. Here we identify a robust correlation between extremely small, tidally induced shear stress parallel to the San Andreas fault and non-volcanic tremor activity near Parkfield, California. We suggest that this tremor represents shear failure on a critically stressed fault in the presence of near-lithostatic pore pressure. There are a number of similarities between tremor in subduction zone environments, such as Cascadia and Japan, and tremor on the deep San Andreas transform, suggesting that the results presented here may also be applicable in other tectonic settings.

  17. Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus.

    PubMed

    Hirschmann, J; Schoffelen, J M; Schnitzler, A; van Gerven, M A J

    2017-10-01

    To investigate the possibility of tremor detection based on deep brain activity. We re-analyzed recordings of local field potentials (LFPs) from the subthalamic nucleus in 10 PD patients (12 body sides) with spontaneously fluctuating rest tremor. Power in several frequency bands was estimated and used as input to Hidden Markov Models (HMMs) which classified short data segments as either tremor-free rest or rest tremor. HMMs were compared to direct threshold application to individual power features. Applying a threshold directly to band-limited power was insufficient for tremor detection (mean area under the curve [AUC] of receiver operating characteristic: 0.64, STD: 0.19). Multi-feature HMMs, in contrast, allowed for accurate detection (mean AUC: 0.82, STD: 0.15), using four power features obtained from a single contact pair. Within-patient training yielded better accuracy than across-patient training (0.84vs. 0.78, p=0.03), yet tremor could often be detected accurately with either approach. High frequency oscillations (>200Hz) were the best performing individual feature. LFP-based markers of tremor are robust enough to allow for accurate tremor detection in short data segments, provided that appropriate statistical models are used. LFP-based markers of tremor could be useful control signals for closed-loop deep brain stimulation. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Tremor in dystonia.

    PubMed

    Pandey, Sanjay; Sarma, Neelav

    2016-08-01

    Tremor has been recognized as an important clinical feature in dystonia. Tremor in dystonia may occur in the body part affected by dystonia known as dystonic tremor or unaffected body regions known as tremor associated with dystonia. The most common type of tremor seen in dystonia patients is postural and kinetic which may be mistaken for familial essential tremor. Similarly familial essential tremor patients may have associated dystonia leading to diagnostic uncertainties. The pathogenesis of tremor in dystonia remains speculative, but its neurophysiological features are similar to dystonia which helps in differentiating it from essential tremor patients. Treatment of tremor in dystonia depends upon the site of involvement. Dystonic hand tremor is treated with oral pharmacological therapy and dystonic head, jaw and voice tremor is treated with injection botulinum toxin. Neurosurgical interventions such as deep brain stimulation and lesion surgery should be an option in patients not responding to the pharmacological treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Singularity spectrum of intermittent seismic tremor at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Shaw, H.R.; Chouet, B.

    1989-01-01

    Fractal singularity analysis (FSA) is used to study a 22-yr record of deep seismic tremor (30-60 km depth) for regions below Kilauea Volcano on the assumption that magma transport and fracture can be treated as a system of coupled nonlinear oscillators. Tremor episodes range from 1 to 100 min (cumulative duration = 1.60 ?? 104 min; yearly average - 727 min yr-1; mean gradient = 24.2 min yr-1km-1). Partitioning of probabilities, Pi, in the phase space of normalized durations, xi, are expressed in terms of a function f(??), where ?? is a variable exponent of a length scale, l. Plots of f(??) vs. ?? are called multifractal singularity spectra. The spectrum for deep tremor durations is bounded by ?? values of about 0.4 and 1.9 at f = O; fmax ???1.0 for ?? ??? 1. Results for tremor are similar to those found for systems transitional between complete mode locking and chaos. -Authors

  20. Deep Brain Stimulation of the Dentato-Rubro-Thalamic Tract: Outcomes of Direct Targeting for Tremor.

    PubMed

    Fenoy, Albert J; Schiess, Mya C

    2017-07-01

    Targeting the dentato-rubro-thalamic tract (DRTt) has been suggested to be efficacious in deep brain stimulation (DBS) for tremor suppression, both in case reports and post-hoc analyses. This prospective observational study sought to analyze outcomes after directly targeting the DRTt in tremor patients. 20 consecutively enrolled intention tremor patients obtained pre-operative MRI with diffusion tensor (dTi) sequences. Mean baseline tremor amplitude based on The Essential Tremor Rating Assessment Scale was recorded. The DRTt was drawn for each individual on StealthViz software (Medtronic) using the dentate nucleus as the seed region and the ipsilateral pre-central gyrus as the end region and then directly targeted during surgery. Intraoperative testing confirmed successful tremor control. Post-operative analysis of electrode position relative to the DRTt was performed, as was post-operative assessment of tremor improvement. The mean age of patients was 66.8 years; mean duration of tremor was 16 years. Mean voltage for the L electrode = 3.4 V; R = 2.6 V. Mean distance from the center of the active electrode contact to the DRTt was 0.9 mm on the L, and 0.8 mm on the R. Improvement in arm tremor amplitude from baseline after DBS was significant (P < 0.001). Direct targeting of the DRTt in DBS is an effective strategy for tremor suppression. Accounting for hardware, software, and model limitations, depiction of the DRTt allows for placement of electrode contacts directly within the fiber tract for modulation despite any anatomical variation, which reproducibly resulted in good tremor control. © 2017 International Neuromodulation Society.

  1. Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia.

    PubMed

    Cury, Rubens Gisbert; Fraix, Valerie; Castrioto, Anna; Pérez Fernández, Maricely Ambar; Krack, Paul; Chabardes, Stephan; Seigneuret, Eric; Alho, Eduardo Joaquim Lopes; Benabid, Alim-Louis; Moro, Elena

    2017-09-26

    To report on the long-term outcomes of deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) in Parkinson disease (PD), essential tremor (ET), and dystonic tremor. One hundred fifty-nine patients with PD, ET, and dystonia underwent VIM DBS due to refractory tremor at the Grenoble University Hospital. The primary outcome was a change in the tremor scores at 1 year after surgery and at the latest follow-up (21 years). Secondary outcomes included the relationship between tremor score reduction over time and the active contact position. Tremor scores (Unified Parkinson's Disease Rating Scale-III, items 20 and 21; Fahn, Tolosa, Marin Tremor Rating Scale) and the coordinates of the active contacts were recorded. Ninety-eight patients were included. Patients with PD and ET had sustained improvement in tremor with VIM stimulation (mean improvement, 70% and 66% at 1 year; 63% and 48% beyond 10 years, respectively; p < 0.05). There was no significant loss of stimulation benefit over time ( p > 0.05). Patients with dystonia exhibited a moderate response at 1-year follow-up (41% tremor improvement, p = 0.027), which was not sustained after 5 years (30% improvement, p = 0.109). The more dorsal active contacts' coordinates in the right lead were related to a better outcome 1 year after surgery ( p = 0.029). During the whole follow-up, forty-eight patients (49%) experienced minor side effects, whereas 2 (2.0%) had serious events (brain hemorrhage and infection). VIM DBS is an effective long-term (beyond 10 years) treatment for tremor in PD and ET. Effects on dystonic tremor were modest and transient. This provides Class IV evidence. It is an observational study. © 2017 American Academy of Neurology.

  2. Fluid Dynamic Analysis of Volcanic Tremor,

    DTIC Science & Technology

    1982-10-01

    information regarding the fluid system Fiske (1969) Kilauea volcano : The 1967-68 summit configuration, tremor magnitudes and source loca- eruption...Koyanagi (1981) Deep volcanic tremor logicalSociety of America, vol. 40, p. 175-194. and magma ascent mechanism under Kilauea , Hawaii . Omori, F...dynamics Seismology Tremors Volcanoes 40 M\\ TlACT (amhue ai revers if5 neeeeiy md ide~Wify by block number) Low-frequency (< 10 Hz) volcanic earthquakes

  3. Treating post-traumatic tremor with deep brain stimulation: report of five cases.

    PubMed

    Issar, Neil M; Hedera, Peter; Phibbs, Fenna T; Konrad, Peter E; Neimat, Joseph S

    2013-12-01

    Post-traumatic tremor is one of the most common movement disorders resulting from severe head trauma. However, literature regarding successful deep brain stimulation (DBS) treatment is scarce, resulting in ambiguity regarding the optimal lead location. Most cases support the ventral intermediate nucleus, but there is evidence to defend DBS of the zona incerta, ventral oralis anterior/posterior, and/or a combination of these targets. We report five patients with disabling post-traumatic tremor treated with DBS of the ventral intermediate nucleus and of the globus pallidus internus. Patients were referred to the Vanderbilt Movement Disorders Division, and surgical intervention was determined by a DBS Multidisciplinary Committee. Standard DBS procedure was followed. Patients 1-4 sustained severe diffuse axonal injuries. Patients 1-3 underwent unilateral ventral intermediate nucleus DBS for contralateral tremor, while Patient 4 underwent bilateral ventral intermediate nucleus DBS. Patients 1-3 experienced good tremor reduction, while Patient 4 experienced moderate tremor reduction with some dystonic posturing of the hands. Patient 5 had dystonic posturing of the right upper extremity with tremor of the left upper extremity. He was treated with bilateral DBS of the globus pallidus internus and showed good tremor reduction at follow-up. Unilateral or bilateral DBS of the ventral intermediate nucleus and bilateral DBS of the globus pallidus internus may be effective and safe treatment modalities for intractable post-traumatic tremor. Further studies are needed to clarify the optimal target for surgical treatment of post-traumatic tremor. Published by Elsevier Ltd.

  4. Resolving the Detailed Spatiotemporal Slip Evolution of Deep Tremor in Western Japan

    NASA Astrophysics Data System (ADS)

    Ohta, Kazuaki; Ide, Satoshi

    2017-12-01

    We study the detailed spatiotemporal behavior of deep tremor in western Japan through the development and application of a new slip inversion method. Although many studies now recognize tremor as shear slip along the plate interface manifested in low-frequency earthquake (LFE) swarms, a conventional slip inversion analysis is not available for tremor due to insufficient knowledge of source locations and Green's functions. Here we introduce synthetic template waveforms, which are typical tremor waveforms obtained by stacking LFE seismograms at arranged points along the plate interface. Using these synthetic template waveforms as substitutes for Green's functions, we invert the continuous tremor waveforms using an iterative deconvolution approach with Bayesian constraints. We apply this method to two tremor burst episodes in western and central Shikoku, Japan. The estimated slip distribution from a 12 day tremor burst episode in western Shikoku is heterogeneous, with several patchy areas of slip along the plate interface where rapid moment releases with durations of <100 s regularly occur. We attribute these heterogeneous spatiotemporal slip patterns to heterogeneous material properties along the plate interface. For central Shikoku, where we focus on a tremor burst episode that occurred coincidentally with a very low frequency earthquake (VLF), we observe that the source size of the VLF is much larger than that estimated from tremor activity in western Shikoku. These differences in the size of the slip region may dictate the visibility of VLF signals in observed seismograms, which has implications for the mechanics of slow earthquakes and subduction zone processes.

  5. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?

    PubMed Central

    Hallett, Mark; Deuschl, Günther; Toni, Ivan; Bloem, Bastiaan R.

    2012-01-01

    Tremor in Parkinson's disease has several mysterious features. Clinically, tremor is seen in only three out of four patients with Parkinson's disease, and tremor-dominant patients generally follow a more benign disease course than non-tremor patients. Pathophysiologically, tremor is linked to altered activity in not one, but two distinct circuits: the basal ganglia, which are primarily affected by dopamine depletion in Parkinson's disease, and the cerebello-thalamo-cortical circuit, which is also involved in many other tremors. The purpose of this review is to integrate these clinical and pathophysiological features of tremor in Parkinson's disease. We first describe clinical and pathological differences between tremor-dominant and non-tremor Parkinson's disease subtypes, and then summarize recent studies on the pathophysiology of tremor. We also discuss a newly proposed ‘dimmer-switch model’ that explains tremor as resulting from the combined actions of two circuits: the basal ganglia that trigger tremor episodes and the cerebello-thalamo-cortical circuit that produces the tremor. Finally, we address several important open questions: why resting tremor stops during voluntary movements, why it has a variable response to dopaminergic treatment, why it indicates a benign Parkinson's disease subtype and why its expression decreases with disease progression. PMID:22382359

  6. Thalamic Ventral Intermediate Nucleus Deep Brain Stimulation for Orthostatic Tremor.

    PubMed

    Lehn, Alexander C; O'Gorman, Cullen; Olson, Sarah; Salari, Mehri

    2017-01-01

    Orthostatic tremor (OT) was first described in 1977. It is characterized by rapid tremor of 13-18 Hz and can be recorded in the lower limbs and trunk muscles. OT remains difficult to treat, although some success has been reported with deep brain stimulation (DBS). We report a 68-year-old male with OT who did not improve significantly after bilateral thalamic stimulation. Although some patients were described who improved after DBS surgery, more information is needed about the effect of these treatment modalities on OT, ideally in the form of randomized trial data.

  7. Resolving the detailed spatiotemporal slip evolution of deep tremor in western Japan

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Ide, S.

    2017-12-01

    A quantitative evaluation of the slip evolution of tremor is essential to understand the generation mechanism of slow earthquakes. The recent studies have revealed the most part of tremor signals can be expressed as the superposition of low frequency earthquakes (LFE). However, it is still challenging to explain the entire waveforms of tremor, because a conventional slip inversion analysis is not available for tremor due to insufficient knowledge of source locations and Green's functions. Here we investigate the detailed spatiotemporal behavior of deep tremor in western Japan through the development and application of a new slip inversion method. We introduce synthetic template waveforms, which are typical tremor waveforms obtained by stacking LFE seismograms at arranged points along the plate interface. Using these synthetic template waveforms as substitutes for Green's functions, we invert the continuous tremor waveforms using an iterative deconvolution approach with Bayesian constraints. We apply this method to two tremor burst episodes in western and central Shikoku, Japan. The estimated slip distribution from a 12-day tremor burst episode in western Shikoku is heterogeneous, with several patchy areas of slip along the plate interface where rapid moment releases with durations of <100 s regularly occur. We attribute these heterogeneous spatiotemporal slip patterns to heterogeneous material properties along the plate interface. For central Shikoku, where we focus on a tremor burst episode that occurred coincidentally with a very low frequency earthquake (VLF), we observe that the source size of the VLF is much larger than that estimated from tremor activity in western Shikoku. These differences in the size of the slip region may dictate the visibility of VLF signals in observed seismograms, which has implications for the mechanics of slow earthquakes and subduction zone processes.

  8. Pathological tremor prediction using surface EMG and acceleration: potential use in “ON-OFF” demand driven deep brain stimulator design

    PubMed Central

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Metman, Leo Verhagen; Corcos, Daniel M.

    2013-01-01

    Objective We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and Essential tremor (ET). Approach The tremor prediction algorithm uses a set of spectral (fourier and wavelet) and non-linear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle as well as the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage. PMID:23658233

  9. Pathological tremor prediction using surface electromyogram and acceleration: potential use in ‘ON-OFF’ demand driven deep brain stimulator design

    NASA Astrophysics Data System (ADS)

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Verhagen Metman, Leo; Corcos, Daniel M.

    2013-06-01

    Objective. We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and essential tremor (ET). Approach. The tremor prediction algorithm uses a set of spectral (Fourier and wavelet) and nonlinear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results. The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance. The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle and the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage.

  10. Voice Tremor Outcomes of Subthalamic Nucleus and Zona Incerta Deep Brain Stimulation in Patients With Parkinson Disease.

    PubMed

    Karlsson, Fredrik; Malinova, Elin; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; Nordh, Erik

    2018-01-17

    We aimed to study the effect of deep brain stimulation (DBS) in the subthalamic nucleus (STN) and caudal zona incerta (cZi) on level of perceived voice tremor in patients with Parkinson disease (PD). This is a prospective nonrandomized design with consecutive patients. Perceived voice tremor was assessed in patients with PD having received either STN-DBS (8 patients, 5 bilateral and 3 unilateral, aged 43.1-73.6 years; median = 61.2 years) or cZi-DBS (14 bilateral patients, aged 39.0-71.9 years; median = 56.6 years) 12 months before the assessment. Sustained vowels that were produced OFF and ON stimulation (with simultaneous l-DOPA medication) were assessed perceptually in terms of voice tremor by two raters on a four-point rating scale. The assessments were repeated five times per sample and rated in a blinded and randomized procedure. Three out of the 22 patients (13%) were concluded to have voice tremor OFF stimulation. Patients with PD with STN-DBS showed mild levels of perceived voice tremor OFF stimulation and a group level improvement. Patients with moderate/severe perceived voice tremor and cZi-DBS showed marked improvements, but there was no overall group effect. Six patients with cZi-DBS showed small increases in perceived voice tremor severity. STN-DBS decreased perceived voice tremor on a group level. cZi-DBS decreased perceived voice tremor in patients with PD with moderate to severe preoperative levels of the symptom. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. An autocorrelation method to detect low frequency earthquakes within tremor

    USGS Publications Warehouse

    Brown, J.R.; Beroza, G.C.; Shelly, D.R.

    2008-01-01

    Recent studies have shown that deep tremor in the Nankai Trough under western Shikoku consists of a swarm of low frequency earthquakes (LFEs) that occur as slow shear slip on the down-dip extension of the primary seismogenic zone of the plate interface. The similarity of tremor in other locations suggests a similar mechanism, but the absence of cataloged low frequency earthquakes prevents a similar analysis. In this study, we develop a method for identifying LFEs within tremor. The method employs a matched-filter algorithm, similar to the technique used to infer that tremor in parts of Shikoku is comprised of LFEs; however, in this case we do not assume the origin times or locations of any LFEs a priori. We search for LFEs using the running autocorrelation of tremor waveforms for 6 Hi-Net stations in the vicinity of the tremor source. Time lags showing strong similarity in the autocorrelation represent either repeats, or near repeats, of LFEs within the tremor. We test the method on an hour of Hi-Net recordings of tremor and demonstrates that it extracts both known and previously unidentified LFEs. Once identified, we cross correlate waveforms to measure relative arrival times and locate the LFEs. The results are able to explain most of the tremor as a swarm of LFEs and the locations of newly identified events appear to fill a gap in the spatial distribution of known LFEs. This method should allow us to extend the analysis of Shelly et al. (2007a) to parts of the Nankai Trough in Shikoku that have sparse LFE coverage, and may also allow us to extend our analysis to other regions that experience deep tremor, but where LFEs have not yet been identified. Copyright 2008 by the American Geophysical Union.

  12. Intraoperative acceleration measurements to quantify improvement in tremor during deep brain stimulation surgery.

    PubMed

    Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jacques; Taub, Ethan; Schüpbach, W M Michael; Pollo, Claudio; Schkommodau, Erik; Guzman, Raphael; Hemm-Ode, Simone

    2017-05-01

    Deep brain stimulation (DBS) surgery is extensively used in the treatment of movement disorders. Nevertheless, methods to evaluate the clinical response during intraoperative stimulation tests to identify the optimal position for the implantation of the chronic DBS lead remain subjective. In this paper, we describe a new, versatile method for quantitative intraoperative evaluation of improvement in tremor with an acceleration sensor that is mounted on the patient's wrist during surgery. At each anatomical test position, the improvement in tremor compared to the initial tremor is estimated on the basis of extracted outcome measures. This method was tested on 15 tremor patients undergoing DBS surgery in two centers. Data from 359 stimulation tests were acquired. Our results suggest that accelerometric evaluation detects tremor changes more sensitively than subjective visual ratings. The effective stimulation current amplitudes identified from the quantitative data (1.1 ± 0.8 mA) are lower than those identified by visual evaluation (1.7 ± 0.8 mA) for similar improvement in tremor. Additionally, if these data had been used to choose the chronic implant position of the DBS lead, 15 of the 26 choices would have been different. These results show that our method of accelerometric evaluation can potentially improve DBS targeting.

  13. Is localised dehydration and vein generation the tremor-generating mechanism in subduction zones?

    NASA Astrophysics Data System (ADS)

    Fagereng, Ake; Meneghini, Francesca; Diener, Johann; Harris, Chris

    2017-04-01

    The phenomena of tectonic, non-volcanic, tremor was first discovered at the down-dip end of the seismogenic zone in Japan early this millennium. Now this low amplitude, low frequency, noise-like seismic signal has been observed at and/or below the deep limit of interseismic coupling along most well-instrumented subduction thrust interfaces. Data and models from these examples suggest a link between tremor and areas of elevated fluid pressure, or at least fluid presence. Tremor locations appear to also correlate with margin-specific locations of metamorphic fluid release, determined by composition and thermal structure. We therefore hypothesise that: (i) tremor on the deep subduction thrust interface is related to localised fluid release; and (ii) accretionary complex rocks exhumed from appropriate pressure - temperature conditions should include a record of this process, and allow a test for the hypothesis. Hydrothermal veins are a record of mineral precipitation at non-equilibrium conditions, commonly caused by fracture, fluid influx, and precipitation of dissolved minerals from this fluid. Quartz veins are ubiquitous in several accretionary complexes, including the Chrystalls Beach Complex, New Zealand, and the Kuiseb Schist of the Namibian Damara Belt. In both locations, representing temperatures of deformation of < 300 and < 600 °C respectively, there are networks of foliation-parallel and oblique veins, which developed incrementally and record a combination of shear and dilation. Required to have formed at differential stresses less than four times the tensile strength, and at fluid pressures exceeding the least compressive stress, these veins are consistent with tremorgenic conditions of low effective stress and mixed-mode deformation kinematically in agreement with shear on the plate interface. We have analysed the oxygen isotope composition of syntectonic quartz veins in both Chrystalls Beach Complex and Kuiseb Schist accretionary complexes, to unravel the geochemical characteristics of the fluid source potentially required to produce tremor. In the Chrystalls Beach Complex, quartz δ18O values range from 14.1 ‰ to 17.0 ‰ (n = 18), whereas in the Kuiseb schist, values range from 9.4 ‰ to 17.9 ‰ (n = 30). In the latter, values less than 14.0‰ are associated with long-lived shear zones. Excluding the lower values in the Kuiseb schist, the δ18O values are consistent with metamorphic fluids in near equilibrium with the host rocks. We thus infer that the veins that developed on the prograde path formed at a small range of temperatures from a local fluid source. This interpretation is consistent with the veins forming in response to a spatially localised metamorphic fluid release. If vein swarms are formed by the mechanism geophysically recorded as tremor, this implies that tremor is, at least in some locations, triggered by metamorphic fluid release and associated hydrofracture and low effective stress shear activation of low permeability shear zone rocks. If this is correct, then a corollary may be that the near-periodic nature of tremor events is related to a regular nature in the build-up and release of fluid pressure.

  14. Diagnosis and Management of Essential Tremor and Dystonic Tremor

    PubMed Central

    Gironell, Alexandre

    2009-01-01

    Essential tremor (ET) is the most common adult movement disorder. Traditionally considered as a benign disease, it can cause an important physical and psychosocial disability. Drug treatment for ET remains poor and often unsatisfactory. Current therapeutic strategies for ET are reviewed according to the level of discomfort caused by tremor. For mild tremor, nonpharmacological strategies consist of alcohol and acute pharmacological therapy; for moderate tremor, pharmacological therapies (propranolol, gabapentin, primidone, topiramate, alprazolam and other drugs); and for severe tremor, the role of functional surgery is emphasised (thalamic deep brain stimulation, thalamotomy). The more specific treatment of head tremor with the use of botulinum toxin is also discussed. Several points are discussed to guide the immediate research into this disease in the near future. Dystonic tremor is a common symptom in dystonia. Diagnostic criteria for dystonic tremor and differential diagnosis with psychogenic tremor and ET are described. Treatment of dystonic tremor matches the treatment of dystonia. In cases of symptomatic dystonic tremor similar to ET, therapeutic strategies would be the same as for ET. PMID:21179530

  15. Episodic Tremor and Slip (ETS) as a chaotic multiphysics spring

    NASA Astrophysics Data System (ADS)

    Veveakis, E.; Alevizos, S.; Poulet, T.

    2017-03-01

    Episodic Tremor and Slip (ETS) events display a rich behaviour of slow and accelerated slip with simple oscillatory to complicated chaotic time series. It is commonly believed that the fast events appearing as non volcanic tremors are signatures of deep fluid injection. The fluid source is suggested to be related to the breakdown of hydrous phyllosilicates, mainly the serpentinite group minerals such as antigorite or lizardite that are widespread in the top of the slab in subduction environments. Similar ETS sequences are recorded in different lithologies in exhumed crustal carbonate-rich thrusts where the fluid source is suggested to be the more vigorous carbonate decomposition reaction. If indeed both types of events can be understood and modelled by the same generic fluid release reaction AB(solid) ⇌A(solid) +B(fluid) , the data from ETS sequences in subduction zones reveal a geophysically tractable temporal evolution with no access to the fault zone. This work reviews recent advances in modelling ETS events considering the multiphysics instabilities triggered by the fluid release reaction and develops a thermal-hydraulic-mechanical-chemical oscillator (THMC spring) model for such mineral reactions (like dehydration and decomposition) in Megathrusts. We describe advanced computational methods for THMC instabilities and discuss spectral element and finite element solutions. We apply the presented numerical methods to field examples of this important mechanism and reproduce the temporal signature of the Cascadia and Hikurangi trench with a serpentinite oscillator.

  16. Approach to a tremor patient

    PubMed Central

    Sharma, Soumya; Pandey, Sanjay

    2016-01-01

    Tremors are commonly encountered in clinical practice and are the most common movement disorders seen. It is defined as a rhythmic, involuntary oscillatory movement of a body part around one or more joints. In the majority of the population, tremor tends to be mild. They have varying etiology; hence, classifying them appropriately helps in identifying the underlying cause. Clinically, tremor is classified as occurring at rest or action. They can also be classified based on their frequency, amplitude, and body part involved. Parkinsonian tremor is the most common cause of rest tremor. Essential tremor (ET) and enhanced physiological tremor are the most common causes of action tremor. Isolated head tremor is more likely to be dystonic rather than ET. Isolated voice tremor could be considered to be a spectrum of ET. Psychogenic tremor is not a diagnosis of exclusion; rather, demonstration of various clinical signs is needed to establish the diagnosis. Severity of tremor and response to treatment can be assessed using clinical rating scales as well as using electrophysiological measurements. The treatment of tremor is symptomatic. Medications are effective in half the cases of essential hand tremor and in refractory patients; deep brain stimulation is an alternative therapy. Midline tremors benefit from botulinum toxin injections. It is also the treatment of choice in dystonic tremor and primary writing tremor. PMID:27994349

  17. Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression.

    PubMed

    Coenen, Volker A; Mädler, Burkhard; Schiffbauer, Hagen; Urbach, Horst; Allert, Niels

    2011-04-01

    Deep brain stimulation (DBS) has been proven to alleviate tremor of various origins. Distinct regions have been targeted. One explanation for good clinical tremor control might be the involvement of the dentatorubrothalamic tract (DRT) as has been suggested in superficial (thalamic) and inferior (posterior subthalamic) target regions. Beyond a correlation with atlas data and the postmortem evaluation of patients treated with lesion surgery, proof for the involvement of DRT in tremor reduction in the living, the scope of this work, is elusive. To report a case of unilateral refractory tremor in tremor-dominant Parkinson disease treated with thalamic DBS. Preoperative diffusion tensor imaging (DTI) was performed. Correlation with individual DBS electrode contact locations was obtained through postoperative fusion of helical computed tomography (CT) data with DTI fiber tracking. Tremor was alleviated effectively. An evaluation of the active electrode contact position revealed clear involvement of the DRT in tremor control. A closer evaluation of clinical effects and side effects revealed a highly detailed individual fiber map of the subthalamic region with DTI fiber tracking. This is the first time the involvement of the DRT in tremor reduction through DBS has been shown in the living. The combination of DTI with postoperative CT and the evaluation of the electrophysiological environment of distinct electrode contacts led to an individual detailed fiber map and might be extrapolated to refined DTI-based targeting strategies in the future. Data acquisition for a larger study group is the topic of our ongoing research.

  18. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation

    PubMed Central

    Birdno, Merrill J.; Kuncel, Alexis M.; Dorval, Alan D.; Turner, Dennis A.; Gross, Robert E.

    2012-01-01

    Deep brain stimulation (DBS) provides dramatic tremor relief when delivered at high-stimulation frequencies (more than ∼100 Hz), but its mechanisms of action are not well-understood. Previous studies indicate that high-frequency stimulation is less effective when the stimulation train is temporally irregular. The purpose of this study was to determine the specific characteristics of temporally irregular stimulus trains that reduce their effectiveness: long pauses, bursts, or irregularity per se. We isolated these characteristics in stimulus trains and conducted intraoperative measurements of postural tremor in eight volunteers. Tremor varied significantly across stimulus conditions (P < 0.015), and stimulus trains with pauses were significantly less effective than stimulus trains without (P < 0.002). There were no significant differences in tremor between trains with or without bursts or between trains that were irregular or periodic. Thus the decreased effectiveness of temporally irregular DBS trains is due to long pauses in the stimulus trains, not the degree of temporal irregularity alone. We also conducted computer simulations of neuronal responses to the experimental stimulus trains using a biophysical model of the thalamic network. Trains that suppressed tremor in volunteers also suppressed fluctuations in thalamic transmembrane potential at the frequency associated with cerebellar burst-driver inputs. Clinical and computational findings indicate that DBS suppresses tremor by masking burst-driver inputs to the thalamus and that pauses in stimulation prevent such masking. Although stimulation of other anatomic targets may provide tremor suppression, we propose that the most relevant neuronal targets for effective tremor suppression are the afferent cerebellar fibers that terminate in the thalamus. PMID:21994263

  19. Cascadia subduction tremor muted by crustal faults

    USGS Publications Warehouse

    Wells, Ray; Blakely, Richard J.; Wech, Aaron G.; McCrory, Patricia A.; Michael, Andrew

    2017-01-01

    Deep, episodic slow slip on the Cascadia subduction megathrust of western North America is accompanied by low-frequency tremor in a zone of high fluid pressure between 30 and 40 km depth. Tremor density (tremor epicenters per square kilometer) varies along strike, and lower tremor density statistically correlates with upper plate faults that accommodate northward motion and rotation of forearc blocks. Upper plate earthquakes occur to 35 km depth beneath the faults. We suggest that the faults extend to the overpressured megathrust, where they provide fracture pathways for fluid escape into the upper plate. This locally reduces megathrust fluid pressure and tremor occurrence beneath the faults. Damping of tremor and related slow slip caused by fluid escape could affect fault properties of the megathrust, possibly influencing the behavior of great earthquakes.

  20. Pathophysiology and Management of Parkinsonian Tremor.

    PubMed

    Helmich, Rick C; Dirkx, Michiel F

    2017-04-01

    Parkinson's tremor is one of the cardinal motor symptoms of Parkinson's disease. The pathophysiology of Parkinson's tremor is different from that of other motor symptoms such as bradykinesia and rigidity. In this review, the authors discuss evidence suggesting that tremor is a network disorder that arises from distinct pathophysiological changes in the basal ganglia and in the cerebellothalamocortical circuit. They also discuss how interventions in this circuitry, for example, deep brain surgery and noninvasive brain stimulation, can modulate or even treat tremor. Future research may focus on understanding sources for the large variability between patients in terms of treatment response, on understanding the contextual factors that modulate tremor (stress, voluntary movements), and on focused interventions in the tremor circuitry. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Correlation between deep fluids, tremor and creep along the central San Andreas fault

    USGS Publications Warehouse

    Becken, M.; Ritter, O.; Bedrosian, P.A.; Weckmann, U.

    2011-01-01

    The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield. Non-volcanic tremor from lower-crustal and upper-mantle depths is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth. Here we present geophysical evidence of fluids migrating into the creeping section of the San Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield-Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, subvertical zones of low resistivity breach the entire crust near the drill hole of the San Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust.

  2. One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson's disease.

    PubMed

    Coenen, Volker Arnd; Rijntjes, Michel; Prokop, Thomas; Piroth, Tobias; Amtage, Florian; Urbach, Horst; Reinacher, Peter Christoph

    2016-04-01

    Refractory tremor in tremor-dominant (TD) or equivalent-type (EQT) idiopathic Parkinson's syndrome (IPS) poses the challenge of choosing the best target region to for deep brain stimulation (DBS). While the subthalamic nucleus is typically chosen in younger patients as the target for dopamine-responsive motor symptoms, it is more complicated if tremor does not (fully) respond under trial conditions. In this report, we present the first results from simultaneous bilateral DBS of the DRT (dentato-rubro-thalamic tract) and the subthalamic nucleus (STN) in two elderly patients with EQT and TD IPS and dopamine-refractory tremor. Two patients received bilateral octopolar DBS electrodes in the STN additionally traversing the DRT region. Achieved electrode positions were determined with helical CT, overlaid onto DTI tractography data, and compared with clinical data of stimulation response. Both patients showed immediate and sustained improvement of their tremor, bilaterally. The proposed approach appears to be safe and feasible and a combined stimulation of the two target regions was performed tailored to the patients' symptoms. Clinically, no neuropsychiatric effects were seen. Our pilot data suggest a viable therapeutic option to treat the subgroup of TD and EQT IPS and with tremor as the predominant symptom. A clinical study to further investigate this approach ( www.clinicaltrials.gov ; NCT02288468) is the focus of our ongoing research.

  3. Tiny intraplate earthquakes triggered by nearby episodic tremor and slip in Cascadia

    USGS Publications Warehouse

    Vidale, J.E.; Hotovec, A.J.; Ghosh, A.; Creager, K.C.; Gomberg, J.

    2011-01-01

    Episodic tremor and slip (ETS) has been observed in many subduction zones, but its mechanical underpinnings as well as its potential for triggering damaging earthquakes have proven difficult to assess. Here we use a seismic array in Cascadia of unprecedented density to monitor seismicity around a moderate 16 day ETS episode. In the 4 months of data we examine, we observe five tiny earthquakes within the subducting slab during the episode and only one more in the same area, which was just before and nearby the next ETS burst. These earthquakes concentrate along the sides and updip edge of the ETS region, consistent with greater stress concentration there than near the middle and downdip edge of the tremor area. Most of the seismicity is below the megathrust, with a similar depth extent to the background intraslab seismicity. The pattern of earthquakes that we find suggests slow slip has a more continuous temporal and spatial pattern than the tremor loci, which notoriously appear in bursts, jumps, and streaks. Copyright 2011 by the American Geophysical Union.

  4. Oculopalatal tremor explained by a model of inferior olivary hypertrophy and cerebellar plasticity

    PubMed Central

    Shaikh, Aasef G.; Hong, Simon; Liao, Ke; Tian, Jing; Solomon, David; Zee, David S.; Leigh, R. John

    2010-01-01

    The inferior olivary nuclei clearly play a role in creating oculopalatal tremor, but the exact mechanism is unknown. Oculopalatal tremor develops some time after a lesion in the brain that interrupts inhibition of the inferior olive by the deep cerebellar nuclei. Over time the inferior olive gradually becomes hypertrophic and its neurons enlarge developing abnormal soma-somatic gap junctions. However, results from several experimental studies have confounded the issue because they seem inconsistent with a role for the inferior olive in oculopalatal tremor, or because they ascribe the tremor to other brain areas. Here we look at 3D binocular eye movements in 15 oculopalatal tremor patients and compare their behaviour to the output of our recent mathematical model of oculopalatal tremor. This model has two mechanisms that interact to create oculopalatal tremor: an oscillator in the inferior olive and a modulator in the cerebellum. Here we show that this dual mechanism model can reproduce the basic features of oculopalatal tremor and plausibly refute the confounding experimental results. Oscillations in all patients and simulations were aperiodic, with a complicated frequency spectrum showing dominant components from 1 to 3 Hz. The model’s synchronized inferior olive output was too small to induce noticeable ocular oscillations, requiring amplification by the cerebellar cortex. Simulations show that reducing the influence of the cerebellar cortex on the oculomotor pathway reduces the amplitude of ocular tremor, makes it more periodic and pulse-like, but leaves its frequency unchanged. Reducing the coupling among cells in the inferior olive decreases the oscillation’s amplitude until they stop (at ∼20% of full coupling strength), but does not change their frequency. The dual-mechanism model accounts for many of the properties of oculopalatal tremor. Simulations suggest that drug therapies designed to reduce electrotonic coupling within the inferior olive or reduce the disinhibition of the cerebellar cortex on the deep cerebellar nuclei could treat oculopalatal tremor. We conclude that oculopalatal tremor oscillations originate in the hypertrophic inferior olive and are amplified by learning in the cerebellum. PMID:20080879

  5. Earthquake triggering in southeast Africa following the 2012 Indian Ocean earthquake

    NASA Astrophysics Data System (ADS)

    Neves, Miguel; Custódio, Susana; Peng, Zhigang; Ayorinde, Adebayo

    2018-02-01

    In this paper we present evidence of earthquake dynamic triggering in southeast Africa. We analysed seismic waveforms recorded at 53 broad-band and short-period stations in order to identify possible increases in the rate of microearthquakes and tremor due to the passage of teleseismic waves generated by the Mw8.6 2012 Indian Ocean earthquake. We found evidence of triggered local earthquakes and no evidence of triggered tremor in the region. We assessed the statistical significance of the increase in the number of local earthquakes using β-statistics. Statistically significant dynamic triggering of local earthquakes was observed at 7 out of the 53 analysed stations. Two of these stations are located in the northeast coast of Madagascar and the other five stations are located in the Kaapvaal Craton, southern Africa. We found no evidence of dynamically triggered seismic activity in stations located near the structures of the East African Rift System. Hydrothermal activity exists close to the stations that recorded dynamic triggering, however, it also exists near the East African Rift System structures where no triggering was observed. Our results suggest that factors other than solely tectonic regime and geothermalism are needed to explain the mechanisms that underlie earthquake triggering.

  6. Towards a Systematic Search for Triggered Seismic Events in the USA

    NASA Astrophysics Data System (ADS)

    Tang, V.; Chao, K.; Van der Lee, S.

    2017-12-01

    Dynamic triggering of small earthquakes and tectonic tremor by small stress variations associated with passing surface waves from large-magnitude teleseismic earthquakes have been observed in seismically active regions in the western US. Local stress variations as small as 5 10 kPa can suffice to advance slip on local faults. Observations of such triggered events share certain distinct characteristics. With an eye towards an eventual application of machine learning, we began a systematic search for dynamically triggered seismic events in the USA that have these characteristics. Such a systematic survey has the potential to help us to better understand the fundamental process of dynamic triggering and hazards implied by it. Using visual inspection on top of timing and frequency based selection criteria for these seismic phenomena, our search yielded numerous false positives, indicating the challenge posed by moving from ad-hoc observations of dynamic triggering to a systematic search that also includes a catalog of non-triggering, even when sufficient stress variations are supplied. Our search includes a dozen large earthquakes that occurred during the tenure of USArray. One of these earthquakes (11 April 2012 Mw8.6 Sumatra), for example, was observed by USArray-TA stations in the Midwest and other station networks (such as PB and UW), and yielded candidate-triggered events at 413 stations. We kept 79 of these observations after closer visual inspection of the observed events suggested distinct P and S arrivals from a local earthquake, or a tremor modulation with the same period as the surface wave, among other criteria. We confirmed triggered seismic events in 63 stations along the western plate boundary where triggered events have previously been observed. We also newly found triggered tremor sources in eastern Oregon and Yellowstone, and candidate-triggered earthquake sources in New Mexico and Minnesota. Learning whether 14 of remaining candidates are confirmed as triggered events or not will provide constraints on the state of intraplate stress in the USA. Learning what it takes to discriminate between triggered events and false positives will be important for future monitoring practices.

  7. Sustained Medication Reduction Following Unilateral VIM Thalamic Stimulation for Essential Tremor.

    PubMed

    Resnick, Andrew S; Okun, Michael S; Malapira, Teresita; Smith, Donald; Vale, Fernando L; Sullivan, Kelly; Miller, Amber; Jahan, Israt; Zesiewicz, Theresa

    2012-01-01

    Deep brain stimulation (DBS) is an increasingly utilized therapeutic modality for the management of medication refractory essential tremor (ET). The aim of this study was to determine whether DBS allowed for anti-tremor medication reduction within the year after the procedure was performed. We conducted a retrospective chart review and telephone interviews on 34 consecutive patients who had been diagnosed with ET, and who had undergone unilateral DBS surgery. Of the 34 patients in our cohort, 31 patients (91%) completely stopped all anti-tremor medications either before surgery (21 patients, 62%) or in the year following DBS surgery (10 patients, 29%). Patients who discontinued tremor medications before DBS surgery did so because their tremors either became refractory to anti-tremor medication, or they developed adverse events to tremor medications. Patients who stopped tremor medications after DBS surgery did so due to sufficient tremor control. Only three patients (9%) who were taking tremor medications at the time of surgery continued the use of a beta-blocker post-operatively for the purpose of hypertension management in all cases. The data from this study indicate that medication cessation is common following unilateral DBS for ET.

  8. Sustained Medication Reduction Following Unilateral VIM Thalamic Stimulation for Essential Tremor

    PubMed Central

    Resnick, Andrew S.; Okun, Michael S.; Malapira, Teresita; Smith, Donald; Vale, Fernando L.; Sullivan, Kelly; Miller, Amber; Jahan, Israt; Zesiewicz, Theresa

    2012-01-01

    Background Deep brain stimulation (DBS) is an increasingly utilized therapeutic modality for the management of medication refractory essential tremor (ET). The aim of this study was to determine whether DBS allowed for anti-tremor medication reduction within the year after the procedure was performed. Methods We conducted a retrospective chart review and telephone interviews on 34 consecutive patients who had been diagnosed with ET, and who had undergone unilateral DBS surgery. Results Of the 34 patients in our cohort, 31 patients (91%) completely stopped all anti-tremor medications either before surgery (21 patients, 62%) or in the year following DBS surgery (10 patients, 29%). Patients who discontinued tremor medications before DBS surgery did so because their tremors either became refractory to anti-tremor medication, or they developed adverse events to tremor medications. Patients who stopped tremor medications after DBS surgery did so due to sufficient tremor control. Only three patients (9%) who were taking tremor medications at the time of surgery continued the use of a beta-blocker post-operatively for the purpose of hypertension management in all cases. Discussion The data from this study indicate that medication cessation is common following unilateral DBS for ET. PMID:23440408

  9. Re-emergent tremor in Parkinson's disease: Clinical and accelerometric properties.

    PubMed

    Aytürk, Zübeyde; Yilmaz, Rezzak; Akbostanci, M Cenk

    2017-03-01

    Re-emergent tremor (RET) and the classical parkinsonian rest tremor were considered as two different phenomena of the same central tremor circuit. However, clinical and accelerometric characteristics of these tremors were not previously compared in a single study. We evaluated disease characteristics and accelerometric measurements of two tremor types in 42 patients with Parkinson's disease. Disease specific features and accelerometric measurements of peak frequency, amplitude at peak frequency and the root mean square (RMS) amplitude of two tremor types were compared. Eighteen patients had RET and the mean latency of the RET was 9.48 (±9.2)s. Groups of only rest tremor and RET did not differ significantly in age of disease onset, disease duration and severity and mean levodopa equivalent dose. Comparison of peak frequency and amplitude at peak frequency were not different between the groups, but RMS amplitude was significantly higher in the RET group (p=0.03). RMS amplitude of RET was also correlated with disease severity (r=.48, p=0.04). These results support the previous notion that rest tremor and RET are analogue, both are triggered by the same central ossilator with RET being only the suppression of the rest tremor due to arm repositioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Focal mechanisms and inter-event times of low-frequency earthquakes reveal quasi-continuous deformation and triggered slow slip on the deep Alpine Fault

    NASA Astrophysics Data System (ADS)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.

    2018-02-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the stresses acting on a major transpressive margin prior to an anticipated great (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault late in its typical ∼300-yr seismic cycle. We analyse a continuous seismic dataset recorded between 2009 and 2016 using a network of 10-13 short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine, allowing the detection of similar signals corresponding to LFE families sharing common locations. This yields an 8-yr catalogue containing 10,000 LFEs that are combined for each of the 14 LFE families using phase-weighted stacking to produce signals with the highest possible signal-to-noise ratios. We show that LFEs occur almost continuously during the 8-yr study period and highlight two types of LFE distributions: (1) discrete behaviour with an inter-event time exceeding 2 min; (2) burst-like behaviour with an inter-event time below 2 min. We interpret the discrete events as small-scale frequent deformation on the deep extent of the Alpine Fault and LFE bursts (corresponding in most cases to known episodes of tremor or large regional earthquakes) as brief periods of increased slip activity indicative of slow slip. We compute improved non-linear earthquake locations using a 3-D velocity model. LFEs occur below the seismogenic zone at depths of 17-42 km, on or near the hypothesised deep extent of the Alpine Fault. The first estimates of LFE focal mechanisms associated with continental faulting, in conjunction with recurrence intervals, are consistent with quasi-continuous shear faulting on the deep extent of the Alpine Fault.

  11. Laboratory triggering of stick-slip events by oscillatory loading in the presence of pore fluid with implications for physics of tectonic tremor

    USGS Publications Warehouse

    Bartlow, Noel M.; Lockner, David A.; Beeler, Nicholas M.

    2012-01-01

    The physical mechanism by which the low-frequency earthquakes (LFEs) that make up portions of tectonic (also called non-volcanic) tremor are created is poorly understood. In many areas of the world, tectonic tremor and LFEs appear to be strongly tidally modulated, whereas ordinary earthquakes are not. Anomalous seismic wave speeds, interpreted as high pore fluid pressure, have been observed in regions that generate tremor. Here we build upon previous laboratory studies that investigated the response of stick-slip on artificial faults to oscillatory, tide-like loading. These previous experiments were carried out using room-dry samples of Westerly granite, at one effective stress. Here we augment these results with new experiments on Westerly granite, with the addition of varying effective stress using pore fluid at two pressures. We find that raising pore pressure, thereby lowering effective stress can significantly increase the degree of correlation of stick-slip to oscillatory loading. We also find other pore fluid effects that become important at higher frequencies, when the period of oscillation is comparable to the diffusion time of pore fluid into the fault. These results help constrain the conditions at depth that give rise to tidally modulated LFEs, providing confirmation of the effective pressure law for triggering and insights into why tremor is tidally modulated while earthquakes are at best only weakly modulated.

  12. Temporal variation of tectonic tremor activity in southern Taiwan around the 2010 ML6.4 Jiashian earthquake

    NASA Astrophysics Data System (ADS)

    Chao, Kevin; Peng, Zhigang; Hsu, Ya-Ju; Obara, Kazushige; Wu, Chunquan; Ching, Kuo-En; van der Lee, Suzan; Pu, Hsin-Chieh; Leu, Peih-Lin; Wech, Aaron

    2017-07-01

    Deep tectonic tremor, which is extremely sensitive to small stress variations, could be used to monitor fault zone processes during large earthquake cycles and aseismic processes before large earthquakes. In this study, we develop an algorithm for the automatic detection and location of tectonic tremor beneath the southern Central Range of Taiwan and examine the spatiotemporal relationship between tremor and the 4 March 2010 ML6.4 Jiashian earthquake, located about 20 km from active tremor sources. We find that tremor in this region has a relatively short duration, short recurrence time, and no consistent correlation with surface GPS data. We find a short-term increase in the tremor rate 19 days before the Jiashian main shock, and around the time when the tremor rate began to rise one GPS station recorded a flip in its direction of motion. We hypothesize that tremor is driven by a slow-slip event that preceded the occurrence of the shallower Jiashian main shock, even though the inferred slip is too small to be observed by all GPS stations. Our study shows that tectonic tremor may reflect stress variation during the prenucleation process of a nearby earthquake.

  13. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    PubMed Central

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  14. Study of the Triggering Level of Dynamic Stress Induces Non-Volcanic Tremor in Longitudinal Valley in Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Sun, W. F.; Chang, W. Y.; Chen, H. Y.

    2015-12-01

    Taiwan is located at the margin of the Eurasian Plate and the Philippine Sea Plate, which is a subduction zone between these two plates and the fault structures are rather complicated and dense seismicity, especially the Longitudinal Valley (LV) in eastern Taiwan. Non-volcanic tremor (NVT) is a seismic signal with low amplitude and long duration. NVT is often occurred below the seismogenic zone, which is between the lower crust and upper mantle, and the arrival time data of the body wave is difficult to be collected. Therefore, this study aims to investigate the physical mechanisms of NVT in several steps. First, in the investigation of the teleseismic earthquake data from the U.S. Geological Survey in 2005 to 2014, thirty-five potential teleseismic earthquakes are selected. Second, the seismograms are collected from the Broadband Array in Taiwan for Seismology (BATS) and Central Weather Bureau Seismic Network (CWBSN) for these thirty-five potential teleseismic earthquakes. Third, the Seismic Analysis Code is used to select the seismograms from seven possible events which satisfied the conditions of triggering tremor during the passage of the surface wave. Forth, a band-pass filter is applied to retain the frequency with the range of 2-8 HZ of the surface waveform. Finally, visually determination for the tremor signals. The experimental results show that five certainly NVT events and two potential triggered events were found in the LV zone of eastern Taiwan. The locations of the hypocenters were then estimated using HYPO71 for these five certain events. According to the estimated hypocenters, the sources of NVT are possibly beneath the southern region of LV, close to the Chih-Shang fault. Moreover, these estimated hypocenters are within the high Vp/Vs ratio region and in depth of 30-40 km. The further analysis found that the amplitude of the surface wave is one of the key factors that when the peak ground velocity > 0.02cm/s, which equivalents to 2-3kPa dynamic stress, might trigger tremors.

  15. Essential Tremor

    MedlinePlus

    ... individuals. Deep brain stimulation uses a surgically implanted, battery-operated medical device called a neurostimulator to delivery ... individuals. Deep brain stimulation uses a surgically implanted, battery-operated medical device called a neurostimulator to delivery ...

  16. Development and evaluation of modified envelope correlation method for deep tectonic tremor

    NASA Astrophysics Data System (ADS)

    Mizuno, N.; Ide, S.

    2017-12-01

    We develop a new location method for deep tectonic tremors, as an improvement of widely used envelope correlation method, and applied it to construct a tremor catalog in western Japan. Using the cross-correlation functions as objective functions and weighting components of data by the inverse of error variances, the envelope cross-correlation method is redefined as a maximum likelihood method. This method is also capable of multiple source detection, because when several events occur almost simultaneously, they appear as local maxima of likelihood.The average of weighted cross-correlation functions, defined as ACC, is a nonlinear function whose variable is a position of deep tectonic tremor. The optimization method has two steps. First, we fix the source depth to 30 km and use a grid search with 0.2 degree intervals to find the maxima of ACC, which are candidate event locations. Then, using each of the candidate locations as initial values, we apply a gradient method to determine horizontal and vertical components of a hypocenter. Sometimes, several source locations are determined in a time window of 5 minutes. We estimate the resolution, which is defined as a distance of sources to be detected separately by the location method, is about 100 km. The validity of this estimation is confirmed by a numerical test using synthetic waveforms. Applying to continuous seismograms in western Japan for over 10 years, the new method detected 27% more tremors than a previous method, owing to the multiple detection and improvement of accuracy by appropriate weighting scheme.

  17. Linking Essential Tremor to the Cerebellum-Animal Model Evidence.

    PubMed

    Handforth, Adrian

    2016-06-01

    In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models.

  18. The many roads to tremor.

    PubMed

    Brittain, John-Stuart; Brown, Peter

    2013-12-01

    Tremor represents one of the most prominent examples of aberrant synchronisation within the human motor system, and Essential Tremor (ET) is by far the most common tremor disorder. Yet, even within ET there is considerable variation, and patients may have contrasting amounts of postural and intention tremor. Recently, Pedrosa et al. (2013) challenged tremor circuits in a cohort of patients presenting with ET, by applying low-frequency deep brain stimulation within thalamus. This interventional approach provided strong evidence that distinct (yet possibly overlapping) neural substrates are responsible for postural and intention tremor in ET. Intention tremor, and not postural tremor, was exacerbated by low frequency stimulation, and the effect was localised in the region of the ventrolateral thalamus in such a way as to implicate cerebello-thalamic pathways. These results, taken in conjunction with the contemporary literature, reveal that pathological changes exaggerate oscillatory synchrony in selective components of an extensive and distributed motor network, and that synchronisation within these networks is further regulated according to motor state. Through a combination of pathological and more dynamic physiological factors, activity then spills out into the periphery in the form of tremor. The findings of Pedrosa et al. (2013) are timely as they coincide with an emerging notion that tremor may result through selective dysregulation within a broader tremorgenic network. © 2013.

  19. Ambient tremors in a collisional orogenic belt

    USGS Publications Warehouse

    Chuang, Lindsay Yuling; Chen, Kate Huihsuan; Wech, Aaron G.; Byrne, Timothy; Peng, Wei

    2014-01-01

    Deep-seated tectonic tremors have been regarded as an observation tied to interconnected fluids at depth, which have been well documented in worldwide subduction zones and transform faults but not in a collisional mountain belt. In this study we explore the general features of collisional tremors in Taiwan and discuss the possible generation mechanism. In the 4 year data, we find 231 ambient tremor episodes with durations ranging from 5 to 30 min. In addition to a coseismic slip-induced stress change from nearby major earthquake, increased tremor rate is also highly correlated with the active, normal faulting earthquake swarms at the shallower depth. Both the tremor and earthquake swarm activities are confined in a small, area where the high attenuation, high thermal anomaly, the boundary between high and low resistivity, and localized veins on the surfaces distributed, suggesting the involvement of fluids from metamorphic dehydration within the orogen.

  20. Reversible Holmes' tremor due to spontaneous intracranial hypotension.

    PubMed

    Iyer, Rajesh Shankar; Wattamwar, Pandurang; Thomas, Bejoy

    2017-07-27

    Holmes' tremor is a low-frequency hand tremor and has varying amplitude at different phases of motion. It is usually unilateral and does not respond satisfactorily to drugs and thus considered irreversible. Structural lesions in the thalamus and brainstem or cerebellum are usually responsible for Holmes' tremor. We present a 23-year-old woman who presented with unilateral Holmes' tremor. She also had hypersomnolence and headache in the sitting posture. Her brain imaging showed brain sagging and deep brain swelling due to spontaneous intracranial hypotension (SIH). She was managed conservatively and had a total clinical and radiological recovery. The brain sagging with the consequent distortion of the midbrain and diencephalon was responsible for this clinical presentation. SIH may be considered as one of the reversible causes of Holmes' tremor. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Development of a closed-loop system for tremor suppression in patients with Parkinson's disease.

    PubMed

    Xu, F L; Hao, M Z; Xu, S Q; Hu, Z X; Xiao, Q; Lan, N

    2016-08-01

    More than 70% of patients suffering Parkinson's disease (PD) exhibit resting tremor in their extremities, hampering their ability to perform daily activities. Based on our earlier studies on corticospinal transmission of tremor signals [10,11], we hypothesize that cutaneous afferents evoked by surface stimulation can produce an inhibitory effect on propriospinal neurons (PN), which in turn will suppress tremor signals passing through the PN. This paper presents the development of a closed-loop system for tremor suppression by transcutaneous electrical nerve stimulation (TENS) of sensory fibers beneath the skin. The closed-loop system senses EMGs of forearm muscles, and detects rhythmic bursting in the EMG signal. When a tremor is detected by the system, a command signal triggers a stimulator to output a train of bi-phasic, current regulated pulses to a pair of surface electrodes. The stimulation electrode is placed on the dorsal hand skin near the metacarpophalangeal joint of index finger, which is innervated by the superficial radial nerve that projects an inhibitory afferent to PNs of forearm muscles. We tested the closed-loop system in 3 normal subjects to verify the algorithm and in 2 tremor dominated PD subjects for feasibility of tremor detecting and suppression. Preliminary results indicate that the closed-loop system can detect tremor in all subjects, and tremor in PD patients was suppressed significantly by electrical stimulation of cutaneous afferents.

  2. Essential pitfalls in "essential” tremor

    PubMed Central

    Espay, AJ; Lang, AE; Erro, R; Merola, A; Fasano, A; Berardelli, A; Bhatia, KP

    2016-01-01

    While essential tremor has been considered the most common movement disorder, it has largely remained a diagnosis of exclusion: many tremor and non-tremor features must be absent for the clinical diagnosis to stand. The clinical features of “essential tremor” overlap with or may be part of other tremor disorders and, not surprisingly, this prevalent familial disorder has remained without a gene identified, without a consistent natural history, and without an acceptable pathology or pathophysiologic underpinning. The collective evidence suggests that under the rubric of essential tremor there exists multiple unique diseases, some of which represent cerebellar dysfunction, but for which there is no intrinsic “essence” other than a common oscillatory behavior on posture and action. One approach may be to use the term “essential tremor” only as a transitional node in the deep phenotyping of tremor disorders based on historical, phenomenological, and neurophysiological features, to facilitate its etiologic diagnosis or serve for future gene- and biomarker-discovery efforts. This approach deemphasizes essential tremor as a diagnostic entity and facilitates the understanding of the underlying disorders in order to develop biologically tailored diagnostic and therapeutic strategies. PMID:28116753

  3. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) Motor Dysfunction Modeled in Mice.

    PubMed

    Foote, Molly; Arque, Gloria; Berman, Robert F; Santos, Mónica

    2016-10-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects some carriers of the fragile X premutation (PM). In PM carriers, there is a moderate expansion of a CGG trinucleotide sequence (55-200 repeats) in the fragile X gene (FMR1) leading to increased FMR1 mRNA and small to moderate decreases in the fragile X mental retardation protein (FMRP) expression. The key symptoms of FXTAS include cerebellar gait ataxia, kinetic tremor, sensorimotor deficits, neuropsychiatric changes, and dementia. While the specific trigger(s) that causes PM carriers to progress to FXTAS pathogenesis remains elusive, the use of animal models has shed light on the underlying neurobiology of the altered pathways involved in disease development. In this review, we examine the current use of mouse models to study PM and FXTAS, focusing on recent advances in the field. Specifically, we will discuss the construct, face, and predictive validities of these PM mouse models, the insights into the underlying disease mechanisms, and potential treatments.

  4. Surgery for Dystonia and Tremor.

    PubMed

    Crowell, Jason L; Shah, Binit B

    2016-03-01

    Surgical procedures for dystonia and tremor have evolved over the past few decades, and our understanding of risk, benefit, and predictive factors has increased substantially in that time. Deep brain stimulation (DBS) is the most utilized surgical treatment for dystonia and tremor, though lesioning remains an effective option in appropriate patients. Dystonic syndromes that have shown a substantial reduction in severity secondary to DBS are isolated dystonia, including generalized, cervical, and segmental, as well as acquired dystonia such as tardive dystonia. Essential tremor is quite amenable to DBS, though the response of other forms of postural and kinetic tremor is not nearly as robust or consistent based on available evidence. Regarding targeting, DBS lead placement in the globus pallidus internus has shown marked efficacy in dystonia reduction. The subthalamic nucleus is an emerging target, and increasing evidence suggests that this may be a viable target in dystonia as well. The ventralis intermedius nucleus of the thalamus is the preferred target for essential tremor, though targeting the subthalamic zone/caudal zona incerta has shown promise and may emerge as another option in essential tremor and possibly other tremor disorders. In the carefully selected patient, DBS and lesioning procedures are relatively safe and effective for the management of dystonia and tremor.

  5. Slow slip rate and excitation efficiency of deep low-frequency tremors beneath southwest Japan

    NASA Astrophysics Data System (ADS)

    Daiku, Kumiko; Hiramatsu, Yoshihiro; Matsuzawa, Takanori; Mizukami, Tomoyuki

    2018-01-01

    We estimated the long-term average slip rate on the plate interface across the Nankai subduction zone during 2002-2013 using deep low-frequency tremors as a proxy for short-term slow slip events based on empirical relations between the seismic moment of short-term slow slip events and tremor activities. The slip rate in each region is likely to compensate for differences between the convergence rate and the slip deficit rate of the subducting Philippine Sea plate estimated geodetically, although the uncertainty is large. This implies that the strain because of the subduction of the plate is partially stored as the slip deficit and partially released by slow slip events during the interseismic period. The excitation efficiency of the tremors for the slow slip events differs among regions: it is high in the northern Kii region. Some events in the western Shikoku region show a somewhat large value. Antigorite serpentinite of two types exists in the mantle wedge beneath southwest Japan. Slips with more effective excitation of tremors presumably occur in high-temperature conditions in the antigorite + olivine stability field. Other slip events with low excitation efficiency are distributed in the antigorite + brucite stability field. Considering the formation reactions of these minerals and their characteristic structures, events with high excitation efficiency can be correlated with a high pore fluid pressure condition. This result suggests that variation in pore fluid pressure on the plate interface affects the magnitude of tremors excited by slow slip events.

  6. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson’s disease

    PubMed Central

    Qasim, Salman E.; de Hemptinne, Coralie; Swann, Nicole C.; Miocinovic, Svjetlana; Ostrem, Jill L.; Starr, Philip A.

    2015-01-01

    The pathophysiology of rest tremor in Parkinson’s disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. PMID:26639855

  7. Erratum to Dynamic stresses, Coulomb failure, and remote triggering and to Surface wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Hill (2008) and Hill (2010) contain two technical errors: (1) a missing factor of 2 for computed Love‐wave amplitudes, and (2) a sign error in the off‐diagonal elements in the Euler rotation matrix.

  8. Delayed and lasting effects of deep brain stimulation on locomotion in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Beuter, Anne; Modolo, Julien

    2009-06-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a variety of motor signs affecting gait, postural stability, and tremor. These symptoms can be improved when electrodes are implanted in deep brain structures and electrical stimulation is delivered chronically at high frequency (>100 Hz). Deep brain stimulation (DBS) onset or cessation affects PD signs with different latencies, and the long-term improvements of symptoms affecting the body axis and those affecting the limbs vary in duration. Interestingly, these effects have not been systematically analyzed and modeled. We compare these timing phenomena in relation to one axial (i.e., locomotion) and one distal (i.e., tremor) signs. We suggest that during DBS, these symptoms are improved by different network mechanisms operating at multiple time scales. Locomotion improvement may involve a delayed plastic reorganization, which takes hours to develop, whereas rest tremor is probably alleviated by an almost instantaneous desynchronization of neural activity in subcortical structures. Even if all PD patients develop both distal and axial symptoms sooner or later, current computational models of locomotion and rest tremor are separate. Furthermore, a few computational models of locomotion focus on PD and none exploring the effect of DBS was found in the literature. We, therefore, discuss a model of a neuronal network during DBS, general enough to explore the subcircuits controlling locomotion and rest tremor simultaneously. This model accounts for synchronization and plasticity, two mechanisms that are believed to underlie the two types of symptoms analyzed. We suggest that a hysteretic effect caused by DBS-induced plasticity and synchronization modulation contributes to the different therapeutic latencies observed. Such a comprehensive, generic computational model of DBS effects, incorporating these timing phenomena, should assist in developing a more efficient, faster, durable treatment of distal and axial signs in PD.

  9. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization.

    PubMed

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P; Johnson, G Allan

    2015-08-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved three-dimensional (3D) reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. © 2015 Wiley Periodicals, Inc.

  10. Evaluating machine learning algorithms estimating tremor severity ratings on the Bain-Findley scale

    NASA Astrophysics Data System (ADS)

    Yohanandan, Shivanthan A. C.; Jones, Mary; Peppard, Richard; Tan, Joy L.; McDermott, Hugh J.; Perera, Thushara

    2016-12-01

    Tremor is a debilitating symptom of some movement disorders. Effective treatment, such as deep brain stimulation (DBS), is contingent upon frequent clinical assessments using instruments such as the Bain-Findley tremor rating scale (BTRS). Many patients, however, do not have access to frequent clinical assessments. Wearable devices have been developed to provide patients with access to frequent objective assessments outside the clinic via telemedicine. Nevertheless, the information they report is not in the form of BTRS ratings. One way to transform this information into BTRS ratings is through linear regression models (LRMs). Another, potentially more accurate method is through machine learning classifiers (MLCs). This study aims to compare MLCs and LRMs, and identify the most accurate model that can transform objective tremor information into tremor severity ratings on the BTRS. Nine participants with upper limb tremor had their DBS stimulation amplitude varied while they performed clinical upper-extremity exercises. Tremor features were acquired using the tremor biomechanics analysis laboratory (TREMBAL). Movement disorder specialists rated tremor severity on the BTRS from video recordings. Seven MLCs and 6 LRMs transformed TREMBAL features into tremor severity ratings on the BTRS using the specialists’ ratings as training data. The weighted Cohen’s kappa ({κ\\text{w}} ) defined the models’ rating accuracy. This study shows that the Random Forest MLC was the most accurate model ({κ\\text{w}}   =  0.81) at transforming tremor information into BTRS ratings, thereby improving the clinical interpretation of tremor information obtained from wearable devices.

  11. Excitation of a buried magmatic pipe: A seismic source model for volcanic tremor

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard

    1985-02-01

    Recent observations of seismic events at various volcanoes suggest that harmonic tremor results from the sustained occurrence of so-called long-period or low-frequency events. Accordingly, we can view the long-period volcanic event as the elementary process of tremor and interpret it as the impulse response of the tremor-generating system. We present a seismic model in which the source of tremor is the acoustic resonance of a fluid-filled volcanic pipe triggered by excess gas pressure. The model consists of three elements, namely, a triggering mechanism, a resonator, and a radiator. For simplicity, we assume a hemispherical trigger, cylindrial resonator, and circular radiator set in a vertical configuration with the trigger capping the top of the pipe and the disk-shaped radiator shutting off its bottom. Considering the simple case of a source buried in a homogeneous half space, we then apply the discrete wave number method to obtain a complete representation of the ground motion response at near and intermediate distances. The results demonstrate that the displacement attributed to the pipe dominates the near-field motion, while that due to the disk is representative of the intermediate and far fields. The trigger itself has a smaller contribution, mainly limited to the field in the proximity of the source. The characteristics displayed by the free surface response evolve from a strong impulsive signature in the immediate vicinity of the epicenter to a well-developed harmonic wave train dominated by Rayleigh waves at larger distances. No clear shear arrival can be detected in the synthetic seismograms. The displacement spectrum reflects the organ-pipe modes of the conduit, and the bandwidth associated with the dominant spectral peak of motion is controlled by the combined losses due to viscous attenuation in the fluid and elastic radiation into the solid. In the case of the cylindrical magma column considered, the radiation loss is proportional to the square of the pipe radius, while the loss related to viscous damping is inversely proportional to the same factor, indicating that the relative importance of the two loss mechanisms is critically dependent on the geometry of the magma reservoir. The relative importance of the pipe and disk elements, likewise, is a function of the conduit cross section. This suggests the possibility of determining the geometry of the source as well as the radiation loss and in situ magma viscosity from a comparison of near- and far-field observations.

  12. Non-volcanic tremor driven by large transient shear stresses

    USGS Publications Warehouse

    Rubinstein, J.L.; Vidale, J.E.; Gomberg, J.; Bodin, P.; Creager, K.C.; Malone, S.D.

    2007-01-01

    Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude Mw = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface - effectively a frictional failure response to the driving stress. ??2007 Nature Publishing Group.

  13. Non-volcanic tremor driven by large transient shear stresses.

    PubMed

    Rubinstein, Justin L; Vidale, John E; Gomberg, Joan; Bodin, Paul; Creager, Kenneth C; Malone, Stephen D

    2007-08-02

    Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude M(w) = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface-effectively a frictional failure response to the driving stress.

  14. Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting.

    PubMed

    Swan, Brandon D; Brocker, David T; Hilliard, Justin D; Tatter, Stephen B; Gross, Robert E; Turner, Dennis A; Grill, Warren M

    2016-02-01

    We conducted intraoperative measurements of tremor during DBS containing short pauses (⩽50 ms) to determine if there is a minimum pause duration that preserves tremor suppression. Nine subjects with ET and thalamic DBS participated during IPG replacement surgery. Patterns of DBS included regular 130 Hz stimulation interrupted by 0, 15, 25 or 50 ms pauses. The same patterns were applied to a model of the thalamic network to quantify effects of pauses on activity of model neurons. All patterns of DBS decreased tremor relative to 'off'. Patterns with pauses generated less tremor reduction than regular high frequency DBS. The model revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but pauses in stimulation allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. The temporal pattern of stimulation influences the efficacy of thalamic DBS. Pauses in stimulation resulted in decreased tremor suppression indicating that masking of pathological bursting is a mechanism of thalamic DBS for tremor. Pauses in stimulation decreased the efficacy of open-loop DBS for suppression of tremor. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Post-Traumatic Tremor and Thalamic Deep Brain Stimulation: Evidence for Use of Diffusion Tensor Imaging.

    PubMed

    Boccard, Sandra G J; Rebelo, Pedro; Cheeran, Binith; Green, Alexander; FitzGerald, James J; Aziz, Tipu Z

    2016-12-01

    Deep brain stimulation (DBS) is a well-established treatment to reduce tremor, notably in Parkinson disease. DBS may also be effective in post-traumatic tremor, one of the most common movement disorders caused by head injury. However, the cohorts of patients often have multiple lesions that may impact the outcome depending on which fiber tracts are affected. A 20-year-old man presented after road traffic accident with severe closed head injury and polytrauma. Computed tomography scan showed left frontal and basal ganglia hemorrhagic contusions and intraventricular hemorrhage. A disabling tremor evolved in step with motor recovery. Despite high-intensity signals in the intended thalamic target, a visual analysis of the preoperative diffusion tensor imaging revealed preservation of connectivity of the intended target, ventralis oralis posterior thalamic nucleus (VOP). This was confirmed by the postoperative tractography study presented here. DBS of the VOP/zona incerta was performed. Six months postimplant, marked improvement of action (postural, kinetic, and intention) tremor was achieved. We demonstrated a strong connectivity between the VOP and the superior frontal gyrus containing the premotor cortex and other central brain areas responsible for movement control. In spite of an existing lesion in the target, the preservation of these tracts may be relevant to the improvement of the patient's symptoms by DBS. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Clinical outcome and intraoperative neurophysiology for focal limb dystonic tremor without generalized dystonia treated with deep brain stimulation.

    PubMed

    Ramirez-Zamora, Adolfo; Kaszuba, Brian; Gee, Lucy; Prusik, Julia; Molho, Eric; Wilock, Meghan; Shin, Damian; Pilitsis, Julie G

    2016-11-01

    Dystonic tremor (DT) is defined as a postural/kinetic tremor occurring in the body region affected by dystonia. DT is typically characterized by focal tremors with irregular amplitudes and variable frequencies typically below 7Hz. Pharmacological treatment is generally unsuccessful and guidelines for deep brain stimulation (DBS) targeting and indications are scarce. In this article, we present the outcome and neurophysiologic data of two patients with refractory, focal limb DT treated with Globus Pallidus interna (Gpi) DBS and critically review the current literature regarding surgical treatment of DT discussing stereotactic targets and treatment considerations. A search of literature concerning treatment of DT was conducted. Additionally, Gpi DBS was performed in two patients with DT and microelectrode recordings for multi unit analysis (MUAs) and local field potentials (LFPs) were obtained. The mean percentage improvement in tremor severity was 80.5% at 3 years follow up. MUAs and LFPs did not show significant differences in DT patients compared with other forms of dystonia or PD except for higher interspikes bursting indices. LFP recordings in DT demonstrated high power at low frequencies with action (<3.5Hz). Gpi DBS is an effective treatment in patients with focal limb DT without associated generalized dystonia. Intraoperative neurophysiologic findings suggest that DT is part of phenotypic motor manifestations in dystonia. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Deep Brain Stimulation for Essential Tremor: Aligning Thalamic and Posterior Subthalamic Targets in 1 Surgical Trajectory.

    PubMed

    Bot, Maarten; van Rootselaar, Fleur; Contarino, Maria Fiorella; Odekerken, Vincent; Dijk, Joke; de Bie, Rob; Schuurman, Richard; van den Munckhof, Pepijn

    2017-12-21

    Ventral intermediate nucleus (VIM) deep brain stimulation (DBS) and posterior subthalamic area (PSA) DBS suppress tremor in essential tremor (ET) patients, but it is not clear which target is optimal. Aligning both targets in 1 surgical trajectory would facilitate exploring stimulation of either target in a single patient. To evaluate aligning VIM and PSA in 1 surgical trajectory for DBS in ET. Technical aspects of trajectories, intraoperative stimulation findings, final electrode placement, target used for chronic stimulation, and adverse and beneficial effects were evaluated. In 17 patients representing 33 trajectories, we successfully aligned VIM and PSA targets in 26 trajectories. Trajectory distance between targets averaged 7.2 (range 6-10) mm. In all but 4 aligned trajectories, optimal intraoperative tremor suppression was obtained in the PSA. During follow-up, active electrode contacts were located in PSA in the majority of cases. Overall, successful tremor control was achieved in 69% of patients. Stimulation-induced dysarthria or gait ataxia occurred in, respectively, 56% and 44% of patients. Neither difference in tremor suppression or side effects was noted between aligned and nonaligned leads nor between the different locations of chronic stimulation. Alignment of VIM and PSA for DBS in ET is feasible and enables intraoperative exploration of both targets in 1 trajectory. This facilitates positioning of electrode contacts in both areas, where multiple effective points of stimulation can be found. In the majority of aligned leads, optimal intraoperative and chronic stimulation were located in the PSA. Copyright © 2017 by the Congress of Neurological Surgeons

  18. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease.

    PubMed

    Qasim, Salman E; de Hemptinne, Coralie; Swann, Nicole C; Miocinovic, Svjetlana; Ostrem, Jill L; Starr, Philip A

    2016-02-01

    The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Boosting of Nonvolcanic Tremor by Regional Earthquakes 2011-2012 in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Real, J. A.; Kostoglodov, V.; Husker, A. L.; Payero, J. S.; G-GAP Research Team

    2013-05-01

    Sistematic observation of nonvolcanic tremor (NVT) in Guerrero, Mexico started in 2005 after the installation of MASE broadband seismic network. Since 2008 the new "G-GAP" network of 10 seismic mini-arrays provides the data for the NVT detailed studies together with the broadband stations of the Servicio Seimologogico Nacional (SSN). Most of the NVT recorded in the central Guerrero area are of so called ambient type, which in most cases are related with the occurrence of aseismic slow slip events (SSE). While the locations of NVT are estimated relatively well, their depths are not reliable but distributed close to the subduction plate interface. The ambient NVT activity increases periodically every 3-4 months and is strongly modulated by large SSE. Another type of tremor has been observed in Guerrero during and after several large teleseismic events, such as Mw=8.8, 2010 Maule, Chile earthquake. This NVT was triggered by the surface waves when they traveled across the tremor-generating area. Large teleseismic events may also activate a noticeable post-seismic NVT activity. In subduction zones, triggering of the NVT and its post-seismic activation by the regional and local earthquakes have not yet been observed. We tried to detect the NVT triggered or boosting of post-seismic tremor activity by two recent large earthquakes that occurred in Guerrero: December 11, 2011, Mw=6.5 Zumpango, and March 20, 2012, Mw=7.4 Ometepec. The first earthquake was of the intraplate type, with normal focal mechanism, at the depth of 58 km, and the second was the shallow interplate event of the thrust type, at the depth of ~15 km. It is technically difficult to separate the NVT signal in its characteristic 1-10 Hz frequency range from the high frequency input from the regional earthquake. The Zumpango event, which is located closer to the NVT area, produced a noticeable boosting of post-seismic NVT activity to the North of its epicenter. Meanwhile the larger magnitude Ometepec earthquake apparently had no any observable influence on the NVT occurrence, furthermore some NVT activity observed before this event has not persisted after it. Further study should reveal the role of different factors on the NVT triggering and activation such as: the type of the seismic event, its magnitude, depth, and the distance from the NVT zone.

  20. Dynamic triggering

    USGS Publications Warehouse

    Hill, David P.; Prejean, Stephanie; Schubert, Gerald

    2015-01-01

    Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.

  1. Physical Therapy for a Patient with Essential Tremor and Prolonged Deep Brain Stimulation: A Case Report.

    PubMed

    Ulanowski, Elizabeth A; Danzl, Megan M; Sims, Kara M

    2017-01-01

    There is a lack of evidence examining the role of physical therapy (PT) to address movement dysfunction for individuals with essential tremor (ET). A 61-year-old male with ET and prolonged bilateral deep brain stimulation (DBS) completed 14 sessions of outpatient PT that emphasized balance, functional movements, and proximal stability training with an integration of principles of body awareness training and visual motor coordination. Improvements were noted in all outcome measures. This report describes a novel PT approach that offers a promising means of improving functional mobility and balance while decreasing falls risk in patients with ET.

  2. The effect of deep brain stimulation on the speech motor system.

    PubMed

    Mücke, Doris; Becker, Johannes; Barbe, Michael T; Meister, Ingo; Liebhart, Lena; Roettger, Timo B; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-08-01

    Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the coordination of oral and glottal articulation. Sixteen native-speaking German adults with essential tremor, between 26 and 86 years old, with and without chronic deep brain stimulation of the nucleus ventralis intermedius and 12 healthy, age-matched subjects were recorded performing a fast syllable repetition task (/papapa/, /tatata/, /kakaka/). Syllable duration and voicing-to-syllable ratio as well as parameters related directly to consonant production, voicing during constriction, and frication during constriction were measured. Voicing during constriction was greater in subjects with essential tremor than in controls, indicating a perseveration of voicing into the voiceless consonant. Stimulation led to fewer voiceless intervals (voicing-to-syllable ratio), indicating a reduced degree of glottal abduction during the entire syllable cycle. Stimulation also induced incomplete oral closures (frication during constriction), indicating imprecise oral articulation. The detrimental effect of stimulation on the speech motor system can be quantified using acoustic measures at the subsyllabic level.

  3. Systematic Detection of Remotely Triggered Seismicity in Africa Following Recent Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Ayorinde, A. O.; Peng, Z.; Yao, D.; Bansal, A. R.

    2016-12-01

    It is well known that large distant earthquakes can trigger micro-earthquakes/tectonic tremors during or immediately following their surface waves. Globally, triggered earthquakes have been mostly found in active plate boundary regions. It is not clear whether they could occur within stable intraplate regions in Africa as well as the active East African Rift Zone. In this study we conduct a systematic study of remote triggering in Africa following recent large earthquakes, including the 2004 Mw9.1 Sumatra and 2012 Mw8.6 Indian Ocean earthquakes. In particular, the 2012 Indian Ocean earthquake is the largest known strike slip earthquake and has triggered a global increase of magnitude larger than 5.5 earthquakes as well as numerous micro-earthquakes/tectonic tremors around the world. The entire Africa region was examined for possible remotely triggered seismicity using seismic data downloaded from the Incorporated Research Institutes for Seismology (IRIS) Data Management Center (DMC) and GFZ German Research Center for Geosciences. We apply a 5-Hz high-pass-filter to the continuous waveforms and visually identify high-frequency signals during and immediately after the large amplitude surface waves. Spectrograms are computed as additional tools to identify triggered seismicities and we further confirm them by statistical analysis comparing the high-frequency signals before and after the distant mainshocks. So far we have identified possible triggered seismicity in Botswana and northern Madagascar. This study could help to understand dynamic triggering in diverse tectonic settings of the African continent.

  4. Length Scales and Types of Heterogeneities Along the Deep Subduction Interface: Insights From an Exhumed Subduction Complex on Syros Island, Greece

    NASA Astrophysics Data System (ADS)

    Kotowski, A. J.; Behr, W. M.; Tong, X.; Lavier, L.

    2017-12-01

    The rheology of the deep subduction interface strongly influences the occurrence, recurrence, and migration of episodic tremor and slow slip (ETS) events. To better understand the environment of deep ETS, we characterize the length scales and types of rheological heterogeneities that decorate the deep interface using an exhumed subduction complex. The Cycladic Blueschist Unit on Syros, Greece, records Eocene subduction to 60 km, partial exhumation along the top of the slab, and final exhumation along Miocene detachment faults. The CBU reached 450-580˚C and 14-16 kbar, PT conditions similar to where ETS occurs in several modern subduction zones. Rheological heterogeneity is preserved in a range of rock types on Syros, with the most prominent type being brittle pods embedded within a viscous matrix. Prograde, blueschist-facies metabasalts show strong deformation fabrics characteristic of viscous flow; cm- to m-scale eclogitic lenses are embedded within them as massive, veined pods, foliated pods rotated with respect to the blueschist fabric, and attenuated, foliation-parallel lenses. Similar relationships are observed in blueschist-facies metasediments interpreted to have deformed during early exhumation. In these rocks, metabasalts form lenses ranging in size from m- to 10s of m and are distributed at the m-scale throughout the metasedimentary matrix. Several of the metamafic lenses, and the matrix rocks immediately adjacent to them, preserve multiple generations of dilational veins and shear fractures filled with quartz and high pressure minerals. These observations suggest that coupled brittle-viscous deformation under high fluid pressures may characterize the subduction interface in the deep tremor source region. To test this further, we modeled the behavior of an elasto-plastic pod in a viscous shear zone under high fluid pressures. Our models show that local stress concentrations around the pod are large enough to generate transient dilational shear at seismic strain rates. Scaling the model up to a typical source area for deep tremor suggests these heterogeneities may yield a seismic moment similar to those calculated for tremor bursts in modern subduction zones.

  5. Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT): Study Protocol of a Randomized Controlled Feasibility Trial.

    PubMed

    Sajonz, Bastian Elmar Alexander; Amtage, Florian; Reinacher, Peter Christoph; Jenkner, Carolin; Piroth, Tobias; Kätzler, Jürgen; Urbach, Horst; Coenen, Volker Arnd

    2016-12-22

    Essential tremor is a movement disorder that can result in profound disability affecting the quality of life. Medically refractory essential tremor can be successfully reduced by deep brain stimulation (DBS) traditionally targeting the thalamic ventral intermediate nucleus (Vim). Although this structure can be identified with magnetic resonance (MR) imaging nowadays, Vim-DBS electrodes are still implanted in the awake patient with intraoperative tremor testing to achieve satisfactory tremor control. This can be attributed to the fact that the more effective target of DBS seems to be the stimulation of fiber tracts rather than subcortical nuclei like the Vim. There is evidence that current coverage of the dentatorubrothalamic tract (DRT) results in good tremor control in Vim-DBS. Diffusion tensor MR imaging (DTI) tractography-assisted stereotactic surgery targeting the DRT would therefore not rely on multiple trajectories and intraoperative tremor testing in the awake patient, bearing the potential of more patient comfort and reduced operation-related risks. This is the first randomized controlled trial comparing DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia with stereotactic surgery of thalamic/subthalamic region as conventionally used. This clinical pilot trial aims at demonstrating safety of DTI tractography-assisted stereotactic surgery in general anesthesia and proving its equality compared to conventional stereotactic surgery with intraoperative testing in the awake patient. The Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT) trial is a single-center investigator-initiated, randomized, controlled, observer-blinded trial. A total of 24 patients with medically refractory essential tremor will be randomized to either DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia or stereotactic surgery of the thalamic/subthalamic region as conventionally used. The primary objective is to assess the tremor reduction, obtained by the Fahn-Tolosa-Marin Tremor Rating Scale in the 2 treatment groups. Secondary objectives include (among others) assessing the quality of life, optimal electrode contact positions, and safety of the intervention. The study protocol has been approved by the independent ethics committee of the University of Freiburg. Recruitment to the DISTINCT trial opened in September 2015 and is expected to close in June 2017. At the time of manuscript submission the trial is open to recruitment. The DISTINCT trial is the first to compare DTI tractography-assisted stereotactic surgery with target point of the DRT in general anesthesia to stereotactic surgery of the thalamic/subthalamic region as conventionally used. It can serve as a cornerstone for the evolving technique of DTI tractography-assisted stereotactic surgery. ClinicalTrials.gov NCT02491554; https://clinicaltrials.gov/ct2/show/NCT02491554 (Archived by WebCite at http://www.webcitation.org/6mezLnB9D). German Clinical Trials Register DRKS00008913; http://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00008913 (Archived by WebCite at http://www.webcitation.org/6mezCtxhS). ©Bastian Elmar Alexander Sajonz, Florian Amtage, Peter Christoph Reinacher, Carolin Jenkner, Tobias Piroth, Jürgen Kätzler, Horst Urbach, Volker Arnd Coenen. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 22.12.2016.

  6. Characteristics of Tremor During the Entire July 2004 Cascadia Episodic Tremor and Slip event

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; Malone, S.; La Rocca, M.; Creager, K.

    2005-12-01

    The July 2004 Cascadia episodic tremor and slip (ETS) event was recorded and analyzed using three geographically distributed small aperture seismic arrays (600m) located near Sooke, BC, Sequim, WA, and on Lopez Island, WA. We analyzed the tremor sequence in the 1 to 6 Hz frequency band in overlapping windows (12s length)using zero-lag cross correlation and polarization analysis in order to obtain a continuous record of the back-azimuth, slowness, and particle motion of tremor sources throughout the ETS episode. During periods without tremor, the average interstation correlations for each array range between 0.2 and 0.4, and observed azimuths are randomly distributed. During periods of strong tremor, the average correlation for each array is typically between 0.5 and 0.8, and azimuths are stable over periods of minutes. Observed apparent velocities are greater than 4 km/s and polarization analysis indicates that the wave-field is composed primarily of SH-waves, both of which are consistent with a deep source of shear wave energy. Azimuths and slownesses are consistent with previously obtained hypocentral locations and apparent velocities calculated using the relative arrival times of energy bursts on Pacific Northwest Seismograph Network.

  7. Comparison of ground motion from tremors and explosions in deep gold mines

    USGS Publications Warehouse

    McGarr, A.; Bicknell, J.; Churcher, J.; Spottiswoode, S.

    1990-01-01

    Seismic body waves, from tamped chemical explosions, two with yields of 50 and one of 150 kg, were compared with corresponding data from three mining-induced tremors with a view to testing methods of discriminating between the two types of events. It is concluded that for events of fixed low-frequency spectral asymptotes, the explosions typically have higher corner frequencies than tremors or earthquakes, although counterexamples certainly exist. Interestingly, the 150-kg explosion was identified as such on the basis of P and S wave polarities that are incompatible with the normally expected double-couple source model; instead these initial motions are consistent with an explosion in conjunction with normal faulting. The body wave spectra of this explosion and those of a nearby tremor, however, were indistinguishable. -from Authors

  8. Toward Expanding Tremor Observations in the Northern San Andreas Fault System in the 1990s

    NASA Astrophysics Data System (ADS)

    Damiao, L. G.; Dreger, D. S.; Nadeau, R. M.; Taira, T.; Guilhem, A.; Luna, B.; Zhang, H.

    2015-12-01

    The connection between tremor activity and active fault processes continues to expand our understanding of deep fault zone properties and deformation, the tectonic process, and the relationship of tremor to the occurrence of larger earthquakes. Compared to tremors in subduction zones, known tremor signals in California are ~5 to ~10 smaller in amplitude and duration. These characteristics, in addition to scarce geographic coverage, lack of continuous data (e.g., before mid-2001 at Parkfield), and absence of instrumentation sensitive enough to monitor these events have stifled tremor detection. The continuous monitoring of these events over a relatively short time period in limited locations may lead to a parochial view of the tremor phenomena and its relationship to fault, tectonic, and earthquake processes. To help overcome this, we have embarked on a project to expand the geographic and temporal scope of tremor observation along the Northern SAF system using available continuous seismic recordings from a broad array of 100s of surface seismic stations from multiple seismic networks. Available data for most of these stations also extends back into the mid-1990s. Processing and analysis of tremor signal from this large and low signal-to-noise dataset requires a heavily automated, data-science type approach and specialized techniques for identifying and extracting reliable data. We report here on the automated, envelope based methodology we have developed. We finally compare our catalog results with pre-existing tremor catalogs in the Parkfield area.

  9. Effects of deep brain stimulation on rest tremor progression in early stage Parkinson disease.

    PubMed

    Hacker, Mallory L; DeLong, Mahlon R; Turchan, Maxim; Heusinkveld, Lauren E; Ostrem, Jill L; Molinari, Anna L; Currie, Amanda D; Konrad, Peter E; Davis, Thomas L; Phibbs, Fenna T; Hedera, Peter; Cannard, Kevin R; Drye, Lea T; Sternberg, Alice L; Shade, David M; Tonascia, James; Charles, David

    2018-06-29

    To evaluate whether the progression of individual motor features was influenced by early deep brain stimulation (DBS), a post hoc analysis of Unified Parkinson's Disease Rating Scale-III (UPDRS-III) score (after a 7-day washout) was conducted from the 2-year DBS in early Parkinson disease (PD) pilot trial dataset. The prospective pilot trial enrolled patients with PD aged 50-75 years, treated with PD medications for 6 months-4 years, and no history of dyskinesia or other motor fluctuations, who were randomized to receive optimal drug therapy (ODT) or DBS plus ODT (DBS + ODT). At baseline and 6, 12, 18, and 24 months, all patients stopped all PD therapy for 1 week (medication and stimulation, if applicable). UPDRS-III "off" item scores were compared between the ODT and DBS + ODT groups (n = 28); items with significant between-group differences were analyzed further. UPDRS-III "off" rest tremor score change from baseline to 24 months was worse in patients receiving ODT vs DBS + ODT ( p = 0.002). Rest tremor slopes from baseline to 24 months favored DBS + ODT both "off" and "on" therapy ( p < 0.001, p = 0.003, respectively). More ODT patients developed new rest tremor in previously unaffected limbs than those receiving DBS + ODT ( p = 0.001). These results suggest the possibility that DBS in early PD may slow rest tremor progression. Future investigation in a larger cohort is needed, and these findings will be tested in the Food and Drug Administration-approved, phase III, pivotal, multicenter clinical trial evaluating DBS in early PD. This study provides Class II evidence that for patients with early PD, DBS may slow the progression of rest tremor. © 2018 American Academy of Neurology.

  10. Moving Forward: Advances in the Treatment of Movement Disorders with Deep Brain Stimulation

    PubMed Central

    Schiefer, Terry K.; Matsumoto, Joseph Y.; Lee, Kendall H.

    2011-01-01

    The modern era of stereotactic and functional neurosurgery has ushered in state of the art technologies for the treatment of movement disorders, particularly Parkinson’s disease (PD), tremor, and dystonia. After years of experience with various surgical therapies, the eventual shortcomings of both medical and surgical treatments, and several serendipitous discoveries, deep brain stimulation (DBS) has risen to the forefront as a highly effective, safe, and reversible treatment for these conditions. Idiopathic advanced PD can be treated with thalamic, globus pallidus internus (GPi), or subthalamic nucleus (STN) DBS. Thalamic DBS primarily relieves tremor while GPi and STN DBS alleviate a wide range of Parkinsonian symptoms. Thalamic DBS is also used in the treatment of other types of tremor, particularly essential tremor, with excellent results. Both primary and various types of secondary dystonia can be treated very effectively with GPi DBS. The variety of anatomical targets for these movement disorders is indicative of the network-level dysfunction mediating these movement disturbances. Despite an increasing understanding of the clinical benefits of DBS, little is known about how DBS can create such wide sweeping neuromodulatory effects. The key to improving this therapeutic modality and discovering new ways to treat these and other neurologic conditions lies in better understanding the intricacies of DBS. Here we review the history and pertinent clinical data for DBS treatment of PD, tremor, and dystonia. While multiple regions of the brain have been targeted for DBS in the treatment of these movement disorders, this review article focuses on those that are most commonly used in current clinical practice. Our search criteria for PubMed included combinations of the following terms: DBS, neuromodulation, movement disorders, PD, tremor, dystonia, and history. Dates were not restricted. PMID:22084629

  11. What Can Sounds Tell Us About Earthquake Interactions?

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.

    2012-12-01

    It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these interactions can tell us about the source characteristics of earthquakes and tremors.

  12. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc

    USGS Publications Warehouse

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.; Blair, James Luke

    2016-01-01

    The ratio between helium isotopes (3He/4He) provides an excellent geochemical tracer for investigating the sources of fluids sampled at the Earth's surface. 3He/4He values observed in 25 mineral springs and wells above the Cascadia forearc document a significant component of mantle-derived helium above Juan de Fuca lithosphere, as well as variability in 3He enrichment across the forearc. Sample sites arcward of the forearc mantle corner (FMC) generally yield significantly higher ratios (1.2-4.0 RA) than those seaward of the corner (0.03-0.7 RA). The highest ratios in the Cascadia forearc coincide with slab depths (40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (25-30 km) beneath sites seaward of the corner.Tremor (considered a marker for high fluid pressure) and high RA values in the forearc are spatially correlated. The Cascadia tremor band is centered on its FMC, and we tentatively postulate that hydrated forearc mantle beneath Cascadia deflects a significant portion of slab-derived fluids updip along the subduction interface, to vent in the vicinity of its corner. Furthermore, high RA values within the tremor band just arcward of the FMC, suggest that the innermost mantle wedge is relatively permeable.Conceptual models require: (1) a deep fluid source as a medium to transport primordial 3He; (2) conduits through the lithosphere which serve to speed fluid ascent to the surface before significant dilution from radiogenic 4He can occur; and (3) near lithostatic fluid pressure to keep conduits open. Our spatial correlation between high RA values and tectonic tremor provides independent evidence that tremor is associated with deep fluids, and it further suggests that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through ductile upper mantle and lower crust.

  13. Geometry and Pore Pressure Shape the Pattern of the Tectonic Tremors Activity on the Deep San Andreas Fault with Periodic, Period-Multiplying Recurrence Intervals

    NASA Astrophysics Data System (ADS)

    Mele Veedu, D.; Barbot, S.

    2014-12-01

    A never before recorded pattern of periodic, chaotic, and doubled, earthquake recurrence intervals was detected in the sequence of deep tectonic tremors of the Parkfield segment of the San Andreas Fault (Shelly, 2010). These observations may be the most puzzling seismological observations of the last decade: The pattern was regularly oscillating with a period doubling of 3 and 6 days from mid-2003 until it was disrupted by the 2004 Mw 6.0 Parkfield earthquake. But by the end of 2007, the previous pattern resumed. Here, we assume that the complex dynamics of the tremors is caused by slip on a single asperity on the San Andreas Fault with homogeneous friction properties. We developed a three-dimensional model based on the rate-and-state friction law with a single patch and simulated fault slip during all stages of the earthquake cycle using the boundary integral method of Lapusta & Liu (2009). We find that homogeneous penny-shaped asperities cannot induce the observed period doubling, and that the geometry itself of the velocity-weakening asperity is critical in enabling the characteristic behavior of the Parkfield tremors. We also find that the system is sensitive to perturbations in pore pressure, such that the ones induced by the 2004 Parkfield earthquake are sufficient to dramatically alter the dynamics of the tremors for two years, as observed by Shelly (2010). An important finding is that tremor magnitude is amplified more by macroscopic slip duration on the source asperity than by slip amplitude, indicative of a time-dependent process for the breakage of micro-asperities that leads to seismic emissions. Our simulated event duration is in the range of 25 to 150 seconds, closely comparable to the event duration of a typical Parkfield tectonic tremor. Our simulations reproduce the unique observations of the Parkfield tremor activity. This study vividly illustrates the critical role of geometry in shaping the dynamics of fault slip evolution on a seismogenic fault.

  14. Relative Source Locations of Continuous Tremor Before and After the Subplinian Events at Shinmoe-dake, in 2011

    NASA Astrophysics Data System (ADS)

    Ichihara, M.; Matsumoto, S.

    2017-11-01

    Volcano monitoring systems are not always ready to resolve signals at the onset of eruptive activity. This study makes use of stations installed later to calibrate the performance of the stations that had been operated before the eruption. Seven stations recorded continuous volcanic tremor before and during the subplinian eruptions of Shinmoe-dake, Japan, in 2011. We estimated the source locations of the tremor using the amplitude distribution. The stability of the analysis was obtained by careful selection of time windows in which signals from a single source are dominated. The site effects and the regional attenuation factor were evaluated using tremor recorded after the major eruptions by a dense seismic array and a good number of stations. A tremor source changed its depth beneath the crater for 1 week before the major eruption, rising from a depth of a few kilometer to the water layer 3 times, each of which occurred following shallow inflation and minor eruptions. It is interpreted as migration of gas probably with magma, which further transported heat to the water layer and triggered the subplinian eruptions.

  15. Models of tremor and low-frequency earthquake swarms on Montserrat

    NASA Astrophysics Data System (ADS)

    Neuberg, J.; Luckett, R.; Baptie, B.; Olsen, K.

    2000-08-01

    Recent observations from Soufrière Hills volcano in Montserrat reveal a wide variety of low-frequency seismic signals. We discuss similarities and differences between hybrid earthquakes and long-period events, and their role in explosions and rockfall events. These events occur usually in swarms, and occasionally merge into tremor, an observation that can shed further light on the generation and composition of harmonic tremor. We use a 2D finite difference method to model major features of low-frequency seismic signatures and compare them with the observations. A depth-dependent velocity model for a fluid-filled conduit is introduced which accounts for the varying gas-content in the magma, and the impact on the seismic signals is discussed. We carefully analyse episodes of tremor that show shifting spectral lines and model those in terms of changes in the gas content of the magma as well as in terms of a time-dependent triggering mechanism of low-frequency resonances. In this way we explain the simultaneous occurrence of low-frequency events and tremor with a spectral content comprising integer harmonics.

  16. Magnetic Resonance-Guided Focused Ultrasound Neurosurgery for Essential Tremor: A Health Technology Assessment

    PubMed Central

    Schaink, Alexis; Li, Chunmei; Gajic-Veljanoski, Olga; Wells, David; Higgins, Caroline

    2018-01-01

    Background The standard treatment option for medication-refractory essential tremor is invasive neurosurgery. A new, noninvasive alternative is magnetic resonance-guided focused ultrasound (MRgFUS) neurosurgery. We aimed to determine the effectiveness, safety, and cost-effectiveness of MRgFUS neurosurgery for the treatment of moderate to severe, medication-refractory essential tremor in Ontario. We also spoke with people with essential tremor to gain an understanding of their experiences and thoughts regarding treatment options, including MRgFUS neurosurgery. Methods We performed a systematic review of the clinical literature published up to April 11, 2017, that examined MRgFUS neurosurgery alone or compared with other interventions for the treatment of moderate to severe, medication-refractory essential tremor. We assessed the risk of bias of each study and the quality of the body of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. We performed a systematic review of the economic literature and created Markov cohort models to assess the cost-effectiveness of MRgFUS neurosurgery compared with other treatment options, including no surgery. We also estimated the budget impact of publicly funding MRgFUS neurosurgery in Ontario for the next 5 years. To contextualize the potential value of MRgFUS neurosurgery as a treatment option for essential tremor, we spoke with people with essential tremor and their families. Results Nine studies met our inclusion criteria for the clinical evidence review. In noncomparative studies, MRgFUS neurosurgery was found to significantly improve tremor severity and quality of life and to significantly reduce functional disability (GRADE: very low). It was also found to be significantly more effective than a sham procedure (GRADE: high). We found no significant difference in improvements in tremor severity, functional disability, or quality of life between MRgFUS neurosurgery and deep brain stimulation (GRADE: very low). We found no significant difference in improvement in tremor severity compared with radiofrequency thalamotomy (GRADE: low). MRgFUS neurosurgery has a favourable safety profile. We estimated that MRgFUS neurosurgery has a mean cost of $23,507 and a mean quality-adjusted survival of 3.69 quality-adjusted life-years (QALYs). We also estimated that the mean costs and QALYs of radiofrequency thalamotomy and deep brain stimulation are $14,978 and 3.61 QALYs, and $57,535 and 3.94 QALYs, respectively. For people ineligible for invasive neurosurgery, we estimated the incremental cost-effectiveness ratio (ICER) of MRgFUS neurosurgery compared with no surgery as $43,075 per QALY gained. In people eligible for invasive neurosurgery, the ICER of MRgFUS neurosurgery compared with radiofrequency thalamotomy is $109,795 per QALY gained; when deep brain stimulation is compared with MRgFUS neurosurgery, the ICER is $134,259 per QALY gained. Of note however, radiofrequency thalamotomy is performed very infrequently in Ontario. We also estimated that the budget impact of publicly funding MRgFUS neurosurgery in Ontario at the current case load (i.e., 48 cases/year) would be about $1 million per year for the next 5 years. People with essential tremor who had undergone MRgFUS neurosurgery reported positive experiences with the procedure. The tremor reduction they experienced improved their ability to perform activities of daily living and improved their quality of life. Conclusions MRgFUS neurosurgery is an effective and generally safe treatment option for moderate to severe, medication-refractory essential tremor. It provides a treatment option for people ineligible for invasive neurosurgery and offers a noninvasive option for all people considering neurosurgery. For people ineligible for invasive neurosurgery, MRgFUS neurosurgery is cost-effective compared with no surgery. In people eligible for invasive neurosurgery, MRgFUS neurosurgery may be one of several reasonable options. Publicly funding MRgFUS neurosurgery for the treatment of moderate to severe, medication-refractory essential tremor in Ontario at the current case load would have a net budget impact of about $1 million per year for the next 5 years. People with essential tremor who had undergone MRgFUS neurosurgery reported positive experiences. They liked that it was a noninvasive procedure and reported a substantial reduction in tremor that resulted in an improvement in their quality of life. PMID:29805721

  17. Tectonic tremor

    USGS Publications Warehouse

    Shelly, David R.

    2016-01-01

    Tectonic, non-volcanic tremor is a weak vibration of ground, which cannot be felt by humans but can be detected by sensitive seismometers. It is defined empirically as a low-amplitude, extended duration seismic signal associated with the deep portion (∼20–40 km depth) of some major faults. It is typically observed most clearly in the frequency range of 2–8 Hz and is depleted in energy at higher frequencies relative to regular earthquakes.

  18. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  19. Progressive gait ataxia following deep brain stimulation for essential tremor: adverse effect or lack of efficacy?

    PubMed

    Reich, Martin M; Brumberg, Joachim; Pozzi, Nicolò G; Marotta, Giorgio; Roothans, Jonas; Åström, Mattias; Musacchio, Thomas; Lopiano, Leonardo; Lanotte, Michele; Lehrke, Ralph; Buck, Andreas K; Volkmann, Jens; Isaias, Ioannis U

    2016-11-01

    Thalamic deep brain stimulation is a mainstay treatment for severe and drug-refractory essential tremor, but postoperative management may be complicated in some patients by a progressive cerebellar syndrome including gait ataxia, dysmetria, worsening of intention tremor and dysarthria. Typically, this syndrome manifests several months after an initially effective therapy and necessitates frequent adjustments in stimulation parameters. There is an ongoing debate as to whether progressive ataxia reflects a delayed therapeutic failure due to disease progression or an adverse effect related to repeated increases of stimulation intensity. In this study we used a multimodal approach comparing clinical stimulation responses, modelling of volume of tissue activated and metabolic brain maps in essential tremor patients with and without progressive ataxia to disentangle a disease-related from a stimulation-induced aetiology. Ten subjects with stable and effective bilateral thalamic stimulation were stratified according to the presence (five subjects) of severe chronic-progressive gait ataxia. We quantified stimulated brain areas and identified the stimulation-induced brain metabolic changes by multiple 18 F-fluorodeoxyglucose positron emission tomography performed with and without active neurostimulation. Three days after deactivating thalamic stimulation and following an initial rebound of symptom severity, gait ataxia had dramatically improved in all affected patients, while tremor had worsened to the presurgical severity, thus indicating a stimulation rather than disease-related phenomenon. Models of the volume of tissue activated revealed a more ventrocaudal stimulation in the (sub)thalamic area of patients with progressive gait ataxia. Metabolic maps of both patient groups differed by an increased glucose uptake in the cerebellar nodule of patients with gait ataxia. Our data suggest that chronic progressive gait ataxia in essential tremor is a reversible cerebellar syndrome caused by a maladaptive response to neurostimulation of the (sub)thalamic area. The metabolic signature of progressive gait ataxia is an activation of the cerebellar nodule, which may be caused by inadvertent current spread and antidromic stimulation of a cerebellar outflow pathway originating in the vermis. An anatomical candidate could be the ascending limb of the uncinate tract in the subthalamic area. Adjustments in programming and precise placement of the electrode may prevent this adverse effect and help fine-tuning deep brain stimulation to ameliorate tremor without negative cerebellar signs. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Handwritten dynamics assessment through convolutional neural networks: An application to Parkinson's disease identification.

    PubMed

    Pereira, Clayton R; Pereira, Danilo R; Rosa, Gustavo H; Albuquerque, Victor H C; Weber, Silke A T; Hook, Christian; Papa, João P

    2018-05-01

    Parkinson's disease (PD) is considered a degenerative disorder that affects the motor system, which may cause tremors, micrography, and the freezing of gait. Although PD is related to the lack of dopamine, the triggering process of its development is not fully understood yet. In this work, we introduce convolutional neural networks to learn features from images produced by handwritten dynamics, which capture different information during the individual's assessment. Additionally, we make available a dataset composed of images and signal-based data to foster the research related to computer-aided PD diagnosis. The proposed approach was compared against raw data and texture-based descriptors, showing suitable results, mainly in the context of early stage detection, with results nearly to 95%. The analysis of handwritten dynamics using deep learning techniques showed to be useful for automatic Parkinson's disease identification, as well as it can outperform handcrafted features. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The Effect of Deep Brain Stimulation on the Speech Motor System

    ERIC Educational Resources Information Center

    Mücke, Doris; Becker, Johannes; Barbe, Michael T.; Meister, Ingo; Liebhart, Lena; Roettger, Timo B.; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-01-01

    Purpose: Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the…

  2. [Deep brain stimulation in the treatment of movement disorders].

    PubMed

    Goto, Satoshi

    2007-11-01

    The introduction of deep brain stimulation (DBS) was a historical step forward for the treatment of advanced and medically intractable movement disorders that include Parkinson's disease, dystonias, essential tremor, and Holmes' tremor. DBS is able to modulate the target region electrically in a reversible and adjustable fashion in contrast to an irreversible and destructive lesioning procedure. In the treatment of movement disorders, the potential targets are the thalamic ventral intermediate nucleus (Vim), globus pallidus internus (GPi), subthalamic nucleus (STN), pedunculopontine nucleus (PPN), and thalamic Vo-complex nucleus. With the development of DBS technology and stereotactic neurosurgical techniques, its therapeutic efficacy has been increased while reducing surgical complications. DBS has become an established therapy for disabling movement disorders and is currently being used to treat neuropsychiatric disorders.

  3. Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor.

    USGS Publications Warehouse

    Chouet, B.

    1988-01-01

    A dynamic source model is presented, in which a 3-D crack containing a viscous compressible fluid is excited into resonance by an impulsive pressure transient applied over a small area DELTA S of the crack surface. The crack excitation depends critically on two dimensionless parameters called the crack stiffness and viscous damping loss. According to the model, the long-period event and harmonic tremor share the same source but differ in the boundary conditions for fluid flow and in the triggering mechanism setting up the resonance of the source, the former being viewed as the impulse response of the tremor generating system and the later representing the excitation due to more complex forcing functions.-from Author

  4. An innovative approach in microscopic endodontics

    PubMed Central

    Mittal, Sunandan; Kumar, Tarun; Sharma, Jyotika; Mittal, Shifali

    2014-01-01

    The introduction of the dental operating microscope was a turning point in the history of dentistry. It triggered a rapid transition from the conventional world of macro-dentistry to the precise, detailed world of micro-dentistry. However, working at these higher-power magnifications brings the clinician into the realm where even slight hand movements are disruptive. Physiologic hand tremor is a problem resulting in difficulty in mouth mirror placement. Hence, in this paper, a new instrument was designed to overcome the drawback of hand tremors during microscopic endodontics. PMID:24944459

  5. Biomechanical Loading as an Alternative Treatment for Tremor: A Review of Two Approaches

    PubMed Central

    Rocon, Eduardo; Gallego, Juan Álvaro; Belda-Lois, Juan Manuel; Benito-León, Julián; Luis Pons, José

    2012-01-01

    Background Tremor is the most common movement disorder and strongly increases in incidence and prevalence with aging. Although not life threatening, upper-limb tremors hamper the independence of 65% of people suffering from them affected persons, greatly impacting their quality of life. Current treatments include pharmacotherapy and surgery (thalamotomy and deep brain stimulation). However, these options are not sufficient for approximately 25% of patients. Therefore, further research and new therapeutic options are required to effectively manage pathological tremor. Methods This paper presents findings of two research projects in which two different wearable robots for tremor management were developed based on force loading and validated. The first consisted of a robotic exoskeleton that applied forces to tremulous limbs and consistently attenuated mild and severe tremors. The second was a neuroprosthesis based on transcutaneous neurostimulation. A total of 22 patients suffering from parkinsonian or essential tremor (ET) of different severities were recruited for experimental validation, and both systems were evaluated using standard tasks employed for neurological examination. The inclusion criterion was a postural and/or kinetic pathological upper-limb tremor resistant to medication. Results The results demonstrate that both approaches effectively suppressed tremor in most patients, although further research is required. The work presented here is based on clinical evidence from a small number of patients (n = 10 for robotic exoskeleton and n = 12 for the neuroprosthesis), but most had a positive response to the approaches. In summary, biomechanical loading is non-invasive and painless. It may be effective in patients who are insufficiently responsive (or have adverse reactions) to drugs or in whom surgery is contraindicated. Discussion This paper identifies and evaluates biomechanical loading approaches to tremor management and discusses their potential. PMID:23439994

  6. Disorders of Upper Limb Movements in Ataxia-Telangiectasia

    PubMed Central

    Shaikh, Aasef G.; Zee, David S.; Mandir, Allen S.; Lederman, Howard M.; Crawford, Thomas O.

    2013-01-01

    Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia. PMID:23826191

  7. Disorders of Upper Limb Movements in Ataxia-Telangiectasia.

    PubMed

    Shaikh, Aasef G; Zee, David S; Mandir, Allen S; Lederman, Howard M; Crawford, Thomas O

    2013-01-01

    Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia.

  8. Pathological ponto-cerebello-thalamo-cortical activations in primary orthostatic tremor during lying and stance.

    PubMed

    Schöberl, Florian; Feil, Katharina; Xiong, Guoming; Bartenstein, Peter; la Fougére, Christian; Jahn, Klaus; Brandt, Thomas; Strupp, Michael; Dieterich, Marianne; Zwergal, Andreas

    2017-01-01

    Primary orthostatic tremor is a rare neurological disease characterized mainly by a high frequency tremor of the legs while standing. The aim of this study was to identify the common core structures of the oscillatory circuit in orthostatic tremor and how it is modulated by changes of body position. Ten patients with orthostatic tremor and 10 healthy age-matched control subjects underwent a standardized neurological and neuro-ophthalmological examination including electromyographic and posturographic recordings. Task-dependent changes of cerebral glucose metabolism during lying and standing were measured in all subjects by sequential 18 F-fluorodeoxyglucose-positron emission tomography on separate days. Results were compared between groups and conditions. All the orthostatic tremor patients, but no control subject, showed the characteristic 13-18 Hz tremor in coherent muscles during standing, which ceased in the supine position. While lying, patients had a significantly increased regional cerebral glucose metabolism in the pontine tegmentum, the posterior cerebellum (including the dentate nuclei), the ventral intermediate and ventral posterolateral nucleus of the thalamus, and the primary motor cortex bilaterally compared to controls. Similar glucose metabolism changes occurred with clinical manifestation of the tremor during standing. The glucose metabolism was relatively decreased in mesiofrontal cortical areas (i.e. the medial prefrontal cortex, supplementary motor area and anterior cingulate cortex) and the bilateral anterior insula in orthostatic tremor patients while lying and standing. The mesiofrontal hypometabolism correlated with increased body sway in posturography. This study confirms and further elucidates ponto-cerebello-thalamo-primary motor cortical activations underlying primary orthostatic tremor, which presented consistently in a group of patients. Compared to other tremor disorders one characteristic feature in orthostatic tremor seems to be the involvement of the pontine tegmentum in the pathophysiology of tremor generation. High frequency oscillatory properties of pontine tegmental neurons have been reported in pathological oscillatory eye movements. It is remarkable that the characteristic activation and deactivation pattern in orthostatic tremor is already present in the supine position without tremor presentation. Multilevel changes of neuronal excitability during upright stance may trigger activation of the orthostatic tremor network. Based on the functional imaging data described in this study, it is hypothesized that a mesiofrontal deactivation is another characteristic feature of orthostatic tremor and plays a pivotal role in development of postural unsteadiness during prolonged standing. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Square biphasic pulse deep brain stimulation for essential tremor: The BiP tremor study.

    PubMed

    De Jesus, Sol; Almeida, Leonardo; Shahgholi, Leili; Martinez-Ramirez, Daniel; Roper, Jaimie; Hass, Chris J; Akbar, Umer; Wagle Shukla, Aparna; Raike, Robert S; Okun, Michael S

    2018-01-01

    Conventional deep brain stimulation (DBS) utilizes regular, high frequency pulses to treat medication-refractory symptoms in essential tremor (ET). Modifications of DBS pulse shape to achieve improved effectiveness is a promising approach. The current study assessed the safety, tolerability and effectiveness of square biphasic pulse shaping as an alternative to conventional ET DBS. This pilot study compared biphasic pulses (BiP) versus conventional DBS pulses (ClinDBS). Eleven ET subjects with clinically optimized ventralis intermedius nucleus DBS were enrolled. Objective measures were obtained over 3 h while ON BiP stimulation. There was observed benefit in the Fahn-Tolosa Tremor Rating Scale (TRS) for BiP conditions when compared to the DBS off condition and to ClinDBS setting. Total TRS scores during the DBS OFF condition (28.5 IQR = 24.5-35.25) were significantly higher than the other time points. Following active DBS, TRS improved to (20 IQR = 13.8-24.3) at ClinDBS setting and to (16.5 IQR = 12-20.75) at the 3 h period ON BiP stimulation (p = 0.001). Accelerometer recordings revealed improvement in tremor at rest (χ 2  = 16.1, p = 0.006), posture (χ 2  = 15.9, p = 0.007) and with action (χ 2  = 32.1, p=<0.001) when comparing median total scores at ClinDBS and OFF DBS conditions to 3 h ON BiP stimulation. There were no adverse effects and gait was not impacted. BiP was safe, tolerable and effective on the tremor symptoms when tested up to 3 h. This study demonstrated the feasibility of applying a novel DBS waveform in the clinic setting. Larger prospective studies with longer clinical follow-up will be required. Copyright © 2017. Published by Elsevier Ltd.

  10. A Fuzzy Inference System for Closed-Loop Deep Brain Stimulation in Parkinson's Disease.

    PubMed

    Camara, Carmen; Warwick, Kevin; Bruña, Ricardo; Aziz, Tipu; del Pozo, Francisco; Maestú, Fernando

    2015-11-01

    Parkinsons disease is a complex neurodegenerative disorder for which patients present many symptoms, tremor being the main one. In advanced stages of the disease, Deep Brain Stimulation is a generalized therapy which can significantly improve the motor symptoms. However despite its beneficial effects on treating the symptomatology, the technique can be improved. One of its main limitations is that the parameters are fixed, and the stimulation is provided uninterruptedly, not taking into account any fluctuation in the patients state. A closed-loop system which provides stimulation by demand would adjust the stimulation to the variations in the state of the patient, stimulating only when it is necessary. It would not only perform a more intelligent stimulation, capable of adapting to the changes in real time, but also extending the devices battery life, thereby avoiding surgical interventions. In this work we design a tool that learns to recognize the principal symptom of Parkinsons disease and particularly the tremor. The goal of the designed system is to detect the moments the patient is suffering from a tremor episode and consequently to decide whether stimulation is needed or not. For that, local field potentials were recorded in the subthalamic nucleus of ten Parkinsonian patients, who were diagnosed with tremor-dominant Parkinsons disease and who underwent surgery for the implantation of a neurostimulator. Electromyographic activity in the forearm was simultaneously recorded, and the relation between both signals was evaluated using two different synchronization measures. The results of evaluating the synchronization indexes on each moment represent the inputs to the designed system. Finally, a fuzzy inference system was applied with the goal of identifying tremor episodes. Results are favourable, reaching accuracies of higher 98.7% in 70% of the patients.

  11. A kinematic model of patchy slip at depth explains observed tremor waveforms on the San Andreas fault near Parkfield, California

    NASA Astrophysics Data System (ADS)

    Gottschaemmer, E.; Harrington, R. M.; Cochran, E. S.; Bohlen, T.

    2011-12-01

    Recent observations of both triggered and ambient tremor suggest that tremor results from simple shear-failure. Tremor episodes on the San Andreas fault near Parkfield are thought to be comprised of clusters of individual events with frequencies between 2-8 Hz. Such low frequency earthquakes (LFEs) occur at depths where the frictional properties of the fault surface are primarily slip-strengthening with imbedded patches of slip weakening material that slip seismically when the surrounding fault creeps in a slow-slip event. Here we show new tremor waveforms from a temporary deployment of 13 broadband seismometers spaced at a maximum on the order of 30 km near Cholame, California are consistent with a series of small seismically slipping patches surrounded by an aseismic region along a fault surface. We model individual seismic events kinematically as small shear failures (M ~ 1) at depths exceeding 15 km. We use stress drop values of 1 MPa, based on a slip to fault area ratio. We simulate tremor recorded at the surface by our temporary array centered near Cholame, for frequencies up to 8 Hz using a staggered-grid finite-difference scheme to solve the elastic equations of motion, and the 3D velocity and density model from Thurber et al. (2006). Our simulations indicate that multiple seismically slipping patches in an aseismic region successfully recreate tremor characteristics observed in multiple studies, including individual tremor bursts, individual events, and episodic behavior. The kinematic model presented here will help to constrain the distribution and amplitude of the seismically slipping patches at depth, which will then be used in a dynamic model with variable frictional properties.

  12. Thalamic DBS with a constant-current device in essential tremor: A controlled clinical trial.

    PubMed

    Wharen, Robert E; Okun, Michael S; Guthrie, Barton L; Uitti, Ryan J; Larson, Paul; Foote, Kelly; Walker, Harrison; Marshall, Frederick J; Schwalb, Jason; Ford, Blair; Jankovic, Joseph; Simpson, Richard; Dashtipour, Khashayar; Phibbs, Fenna; Neimat, Joseph S; Stewart, R Malcolm; Peichel, DeLea; Pahwa, Rajesh; Ostrem, Jill L

    2017-07-01

    This study of thalamic deep brain stimulation (DBS) investigated whether a novel constant-current device improves tremor and activities of daily living (ADL) in patients with essential tremor (ET). A prospective, controlled, multicenter study was conducted at 12 academic centers. We investigated the safety and efficacy of unilateral and bilateral constant-current DBS of the ventralis intermedius (VIM) nucleus of the thalamus in patients with essential tremor whose tremor was inadequately controlled by medications. The primary outcome measure was a rater-blinded assessment of the change in the target limb tremor score in the stimulation-on versus stimulation-off state six months following surgery. Multiple secondary outcomes were assessed at one-year follow-up, including motor, mood, and quality-of-life measures. 127 patients were implanted with VIM DBS. The blinded, primary outcome variable (n = 76) revealed a mean improvement of 1.25 ± 1.26 points in the target limb tremor rating scale (TRS) score in the arm contralateral to DBS (p < 0.001). Secondary outcome variables at one year revealed significant improvements (p ≤ 0.001) in quality of life, depression symptoms, and ADL scores. Forty-seven patients had a second contralateral VIM-DBS, and this group demonstrated reduction in second-sided tremor at 180 days (p < 0.001). Serious adverse events related to the surgery included infection (n = 3), intracranial hemorrhage (n = 3), and device explantation (n = 3). Unilateral and bilateral constant-current VIM DBS significantly improves upper extremity tremor, ADL, quality of life, and depression in patients with severe ET. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Listening to data from the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Aiken, C.; Kilb, D. L.; Shelly, D. R.; Enescu, B.

    2011-12-01

    It is important for seismologists to effectively convey information about catastrophic earthquakes, such as the magnitude 9.0 earthquake in Tohoku-Oki, Japan, to general audience who may not necessarily be well-versed in the language of earthquake seismology. Given recent technological advances, previous approaches of using "snapshot" static images to represent earthquake data is now becoming obsolete, and the favored venue to explain complex wave propagation inside the solid earth and interactions among earthquakes is now visualizations that include auditory information. Here, we convert seismic data into visualizations that include sounds, the latter being a term known as 'audification', or continuous 'sonification'. By combining seismic auditory and visual information, static "snapshots" of earthquake data come to life, allowing pitch and amplitude changes to be heard in sync with viewed frequency changes in the seismograms and associated spectragrams. In addition, these visual and auditory media allow the viewer to relate earthquake generated seismic signals to familiar sounds such as thunder, popcorn popping, rattlesnakes, firecrackers, etc. We present a free software package that uses simple MATLAB tools and Apple Inc's QuickTime Pro to automatically convert seismic data into auditory movies. We focus on examples of seismic data from the 2011 Tohoku-Oki earthquake. These examples range from near-field strong motion recordings that demonstrate the complex source process of the mainshock and early aftershocks, to far-field broadband recordings that capture remotely triggered deep tremor and shallow earthquakes. We envision audification of seismic data, which is geared toward a broad range of audiences, will be increasingly used to convey information about notable earthquakes and research frontiers in earthquake seismology (tremor, dynamic triggering, etc). Our overarching goal is that sharing our new visualization tool will foster an interest in seismology, not just for young scientists but also for people of all ages.

  14. The 2011 unrest at Katla volcano: Characterization and interpretation of the tremor sources

    NASA Astrophysics Data System (ADS)

    Sgattoni, Giulia; Gudmundsson, Ólafur; Einarsson, Páll; Lucchi, Federico; Li, Ka Lok; Sadeghisorkhani, Hamzeh; Roberts, Roland; Tryggvason, Ari

    2017-05-01

    A 23-hour tremor burst was recorded on July 8-9th 2011 at the Katla subglacial volcano, one of the most active and hazardous volcanoes in Iceland. This was associated with deepening of cauldrons on the ice cap and a glacial flood that caused damage to infrastructure. Increased earthquake activity within the caldera started a few days before and lasted for months afterwards and new seismic activity started on the southern flank. No visible eruption broke the ice and the question arose as to whether this episode relates to a minor subglacial eruption with the tremor being generated by volcanic processes, or by the flood. The tremor signal consisted of bursts with varying amplitude and duration. We have identified and described three different tremor phases, based on amplitude and frequency features. A tremor phase associated with the flood was recorded only at stations closest to the river that flooded, correlating in time with rising water level observed at gauging stations. Using back-projection of double cross-correlations, two other phases have been located near the active ice cauldrons and are interpreted to be caused by volcanic or hydrothermal processes. The greatly increased seismicity and evidence of rapid melting of the glacier may be explained by a minor sub-glacial eruption. A less plausible interpretation is that the tremor was generated by hydrothermal boiling and/or explosions with no magma involved. This may have been induced by pressure drop triggered by the release of water when the glacial flood started. All interpretations require an increase of heat released by the volcano.

  15. Insights into the causal relationship between slow slip and tectonic tremor in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Villafuerte, Carlos; Cruz-Atienza, Víctor M.

    2017-08-01

    Similar to other subduction zones, tectonic tremors (TTs) and slow-slip events (SSEs) take place in the deep segment of the plate interface in Guerrero, Mexico. However, their spatial correlation in this region is not as clear as the episodic tremor and slip observed in Cascadia and Japan. In this study we provide insights into the causal relationship between TTs and SSEs in Guerrero by analyzing the evolution of the deformation fields induced by the long-term 2006 SSE together with new locations of TTs and low-frequency earthquakes (LFEs). Unlike previous studies we find that the SSE slip rate modulates the TT and LFE activity in the whole tremor region. This means that the causal relationship between the SSE and the TT activity directly depends on the stressing rate history of the tremor asperities that is modulated by the surrounding slip rate. We estimated that the frictional strength of the asperities producing tremor downdip in the sweet spot is around 3.2 kPa, which is 2.3 times smaller than the corresponding value updip in the transient zone, partly explaining the overwhelming tremor activity of the sweet spot despite that the slow slip there is smaller. Based on the LFE occurrence-rate history during the interlong-term SSE period, we determined that the short-term SSEs in Guerrero take place further downdip (about 35 km) than previously estimated, with maximum slip of about 8 mm in the sweet spot. This new model features a continuum of slow slip extending across the entire tremor region of Guerrero.

  16. Constraining the dynamics of 2014-15 Bardarbunga-Holuhraun intrusion and eruption using seismic noise

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Donaldson, Clare; White, Robert

    2016-04-01

    The 2010 Eyjafjallajokull volcanic eruption explosively emitted a large quantity of ash in the atmosphere and paralysed the European airspace for weeks. Several seismic scientific studies already contributed to the understanding of this complex eruption (e.g., Tarasewicz et al., 2012). Although an excellent network of seismometers recorded this eruption, some volcanological and seismological aspects are still poorly understood. In order to gain further constraints on the dynamics of this ground-breaking eruptions, we mine the seismic dataset using the seismic ambient noise technique between pairs of stations and the Seismic Amplitude Ratio Analysis (SARA). Our preliminary results reveal a strong contamination of the Cross Correlation Functions (CCF) by the volcanic tremor, particularly above 0.5 Hz even for station pairs located >50 km from the volcano. Although this volcanic tremor precludes the monitoring of the seismic velocities, it literally illuminated the medium. The two phases of the eruptions (i.e., effusive and explosive) are clearly distinguished in these functions due to their different locations. During the explosive phase, an intriguing shift of the main peaks of the cross correlation functions is evidenced (early May 2010). It is remarkably consistent with the downward migration proposed by Tarasewicz et al. (2012) and is interpreted as a migration of the volcanic tremor. SARA methodology, which is continuously imaging and tracking any significant seismicity at a 10-min time scale (Taisne et al., 2010), is applied in the 5-15 Hz frequency band in order to image to continuously migrating microseismicity. The analysis displays several shallow migrations (above 5 km of depth, in March 2010) preceding the effusive phase of the eruption. Interestingly, the results also evidence a fast and deep migration (> 5 km) starting a few hours before the beginning of the explosive phase (13 April 2010). These preliminary results may shed light on the triggering of the explosive eruption.

  17. Tidal controls on earthquake size-frequency statistics

    NASA Astrophysics Data System (ADS)

    Ide, S.; Yabe, S.; Tanaka, Y.

    2016-12-01

    The possibility that tidal stresses can trigger earthquakes is a long-standing issue in seismology. Except in some special cases, a causal relationship between seismicity and the phase of tidal stress has been rejected on the basis of studies using many small events. However, recently discovered deep tectonic tremors are highly sensitive to tidal stress levels, with the relationship being governed by a nonlinear law according to which the tremor rate increases exponentially with increasing stress; thus, slow deformation (and the probability of earthquakes) may be enhanced during periods of large tidal stress. Here, we show the influence of tidal stress on seismicity by calculating histories of tidal shear stress during the 2-week period before earthquakes. Very large earthquakes tend to occur near the time of maximum tidal stress, but this tendency is not obvious for small earthquakes. Rather, we found that tidal stress controls the earthquake size-frequency statistics; i.e., the fraction of large events increases (i.e. the b-value of the Gutenberg-Richter relation decreases) as the tidal shear stress increases. This correlation is apparent in data from the global catalog and in relatively homogeneous regional catalogues of earthquakes in Japan. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. Our findings indicate that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. This finding has clear implications for probabilistic earthquake forecasting.

  18. Episodic Tremor and Slip Explained by Fluid-Enhanced Microfracturing and Sealing

    NASA Astrophysics Data System (ADS)

    Bernaudin, M.; Gueydan, F.

    2018-04-01

    Episodic tremor and slow-slip events at the deep extension of plate boundary faults illuminate seismic to aseismic processes around the brittle-ductile transition. These events occur in volumes characterized by overpressurized fluids and by near failure shear stress conditions. We present a new modeling approach based on a ductile grain size-sensitive rheology with microfracturing and sealing, which provides a mechanical and field-based explanation of such phenomena. We also model pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping. The fluid-enhanced dynamic evolution of microstructures defines cycles of ductile strain localization and implies increase in pore fluid pressure. We propose that slow-slip events are ductile processes related to transient strain localization, while nonvolcanic tremor corresponds to fracturing of the whole rock at the peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence and the P-T conditions of episodic tremor and slip.

  19. Stereotactic radiosurgery for tremor: systematic review.

    PubMed

    Martínez-Moreno, Nuria E; Sahgal, Arjun; De Salles, Antonio; Hayashi, Motohiro; Levivier, Marc; Ma, Lijun; Paddick, Ian; Régis, Jean; Ryu, Sam; Slotman, Ben J; Martínez-Álvarez, Roberto

    2018-02-23

    OBJECTIVE The aim of this systematic review is to offer an objective summary of the published literature relating to stereotactic radiosurgery (SRS) for tremor and consensus guideline recommendations. METHODS This systematic review was performed up to December 2016. Article selection was performed by searching the MEDLINE (PubMed) and EMBASE electronic bibliographic databases. The following key words were used: "radiosurgery" and "tremor" or "Parkinson's disease" or "multiple sclerosis" or "essential tremor" or "thalamotomy" or "pallidotomy." The search strategy was not limited by study design but only included key words in the English language, so at least the abstract had to be in English. RESULTS A total of 34 full-text articles were included in the analysis. Three studies were prospective studies, 1 was a retrospective comparative study, and the remaining 30 were retrospective studies. The one retrospective comparative study evaluating deep brain stimulation (DBS), radiofrequency thermocoagulation (RFT), and SRS reported similar tremor control rates, more permanent complications after DBS and RFT, more recurrence after RFT, and a longer latency period to clinical response with SRS. Similar tremor reduction rates in most of the reports were observed with SRS thalamotomy (mean 88%). Clinical complications were rare and usually not permanent (range 0%-100%, mean 17%, median 2%). Follow-up in general was too short to confirm long-term results. CONCLUSIONS SRS to the unilateral thalamic ventral intermediate nucleus, with a dose of 130-150 Gy, is a well-tolerated and effective treatment for reducing medically refractory tremor, and one that is recommended by the International Stereotactic Radiosurgery Society.

  20. Mapping Yakutat Subduction with Tectonic Tremor

    NASA Astrophysics Data System (ADS)

    Wech, A.

    2015-12-01

    Subduction of the Yakutat microplate (YAK) in south-central Alaska may be responsible for regional high topography, large slip during the 1964 earthquake, and the anomalous gap in arc volcanism, but the exact geodynamics and its relationship with the underlying Pacific Plate (PP) are not fully understood. Refraction data support distinct subducting layers, and both GPS and body wave tomography suggest the YAK extends from the Cook Inlet volcanoes in the west to the Wrangell volcanic field in the east. Earthquakes, however, are limited to normal faulting within the PP with an abrupt eastern boundary 80 km west of the inferred YAK edge, and more recent active source seismic data suggest subduction of one homogenous thickened oceanic plateau. Here, I perform a search for tectonic tremor to investigate the role of tremor and slow slip in the system. I scan continuous waveforms from 2007-2015 using all available data from permanent and campaign seismic stations in south-central Alaska. Using envelope cross-correlation, I detect and locate ~9,000 tectonic tremor epicenters, providing a map of the transition zone downdip of the 1964 earthquake. Tremor epicenters occur downdip of discrete slow slip events, and tremor rates do not correlate temporally with slow slip behavior. Depth resolution is poor, but horizontal locations are well constrained and spatially correlate with the velocity images of the YAK. Likewise, tremor extends 80 km further east than intraslab seismicity. Tremor swarms occur intermittently and manifest as ambient tremor. I interpret tremor to mark slow, semi-continuous slip occurring at the boundary between the YAK and North American plates, whose interface continues beyond the eastern edge of the PP. In this model, the YAK is welded to the underlying PP in the west, but extends past the eastern terminus of the PP. This geometry explains the correlation between tremor and the YAK, the discrepancy between deep seismicity and tremor, and the paucity of thrust events - convergence is accommodated by the YAK-North America interface, while earthquakes mark deformation within the PP. Finally, the model corroborates the eastern edge of the YAK and its role in controlling Wrangell magmatism and the gap in Aleutian arc volcanism.

  1. Focal mechanisms and tidal modulation for tectonic tremors in Taiwan

    NASA Astrophysics Data System (ADS)

    Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.

    2015-12-01

    Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.

  2. Seismic moulin tremor

    NASA Astrophysics Data System (ADS)

    Roeoesli, Claudia; Walter, Fabian; Ampuero, Jean-Paul; Kissling, Edi

    2016-08-01

    Through glacial moulins, meltwater is routed from the glacier surface to its base. Moulins are a main feature feeding subglacial drainage systems and thus influencing basal motion and ice dynamics, but their geometry remains poorly known. Here we show that analysis of the seismic wavefield generated by water falling into a moulin can help constrain its geometry. We present modeling results of hour-long seimic tremors emitted from a vertical moulin shaft, observed with a seismometer array installed at the surface of the Greenland Ice Sheet. The tremor was triggered when the moulin water level exceeded a certain height, which we associate with the threshold for the waterfall to hit directly the surface of the moulin water column. The amplitude of the tremor signal changed over each tremor episode, in close relation to the amount of inflowing water. The tremor spectrum features multiple prominent peaks, whose characteristic frequencies are distributed like the resonant modes of a semiopen organ pipe and were found to depend on the moulin water level, consistent with a source composed of resonant tube waves (water pressure waves coupled to elastic deformation of the moulin walls) along the water-filled moulin pipe. Analysis of surface particle motions lends further support to this interpretation. The seismic wavefield was modeled as a superposition of sustained wave radiation by pressure sources on the side walls and at the bottom of the moulin. The former was found to dominate the wave field at close distance and the latter at large distance to the moulin.

  3. CaV3.1 is a tremor rhythm pacemaker in the inferior olive

    PubMed Central

    Park, Young-Gyun; Park, Hye-Yeon; Lee, C. Justin; Choi, Soonwook; Jo, Seonmi; Choi, Hansol; Kim, Yang-Hann; Shin, Hee-Sup; Llinas, Rodolfo R.; Kim, Daesoo

    2010-01-01

    The rhythmic motor pathway activation by pacemaker neurons or circuits in the brain has been proposed as the mechanism for the timing of motor coordination, and the abnormal potentiation of this mechanism may lead to a pathological tremor. Here, we show that the potentiation of CaV3.1 T-type Ca2+ channels in the inferior olive contributes to the onset of the tremor in a pharmacological model of essential tremor. After administration of harmaline, 4- to 10-Hz synchronous neuronal activities arose from the IO and then propagated to cerebellar motor circuits in wild-type mice, but those rhythmic activities were absent in mice lacking CaV3.1 gene. Intracellular recordings in brain-stem slices revealed that the CaV3.1-deficient inferior olive neurons lacked the subthreshold oscillation of membrane potentials and failed to trigger 4- to 10-Hz rhythmic burst discharges in the presence of harmaline. In addition, the selective knockdown of CaV3.1 gene in the inferior olive by shRNA efficiently suppressed the harmaline-induced tremor in wild-type mice. A mathematical model constructed based on data obtained from patch-clamping experiments indicated that harmaline could efficiently potentiate CaV3.1 channels by changing voltage-dependent responsiveness in the hyperpolarizing direction. Thus, CaV3.1 is a molecular pacemaker substrate for intrinsic neuronal oscillations of inferior olive neurons, and the potentiation of this mechanism can be considered as a pathological cause of essential tremor. PMID:20498062

  4. Spatial distribution of non volcanic tremors offshore eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Xie, X. S.; Lin, J. Y.; Hsu, S. K.; Lee, C. H.; Liang, C. W.

    2012-04-01

    Non-volcanic tremor (NVT), originally identified in the subduction zone of the southwest Japan, have been well studied in the circum-Pacific subduction zones and the transform plate boundary in California. Most studies related NVT to the release of fluids, while some others associated them with slow-slip events, and can be triggered instantaneously by the surface waves of teleseismic events. Taiwan is located at a complex intersection of the Philippines Sea Plate and the Eurasian Plate. East of Taiwan, the Philippine Sea plate subducts northward beneath the Ryukyu arc. The major part of the island results from the strong convergence between the two plates and the convergent boundary is along the Longitudinal Valley. Moreover, an active strike-slip fault along the Taitung Canyon was reported in the offshore eastern Taiwan. In such complicate tectonic environments, NVT behavior could probably bring us more information about the interaction of all the geological components in the area. In this study, we analyze the seismic signals recorded by the Ocean bottom Seismometer (OBS) deployed offshore eastern Taiwan in September 2009. TAMS (Tremor Active Monitor System) software was used to detect the presence of NVT. 200 tremor-like signals were obtained from the 3 weeks recording period. We use the SSA (Source-Scanning Algorithm) to map the possible distribution of the tremor. In total, 180 tremors were located around the eastern offshore Taiwan. The tremors are mainly distributed in two source areas: one is along the Taitung Canyon, and the other is sub-parallel to the Ryukyu Trench, probably along the plate interface. Many tremors are located at depth shallower than 5 km, which suggests a possible existence of a weak basal detachment along the sea bottom. Other tremors with larger depth may be related to the dehydration of the subducting sea plate as suggested by the former studies. Limited by the short recording period of the OBS experiment, we could not obtain any possible repeating interval and the spatial migration about the tremor occurrence. However, the presence of NVT offshore eastern Taiwan shown in our study still brings us valuable understanding about the undergoing tectonic processes in the marine area.

  5. Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson’s disease

    PubMed Central

    He, Naying; Huang, Pei; Ling, Huawei; Langley, Jason; Liu, Chunlei; Ding, Bei; Huang, Juan; Xu, Hongmin; Zhang, Yong; Zhang, Zhongping; Hu, Xiaoping; Chen, Shengdi; Yan, Fuhua

    2016-01-01

    Parkinson disease (PD) is a heterogeneous neurodegenerative disorder with variable clinicopathologic phenotypes and underlying neuropathologic mechanisms. Each clinical phenotype has a unique set of motor symptoms. Tremor is the most frequent initial motor symptom of PD and is the most difficult symptom to treat. The dentate nucleus (DN) is a deep iron rich nucleus in the cerebellum and may be involved in PD tremor. In this study, we test the hypothesis that DN iron may be elevated in tremor dominant PD patients using quantitative susceptibility mapping. Forty-three patients with PD [19 tremor dominant (TD)/24 akinetic-rigid dominant (AR)] and 48 healthy gender- and age-matched controls were recruited. Multi-echo gradient echo data were collected for each subject on a 3.0 T MR system. Inter-group susceptibility differences in bilateral DN were investigated and correlations of clinical features with susceptibility were also examined. In contrast to the AR group, the TD group was found to have increased susceptibility in the bilateral DN, when compared to healthy controls. In addition, susceptibility was positively correlated with tremor score in drug naive PD patients. These findings indicate that iron load within DN may make an important contribution to motor phenotypes in PD. Moreover, our results suggest that TD and AR phenotypes of PD can be differentiated on the basis of the susceptibility of the DN at least on the group level. PMID:27192177

  6. Linking Essential Tremor to the Cerebellum: Clinical Evidence.

    PubMed

    Benito-León, Julián; Labiano-Fontcuberta, Andrés

    2016-06-01

    Essential tremor (ET) might be a family of diseases unified by the presence of kinetic tremor, but also showing etiological, pathological, and clinical heterogeneity. In this review, we will describe the most significant clinical evidence, which suggests that ET is linked to the cerebellum. Data for this review were identified by searching PUBMED (January 1966 to May 2015) crossing the terms "essential tremor" (ET) and "cerebellum," which yielded 201 entries, 11 of which included the term "cerebellum" in the article title. This was supplemented by articles in the author's files that pertained to this topic. The wide spectrum of clinical features of ET that suggest that it originates as a cerebellar or cerebellar outflow problem include the presence of intentional tremor, gait and balance abnormalities, subtle features of dysarthria, and oculomotor abnormalities, as well as deficits in eye-hand coordination, motor learning deficits, incoordination during spiral drawing task, abnormalities in motor timing and visual reaction time, impairment of social abilities, improvement in tremor after cerebellar stroke, efficacy of deep brain stimulation (which blocks cerebellar outflow), and cognitive dysfunction. It is unlikely, however, that cerebellar dysfunction, per se, fully explains ET-associated dementia, because the cognitive deficits that have been described in patients with cerebellar lesions are generally mild. Overall, a variety of clinical findings suggest that in at least a sizable proportion of patients with ET, there is an underlying abnormality of the cerebellum and/or its pathways.

  7. Array observations and analyses of Cascadia deep tremor

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; Malone, S.; Creager, K.; Crosson, R.; La Rocca, M.; Saccoretti, G.

    2004-12-01

    The July 8-24, 2004 Cascadia Episodic Tremor and Slip (ETS) event was observed using three small aperture seismic arrays located near Sooke, BC, Sequim, WA, and on Lopez Island, WA. Initial tremor burst epicenters located in the Strait of Juan de Fuca and were calculated using the relative arrivals of band-passed, rectified regional network signals. Most subsequent epicenters migrated to the northwest along Vancouver Island and a few occurred in the central to southern Puget Sound. Tremor bursts lasting on the order of a few seconds can be identified across the stations of any of the three arrays. Individual bursts from distinct back-azimuths often occur within five seconds of each other, indicating the presence of spatially distributed but near simultaneous tremor. None of this was visible at such a fine scale using Pacific Northwest Seismograph Network (PNSN). Several array processing techniques, including beam-forming, zero-lag cross correlation and multiple signal classification (MUSIC), are being investigated to determine the optimal technique for exploring the temporal and spatial evolution of the tremor signals during the whole ETS. The back-azimuth and slowness of consecutive time windows for a one half-hour period of strong tremor were calculated using beam-forming with a linear stack, with an nth-root stack, and using zero-lag cross-correlation. Results for each array and each method yield consistent estimates of back azimuth and slowness. Beam-forming with a nonlinear stack produces results similar to the linear case but with larger uncertainty. Among the arrays, the back-azimuths give a reasonable estimate of the tremor epicenter that is consistent with the network determined epicentral locations.

  8. Contrasts in the Behavior of Tremor Episodes in Cascadia and Japan

    NASA Astrophysics Data System (ADS)

    Armbruster, J. G.

    2016-12-01

    Tectonic tremor is observed in episodes with varying duration, intensity and spatial extent. In Cascadia the POLARIS broadband deployment, 2003-2006, provides good coverage of the southern Vancouver Island region with strong, widely distributed tremor sources extending 100 km along the plate interface. There the tremor can be classified into major episodes occurring at 14 month intervals with duration 20-30 days and minor episodes lasting hours to 10 days. Within that shorter duration minor episodes can produce strong signals. There is a clear pattern that minor episodes are located at the deeper part of the plate interface, 43-50 km deep. Major episodes are mostly generated from the shallower, 33-43 km deep, portion of the plate interface with some activation of the deeper sources. This suggests a simple mechanism of stress loading from below, transmitted upward by the tremor/slow-slip episodes. We compare this to the northern Kii Peninsula region of southwest Japan which has strong tremor sources extending 100 km along strike covered by HINET stations and find differences. The spectrum of episode durations in Japan, from less than an hour to 13 days, are not easily classified into major and minor. The range in depth observed in Japan is narrower than in Cascadia, 34-45 km for 98% of the clustered events. Here we divide the episodes into three groups based on their spatial extent. Large episodes occur at intervals of 6 months and occupy the southern 2/3, northern 2/3 or whole of the 100 km long zone. The small episodes are predominately seen from paired sources at the top and bottom of the active zone located where large episodes terminate. Intermediate episodes are the fewest in number and extend from the bottom to the top, often encompassing pairs of small sources. The observations in Japan will require a more complex model of stress loading. These results were achieved with the cross-station location method. The envelope location method might not have sufficient resolution to resolve these patterns in Japan.

  9. A Network Model of Local Field Potential Activity in Essential Tremor and the Impact of Deep Brain Stimulation

    PubMed Central

    Mace, Michael; Pavese, Nicola; Borisyuk, Roman; Bain, Peter

    2017-01-01

    Essential tremor (ET), a movement disorder characterised by an uncontrollable shaking of the affected body part, is often professed to be the most common movement disorder, affecting up to one percent of adults over 40 years of age. The precise cause of ET is unknown, however pathological oscillations of a network of a number of brain regions are implicated in leading to the disorder. Deep brain stimulation (DBS) is a clinical therapy used to alleviate the symptoms of a number of movement disorders. DBS involves the surgical implantation of electrodes into specific nuclei in the brain. For ET the targeted region is the ventralis intermedius (Vim) nucleus of the thalamus. Though DBS is effective for treating ET, the mechanism through which the therapeutic effect is obtained is not understood. To elucidate the mechanism underlying the pathological network activity and the effect of DBS on such activity, we take a computational modelling approach combined with electrophysiological data. The pathological brain activity was recorded intra-operatively via implanted DBS electrodes, whilst simultaneously recording muscle activity of the affected limbs. We modelled the network hypothesised to underlie ET using the Wilson-Cowan approach. The modelled network exhibited oscillatory behaviour within the tremor frequency range, as did our electrophysiological data. By applying a DBS-like input we suppressed these oscillations. This study shows that the dynamics of the ET network support oscillations at the tremor frequency and the application of a DBS-like input disrupts this activity, which could be one mechanism underlying the therapeutic benefit. PMID:28068428

  10. Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation on Tongue Movements in Speakers with Parkinson's Disease Using Electropalatography: A Pilot Study

    ERIC Educational Resources Information Center

    Hartinger, Mariam; Tripoliti, Elina; Hardcastle, William J.; Limousin, Patricia

    2011-01-01

    Parkinson's disease (PD) affects speech in the majority of patients. Subthalamic nucleus deep brain stimulation (STN-DBS) is particularly effective in reducing tremor and rigidity. However, its effect on speech is variable. The aim of this pilot study was to quantify the effects of bilateral STN-DBS and medication on articulation, using…

  11. Factors Associated with Tremor Changes during Sedation with Dexmedetomidine in Parkinson's Disease Surgery.

    PubMed

    Honorato-Cia, Cristina; Martínez-Simón, Antonio; Alegre, Manuel; Guridi, Jorge; Cacho-Asenjo, Elena; Panadero, Alfredo; Núñez-Córdoba, Jorge M

    2015-01-01

    Dexmedetomidine is an α2-agonist recently proposed as a potentially ideal drug for sedation during the surgical treatment of Parkinson's disease (PD). This report documents the incidence of changes in motor symptoms (especially tremor) in PD patients sedated with dexmedetomidine for deep brain stimulation or ablation procedures. We reviewed a retrospective cohort of 22 patients who underwent surgery for PD with dexmedetomidine sedation at a single institution from 2010 to 2014. A logistic regression analysis was performed to analyze possible confounding factors. 14 cases of tremor reduction or suppression were recorded (cumulative incidence: 63.6%; 95% CI: 40.7-82.8). No association could be identified between loading dose, β-blocker use and preoperative total Unified Parkinson's Disease Rating Scale III, with tremor changes. The maintenance dose of dexmedetomidine was higher in patients who did not experience changes [median and range for patients with and without tremor alteration 0.75 (0.2-1.0) and 1.0 µg × kg(-1) × h(-1) (0.7-1.4), respectively; p = 0.021]. Dexmedetomidine provides adequate sedation during surgery for PD, but it might affect motor signs making intraoperative testing difficult or even impossible. Dosage appears not to be the determining factor in motor changes, whose cause remains unclear. © 2015 S. Karger AG, Basel.

  12. Evidence-based guideline update: Treatment of essential tremor

    PubMed Central

    Zesiewicz, T.A.; Elble, R.J.; Louis, E.D.; Gronseth, G.S.; Ondo, W.G.; Dewey, R.B.; Okun, M.S.; Sullivan, K.L.; Weiner, W.J.

    2011-01-01

    Background: This evidence-based guideline is an update of the 2005 American Academy of Neurology practice parameter on the treatment of essential tremor (ET). Methods: A literature review using MEDLINE, EMBASE, Science Citation Index, and CINAHL was performed to identify clinical trials in patients with ET published between 2004 and April 2010. Results and Recommendations: Conclusions and recommendations for the use of propranolol, primidone (Level A, established as effective); alprazolam, atenolol, gabapentin (monotherapy), sotalol, topiramate (Level B, probably effective); nadolol, nimodipine, clonazepam, botulinum toxin A, deep brain stimulation, thalamotomy (Level C, possibly effective); and gamma knife thalamotomy (Level U, insufficient evidence) are unchanged from the previous guideline. Changes to conclusions and recommendations from the previous guideline include the following: 1) levetiracetam and 3,4-diaminopyridine probably do not reduce limb tremor in ET and should not be considered (Level B); 2) flunarizine possibly has no effect in treating limb tremor in ET and may not be considered (Level C); and 3) there is insufficient evidence to support or refute the use of pregabalin, zonisamide, or clozapine as treatment for ET (Level U). PMID:22013182

  13. Evidence-based guideline update: treatment of essential tremor: report of the Quality Standards subcommittee of the American Academy of Neurology.

    PubMed

    Zesiewicz, T A; Elble, R J; Louis, E D; Gronseth, G S; Ondo, W G; Dewey, R B; Okun, M S; Sullivan, K L; Weiner, W J

    2011-11-08

    This evidence-based guideline is an update of the 2005 American Academy of Neurology practice parameter on the treatment of essential tremor (ET). A literature review using MEDLINE, EMBASE, Science Citation Index, and CINAHL was performed to identify clinical trials in patients with ET published between 2004 and April 2010. Conclusions and recommendations for the use of propranolol, primidone (Level A, established as effective); alprazolam, atenolol, gabapentin (monotherapy), sotalol, topiramate (Level B, probably effective); nadolol, nimodipine, clonazepam, botulinum toxin A, deep brain stimulation, thalamotomy (Level C, possibly effective); and gamma knife thalamotomy (Level U, insufficient evidence) are unchanged from the previous guideline. Changes to conclusions and recommendations from the previous guideline include the following: 1) levetiracetam and 3,4-diaminopyridine probably do not reduce limb tremor in ET and should not be considered (Level B); 2) flunarizine possibly has no effect in treating limb tremor in ET and may not be considered (Level C); and 3) there is insufficient evidence to support or refute the use of pregabalin, zonisamide, or clozapine as treatment for ET (Level U).

  14. Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson's disease.

    PubMed

    He, Naying; Huang, Pei; Ling, Huawei; Langley, Jason; Liu, Chunlei; Ding, Bei; Huang, Juan; Xu, Hongmin; Zhang, Yong; Zhang, Zhongping; Hu, Xiaoping; Chen, Shengdi; Yan, Fuhua

    2017-04-01

    Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with variable clinicopathologic phenotypes and underlying neuropathologic mechanisms. Each clinical phenotype has a unique set of motor symptoms. Tremor is the most frequent initial motor symptom of PD and is the most difficult symptom to treat. The dentate nucleus (DN) is a deep iron-rich nucleus in the cerebellum and may be involved in PD tremor. In this study, we test the hypothesis that DN iron may be elevated in tremor-dominant PD patients using quantitative susceptibility mapping. Forty-three patients with PD [19 tremor dominant (TD)/24 akinetic rigidity (AR) dominant] and 48 healthy gender- and age-matched controls were recruited. Multi-echo gradient echo data were collected for each subject on a 3.0-T MR system. Inter-group susceptibility differences in the bilateral DN were investigated and correlations of clinical features with susceptibility were also examined. In contrast with the AR-dominant group, the TD group was found to have increased susceptibility in the bilateral DN when compared with healthy controls. In addition, susceptibility was positively correlated with tremor score in drug-naive PD patients. These findings indicate that iron load within the DN may make an important contribution to motor phenotypes in PD. Moreover, our results suggest that TD and AR-dominant phenotypes of PD can be differentiated on the basis of the susceptibility of the DN, at least at the group level. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Unusual Volcanic Tremor Observations in Fogo Island, Cape Verde

    NASA Astrophysics Data System (ADS)

    Custodio, S. I.; Heleno, S. I.

    2004-12-01

    Volcanic tremor is a ground motion characterized by well-defined frequencies, and has traditionally been explained by the movement of fluids, namely magma, in conduits or cracks (Chouet, 1996). Thus tremor has the potential to reveal key aspects of volcanic structure and dynamics. Two types of previously unreported seismic signals have been observed in Fogo volcano: a) tide-modulated seismic noise and volcanic tremor, and b) high-frequency low-attenuation harmonic tremor. Amplitude modulation of seismic noise can be detected by simple eye-inspection of raw data in some stations of the VIGIL Network, Fogo Volcano. A more detailed analysis shows that certain frequency bands which we interpret as volcanic tremor, mainly in the range 2.0-3.0Hz, are preferentially modulated. The main frequency of modulation is 1.93 c.p.d., which corresponds to M2, the semi-diurnal lunar harmonic. Air pressure and temperature, which are continuously monitored in Fogo Island, have been analyzed and cannot explain the observed periodicity. Thus we conclude that seismic noise and tremor amplitudes are controlled by tides (Custodio et al., 2003). A relation between the tidal modulation and hydrothermal systems activity is suspected and under investigation. High-frequency (HF) tremor (5-20 Hz) has been recorded simultaneously in several stations in Fogo Island and even in different islands of the Cape Verde archipelago (up to distances of 120 km). In volcanic environments high-frequency motions are normally recorded in a small area close to the source, due to the strong attenuation of seismic waves. Non-volcanic origins for HF tremor were examined: cultural noise, whale vocalizations, ship noise, electronic/processing artifacts and path and/or site effects were all considered and dismissed. Emergent arrivals and strong site effects render source location a difficult task, but the analysis of wave polarizations and amplitude distributions seems to point to an offshore source. Two alternative mechanisms are presently being considered: a) propagation in the ocean sound channel of T-waves generated by resonance in a shallow conduit/chamber, and b) existence of a deep strong source, such as a large fluid-filled crack, capable of producing tremor with a complex pattern that propagates to large distances.

  16. Tremor, the curious third wheel of fault motion (Invited)

    NASA Astrophysics Data System (ADS)

    Vidale, J. E.

    2009-12-01

    The known universe of tectonic fault behavior has gained a new neighborhood in the last few years. Before, faults were considered to either conform to the reasonably well-understood earthquake cycle or else slide steadily. In the earthquake cycle, a fault stays locked for the years while stress is accumulating, then cracks and slides, releasing about 0.1-10 MPa of the stress on the fault. The crack spreads across the fault at roughly the shear wave velocity, kilometers per second. Sliding across the crack occurs at rates on the order of a meter per second. Deeper than the locked portion, faults were assumed to move stealthily and steadily. Disrupting this orderly bipartite universe has been tremor - a prolonged, noise-like, 1-10 Hz rumbling that has been spotted below the locked portion of a variety of faults. In subduction zones, often tremor is coincident with slow and low-stress-drop slip that takes many orders of magnitude longer to complete than garden-variety earthquakes, with the rupture progression estimated in km per day rather than per second. The so-called episodic tremor and slip (ETS) is seen to strike at much more regular intervals than old-fashioned quakes. Speculation and disjoint observations abound. Probably the observations represent just the most easily observed portions of a process that moves with power at all frequencies. The spectrum of tremor radiation is less “red” than that of earthquakes for periods shorter than their duration. Near-lithostatic pore pressure may play an important role in lubricating ETS activity. ETS activity appears generally restricted to only some major faults. Strong passing surface waves from distant great earthquakes trigger pulsations of tremor. Strong nearby earthquakes can cause weeks of stronger than normal tremor. The ebb and flow of diurnal tides cause a rise and fall in tremor amplitude. Tremor can contain earthquake-like short bursts of energy, even dozens of discrete pops, all with the less red spectra that marks tremor. The tremor moments in the Cascadia population follow the frequency scaling laid down by this lecture's namesake, the Gutenberg-Richter distribution, just like normal earthquakes. More practically, tremor is loading dangerous faults, such as near Seattle and Los Angeles, at unsteady rates, perhaps allowing estimations of variable levels of danger. Tremor probably silhouettes where the fault is locked, with alarming implications in some places. We can hope that tremor evolves through the earthquake cycle of the locked zone above in a way revealing the approach of feared events. It is a rare phenomenon that attracts so much inquiry, yet remains so obscure. No doubt, by AGU time, our seismic flashlights will have illuminated a few more juicy tidbits, and with luck bring us closer to the secret of tremor, which still lingers in an unlit corner.

  17. Data Mining for Tectonic Tremor in a Large Global Seismogram Database using Preprocessed Data Quality Measurements

    NASA Astrophysics Data System (ADS)

    Rasor, B. A.; Brudzinski, M. R.

    2013-12-01

    The collision of plates at subduction zones yields the potential for disastrous earthquakes, yet the processes that lead up to these events are still largely unclear and make them difficult to forecast. Recent advancements in seismic monitoring has revealed subtle ground vibrations termed tectonic tremor that occur as long-lived swarms of narrow bandwidth activity, different from local earthquakes of comparable amplitude that create brief signals of broader, higher frequency. The close proximity of detected tremor events to the lower edge of the seismogenic zone along the subduction interface suggests a potential triggering relationship between tremor and megathrust earthquakes. Most tremor catalogs are constructed with detection methods that involve an exhausting download of years of high sample rate seismic data, as well as large computation power to process the large data volume and identify temporal patterns of tremor activity. We have developed a tremor detection method that employs the underutilized Quality Analysis Control Kit (QuACK), originally built to analyze station performance and identify instrument problems across the many seismic networks that contribute data to one of the largest seismogram databases in the world (IRIS DMC). The QuACK dataset stores seismogram amplitudes at a wide range of frequencies calculated every hour since 2005 for most stations achieved in the IRIS DMC. Such a preprocessed dataset is advantageous considering several tremor detection techniques use hourly seismic amplitudes in the frequency band where tremor is most active (2-5 Hz) to characterize the time history of tremor. Yet these previous detection techniques have relied on downloading years of 40-100 sample-per-second data to make the calculations, which typically takes several days on a 36-node high-performance cluster to calculate the amplitude variations for a single station. Processing times are even longer for a recently developed detection algorithm that utilize the ratio of amplitudes between tremor frequencies and those of local earthquakes (10-15 Hz) and surface waves (0.02-0.1 Hz). Using the QuACK dataset, we can make the more advanced calculations in a fraction of the time. This method works well to quickly detect tremor in the Cascadia region by finding similar times of increased tremor activity when comparing across a variety of stations within a 100km radius of a reference station. We confirm the legitimacy of this method by demonstrating comparable results to several previously developed tremor detection techniques despite a much shorter processing time. The rapid processing time has allowed us to refine the detection algorithm by seeking more optimal frequency bands by comparing results from our technique and others, using several stations across the Cascadia subduction zone. As we move forward, we will apply the method to other subduction zones, and ultimately to the vast set of seismic data stored at the IRIS DMC for which tremor has not been previously investigated.

  18. Pretherapeutic functional neuroimaging predicts tremor arrest after thalamotomy.

    PubMed

    Tuleasca, C; Najdenovska, E; Régis, J; Witjas, T; Girard, N; Champoudry, J; Faouzi, M; Thiran, J-P; Bach Cuadra, M; Levivier, M; Van De Ville, D

    2018-05-01

    Essential tremor (ET) represents the most common movement disorder. Drug-resistant ET can benefit from standard stereotactic procedures (deep brain stimulation or radiofrequency thalamotomy) or alternatively minimally invasive high-focused ultrasound or radiosurgery. All aim at same target, thalamic ventro-intermediate nucleus (Vim). The study included a cohort of 17 consecutive patients, with ET, treated only with left unilateral stereotactic radiosurgical thalamotomy (SRS-T) between September 2014 and August 2015. The mean time to tremor improvement was 3.32 months (SD 2.7, 0.5-10). Neuroimaging data were collected at baseline (n = 17). Standard tremor scores, including activities of daily living (ADL) and tremor score on treated hand (TSTH), were completed pretherapeutically and 1 year later. We further correlate these scores with baseline inter-connectivity in twenty major large-scale brain networks. We report as predictive three networks, with the interconnected statistically significant clusters: primary motor cortex interconnected with inferior olivary nucleus, bilateral thalamus interconnected with motor cerebellum lobule V 2 (ADL), and anterior default-mode network interconnected with Brodmann area 10 3 (TSTH). For all, more positive pretherapeutic interconnectivity correlated with higher drop in points on the respective scores. Age, disease duration, or time-to-response after SRS-T were not statistically correlated with pretherapeutic brain connectivity measures (P > .05). The same applied to pretherapeutic tremor scores, after using the same methodology described above. Our findings have clinical implications for predicting clinical response after SRS-T. Here, using pretherapeutic magnetic resonance imaging and data processing without prior hypothesis, we show that pretherapeutic network(s) interconnectivity strength predicts tremor arrest in drug-naïve ET, following stereotactic radiosurgical thalamotomy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Restoring Neurological Physiology: The Innovative Role of High-Energy MR-Guided Focused Ultrasound (HIMRgFUS). Preliminary Data from a New Method of Lesioning Surgery.

    PubMed

    Giugno, Antonella; Maugeri, Rosario; Graziano, Francesca; Gagliardo, Cesare; Franzini, Angelo; Catalano, Carlo; Midiri, Massimo; Iacopino, Domenico Gerardo

    2017-01-01

    Tremor is a disabling condition, common to several neurodegenerative diseases. Lesioning procedures and deep brain stimulation, respectively, of the ventralis intermedius nucleus for intentional tremor, and of the subthalamic nucleus for parkinsonian resting tremor, have been introduced in clinical practice for patients refractory to medical treatment. The combination of high-energy focused ultrasound (HIFUS) with sophisticated magnetic resonance (MR) instrumentation, together with accurate knowledge of the stereotactic brain coordinates, represents a revolution in neuromodulation. At the Neurosurgical Clinic and the Radiology Department of the University of Palermo,, two patients affected by severe and refractory forms of intentional tremor were treated by MRI-guided FUS (MRgFUS) with a unique 1.5 T MR scanner prototype that uses FUS. This apparatus is the only one of its type in the world." This is the first Italian experience, and the second in Europe, of treatment with MRI-gFUS for intentional tremor. But this is the very first experience in which a 1.5 T MRI apparatus was used. In both patients, the treatment completely abolished the tremor on the treated side, with results being excellent and stable after 7 and 5 months, respectively; no side effects were encountered. MRgFUS, recently introduced in clinical practice, and widely used at several clinical centers, has been shown to be a valid therapeutic alternative in the treatment of tremor in several neurodegenerative diseases. It is virtually safe, noninvasive, and very efficacious. We report this technique in which a 1.5 T MR scanner was used. Further investigations with long-term follow up and larger clinical series are needed.

  20. Moment tensor inversion of tremor events at Arenal Volcano (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Davi, Rosalia; O'Brien, Gareth; Lokmer, Ivan; Bean, Christopher; Lesage, Philippe; de Barros, Louis

    2010-05-01

    Arenal is a small, andesitic stratovolcano located in north-western Costa Rica, 97 km from the capital San Josè. Arenal's explosive activity is preceded, and accompanied, by different types of seismic events such as long period events, explosions, tremor and sporadic tectonic swarms. Tremor is the most common type of event recorded at Arenal with durations of up to several hours. Both spasmodic (1-6 Hz) and harmonic (0.9-2 Hz) tremor are observed with no clear difference in the genesis of each; the former can progressively evolve into the latter and vice-versa. However, the origin of the tremor is, at present, not fully understood. In order to retrieve the source mechanism generating these types of events, a moment tensor inversion is performed. A dataset recorded on the volcano, during a seismic experiment carried out in 2005, is used for the inversion. This dataset consists of ten days of data, from which two main groups of tremor at different frequencies (group one at 0.8-1.5 Hz and group two at 1.8-2.5 Hz) have been selected. A major difficulty in any inversion of tremor is that a clear onset can rarely be determined and hence retrieving the direct arrivals from the source is impossible. Usually, these arrivals are heavily contaminated by scattered waves. On Arenal the initial part of the tremor bands can be isolated, therefore offering a good opportunity to invert tremor for the source mechanism. The Green's functions used in the inversion were calculated using 3D numerical simulations including the real topography of the volcano and the best estimation of the velocity model available for Arenal. This velocity model was retrieved from seismic refraction experiments and sounding using the SPAC method. For each day, different tremor starting bands have been selected and divided into the groups mentioned above. For each band a source location is determined by performing a grid search through a volume of 4735 possible source points located under the crater summit. From the evaluation of the misfit values, a common source location is determined. The source appears to be located in shallow position, (less than 200 meters deep) under the crater summit. The source mechanisms for each tremor bands are retrieved for each day using the inversion procedure.

  1. Case Study of Image-Guided Deep Brain Stimulation: Magnetic Resonance Imaging-Based White Matter Tractography Shows Differences in Responders and Nonresponders.

    PubMed

    O'Halloran, Rafael L; Chartrain, Alexander G; Rasouli, Jonathan J; Ramdhani, Ritesh A; Kopell, Brian Harris

    2016-12-01

    The caudal zona incerta (cZI) is an increasingly popular deep brain stimulation (DBS) target for the treatment of tremor-predominant disease. The dentatorubrothalamic tract (DRTT) is a white matter fiber bundle that traverses the cZI and can be identified using diffusion-weighted magnetic resonance imaging fiber tractography to ascertain its precise course. In this report, we compare 2 patient cases of cZI DBS, a responder and a nonresponder. Patient 1 (responder) is a 65-year-old man with medically refractory Parkinson disease who underwent bilateral DBS lead placement in the cZI. Postoperatively he demonstrated >90% reduction in baseline tremor and was not limited by stimulation side effects. Postoperative imaging showed correct lead placement in the cZI. Tractography revealed a DRTT within the field of stimulation, bilaterally. Patient 2 (nonresponder) is a 61-year-old man with medically refractory Parkinson disease who also underwent bilateral DBS lead placement in the cZI. He initially demonstrated >90% reduction in baseline tremor but developed disabling dystonia of his left leg and significant slurring of his speech in the months after surgery. Postoperative imaging showed bilateral lead placement in the cZI. Right-sided electrode revision was recommended and resulted in relief of tremor and reduced dystonic side effects. Tractography analysis of the original leads revealed a DRTT with an atypical anterior trajectory and a location outside the field of stimulation. Tractography analysis of the revised lead showed a DRTT within the field of stimulation. Preoperative diffusion-weighted magnetic resonance imaging fiber tractography imaging of the DRTT has the potential to improve and individualize DBS planning. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor

    NASA Astrophysics Data System (ADS)

    Keane, Maureen; Deyo, Steve; Abosch, Aviva; Bajwa, Jawad A.; Johnson, Matthew D.

    2012-08-01

    Deep brain stimulation (DBS) in the ventral intermediate nucleus of thalamus (Vim) is known to exert a therapeutic effect on postural and kinetic tremor in patients with essential tremor (ET). For DBS leads implanted near the caudal border of Vim, however, there is an increased likelihood that one will also induce paresthesia side-effects by stimulating neurons within the sensory pathway of the ventral caudal (Vc) nucleus of thalamus. The aim of this computational study was to (1) investigate the neuronal pathways modulated by therapeutic, sub-therapeutic and paresthesia-inducing DBS settings in three patients with ET and (2) determine how much better an outcome could have been achieved had these patients been implanted with a DBS lead containing directionally segmented electrodes (dDBS). Multi-compartment neuron models of the thalamocortical, cerebellothalamic and medial lemniscal pathways were first simulated in the context of patient-specific anatomies, lead placements and programming parameters from three ET patients who had been implanted with Medtronic 3389 DBS leads. The models showed that in these patients, complete suppression of tremor was associated most closely with activating an average of 62% of the cerebellothalamic afferent input into Vim (n = 10), while persistent paresthesias were associated with activating 35% of the medial lemniscal tract input into Vc thalamus (n = 12). The dDBS lead design demonstrated superior targeting of the cerebello-thalamo-cortical pathway, especially in cases of misaligned DBS leads. Given the close proximity of Vim to Vc thalamus, the models suggest that dDBS will enable clinicians to more effectively sculpt current through and around thalamus in order to achieve a more consistent therapeutic effect without inducing side-effects.

  3. Failed DBS for palliation of visual problems in a case of oculopalatal tremor.

    PubMed

    Wang, David; Sanchez, Justin; Foote, Kelly D; Sudhyadhom, Atchar; Bhatti, M Tariq; Lewis, Steven; Okun, Michael S

    2009-01-01

    To report the results of attempted bilateral red nucleus (RN) deep brain stimulation (DBS) for the palliative treatment of visual problems associated with oculopalatal tremor (OPT). It is hypothesized that OPT results from a defect in the Guillain-Mollaret triangle, a circuit that includes connections with the dentate nucleus, the contralateral red nucleus, and the inferior olive. We present a high functioning patient (an accountant) who underwent a palliative trial of RN region DBS in an approach targeted through the subthalamic nucleus region. The aim was to reduce eye tremor and improve vision through interruption of the pathologically oscillating circuit in the Guillain-Mollaret triangle. Following informed consent, a patient with OPT (and failure of multiple classes of medication and botulinum toxin therapy) underwent placement of bilateral DBS electrodes within the region of the RN. He underwent preoperative testing and testing after 12 months of continuous stimulation with the device in monopolar, bipolar, low frequency, and high frequency settings. The patient did not demonstrate significant changes in the neurological examination following the procedure and postoperative programming sessions. Eye tremor was monitored pre- and postoperatively by ocular EMG and did not change in frequency. Following the one-year trial, stimulation was discontinued as there were no improvements in vision. DBS for OPT was not clinically effective. There were many potential reasons for failed efficacy including a failure to implant the electrodes deep and medial enough into the target region because of stimulation induced side effects. Other targets within the Guillain-Mollaret circuit (and outside of the circuit) may be more useful, though they may prove to be less safe and even more difficult to access. Better custom designed DBS leads may be needed for such small targets in critical brain regions.

  4. Constraints on Friction, Dilatancy, Diffusivity, and Effective Stress From Low-Frequency Earthquake Rates on the Deep San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David

    2018-01-01

    Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor on the San Andreas Fault in central California are sensitive to tidal stresses. LFEs occur at all levels of the tides, are strongly correlated and in phase with the 200 Pa shear stresses, and weakly and not systematically correlated with the 2 kPa tidal normal stresses. We assume that LFEs are small sources that repeatedly fail during shear within a much larger scale, aseismically slipping fault zone and consider two different models of the fault slip: (1) modulation of the fault slip rate by the tidal stresses or (2) episodic slip, triggered by the tides. LFEs are strongly clustered with duration much shorter than the semidiurnal tide; they cannot be significantly modulated on that time scale. The recurrence times of clusters, however, are many times longer than the semidiurnal, leading to an appearance of tidal triggering. In this context we examine the predictions of laboratory-observed triggered frictional (dilatant) fault slip. The undrained end-member model produces no sensitivity to the tidal normal stress, and slip onsets are in phase with the tidal shear stress. The tidal correlation constrains the diffusivity to be less than 1 × 10-6/s and the product of the friction and dilatancy coefficients to be at most 5 × 10-7, orders of magnitude smaller than observed at room temperature. In the absence of dilatancy the effective normal stress at failure would be about 55 kPa. For this model the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid.

  5. Programming Deep Brain Stimulation for Tremor and Dystonia: The Toronto Western Hospital Algorithms.

    PubMed

    Picillo, Marina; Lozano, Andres M; Kou, Nancy; Munhoz, Renato Puppi; Fasano, Alfonso

    2016-01-01

    Deep brain stimulation (DBS) is an effective treatment for essential tremor (ET) and dystonia. After surgery, a number of extensive programming sessions are performed, mainly relying on neurologist's personal experience as no programming guidelines have been provided so far, with the exception of recommendations provided by groups of experts. Finally, fewer information is available for the management of DBS in ET and dystonia compared with Parkinson's disease. Our aim is to review the literature on initial and follow-up DBS programming procedures for ET and dystonia and integrate the results with our current practice at Toronto Western Hospital (TWH) to develop standardized DBS programming protocols. We conducted a literature search of PubMed from inception to July 2014 with the keywords "balance", "bradykinesia", "deep brain stimulation", "dysarthria", "dystonia", "gait disturbances", "initial programming", "loss of benefit", "micrographia", "speech", "speech difficulties" and "tremor". Seventy-six papers were considered for this review. Based on the literature review and our experience at TWH, we refined three algorithms for management of ET, including: (1) initial programming, (2) management of balance and speech issues and (3) loss of stimulation benefit. We also depicted algorithms for the management of dystonia, including: (1) initial programming and (2) management of stimulation-induced hypokinesia (shuffling gait, micrographia and speech impairment). We propose five algorithms tailored to an individualized approach to managing ET and dystonia patients with DBS. We encourage the application of these algorithms to supplement current standards of care in established as well as new DBS centers to test the clinical usefulness of these algorithms in supplementing the current standards of care. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The GABA Hypothesis in Essential Tremor: Lights and Shadows.

    PubMed

    Gironell, Alexandre

    2014-01-01

    The gamma-aminobutyric acid (GABA) hypothesis in essential tremor (ET) implies a disturbance of the GABAergic system, especially involving the cerebellum. This review examines the evidence of the GABA hypothesis. The review is based on published data about GABA dysfunction in ET, taking into account studies on cerebrospinal fluid, pathology, electrophysiology, genetics, neuroimaging, experimental animal models, and human drug therapies. Findings from several studies support the GABA hypothesis in ET. The hypothesis follows four steps: 1) cerebellar neurodegeneration with Purkinje cell loss; 2) a decrease in GABA system activity in deep cerebellar neurons; 3) disinhibition in output deep cerebellar neurons with pacemaker activity; and 4) an increase in rhythmic activity of the thalamus and thalamo-cortical circuit, contributing to the generation of tremor. Doubts have been cast on this hypothesis, however, by the fact that it is based on relatively few works, controversial post-mortem findings, and negative genetic studies on the GABA system. Furthermore, GABAergic drug efficacy is low and some GABAergic drugs do not have antitremoric efficacy. The GABA hypothesis continues to be the most robust pathophysiological hypothesis to explain ET. There is light in all GABA hypothesis steps, but a number of shadows cannot be overlooked. We need more studies to clarify the neurodegenerative nature of the disease, to confirm the decrease of GABA activity in the cerebellum, and to test more therapies that enhance the GABA transmission specifically in the cerebellum area.

  7. Computer-Guided Deep Brain Stimulation Programming for Parkinson's Disease.

    PubMed

    Heldman, Dustin A; Pulliam, Christopher L; Urrea Mendoza, Enrique; Gartner, Maureen; Giuffrida, Joseph P; Montgomery, Erwin B; Espay, Alberto J; Revilla, Fredy J

    2016-02-01

    Pilot study to evaluate computer-guided deep brain stimulation (DBS) programming designed to optimize stimulation settings using objective motion sensor-based motor assessments. Seven subjects (five males; 54-71 years) with Parkinson's disease (PD) and recently implanted DBS systems participated in this pilot study. Within two months of lead implantation, the subject returned to the clinic to undergo computer-guided programming and parameter selection. A motion sensor was placed on the index finger of the more affected hand. Software guided a monopolar survey during which monopolar stimulation on each contact was iteratively increased followed by an automated assessment of tremor and bradykinesia. After completing assessments at each setting, a software algorithm determined stimulation settings designed to minimize symptom severities, side effects, and battery usage. Optimal DBS settings were chosen based on average severity of motor symptoms measured by the motion sensor. Settings chosen by the software algorithm identified a therapeutic window and improved tremor and bradykinesia by an average of 35.7% compared with baseline in the "off" state (p < 0.01). Motion sensor-based computer-guided DBS programming identified stimulation parameters that significantly improved tremor and bradykinesia with minimal clinician involvement. Automated motion sensor-based mapping is worthy of further investigation and may one day serve to extend programming to populations without access to specialized DBS centers. © 2015 International Neuromodulation Society.

  8. Moments, magnitudes, and radiated energies of non-volcanic tremor near Cholame, CA, from ground motion spectra at UPSAR

    USGS Publications Warehouse

    Fletcher, Joe B.; McGarr, A.

    2011-01-01

    By averaging the spectra of events within two episodes of tremor (on Jan. 21 and 24, 2005) across the 12 stations of UPSAR, we improved the S/N sufficiently to define source spectra. Analysis of eleven impulsive events revealed attenuation-corrected spectra of displacement similar to those of earthquakes, with a low-frequency plateau, a corner frequency, and a high frequency decay proportional to f−2. Seismic moments, M0, estimated from these spectra range from about 3 to 10 × 1011 N-m or moment magnitudes in the range 1.6 to 1.9. The corner frequencies range from 2.6 to 7.2 Hz and, if interpreted in the same way as for earthquakes, indicate low stress drops that vary from 0.001 to 0.04 MPa. Seismic energies, estimated from the ground motion spectra, vary from 0.2 × 105 to 4.4 × 105 J, or apparent stresses in the range 0.002 to 0.02 MPa. The low stress parameters are consistent with a weak fault zone in the lower crust at the depth of tremor. In contrast, the same analysis on a micro-earthquake, located near Cholame (depth = 10.3 km), revealed a stress drop of 0.5 MPa and an apparent stress of 0.02 MPa. Residual spectra from ω−2 model fits to the displacement spectra of the non-volcanic tremor events show peaks near 4 Hz that are not apparent in the spectra for the microearthquake nor for the spectrum of earth noise. These spectral peaks may indicate that tremor entails more than shear failure reminiscent of mechanisms, possibly entailing fluid flow, associated with volcanic tremor or deep volcanic earthquakes.

  9. [Early Experience with the VerciseTM DBS System in the Treatment of Dystonic Tremor].

    PubMed

    Miyagi, Yasushi

    2017-03-01

    Six cases of dystonic tremor were treated with the VerciseTM deep brain stimulation(DBS)system, which has the multiple independent current control(MICC)technology. The mean preoperative score of Burke-Fahn-Marsden dystonia rating scale was 16.2±9.4, which was reduced to 6.1±4.6 at 5 months postoperatively. A 65-year-old male presented an intractable dystonic tremor of the jaw, neck, and shoulders due to tardive syndrome. He experienced the successful tremor relief after unipolar DBS in the globus pallidus internus(GPi)with VerciseTM but complained of dysarthria. Steering the current ventrally induced nausea without alleviating dysarthria, while steering the current dorsally alleviated dysarthria but a further dorsal current induced mandibular dyskinesia. The current steering with MICC enabled the simulation field in GPi with successful balance, maximizing tremor suppression, and minimizing the adverse effects. In a second case, 61-year-old male in whom cervical dystonia with rotatory tremor had been successfully treated with interleaving stimulation of GPi-DBS had needed to repeat the replacement of a non-rechargeable pulse generator in only 15-month interval. After the substitution of VerciseTM, the interleaving stimulation of 9.5mA in total was replaced by 8.5mA with the current steering of MICC, while the patient's symptomatic control was unchanged. The microlesion effects after lead implantation are unclear and therapeutic effects are often delayed in cases of dystonia;therefore, the submaximal stimulation intensities must be frequently applied in the early phase following the implantation of DBS. A fine current steering of VerciseTM DBS is very useful in both, the early and late phases of GPi-DBS for dystonic syndrome.

  10. Discovery of non-volcanic tremor and contribution to earth science by NIED Hi-net

    NASA Astrophysics Data System (ADS)

    Obara, K.

    2015-12-01

    Progress of seismic observation network brings breakthroughs in the earth science at each era. High sensitivity seismograph network (Hi-net) was constructed by National Research Institute for Earth Science and Disaster Prevention (NIED) as a national project in order to improve the detection capability of microearthquake after disastrous 1995 Kobe earthquake. Hi-net has been contributing to not only monitoring of seismicity but also producing many research results like as discoveries of non-volcanic tremor and other slow earthquakes. More important thing is that we have continued to make efforts to monitor all of data visually and effectively. The discovery of tremor in southwest Japan stimulated PGC researchers to search similar seismic signature in Cascadia because of a couple of common features in the tremor in Japan and slow slip event (SSE) they already discovered in Cascadia. At last, episodic tremor and slip (ETS) was discovered, then the SSE associated with tremor was also detected in Japan by using the tilting data measured by high-sensitivity accelerometer attached with the Hi-net. This coupling phenomena strengthened the connection between seismology and geodesy. Widely separated spectrum of tremor and SSE motivated us to search intervened phenomena, then we found very low frequency earthquake during ETS episode. These slow earthquakes obey a scaling law different from ordinary earthquake. This difference is very important to resolve the earthquake physics. Hi-net is quite useful for not only three-dimensional imaging of underground structure beneath the Japan Islands, but also resolving deep Earth interior by using teleseismic events or ambient noises and source rupture process of large earthquakes by using back-projection analysis as a remote array. Hi-net will continue to supply unexpected new discoveries. I expect that multiple installation of similar dense seismic array in the world will give us great opportunity to discover more important and explore a new regime in the earth science.

  11. Rapid battery depletion and loss of therapy due to a short circuit in bipolar DBS for essential tremor.

    PubMed

    Allert, Niels; Barbe, Michael Thomas; Timmermann, Lars; Coenen, Volker Arnd

    2017-05-01

    Technical dysfunctions have been reported reducing efficacy of deep brain stimulation (DBS). Here, we report on an essential-tremor patient in whom a short circuit in bipolar DBS resulted not only in unilateral loss of therapy but also in high current flow and thereby rapid decline of the impulse-generator battery voltage from 2.83 V a week before the event to 2.54 V, indicating the need for an impulse-generator replacement. Immediate re-programming restored therapeutic efficacy. Moreover, the reduction in current flow allowed the battery voltage to recover without immediate surgical intervention to 2.81 V a week later.

  12. The effects of Thalamic Deep Brain Stimulation on speech dynamics in patients with Essential Tremor: An articulographic study.

    PubMed

    Mücke, Doris; Hermes, Anne; Roettger, Timo B; Becker, Johannes; Niemann, Henrik; Dembek, Till A; Timmermann, Lars; Visser-Vandewalle, Veerle; Fink, Gereon R; Grice, Martine; Barbe, Michael T

    2018-01-01

    Acoustic studies have revealed that patients with Essential Tremor treated with thalamic Deep Brain Stimulation (DBS) may suffer from speech deterioration in terms of imprecise oral articulation and reduced voicing control. Based on the acoustic signal one cannot infer, however, whether this deterioration is due to a general slowing down of the speech motor system (e.g., a target undershoot of a desired articulatory goal resulting from being too slow) or disturbed coordination (e.g., a target undershoot caused by problems with the relative phasing of articulatory movements). To elucidate this issue further, we here investigated both acoustics and articulatory patterns of the labial and lingual system using Electromagnetic Articulography (EMA) in twelve Essential Tremor patients treated with thalamic DBS and twelve age- and sex-matched controls. By comparing patients with activated (DBS-ON) and inactivated stimulation (DBS-OFF) with control speakers, we show that critical changes in speech dynamics occur on two levels: With inactivated stimulation (DBS-OFF), patients showed coordination problems of the labial and lingual system in terms of articulatory imprecision and slowness. These effects of articulatory discoordination worsened under activated stimulation, accompanied by an additional overall slowing down of the speech motor system. This leads to a poor performance of syllables on the acoustic surface, reflecting an aggravation either of pre-existing cerebellar deficits and/or the affection of the upper motor fibers of the internal capsule.

  13. Tidal modulation of slow slip events in the Nankai trough subduction zone detected by borehole strainmeters

    NASA Astrophysics Data System (ADS)

    Kikuchi, J.; Ide, S.; Matsumoto, N.

    2016-12-01

    Slow slip events (SSEs) often occur in the Nankai subduction zone, Japan, within a band-like zone extended from the center of Honshu to western Shikoku. SSEs are believed as shear slip on the plate interface, where the frictional property changes from velocity weakening to strengthening in the dip direction. Therefore the dynamics of SSEs may give some hints on the depth dependent friction and plate subduction. The tidal modulation of SSEs has been identified by statistical analysis using strain data of Plate Boundary Observatory, in the Cascadia subduction zone [Hawthorne & Rubin, 2010]. Here, we perform similar statistical analyses using strain data recorded at borehole stations maintained by National Institute of Advanced Industrial Science and Technology, in western Japan. The correlation between the oscillation in SSEs and tidal stress was confirmed statistically. In Nankai subduction zone, it is known that SSEs are accompanied with high activity of deep tectonic tremors [Hirose & Obara, 2006]. These tremors have been known to be sensitive to tidal stress [Nakata et al., 2008]. Therefore, the tidal modulation of SSEs is another representation of tidal modulation of tremors. To clarify the relation between SSEs and tremors, we investigate whether strain changes corresponding to SSEs can be explained only by tremors activity. For an SSE occurred in Aug. 2010 in Bungo channel, we assume that the seismic moment of the SSE is 1.6 × 1018 Nm (Mw 6.1) based on the inversion of GNSS data [Nishimura et al., 2013], and that this moment is released by 715 tremors that occur during this SSE [Idehara et al., 2014]. In this case, each tremor is assigned with seismic moment of 2.2 × 1015 Nm (Mw 4.2). Then the strain change at the observation station by these tremors is calculated using the Okada [1992] method, assuming a half space and focal mechanism consistent with the regional plate motion. The calculated strain is qualitatively similar with the observed strain, suggesting that tremors almost directly represent SSE, as suggested by previous studies [e.g., Hirose & Obara, 2006]. However, the correspondence is not always apparent. For example, a similar analysis in the eastern Kii peninsula yields significant difference between observation and calculation.

  14. Emerging strategies in the management of essential tremor

    PubMed Central

    Hedera, Peter

    2016-01-01

    Currently available therapies for essential tremor (ET) provide sufficient control only for less than a half of patients and many unmet needs exist. This is in part due to the empiric nature of existing treatment options and persisting uncertainties about the pathogenesis of ET. The emerging concept of ET as a possible neurodegenerative disorder, better understanding of associated biochemical changes, including alterations in the γ-aminobutyric acid (GABA)-ergic system and gap junctions, and the identification of the role of the leucine-rich repeat and immunoglobulin-like domain-containing 1 (LINGO-1) gene in ET pathogenesis suggest new avenues for more targeted therapies. Here we review the most promising new approaches to treating ET, including allosteric modulation of GABA receptors and modifications of the LINGO-1 pathway. Medically refractory tremor can be successfully treated by high-frequency deep brain stimulation (DBS) of the ventral intermediate nucleus, but surgical therapies are also fraught with limitations due to adverse effects of stimulation and the loss of therapeutic response. The selection of additional thalamic and extrathalamic targets for electrode placements and the development of a closed-loop DBS system enabling automatic adjustment of stimulation parameters in response to changes in electrophysiologic brain activity are also reviewed. Tremor cancellation methods using exoskeleton and external hand-held devices are also briefly discussed. PMID:28382111

  15. Precursory tremor of the Askja Caldera landslide, July 2014 - seismic signal analysis and numerical modelling

    NASA Astrophysics Data System (ADS)

    Lipovsky, B. P.; Schöpa, A.; Chao, W. A.; Hovius, N.; White, R. S.; Green, R. G.

    2017-12-01

    Seismic records can contain valuable information about triggers and precursors of slope failures that might become useful for early-warning purposes. We investigated the seismic data of 52 stations from the University of Cambridge, UK, with respect to the tremor signals preceding a 20-80x106 m3 landslide at the Askja caldera in the Icelandic highlands on 21 July 2014. The landslide created a tsunami in the caldera lake, which inundated the shore up to 60 m high reaching famous tourist spots. This shows the high hazard potential of the site that motivated this study. About 30 min before the landslide, the seismic ground velocities >1 Hz of stations up to 30 km away from the landslide source area started to increase and the tremor signal reached up to three times the background noise level about 7 min before the landslide. In the spectral domain, the tremor is visible as a continuous, harmonic signal with a fundamental frequency of 2.5 Hz and overtones at 5 and 7.5 Hz. About 10 min before the landslide, the activated frequency bands changed their spectral content and up and down gliding is observed contemporaneously. The tremor signal ceases about 5 min before the high-energy failure of the landslide. We interpret the harmonic tremor before the landslide as stick-slip motion on fault patches at the boundaries of the landslide mass. Individual stick-slip events cannot be distinguished in the seismic data and thus have already merged into continuous tremor as they occur very close in time. As up and down gliding of the frequency bands occurs at the same time we favour an explanation where several fault patches are active simultaneously. One patch might accelerate and create up gliding signals and another patch might decelerate and create down gliding. We matched synthetic seismograms produced by numerical simulations of stick-slip movement and the seismic observations. The results show that a patch with a radius of 45 m and a realistic landslide thickness of 30 m can reproduce the spectrograms from observations. The disappearance of tremor shortly before the landslide is consistent with the theoretical prediction of a transition to stable sliding at high loading rates, which could imply that the landslide mass had already started to move before the high-energy signals are emergent in the seismic data.

  16. Earthquakes triggered by silent slip events on Kīlauea volcano, Hawaii

    USGS Publications Warehouse

    Segall, Paul; Desmarais, Emily K.; Shelly, David; Miklius, Asta; Cervelli, Peter F.

    2006-01-01

    Slow-slip events, or ‘silent earthquakes’, have recently been discovered in a number of subduction zones including the Nankai trough1, 2, 3 in Japan, Cascadia4, 5, and Guerrero6 in Mexico, but the depths of these events have been difficult to determine from surface deformation measurements. Although it is assumed that these silent earthquakes are located along the plate megathrust, this has not been proved. Slow slip in some subduction zones is associated with non-volcanic tremor7, 8, but tremor is difficult to locate and may be distributed over a broad depth range9. Except for some events on the San Andreas fault10, slow-slip events have not yet been associated with high-frequency earthquakes, which are easily located. Here we report on swarms of high-frequency earthquakes that accompany otherwise silent slips on Kīlauea volcano, Hawaii. For the most energetic event, in January 2005, the slow slip began before the increase in seismicity. The temporal evolution of earthquakes is well explained by increased stressing caused by slow slip, implying that the earthquakes are triggered. The earthquakes, located at depths of 7–8 km, constrain the slow slip to be at comparable depths, because they must fall in zones of positive Coulomb stress change. Triggered earthquakes accompanying slow-slip events elsewhere might go undetected if background seismicity rates are low. Detection of such events would help constrain the depth of slow slip, and could lead to a method for quantifying the increased hazard during slow-slip events, because triggered events have the potential to grow into destructive earthquakes.

  17. Technical Case Report of Deep Brain Stimulation: Is it Possible Single Electrode Reach to Both of Subthalamic Nucleus and Ventral Intermediate Nucleus in One Stage?

    PubMed

    Kaptan, Hülagu; Çakmur, Raif

    2018-04-15

    The primary target of this operation is Ventral Intermediate Nucleus (VIM); however VIM - Subthalamic Nucleus (STN) were tried to be reached with one electrode, adjusting the angle well, the coronal section; medial of VIM can partially reach the STN. Using the properties of the electrode; we believe we could act on a wide area. An analysis was performed on one patient who underwent VIM Deep Brain Stimulation (DBS) in 3 periods (pre - peri - post-operation). A 53 - year - old woman diagnosed with Parkinson's disease 8 years earlier including symptoms of severe tremor on the right than left underwent bilateral DBS VIM. Obtaining a satisfactory improvement of tremor, the patient did well, and postoperative complications were not observed. The patient was discharged from hospital on postoperative thirty day. It is certain that more research and experience are needed. However, we believe that the two targets can reach the same point and the second operations for another target can be avoided.We believe that this initiative is advantageous and promising regarding patient and cost.

  18. Developing a Deep Brain Stimulation Neuromodulation Network for Parkinson Disease, Essential Tremor, and Dystonia: Report of a Quality Improvement Project

    PubMed Central

    O’Suilleabhain, Padraig E.; Sanghera, Manjit; Patel, Neepa; Khemani, Pravin; Lacritz, Laura H.; Chitnis, Shilpa; Whitworth, Louis A.; Dewey, Richard B.

    2016-01-01

    Objective To develop a process to improve patient outcomes from deep brain stimulation (DBS) surgery for Parkinson disease (PD), essential tremor (ET), and dystonia. Methods We employed standard quality improvement methodology using the Plan-Do-Study-Act process to improve patient selection, surgical DBS lead implantation, postoperative programming, and ongoing assessment of patient outcomes. Results The result of this quality improvement process was the development of a neuromodulation network. The key aspect of this program is rigorous patient assessment of both motor and non-motor outcomes tracked longitudinally using a REDCap database. We describe how this information is used to identify problems and to initiate Plan-Do-Study-Act cycles to address them. Preliminary outcomes data is presented for the cohort of PD and ET patients who have received surgery since the creation of the neuromodulation network. Conclusions Careful outcomes tracking is essential to ensure quality in a complex therapeutic endeavor like DBS surgery for movement disorders. The REDCap database system is well suited to store outcomes data for the purpose of ongoing quality assurance monitoring. PMID:27711133

  19. Developing a Deep Brain Stimulation Neuromodulation Network for Parkinson Disease, Essential Tremor, and Dystonia: Report of a Quality Improvement Project.

    PubMed

    Dewey, Richard B; O'Suilleabhain, Padraig E; Sanghera, Manjit; Patel, Neepa; Khemani, Pravin; Lacritz, Laura H; Chitnis, Shilpa; Whitworth, Louis A; Dewey, Richard B

    2016-01-01

    To develop a process to improve patient outcomes from deep brain stimulation (DBS) surgery for Parkinson disease (PD), essential tremor (ET), and dystonia. We employed standard quality improvement methodology using the Plan-Do-Study-Act process to improve patient selection, surgical DBS lead implantation, postoperative programming, and ongoing assessment of patient outcomes. The result of this quality improvement process was the development of a neuromodulation network. The key aspect of this program is rigorous patient assessment of both motor and non-motor outcomes tracked longitudinally using a REDCap database. We describe how this information is used to identify problems and to initiate Plan-Do-Study-Act cycles to address them. Preliminary outcomes data is presented for the cohort of PD and ET patients who have received surgery since the creation of the neuromodulation network. Careful outcomes tracking is essential to ensure quality in a complex therapeutic endeavor like DBS surgery for movement disorders. The REDCap database system is well suited to store outcomes data for the purpose of ongoing quality assurance monitoring.

  20. Fractal hierarchies of magma transport in Hawaii and critical self-organization of tremor

    NASA Astrophysics Data System (ADS)

    Shaw, Herbert R.; Chouet, Bernard

    1991-06-01

    A hierarchical model of magma transport in Hawaii is developed from the seismic records of deep (30-60 km) and intermediate-depth (5-15 km) harmonic tremor between January 1, 1962, and December 31, 1983. We find two kinds of spatial distributions of magma fractions at depths below 5 km, defined by the fractal dimension D3, where the subscript is the embedding dimension. The first is a focused distribution with D3 = 0.28, and the second is a dispersed distribution with D3 = 1.52. The former dimension reflects conduitlike structures where the magma flow converges toward a summit magma chamber and the fractal dimension tends to zero. The latter dimension reflects multifractal clustering of dendritic fractures where hypocentral domains represent subsets of fractures within spherical domains with an average radius of about 1 km. These geometries constitute a percolation network of clustered intermittent fracture and magma transport. The magma volume of the average fracture is about 2 × 104 m3. A tremor model of magma transport is developed from mass balances of percolation that are proportional to tremor durations. It gives reasonable magma fractions and residence times for a vertical drift velocity of 4 km yr-1 and yields patterns of intermittency that are in accord with singularity analyses of the 22-year time series record. According to the model, sustained tremor is generated by the relaxation oscillations of the percolation network with a dominant frequency of about 1 Hz to obtain internally consistent values of fracture geometry, fracture opening force, and magma supply rate. Calculated tremor frequencies are higher in fracture networks of small volume in harmony with the observed relation between seismic amplitude and dominant frequency of tremor. Tectonic relaxation times of rock stresses versus magma pressures are in fair agreement with the average length of tremor episodes and average period of tremor intermittencies. These observations suggest that a high degree of self-organization is characteristic of the nonlinear dynamics of fracture percolation and coupled tremor processes. Logarithms of frequencies (in hertz) of high-amplitude tremor (1-s period), mean tremor duration (28-min period), and mean onset interval (14-day period) are 0, -3.2, and -6.1, implying broadband maxima in the frequency spectrum of transport at intervals of 103. The next longer period of this sequence, which corresponds to eruptions and shallow intrusions, is about 32 years (10 -9 Hz), comparable to the average eruption intermission of Mauna Loa during the last 150 years (about 20 years). This and other evidence suggest that spatiotemporal universality extends from small to large scales in Hawaiian and other magmatic systems. The apparent universal scaling of frequencies may be more than 15 decades in time (1 s to about 60 m.y.) and 10 decades in length (0.1 mm to 103 km).

  1. Subcortical neuronal ensembles: an analysis of motor task association, tremor, oscillations, and synchrony in human patients.

    PubMed

    Hanson, Timothy L; Fuller, Andrew M; Lebedev, Mikhail A; Turner, Dennis A; Nicolelis, Miguel A L

    2012-06-20

    Deep brain stimulation (DBS) has expanded as an effective treatment for motor disorders, providing a valuable opportunity for intraoperative recording of the spiking activity of subcortical neurons. The properties of these neurons and their potential utility in neuroprosthetic applications are not completely understood. During DBS surgeries in 25 human patients with either essential tremor or Parkinson's disease, we acutely recorded the single-unit activity of 274 ventral intermediate/ventral oralis posterior motor thalamus (Vim/Vop) neurons and 123 subthalamic nucleus (STN) neurons. These subcortical neuronal ensembles (up to 23 neurons sampled simultaneously) were recorded while the patients performed a target-tracking motor task using a cursor controlled by a haptic glove. We observed that modulations in firing rate of a substantial number of neurons in both Vim/Vop and STN represented target onset, movement onset/direction, and hand tremor. Neurons in both areas exhibited rhythmic oscillations and pairwise synchrony. Notably, all tremor-associated neurons exhibited synchrony within the ensemble. The data further indicate that oscillatory (likely pathological) neurons and behaviorally tuned neurons are not distinct but rather form overlapping sets. Whereas previous studies have reported a linear relationship between power spectra of neuronal oscillations and hand tremor, we report a nonlinear relationship suggestive of complex encoding schemes. Even in the presence of this pathological activity, linear models were able to extract motor parameters from ensemble discharges. Based on these findings, we propose that chronic multielectrode recordings from Vim/Vop and STN could prove useful for further studying, monitoring, and even treating motor disorders.

  2. Time dependent features in tremor spectra

    NASA Astrophysics Data System (ADS)

    Powell, T. W.; Neuberg, J.

    2003-11-01

    Harmonic spectral peaks are observed in the tremor spectra of many different volcanoes, and in some cases these spectral lines have been seen to change with time. This has also been observed for the tremor at the Soufrière Hills volcano on Montserrat, West Indies, where the spectral lines are sometimes seen to glide apart before an explosion. We propose a model of repeated triggering of low-frequency earthquakes to explain these gliding lines using the relationship δt=1/ δν, where δt and δν are time and frequency spacing, respectively, and investigate factors which can affect the observation of these spectral peaks. Noise and amplitude variation are shown to have little effect on the spectral peaks; however the time gap between events must be nearly constant over several events. An error with a standard deviation of 2% or less is required for the spectral lines to be observed in the frequency range 0.5-10 Hz. We can reproduce the gliding spectral lines from a specific tremor episode preceding an explosion by changing δt from 1 to 0.31 s over a time period of 12 min. Using this relationship and an Automated Event Classification Analysis Program (AECAP), we can monitor δt over a long time period. The AECAP also extracts other seismic parameters such as energy, duration and spectral characteristics. An initial comparison between low-frequency seismic energy and cyclic tilt shows a correlation between the two, but this does not hold for later cycles.

  3. Talamanca Transect and Tremor Array: Ongoing Seismological Investigations in Costa Rica

    NASA Astrophysics Data System (ADS)

    Thorwart, M.; Alvarado, G.; Arroyo, I.; Dinc-Akdogan, N.; Dzierma, Y.; Flueh, E.; Goltz, C.; Gossler, J.; Mora, M.; Rabbel, W.

    2005-12-01

    Under the roof of the collaborative research centre SFB 574, the Central American subduction zone is being investigated in a seismological research project conducted by Costa Rican and German partners. The general goal of the SFB574 project is to study the origin and influence of volatiles and fluids in subduction zones. The seismological subproject serves to defining the structural and seismo-tectonical frame work of these investigations. In early 2005 two seismic arrays have been installed: (a) A teleseismic transsect across the Talamanca mountain range consisting of 20 broadband sensors with about 10 km station spacing. The primary goal of this array is to image crustal structure, the Moho and the structure of the subducted slab and mantle wedge. Variations in Vp/Vs ratio are expected to provide information on fluids at deep lithospheric levels. (b) An array of six 1Hz-borehole seismometers has been permanently installed in 100 m deep boreholes on Nicoya peninsula. The borehole installation is intended to provide a low-noise environment for recording non-volcanic tremor signals. These non-volcanic tremors are hypothetically understood as indicators of episodic fluid release by dehydratisation processes within the subducting slab. In autumn 2005 the field setup will be complemented by an amphibious network of 30 land and 20 ocean bottom seismometers on- and offshore N Costa Rica and S Nicaragua. The poster presents field layout and first results of the combined SFB574 seismological survey. The SFB574 project is funded by the German science foundation (DFG). Support by the GFZ instrument pool is gratefully acknowledged.

  4. Low frequency tremors in the Tonankai accretionary prism, triggered by the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    To, A.; Obana, K.; Takahashi, N.; Fukao, Y.

    2012-12-01

    There have been many reports of triggered tremors and micro-earthquakes, by the 2011 Tohoku-Oki earthquake, most of which are based on land observations. Here, we report that numerous low frequency tremors are recorded by broadband ocean-bottom seismographs of DONET, a network of cabled observatory systems deployed in the Tonankai accretionary prism of the Nankai trough. Ten stations were in operation at the time of the earthquake. The tremors are observed at five of the stations, which are located on the landward slope of the Nankai trough. On the other hand, the signals are weak at stations near the coast, which are placed on the Kumano Forarc basin. The tremors are dominant in a frequency range of 1-10Hz. Their duration ranges from tens of seconds to a few minutes. More than 20 events per hour can be detected in the first few days after the earthquake. The activity continues about three weeks with a decrease in the frequency of occurrence. An intriguing feature of the observed tremors is that some of them have a very low frequency (VLF) component, most clearly visible between 0.02 and 0.05 Hz. We found 74 such events within 5 days after the great earthquake. For each event, the VLF signal is detected only at one station in contrast to the high frequency signal (2-8Hz), which can be observed at more than a few stations. We estimated the source location of the VLF events, by measuring the onset of envelope seismograms constructed from the high frequency (2-8Hz) horizontal component. Due to the unclear onset and the limited number of observable stations per event, the individual events were located with large location errors. Therefore, we assumed that 11 of the events, whose VLF waveforms are similar to each other with high correlation coefficient (> 0.92), are co-located. The measured travel times for the 11 events are compared and some outliers were discarded. We grid-searched through a 3-D S-wave velocity model for the event location, which minimizes the travel time residuals for the 45 travel measurements of the 11 events. The VLF event is located 3.5km beneath the seafloor in the vicinity of a splay fault branching from the main thrust into the accritoanlary prism. The distance from the source to the closest and the second closest station is 4.5 and 16km respectively. The large VLF signal is observed at the closest station from the source, but disappears at other stations located only ~20km away. When converted to the instrument-corrected displacement waveform, the VLF signal corresponds to a subsidence of up to 0.04 mm with a rise time of 10-20 s. In the presentation, we discuss the possible mechanisms of the source, which can generate the low frequency signal that attenuates rapidly with respect to the distance from the source.

  5. Connectivity derived thalamic segmentation in deep brain stimulation for tremor.

    PubMed

    Akram, Harith; Dayal, Viswas; Mahlknecht, Philipp; Georgiev, Dejan; Hyam, Jonathan; Foltynie, Thomas; Limousin, Patricia; De Vita, Enrico; Jahanshahi, Marjan; Ashburner, John; Behrens, Tim; Hariz, Marwan; Zrinzo, Ludvic

    2018-01-01

    The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.

  6. Different seismic signatures of fractures slip and their correlations with fluid pressures in in-situ rupture experiments

    NASA Astrophysics Data System (ADS)

    Derode, B.; Cappa, F.; Guglielmi, Y.

    2012-04-01

    The recent observations of non-volcanic tremors (NVT), slow-slip events (SSE), low- (LFE) and very-low (VLF) frequency earthquakes on seismogenic faults reveal that unexpected, large, non-linear transient deformations occur during the interseismic loading of the earthquake cycle. Such phenomena modify stress to the adjacent locked zones bringing them closer to failure. Recent studies indicated various driving factors such as high-fluid pressures and frictional processes. Here we focus on the role of fluids in the different seismic signatures observed in in-situ fractures slip experiments. Experiments were conducted in critically stressed fractures zone at 250 m-depth within the LSBB underground laboratory (south of France). This experiment seeks to explore the field measurements of temporal variations in fluid and stress through continuous monitoring of seismic waves, fluid pressures and mechanical deformations between boreholes and the ground surface. The fluid pressure was increased step-by-step in a fracture isolated between packers until a maximum value of 35 bars; a pressure analog to ones known to trigger earthquakes at crustal depths. We observed in the seismic signals: (1) Tremor-like signatures, (2) Low Frequency signatures, and (3) sudden and short ruptures like micro-earthquakes. By analogy, we suggest that fluid pressures may trigger these different seismic signatures in active faults.

  7. Spatial Comparisons of Tremor and Slow Slip as a Constraint on Fault Strength in the Northern Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Hall, K.; Schmidt, D. A.; Houston, H.

    2017-12-01

    We measure displacement vectors from about 50 or more PANGA 3-component GPS stations to analyze six large ETS events from 2007 - 2016 in northern Cascadia, and invert for slip on a realistic plate interface. Our previous results indicated that significant slip of up to 2 cm occurs 10 to 15 km up-dip of the western edge of tremor beneath the Olympic Peninsula. This far up-dip aseismic slip persists in several of the ETS events. We also find that this offset appears to vary along-strike with a greater offset beneath the Olympic Peninsula and up into the Strait of Juan de Fuca in comparison to lower Puget Sound. To explain this, we explore how properties (temperature and permeability) of the overlying structure may influence fault strength. In our conceptual model, the observation that slip inferred from GPS can extend updip of tremor suggests that updip of the observed edge of tremor, seismogenic patches that could produce tremor and low frequency earthquakes (LFEs) are too strong to fail from the relatively minor amount of far up-dip slow slip. This is consistent with the observation that, within the ETS zone, down-dip LFEs occur frequently, whereas up-dip LFEs occur only during the largest ETS events and are unaffected by tidal stresses until the later stages of an ETS event. This suggests that the up-dip seismogenic patches have a larger discrepancy between their strength and stress states, and therefore require larger stress perturbations (such as those from a propagating ETS slip pulse) to trigger seismic failure. We consider whether lateral variations in overlying structure may explain the along-strike variations in far up-dip aseismic slip. There is an abrupt change in lithology from the meta-sediments of the Olympic accretionary complex to the mafic basalts of the Crescent terrane. The juxtaposition of these different lithologies could potentially explain the along-strike variations in far up-dip aseismic slip. We propose to explore whether relative changes in either thermal conductivity or permeability could lead to effects of a reasonable magnitude and on a comparable length scale to explain the observed offset between tremor and slow slip in northern Cascadia. By using simple first-order models, we explore whether relative changes in these diffusive properties may encourage aseismic slip, but fail to generate tremor.

  8. Repeatability of high-speed migration of tremor along the Nankai subduction zone, Japan

    NASA Astrophysics Data System (ADS)

    Kato, A.; Tsuruoka, H.; Nakagawa, S.; Hirata, N.

    2015-12-01

    Tectonic tremors have been considered to be a swarm or superimposed pulses of low-frequency earthquakes (LFEs). To systematically analyze the high-speed migration of tremor [e.g., Shelly et al., 2007], we here focus on an intensive cluster hosting many low-frequency earthquakes located at the western part of Shikoku Island. We relocated ~770 hypocenters of LFEs identified by the JMA, which took place from Jan. 2008 to Dec. 2013, applying double differential relocation algorithm [e.g., Waldhauser and Ellsworth, 2000] to arrival times picked by the JMA and those obtained by waveform cross correlation measurements. The epicentral distributions show a clear alignment parallel to the subduction of the Philippine Sea plate, as like a slip-parallel streaking. Then, we applied a matched-filter technique to continuous seismograms recorded near the source region using relocated template LFEs during 6 years (between Jan. 2008 and Dec. 2013). We newly detected about 60 times the number of template events, which is fairly larger than ones obtained by conventional envelope cross correlation method. Interestingly, we identified many repeated sequences of tremor migrations along the slip-parallel streaking (~350 sequences). Front of each or stacked migration of tremors can be modeled by a parabolic envelope, indicating a diffusion process. The diffusivity of parabolic envelope is estimated to be around 105 m2/s, which is categorized as high-speed migration feature (~100 km/hour). Most of the rapid migrations took place during occurrences of short-term slow slip events (SSEs), and seems to be triggered by ocean and solid Earth tides. The most plausible explanation of the high-speed propagation is a diffusion process of stress pulse concentrated within a cluster of strong brittle patches on the ductile shear zone [Ando et al., 2012]. The viscosity of the ductile shear zone within the streaking is at least one order magnitude smaller than that of the slow-speed migration. This discrepancy of viscosity indicates that the streaking has different rheology compared with background main tremor/SSE belt. In addition, the diffusivity did not show any significant change before and after the Tohoku-Oki M9.0 Earthquake, suggesting that the high-speed propagation of tremors seems to be stable against external stress perturbations.

  9. Massage Therapy Treatment and Outcomes for a Patient with Parkinson's Disease: a Case Report.

    PubMed

    Casciaro, Yolanda

    2016-03-01

    Parkinson's disease (PD) is a complex neurological disorder. The disease is progressive and, in time, results in severe disability. Many patients turn to massage in an attempt to alleviate symptoms of pain and rigidity, though the effects of massage with respect to PD are not well studied. This case adds one more instance in which massage therapy has provided temporary respite from resting tremor, one unrelenting symptom of PD. To determine if massage therapy can produce favorable outcomes with respect to the severity of rigidity and tremor in a patient with PD. A 63-year-old female patient with idiopathic, long-standing, Hoehn-Yahr Stage 4 PD was treated with massage therapy five times over the course of six weeks. A SPES/SCOPA Motor Impairments rating scale was used to measure rigidity and tremor pre- and post-treatment, to gauge treatment effectiveness. The massage treatments consisted of deep longitudinal stroking, muscle squeezing techniques, passive range of motion movements, and general relaxation techniques to encourage a soothing environment while promoting a decrease in muscular tone and hyperactivity. Massage therapy administration was by a student near the end of her two-year diploma. The results obtained indicated that massage therapy treatment had a positive effect on reducing resting and postural tremor in a patient with long-standing PD. The treatment was also effective in temporarily reducing rigidity during treatment, but did not produce a lasting effect. Further study is required; however, the results of this case were consistent with the limited research available on the subject of massage therapy and Parkinson's disease, in that positive change with respect to tremor-and to a lesser degree, rigidity-were achieved with focused, intentional treatment.

  10. Right Brodmann area 18 predicts tremor arrest after Vim radiosurgery: a voxel-based morphometry study.

    PubMed

    Tuleasca, Constantin; Witjas, Tatiana; Van de Ville, Dimitri; Najdenovska, Elena; Verger, Antoine; Girard, Nadine; Champoudry, Jerome; Thiran, Jean-Philippe; Cuadra, Meritxell Bach; Levivier, Marc; Guedj, Eric; Régis, Jean

    2018-03-01

    Drug-resistant essential tremor (ET) can benefit from open standard stereotactic procedures, such as deep-brain stimulation or radiofrequency thalamotomy. Non-surgical candidates can be offered either high-focused ultrasound (HIFU) or radiosurgery (RS). All procedures aim to target the same thalamic site, the ventro-intermediate nucleus (e.g., Vim). The mechanisms by which tremor stops after Vim RS or HIFU remain unknown. We used voxel-based morphometry (VBM) on pretherapeutic neuroimaging data and assessed which anatomical site would best correlate with tremor arrest 1 year after Vim RS. Fifty-two patients (30 male, 22 female; mean age 71.6 years, range 49-82) with right-sided ET benefited from left unilateral Vim RS in Marseille, France. Targeting was performed in a uniform manner, using 130 Gy and a single 4-mm collimator. Neurological (pretherapeutic and 1 year after) and neuroimaging (baseline) assessments were completed. Tremor score on the treated hand (TSTH) at 1 year after Vim RS was included in a statistical parametric mapping analysis of variance (ANOVA) model as a continuous variable with pretherapeutic neuroimaging data. Pretherapeutic gray matter density (GMD) was further correlated with TSTH improvement. No a priori hypothesis was used in the statistical model. The only statistically significant region was right Brodmann area (BA) 18 (visual association area V2, p = 0.05, cluster size K c  = 71). Higher baseline GMD correlated with better TSTH improvement at 1 year after Vim RS (Spearman's rank correlation coefficient = 0.002). Routine baseline structural neuroimaging predicts TSTH improvement 1 year after Vim RS. The relevant anatomical area is the right visual association cortex (BA 18, V2). The question whether visual areas should be included in the targeting remains open.

  11. Seismic evidence for deep fluid circulation in the overriding plate of subduction zones

    NASA Astrophysics Data System (ADS)

    Tauzin, B.; Reynard, B.; Bodin, T.; Perrillat, J. P.; Debayle, E.

    2015-12-01

    In subduction zones, non-volcanic tremors are associated with fluid circulations (Obara, 2002). Their sources are often located on the interplate boundary (Rogers and Dragert, 2003; Shelly et al, 2006; La Rocca, 2009), consistent with fluids released by the dehydration of subducted plates (Hacker et al., 2003). Reports of tremors in the overriding continental crust of several subduction zones in the world (Kao et al., 2005; Payero et al., 2008; Ide, 2012) suggest fluid circulation at shallower depths but potential fluid paths are poorly documented. Here we obtained seismic observations from receiver functions that evidence the close association between the shallow tremor zone, electrical conductivity, and tectonic features of the Cascadia overriding plate. A seismic discontinuity near 15 km depth in the crust of the overriding North American plate is attributed to the Conrad discontinuity. This interface is segmented, and its interruption is spatially correlated with conductive regions and shallow swarms of seismicity and non-volcanic tremors. These observations suggest that shallow fluid circulation, tremors and seismicity are controlled by fault zones limiting blocks of accreted terranes in the overriding plate (Brudzinski and Allen, 2007). These zones constitute fluid "escape" routes that may contribute unloading fluid pressure on the megathrust. Obara, K. (2002). Science, 296, 1679-1681. Rogers, G., & Dragert, H. (2003). Science, 300, 1942-1943. Shelly, D. R., et al. (2006). Nature, 442, 188-191. La Rocca, M., et al. (2009). Science, 323, 620-623. Kao, H., et al. (2005). Nature, 436, 841-844. Payero, J. S., et al. (2008). Geophysical Research Letters, 35. Ide, S. (2012). Journal of Geophysical Research: Solid Earth, 117. Brudzinski, M. R., & Allen, R. M. (2007). Geology, 35, 907-910.

  12. Widespread Triggering of Earthquakes in the Central US by the 2011 M9.0 Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Rubinstein, J. L.; Savage, H. M.

    2011-12-01

    The strong shaking of the 2011 M9.0 off-Tohoku earthquake triggered tectonic tremor and earthquakes in many locations around the world. We analyze broadband records from the USARRAY to identify triggered seismicity in more than 10 different locations in the Central United States. We identify triggered events in many states including: Kansas, Nebraska, Arkansas, Minnesota, and Iowa. The locally triggered earthquakes are obscured in broadband records by the Tohoku-Oki mainshock but can be revealed with high-pass filtering. With the exception of one location (central Arkansas), the triggered seismicity occurred in regions that are seismically quiet. The coincidence of this seismicity with the Tohoku-Oki event suggests that these earthquakes were triggered. The triggered seismicity in Arkansas occurred in a region where there has been an active swarm of seismicity since August 2010. There are two lines of evidence to indicate that the seismicity in Arkansas is triggered instead of part of the swarm: (1) we observe two earthquakes that initiate coincident with the arrival of shear wave and Love wave; (2) the seismicity rate increased dramatically following the Tohoku-Oki mainshock. Our observations of widespread earthquake triggering in regions thought to be seismically quiet remind us that earthquakes can occur in most any location. Studying additional teleseismic events has the potential to reveal regions with a propensity for earthquake triggering.

  13. Deep brain stimulation for movement disorders.

    PubMed

    Thevathasan, Wesley; Gregory, Ralph

    2010-02-01

    Deep brain stimulation is now considered a routine treatment option for selected patients with advanced Parkinson's disease, primary segmental and generalised dystonia, and essential tremor. The neurosurgeon is responsible for the accurate and safe placement of the electrodes and the neurologist for the careful selection of patients and titration of medication against the effects of stimulation. A multidisciplinary team approach involving specialist nurses, neuropsychologists and neurophysiologists is required for a successful outcome. In this article we will summarise the key points in patient selection, provide an overview of the surgical technique, and discuss the beneficial and adverse outcomes that can occur.

  14. Brisk deep-tendon reflexes as a distinctive phenotype in an Argentinean spinocerebellar ataxia type 2 pedigree.

    PubMed

    Rosa, Alberto L; Molina, Irma; Kowaljow, Valeria; Conde, Cecilia B

    2006-01-01

    Slow saccades, postural/intention tremor, peripheral neuropathy, and decreased deep-tendon reflexes are valuable neurological signs for clinical suspicion of spinocerebellar ataxia type 2 (SCA2). We report the presence of abnormally brisk deep-tendon reflexes in nonsymptomatic carriers and mildly and severely affected subjects of a large Argentinean SCA2 pedigree. The identification of this distinctive SCA2 phenotype in an entire pedigree reinforces the current concept that clinical algorithms are of limited value as indicators for genetic testing in SCA. Combined with published pedigrees of SCA2 manifesting as levodopa-responsive parkinsonism, this finding suggests that modifier genes could influence the clinical phenotype of SCA2. Copyright (c) 2005 Movement Disorder Society.

  15. Plateau subduction, intraslab seismicity and the Denali Volcanic Gap

    NASA Astrophysics Data System (ADS)

    Bostock, M. G.; Chuang, L. Y.; Wech, A.; Plourde, A. P.

    2017-12-01

    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40-58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region's unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  16. Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap

    USGS Publications Warehouse

    Chuang, Lindsay Yuling; Bostock, Michael; Wech, Aaron; Plourde, Alexandre

    2018-01-01

    Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40–58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region’s unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.

  17. Gamma knife radiosurgery for essential tremor: A Case report and review of the literature

    PubMed Central

    2010-01-01

    Approximately 5 million people in America are affected by essential tremors (ET), which are classified as a type of benign movement disorder. This disease manifests as tremors that usually occur in the hands, but they may also be present in the head, face, tongue, and lower limbs. Radiofrequency thalamotomy (RF) and deep brain stimulation (DBS) are common invasive procedures with proven track records that are used to treat ET. Although these procedures have high success rates, they still put patients at risk of potential side effects and are invasive by nature. Thalamotomy using the gamma knife (GK) also produces favorable outcomes in treating tremors, without the complications associated with invasive neurosurgery procedures. This report describes the presenting symptoms and extended treatment outcome for a patient with an advanced case of ET, who received GK thalamotomy treatment six years ago. Because of this non-invasive treatment, she regained the ability to paint and live with an improved quality of life. We also discuss and review the relevant literature regarding the risks and benefits of this treatment modality. GK thalamotomy is one effective option for the treatment of ET, and due to its noninvasive nature, it has a different risk profile than neurosurgery. We suggest that GK thalamotomy should be presented as one viable treatment option to all ET patients, and should be recommended to those who would be best served by less invasive treatment techniques. PMID:20307307

  18. Gait and Balance in Essential Tremor: Variable Effects of Bilateral Thalamic Stimulation

    PubMed Central

    Earhart, Gammon M.; Clark, B. Ruth; Tabbal, Samer D.; Perlmutter, Joel S.

    2010-01-01

    Essential tremor (ET) is a multi-faceted condition best known for postural and action tremor but also may include disordered gait and postural instability. Deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) of the thalamus provides substantial tremor reduction yet some patients with bilateral VIM DBS have gait and balance impairment. This study examines gait and balance performance in 13 participants with ET who have bilateral VIM DBS compared to a matched control group. Participants with ET were tested with their stimulators off (DBS OFF) and on (DBS ON). For both standard and tandem walking, participants with ET walked significantly more slowly than controls, with significantly lower cadence, spending a lower percentage of the gait cycle in single limb support and a higher percentage in double support compared to controls. Participants with ET also had significantly lower tandem and one leg stance times, Berg balance scores, balance confidence, and required significantly greater time to perform the Timed Up-and-Go relative to controls. There were no significant differences in any gait or balance measures in the DBS OFF versus DBS ON conditions, but the effects of DBS on gait and balance were highly variable among individuals. Future studies are needed to determine why some individuals experience gait and balance difficulties after bilateral thalamic DBS and others do not. A better understanding of the mechanisms underlying gait and balance impairments in those with bilateral DBS is critical in order to reduce falls and fractures in this group. PMID:19006189

  19. Risk and protective factors for spasmodic dysphonia: a case-control investigation.

    PubMed

    Tanner, Kristine; Roy, Nelson; Merrill, Ray M; Kimber, Kamille; Sauder, Cara; Houtz, Daniel R; Doman, Darrin; Smith, Marshall E

    2011-01-01

    Spasmodic dysphonia (SD) is a chronic, incurable, and often disabling voice disorder of unknown pathogenesis. The purpose of this study was to identify possible endogenous and exogenous risk and protective factors uniquely associated with SD. Prospective, exploratory, case-control investigation. One hundred fifty patients with SD and 150 medical controls (MCs) were interviewed regarding their personal and family histories, environmental exposures, illnesses, injuries, voice use patterns, and general health using a previously vetted and validated epidemiologic questionnaire. Odds ratios and multiple logistic regression analyses (α<0.15) identified several factors that significantly increased the likelihood of having SD. These factors included (1) a personal history of mumps, blepharospasm, tremor, intense occupational and avocational voice use, and a family history of voice disorders; (2) an immediate family history of meningitis, tremor, tics, cancer, and compulsive behaviors; and (3) an extended family history of tremor and cancer. SD is likely multifactorial in etiology, involving both genetic and environmental factors. Viral infections/exposures, along with intense voice use, may trigger the onset of SD in genetically predisposed individuals. Future studies should examine the interaction among genetic and environmental factors to determine the pathogenesis of SD. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  20. Nonlinear waves in earth crust faults: application to regular and slow earthquakes

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum; Bambakidis, Gust

    2015-04-01

    The genesis, development and cessation of regular earthquakes continue to be major problems of modern geophysics. How are earthquakes initiated? What factors determine the rapture velocity, slip velocity, rise time and geometry of rupture? How do accumulated stresses relax after the main shock? These and other questions still need to be answered. In addition, slow slip events have attracted much attention as an additional source for monitoring fault dynamics. Recently discovered phenomena such as deep non-volcanic tremor (NVT), low frequency earthquakes (LFE), very low frequency earthquakes (VLF), and episodic tremor and slip (ETS) have enhanced and complemented our knowledge of fault dynamic. At the same time, these phenomena give rise to new questions about their genesis, properties and relation to regular earthquakes. We have developed a model of macroscopic dry friction which efficiently describes laboratory frictional experiments [1], basic properties of regular earthquakes including post-seismic stress relaxation [3], the occurrence of ambient and triggered NVT [4], and ETS events [5, 6]. Here we will discuss the basics of the model and its geophysical applications. References [1] Gershenzon N.I. & G. Bambakidis (2013) Tribology International, 61, 11-18, http://dx.doi.org/10.1016/j.triboint.2012.11.025 [2] Gershenzon, N.I., G. Bambakidis and T. Skinner (2014) Lubricants 2014, 2, 1-x manuscripts; doi:10.3390/lubricants20x000x; arXiv:1411.1030v2 [3] Gershenzon N.I., Bykov V. G. and Bambakidis G., (2009) Physical Review E 79, 056601 [4] Gershenzon, N. I, G. Bambakidis, (2014a), Bull. Seismol. Soc. Am., 104, 4, doi: 10.1785/0120130234 [5] Gershenzon, N. I.,G. Bambakidis, E. Hauser, A. Ghosh, and K. C. Creager (2011), Geophys. Res. Lett., 38, L01309, doi:10.1029/2010GL045225. [6] Gershenzon, N.I. and G. Bambakidis (2014) Bull. Seismol. Soc. Am., (in press); arXiv:1411.1020

  1. Low-frequency earthquakes reveal punctuated slow slip on the deep extent of the Alpine Fault, New Zealand

    USGS Publications Warehouse

    Chamberlain, Calum J.; Shelly, David R.; Townend, John; Stern, T.A.

    2014-01-01

    We present the first evidence of low-frequency earthquakes (LFEs) associated with the deep extension of the transpressional Alpine Fault beneath the central Southern Alps of New Zealand. Our database comprises a temporally continuous 36 month-long catalog of 8760 LFEs within 14 families. To generate this catalog, we first identify 14 primary template LFEs within known periods of seismic tremor and use these templates to detect similar events in an iterative stacking and cross-correlation routine. The hypocentres of 12 of the 14 LFE families lie within 10 km of the inferred location of the Alpine Fault at depths of approximately 20–30 km, in a zone of high P-wave attenuation, low P-wave speeds, and high seismic reflectivity. The LFE catalog consists of persistent, discrete events punctuated by swarm-like bursts of activity associated with previously and newly identified tremor periods. The magnitudes of the LFEs range between ML – 0.8 and ML 1.8, with an average of ML 0.5. We find that the frequency-magnitude distribution of the LFE catalog both as a whole and within individual families is not consistent with a power law, but that individual families' frequency-amplitude distributions approximate an exponential relationship, suggestive of a characteristic length-scale of failure. We interpret this LFE activity to represent quasi-continuous slip on the deep extent of the Alpine Fault, with LFEs highlighting asperities within an otherwise steadily creeping region of the fault.

  2. Space-Time Evolution of Magma Storage and Transfer at Mt. Etna Volcano (Italy): The 2015-2016 Reawakening of Voragine Crater

    NASA Astrophysics Data System (ADS)

    Cannata, Andrea; Di Grazia, Giuseppe; Giuffrida, Marisa; Gresta, Stefano; Palano, Mimmo; Sciotto, Mariangela; Viccaro, Marco; Zuccarello, Francesco

    2018-02-01

    The eruptions of December 2015 and May 2016 at Voragine crater were among the most explosive recorded during the last two decades at Mt. Etna volcano. Here we present data coming from geophysics (infrasound, LP, VLP, volcanic tremor, VT earthquakes, and ground deformations) and petrology (textural and microanalytical data on plagioclase and olivine crystals) to investigate the preeruptive magma storage and transfer dynamics leading to these exceptional explosive eruptions. Integration of all the available data has led us to constrain chemically, physically, and kinetically the environments where magmas were stored before the eruption, and how they have interacted during the transfer en-route to the surface. Although the evolution and behavior of volcanic phenomena at the surface was rather similar, some differences in storage and transfer dynamics were observed for 2015 and 2016 eruptions. Specifically, the 2015 eruptions have been fed by magmas stored at shallow levels that were pushed upward as a response of magma injections from deeper environments, whereas evidence of chemical interaction between shallow and deep magmatic environments becomes more prominent during the 2016 eruptions. Main findings evidence the activation of magmatic environments deeper than those generally observed for other recent Etnean eruptions, with involvement of deep basic magmas that were brought to shallow crustal levels in very short time scales (˜1 month). The fast transfer from the deepest levels of the plumbing system of basic, undegassed magmas might be viewed as the crucial triggering factor leading to development of exceptionally violent volcanic phenomena even with only basic magma involved.

  3. Mechanisms of deep brain stimulation

    PubMed Central

    Cheng, Jennifer J.; Eskandar, Emad N.

    2015-01-01

    Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS. PMID:26510756

  4. External trial deep brain stimulation device for the application of desynchronizing stimulation techniques.

    PubMed

    Hauptmann, C; Roulet, J-C; Niederhauser, J J; Döll, W; Kirlangic, M E; Lysyansky, B; Krachkovskyi, V; Bhatti, M A; Barnikol, U B; Sasse, L; Bührle, C P; Speckmann, E-J; Götz, M; Sturm, V; Freund, H-J; Schnell, U; Tass, P A

    2009-12-01

    In the past decade deep brain stimulation (DBS)-the application of electrical stimulation to specific target structures via implanted depth electrodes-has become the standard treatment for medically refractory Parkinson's disease and essential tremor. These diseases are characterized by pathological synchronized neuronal activity in particular brain areas. We present an external trial DBS device capable of administering effectively desynchronizing stimulation techniques developed with methods from nonlinear dynamics and statistical physics according to a model-based approach. These techniques exploit either stochastic phase resetting principles or complex delayed-feedback mechanisms. We explain how these methods are implemented into a safe and user-friendly device.

  5. The Effect of Earthquakes on Episodic Tremor and Slip Events on the Southern Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Sainvil, A. K.; Schmidt, D. A.; Nuyen, C.

    2017-12-01

    The goal of this study is to explore how slow slip events on the southern Cascadia Subduction Zone respond to nearby, offshore earthquakes by examining GPS and tremor data. At intermediate depths on the plate interface ( 40 km), transient fault slip is observed in the form of Episodic Tremor and Slip (ETS) events. These ETS events occur regularly (every 10 months), and have a longer duration than normal earthquakes. Researchers have been documenting slow slip events through data obtained by continuously running GPS stations in the Pacific Northwest. Some studies have proposed that pore fluid may play a role in these ETS events by lowering the effective stress on the fault. The interaction of earthquakes and ETS can provide constraints on the strength of the fault and the level of stress needed to alter ETS behavior. Earthquakes can trigger ETS events, but the connection between these events and earthquake activity is less understood. We originally hypothesized that ETS events would be affected by earthquakes in southern Cascadia, and could result in a shift in the recurrence interval of ETS events. ETS events were cataloged using GPS time series provided by PANGA, in conjunction with tremor positions, in Southern Cascadia for stations YBHB and DDSN from 1997 to 2017. We looked for evidence of change from three offshore earthquakes that occurred near the Mendocino Triple Junction with moment magnitudes of 7.2 in 2005, 6.5 in 2010, and 6.8 in 2014. Our results showed that the recurrence interval of ETS for stations YBHB and DDSN was not altered by the three earthquake events. Future is needed to explore whether this lack of interaction is explained by the non-optimal orientation of the receiver fault for the earthquake focal mechanisms.

  6. Diagnosis and Treatment of Common Forms of Tremor

    PubMed Central

    Puschmann, Andreas; Wszolek, Zbigniew K.

    2014-01-01

    Tremor is the most common movement disorder presenting to an outpatient neurology practice and is defined as a rhythmical, involuntary oscillatory movement of a body part. The authors review the clinical examination, classification, and diagnosis of tremor. The pathophysiology of the more common forms of tremor is outlined, and treatment options are discussed. Essential tremor is characterized primarily by postural and action tremors, may be a neurodegenerative disorder with pathologic changes in the cerebellum, and can be treated with a wide range of pharmacologic and nonpharmacologic methods. Tremor at rest is typical for Parkinson’s disease, but may arise independently of a dopaminergic deficit. Enhanced physiologic tremor, intention tremor, and dystonic tremor are discussed. Further differential diagnoses described in this review include drug- or toxin-induced tremor, neuropathic tremor, psychogenic tremor, orthostatic tremor, palatal tremor, tremor in Wilson’s disease, and tremor secondary to cerebral lesions, such as Holmes’ tremor (midbrain tremor). An individualized approach to treatment of tremor patients is important, taking into account the degree of disability, including social embarrassment, which the tremor causes in the patient’s life. PMID:21321834

  7. Role of deep brain stimulation in modulating memory formation and recall

    PubMed Central

    Hu, Rollin; Eskandar, Emad; Williams, Ziv

    2010-01-01

    Deep brain stimulation (DBS) has become an increasingly popular tool for treating a variety of medically refractory neurological and psychiatric disorders such as Parkinson disease, essential tremor, depression, and obsessive-compulsive disorder. Several targets have been identified for ablation or stimulation based on their anatomical location and presumed function. Areas such as the subthalamic nucleus, globus pallidus, and thalamus, for example, are believed to play a key role in motor control and execution, and they are commonly used in the treatment of motor disorders. Limbic structures such as the cingulate cortex and ventral striatum, believed to be important in motivation, emotion, and higher cognition, have also been targeted for treatment of a number of psychiatric disorders. In all of these settings, DBS is largely aimed at addressing the deleterious aspects of these diseases. In Parkinson disease, for example, DBS has been used to reduce rigidity and tremor, whereas in obsessive-compulsive disorder it has been used to limit compulsive behavior. More recently, however, attention has also turned to the potential use of DBS for enhancing or improving otherwise nonpathological aspects of cognitive function. This review explores the potential role of DBS in augmenting memory formation and recall, and the authors discuss recent studies and future trends in this emerging field. PMID:19569891

  8. Diagnosis and Management of Tremor.

    PubMed

    Louis, Elan D

    2016-08-01

    Tremor, which is a rhythmic oscillation of a body part, is among the most common involuntary movements. Rhythmic oscillations may manifest in a variety of ways; as a result, a rich clinical phenomenology surrounds tremor. For this reason, diagnosing tremor disorders can be particularly challenging. The aim of this article is to provide the reader with a straightforward approach to the diagnosis and management of patients with tremor. Scientific understanding of the pathophysiologic basis of tremor disorders has grown considerably in recent years with the use of a broad range of neuroimaging approaches and rigorous, controlled postmortem studies. The basal ganglia and cerebellum are structures that seem to play a prominent role. The diagnosis of tremor disorders is challenging. The approach to tremor involves a history and a neurologic examination that is focused on the nuances of tremor phenomenology, of which there are many. The evaluation should begin with a tremor history and a focused neurologic examination. The examination should attend to the many subtleties of tremor phenomenology. Among other things, the history and examination are used to establish whether the main type of tremor is an action tremor (ie, postural, kinetic, or intention tremor) or a resting tremor. The clinician should then formulate two sets of differential diagnoses: disorders in which action tremor is the predominant tremor versus those in which resting tremor is the main tremor. Among the most common of the former type are essential tremor, enhanced physiologic tremor, drug-induced tremor, dystonic tremor, orthostatic tremor, and cerebellar tremor. Parkinson disease is the most common form of resting tremor, along with drug-induced resting tremor. This article details the clinical features of each of these as well as other tremor disorders.

  9. The phenomenology of parkinsonian tremor.

    PubMed

    Deuschl, Günther; Papengut, Frank; Hellriegel, Helge

    2012-01-01

    The definition of Parkinsonian tremor covers all different forms occurring in Parkinson's disease. The most common form is rest tremor, labelled as typical Parkinsonian tremor. Other variants cover also postural and action tremors. Data support the notion that suppression of rest tremor may be more specific for PD tremors. Several differential diagnoses like rest tremor in ET, dystonic tremor, psychogenic tremor and Holmes' tremor may be misinterpreted as PD-tremor. Tests and clinical clues to separate them are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Tremor entities and their classification: an update.

    PubMed

    Gövert, Felix; Deuschl, Günther

    2015-08-01

    This review focuses on important new findings in the field of tremor and illustrates the consequences for the current definition and classification of tremor. Since 1998 when the consensus criteria for tremor were proposed, new variants of tremors and new diagnostic methods were discovered that have changed particularly the concepts of essential tremor and dystonic tremor. Accumulating evidence exists that essential tremor is not a single entity rather different conditions that share the common symptom action tremor without other major abnormalities. Tremor is a common feature in patients with adult-onset focal dystonia and may involve several different body parts and forms of tremor. Recent advances, in particular, in the field of genetics, suggest that dystonic tremor may even be present without overt dystonia. Monosymptomatic asymmetric rest and postural tremor has been further delineated, and apart from tremor-dominant Parkinson's disease, there are several rare conditions including rest and action tremor with normal dopamine transporter imaging (scans without evidence of dopaminergic deficit) and essential tremor with tremor at rest. Increasing knowledge in the last decades changed the view on tremors and highlights several caveats in the current tremor classification. Given the ambiguous assignment between tremor phenomenology and tremor etiology, a more cautious definition of tremors on the basis of clinical assessment data is needed.

  11. Dystonia and Tremor: The Clinical Syndromes with Isolated Tremor

    PubMed Central

    Albanese, Alberto; Sorbo, Francesca Del

    2016-01-01

    Background Dystonia and tremor share many commonalities. Isolated tremor is part of the phenomenological spectrum of isolated dystonia and of essential tremor. The occurrence of subtle features of dystonia may allow one to differentiate dystonic tremor from essential tremor. Diagnostic uncertainty is enhanced when no features of dystonia are found in patients with a tremor syndrome, raising the question whether the observed phenomenology is an incomplete form of dystonia. Methods Known forms of syndromes with isolated tremor are reviewed. Diagnostic uncertainties between tremor and dystonia are put into perspective. Results The following isolated tremor syndromes are reviewed: essential tremor, head tremor, voice tremor, jaw tremor, and upper-limb tremor. Their varied phenomenology is analyzed and appraised in the light of a possible relationship with dystonia. Discussion Clinicians making a diagnosis of isolated tremor should remain vigilant for the detection of features of dystonia. This is in keeping with the recent view that isolated tremor may be an incomplete phenomenology of dystonia. PMID:27152246

  12. IS-EPOS - a prototype of EPOS Thematic Core Service for seismic processes induced by human operations

    NASA Astrophysics Data System (ADS)

    Orlecka-Sikora, Beata; Lasocki, Stanislaw; Leptokaropoulos, Konstantinos

    2014-05-01

    The community focused on seismic processes induced by human operations has been organized within EPOS Integration Program as Working Group 10 Infrastructure for Georesources. This group has brought together representatives from the scientific community and industry from 13 European countries. WG10 aims to integrate the research infrastructure (RI) in the area of seismicity induced (IS) by human activity: tremors and rockbursts in underground mines, seismicity associated with conventional and unconventional oil and gas production, induced by geothermal energy extraction and by underground reposition and storage of liquids (e.g. water disposal associated with energy extraction) and gases (CO2 sequestration, inter alia) and triggered by filling surface water reservoirs, etc. WG10 priority is to create new research opportunities in the field responding to global challenges connected with exploitation of georesources. WG10 has prepared the model of integration fulfilling the scientific mission and raising the visibility of stakeholders. The end-state Induced Seismicity Thematic Core Service (IS TCS) has been designed together with key metrics for TCS benefits in four areas: scientific, societal, economic and capacity building. IS-EPOS project, funded by National Centre for Research and Development, Poland within the program "Innovative Economy Operational Program Priority Axis 2 - R&D Infrastructure", aims at building a prototype of IS TCS. The prototype will implement fully the designed logic of IS TCS. Research infrastructure integrated within the prototype will comprise altogether seven comprehensive data cases of seismicity linked to deep mining related, associating geothermal production and triggered by reservoir impoundment. The implemented thematic services will enable studies within the use-case "Clustering of induced earthquakes". The IS TCS prototype is expected to reach full functionality by the end of 2014.

  13. Tectonic Tremor and the Collective Behavior of Low-Frequency Earthquakes

    NASA Astrophysics Data System (ADS)

    Frank, W.; Shapiro, N.; Husker, A. L.; Kostoglodov, V.; Campillo, M.; Gusev, A. A.

    2015-12-01

    Tectonic tremor, a long duration, emergent seismic signal observed along the deep roots of plate interfaces, is thought to be the superposition of repetitive shear events called low-frequency earthquakes (LFE) [e.g. Shelly et al., Nature, 2007]. We use a catalog of more than 1.8 million LFEs regrouped into more than 1000 families observed over 2 years in the Guerrero subduction zone in Mexico, considering each family as an individual repetitive source or asperity. We develop a statistical analysis to determine whether the subcatalogs corresponding to different sources represent random Poisson processes or if they exhibit scale-invariant clustering in time, which we interpret as a manifestation of collective behavior. For each individual LFE source, we compare their level of collective behavior during two time periods: during the six-month-long 2006 Mw 7.5 slow-slip event and during a calm period with no observed slow slip. We find that the collective behavior of LFEs depends on distance from the trench and increases when the subduction interface is slowly slipping. Our results suggest that the occurrence of strong episodes of tectonic tremors cannot be simply explained by increased rates of low frequency earthquakes at every individual LFE source but correspond to an enhanced collective behavior of the ensemble of LFE asperities.

  14. Along-strike variations in seismic structure of the locked-sliding transition on the plate boundary beneath the southern part of Kii Peninsula, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Iidaka, T.; Iwasaki, T.; Saiga, A.; Umeyama, E.; Tsumura, N.; Sakai, S.; Hirata, N.

    2013-12-01

    The Nankai trough region, where the Philippine Sea Plate (PHS) subducts beneath the SW Japan arc, is a well-known seismogenic zone of interplate earthquakes. A narrow zone of nonvolcanic tremor has been found in the SW Japan fore-arc, along strike of the arc (Obara, 2002). The epicentral distribution of tremor corresponds to the locked-sliding transition estimated from thermal and deformation models (Hyndman et al., 1995). The spatial distribution of the tremor is not homogeneous in a narrow belt but is spatially clustered. Obara [2002] suggested fluids as a source for tremor because of the long duration and the mobility of the tremor activity. The behavior of fluids at the plate interface is a key factor in understanding fault slip processes. Seismic reflection characteristics and seismic velocity variations can provide important information on the fluid-related heterogeneity of structure around plate interface. However, little is known about the deeper part of the plate boundary, especially the transition zone on the subducting plate. To reveal the seismic structure of the transition zone, we conducted passive and active seismic experiments in the southern part of Kii Peninsula, SW Japan. Sixty 3-component portable seismographs were installed on a 60-km-long line (SM-line) nearly perpendicular to the direction of the subduction of the PHS with approximately 1 km spacing. To improve accuracy of hypocenter locations, we additionally deployed six 3-component seismic stations around the survey line. Waveforms were continuously recorded during a five-month period from December, 2009. In October of 2010, a deep seismic profiling was also conducted. 290 seismometers were deployed on the SM-line with about 200 m spacing, on which five explosives shots were fired as controlled seismic sources. Arrival times of local earthquakes and explosive shots were used in a joint inversion for earthquake locations and 3-D Vp and Vp/Vs structures, using the iterative damped least-squares algorithm, simul2000 (Thurber and Eberhart-Phillips, 1999). To obtain the detailed structure image of the transition zone on the subducting plate, the explosive shot data recorded on the SM-line were processed using the seismic reflection technique. Seismic reflection image shows the lateral variation of the reflectivity along the top of the PHS. A clear reflection band is present where the clustered tremors occurred. The depth section of Vp/Vs structure shows the lateral variation of the Vp/Vs values along the top of the PHS. Clustered tremors are located in and around the high Vp/Vs zone. These results suggest the occurrence of the tremors may be associated with fluids dehydrated from the subducted oceanic lithosphere.

  15. Somatosensory temporal discrimination in essential tremor and isolated head and voice tremors.

    PubMed

    Conte, Antonella; Ferrazzano, Gina; Manzo, Nicoletta; Leodori, Giorgio; Fabbrini, Giovanni; Fasano, Alfonso; Tinazzi, Michele; Berardelli, Alfredo

    2015-05-01

    The aim of this study was to investigate the somatosensory temporal discrimination threshold in patients with essential tremor (sporadic and familial) and to evaluate whether somatosensory temporal discrimination threshold values differ depending on the body parts involved by tremor. We also investigated the somatosensory temporal discrimination in patients with isolated voice tremor. We enrolled 61 patients with tremor: 48 patients with essential tremor (31 patients with upper limb tremor alone, nine patients with head tremor alone, and eight patients with upper limb plus head tremor; 22 patients with familial vs. 26 sporadic essential tremor), 13 patients with isolated voice tremor, and 45 healthy subjects. Somatosensory temporal discrimination threshold values were normal in patients with familial essential tremor, whereas they were higher in patients with sporadic essential tremor. When we classified patients according to tremor distribution, somatosensory temporal discrimination threshold values were normal in patients with upper limb tremor and abnormal only in patients with isolated head tremor. Temporal discrimination threshold values were also abnormal in patients with isolated voice tremor. Somatosensory temporal discrimination processing is normal in patients with familial as well as in patients with sporadic essential tremor involving the upper limbs. By contrast, somatosensory temporal discrimination is altered in patients with isolated head tremor and voice tremor. This study with somatosensory temporal discrimination suggests that isolated head and voice tremors might possibly be considered as separate clinical entities from essential tremor. © 2015 International Parkinson and Movement Disorder Society.

  16. The Effect of Deep Brain Stimulation Therapy on Fear-Related Capture of Attention in Parkinson's Disease and Essential Tremor: A Comparison to Healthy Individuals.

    PubMed

    Camalier, Corrie R; McHugo, Maureen; Zald, David H; Neimat, Joseph S

    2018-01-01

    In addition to motor symptoms, Parkinson's disease (PD) involves significant non-motor sequelae, including disruptions in cognitive and emotional processing. Fear recognition appears to be affected both by the course of the disease and by a common interventional therapy, deep brain stimulation of the subthalamic nucleus (STN-DBS). Here, we examined if these effects extend to other aspects of emotional processing, such as attentional capture by negative emotional stimuli. Performance on an emotional attentional blink (EAB) paradigm, a common paradigm used to study emotional capture of attention, was examined in a cohort of individuals with PD, both on and off STN-DBS therapy (n=20). To contrast effects of healthy aging and other movement disorder and DBS targets, we also examined performance in a healthy elderly (n=20) and young (n=18) sample on the same task, and a sample diagnosed with Essential Tremor (ET) undergoing therapeutic deep brain stimulation of the ventral-intermediate nucleus (VIM-DBS, n=18). All four groups showed a robust attentional capture of emotional stimuli, irrespective of aging processes, movement disorder diagnosis, or stimulation. PD patients on average had overall worse performance, but this decrement in performance was not related to the emotional capture of attention. PD patients exhibited a robust EAB, indicating that the ability of emotion to direct attention remains intact in PD. Congruent with other recent data, these findings suggest that fear recognition deficits in PD may instead reflect a highly specific problem in recognition, rather than a general deficit in emotional processing of fearful stimuli.

  17. Tremor associated with focal and segmental dystonia.

    PubMed

    Rudzińska, M; Krawczyk, M; Wójcik-Pędziwiatr, M; Szczudlik, A; Wasielewska, A

    2013-01-01

    Tremor occurs in 10-85% of patients with focal dystonia as so-called dystonic tremor or tremor associated with dystonia. The aim of this study was to assess the incidence and to characterize parameters of tremor accompanying focal and segmental dystonia. One hundred and twenty-three patients with diagnosis of focal and segmental dystonia together with 51 healthy controls were included in the study. For each participant, clinical examination and objective assessment (accelerometer, electromyography, graphic tablet) of hand tremor was performed. Frequency and severity of tremor were assessed in three positions: at rest (rest tremor); with hands extended (postural tremor); during 'finger-to-nose' test and during Archimedes spiral drawing (kinetic tremor). Based on the mass load test, type of tremor was determined as essential tremor type or enhanced physiological type. The incidence of tremor was significantly higher in dystonic patients as compared to controls (p = 0.0001). In clinical examination, tremor was found in 50% of dystonic patients, and in instrumental assessment in an additional 10-20%. The most frequent type of tremor was postural and kinetic tremor with 7 Hz frequency and featured essential tremor type. In the control group, tremor was detected in about 10% of subjects as 9-Hz postural tremor of enhanced physiological tremor type. No differences were found between patients with different types of dystonia with respect to the tremor incidence, type and parameters (frequency and severity). No correlations between tremor severity and dystonia severity were found either.

  18. Rest tremor in idiopathic adult-onset dystonia.

    PubMed

    Gigante, A F; Berardelli, A; Defazio, G

    2016-05-01

    Tremor in dystonia has been described as a postural or kinetic abnormality. In recent series, however, patients with idiopathic adult-onset dystonia also displayed rest tremor. The frequency and distribution of rest tremor were studied in a cohort of 173 consecutive Italian patients affected by various forms of idiopathic adult-onset dystonia attending our movement disorder clinic over 8 months. Examination revealed tremor in 59/173 patients (34%): 12 patients had head tremor, 34 patients had arm tremor, whilst 13 patients presented tremor in both sites. Head tremor was postural in all patients, whereas arm tremor was postural/kinetic in 28 patients, only at rest in one and both postural/kinetic and at rest in 18 patients. Patients with tremor were more likely to have segmental/multifocal dystonia. Patients who had rest tremor (either alone or associated with action tremor) had a higher age at dystonia onset and a greater frequency of dystonic arm involvement than patients with action tremor alone or without tremor. Both action and rest tremor are part of the tremor spectrum of adult-onset dystonia and are more frequently encountered in segmental/multifocal dystonia. The higher age at dystonia onset and the greater frequency of arm dystonia in patients with rest tremor may have pathophysiological implications and may account, at least in part, for the previous lack of identification of rest tremor as one possible type of tremor present in dystonia. © 2016 EAN.

  19. Safety and efficacy of dual-lead thalamic deep brain stimulation for patients with treatment-refractory multiple sclerosis tremor: a single-centre, randomised, single-blind, pilot trial.

    PubMed

    Oliveria, Seth F; Rodriguez, Ramon L; Bowers, Dawn; Kantor, Daniel; Hilliard, Justin D; Monari, Erin H; Scott, Bonnie M; Okun, Michael S; Foote, Kelly D

    2017-09-01

    Efficacy in previous studies of surgical treatments of refractory multiple sclerosis tremor using lesioning or deep brain stimulation (DBS) has been variable. The aim of this study was to investigate the safety and efficacy of dual-lead thalamic DBS (one targeting the ventralis intermedius-ventralis oralis posterior nucleus border [the VIM lead] and one targeting the ventralis oralis anterior-ventralis oralis posterior border [the VO lead]) for the treatment of multiple sclerosis tremor. We did a single centre, single-blind, prospective, randomised pilot trial at the University of Florida Center for Movement Disorders and Neurorestoration clinic (Gainesville, FL, USA). We recruited adult patients with a clinical diagnosis of multiple sclerosis tremor refractory to previous medical therapy. Before surgery to implant both leads, we randomly assigned patients (1:1) to receive 3 months of optimised single-lead DBS-either VIM or VO. We did the randomisation with a computer-generated sequence, using three blocks of four patients, and independent members of the Center did the assignment. Patients and all clinicians other than the DBS programming nurse were masked to the choice of lead. Patients underwent surgery 1 month after their baseline visit for implantation of the dual lead DBS system. A pulse generator and two extension cables were implanted in a second surgery 3-4 weeks later. Patients then received an initial 3-month period of continuous stimulation of either the VIM or VO lead followed by blinded safety assessment of their tremor with the Tolosa-Fahn-Marin Tremor Rating Scale (TRS) during optimised VIM or VO lead stimulation at the end of the 3 months. After this visit, both leads were activated in all patients for an additional 3 months, and optimally programmed during serial visits as dictated by a prespecified programming algorithm. At the 6-month follow-up visit, TRS score was measured, and mood and psychological batteries were administered under four stimulation conditions: VIM on, VO on, both on, and both off (the order of testing was chosen by a computer-generated random sequence, assigned by independent members of the centre, and enacted by an unmasked DBS programming nurse). Each of four stimulation settings were tested over 4 consecutive days, with stimulation settings held constant for at least 12 h before testing. The primary outcome was change in mean total TRS score at the 6-month postoperative assessment with both leads activated, compared with the preoperative baseline mean TRS score. Analysis was by intention to treat. Safety was analysed in all patients who received the surgical implantation except in one patient who discontinued before the safety assessment. This trial is registered with ClinicalTrials.gov, number NCT00954421. Between Jan 16, 2007, and Dec 17, 2013, we enrolled 12 patients who were randomly assigned either to 3 initial months of VIM-only or VO-only stimulation. One patient from the VO-only group developed an infection necessitating DBS explantation, and was excluded from the assessment of the primary outcome. Compared with the mean baseline TRS score of 57·0 (SD 10·2), the mean score at 6 months decreased to 40·1 (17·6), -29·6% reduction; t=-0·28, p=0·03. Three of 11 patients did not respond to surgical intervention. One patient died suddenly 2 years after surgery, but this was judged to be unrelated to DBS implantation. Serious adverse events included a superficial wound infection in one patient that resolved with antibiotic therapy, and transient altered mental status and late multiple sclerosis exacerbation in another patient. The most common non-serious adverse events were headache and fatigue. Dual lead thalamic DBS might be a safe and effective option for improving severe, refractory multiple sclerosis tremor. Larger studies are necessary to show whether this technique is widely applicable, safe in the long-term, and effective in treating multiple sclerosis tremor or other severe tremor disorders. US National Institutes of Health, the Cathy Donnellan, Albert E Einstein, and Birdie W Einstein Fund, and the William Merz Professorship. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    USGS Publications Warehouse

    Vandemeulebrouck, Jean; Sohn, Robert A.; Rudolph, Maxwell L.; Hurwitz, Shaul; Manga, Michael; Johnston, Malcolm J.S.; Soule, S. Adam; McPhee, Darcy K.; Glen, Jonathan M.G.; Karlstrom, Leif; Murphy, Fred

    2014-01-01

    We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5–40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.

  1. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Lev, Einat

    2016-01-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering – a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  2. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T.; Swanson, D. A.; Lev, E.

    2016-12-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering - a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  3. [Assessment of anti-tremorogenic drugs--nicotine-induced tail-tremor model].

    PubMed

    Suemaru, K; Kawasaki, H; Gomita, Y

    1997-06-01

    The repeated administration of nicotine at small doses, which do not produce whole body tremor or convulsion, causes tremor only in the tail (tail-tremor) of rats. The tremor is accompanied by locomotor hyperactivity without rigidity and immobility of the whole body, suggesting that the nicotine-induced tail-tremor model is useful for studying the mechanism underlying tremor associated with movement. The tail-tremor induced by nicotine was suppressed by mecamylamine, a nicotinic antagonist, but not by atropine or scopolamine, muscalinic antagonists. Moreover, the tail-tremor was suppressed by the beta-blockers propranolol and pindolol, as well as the benzodiazepines diazepam and clonazepam. Tremor at rest is observed only in Parkinson's disease, which is improved with anti-muscalinic drugs. Essential tremor is one of the typical tremors connected with movement (postural and kinetic tremor) and is improved with beta-blocker. These findings and results suggest that nicotine-induced tail-tremor is useful for the study of essential tremor in animal models.

  4. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions.

    PubMed

    Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk

    2016-03-15

    Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (p<0.001), but not for postural tremor. Notably, peak frequencies were concentrated around 5 Hz under stress-state condition. The distributions of PSD of tremor were symmetrical, regardless of conditions. Tremor is more evident and typical tremor characteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels. Copyright © 2016. Published by Elsevier B.V.

  5. Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean earthquake.

    PubMed

    Delorey, Andrew A; Chao, Kevin; Obara, Kazushige; Johnson, Paul A

    2015-10-01

    Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w (moment magnitude) 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth's stress state. Earth's stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. We show that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which the material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth's elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.

  6. Correlates Between Force and Postural Tremor in Older Individuals with Essential Tremor.

    PubMed

    Kavanagh, Justin J; Keogh, Justin W L

    2016-12-01

    Essential tremor (ET) is commonly associated with kinetic tremor. However, other forms of tremor, such as force and postural tremor, may occur in ET with less severity. This study objectively assessed force and postural tremor characteristics in ET with the purpose of identifying the relationships between these tremors. Ten individuals with ET (age 71 ± 5 years) and ten healthy controls (age 70 ± 5 years) participated in the study. Force tremor was quantified as fluctuations in index finger abduction force during isometric contractions at 10 % maximum voluntary contraction (MVC) and 60 % MVC. Postural tremor was quantified as index finger acceleration when the subjects held their entire arm unsupported, and when their arm was supported so that only the index finger could move. Time- and frequency-domain parameters were extracted from tremor data, and then correlations within, and between, tremor subtypes were examined. ET force tremor was dependent on contraction intensity whereas postural tremor was unaffected by the level of limb support. Significant correlations existed between frequency components of postural tremor and force tremor amplitude. Force tremor amplitude normalised to the level of contraction intensity correlated to the proportion of power for postural tremor. These correlations were observed for both contraction intensities and both levels of postural support. The proportion of power represents the output of central oscillators in ET patients and therefore correlated well to force tremor. Given that significant relationships existed between spectral features of postural tremor and the overall force tremor amplitude, it is clear that these tremor modalities are not completely independent in older adults with ET.

  7. The Effect of Uni- and Bilateral Thalamic Deep Brain Stimulation on Speech in Patients With Essential Tremor: Acoustics and Intelligibility.

    PubMed

    Becker, Johannes; Barbe, Michael T; Hartinger, Mariam; Dembek, Till A; Pochmann, Jil; Wirths, Jochen; Allert, Niels; Mücke, Doris; Hermes, Anne; Meister, Ingo G; Visser-Vandewalle, Veerle; Grice, Martine; Timmermann, Lars

    2017-04-01

    Deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) is performed to suppress medically-resistant essential tremor (ET). However, stimulation induced dysarthria (SID) is a common side effect, limiting the extent to which tremor can be suppressed. To date, the exact pathogenesis of SID in VIM-DBS treated ET patients is unknown. We investigate the effect of inactivated, uni- and bilateral VIM-DBS on speech production in patients with ET. We employ acoustic measures, tempo, and intelligibility ratings and patient's self-estimated speech to quantify SID, with a focus on comparing bilateral to unilateral stimulation effects and the effect of electrode position on speech. Sixteen German ET patients participated in this study. Each patient was acoustically recorded with DBS-off, unilateral-right-hemispheric-DBS-on, unilateral-left-hemispheric-DBS-on, and bilateral-DBS-on during an oral diadochokinesis task and a read German standard text. To capture the extent of speech impairment, we measured syllable duration and intensity ratio during the DDK task. Naïve listeners rated speech tempo and speech intelligibility of the read text on a 5-point-scale. Patients had to rate their "ability to speak". We found an effect of bilateral compared to unilateral and inactivated stimulation on syllable durations and intensity ratio, as well as on external intelligibility ratings and patients' VAS scores. Additionally, VAS scores are associated with more laterally located active contacts. For speech ratings, we found an effect of syllable duration such that tempo and intelligibility was rated worse for speakers exhibiting greater syllable durations. Our data confirms that SID is more pronounced under bilateral compared to unilateral stimulation. Laterally located electrodes are associated with more severe SID according to patient's self-ratings. We can confirm the relation between diadochokinetic rate and SID in that listener's tempo and intelligibility ratings can be predicted by measured syllable durations from DDK tasks. © 2017 International Neuromodulation Society.

  8. Massage Therapy Treatment and Outcomes for a Patient with Parkinson’s Disease: a Case Report

    PubMed Central

    Casciaro, Yolanda

    2016-01-01

    Introduction Parkinson’s disease (PD) is a complex neurological disorder. The disease is progressive and, in time, results in severe disability. Many patients turn to massage in an attempt to alleviate symptoms of pain and rigidity, though the effects of massage with respect to PD are not well studied. This case adds one more instance in which massage therapy has provided temporary respite from resting tremor, one unrelenting symptom of PD. Objective To determine if massage therapy can produce favorable outcomes with respect to the severity of rigidity and tremor in a patient with PD. Case Presentation A 63-year-old female patient with idiopathic, long-standing, Hoehn-Yahr Stage 4 PD was treated with massage therapy five times over the course of six weeks. A SPES/SCOPA Motor Impairments rating scale was used to measure rigidity and tremor pre- and post-treatment, to gauge treatment effectiveness. The massage treatments consisted of deep longitudinal stroking, muscle squeezing techniques, passive range of motion movements, and general relaxation techniques to encourage a soothing environment while promoting a decrease in muscular tone and hyperactivity. Massage therapy administration was by a student near the end of her two-year diploma. Results The results obtained indicated that massage therapy treatment had a positive effect on reducing resting and postural tremor in a patient with long-standing PD. The treatment was also effective in temporarily reducing rigidity during treatment, but did not produce a lasting effect. Conclusion Further study is required; however, the results of this case were consistent with the limited research available on the subject of massage therapy and Parkinson’s disease, in that positive change with respect to tremor—and to a lesser degree, rigidity—were achieved with focused, intentional treatment. PMID:26977216

  9. Different phase delays of peripheral input to primate motor cortex and spinal cord promote cancellation at physiological tremor frequencies

    PubMed Central

    Koželj, Saša

    2014-01-01

    Neurons in the spinal cord and motor cortex (M1) are partially phase-locked to cycles of physiological tremor, but with opposite phases. Convergence of spinal and cortical activity onto motoneurons may thus produce phase cancellation and a reduction in tremor amplitude. The mechanisms underlying this phase difference are unknown. We investigated coherence between spinal and M1 activity with sensory input. In two anesthetized monkeys, we electrically stimulated the medial, ulnar, deep radial, and superficial radial nerves; stimuli were timed as independent Poisson processes (rate 10 Hz). Single units were recorded from M1 (147 cells) or cervical spinal cord (61 cells). Ninety M1 cells were antidromically identified as pyramidal tract neurons (PTNs); M1 neurons were additionally classified according to M1 subdivision (rostral/caudal, M1r/c). Spike-stimulus coherence analysis revealed significant coupling over a broad range of frequencies, with the strongest coherence at <50 Hz. Delays implied by the slope of the coherence phase-frequency relationship were greater than the response onset latency, reflecting the importance of late response components for the transmission of oscillatory inputs. The spike-stimulus coherence phase over the 6–13 Hz physiological tremor band differed significantly between M1 and spinal cells (phase differences relative to the cord of 2.72 ± 0.29 and 1.72 ± 0.37 radians for PTNs from M1c and M1r, respectively). We conclude that different phases of the response to peripheral input could partially underlie antiphase M1 and spinal cord activity during motor behavior. The coordinated action of spinal and cortical feedback will act to reduce tremulous oscillations, possibly improving the overall stability and precision of motor control. PMID:24572094

  10. Different phase delays of peripheral input to primate motor cortex and spinal cord promote cancellation at physiological tremor frequencies.

    PubMed

    Koželj, Saša; Baker, Stuart N

    2014-05-01

    Neurons in the spinal cord and motor cortex (M1) are partially phase-locked to cycles of physiological tremor, but with opposite phases. Convergence of spinal and cortical activity onto motoneurons may thus produce phase cancellation and a reduction in tremor amplitude. The mechanisms underlying this phase difference are unknown. We investigated coherence between spinal and M1 activity with sensory input. In two anesthetized monkeys, we electrically stimulated the medial, ulnar, deep radial, and superficial radial nerves; stimuli were timed as independent Poisson processes (rate 10 Hz). Single units were recorded from M1 (147 cells) or cervical spinal cord (61 cells). Ninety M1 cells were antidromically identified as pyramidal tract neurons (PTNs); M1 neurons were additionally classified according to M1 subdivision (rostral/caudal, M1r/c). Spike-stimulus coherence analysis revealed significant coupling over a broad range of frequencies, with the strongest coherence at <50 Hz. Delays implied by the slope of the coherence phase-frequency relationship were greater than the response onset latency, reflecting the importance of late response components for the transmission of oscillatory inputs. The spike-stimulus coherence phase over the 6-13 Hz physiological tremor band differed significantly between M1 and spinal cells (phase differences relative to the cord of 2.72 ± 0.29 and 1.72 ± 0.37 radians for PTNs from M1c and M1r, respectively). We conclude that different phases of the response to peripheral input could partially underlie antiphase M1 and spinal cord activity during motor behavior. The coordinated action of spinal and cortical feedback will act to reduce tremulous oscillations, possibly improving the overall stability and precision of motor control. Copyright © 2014 the American Physiological Society.

  11. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus.

    PubMed

    Lentz, Linnea; Zhao, Yan; Kelly, Matthew T; Schindeldecker, William; Goetz, Steven; Nelson, Dwight E; Raike, Robert S

    2015-11-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to treat movement disorders, including advanced Parkinson's disease (PD). The pathogenesis of PD and the therapeutic mechanisms of DBS are not well understood. Large animal models are essential for investigating the mechanisms of PD and DBS. The purpose of this study was to develop a novel sheep model of STN DBS and quantify the stimulation-evoked motor behaviors. To do so, a large sample of animals was chronically-implanted with commercial DBS systems. Neuroimaging and histology revealed that the DBS leads were implanted accurately relative to the neurosurgical plan and also precisely relative to the STN. It was also possible to repeatedly conduct controlled evaluations of stimulation-evoked motor behavior in the awake-state. The evoked motor responses depended on the neuroanatomical location of the electrode contact selected for stimulation, as contacts proximal to the STN evoked movements at significantly lower voltages. Tissue stimulation modeling demonstrated that selecting any of the contacts stimulated the STN, whereas selecting the relatively distal contacts often also stimulated thalamus but only the distal-most contact stimulated internal capsule. The types of evoked motor behaviors were specific to the stimulation frequency, as low but not high frequencies consistently evoked movements resembling human tremor or dyskinesia. Electromyography confirmed that the muscle activity underlying the tremor-like movements in the sheep was consistent with human tremor. Overall, this work establishes that the sheep is a viable a large-animal platform for controlled testing of STN DBS with objective motor outcomes. Moreover, the results support the hypothesis that exaggerated low-frequency activity within individual nodes of the motor network can drive symptoms of human movement disorders, including tremor and dyskinesia. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A prospective trial of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: Results at the 2-year follow-up.

    PubMed

    Chang, Jin Woo; Park, Chang Kyu; Lipsman, Nir; Schwartz, Michael L; Ghanouni, Pejman; Henderson, Jaimie M; Gwinn, Ryder; Witt, Jennifer; Tierney, Travis S; Cosgrove, G Rees; Shah, Binit B; Abe, Keiichi; Taira, Takaomi; Lozano, Andres M; Eisenberg, Howard M; Fishman, Paul S; Elias, W Jeffrey

    2018-01-01

    Magnetic resonance guided focused ultrasound (MRgFUS) has recently been investigated as a new treatment modality for essential tremor (ET), but the durability of the procedure has not yet been evaluated. This study reports results at a 2- year follow-up after MRgFUS thalamotomy for ET. A total of 76 patients with moderate-to-severe ET, who had not responded to at least two trials of medical therapy, were enrolled in the original randomized study of unilateral thalamotomy and evaluated using the clinical rating scale for tremor. Sixty-seven of the patients continued in the open-label extension phase of the study with monitoring for 2 years. Nine patients were excluded by 2 years, for example, because of alternative therapy such as deep brain stimulation (n = 3) or inadequate thermal lesioning (n = 1). However, all patients in each follow-up period were analyzed. Mean hand tremor score at baseline (19.8 ± 4.9; 76 patients) improved by 55% at 6 months (8.6 ± 4.5; 75 patients). The improvement in tremor score from baseline was durable at 1 year (53%; 8.9 ± 4.8; 70 patients) and at 2 years (56%; 8.8 ± 5.0; 67 patients). Similarly, the disability score at baseline (16.4 ± 4.5; 76 patients) improved by 64% at 6 months (5.4 ± 4.7; 75 patients). This improvement was also sustained at 1 year (5.4 ± 5.3; 70 patients) and at 2 years (6.5 ± 5.0; 67 patients). Paresthesias and gait disturbances were the most common adverse effects at 1 year-each observed in 10 patients with an additional 5 patients experiencing neurological adverse effects. None of the adverse events worsened over the period of follow-up, and 2 of these resolved. There were no new delayed complications at 2 years. Tremor suppression after MRgFUS thalamotomy for ET is stably maintained at 2 years. Latent or delayed complications do not develop after treatment. Ann Neurol 2018;83:107-114. © 2017 American Neurological Association.

  13. Microearthquake detection at 2012 M4.9 Qiaojia earthquake source area , the north of the Xiaojiang Fault in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yang, H.; Zhou, S.; Yan, C.

    2016-12-01

    We perform a comprehensive analysis in Yunnan area based on continuous seismic data of 38 stations of Qiaojia Network in Xiaojiang Fault from 2012.3 to 2015.2. We use an effective method: Match and Locate (M&L, Zhang&Wen, 2015) to detect and locate microearthquakes to conduct our research. We first study dynamic triggering around the Xiaojiang Fault in Yunnan. The triggered earthquakes are identified as two impulsive seismic arrivals in 2Hz-highpass-filtered velocity seismograms during the passage of surface waves of large teleseismic earthquakes. We only find two earthquakes that may have triggered regional earthquakes through inspecting their spectrograms: Mexico Mw7.4 earthquake in 03/20/2012 and El Salvador Mw7.3 earthquake in 10/14/2014. To confirm the two earthquakes are triggered instead of coincidence, we use M&L to search if there are any repeating earthquakes. The result of the coefficients shows that it is a coincidence during the surface waves of El Salvador earthquake and whether 2012 Mexico have triggered earthquake is under discussion. We then visually inspect the 2-8Hz-bandpass-filterd velocity envelopes of these years to search for non-volcanic tremor. We haven't detected any signals similar to non-volcanic tremors yet. In the following months, we are going to study the 2012 M4.9 Qiaojia earthquake. It occurred only 30km west of the epicenter of the 2014 M6.5 Ludian earthquake. We use Match and Locate (M&L) technique to detect and relocate microearthquakes that occurred 2 days before and 3 days after the mainshock. Through this, we could obtain several times more events than listed in the catalogs provided by NEIC and reduce the magnitude of completeness Mc. We will also detect microearthquakes along Xiaojiang Fault using template earthquakes listed in the catalogs to learn more about fault shape and other properties of Xiaojiang Fault. Analyzing seismicity near Xiaojiang Fault systematically may cast insight on our understanding of the features of its nearby faults, geological structure in this area and rupture process of the typical earthquake. We will also try to compare its features with 2014 M6.5 Ludian earthquake.

  14. Effects of alprazolam on cortical activity and tremors in patients with essential tremor.

    PubMed

    Ibáñez, Jaime; González de la Aleja, Jesús; Gallego, Juan A; Romero, Juan P; Saíz-Díaz, Rosana A; Benito-León, Julián; Rocon, Eduardo

    2014-01-01

    Essential tremor (ET) is characterised by postural and action tremors with a frequency of 4-12 Hz. Previous studies suggest that the tremor activity originates in the cerebello-thalamocortical pathways. Alprazolam is a short-acting benzodiazepine that attenuates tremors in ET. The mechanisms that mediate the therapeutic action of alprazolam are unknown; however, in healthy subjects, benzodiazepines increase cortical beta activity. In this study, we investigated the effect of alprazolam both on beta and tremor-related cortical activity and on alterations in tremor presentation in ET patients. Therefore, we characterised the dynamics of tremor and cortical activity in ET patients after alprazolam intake. We recorded hand tremors and contralateral cortical activity in four recordings before and after a single dose of alprazolam. We then computed the changes in tremors, cortico-muscular coherence, and cortical activity at the tremor frequency and in the beta band. Alprazolam significantly attenuated tremors (EMG: 76.2 ± 22.68%), decreased cortical activity in the tremor frequency range and increased cortical beta activity in all patients (P<0.05). At the same time, the cortico-muscular coherence at the tremor frequency became non-significant (P<0.05). We also found a significant correlation (r = 0.757, P<0.001) between the reduction in tremor severity and the increased ratio of cortical activity in the beta band to the activity observed in the tremor frequency range. This study provides the first quantitative analysis of tremor reduction following alprazolam intake. We observed that the tremor severity decreased in association with an increased ratio of beta to tremor-related cortical activity. We hypothesise that the increase in cortical beta activity may act as a blocking mechanism and may dampen the pathological oscillatory activity, which in turn attenuates the observed tremor.

  15. [Disappearance of essential neck tremor after pontine base infarction].

    PubMed

    Urushitani, M; Inoue, H; Kawamura, K; Kageyama, T; Fujisawa, M; Nishinaka, K; Udaka, F; Kameyama, M

    1996-08-01

    Mechanism of essential tremor remains unknown. Central oscillators, postulated in thalamus, inferior olive, and spinal cord are thought to be important to form rhythmicity, and finally to stimulate spinal or medullary motor cells, leading trembling muscle contraction, tremor. Among several subtypes of essential familial tremor, including hand tremor, neck tremor, and voice tremor, essential neck tremor is a common disorder, and its pathophysiology seems different from that of typical essential hand tremor, since patients with essential hand tremor are responsive to beta blocker, whereas those with neck tremor are usually not. We experienced a 41-year-old left handed woman with essential neck tremor in whom neck titubation disappeared shortly after pontine base infarct. She was our patient in the outpatient clinic with the diagnosis of essential neck tremor. The tremor developed when she was teenage, and has been localized in the neck muscles. Alcohol intake had apparently diminished it transiently. Her mother also had the tremor in her neck. She was admitted to our hospital with sudden onset of right-sided limb weakness and speech disturbance. Neurological examination showed right hemiparesis including the ipsilateral face, scanning speech, and cerebellar limb ataxia on the same side. In addition, there was no tremor in her neck. Brain MR imaging revealed a pontine base infarct at the level of middle pons, which was consistent with paramedian artery territory. The hemiparesis and speech disturbance improved almost completely after treatment, and her neck tremor has never occurred in one year follow-up. In our patient, efficacy of alcohol imply that essential neck tremor and hand tremor had same central nervous pathway including central oscillator in common, and descending cortical fibers is seemingly associated with diminishing patient's tremor. Pathophysiology of essential neck tremor was discussed with reviewing previous literature.

  16. How typical are 'typical' tremor characteristics? Sensitivity and specificity of five tremor phenomena.

    PubMed

    van der Stouwe, A M M; Elting, J W; van der Hoeven, J H; van Laar, T; Leenders, K L; Maurits, N M; Tijssen, M A J

    2016-09-01

    Distinguishing between different tremor disorders can be challenging. Some tremor disorders are thought to have typical tremor characteristics: the current study aims to provide sensitivity and specificity for five 'typical' tremor phenomena. Retrospectively, we examined 210 tremor patients referred for electrophysiological recordings between January 2008 and January 2014. The final clinical diagnosis was used as the gold standard. The first step was to determine whether patients met neurophysiological criteria for their type of tremor. Once established, we focused on 'typical' characteristics: tremor frequency decrease upon loading (enhanced physiological tremor (EPT)), amplitude increase upon loading, distractibility and entrainment (functional tremor (FT)), and intention tremor (essential tremor (ET)). The prevalence of these phenomena in the 'typical' group was compared to the whole group. Most patients (87%) concurred with all core clinical neurophysiological criteria for their tremor type. We found a frequency decrease upon loading to be a specific (95%), but not a sensitive (42%) test for EPT. Distractibility and entrainment both scored high on sensitivity (92%, 91%) and specificity (94%, 91%) in FT, whereas a tremor amplitude increase was specific (92%), but not sensitive (22%). Intention tremor was a specific finding in ET (85%), but not a sensitive test (45%). Combination of characteristics improved sensitivity. In this study, we retrospectively determined sensitivity and specificity for five 'typical' tremor characteristics. Characteristics proved specific, but few were sensitive. These data on tremor phenomenology will help practicing neurologists to improve distinction between different tremor disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Long-term change of activity of very low-frequency earthquakes in southwest Japan

    NASA Astrophysics Data System (ADS)

    Baba, S.; Takeo, A.; Obara, K.; Kato, A.; Maeda, T.; Matsuzawa, T.

    2017-12-01

    On plate interface near seismogenic zone of megathrust earthquakes, various types of slow earthquakes were detected including non-volcanic tremors, slow slip events (SSEs) and very low-frequency earthquakes (VLFEs). VLFEs are classified into deep VLFEs, which occur in the downdip side of the seismogenic zone, and shallow VLFEs, occur in the updip side, i.e. several kilometers in depth in southwest Japan. As a member of slow earthquake family, VLFE activity is expected to be a proxy of inter-plate slipping because VLFEs have the same mechanisms as inter-plate slipping and are detected during Episodic tremor and slip (ETS). However, long-term change of the VLFE seismicity has not been well constrained compared to deep low-frequency tremor. We thus studied long-term changes in the activity of VLFEs in southwest Japan where ETS and long-term SSEs have been most intensive. We used continuous seismograms of F-net broadband seismometers operated by NIED from April 2004 to March 2017. After applying the band-pass filter with a frequency range of 0.02—0.05 Hz, we adopted the matched-filter technique in detecting VLFEs. We prepared templates by calculating synthetic waveforms for each hypocenter grid assuming typical focal mechanisms of VLFEs. The correlation coefficients between templates and continuous F-net seismograms were calculated at each grid every 1s in all components. The grid interval is 0.1 degree for both longitude and latitude. Each VLFE was detected as an event if the average of correlation coefficients exceeds the threshold. We defined the detection threshold as eight times as large as the median absolute deviation of the distribution. At grids in the Bungo channel, where long-term SSEs occurred frequently, the cumulative number of detected VLFEs increases rapidly in 2010 and 2014, which were modulated by stress loading from the long-term SSEs. At inland grids near the Bungo channel, the cumulative number increases steeply every half a year. This stepwise change accompanies with ETS. During long-term SSEs, the interval of the step is shorter and the number of VLFEs in each step is smaller than usual. The most remarkable point is that the rate of deep VLFEs has been low since later 2014 in this region. A likely explanation of the VLFE quiescence is a temporal change of inter-plate coupling in the Nankai subduction zone.

  18. Remote Triggering of Microseismicity in Antarctica

    NASA Astrophysics Data System (ADS)

    Ji, M.; Li, C.; Peng, Z.; Walter, J. I.

    2017-12-01

    It is well known that large distant earthquakes can trigger microearthquakes/tectonic tremors during or immediately following their surface waves. Globally, triggered seismicity is mostly found in active plate boundary regions. Recent studies have shown that icequakes in Antartica can also be triggered by teleseismic events. However, it is still not clear how widespread this phenomenon is and whether there are any connections between large earthquakes and subsequent glacial movements. In this study, we conduct a systematic search for remotely triggered activity in Antarctica following recent large earthquakes, including the 2004 Mw9.1 Sumatra, 2011 Mw9.1 Tohoku, 2012 Mw8.6 Indian Ocean and 2014-2015 Chile earthquakes. We download seismic data recorded at the POLENET (YT) and the Argentina Antarctica Network (AI) from the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). We apply a 2-8 Hz band-pass-filter to the continuous waveforms and visually identify local events during and immediately after the large amplitude surface waves. Spectrograms are computed as additional tools to identify triggered seismicity and are further confirmed by comparing the signals before and after the distant mainshocks. So far we have identified possible triggered seismicity in both networks' area following the 2010 Chile and 2011 Tohoku earthquakes. Our next step is to apply a waveform matching method to automatically detect possible triggered seismicity and check through all the available networks in Antarctica for the last decades, which should help to better understand the potential interaction between large earthquakes and icequakes in this region.

  19. Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquakes

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Peng, Z.; Ferrier, K.; Lin, C. H.; Hsu, Y. J.; Shyu, J. B. H.

    2017-12-01

    Earthquakes, landslides, and tropical cyclones are extreme hazards that pose significant threats to human life and property. Some of the couplings between these hazards are well known. For example, sudden, widespread landsliding can be triggered by large earthquakes and by extreme rainfall events like tropical cyclones. Recent studies have also shown that earthquakes can be triggered by erosional unloading over 100-year timescales. In a NASA supported project, titled "Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquake", we study triggering relations between these hazard types. The project focuses on such triggering relations in Taiwan, which is subjected to very wet tropical storms, landslides, and earthquakes. One example for such triggering relations is the 2009 Morakot typhoon, which was the wettest recorded typhoon in Taiwan (2850 mm of rain in 100 hours). The typhoon caused widespread flooding and triggered more than 20,000 landslides, including the devastating Hsiaolin landslide. Six months later, the same area was hit by the 2010 M=6.4 Jiashian earthquake near Kaohsiung city, which added to the infrastructure damage induced by the typhoon and the landslides. Preliminary analysis of temporal relations between main-shock earthquakes and the six wettest typhoons in Taiwan's past 50 years reveals similar temporal relations between M≥5 events and wet typhoons. Future work in the project will include remote sensing analysis of landsliding, seismic and geodetic monitoring of landslides, detection of microseismicity and tremor activities, and mechanical modeling of crustal stress changes due to surface unloading.

  20. Variability of hand tremor in rest and in posture--a pilot study.

    PubMed

    Rahimi, Fariborz; Bee, Carina; South, Angela; Debicki, Derek; Jog, Mandar

    2011-01-01

    Previous, studies have demonstrated variability in the frequency and amplitude in tremor between subjects and between trials in both healthy individuals and those with disease states. However, to date, few studies have examined the composition of tremor. Efficacy of treatment for tremor using techniques such as Botulinum neurotoxin type A (BoNT A) injection may benefit from a better understanding of tremor variability, but more importantly, tremor composition. In the present study, we evaluated tremor variability and composition in 8 participants with either essential tremor or Parkinson disease tremor using kinematic recording methods. Our preliminary findings suggest that while individual patients may have more intra-trial and intra-task variability, overall, task effect was significant only for amplitude of tremor. Composition of tremor varied among patients and the data suggest that tremor composition is complex involving multiple muscle groups. These results may support the value of kinematic assessment methods and the improved understanding of tremor composition in the management of tremor.

  1. MR Anatomy of Deep Brain Nuclei with Special Reference to Specific Diseases and Deep Brain Stimulation Localization

    PubMed Central

    Telford, Ryan; Vattoth, Surjith

    2014-01-01

    Summary Diseases affecting the basal ganglia and deep brain structures vary widely in etiology and include metabolic, infectious, ischemic, and neurodegenerative conditions. Some neurologic diseases, such as Wernicke encephalopathy or pseudohypoparathyroidism, require specific treatments, which if unrecognized could lead to further complications. Other pathologies, such as hypertrophic olivary degeneration, if not properly diagnosed may be mistaken for a primary medullary neoplasm and create unnecessary concern. The deep brain structures are complex and can be difficult to distinguish on routine imaging. It is imperative that radiologists first understand the intrinsic anatomic relationships between the different basal ganglia nuclei and deep brain structures with magnetic resonance (MR) imaging. It is important to understand the "normal" MR signal characteristics, locations, and appearances of these structures. This is essential to recognizing diseases affecting the basal ganglia and deep brain structures, especially since most of these diseases result in symmetrical, and therefore less noticeable, abnormalities. It is also crucial that neurosurgeons correctly identify the deep brain nuclei presurgically for positioning deep brain stimulator leads, the most important being the subthalamic nucleus for Parkinson syndromes and the thalamic ventral intermediate nucleus for essential tremor. Radiologists will be able to better assist clinicians in diagnosis and treatment once they are able to accurately localize specific deep brain structures. PMID:24571832

  2. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.

    PubMed

    Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian

    2014-10-01

    Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Prevalence and characteristics of tremor in the NARCOMS multiple sclerosis registry: a cross-sectional survey

    PubMed Central

    Rinker, John R; Salter, Amber R; Walker, Harrison; Amara, Amy; Meador, William; Cutter, Gary R

    2015-01-01

    Objectives (1)To describe the prevalence and severity of tremor in patients with multiple sclerosis (MS) registered within a large North American MS registry; (2) to provide detailed descriptions on the characteristics and severity of tremor in a subset of registrants and (3) to compare several measures of tremor severity for strength of agreement. Setting The North American Research Committee on MS (NARCOMS) registry. Participants Registrants of NARCOMS reporting mild or greater tremor severity. Outcome measures We determined the cross-sectional prevalence of tremor in the NARCOMS registry over three semiannual updates between fall 2010 and fall 2011. A subset of registrants (n=552) completed a supplemental survey providing detailed descriptions of their tremor. Outcomes included descriptive characteristics of their tremors and correlations between outcome measures to determine the strength of agreement in assessing tremor severity. Results The estimated prevalence of tremor in NARCOMS ranged from 45% to 46.8%, with severe tremor affecting 5.5–5.9% of respondents. In the subset completing the supplemental survey, mild tremor severity was associated with younger age of MS diagnosis and tremor onset than those with moderate or severe tremor. However, tremor severity did not differ by duration of disease or tremor. Respondents provided descriptions of tremor symptoms on the Clinical Ataxia Rating Scale, which had a moderate to good (ρ=0.595) correlation with the Tremor Related Activities of Daily Living (TRADL) scale. Objectively scored Archimedes’ spirals had a weaker (ρ=0.358) correlation with the TRADL. Rates of unemployment, disability and symptomatic medication use increased with tremor severity, but were high even among those with mild tremor. Conclusions Tremor is common among NARCOMS registrants and severely disabling for some. Both ADL-based and symptom-descriptive measures of tremor severity can be used to stratify patients. PMID:25573524

  4. The Distribution and Severity of Tremor in Speech Structures of Persons with Vocal Tremor.

    PubMed

    Hemmerich, Abby L; Finnegan, Eileen M; Hoffman, Henry T

    2017-05-01

    Vocal tremor may be associated with cyclic oscillations in the pulmonary, laryngeal, velopharyngeal, or oral regions. This study aimed to correlate the overall severity of vocal tremor with the distribution and severity of tremor in structures involved. Endoscopic and clinical examinations were completed on 20 adults with vocal tremor and two age-matched controls during sustained phonation. Two judges rated the severity of vocal tremor and the severity of tremor affecting each of 13 structures. Participants with mild vocal tremor typically presented with tremor in three laryngeal structures, moderate vocal tremor in five structures (laryngeal and another region), and severe vocal tremor in eight structures affecting all regions. The severity of tremor was lowest (mean = 1.2 out of 3) in persons with mild vocal tremor and greater in persons with moderate (mean = 1.5) and severe vocal tremor (mean = 1.4). Laryngeal structures were most frequently (95%) and severely (1.7 out of 3) affected, followed by velopharynx (40% occurrence, 1.3 severity), pulmonary (40% occurrence, 1.1 severity), and oral (40% occurrence, 1.0 severity) regions. Regression analyses indicated tremor severity of the supraglottic structures, and vertical laryngeal movement contributed most to vocal tremor severity during sustained phonation (r = 0.77, F = 16.17, P < 0.0001). A strong positive correlation (r = 0.72) was found between the Tremor Index and the severity of the vocal tremor during sustained phonation. It is useful to obtain a wide endoscopic view of the larynx to visualize tremor, which is rarely isolated to the true vocal folds alone. Published by Elsevier Inc.

  5. Temporal discrimination in patients with dystonia and tremor and patients with essential tremor.

    PubMed

    Tinazzi, Michele; Fasano, Alfonso; Di Matteo, Alessandro; Conte, Antonella; Bove, Francesco; Bovi, Tommaso; Peretti, Alessia; Defazio, Giovanni; Fiorio, Mirta; Berardelli, Alfredo

    2013-01-01

    To investigate whether psychophysical techniques assessing temporal discrimination could help in differentiating patients who have tremor associated with dystonia or essential tremor. We tested somatosensory temporal discrimination thresholds (TDT) and temporal discrimination movement thresholds (TDMT) in 39 patients who had tremor associated with dystonia or essential tremor presenting with upper-limb tremor of comparable severity and compared their findings with those from a group of 25 sex- and age-matched healthy control subjects. TDT was higher in patients who had tremor associated with dystonia than in those with essential tremor and healthy controls (110.6 ± 31.3 vs 63.1 ± 15.2 vs 62.4 ± 9.2; p < 0.001). Conversely, TDMT was higher in patients with essential tremor than in those with tremor associated with dystonia and healthy controls (113.7 ± 14.7 vs 103.4 ± 11.3 vs 100.4 ± 4.2; p < 0.001). Combining the 2 tests in a pattern for essential tremor (abnormal TDMT/normal TDT) and tremor associated with dystonia (normal TDMT/abnormal TDT) yielded a positive predictive value (PPV) of 86.7% and a negative predictive value (NPV) of 70.8% for diagnosing essential tremor and a PPV of 100.0% and NPV of 74.1% for diagnosing tremor associated with dystonia. TDT and TDMT testing should prove a useful tool for differentiating tremor associated with dystonia and essential tremor. Our findings imply that the pathophysiologic mechanisms underlying tremor associated with dystonia differ from those for essential tremor.

  6. Unusual tremor syndromes: know in order to recognise.

    PubMed

    Ure, Robert J; Dhanju, Sanveer; Lang, Anthony E; Fasano, Alfonso

    2016-11-01

    Tremor is a common neurological condition in clinical practice; yet, few syndromes are widely recognised and discussed in the literature. As a result, there is an overdiagnosis of well-known causes, such as essential tremor. Many important unusual syndromes should be considered in the differential diagnosis of patients with tremor. The objective of this review is to provide broad clinical information to aid in the recognition and treatment of various unusual tremor syndromes in the adult and paediatric populations. The review comprised of a comprehensive online search using PubMed, Ovid database and Google Scholar to identify the available literature for each unusual tremor syndrome. The review includes fragile X-associated tremor/ataxia syndrome, spinocerebellar ataxia type 12, tremors caused by autosomal recessive cerebellar ataxias, myorhythmia, isolated tongue tremor, Wilson's disease, slow orthostatic tremor, peripheral trauma-induced tremor, tardive tremor and rabbit syndrome, paroxysmal tremors (hereditary chin tremor, bilateral high-frequency synchronous discharges, head tremor, limb-shaking transient ischaemic attack), bobble-head doll syndrome, spasmus nutans and shuddering attacks. Rare tremors generally present with an action tremor and a variable combination of postural and kinetic components with resting tremors less frequently seen. The phenomenology of myorhythmia is still vague and a clinical definition is proposed. The recognition of these entities should facilitate the correct diagnosis and guide the physician to a prompt intervention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Alternative source models of very low frequency events

    NASA Astrophysics Data System (ADS)

    Gomberg, J.; Agnew, D. C.; Schwartz, S. Y.

    2016-09-01

    We present alternative source models for very low frequency (VLF) events, previously inferred to be radiation from individual slow earthquakes that partly fill the period range between slow slip events lasting thousands of seconds and low-frequency earthquakes (LFE) with durations of tenths of a second. We show that VLF events may emerge from bandpass filtering a sum of clustered, shorter duration, LFE signals, believed to be the components of tectonic tremor. Most published studies show VLF events occurring concurrently with tremor bursts and LFE signals. Our analysis of continuous data from Costa Rica detected VLF events only when tremor was also occurring, which was only 7% of the total time examined. Using analytic and synthetic models, we show that a cluster of LFE signals produces the distinguishing characteristics of VLF events, which may be determined by the cluster envelope. The envelope may be diagnostic of a single, dynamic, slowly slipping event that propagates coherently over kilometers or represents a narrowly band-passed version of nearly simultaneous arrivals of radiation from slip on multiple higher stress drop and/or faster propagating slip patches with dimensions of tens of meters (i.e., LFE sources). Temporally clustered LFE sources may be triggered by single or multiple distinct aseismic slip events or represent the nearly simultaneous chance occurrence of background LFEs. Given the nonuniqueness in possible source durations, we suggest it is premature to draw conclusions about VLF event sources or how they scale.

  8. Alternative source models of very low frequency events

    USGS Publications Warehouse

    Gomberg, Joan S.; Agnew, D.C.; Schwartz, S.Y.

    2016-01-01

    We present alternative source models for very low frequency (VLF) events, previously inferred to be radiation from individual slow earthquakes that partly fill the period range between slow slip events lasting thousands of seconds and low-frequency earthquakes (LFE) with durations of tenths of a second. We show that VLF events may emerge from bandpass filtering a sum of clustered, shorter duration, LFE signals, believed to be the components of tectonic tremor. Most published studies show VLF events occurring concurrently with tremor bursts and LFE signals. Our analysis of continuous data from Costa Rica detected VLF events only when tremor was also occurring, which was only 7% of the total time examined. Using analytic and synthetic models, we show that a cluster of LFE signals produces the distinguishing characteristics of VLF events, which may be determined by the cluster envelope. The envelope may be diagnostic of a single, dynamic, slowly slipping event that propagates coherently over kilometers or represents a narrowly band-passed version of nearly simultaneous arrivals of radiation from slip on multiple higher stress drop and/or faster propagating slip patches with dimensions of tens of meters (i.e., LFE sources). Temporally clustered LFE sources may be triggered by single or multiple distinct aseismic slip events or represent the nearly simultaneous chance occurrence of background LFEs. Given the nonuniqueness in possible source durations, we suggest it is premature to draw conclusions about VLF event sources or how they scale.

  9. Uncovering the mechanism(s) of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Gang, Li; Chao, Yu; Ling, Lin; C-Y Lu, Stephen

    2005-01-01

    Deep brain stimulators, often called `pacemakers for the brain', are implantable devices which continuously deliver impulse stimulation to specific targeted nuclei of deep brain structure, namely deep brain stimulation (DBS). To date, deep brain stimulation (DBS) is the most effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been put forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS.

  10. Effects of Alprazolam on Cortical Activity and Tremors in Patients with Essential Tremor

    PubMed Central

    Ibáñez, Jaime; González de la Aleja, Jesús; Gallego, Juan A.; Romero, Juan P.; Saíz-Díaz, Rosana A.; Benito-León, Julián; Rocon, Eduardo

    2014-01-01

    Background Essential tremor (ET) is characterised by postural and action tremors with a frequency of 4–12 Hz. Previous studies suggest that the tremor activity originates in the cerebello-thalamocortical pathways. Alprazolam is a short-acting benzodiazepine that attenuates tremors in ET. The mechanisms that mediate the therapeutic action of alprazolam are unknown; however, in healthy subjects, benzodiazepines increase cortical beta activity. In this study, we investigated the effect of alprazolam both on beta and tremor-related cortical activity and on alterations in tremor presentation in ET patients. Therefore, we characterised the dynamics of tremor and cortical activity in ET patients after alprazolam intake. Methods We recorded hand tremors and contralateral cortical activity in four recordings before and after a single dose of alprazolam. We then computed the changes in tremors, cortico-muscular coherence, and cortical activity at the tremor frequency and in the beta band. Results Alprazolam significantly attenuated tremors (EMG: 76.2±22.68%), decreased cortical activity in the tremor frequency range and increased cortical beta activity in all patients (P<0.05). At the same time, the cortico-muscular coherence at the tremor frequency became non-significant (P<0.05). We also found a significant correlation (r = 0.757, P<0.001) between the reduction in tremor severity and the increased ratio of cortical activity in the beta band to the activity observed in the tremor frequency range. Conclusions This study provides the first quantitative analysis of tremor reduction following alprazolam intake. We observed that the tremor severity decreased in association with an increased ratio of beta to tremor-related cortical activity. We hypothesise that the increase in cortical beta activity may act as a blocking mechanism and may dampen the pathological oscillatory activity, which in turn attenuates the observed tremor. PMID:24667763

  11. Migrating slow slip detected by slow and repeating earthquakes along the Nankai trough, Japan

    NASA Astrophysics Data System (ADS)

    Uchida, N.; Obara, K.; Takagi, R.; Asano, Y.

    2017-12-01

    In the western part of the Nankai trough region, successive occurrences of deep non-volcanic tremors and shallow very low frequency earthquakes (VLFEs) associated with long-term slow slip events (SSEs) are reported in 2003 and 2010. To understand the link between the two seismic slow earthquakes, we identify small repeating earthquake in and around the region from the waveform similarity of earthquakes observed by NIED Hi-net. The result shows the repeaters are located in 15-30 km depth that is in between the depth range of the shallow VLFEs (depth <=15 km) and deep SSEs (depth>= 25km). They are also located outside of the source area of the 1946 Mw8.3 Nankai earthquake, consistent with the hypothesis that repeaters occur due to stress concentration to a locked patch by aseismic slip (creep) in the surrounding area. The long-term trend of aseismic slip estimated from the repeaters shows that the slip rate were faster during 2-3 years period before the 2003 and 2010 episodes. We also found short-term (days to month) accelerations of aseismic slip during the episode of 2010 that migrated toward north. The migration detected from repeaters follows shallow migration of VLFEs and precedes the deep migration of tremors. Therefore we consider that during the period of the long-term SSE of 3 years period, short-term slow slip migrated about 300 km length in 1 month from shallower and south part to deeper and north part of the plate boundary near the edge of the slip area of the Nankai earthquake. Such long-distance migration probably related to large-scale locking of plate boundary that is responsible to the Nankai earthquake and the interseismic stress concentration to the locked area.

  12. [Genetics of tremor].

    PubMed

    Kuhlenbäumer, G; Hopfner, F

    2018-04-01

    Tremor is a symptom of many diseases and can constitute a disease of its own: essential tremor. The genetics of essential tremor and differential diagnosis of monogenic diseases with the symptom tremor. Literature search and search of clinical genetics databases, e.g. OMIM, GeneReviews, MDSGene and the German Neurological Society (DGN) guidelines. The genetics of essential tremor remain unresolved in spite of large, adequately powered studies. Tremor is a symptom of differential diagnostic value in many movement disorders. A slight tremor might have been missed or not reported in many descriptions of movement disorders. Progress in the genetics of essential tremor probably requires a more detailed phenotyping allowing stratification into phenotypically defined subgroups. Tremor should always be included in the examination and description of movement disorders even if tremor is not a cardinal symptom. Tremor might be helpful in the differential diagnosis of hereditary dystonia, hereditary ataxia, spastic paraplegia and other movement disorders.

  13. Tremor in progressive supranuclear palsy.

    PubMed

    Fujioka, Shinsuke; Algom, Avi A; Murray, Melissa E; Sanchez-Contreras, Monica Y; Tacik, Pawel; Tsuboi, Yoshio; Van Gerpen, Jay A; Uitti, Ryan J; Rademakers, Rosa; Ross, Owen A; Wszolek, Zbigniew K; Dickson, Dennis W

    2016-06-01

    Tremor is thought to be a rare feature of progressive supranuclear palsy (PSP). We retrospectively reviewed the database of the CurePSP brain bank at Mayo Clinic Florida to retrieve all available clinical information for PSP patients. All patients underwent a standard neuropathological assessment and an immunohistochemical evaluation for tau and α-synuclein. DNA was genotyped for the MAPT H1/H2 haplotype. Of the 375 PSP patients identified, 344 had a documented presence or absence of tremor, which included 146 (42%) with tremor, including 29 (20%) with postural/action tremors, 16 (11%) with resting tremor, 7 (5%) with intention tremor, 20 (14%) with a combination of different types of tremor, and 74 (51%) patients who had tremor at some point during their illness, but details were unavailable. The tremor severity of 96% of the patients (54/55) who had this data was minimal to mild. The probability of observing a tremor during a neurological examination during the patient's illness was estimated to be ∼22%. PSP patients with postural/action tremors and PSP patients with resting tremor responded to carbidopa-levodopa therapy more frequently than PSP patients without tremor, although the therapy response was always transient. There were no significant differences in pathological findings between the tremor groups. Tremor is an inconspicuous feature of PSP; however, 42% (146/344) of the PSP patients in our study presented some form of tremor. Because there is no curative therapy for PSP, carbidopa/levodopa therapy should be tried for patients with postural, action, and resting tremor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Detecting Micro-seismicity and Long-duration Tremor-like Events from the Oklahoma Wavefield Experiment

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, Z.; Peng, Z.; Zhang, C.; Nakata, N.

    2017-12-01

    Oklahoma has experienced abrupt increase of induced seismicity in the last decade. An important way to fully understand seismic activities in Oklahoma is to obtain more complete earthquake catalogs and detect different types of seismic events. The IRIS Community Wavefield Demonstration Experiment was deployed near Enid, Oklahoma in Summer of 2016. The dataset from this ultra-dense array provides an excellent opportunity for detecting microseismicity in that region with wavefield approaches. Here we examine continuous waveforms recorded by 3 seismic lines using local coherence for ultra-dense arrays (Li et al., 2017), which is a measure of cross-correlation of waveform at each station with its nearby stations. So far we have detected more than 5,000 events from 06/22/2016 to 07/20/2016, and majority of them are not listed on the regional catalog of Oklahoma or global catalogs, indicating that they are local events. We also identify 15-20 long-period long-duration events, some of them lasting for more than 500 s. Such events have been found at major plate-boundary faults (also known as deep tectonic tremor), as well as during hydraulic fracturing, slow-moving landslides and glaciers. Our next step is to locate these possible tremor-like events with their relative arrival times across the array and compare their occurrence times with solid-earth tides and injection histories to better understand their driving mechanisms.

  15. Movement disorders secondary to craniocerebral trauma.

    PubMed

    Krauss, Joachim K

    2015-01-01

    Over the past few decades it has been recognized that traumatic brain injury may result in various movement disorders. In survivors of severe head injury, post-traumatic movement disorders were reported in about 20%, and they persisted in about 10% of patients. The most frequent persisting movement disorder in this population is kinetic cerebellar outflow tremor in about 9%, followed by dystonia in about 4%. While tremor is associated most frequently with cerebellar or mesencephalic lesions, patients with dystonia frequently have basal ganglia or thalamic lesions. Moderate or mild traumatic brain injury only rarely causes persistent post-traumatic movement disorders. It appears that the frequency of post-traumatic movement disorders overall has been declining which most likely is secondary to improved treatment of brain injury. In patients with disabling post-traumatic movement disorders which are refractory to medical treatment, stereotactic neurosurgery can provide long-lasting benefit. While in the past the primary option for severe kinetic tremor was thalamotomy and for dystonia thalamotomy or pallidotomy, today deep brain stimulation has become the preferred treatment. Parkinsonism is a rare consequence of single head injury, but repeated head injury such as seen in boxing can result in chronic encephalopathy with parkinsonian features. While there is still controversy whether or not head injury is a risk factor for the development of Parkinson's disease, recent studies indicate that genetic susceptibility might be relevant. © 2015 Elsevier B.V. All rights reserved.

  16. Theory of feedback controlled brain stimulations for Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  17. Temporal Activity Modulation of Deep Very Low Frequency Earthquakes in Shikoku, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Baba, Satoru; Takeo, Akiko; Obara, Kazushige; Kato, Aitaro; Maeda, Takuto; Matsuzawa, Takanori

    2018-01-01

    We investigated long-term changes in the activity of deep very low frequency earthquakes (VLFEs) in western Shikoku, southwest part of the Nankai subduction zone in Japan for 13 years by the matched-filter technique. VLFE activity is expected to be a proxy of interplate slips. In the Bungo channel, where long-term slow slip events (SSEs) occurred frequently, the cumulative number of detected VLFEs increased rapidly in 2010 and 2014, which were modulated by long-term SSEs. In the neighboring inland region near the Bungo channel, the cumulative number increased steeply every 6 months. This stepwise change was accompanied by episodic tremors and slips. Deep VLFE activity in western Shikoku has been low since the latter half of 2014. This decade-scale quiescence may be attributed to the change in interplate coupling strength in the Nankai subduction zone.

  18. Postural and Intention Tremors: A Detailed Clinical Study of Essential Tremor vs. Parkinson’s Disease

    PubMed Central

    Sternberg, Eliezer J.; Alcalay, Roy N.; Levy, Oren A.; Louis, Elan D.

    2013-01-01

    Background: An estimated 30–50% of essential tremor (ET) diagnoses are incorrect, and the true diagnosis in those patients is often Parkinson’s disease (PD) or other tremor disorders. There are general statements about the tremor in these ET and PD, but published data on the more subtle characteristics of tremor are surprisingly limited. Postural tremor may occur in both disorders, adding to the difficulty. There are several anecdotal impressions regarding specific features of postural tremor in ET vs. PD, including joint distribution (e.g., phalanges, metacarpal-phalangeal joints, wrist), tremor directionality (e.g., flexion-extension vs. pronation-supination), and presence of intention tremor. However, there is little data to support these impressions. Methods: In this cross-sectional study, 100 patients (ET, 50 PD) underwent detailed videotaped neurological examinations. Arm tremor was rated by a movement disorder neurologist who assessed severity and directionality across multiple joints. Results: During sustained arm extension, ET patients exhibited more wrist than metacarpal-phalangeal and phalangeal joint tremor than did PD patients (p < 0.001), and more wrist flexion-extension tremor than wrist pronation-supination tremor (p < 0.001). During the finger-nose-finger maneuver, intention tremor was present in approximately one in four (28%) ET patients vs. virtually none (4%) of the Parkinson’s patients (p < 0.001). Conclusions: We evaluated the location, severity, and directionality of postural tremor in ET and PD, and the presence of intention tremor, observing several clinical differences. We hope that detailed phenomenological data on tremor in ET and PD will help practicing physicians delineate the two diseases. PMID:23717300

  19. A critical reflection on the technological development of deep brain stimulation (DBS)

    PubMed Central

    Ineichen, Christian; Glannon, Walter; Temel, Yasin; Baumann, Christian R.; Sürücü, Oguzkan

    2014-01-01

    Since the translational research findings of Benabid and colleagues which partly led to their seminal paper regarding the treatment of mainly tremor-dominant Parkinson patients through thalamic high-frequency-stimulation (HFS) in 1987, we still struggle with identifying a satisfactory mechanistic explanation of the underlying principles of deep brain stimulation (DBS). Furthermore, the technological advance of DBS devices (electrodes and implantable pulse generators, IPG’s) has shown a distinct lack of dynamic progression. In light of this we argue that it is time to leave the paleolithic age and enter hellenistic times: the device-manufacturing industry and the medical community together should put more emphasis on advancing the technology rather than resting on their laurels. PMID:25278864

  20. Prevalence and Correlates of Rest Tremor in Essential Tremor: Cross-Sectional Survey of 831 Patients Across Four Distinct Cohorts

    PubMed Central

    Louis, Elan D.; Hernandez, Nora; Michalec, Monika

    2015-01-01

    Background Essential tremor (ET) is among the most commonly encountered neurological disorders. Its hallmark feature is kinetic tremor. However, other tremors may also occur in ET patients, creating considerable diagnostic confusion among treating physicians. Hence, characterizing the prevalence and clinical accompaniments of these other tremors is of value. Surprisingly, there are few data on the prevalence of rest tremor in ET patients, and even fewer data on the clinical correlates of such tremor. Methods 831 patients in four distinct settings (population, genetics study, study of environmental epidemiology, brain bank) underwent a detailed videotaped neurological examination that was reviewed by a senior movement disorders neurologist. Rest tremor was evaluated in several positions (seated, standing, lying down). Results The prevalence of rest tremor while seated or standing was lowest in the population-based setting (1.9%), highest in the brain bank study (46.4%), and intermediate in the remaining two settings (9.6% and 14.7%, respectively). Rest tremor was restricted to the arms and was not observed in the legs. Rest tremor was associated with older age, longer disease duration (in some studies), greater tremor severity and, to some extent, the presence of cranial tremors. Conclusions Rest tremor can be a common clinical feature of ET. Its prevalence is highly dependent on the setting in which patients are evaluated, ranging from as low as 1% to nearly 50%. Rest tremor seems to emerge as a clinical feature with advancing disease. The anatomical substrates for this type of tremor remain unknown at present. PMID:25786561

  1. [Speech-related tremor of lips: a focal task-specific tremor].

    PubMed

    Morita, Shuhei; Takagi, Rieko; Miwa, Hideto; Kondo, Tomoyoshi

    2002-04-01

    We report a 66-year-old Japanese woman in whom tremor of lips appeared during speech. Her past and family histories were unremarkable. On neurological examination, there was no abnormal finding except the lip tremor. Results of laboratory findings were all within normal levels. Her MRI and EEG were normal. Surface EMG studies revealed that regular grouped discharges at a frequency of about 4-5 Hz appeared in the orbicularis oris muscle only during voluntary speaking. The tremor was not observed under conditions of a purposeless phonation or a vocalization of a simple word, suggesting that the tremor was not a vocal tremor but a task-specific tremor related to speaking. Administration of a beta-blocker and consumption of small amount of alcohol could effectively improve the tremor, possibly suggesting that this type of tremor might be a clinical variant of essential tremor.

  2. Is tremor related to celiac disease?

    PubMed

    Ameghino, Lucia; Rossi, Malco Damian; Cerquetti, Daniel; Merello, Marcelo

    2017-06-14

    Neurological features in celiac disease (CD) are not rare (5%-36%), but tremor is scarcely described. Subjects with CD and healthy controls completed an online survey using WHIGET tremor rating scale. One thousand five hundred and twelve subjects completed the survey, finally 674 CD patients and 290 healthy subjects were included. A higher prevalence of tremor in CD patients was observed in comparison to controls (28% vs 14%, P < 0.001). Frequency of family history of tremor in CD patients with and without tremor was 25% and 20% ( P = 0.2), while in the control group it was 41% and 10% ( P < 0.001). Controls with tremor showed a higher frequency of family history of tremor when compared to CD patients with tremor (41.5% vs 24.6%, P = 0.03). The results suggested that tremor in CD might be more frequent and possibly related to the disease itself and not due to associated essential tremor.

  3. Psychogenic Tremor: A Video Guide to Its Distinguishing Features

    PubMed Central

    Thenganatt, Mary Ann; Jankovic, Joseph

    2014-01-01

    Background Psychogenic tremor is the most common psychogenic movement disorder. It has characteristic clinical features that can help distinguish it from other tremor disorders. There is no diagnostic gold standard and the diagnosis is based primarily on clinical history and examination. Despite proposed diagnostic criteria, the diagnosis of psychogenic tremor can be challenging. While there are numerous studies evaluating psychogenic tremor in the literature, there are no publications that provide a video/visual guide that demonstrate the clinical characteristics of psychogenic tremor. Educating clinicians about psychogenic tremor will hopefully lead to earlier diagnosis and treatment. Methods We selected videos from the database at the Parkinson’s Disease Center and Movement Disorders Clinic at Baylor College of Medicine that illustrate classic findings supporting the diagnosis of psychogenic tremor. Results We include 10 clinical vignettes with accompanying videos that highlight characteristic clinical signs of psychogenic tremor including distractibility, variability, entrainability, suggestibility, and coherence. Discussion Psychogenic tremor should be considered in the differential diagnosis of patients presenting with tremor, particularly if it is of abrupt onset, intermittent, variable and not congruous with organic tremor. The diagnosis of psychogenic tremor, however, should not be simply based on exclusion of organic tremor, such as essential, parkinsonian, or cerebellar tremor, but on positive criteria demonstrating characteristic features. Early recognition and management are critical for good long-term outcome. PMID:25243097

  4. Scaling analysis of bilateral hand tremor movements in essential tremor patients.

    PubMed

    Blesic, S; Maric, J; Dragasevic, N; Milanovic, S; Kostic, V; Ljubisavljevic, Milos

    2011-08-01

    Recent evidence suggests that the dynamic-scaling behavior of the time-series of signals extracted from separate peaks of tremor spectra may reveal existence of multiple independent sources of tremor. Here, we have studied dynamic characteristics of the time-series of hand tremor movements in essential tremor (ET) patients using the detrended fluctuation analysis method. Hand accelerometry was recorded with (500 g) and without weight loading under postural conditions in 25 ET patients and 20 normal subjects. The time-series comprising peak-to-peak (PtP) intervals were extracted from regions around the first three main frequency components of power spectra (PwS) of the recorded tremors. The data were compared between the load and no-load condition on dominant (related to tremor severity) and non-dominant tremor side and with the normal (physiological) oscillations in healthy subjects. Our analysis shows that, in ET, the dynamic characteristics of the main frequency component of recorded tremors exhibit scaling behavior. Furthermore, they show that the two main components of ET tremor frequency spectra, otherwise indistinguishable without load, become significantly different after inertial loading and that they differ between the tremor sides (related to tremor severity). These results show that scaling, a time-domain analysis, helps revealing tremor features previously not revealed by frequency-domain analysis and suggest that distinct oscillatory central circuits may generate the tremor in ET patients.

  5. Blood harmane, blood lead, and severity of hand tremor: evidence of additive effects.

    PubMed

    Louis, Elan D; Factor-Litvak, Pam; Gerbin, Marina; Slavkovich, Vesna; Graziano, Joseph H; Jiang, Wendy; Zheng, Wei

    2011-03-01

    Tremor is a widespread phenomenon in human populations. Environmental factors are likely to play an etiological role. Harmane (1-methyl-9H-pyrido[3,4-β]indole) is a potent tremor-producing β-carboline alkaloid. Lead is another tremor-producing neurotoxicant. The effects of harmane and lead with respect to tremor have been studied in isolation. We tested the hypothesis that tremor would be particularly severe among individuals who had high blood concentrations of both of these toxicants. Blood concentrations of harmane and lead were each quantified in 257 individuals (106 essential tremor cases and 151 controls) enrolled in an environmental epidemiological study. Total tremor score (range = 0-36) was a clinical measure of tremor severity. The total tremor score ranged from 0 to 36, indicating that a full spectrum of tremor severities was captured in our sample. Blood harmane concentration correlated with total tremor score (p = 0.007), as did blood lead concentration (p = 0.045). The total tremor score was lowest in participants with both low blood harmane and lead concentrations (8.4 ± 8.2), intermediate in participants with high concentrations of either toxicant (10.5 ± 9.8), and highest in participants with high concentrations of both toxicants (13.7 ± 10.4) (p=0.01). Blood harmane and lead concentrations separately correlated with total tremor scores. Participants with high blood concentrations of both toxicants had the highest tremor scores, suggesting an additive effect of these toxicants on tremor severity. Given the very high population prevalence of tremor disorders, identifying environmental determinants is important for primary disease prevention. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Blood Harmane, Blood Lead, and Severity of Hand Tremor: Evidence of Additive Effects

    PubMed Central

    Louis, Elan D.; Factor-Litvak, Pam; Gerbin, Marina; Slavkovich, Vesna; Graziano, Joseph H; Jiang, Wendy; Zheng, Wei

    2010-01-01

    Background Tremor is a widespread phenomenon in human populations. Environmental factors are likely to play an etiological role. Harmane (1-methyl-9H-pyrido[3,4-β]indole) is a potent tremor-producing β-carboline alkaloid. Lead is another tremor-producing neurotoxicant. The effects of harmane and lead with respect to tremor have been studied in isolation. Objectives We tested the hypothesis that tremor would be particularly severe among individuals who had high blood concentrations of both of these toxicants. Methods Blood concentrations of harmane and lead were each quantified in 257 individuals (106 essential tremor cases and 151 controls) enrolled in an environmental epidemiological study. Total tremor score (range = 0 – 36) was a clinical measure of tremor severity. Results The total tremor score ranged from 0 – 36, indicating that a full spectrum of tremor severities was captured in our sample. Blood harmane concentration correlated with total tremor score (p = 0.007), as did blood lead concentration (p = 0.045). The total tremor score was lowest in participants with both low blood harmane and lead concentrations (8.4 ± 8.2), intermediate in participants with high concentrations of either toxicant (10.5 ± 9.8), and highest in participants with high concentrations of both toxicants (13.7 ± 10.4)(p = 0.01). Conclusions Blood harmane and lead concentrations separately correlated with total tremor scores. Participants with high blood concentrations of both toxicants had the highest tremor scores, suggesting an additive effect of these toxicants on tremor severity. Given the very high population prevalence of tremor disorders, identifying environmental determinants is important for primary disease prevention. PMID:21145352

  7. IgM-monoclonal gammopathy neuropathy and tremor: A first epidemiologic case control study

    PubMed Central

    Ahlskog, Matthew C.; Kumar, Neeraj; Mauermann, Michelle L.; Klein, Christopher J.

    2012-01-01

    Introduction Small case series suggest tremor occurs frequently in IgM-monoclonal gammopathy of undetermined significance (IgM-MGUS) neuropathy. Epidemiologic study to confirm this association is lacking. Whether the neuropathy or another remote IgM-effect is causal remains unsettled. Materials and methods An IgM-MGUS neuropathy case cohort (n=207) was compared to age, gender, and neuropathy impairment score (NIS) matched, other-cause neuropathy controls (n=414). Tremor details were extracted from structured neurologic evaluation. All patients underwent nerve conductions. Results Tremor occurrence was significantly higher in IgM-MGUS case cohort (29%) than in control cohort (9.2%) (p=0.001). In IgM-MGUS cases, tremor was associated with worse NIS (p=0.025) and demyelinating nerve conductions (p=0.020), but 11 of 60 (18%) IgM-MGUS cases with tremor had axonal neuropathy. In other-cause neuropathy controls, tremor was associated with axonal nerve conductions (p=0.03) but not with NIS severity (p=0.57). Tremor occurrence associated with older age in controls, (p=0.004) but not in IgM-MGUS cases (p=0.272). Most IgM-MGUS tremor cases (49/60) had a postural-kinetic tremor, 8 had rest tremor, 3 had mixed rest-action. Alternative causes of tremor was identified in 42% of IgM-MGUS cases, the most common type is inherited essential tremor 6/60 (p=0.04). Conclusions This first epidemiologic case-control study validates association between IgM-MGUS neuropathy and tremor. Among IgM-MGUS neuropathy cases, severity as well as type of neuropathy (demyelinating over axonal) correlated with tremor occurrence. IgM-MGUS paraproteinemia may increase tremor expression in persons recognized with common other risk factors for tremor. PMID:22475624

  8. Estimating small amplitude tremor sources

    NASA Astrophysics Data System (ADS)

    Katakami, S.; Ito, Y.; Ohta, K.

    2017-12-01

    Various types of slow earthquakes have been recently observed at both the updip and downdip edges of the coseismic slip areas [Obara and Kato, 2016]. Frequent occurrence of slow earthquakes may help us to reveal the physics underlying megathrust events as useful analogs. Maeda and Obara [2009] estimated spatiotemporal distribution of seismic energy radiation from low-frequency tremors. They applied their method to only the tremors, whose hypocenters had been decided with multiple station method. However, recently Katakami et al. (2016) identified a lot of continuous tremors with small amplitude that were not recorded multiple stations. These small events should be important to reveal the whole slow earthquake activity and to understand strain condition around a plate boundary in subduction zones. First, we apply the modified frequency scanning method (mFSM) at a single station to NIED Hi-net data in the southwestern Japan to understand whole tremor activity which were included weak signal tremors. Second, we developed a method to identify the tremor source area by using the difference of apparent tremor energy at each station by mFSM. We estimated the apparent source tremor energy after correcting both site amplification factor and geometrical spreading. Finally we calculate a tremor source area if the difference of apparent tremor energy between each pair of sites is the smallest. We checked a validity of this analysis by using only tremors which were already detected by envelope correlation method [Idehara et al., 2014]. We calculated the average amplitude as apparent tremor energy in 5 minutes window after occurring tremor at each station. Our results almost consistent to hypocenters which were determined the envelope correlation method. We successfully determined apparent tremor source areas of weak continuous tremors after estimating possible tremor occurrence time windows by using mFSM.

  9. Tremor in School-Aged Children: A Cross-Sectional Study of Tremor in 819 Boys and Girls in Burgos, Spain

    PubMed Central

    Louis, Elan D.; Cubo, Esther; Trejo-Gabriel-Galán, José M.; Villaverde, Vanesa Ausín; Benito, Vanesa Delgado; Velasco, Sara Sáez; Vicente, Jesús Macarrón; Guevara, José Cordero; Benito-León, Julián

    2011-01-01

    Background Mild hand tremor occurs in most normal adults. There are no surveys of the prevalence or clinical correlates of such tremor among children. Methods A cross-sectional study of tics, tremor and other neurological disorders was conducted in Spanish children; thus, 819 schoolchildren in Burgos, Spain, drew Archimedes spirals with each hand. Tremor in spirals was rated (0–2) by a blinded neurologist and an overall tremor rating (0–4) was assigned. Results The mean age was 10.9 ± 3.1 years. A tremor rating of 1 (mild tremor) was present in either hand in 424 (51.7%) children, and in both hands in 88 (10.7%) children. Higher tremor ratings were very uncommon. The overall tremor rating was higher in boys than girls (1.31 ± 0.41 vs. 1.22 ± 0.34, p = 0.002) and correlated weakly yet significantly with age (ρ = 0.09, p = 0.01). Within subjects, the left hand spiral rating was greater than the right (p < 0.001). Conclusions In this cross-sectional study of 819 Spanish schoolchildren, mild tremor was commonly observed. As in adults, males had more tremor than females, tremor scores increased with age, and tremor scores were higher in the left than right arm, demonstrating that these clinical correlations seem to be more broadly generalizable to children. The functional significance of tremor in children, particularly as it relates to handwriting proficiency, deserves additional scrutiny. Copyright © 2011 S. Karger AG, Basel PMID:21894047

  10. Cerebello-cortical network fingerprints differ between essential, Parkinson's and mimicked tremors.

    PubMed

    Muthuraman, Muthuraman; Raethjen, Jan; Koirala, Nabin; Anwar, Abdul Rauf; Mideksa, Kidist G; Elble, Rodger; Groppa, Sergiu; Deuschl, Günter

    2018-06-01

    Cerebello-thalamo-cortical loops play a major role in the emergence of pathological tremors and voluntary rhythmic movements. It is unclear whether these loops differ anatomically or functionally in different types of tremor. We compared age- and sex-matched groups of patients with Parkinson's disease or essential tremor and healthy controls (n = 34 per group). High-density 256-channel EEG and multi-channel EMG from extensor and flexor muscles of both wrists were recorded simultaneously while extending the hands against gravity with the forearms supported. Tremor was thereby recorded from patients, and voluntarily mimicked tremor was recorded from healthy controls. Tomographic maps of EEG-EMG coherence were constructed using a beamformer algorithm coherent source analysis. The direction and strength of information flow between different coherent sources were estimated using time-resolved partial-directed coherence analyses. Tremor severity and motor performance measures were correlated with connection strengths between coherent sources. The topography of oscillatory coherent sources in the cerebellum differed significantly among the three groups, but the cortical sources in the primary sensorimotor region and premotor cortex were not significantly different. The cerebellar and cortical source combinations matched well with known cerebello-thalamo-cortical connections derived from functional MRI resting state analyses according to the Buckner-atlas. The cerebellar sources for Parkinson's tremor and essential tremor mapped primarily to primary sensorimotor cortex, but the cerebellar source for mimicked tremor mapped primarily to premotor cortex. Time-resolved partial-directed coherence analyses revealed activity flow mainly from cerebellum to sensorimotor cortex in Parkinson's tremor and essential tremor and mainly from cerebral cortex to cerebellum in mimicked tremor. EMG oscillation flowed mainly to the cerebellum in mimicked tremor, but oscillation flowed mainly from the cerebellum to EMG in Parkinson's and essential tremor. The topography of cerebellar involvement differed among Parkinson's, essential and mimicked tremors, suggesting different cerebellar mechanisms in tremorogenesis. Indistinguishable areas of sensorimotor cortex and premotor cerebral cortex were involved in all three tremors. Information flow analyses suggest that sensory feedback and cortical efferent copy input to cerebellum are needed to produce mimicked tremor, but tremor in Parkinson's disease and essential tremor do not depend on these mechanisms. Despite the subtle differences in cerebellar source topography, we found no evidence that the cerebellum is the source of oscillation in essential tremor or that the cortico-bulbo-cerebello-thalamocortical loop plays different tremorogenic roles in Parkinson's and essential tremor. Additional studies are needed to decipher the seemingly subtle differences in cerebellocortical function in Parkinson's and essential tremors.

  11. Longitudinal wearable tremor measurement system with activity recognition algorithms for upper limb tremor.

    PubMed

    Jeonghee Kim; Parnell, Claire; Wichmann, Thomas; DeWeerth, Stephen P

    2016-08-01

    Assessments of tremor characteristics by movement disorder physicians are usually done at single time points in clinic settings, so that the description of the tremor does not take into account the dependence of the tremor on specific behavioral situations. Moreover, treatment-induced changes in tremor or behavior cannot be quantitatively tracked for extended periods of time. We developed a wearable tremor measurement system with tremor and activity recognition algorithms for long-term upper limb behavior tracking, to characterize tremor characteristics and treatment effects in their daily lives. In this pilot study, we collected sensor data of arm movement from three healthy participants using a wrist device that included a 3-axis accelerometer and a 3-axis gyroscope, and classified tremor and activities within scenario tasks which resembled real life situations. Our results show that the system was able to classify the tremor and activities with 89.71% and 74.48% accuracies during the scenario tasks. From this results, we expect to expand our tremor and activity measurement in longer time period.

  12. Rest tremor in Parkinson's disease: Body distribution and time of appearance.

    PubMed

    Gigante, Angelo Fabio; Pellicciari, Roberta; Iliceto, Giovanni; Liuzzi, Daniele; Mancino, Paola Vincenza; Custodero, Giacomo Emanuele; Guido, Marco; Livrea, Paolo; Defazio, Giovanni

    2017-04-15

    To assess body distribution and timing of appearance of rest tremor in Parkinson's disease. Information was obtained by a computerized database containing historical information collected at the first visit and data collected during the subsequent follow-up visits. Information on rest tremor developed during the follow-up could be therefore obtained by our own observation in a proportion of patients. Among 289 patients, rest tremor was reported at disease onset in 65.4% of cases and detected at last follow-up examination in 74.4% of patients. Analysis of patients who did not report rest tremor at disease onset indicated that 26% of such patients (9% in the overall population) manifested rest tremor over the disease course. Rest tremor spread to new sites in 39% of patients who manifested rest tremor at disease onset. Regardless of tremor presentation at disease onset or during the follow-up, upper limb was the most frequent tremor localization. Over the follow-up, rest tremor developed faster in the upper limb than in other body sites. The risk of developing rest tremor during the follow-up was not affected by sex, side of motor symptom onset and site of tremor presentation. However, age of disease onset >63years was associated with an increased risk of rest tremor spread. This study provides new information about body distribution and timing of rest tremor appearance during the course of early stages of Parkinson's disease that may help clinicians in patients' counselling. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Primary bowing tremor: a task-specific movement disorder of string instrumentalists.

    PubMed

    Lederman, Richard J

    2012-12-01

    Fear of a tremulous or unsteady bow is widespread among string instrumentalists. Faulty technique and performance anxiety have generally been blamed. The cases of 4 high-level violinists and 1 violist, 3 women and 2 men, with uncontrollable bow tremor are presented. Age at onset was from 16 to 75 years, and symptom duration 8 months to 20 years at the time of neurological evaluation. The degree of tremor varied with type of bow stroke and even the portion of the bow contacting the string. Only 1 patient had a slight postural tremor of the opposite limb. In 3 of 5 the tremor was task-specific; the other 2 had mild and nontroubling tremor with other activities. The tremor appeared to worsen over time but then seemed to stabilize. The characteristics of this tremor appear to be distinguishable from the features of both essential tremor and focal dystonia; comparison is made with representative string players afflicted by these other disorders. Analogy of this tremor is made with primary writing tremor, a well-defined task-specific movement disorder also sharing at least some features with both essential tremor and writers' cramp, a focal dystonia. Hence, it was decided to call this primary bowing tremor. Clinical features, family history, diagnostic studies, and responsiveness to treatment of primary writing tremor are discussed to emphasize the similarity to primary bowing tremor. This appears to represent a previously unreported form of task-specific movement disorder of string instrumentalists.

  14. The occurrence of dystonia in upper-limb multiple sclerosis tremor.

    PubMed

    Van der Walt, A; Buzzard, K; Sung, S; Spelman, T; Kolbe, S C; Marriott, M; Butzkueven, H; Evans, A

    2015-12-01

    The pathophysiology of multiple sclerosis (MS) tremor is uncertain with limited phenotypical studies available. To investigate whether dystonia contributes to MS tremor and its severity. MS patients (n = 54) with and without disabling uni- or bilateral upper limb tremor were recruited (39 limbs per group). We rated tremor severity, writing and Archimedes spiral drawing; cerebellar dysfunction (SARA score); the Global Dystonia Scale (GDS) for proximal and distal upper limbs, dystonic posturing, mirror movements, geste antagoniste, and writer's cramp. Geste antagoniste, mirror dystonia, and dystonic posturing were more frequent and severe (p < 0.001) and dystonia scores were correlated with tremor severity in tremor compared to non-tremor patients. A 1-unit increase in distal dystonia predicted a 0.52-Bain unit (95% confidence interval (CI) 0.08-0.97), p = 0.022) increase in tremor severity and a 1-unit (95% CI 0.48-1.6, p = 0.001) increase in drawing scores. A 1-unit increase in proximal dystonia predicted 0.93-Bain unit increase (95% CI 0.45-1.41, p < 0.001) in tremor severity and 1.5-units (95% CI 0.62-2.41, p = 0.002) increase in the drawing score. Cerebellar function in the tremor limb and tremor severity was correlated (p < 0.001). Upper limb dystonia is common in MS tremor suggesting that MS tremor pathophysiology involves cerebello-pallido-thalamo-cortical network dysfunction. © The Author(s), 2015.

  15. Orthostatic tremor: a cerebellar pathology?

    PubMed Central

    Popa, Traian; García-Lorenzo, Daniel; Valabregue, Romain; Legrand, André-Pierre; Apartis, Emmanuelle; Marais, Lea; Degos, Bertrand; Hubsch, Cecile; Fernández-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Lehéricy, Stéphane; Meunier, Sabine; Vidailhet, Marie

    2016-01-01

    Abstract See Muthuraman et al. (doi:10.1093/aww164) for a scientific commentary on this article. Primary orthostatic tremor is characterized by high frequency tremor affecting the legs and trunk during the standing position. Cerebellar defects were suggested in orthostatic tremor without direct evidence. We aimed to characterize the anatomo-functional defects of the cerebellar motor pathways in orthostatic tremor. We used multimodal neuroimaging to compare 17 patients with orthostatic tremor and 17 age- and gender-matched healthy volunteers. Nine of the patients with orthostatic tremor underwent repetitive transcranial stimulation applied over the cerebellum during five consecutive days. We quantified the duration of standing position and tremor severity through electromyographic recordings. Compared to healthy volunteers, grey matter volume in patients with orthostatic tremor was (i) increased in the cerebellar vermis and correlated positively with the duration of the standing position; and (ii) increased in the supplementary motor area and decreased in the lateral cerebellum, which both correlated with the disease duration. Functional connectivity between the lateral cerebellum and the supplementary motor area was abnormally increased in patients with orthostatic tremor, and correlated positively with tremor severity. After repetitive transcranial stimulation, tremor severity and functional connectivity between the lateral cerebellum and the supplementary motor area were reduced. We provide an explanation for orthostatic tremor pathophysiology, and demonstrate the functional relevance of cerebello-thalamo-cortical connections in tremor related to cerebellar defects. PMID:27329770

  16. Tremor

    MedlinePlus

    Tremors are unintentional trembling or shaking movements in one or more parts of your body. Most tremors occur in the hands. You can also have arm, head, face, vocal cord, trunk, and leg tremors. Tremors are most common in middle-aged and ...

  17. Contribution of inter-muscular synchronization in the modulation of tremor intensity in Parkinson's disease.

    PubMed

    He, Xin; Hao, Man-Zhao; Wei, Ming; Xiao, Qin; Lan, Ning

    2015-12-01

    Involuntary central oscillations at single and double tremor frequencies drive the peripheral neuromechanical system of muscles and joints to cause tremor in Parkinson's disease (PD). The central signal of double tremor frequency was found to correlate more directly to individual muscle EMGs (Timmermann et al. 2003). This study is aimed at investigating what central components of oscillation contribute to inter-muscular synchronization in a group of upper extremity muscles during tremor in PD patients. 11 idiopathic, tremor dominant PD subjects participated in this study. Joint kinematics during tremor in the upper extremity was recorded along with EMGs of six upper arm muscles using a novel experimental apparatus. The apparatus provided support for the upper extremity on a horizontal surface with reduced friction, so that resting tremor in the arm can be recorded with a MotionMonitor II system. In each subject, the frequencies of rhythmic firings in upper arm muscles were determined using spectral analysis. Paired and pool-averaged coherence analyses of EMGs for the group of muscles were performed to correlate the level of inter-muscular synchronization to tremor amplitudes at shoulder and elbow. The phase shift between synchronized antagonistic muscle pairs was calculated to aid coherence analysis in the muscle pool. Recorded EMG revealed that rhythmic firings were present in most recorded muscles, which were either synchronized to form phase-locked bursting cycles at a subject specific frequency, or unsynchronized with a random phase distribution. Paired coherence showed a stronger synchronization among a subset of recorded arm muscles at tremor frequency than that at double tremor frequency. Furthermore, the number of synchronized muscles in the arm was positively correlated to tremor amplitudes at elbow and shoulder. Pool-averaged coherence at tremor frequency also showed a better correlation with the amplitude of resting tremor than that of double tremor frequency, indicating that the neuromechanical coupling in peripheral neuromuscular system was stronger at tremor frequency. Both paired and pool-averaged coherences are more consistent indexes to correlate to tremor intensity in a group of upper extremity muscles of PD patients. The central drive at tremor frequency contributes mainly to synchronize peripheral muscles in the modulation of tremor intensity.

  18. Slip rate and tremor genesis in Cascadia

    USGS Publications Warehouse

    Wech, Aaron G.; Bartlow, Noel M.

    2014-01-01

    At many plate boundaries, conditions in the transition zone between seismogenic and stable slip produce slow earthquakes. In the Cascadia subduction zone, these events are consistently observed as slow, aseismic slip on the plate interface accompanied by persistent tectonic tremor. However, not all slow slip at other plate boundaries coincides spatially and temporally with tremor, leaving the physics of tremor genesis poorly understood. Here we analyze seismic, geodetic, and strainmeter data in Cascadia to observe for the first time a large, tremor-generating slow earthquake change from tremor-genic to silent and back again. The tremor falls silent at reduced slip speeds when the migrating slip front pauses as it loads the stronger adjacent fault segment to failure. The finding suggests that rheology and slip-speed-regulated stressing rate control tremor genesis, and the same section of fault can slip both with and without detectable tremor, limiting tremor's use as a proxy for slip.

  19. Postural tremor and chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Cao, Yiming; Menon, Parvathi; Ching-Fen Chang, Florence; Mahant, Neil; Geevasinga, Nimeshan; Fung, Victor S C; Vucic, Steve

    2017-03-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) typically presents with a combination of sensory and motor impairments. Tremor is recognized as a common and debilitating feature in CIDP, although the underlying mechanisms are unclear. Clinical tremor severity and disability scores were collected prospectively in 25 CIDP patients and compared with 22 neuromuscular controls. Postural and kinetic tremor were significantly more frequent in CIDP patients (80%) than in neuromuscular controls (35%; P < 0.005). Tremor severity and tremor-related disability were also significantly greater in CIDP patients than in controls. Accelerometry data confirmed the presence of a 5.5 Hz postural tremor and a 5 Hz kinetic tremor. Tremor appears to be a common clinical feature of CIDP that results in significant disability. Sensory and motor impairment may be associated with development of tremor in CIDP. Muscle Nerve 55: 338-343, 2017. © 2016 Wiley Periodicals, Inc.

  20. Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit

    PubMed Central

    Dai, Houde; Zhang, Pengyue; Lueth, Tim C.

    2015-01-01

    Quantitative assessment of parkinsonian tremor based on inertial sensors can provide reliable feedback on the effect of medication. In this regard, the features of parkinsonian tremor and its unique properties such as motor fluctuations and dyskinesia are taken into account. Least-square-estimation models are used to assess the severities of rest, postural, and action tremors. In addition, a time-frequency signal analysis algorithm for tremor state detection was also included in the tremor assessment method. This inertial sensor-based method was verified through comparison with an electromagnetic motion tracking system. Seven Parkinson’s disease (PD) patients were tested using this tremor assessment system. The measured tremor amplitudes correlated well with the judgments of a neurologist (r = 0.98). The systematic analysis of sensor-based tremor quantification and the corresponding experiments could be of great help in monitoring the severity of parkinsonian tremor. PMID:26426020

  1. Task Specific Tremors.

    PubMed

    Friedman, Joseph H

    2015-07-01

    A patient reported bilateral hand tremors when writing but not with other tasks. These "task specific" tremors are considered subcategories of essential tremor. Primary writing tremor, in which the tremor occurs only with writing, is probably the most common. The important teaching point is that the "standard" tremor assessment, watching the patient holding a sustained posture and touching his finger to the examiner's and then back to the nose is not adequate. Patients should be tested doing the activity that causes them the most difficulty.

  2. Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean Earthquake

    DOE PAGES

    Delorey, A. A.; Johnson, P. A.; Chao, K.; ...

    2015-10-02

    Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. Here we present that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust inmore » cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.« less

  3. Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean Earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delorey, A. A.; Johnson, P. A.; Chao, K.

    Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. Here we present that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust inmore » cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.« less

  4. Cascading elastic perturbation in Japan due to the 2012 Mw 8.6 Indian Ocean earthquake

    PubMed Central

    Delorey, Andrew A.; Chao, Kevin; Obara, Kazushige; Johnson, Paul A.

    2015-01-01

    Since the discovery of extensive earthquake triggering occurring in response to the 1992 Mw (moment magnitude) 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. We show that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which the material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards. PMID:26601289

  5. Earthquake Simulator Finds Tremor Triggers

    ScienceCinema

    Johnson, Paul

    2018-01-16

    Using a novel device that simulates earthquakes in a laboratory setting, a Los Alamos researcher has found that seismic waves-the sounds radiated from earthquakes-can induce earthquake aftershocks, often long after a quake has subsided. The research provides insight into how earthquakes may be triggered and how they recur. Los Alamos researcher Paul Johnson and colleague Chris Marone at Penn State have discovered how wave energy can be stored in certain types of granular materials-like the type found along certain fault lines across the globe-and how this stored energy can suddenly be released as an earthquake when hit by relatively small seismic waves far beyond the traditional “aftershock zone” of a main quake. Perhaps most surprising, researchers have found that the release of energy can occur minutes, hours, or even days after the sound waves pass; the cause of the delay remains a tantalizing mystery.

  6. Beta 1 versus nonselective blockade in therapy of essential tremor.

    PubMed

    Larsen, T A; Teräväinen, H

    1983-01-01

    The beta 1-selective blocker metoprolol was compared to propranolol and a placebo in a double-blind crossover trial in 24 patients with essential tremor. Both beta blockers suppressed the essential tremor, but metoprolol, which caused a mean reduction of 32.0% in tremor intensity from the base-line value, was less effective than propranolol, which reduced mean tremor intensity by 41.3%. Subjective benefit for their tremor was found by 15 of the patients taking propranolol and by one taking metoprolol. The tremor frequency was not affected. No serious side effects were observed. Metoprolol may offer an alternative for those essential tremor patients who cannot tolerate propranolol.

  7. Medical Treatment of Essential Tremor

    PubMed Central

    Rajput, Ali H; Rajput, Alex

    2014-01-01

    Essential tremor (ET) is the most common pathological tremor characterized by upper limb action—postural tremor (PT)/kinetic tremor (KT). There are no specific neuropathological or biochemical abnormalities in ET. The disability is consequent to amplitude of KT, which may remain mild without handicap or may become disabling. The most effective drugs for sustained tremor control are propranolol and primidone. Symptomatic drug treatment must be individualized depending on the circumstances that provoke the tremor-related disability. Broad guidelines for treatment are discussed in this review. Patients may be treated intermittently only on stressful occasions with propranolol, clonazepam, or primidone monotherapy, or an alcoholic drink. Those with persistently disabling tremor need continued treatment. PMID:24812533

  8. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    PubMed

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The effect of inertial loading on wrist postural tremor in essential tremor.

    PubMed

    Héroux, M E; Pari, G; Norman, K E

    2009-05-01

    Determine the effect of inertial loading on the strength of motor unit entrainment and the synergistic/competitive interaction between central and mechanical reflex tremor components in subjects with essential tremor (ET). Twenty-three subjects with ET and 22 controls held their hand in an outstretched position while supporting sub-maximal loads (no-load, 5%, 15% and 25% 1-repetition maximum). Hand postural tremor and wrist extensor neuromuscular activity were recorded. Inertial loading resulted in a reduction in postural tremor in all ET subjects. The largest reduction in tremor amplitude occurred between 5% and 15% loads, which was associated with spectral separation of the mechanical reflex and central tremor components in a large number of ET subjects. Despite an increase in overall neuromuscular activity with inertial loading, EMG tremor spectral power did not increase with loading. The effect of inertial loading on postural tremor amplitude appears to be mediated in large part by its effect on the interaction between mechanical reflex and central tremor components. Also, ET is associated with a constant absolute level of motor unit entrainment. The amplitude of postural tremor is dependent on both central and peripheral factors, with proportionally greater motor unit entrainment occurring at low contraction intensities.

  10. Tremor analysis separates Parkinson's disease and dopamine receptor blockers induced parkinsonism.

    PubMed

    Shaikh, Aasef G

    2017-05-01

    Parkinson's disease, the most common cause of parkinsonism is often difficult to distinguish from its second most common etiology due to exposure to dopamine receptor blocking agents such as antiemetics and neuroleptics. Dual axis accelerometry was used to quantify tremor in 158 patients with parkinsonism; 62 had Parkinson's disease and 96 were clinically diagnosed with dopamine receptor blocking agent-induced parkinsonism. Tremor was measured while subjects rested arms (resting tremor), outstretched arms in front (postural tremor), and reached a target (kinetic tremor). Cycle-by-cycle analysis was performed to measure cycle duration, oscillation amplitude, and inter-cycle variations in the frequency. Patients with dopamine receptor blocker induced parkinsonism had lower resting and postural tremor amplitude. There was a substantial increase of kinetic tremor amplitude in both disorders. Postural and resting tremor in subjects with dopamine receptor blocking agent-induced parkinsonism was prominent in the abduction-adduction plane. In contrast, the Parkinson's disease tremor had equal amplitude in all three planes of motion. Tremor frequency was comparable in both groups. Remarkable variability in the width of the oscillatory cycles suggested irregularity in the oscillatory waveforms in both subtypes of parkinsonism. Quantitative tremor analysis can distinguish Parkinson's disease from dopamine receptor blocking agent-induced parkinsonism.

  11. Quantitatively measured tremor in hand-arm vibration-exposed workers.

    PubMed

    Edlund, Maria; Burström, Lage; Hagberg, Mats; Lundström, Ronnie; Nilsson, Tohr; Sandén, Helena; Wastensson, Gunilla

    2015-04-01

    The aim of the present study was to investigate the possible increase in hand tremor in relation to hand-arm vibration (HAV) exposure in a cohort of exposed and unexposed workers. Participants were 178 male workers with or without exposure to HAV. The study is cross-sectional regarding the outcome of tremor and has a longitudinal design with respect to exposure. The dose of HAV exposure was collected via questionnaires and measurements at several follow-ups. The CATSYS Tremor Pen(®) was used for measuring postural tremor. Multiple linear regression methods were used to analyze associations between different tremor variables and HAV exposure, along with predictor variables with biological relevance. There were no statistically significant associations between the different tremor variables and cumulative HAV or current exposure. Age was a statistically significant predictor of variation in tremor outcomes for three of the four tremor variables, whereas nicotine use was a statistically significant predictor of either left or right hand or both hands for all four tremor variables. In the present study, there was no evidence of an exposure-response association between HAV exposure and measured postural tremor. Increase in age and nicotine use appeared to be the strongest predictors of tremor.

  12. An approach to source characterization of tremor signals associated with eruptions and lahars

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Mothes, Patricia; Ruiz, Mario; Maeda, Yuta

    2015-11-01

    Tremor signals are observed in association with eruption activity and lahar descents. Reduced displacement ( D R) derived from tremor signals has been used to quantify tremor sources. However, tremor duration is not considered in D R, which makes it difficult to compare D R values estimated for different tremor episodes. We propose application of the amplitude source location (ASL) method to characterize the sources of tremor signals. We used this method to estimate the tremor source location and source amplitude from high-frequency (5-10 Hz) seismic amplitudes under the assumption of isotropic S-wave radiation. We considered the source amplitude to be the maximum value during tremor. We estimated the cumulative source amplitude ( I s) as the offset value of the time-integrated envelope of the vertical seismogram of tremor corrected for geometrical spreading and medium attenuation in the 5-10-Hz band. For eruption tremor signals, we also estimated the cumulative source pressure ( I p) from an infrasonic envelope waveform corrected for geometrical spreading. We studied these parameters of tremor signals associated with eruptions and lahars and explosion events at Tungurahua volcano, Ecuador. We identified two types of eruption tremor at Tungurahua: noise-like inharmonic waveforms and harmonic oscillatory signals. We found that I s increased linearly with increasing source amplitude for lahar tremor signals and explosion events, but I s increased exponentially with increasing source amplitude for inharmonic eruption tremor signals. The source characteristics of harmonic eruption tremor signals differed from those of inharmonic tremor signals. We found a linear relation between I s and I p for both explosion events and eruption tremor. Because I p may be proportional to the total mass involved during an eruption episode, this linear relation suggests that I s may be useful to quantify eruption size. The I s values we estimated for inharmonic eruption tremor were consistent with previous estimates of volumes of tephra fallout. The scaling relations among source parameters that we identified will contribute to our understanding of the dynamic processes associated with eruptions and lahars. This new approach is applicable in analyzing tremor sources in real time and may contribute to early assessment of the size of eruptions and lahars.

  13. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus.

    PubMed

    Dirkx, Michiel F; den Ouden, Hanneke E M; Aarts, Esther; Timmer, Monique H M; Bloem, Bastiaan R; Toni, Ivan; Helmich, Rick C

    2017-03-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic medication reduces tremor in some patients, but many patients have a dopamine-resistant tremor. Using pharmacological functional magnetic resonance imaging, we test how a dopaminergic intervention influences the cerebral circuit involved in Parkinson's tremor. From a sample of 40 patients with Parkinson's disease, we selected 15 patients with a clearly tremor-dominant phenotype. We compared tremor-related activity and effective connectivity (using combined electromyography-functional magnetic resonance imaging) on two occasions: ON and OFF dopaminergic medication. Building on a recently developed cerebral model of Parkinson's tremor, we tested the effect of dopamine on cerebral activity associated with the onset of tremor episodes (in the basal ganglia) and with tremor amplitude (in the cerebello-thalamo-cortical circuit). Dopaminergic medication reduced clinical resting tremor scores (mean 28%, range -12 to 68%). Furthermore, dopaminergic medication reduced tremor onset-related activity in the globus pallidus and tremor amplitude-related activity in the thalamic ventral intermediate nucleus. Network analyses using dynamic causal modelling showed that dopamine directly increased self-inhibition of the ventral intermediate nucleus, rather than indirectly influencing the cerebello-thalamo-cortical circuit through the basal ganglia. Crucially, the magnitude of thalamic self-inhibition predicted the clinical dopamine response of tremor. Dopamine reduces resting tremor by potentiating inhibitory mechanisms in a cerebellar nucleus of the thalamus (ventral intermediate nucleus). This suggests that altered dopaminergic projections to the cerebello-thalamo-cortical circuit have a role in Parkinson's tremor.aww331media15307619934001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Orthostatic tremor: a cerebellar pathology?

    PubMed

    Gallea, Cécile; Popa, Traian; García-Lorenzo, Daniel; Valabregue, Romain; Legrand, André-Pierre; Apartis, Emmanuelle; Marais, Lea; Degos, Bertrand; Hubsch, Cecile; Fernández-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Lehéricy, Stéphane; Meunier, Sabine; Vidailhet, Marie

    2016-08-01

    SEE MUTHURAMAN ET AL DOI101093/AWW164 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Primary orthostatic tremor is characterized by high frequency tremor affecting the legs and trunk during the standing position. Cerebellar defects were suggested in orthostatic tremor without direct evidence. We aimed to characterize the anatomo-functional defects of the cerebellar motor pathways in orthostatic tremor. We used multimodal neuroimaging to compare 17 patients with orthostatic tremor and 17 age- and gender-matched healthy volunteers. Nine of the patients with orthostatic tremor underwent repetitive transcranial stimulation applied over the cerebellum during five consecutive days. We quantified the duration of standing position and tremor severity through electromyographic recordings. Compared to healthy volunteers, grey matter volume in patients with orthostatic tremor was (i) increased in the cerebellar vermis and correlated positively with the duration of the standing position; and (ii) increased in the supplementary motor area and decreased in the lateral cerebellum, which both correlated with the disease duration. Functional connectivity between the lateral cerebellum and the supplementary motor area was abnormally increased in patients with orthostatic tremor, and correlated positively with tremor severity. After repetitive transcranial stimulation, tremor severity and functional connectivity between the lateral cerebellum and the supplementary motor area were reduced. We provide an explanation for orthostatic tremor pathophysiology, and demonstrate the functional relevance of cerebello-thalamo-cortical connections in tremor related to cerebellar defects. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Thalamic deep brain stimulation decelerates automatic lexical activation.

    PubMed

    Ehlen, Felicitas; Vonberg, Isabelle; Tiedt, Hannes O; Horn, Andreas; Fromm, Ortwin; Kühn, Andrea A; Klostermann, Fabian

    2017-02-01

    Deep Brain Stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) is a therapeutic option for patients with essential tremor. Despite a generally low risk of side effects, declines in verbal fluency (VF) have previously been reported. We aimed to specify effects of VIM-DBS on major cognitive operations needed for VF task performance, represented by clusters and switches. Clusters are word production spurts, thought to arise from automatic activation of associated information pertaining to a given lexical field. Switches are slow word-to-word transitions, presumed to indicate controlled operations for stepping from one lexical field to another. Thirteen essential tremor patients with VIM-DBS performed verbal fluency tasks in their VIM-DBS ON and OFF conditions. Clusters and switches were formally defined by mathematical criteria. All results were compared to those of fifteen healthy control subjects, and significant OFF-ON-change scores were correlated to stimulation parameters. Patients produced fewer words than healthy controls. DBS ON compared to DBS OFF aggravated this deficit by prolonging the intervals between words within clusters, whereas switches remained unaffected. This stimulation effect correlated with more anterior electrode positions. VIM-DBS seems to influence word output dynamics during verbal fluency tasks on the level of word clustering. This suggests a perturbation of automatic lexical co-activation by thalamic stimulation, particularly if delivered relatively anteriorly. The findings are discussed in the context of the hypothesized role of the thalamus in lexical processing. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Design and validation of a high-order weighted-frequency fourier linear combiner-based Kalman filter for parkinsonian tremor estimation.

    PubMed

    Zhou, Y; Jenkins, M E; Naish, M D; Trejos, A L

    2016-08-01

    The design of a tremor estimator is an important part of designing mechanical tremor suppression orthoses. A number of tremor estimators have been developed and applied with the assumption that tremor is a mono-frequency signal. However, recent experimental studies have shown that Parkinsonian tremor consists of multiple frequencies, and that the second and third harmonics make a large contribution to the tremor. Thus, the current estimators may have limited performance on estimation of the tremor harmonics. In this paper, a high-order tremor estimation algorithm is proposed and compared with its lower-order counterpart and a widely used estimator, the Weighted-frequency Fourier Linear Combiner (WFLC), using 18 Parkinsonian tremor data sets. The results show that the proposed estimator has better performance than its lower-order counterpart and the WFLC. The percentage estimation accuracy of the proposed estimator is 85±2.9%, an average improvement of 13% over the lower-order counterpart. The proposed algorithm holds promise for use in wearable tremor suppression devices.

  17. Is Slow Slip a Cause or a Result of Tremor?

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Ampuero, J. P.

    2017-12-01

    While various modeling efforts have been conducted to reproduce subsets of observations of tremor and slow-slip events (SSE), a fundamental but yet unanswered question is whether slow slip is a cause or a result of tremor. Tremor is commonly regarded as driven by SSE. This view is mainly based on observations of SSE without detected tremors and on (frequency-limited) estimates of total tremor seismic moment being lower than 1% of their concomitant SSE moment. In previous studies we showed that models of heterogeneous faults, composed of seismic asperities embedded in an aseismic fault zone matrix, reproduce quantitatively the hierarchical patterns of tremor migration observed in Cascadia and Shikoku. To address the title question, we design two end-member models of a heterogeneous fault. In the SSE-driven-tremor model, slow slip events are spontaneously generated by the matrix (even in the absence of seismic asperities) and drive tremor. In the Tremor-driven-SSE model the matrix is stable (it slips steadily in the absence of asperities) and slow slip events result from the collective behavior of tremor asperities interacting via transient creep (local afterslip fronts). We study these two end-member models through 2D quasi-dynamic multi-cycle simulations of faults governed by rate-and-state friction with heterogeneous frictional properties and effective normal stress, using the earthquake simulation software QDYN (https://zenodo.org/record/322459). We find that both models reproduce first-order observations of SSE and tremor and have very low seismic to aseismic moment ratio. However, the Tremor-driven-SSE model assumes a simpler rheology than the SSE-driven-tremor model and matches key observations better and without fine tuning, including the ratio of propagation speeds of forward SSE and rapid tremor reversals and the decay of inter-event times of Low Frequency Earthquakes. These modeling results indicate that, in contrast to a common view, SSE could be a result of tremor activity. We also find that, despite important interactions between asperities, tremor activity rates are proportional to the underlying aseismic slip rate, supporting an approach to estimate SSE properties with high spatial-temporal resolutions via tremor activity.

  18. Upper-limb tremor suppression with a 7DOF exoskeleton power-assist robot.

    PubMed

    Kiguchi, Kazuo; Hayashi, Yoshiaki

    2013-01-01

    A tremor which is one of the involuntary motions is somewhat rhythmic motion that may occur in various body parts. Although there are several kinds of the tremor, an essential tremor is the most common tremor disorder of the arm. The essential tremor is a disorder of unknown cause, and it is common in the elderly. The essential tremor interferes with a patient's daily living activity, because it may occur during a voluntary motion. If a patient of an essential tremor uses an EMG-based controlled power-assist robot, the robot might misunderstand the user's motion intention because of the effect of the essential tremor. In that case, upper-limb power-assist robots must carry out tremor suppression as well as power-assist, since a person performs various precise tasks with certain tools by the upper-limb in daily living. Therefore, it is important to suppress the tremor at the hand and grasped tool. However, in the case of the tremor suppression control method which suppressed the vibrations of the hand and the tip of the tool, vibration of other part such as elbow might occur. In this paper, the tremor suppression control method for upper-limb power-assist robot is proposed. In the proposed method, the vibration of the elbow is suppressed in addition to the hand and the tip of the tool. The validity of the proposed method was verified by the experiments.

  19. Experimental support that ocular tremor in Parkinson's disease does not originate from head movement.

    PubMed

    Gitchel, George T; Wetzel, Paul A; Qutubuddin, Abu; Baron, Mark S

    2014-07-01

    Our recent report of ocular tremor in Parkinson's disease (PD) has raised considerable controversy as to the origin of the tremor. Using an infrared based eye tracker and a magnetic head tracker, we reported that ocular tremor was recordable in PD subjects with no apparent head tremor. However, other investigators suggest that the ocular tremor may represent either transmitted appendicular tremor or subclinical head tremor inducing the vestibulo-ocular reflex (VOR). The present study aimed to further investigate the origin of ocular tremor in PD. Eye movements were recorded in 8 PD subjects both head free, and with full head restraint by means of a head holding device and a dental impression bite plate. Head movements were recorded independently using both a high sensitivity tri-axial accelerometer and a magnetic tracking system, each synchronized to the eye tracker. Ocular tremor was observed in all 8 PD subjects and was not influenced by head free and head fixed conditions. Both magnetic tracking and accelerometer recordings supported that the ocular tremor was fully independent of head position. The present study findings support our initial findings that ocular tremor is a fundamental feature of PD unrelated to head movements. Although the utility of ocular tremor for diagnostic purposes requires validation, current findings in large cohorts of PD subjects suggest its potential as a reliable clinical biomarker. Published by Elsevier Ltd.

  20. MRI-guided focused ultrasound thalamotomy in non-ET tremor syndromes.

    PubMed

    Fasano, Alfonso; Llinas, Maheleth; Munhoz, Renato P; Hlasny, Eugen; Kucharczyk, Walter; Lozano, Andres M

    2017-08-22

    To report the 6-month single-blinded results of unilateral thalamotomy with MRI-guided focused ultrasound (MRgFUS) in patients with tremors other than essential tremor. Three patients with tremor due to Parkinson disease, 2 with dystonic tremor in the context of cervicobrachial dystonia and writer's cramp, and 1 with dystonia gene-associated tremor underwent MRgFUS targeting the ventro-intermedius nucleus (Vim) of the dominant hemisphere. The primary endpoint was the reduction of lateralized items of the Tremor Rating Scale of contralateral hemibody assessed by a blinded rater. All patients achieved a statistically significant, immediate, and sustained improvement of the contralateral tremor score by 42.2%, 52.0%, 55.9%, and 52.9% at 1 week and 1, 3, and 6 months after the procedure, respectively. All patients experienced transient side effects and 2 patients experienced persistent side effects at the time of last evaluation: hemitongue numbness and hemiparesis with hemihypoesthesia. Vim MRgFUS is a promising, incision-free, but nevertheless invasive technique to effectively treat tremors other than essential tremor. Future studies on larger samples and longer follow-up will further define its effectiveness and safety. NCT02252380. This study provides Class IV evidence that for patients with tremor not caused by essential tremor, MRgFUS of the Vim improves the tremor of the contralateral hemibody at 6 months. © 2017 American Academy of Neurology.

  1. Laryngoscopy evaluation protocol for the differentiation of essential and dystonic voice tremor.

    PubMed

    Moraes, Bruno Teixeira de; Biase, Noemi Grigoletto de

    2016-01-01

    Although syndromes that cause voice tremor have singular characteristics, the differential diagnosis of these diseases is a challenge because of the overlap of the existing signs and symptoms. To develop a task-specific protocol to assess voice tremor by means of nasofibrolaryngoscopy and to identify those tasks that can distinguish between essential and dystonic tremor syndromes. Cross-sectional study. The transnasal fiberoptic laryngoscopy protocol, which consisted of the assessment of palate, pharynx and larynx tremor during the performance of several vocal and non-vocal tasks with distinct phenomenological characteristics, was applied to 19 patients with voice tremor. Patients were diagnosed with essential or dystonic tremor according to the phenomenological characterization of each group. Once they were classified, the tasks associated with the presence of tremor in each syndrome were identified. The tasks that significantly contributed to the differential diagnosis between essential and dystonic tremor were /s/ production, continuous whistling and reduction of tremor in falsetto. These tasks were phenomenologically different with respect to the presence of tremor in the two syndromes. The protocol of specific tasks by means of transnasal fiberoptic laryngoscopy is a viable method to differentiate between essential and dystonic voice tremor syndromes through the following tasks: /s/ production, continuous whistling and reduction of tremor in falsetto. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  2. Effects of beta-blockers and nicardipine on oxotremorine-induced tremor in common marmosets.

    PubMed

    Mitsuda, M; Nomoto, M; Iwata, S

    1999-10-01

    Effects of beta-blockers (propranolol, arotinolol and nipradilol) and a Ca2+ channel blocker (nicardipine) on oxotremorine-induced tremor were studied in common marmosets. Generalized tremor was elicited by an intraperitoneal administration of 0.25 mg/kg oxotremorine. Intensity of the tremor was classified into 7 degrees, and it was evaluated every 10 min. The total intensity of oxotremorine-induced tremor for each drug was expressed as "points", which were the sum of tremor intensity scores evaluated every 10 min up to 190 min following the administration of oxotremorine. Beta-blockers significantly suppressed the tremor. On the other hand, the Ca2+ channel blocker exacerbated the tremor.

  3. Assessing the clinical outcome of Vim radiosurgery with voxel-based morphometry: visual areas are linked with tremor arrest!

    PubMed

    Tuleasca, Constantin; Witjas, Tatiana; Najdenovska, Elena; Verger, Antoine; Girard, Nadine; Champoudry, Jerome; Thiran, Jean-Philippe; Van de Ville, Dimitri; Cuadra, Meritxell Bach; Levivier, Marc; Guedj, Eric; Régis, Jean

    2017-11-01

    Radiosurgery (RS) is an alternative to open standard stereotactic procedures (deep-brain stimulation or radiofrequency thalamotomy) for drug-resistant essential tremor (ET), aiming at the same target (ventro-intermediate nucleus, Vim). We investigated the Vim RS outcome using voxel-based morphometry by evaluating the interaction between clinical response and time. Thirty-eight patients with right-sided ET benefited from left unilateral Vim RS. Targeting was performed using 130 Gy and a single 4-mm collimator. Neurological and neuroimaging assessment was completed at baseline and 1 year. Clinical responders were considered those with at least 50% improvement in tremor score on the treated hand (TSTH). Interaction between clinical response and time showed the left temporal pole and occipital cortex (Brodmann area 19, including V4, V5 and the parahippocampal place area) as statistically significant. A decrease in gray matter density (GMD) 1 year after Vim RS correlated with higher TSTH improvement (Spearman = 0.01) for both anatomical areas. Higher baseline GMD within the left temporal pole correlated with better TSTH improvement (Spearman = 0.004). Statistically significant structural changes in the relationship to clinical response after Vim RS are present in remote areas, advocating a distant neurobiological effect. The former regions are mainly involved in locomotor monitoring toward the local and distant environment, suggesting the recruiting requirement in targeting of the specific visuomotor networks.

  4. Design of robust adaptive controller and feedback error learning for rehabilitation in Parkinson's disease: a simulation study.

    PubMed

    Rouhollahi, Korosh; Emadi Andani, Mehran; Karbassi, Seyed Mahdi; Izadi, Iman

    2017-02-01

    Deep brain stimulation (DBS) is an efficient therapy to control movement disorders of Parkinson's tremor. Stimulation of one area of basal ganglia (BG) by DBS with no feedback is the prevalent opinion. Reduction of additional stimulatory signal delivered to the brain is the advantage of using feedback. This results in reduction of side effects caused by the excessive stimulation intensity. In fact, the stimulatory intensity of controllers is decreased proportional to reduction of hand tremor. The objective of this study is to design a new controller structure to decrease three indicators: (i) the hand tremor; (ii) the level of delivered stimulation in disease condition; and (iii) the ratio of the level of delivered stimulation in health condition to disease condition. For this purpose, the authors offer a new closed-loop control structure to stimulate two areas of BG simultaneously. One area (STN: subthalamic nucleus) is stimulated by an adaptive controller with feedback error learning. The other area (GPi: globus pallidus internal) is stimulated by a partial state feedback (PSF) controller. Considering the three indicators, the results show that, stimulating two areas simultaneously leads to better performance compared with stimulating one area only. It is shown that both PSF and adaptive controllers are robust regarding system parameter uncertainties. In addition, a method is proposed to update the parameters of the BG model in real time. As a result, the parameters of the controllers can be updated based on the new parameters of the BG model.

  5. Peripheral beta-adrenergic blockade treatment of parkinsonian tremor.

    PubMed

    Foster, N L; Newman, R P; LeWitt, P A; Gillespie, M M; Larsen, T A; Chase, T N

    1984-10-01

    The effect of nadolol, a peripherally acting beta-adrenergic blocker, on resting, postural, and intention tremor was examined in 8 patients with idiopathic Parkinson's disease whose motor symptoms, other than tremor, were well controlled with conventional medications. In a double-blind, placebo-controlled, crossover design, patients received 80 to 320 mg of nadolol for six weeks while continuing their previous therapeutic regimen. Accelerometer readings showed a 34% reduction (p less than 0.025) in tremor distance, but no change in tremor frequency, during nadolol therapy. Maximum benefit was achieved with a dose of 240 mg, when resting tremor improved 54%, postural tremor 32%, and intention tremor 54%. Physician ratings and patient reports supported the accelerometer results. Nadolol appears to be a safe, effective adjunct to current dopaminergic and anticholinergic therapy for severe tremor in Parkinson's disease.

  6. Catatonia after deep brain stimulation successfully treated with lorazepam and right unilateral electroconvulsive therapy: a case report.

    PubMed

    Quinn, Davin K; Rees, Caleb; Brodsky, Aaron; Deligtisch, Amanda; Evans, Daniel; Khafaja, Mohamad; Abbott, Christopher C

    2014-09-01

    The presence of a deep brain stimulator (DBS) in a patient who develops neuropsychiatric symptoms poses unique diagnostic challenges and questions for the treating psychiatrist. Catatonia has been described only once, during DBS implantation, but has not been reported in a successfully implanted DBS patient. We present a case of a patient with bipolar disorder and renal transplant who developed catatonia after DBS for essential tremor. The patient was successfully treated for catatonia with lorazepam and electroconvulsive therapy after careful diagnostic workup. Electroconvulsive therapy has been successfully used with DBS in a handful of cases, and certain precautions may help reduce potential risk. Catatonia is a rare occurrence after DBS but when present may be safely treated with standard therapies such as lorazepam and electroconvulsive therapy.

  7. A role for locus coeruleus in Parkinson tremor

    PubMed Central

    Isaias, Ioannis U.; Marzegan, Alberto; Pezzoli, Gianni; Marotta, Giorgio; Canesi, Margherita; Biella, Gabriele E. M.; Volkmann, Jens; Cavallari, Paolo

    2012-01-01

    We analyzed rest tremor, one of the etiologically most elusive hallmarks of Parkinson disease (PD), in 12 consecutive PD patients during a specific task activating the locus coeruleus (LC) to investigate a putative role of noradrenaline (NA) in tremor generation and suppression. Clinical diagnosis was confirmed in all subjects by reduced dopamine reuptake transporter (DAT) binding values investigated by single photon computed tomography imaging (SPECT) with [123I] N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane (FP-CIT). The intensity of tremor (i.e., the power of Electromyography [EMG] signals), but not its frequency, significantly increased during the task. In six subjects, tremor appeared selectively during the task. In a second part of the study, we retrospectively reviewed SPECT with FP-CIT data and confirmed the lack of correlation between dopaminergic loss and tremor by comparing DAT binding values of 82 PD subjects with bilateral tremor (n = 27), unilateral tremor (n = 22), and no tremor (n = 33). This study suggests a role of the LC in Parkinson tremor. PMID:22287946

  8. Effect of nipradilol, a beta-adrenergic blocker with vasodilating activity, on oxotremorine-induced tremor in mice.

    PubMed

    Iwata, S; Nomoto, M; Fukuda, T

    1996-10-01

    The effect of nipradilol, a nonselective beta-adrenergic receptor blocker with nitroglycerin-like vasodilating activity, on oxotremorine-induced tremor was studied in mice. General tremor in mice was elicited by 0.5 mg/kg oxotremorine. The tremor was quantified using a capacitance transducer, then analyzed by a signal processor. The strength of the tremor was expressed in "points". The point values of the tremor (mean +/- SE) in control mice for 5 mg/kg (+/-)-propranolol, 2.5 mg/kg arotinolol, 0.5 mg/kg nipradilol, 1.0 mg/kg nipradilol and 2.5 mg/kg nipradilol were 87 +/- 16, 42 +/- 6, 38 +/- 6, 99 +/- 28, 28 +/- 6 and 31 +/- 7, respectively. The strength of the tremor was reduced by all beta-blockers. Although 1.0 mg/kg nipradilol significantly reduced the tremor, further inhibition of the tremor was not obtained with dosages up to 2.5 mg/kg of the drug. In conclusion, nipradilol was effective for suppressing oxotremorine-induced tremor, as were other beta-blockers.

  9. Essential tremor

    MedlinePlus

    ... Tremor - familial; Benign essential tremor; Shaking - essential tremor Images Central nervous system and peripheral nervous system References Jankovic J. Parkinson disease and other movement disorders. In: Daroff ...

  10. Electromagnetic imaging the of the Pacific-North American plate boundary in central California, USA

    NASA Astrophysics Data System (ADS)

    Wheelock, B. D.; Constable, S.; Key, K. W.

    2010-12-01

    The continental margin of central California lies adjacent to a segment of the San Andreas fault (SAF) that exhibits a transition between locked behavior south of the town of Cholame, and freely slipping (creeping) behavior north of the town of Parkfield. Recent reports of non-volcanic tremor (NVT) near the town of Cholame represent the first observation of NVT in a strike-slip environment. Dense clusters of tremor episodes located at the northern limit of the locked section of the SAF were found to originate within the ductile lower crust at depths between 15 and 30~km, and have been interpreted as evidence of high pore fluid pressure. An excess of fluids in this region is likely given its history of subduction, which transports large quantities of water into the forearc crust and mantle. We present a study that uses deep electromagnetic imaging methods to estimate the abundance and distribution of pore fluids at depths associated with non-volcanic tremor. This study extends a previously collected terrestrial profile of magnetotelluric (MT) data (Becken et al. 2008, Geophysical Journal International) into the offshore environment. We deployed 21 seafloor instruments that collected controlled-source electromagnetic (CSEM) and MT data in a line extending from the coast near Morro Bay, across the continental shelf, and out onto the Pacific plate. The marine MT data results in apparent resistivity and phase estimates at periods between 1~s and 20,000~s, sufficient for probing the upper 100~km of regional conductivity. A significant coast effect, marked by asymptotic behavior in the TE mode of the MT responses, is observed at the deep water sites. This necessitates accurate bathymetry modeling when inverting. The CSEM transmitter was towed by all receivers broadcasting a compact broadband binary waveform with a 0.25~Hz fundamental frequency. The controlled-source signal is observed above the noisefloor at source-receiver offsets up to 6~km, which provides constraints on the conductivity structure of the upper 3~km of the crust. By extending the preceding line of terrestrial MT measurements to the west, we are able to constrain any differences in crust and mantle conductivity associated with the transition across the continental boundary. Furthermore, we address whether the deeply-sourced fluids migrating into the root of the SAF identified in Becken et al. (2008) are related to the fossil subduction zone. Inversion of this combined data set aims to detect the source region of these deep fluids, put constraints on their abundance, and further reveal any pathways by which they may reach the San Andreas fault.

  11. Deep Shear Wave Velocity of Southern Bangkok and Vicinity

    NASA Astrophysics Data System (ADS)

    Wongpanit, T.; Hayashi, K.; Pananont, P.

    2017-09-01

    Bangkok is located on the soft marine clay in the Lower Chao Phraya Basin which can amplify seismic wave and can affect the shaking of buildings during an earthquake. Deep shear wave velocity of the sediment in the basin are useful for study the effect of the soft sediment on the seismic wave and can be used for earthquake engineering design and ground shaking estimation, especially for a deep basin. This study aims to measure deep shear wave velocity and create 2D shear wave velocity profile down to a bedrock in the southern Bangkok by the Microtremor measurements with 2 seismographs using Spatial Autocorrelation (2-SPAC) technique. The data was collected during a day time on linear array geometry with offsets varying between 5-2,000 m. Low frequency of natural tremor (0.2-0.6 Hz) was detected at many sites, however, very deep shear wave data at many sites are ambiguous due to man-made vibration noises in the city. The results show that shear wave velocity of the sediment in the southern Bangkok is between 100-2,000 ms-1 and indicate that the bedrock depth is about 600-800 m, except at Bang Krachao where bedrock depth is unclear.

  12. Essential Tremor: What We Can Learn from Current Pharmacotherapy.

    PubMed

    Ondo, William

    2016-01-01

    The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA)-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective), has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials.

  13. Discriminating Simulated Vocal Tremor Source Using Amplitude Modulation Spectra

    PubMed Central

    Carbonell, Kathy M.; Lester, Rosemary A.; Story, Brad H.; Lotto, Andrew J.

    2014-01-01

    Objectives/Hypothesis Sources of vocal tremor are difficult to categorize perceptually and acoustically. This paper describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Study Design Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Methods Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor) and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. Results The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. Conclusions These results supply initial support for an amplitude-envelope based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. PMID:25532813

  14. Analysis of the tremor in juvenile myoclonic epilepsy.

    PubMed

    Aydin-Özemir, Zeynep; Matur, Zeliha; Baykan, Betul; Bilgic, Başar; Tekturk, Pınar; Bebek, Nerses; Gurses, Candan; Hanagasi, Hasmet; Oge, Ali Emre

    2016-12-01

    We aimed to investigate juvenile myoclonic epilepsy (JME) patients complaining of tremor unrelated to valproate (VPA) treatment and evaluate if there were differences between JME patients with and without tremor and essential tremor (ET) patients to exclude comorbidity. Fifteen JME cases with the complaint of tremor, 14 JME patients without tremor, 14 patients with ET and 14 healthy subjects (HS) were included. Regularity, frequency and amplitude of the tremor and superimposed myoclonia were assessed by accelerometric analysis. Cortical SEPs evoked by the stimulation of the median nerve were recorded bilaterally. Clinical and neurophysiologic features were statistically compared between the groups. Amplitude of postural tremor of the left hand was significantly increased in the ET group compared to JME patients with tremor, but there were no differences regarding to frequency. Strikingly, there were superimposed irregular, low-amplitude inconstant myoclonic jerks located to distal part of the fingers in JME group with tremor. Initial frequency of myoclonic seizures was also significantly higher in this group compared to JME patients without tremor but this difference disappeared after treatment. The group of JME with tremor had the highest N20-P25 and P25-N35 amplitudes, followed by JME without tremor, ET and HS, respectively. Tremulous hand movements in JME resembled ET, but their amplitude was lower and characterized with accompanying irregular myoclonic jerks. The presence of tremor in JME patients should be taken into consideration to create more homogeneous groups in genetic and pathophysiological studies of JME. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Source and path effects in the wave fields of tremor and explosions at Stromboli Volcano, Italy

    USGS Publications Warehouse

    Chouet, B.; Saccorotti, G.; Martini, M.; Dawson, P.; De Luca, G.; Milana, G.; Scarpa, R.

    1997-01-01

    The wave fields generated by Strombolian activity are investigated using data from small-aperture seismic arrays deployed on the north flank of Stromboli and data from seismic and pressure transducers set up near the summit crater. Measurements of slowness and azimuth as a function of time clearly indicate that the sources of tremor and explosions are located beneath the summit crater at depths shallower than 200 m with occasional bursts of energy originating from sources extending to a depth of 3 km. Slowness, azimuth, and particle motion measurements reveal a complex composition of body and surface waves associated with topography, structure, and source properties. Body waves originating at depths shallower than 200 m dominate the wave field at frequencies of 0.5-2.5 Hz, and surface waves generated by the surficial part of the source and by scattering sources distributed around the island dominate at frequencies above 2.5 Hz. The records of tremor and explosions are both dominated by SH motion. Far-field records from explosions start with radial motion, and near-field records from those events show dominantly horizontal motion and often start with a low-frequency (1-2 Hz) precursor characterized by elliptical particle motion, followed within a few seconds by a high-frequency radial phase (1-10 Hz) accompanying the eruption of pyroclastics. The dominant component of the near- and far-field particle motions from explosions, and the timing of air and body wave phases observed in the near field, are consistent with a gaspiston mechanism operating on a shallow (<200 m deep), vertical crack-like conduit. Models of a degassing fluid column suggest that noise emissions originating in the collective oscillations of bubbles ascending in the magma conduit may provide an adequate self-excitation mechanism for sustained tremor generation at Stromboli. Copyright 1997 by the American Geophysical Union.

  16. Clinical response to Vim's thalamic stereotactic radiosurgery for essential tremor is associated with distinctive functional connectivity patterns.

    PubMed

    Tuleasca, Constantin; Najdenovska, Elena; Régis, Jean; Witjas, Tatiana; Girard, Nadine; Champoudry, Jérôme; Faouzi, Mohamed; Thiran, Jean-Philippe; Cuadra, Meritxell Bach; Levivier, Marc; Van De Ville, Dimitri

    2018-03-01

    Essential tremor (ET) is the most common movement disorder. Drug-resistant ET can benefit from standard surgical stereotactic procedures (deep brain stimulation, thalamotomy) or minimally invasive high-intensity focused ultrasound (HIFU) or stereotactic radiosurgical thalamotomy (SRS-T). Resting-state fMRI (rs-fMRI) is a non-invasive imaging method acquired in absence of a task. We examined whether rs-fMRI correlates with tremor score on the treated hand (TSTH) improvement 1 year after SRS-T. We included 17 consecutive patients treated with left unilateral SRS-T in Marseille, France. Tremor score evaluation and rs-fMRI were acquired at baseline and 1 year after SRS-T. Resting-state data (34 scans) were analyzed without a priori hypothesis, in Lausanne, Switzerland. Based on degree of improvement in TSTH, to consider SRS-T at least as effective as medication, we separated two groups: 1, ≤ 50% (n = 6, 35.3%); 2, > 50% (n = 11, 64.7%). They did not differ statistically by age (p = 0.86), duration of symptoms (p = 0.41), or lesion volume at 1 year (p = 0.06). We report TSTH improvement correlated with interconnectivity strength between salience network with the left claustrum and putamen, as well as between bilateral motor cortices, frontal eye fields and left cerebellum lobule VI with right visual association area (the former also with lesion volume). Longitudinal changes showed additional associations in interconnectivity strength between right dorsal attention network with ventro-lateral prefrontal cortex and a reminiscent salience network with fusiform gyrus. Brain connectivity measured by resting-state fMRI relates to clinical response after SRS-T. Relevant networks are visual, motor, and attention. Interconnectivity between visual and motor areas is a novel finding, revealing implication in movement sensory guidance.

  17. Beta oscillatory neurons in the motor thalamus of movement disorder and pain patients.

    PubMed

    Basha, Diellor; Dostrovsky, Jonathan O; Lopez Rios, Adriana L; Hodaie, Mojgan; Lozano, Andres M; Hutchison, William D

    2014-11-01

    Excessive beta oscillations (15-25Hz) in the basal ganglia have been linked to the akineto-rigid symptoms of Parkinson's disease (PD) although it remains unclear whether the underlying mechanism is causative or associative. While a number of studies have reported beta activity in the subthalamic nucleus and globus pallidus internus, relatively little is known about the beta rhythm of the motor thalamus and its relation to movement disorders. To test whether thalamic beta oscillations are related to parkinsonian symptoms, we examined the spectral properties of neuronal activity in the ventral thalamic nuclei of five Parkinson's disease patients (two female, age range 50-72years) and compared them to five essential tremor (three female, aged 41-75) and four central pain patients (one female, aged 38-60). Spike and local field potential recordings were obtained during microelectrode-guided localization of thalamic nuclei prior to the implantation of deep brain stimulating electrodes. A total of 118 movement-related neurons in the region of the ventral intermediate nucleus (Vim) were analyzed across all patient groups. Eighty of these neurons (68%) displayed significant oscillatory firing in the beta range with the limbs at rest. In contrast, only 5.7% of the ventral oral posterior (Vop) (χ(2) test, p<0.05) and only 7.2% of the ventral caudal (Vc) neurons fired rhythmically at beta frequency (χ(2) test, p<0.05). Beta power was significantly decreased during limb movements (ANOVA, p<0.05) and was inversely related to tremor-frequency power during tremor epochs in ET and PD (r(2)=0.44). Comparison between patient groups showed that Vim beta power was significantly higher in ET patients versus pain and PD groups (ANOVA, p<0.05). The findings suggest that beta oscillations are found predominantly in Vim and are involved in movement but are not enhanced in tremor-dominant Parkinson's patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A Spatially and Temporally Continuous LFE Catalogue for the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Chamberlain, C. J.; Townend, J.; Baratin, L. M.

    2015-12-01

    Using a brightness-based beamforming approach coupled with a matched-filter correlation method, we have developed a 6.5 year record of low-frequency earthquakes (LFEs) occuring on and near the deep extent of New Zealand's Alpine Fault. Our brightness template detection method, based on that of Frank et al. (2014), scans a pre-determined grid of possible seismic sources to automatically find LFE templates based on the stack of bandpassed squared seismic data. Previous work (Wech et al., 2012, Chamberlain et al., 2014) has shown that the depths of standard seismicity are anti-correlated with those of tremor and LFEs in the central Southern Alps: hence, by careful grid selection, shallow seismic sources can effectively be discriminated against. This beamforming approach produces many (>900) possible events. Initial beamforming detections are grouped by moveout and stacked to produce a subset of higher-quality events for use as templates in a cross-correlation detector. Events detected by cross-correlation are stacked to increase their signal-to-noise charectaristics before being located using a 3D velocity model. This method produces a spatially and temporally continuous catalogue of LFEs throughout the 6.5 year study period. The catalogue highlights quasi-continuous slow deformation occuring beneath the seismogenic zone near the Alpine Fault, punctuated by periods of increased LFE generation associated with tremor, and following large regional earthquakes. To date we have found no evidence of LFE generation north-east of Mt. Cook, the highest point in the Southern Alps, despite systematic searching throughout the region. We suggest that the along-strike cessation of tremor is due to changes in the fault's dip and the hypothesised presence of partially subducted passive margin material. This remnant passive margin would lie benath the tremor-generating region and has been linked to along-strike changes in subcrustal earthquake distributions (Boese et al., 2013).

  19. Case Studies in Tremor.

    PubMed

    Shanker, Vicki L

    2016-08-01

    Tremor is a frequent patient complaint in the neurologist's office. Nevertheless, despite the routine nature of this office presentation, misdiagnosis of common tremors is not an infrequent practice. In addition, there are less common causes of tremor that can be missed if the clinician is not aware of key features. An organized and methodical history and neurologic examination are essential in developing the differential diagnosis in tremor patients and ultimately in achieving the correct diagnosis. Awareness of key historical features associated with tremor and knowledge of the movement disorders examination will improve tremor assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Differential diagnosis of common tremor syndromes

    PubMed Central

    Bhidayasiri, R

    2005-01-01

    Tremor is one of the most common involuntary movement disorders seen in clinical practice. In addition to the detailed history, the differential diagnosis is mainly clinical based on the distinction at rest, postural and intention, activation condition, frequency, and topographical distribution. The causes of tremor are heterogeneous and it can present alone (for example, essential tremor) or as a part of a neurological syndrome (for example, multiple sclerosis). Essential tremor and the tremor of Parkinson's disease are the most common tremors encountered in clinical practice. This article focuses on a practical approach to these different forms of tremor and how to distinguish them clinically. Evidence supporting various strategies used in the differentiation is then presented, followed by a review of formal guidelines or recommendations when they exist. PMID:16344298

  1. Fundamental Principles of Tremor Propagation in the Upper Limb.

    PubMed

    Davidson, Andrew D; Charles, Steven K

    2017-04-01

    Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices.

  2. Fundamental Principles of Tremor Propagation in the Upper Limb

    PubMed Central

    Davidson, Andrew D.; Charles, Steven K.

    2017-01-01

    Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices. PMID:27957608

  3. Tremor and hand-arm vibration syndrome (HAVS) in road maintenance workers.

    PubMed

    Bast-Pettersen, Rita; Ulvestad, Bente; Færden, Karl; Clemm, Thomas Aleksander C; Olsen, Raymond; Ellingsen, Dag Gunnar; Nordby, Karl-Christian

    2017-01-01

    The aim of this study was to evaluate postural and rest tremor among workers using vibrating hand tools, taking into account the possible effects of toxicants such as alcohol and tobacco. A further aim was to study workers diagnosed with hand-arm vibration syndrome (HAVS) at the time of examination. This study comprises 103 road maintenance workers, 55 exposed to vibrating hand tools (age 41.0 years; range 21-62) and 48 referents (age 38.5 years; range 19-64). They were examined with the CATSYS Tremor Pen ® . Exposure to vibrating tools and serum biomarkers of alcohol and tobacco consumption were measured. Cumulative exposure to vibrating tools was associated with increased postural (p < 0.01) and rest tremor (p < 0.05) and with a higher Center Frequency of postural tremor (p < 0.01) among smokers and users of smokeless tobacco. Rest tremor Center Frequency was higher than postural tremor frequency (p < 0.001). The main findings indicate an association between cumulative exposure to hand-held vibrating tools, tremor parameters and consumption of tobacco products. The hand position is important when testing for tremor. Rest tremor had a higher Center Frequency. Postural tremor was more strongly associated with exposure than rest tremor. The finding of increased tremor among the HAVS subjects indicated that tremor might be a part of the clinical picture of a HAVS diagnosis. As with all cross-sectional studies, inferences should be made with caution when drawing conclusions about associations between exposure and possible effects. Future research using longitudinal design is required to validate the findings of the present study.

  4. The cerebral basis of Parkinsonian tremor: A network perspective.

    PubMed

    Helmich, Rick C

    2018-02-01

    Tremor in Parkinson's disease is a poorly understood sign. Although it is one of the clinical hallmarks of the disease, its pathophysiology remains unclear. It is clear that tremor involves different neural mechanisms than bradykinesia and rigidity, the other core motor signs of Parkinson's disease. In particular, the role of dopamine in tremor has been heavily debated given clinical observations that tremor has a variable response to dopaminergic medication. From a neuroscience perspective, tremor is also a special sign; unlike other motor signs, it has a clear electrophysiological signature (frequency, phase, and power). These unique features of tremor, and newly available neuroimaging methods, have sparked investigations into the pathophysiology of tremor. In this review, evidence will be discussed for the idea that parkinsonian tremor results from increased interactions between the basal ganglia and the cerebello-thalamo-cortical circuit, driven by altered dopaminergic projections to nodes within both circuits, and modulated by context-dependent factors, such as psychological stress. Models that incorporate all of these features may help our understanding of the pathophysiology of tremor and interindividual differences between patients. One example that will be discussed in this article is the "dimmer-switch" model. According to this model, cerebral activity related to parkinsonian tremor first arises in the basal ganglia and is then propagated to the cerebello-thalamo-cortical circuit, where the tremor rhythm is maintained and amplified. In the future, detailed knowledge about the architecture of the tremor circuitry in individual patients ("tremor fingerprints") may provide new, mechanism-based treatments for this debilitating motor sign. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  5. Treatment of essential tremor with arotinolol.

    PubMed

    Kuroda, Y; Kakigi, R; Shibasaki, H

    1988-04-01

    We investigated the effect of arotinolol, a new peripherally acting beta-adrenergic blocker, in 15 patients with essential tremor. The patients received 30 mg per day of arotinolol for 8 weeks. Accelerometer readings showed a significant reduction in amplitude of postural tremor after treatment. Action tremor also improved to essentially the same degree as postural tremor. The present findings support the view that the therapeutic effect of beta-blockers in essential tremor is mediated by peripheral beta-adrenergic receptors.

  6. Essential Tremor: What We Can Learn from Current Pharmacotherapy

    PubMed Central

    Ondo, William

    2016-01-01

    Background The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. Methods We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. Results Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA)-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective), has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. Discussion To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials. PMID:26989572

  7. Co-Prevalence of Tremor with Spasmodic Dysphonia: A Case-Control Study

    PubMed Central

    White, Laura; Klein, Adam; Hapner, Edie; Delgaudio, John; Hanfelt, John; Jinnah, H. A.; Johns, Michael

    2011-01-01

    OBJECTIVES/HYPOTHESIS The aim of this study was to define the co-prevalence of tremor with spasmodic dysphonia (SD). STUDY DESIGN A single institution prospective, case-control study was performed from May 2010 to July 2010. METHODS Consecutive patients with SD (cases) and other voice disorders (controls) were enrolled prospectively. Each participant underwent a voice evaluation and an evaluation for tremor. RESULTS 146 voice disorder controls and 128 patients with SD were enrolled. 26% of patients with SD had vocal tremor, 21% had non-vocal tremor. Patients with SD were 2.8 times more likely to have co-prevalent tremor than the control group (OR = 2.81; 95% CI, 1.55 to 5.08) and only 35% of patients with SD had been seen by a neurologist for the evaluation of dystonia and tremor. CONCLUSIONS Tremor is highly prevalent in patients with SD. It is important for each patient diagnosed with SD to undergo an evaluation for tremor, this is especially important in patients diagnosed with vocal tremor. Level of evidence 3b. PMID:21792965

  8. Tremor amplitude and tremor frequency variability in Parkinson's disease is dependent on activity and synchronisation of central oscillators in basal ganglia.

    PubMed

    Bartolić, Andrej; Pirtosek, Zvezdan; Rozman, Janez; Ribaric, Samo

    2010-02-01

    Rest tremor is one of the four main clinical features of Parkinson's disease (PD), besides rigidity, bradykinesia and postural instability. While rigidity, bradykinesia and postural instability can be explained with changes in neurotransmitter concentrations and neuronal activity in basal ganglia, the pathogenesis of parkinsonian tremor is not fully understood. According to the leading hypothesis tremor is generated by neurons or groups of neurons in the basal ganglia which act as central oscillators and generate repetitive impulses to the muscles of the body parts involved. The exact morphological substrate for central oscillators and the mechanisms leading to their activation are still an object of debate. Peripheral neural structures exert modulatory influence on tremor amplitude, but not on tremor frequency. We hypothesise that rest tremor in PD is the result of two mechanisms: increased activity and increased synchronisation of central oscillators. We tested our hypothesis by demonstrating that the reduction in rest tremor amplitude is accompanied by increased variability of tremor frequency. The reduction of tremor amplitude is attributed to decreased activity and poor synchronisation of central oscillators in basal ganglia; the increased variability of tremor frequency is attributed to poor synchronisation of the central oscillators. In addition, we demonstrated that the recurrence of clinically visible rest tremor is accompanied by a reduction in tremor frequency variability. This reduction is attributed to increased synchronisation of central oscillators in basal ganglia. We argue that both mechanisms, increased activity of central oscillators and increased synchronisation of central oscillators, are equally important and we predict that tremor becomes clinically evident only when both mechanisms are active at the same time. In circumstances when one of the mechanisms is suppressed tremor amplitude becomes markedly reduced. On the one hand, if the number of active central oscillators is very low, the muscle-stimulating impulses are too weak to cause clinically evident tremor. On the other hand, if central oscillator synchronisation is poor, the impulses originating from different central oscillators are not in phase and thus cancel out, again leading to reduced stimulation of muscles and reduced tremor amplitude. Our hypothesis is supported by our measurements on patients with PD and by experimental data cited in the literature. The proposed two mechanisms could have clinical implications. New medical treatments, which would specifically target only one of the proposed mechanisms (oscillator activity or synchronisation), could be effective in reducing tremor amplitude and thus supplement established antiparkinsonian treatments.

  9. Closed loop deep brain stimulation: an evolving technology.

    PubMed

    Hosain, Md Kamal; Kouzani, Abbas; Tye, Susannah

    2014-12-01

    Deep brain stimulation is an effective and safe medical treatment for a variety of neurological and psychiatric disorders including Parkinson's disease, essential tremor, dystonia, and treatment resistant obsessive compulsive disorder. A closed loop deep brain stimulation (CLDBS) system automatically adjusts stimulation parameters by the brain response in real time. The CLDBS continues to evolve due to the advancement in the brain stimulation technologies. This paper provides a study on the existing systems developed for CLDBS. It highlights the issues associated with CLDBS systems including feedback signal recording and processing, stimulation parameters setting, control algorithm, wireless telemetry, size, and power consumption. The benefits and limitations of the existing CLDBS systems are also presented. Whilst robust clinical proof of the benefits of the technology remains to be achieved, it has the potential to offer several advantages over open loop DBS. The CLDBS can improve efficiency and efficacy of therapy, eliminate lengthy start-up period for programming and adjustment, provide a personalized treatment, and make parameters setting automatic and adaptive.

  10. Tremor in X-linked recessive spinal and bulbar muscular atrophy (Kennedy's disease).

    PubMed

    Dias, Francisco A; Munhoz, Renato P; Raskin, Salmo; Werneck, Lineu César; Teive, Hélio A G

    2011-01-01

    To study tremor in patients with X-linked recessive spinobulbar muscular atrophy or Kennedy's disease. Ten patients (from 7 families) with a genetic diagnosis of Kennedy's disease were screened for the presence of tremor using a standardized clinical protocol and followed up at a neurology outpatient clinic. All index patients were genotyped and showed an expanded allele in the androgen receptor gene. Mean patient age was 37.6 years and mean number of CAG repeats 47 (44-53). Tremor was present in 8 (80%) patients and was predominantly postural hand tremor. Alcohol responsiveness was detected in 7 (88%) patients with tremor, who all responded well to treatment with a β-blocker (propranolol). Tremor is a common feature in patients with Kennedy's disease and has characteristics similar to those of essential tremor.

  11. Treatment of resting tremor by beta-adrenergic blockade.

    PubMed

    Foster, N L; Newman, R P; LeWitt, P A; Gillespie, M M; Chase, T N

    1984-10-01

    The effect of nadolol, a peripherally acting beta-adrenergic blocker, on resting tremor was examined in eight patients with idiopathic Parkinson's disease. With the use of a double-blind, placebo-controlled study of crossover design, patients received 80 to 320 mg of nadolol for 6 weeks while continuing their previous treatment regimen. Accelerometer readings showed a progressive reduction in tremor amplitude, but no change in tremor frequency, with increasing nadolol dosage. Maximum benefit was achieved at 240 mg, when resting tremor improved 50% (p less than 0.01). Physician ratings confirmed these findings. The results suggest that response to beta-adrenergic blockade may not be limited to postural or intention tremor and that such agents may not reliably differentiate between the tremor of Parkinson's disease and essential tremor.

  12. Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias

    PubMed Central

    Gan, Shi-Rui; Wang, Jie; Figueroa, Karla P.; Pulst, Stefan M.; Tomishon, Darya; Lee, Danielle; Perlman, Susan; Wilmot, George; Gomez, Christopher M.; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G.; Ying, Sarah H.; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D.; Xia, Guangbin; Subramony, S. H.; Ashizawa, Tetsuo; Kuo, Sheng-Han

    2017-01-01

    Background Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. Methods We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. Results Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = –0.91, p < 0.001; SCA6, β = –1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = –1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = –0.40, p = 0.032). Discussion Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor. PMID:29057148

  13. Tremor Detection Using Parametric and Non-Parametric Spectral Estimation Methods: A Comparison with Clinical Assessment

    PubMed Central

    Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.

    2016-01-01

    In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration (High Freq) performed similarly to non-parametric methods, but had the highest recall values, suggesting that this method could be employed for automatic tremor detection. PMID:27258018

  14. Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias.

    PubMed

    Gan, Shi-Rui; Wang, Jie; Figueroa, Karla P; Pulst, Stefan M; Tomishon, Darya; Lee, Danielle; Perlman, Susan; Wilmot, George; Gomez, Christopher M; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G; Ying, Sarah H; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D; Xia, Guangbin; Subramony, S H; Ashizawa, Tetsuo; Kuo, Sheng-Han

    2017-01-01

    Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = -0.91, p < 0.001; SCA6, β = -1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = -1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = -0.40, p = 0.032). Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor.

  15. Exploring the effect of electrical muscle stimulation as a novel treatment of intractable tremor in Parkinson's disease.

    PubMed

    Jitkritsadakul, Onanong; Thanawattano, Chusak; Anan, Chanawat; Bhidayasiri, Roongroj

    2015-11-15

    As the pathophysiology of tremor in Parkinson disease (PD) involves a complex interaction between central and peripheral mechanisms, we propose that modulation of peripheral reflex mechanism by electrical muscle stimulation (EMS) may improve tremor temporarily. To determine the efficacy of EMS as a treatment for drug resistant tremor in PD patients. This study was a single-blinded, quasi-experimental study involving 34 PD patients with classic resting tremor as confirmed by tremor analysis. The EMS was given at 50Hz over the abductor pollicis brevis and interrosseus muscles for 10s with identified tremor parameters before and during stimulation as primary outcomes. Compared to before stimulation, we observed a significant reduction in the root mean square (RMS) of the angular velocity (p<0.001) and peak magnitude (p<0.001) of resting tremor while tremor frequency (p=0.126) and dispersion (p=0.284) remained unchanged during stimulation. The UPDRS tremor score decreased from 10.59 (SD=1.74) before stimulation to 8.85 (SD=2.19) during stimulation (p<0.001). The average percentage of improvement of the peak magnitude and RMS angular velocity was 49.57% (SD=38.89) and 43.81% (SD=33.15) respectively. 70.6% and 61.8% of patients experienced at least 30% tremor attenuation as calculated from the peak magnitude and RMS angular velocity respectively. Our study demonstrated the efficacy of EMS in temporarily improving resting tremor in medically intractable PD patients. Although tremor severity decreased, they were not completely eliminated and continued with a similar frequency, thus demonstrating the role of peripheral reflex mechanism in the modulation of tremor, but not as a generator. EMS should be further explored as a possible therapeutic intervention for tremor in PD. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Characterizing Orthostatic Tremor Using a Smartphone Application.

    PubMed

    Balachandar, Arjun; Fasano, Alfonso

    2017-01-01

    Orthostatic tremor is one of the few tremor conditions requiring an electromyogram for definitive diagnosis since leg tremor might not be visible to the naked eye. An iOS application (iSeismometer, ObjectGraph LLC, New York) using an Apple iPhone 5 (Cupertino, CA, USA) inserted into the patient's sock detected a tremor with a frequency of 16.4 Hz on both legs. The rapid and straightforward accelerometer-based recordings accomplished in this patient demonstrate the ease with which quantitative analysis of orthostatic tremor can be conducted and, importantly, demonstrates the potential application of this approach in the assessment of any lower limb tremor.

  17. Kinetic Tremor

    PubMed Central

    Louis, Elan D.

    2007-01-01

    Tremor is among the acute effects of nicotine exposure. Published studies have focused on smoking-related postural (static) hand tremor rather than kinetic tremor (tremor during hand use), and gender differences in smoking-related tremor have not been examined. In a group of adults who were sampled from a population (mean ± SD = 65.7 ± 11.5 years, range = 18 - 92 years), the investigator assessed whether the severity of postural and kinetic tremors differed in smokers versus non-smokers, and whether this difference was influenced by gender. Twenty-seven (9.9%) of 273 subjects were current smokers. Greater tremor was observed in smokers than non-smokers during a variety of activities (drawing a spiral, using a spoon, finger-nose-finger maneuver, all p < 0.05) and smokers had a higher total tremor score than non-smokers (5.15 ± 3.06 vs. 3.41 ± 2.88, p < 0.01), even after adjusting for age, caffeine intake and other potential confounding factors. The difference between smokers and non-smokers in terms of hand tremor was more apparent in women than in men. In women, the number of cigarettes smoked on the day of testing was weakly correlated with the total tremor score (r = 0.17, p = 0.03). In summary, smokers had more kinetic hand tremor than non-smokers. This difference between smokers and non-smokers was more apparent in women than in men. These results suggest that smoking habits should be considered carefully in order to avoid over- or underestimating the effects of occupational and non-occupational exposures to other tremor-producing neurotoxins. PMID:17267044

  18. Re-emergent tremor in Parkinson's disease.

    PubMed

    Belvisi, Daniele; Conte, Antonella; Bologna, Matteo; Bloise, Maria Carmela; Suppa, Antonio; Formica, Alessandra; Costanzo, Matteo; Cardone, Pierluigi; Fabbrini, Giovanni; Berardelli, Alfredo

    2017-03-01

    Re-emergent tremor (RET) is a postural tremor that appears after a variable delay in patients with Parkinson's disease (PD). The aim of the present study was to evaluate the occurrence and the clinical characteristics of RET in a population of patients with PD. We consecutively assessed 210 patients with PD. We collected the patients' demographic and clinical data. RET was clinically characterized in terms of latency, severity and body side affected. We also investigated a possible relationship with motor and non-motor symptoms and differences in the clinical features in patients with and without RET. RET was present in 42/210 patients. The mean latency of RET was 9.20 ± 6.8 seconds. Mean severity was 2.4 ± 1.9. RET was unilateral in 21 patients. Patients with RET had less severe speech, posture and gait disorders and upper limb and global bradykinesia than patients without RET. Similar findings were observed when we compared patients with RET with patients with tremor at rest associated with action tremor, patients with isolated action tremor and patients with no tremor. By contrast, patients with RET tremor did not clinically differ from those with isolated tremor at rest. Our results suggest that patients with RET and patients with isolated tremor at rest represent the same clinical subtype, whereas patients with action tremor (whether isolated or associated with tremor at rest) might belong to a distinct subtype that is clinically worse. Patients with RET represents a benign subtype of PD, even within the tremor-dominant phenotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An Ambulatory Tremor Score for Parkinson's Disease.

    PubMed

    Braybrook, Michelle; O'Connor, Sam; Churchward, Philip; Perera, Thushara; Farzanehfar, Parisa; Horne, Malcolm

    2016-10-19

    While tremor in Parkinson's Disease (PD) can be characterised in the consulting room, its relationship to treatment and fluctuations can be clinically helpful. To develop an ambulatory assessment of tremor of PD. Accelerometry data was collected using the Parkinson's KinetiGraph System (PKG, Global Kinetics). An algorithm was developed, which could successfully distinguish been subjects with a resting or postural tremor that involved the wrist whose frequency was greater than 3 Hz. Percent of time that tremor was present (PTT) between 09 : 00 and 18 : 00 was calculated. This algorithm was applied to 85 people with PD who had been assessed clinically for the presence and nature of tremor. The Sensitivity and Selectivity of a PTT ≥0.8% was 92.5% and 92.9% in identifying tremor, providing that the tremor was not a fine kinetic and postural tremor or was not in the upper limb. A PTT >1% provide high likely hood of the presence of clinical meaningful tremor. These cut-offs were retested on a second cohort (n = 87) with a similar outcome. The Sensitivity and Selectivity of the combined group was 88.7% and 89.5% respectively. Using the PTT, 50% of 22 newly diagnosed patients had a PTT >1.0%.The PKG's simultaneous bradykinesia scores was used to find a threshold for the emergence of tremor. Tremor produced artefactual increase in the PKG's dyskinesia score in 1% of this sample. We propose this as a means of assessing the presence of tremor and its relationship to bradykinesia.

  20. Classification of involuntary movements in dogs: Tremors and twitches.

    PubMed

    Lowrie, Mark; Garosi, Laurent

    2016-08-01

    This review focuses on important new findings in the field of involuntary movements (IM) in dogs and illustrates the importance of developing a clear classification tool for diagnosing tremor and twitches. Developments over the last decade have changed our understanding of IM and highlight several caveats in the current tremor classification. Given the ambiguous association between tremor phenomenology and tremor aetiology, a more cautious definition of tremors based on clinical assessment is required. An algorithm for the characterisation of tremors is presented herein. The classification of tremors is based on the distinction between tremors that occur at rest and tremors that are action-related; tremors associated with action are divided into postural or kinetic. Controversial issues are outlined and thus reflect the open questions that are yet to be answered from an evidence base of peer-reviewed published literature. Peripheral nerve hyper-excitability (PNH; cramps and twitches) may manifest as fasciculations, myokymia, neuromyotonia, cramps, tetany and tetanus. It is anticipated that as we learn more about the aetiology and pathogenesis of IMs, future revisions to the classification will be needed. It is therefore the intent of this work to stimulate discussions and thus contribute to the development of IM research. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. [Clinical subtypes of essential tremor and their electrophysiological and pharmacological differences].

    PubMed

    Koguchi, Y; Nakajima, M; Kawamura, M; Hirayama, K

    1995-02-01

    We divided 19 patients with essential tremor into two subtypes according to clinical characteristics of the tremor. Ten patients had pure postural tremor distributed in the hand(s), head, and face (group A). Nine patients had tremor extending to the voice or leg(s), associated with resting tremor and/or hyperkinesie volitionnelle of the hand(s) (group B). Their ages, the age of onset, and the duration of illness were not different between the two groups. Electrophysiologically, the tremor of group A patients had higher frequencies than that of group B patients, and had synchronized activities for antagonistic muscles. Four of group B patients had reciprocal antagonistic activities of the tremor. Inactive phase of tremor induced by an electrically-evoked muscle twitch was invariably within the range of the physiological silent period for group A patients, and prolonged beyond the range for four of group B patients. Pharmacologically, 78% of group A patients responded well to beta-blocker, which was effective for 25% of group B patients. Sixty per cent of beta-blocker-resistant group B patients responded well to phenobarbital. In conclusion, a peripheral mechanism, presumably beta-adrenergic drive, is important for the tremor in group A patients, while central pathogenic mechanisms are more important for the tremor of group B patients.

  2. Cognitive Stress Reduces the Effect of Levodopa on Parkinson's Resting Tremor.

    PubMed

    Zach, Heidemarie; Dirkx, Michiel F; Pasman, Jaco W; Bloem, Bastiaan R; Helmich, Rick C

    2017-03-01

    Resting tremor in Parkinson's disease (PD) increases markedly during cognitive stress. Dopamine depletion in the basal ganglia is involved in the pathophysiology of resting tremor, but it is unclear whether this contribution is altered under cognitive stress. We test the hypothesis that cognitive stress modulates the levodopa effect on resting tremor. Tremulous PD patients (n = 69) were measured in two treatment conditions (OFF vs. ON levodopa) and in two behavioral contexts (rest vs. cognitive co-activation). Using accelerometry, we tested the effect of both interventions on tremor intensity and tremor variability. Levodopa significantly reduced tremor intensity (across behavioral contexts), while cognitive co-activation increased it (across treatment conditions). Crucially, the levodopa effect was significantly smaller during cognitive co-activation than during rest. Resting tremor variability increased after levodopa and decreased during cognitive co-activation. Cognitive stress reduces the levodopa effect on Parkinson's tremor. This effect may be explained by a stress-related depletion of dopamine in the basal ganglia motor circuit, by stress-related involvement of nondopaminergic mechanisms in tremor (e.g., noradrenaline), or both. Targeting these mechanisms may open new windows for treatment. Clinical tremor assessments under evoked cognitive stress (e.g., counting tasks) may avoid overestimation of treatment effects in real life. © 2017 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.

  3. Impaired eye blink classical conditioning distinguishes dystonic patients with and without tremor.

    PubMed

    Antelmi, E; Di Stasio, F; Rocchi, L; Erro, R; Liguori, R; Ganos, C; Brugger, F; Teo, J; Berardelli, A; Rothwell, J; Bhatia, K P

    2016-10-01

    Tremor is frequently associated with dystonia, but its pathophysiology is still unclear. Dysfunctions of cerebellar circuits are known to play a role in the pathophysiology of action-induced tremors, and cerebellar impairment has frequently been associated to dystonia. However, a link between dystonic tremor and cerebellar abnormalities has not been demonstrated so far. Twenty-five patients with idiopathic isolated cervical dystonia, with and without tremor, were enrolled. We studied the excitability of inhibitory circuits in the brainstem by measuring the R2 blink reflex recovery cycle (BRC) and implicit learning mediated by the cerebellum by means of eyeblink classical conditioning (EBCC). Results were compared with those obtained in a group of age-matched healthy subjects (HS). Statistical analysis did not disclose any significant clinical differences among dystonic patients with and without tremor. Patients with dystonia (regardless of the presence of tremor) showed decreased inhibition of R2 blink reflex by conditioning pulses compared with HS. Patients with dystonic tremor showed a decreased number of conditioned responses in the EBCC paradigm compared to HS and dystonic patients without tremor. The present data show that cerebellar impairment segregates with the presence of tremor in patients with dystonia, suggesting that the cerebellum might have a role in the occurrence of dystonic tremor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Electrophysiological characteristics of task-specific tremor in 22 instrumentalists.

    PubMed

    Lee, André; Tominaga, Kenta; Furuya, Shinichi; Miyazaki, Fumio; Altenmüller, Eckart

    2015-03-01

    Our aim was to address three characteristics of task-specific tremor in musicians (TSTM): First, we quantified muscular activity of flexor and extensor muscles, of coactivation as well as tremor acceleration. Second, we compared muscular activity between task-dependent and position-dependent tremor. Third, we investigated, whether there is an overflow of muscular activity to muscles adjacent to the affected muscles in TSTM. Tremor acceleration and muscular activity were measured in the affected muscles and the muscles adjacent to the affected muscles in 22 patients aged 51.5 ± 11.4 years with a task-specific tremor. We assessed power of muscular oscillatory activity and calculated the coherence between EMG activity of affected muscles and tremor acceleration as well as between adjacent muscles and tremor acceleration. This was done for task-dependent and position-dependent tremor. We found the highest power and coherence of muscular oscillatory activity in the frequency range of 3-8 Hz for affected and adjacent muscles. No difference was found between task-dependent and position-dependent tremor in neither power nor coherence measures. Our results generalize previous results of a relation between coactivation and tremor among a variety of musicians. Furthermore, we found coherence of adjacent muscles and TSTM. This indicates that overflow exists in TSTM and suggests an association of TST with dystonia.

  5. Quantitative assessment of arm tremor in people with neurological disorders.

    PubMed

    Jeonghee Kim; Parnell, Claire; Wichmann, Thomas; DeWeerth, Stephen P

    2016-08-01

    Abnormal oscillatory movement (i.e. tremor) is usually evaluated with qualitative assessment by clinicians, and quantified with subjective scoring methods. These methods are often inaccurate. We utilized a quantitative and standardized task based on the Fitts' law to assess the performance of arm movement with tremor by controlling a gyration mouse on a computer. The experiment included the center-out tapping (COT) and rectangular track navigation (RTN) tasks. We report the results of a pilot study in which we collected the performance for healthy participants in whom tremor was simulated by imposing oscillatory movements to the arm with a vibration motor. We compared their movement speed and accuracy with and without the artificial "tremor." We found that the artificial tremor significantly affected the path efficiency for both tasks (COT: 56.8 vs. 46.2%, p <; 0.05; RTN: 94.2 vs. 67.4%, p <; 0.05), and we were able to distinguish the presence of tremor. From this result, we expect to quantify severity of tremor and the effectiveness therapy for tremor patients.

  6. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins.

    PubMed

    Mountjoy, Joshu J; Howarth, Jamie D; Orpin, Alan R; Barnes, Philip M; Bowden, David A; Rowden, Ashley A; Schimel, Alexandre C G; Holden, Caroline; Horgan, Huw J; Nodder, Scott D; Patton, Jason R; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim

    2018-03-01

    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year -1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.

  7. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins

    PubMed Central

    Mountjoy, Joshu J.; Howarth, Jamie D.; Orpin, Alan R.; Barnes, Philip M.; Bowden, David A.; Rowden, Ashley A.; Schimel, Alexandre C. G.; Holden, Caroline; Horgan, Huw J.; Nodder, Scott D.; Patton, Jason R.; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim

    2018-01-01

    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean—the ultimate sink—and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude (Mw) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful “canyon flushing” event and turbidity current that traveled >680 km along one of the world’s longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year−1, substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean. PMID:29546245

  8. Tremor in X-linked recessive spinal and bulbar muscular atrophy (Kennedy's disease)

    PubMed Central

    Dias, Francisco A; Munhoz, Renato P; Raskin, Salmo; Werneck, Lineu César; Teive, Hélio A G

    2011-01-01

    OBJECTIVE: To study tremor in patients with X-linked recessive spinobulbar muscular atrophy or Kennedy's disease. METHODS: Ten patients (from 7 families) with a genetic diagnosis of Kennedy's disease were screened for the presence of tremor using a standardized clinical protocol and followed up at a neurology outpatient clinic. All index patients were genotyped and showed an expanded allele in the androgen receptor gene. RESULTS: Mean patient age was 37.6 years and mean number of CAG repeats 47 (44-53). Tremor was present in 8 (80%) patients and was predominantly postural hand tremor. Alcohol responsiveness was detected in 7 (88%) patients with tremor, who all responded well to treatment with a β-blocker (propranolol). CONCLUSION: Tremor is a common feature in patients with Kennedy's disease and has characteristics similar to those of essential tremor. PMID:21808858

  9. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  10. Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor

    PubMed Central

    Dideriksen, Jakob L.; Laine, Christopher M.; Dosen, Strahinja; Muceli, Silvia; Rocon, Eduardo; Pons, José L.; Benito-Leon, Julian; Farina, Dario

    2017-01-01

    Pathological tremors are involuntary oscillatory movements which cannot be fully attenuated using conventional treatments. For this reason, several studies have investigated the use of neuromuscular electrical stimulation for tremor suppression. In a recent study, however, we found that electrical stimulation below the motor threshold also suppressed tremor, indicating involvement of afferent pathways. In this study, we further explored this possibility by systematically investigating how tremor suppression by afferent stimulation depends on the stimulation settings. In this way, we aimed at identifying the optimal stimulation strategy, as well as to elucidate the underlying physiological mechanisms of tremor suppression. Stimulation strategies varying the stimulation intensity and pulse timing were tested in nine tremor patients using either intramuscular or surface stimulation. Significant tremor suppression was observed in six patients (tremor suppression > 75% was observed in three patients) and the average optimal suppression level observed across all subjects was 52%. The efficiency for each stimulation setting, however, varied substantially across patients and it was not possible to identify a single set of stimulation parameters that yielded positive results in all patients. For example, tremor suppression was achieved both with stimulation delivered in an out-of-phase pattern with respect to the tremor, and with random timing of the stimulation. Overall, these results indicate that low-current stimulation of afferent fibers is a promising approach for tremor suppression, but that further research is required to identify how the effect can be maximized in the individual patient. PMID:28420958

  11. Voice Tremor in Parkinson's Disease: An Acoustic Study.

    PubMed

    Gillivan-Murphy, Patricia; Miller, Nick; Carding, Paul

    2018-01-30

    Voice tremor associated with Parkinson disease (PD) has not been characterized. Its relationship with voice disability and disease variables is unknown. This study aimed to evaluate voice tremor in people with PD (pwPD) and a matched control group using acoustic analysis, and to examine correlations with voice disability and disease variables. Acoustic voice tremor analysis was completed on 30 pwPD and 28 age-gender matched controls. Voice disability (Voice Handicap Index), and disease variables of disease duration, Activities of Daily Living (Unified Parkinson's Disease Rating Scale [UPDRS II]), and motor symptoms related to PD (UPDRS III) were examined for relationship with voice tremor measures. Voice tremor was detected acoustically in pwPD and controls with similar frequency. PwPD had a statistically significantly higher rate of amplitude tremor (Hz) than controls (P = 0.001). Rate of amplitude tremor was negatively and significantly correlated with UPDRS III total score (rho -0.509). For pwPD, the magnitude and periodicity of acoustic tremor was higher than for controls without statistical significance. The magnitude of frequency tremor (Mftr%) was positively and significantly correlated with disease duration (rho 0.463). PwPD had higher Voice Handicap Index total, functional, emotional, and physical subscale scores than matched controls (P < 0.001). Voice disability did not correlate significantly with acoustic voice tremor measures. Acoustic analysis enhances understanding of PD voice tremor characteristics, its pathophysiology, and its relationship with voice disability and disease symptomatology. Copyright © 2018 The Voice Foundation. All rights reserved.

  12. Aging, hypertension and physiological tremor: the contribution of the cardioballistic impulse to tremorgenesis in older adults.

    PubMed

    Morrison, Steven; Sosnoff, Jacob J; Heffernan, Kevin S; Jae, Sae Young; Fernhall, Bo

    2013-03-15

    For older adults, an increase in physiological tremor is a common motor feature. This increase is believed to primarily reflect a general decline in function of the neuromuscular system. However, given that tremor is derived from a number of intrinsic sources, age-related changes in other physiological functions like the cardiac system may also negatively alter tremor output. The aim of this study was to examine what impact age and increased cardiac input (hypertension) have on physiological tremor. Heart rate, blood pressure, and postural/resting tremor were recorded in three groups; 1) young, healthy adults, 2) old, normotensive adults, and 3) old, hypertensive adults. The results demonstrated that the old hypertensive adults had greater postural tremor compared to the young healthy individuals. Coherence analysis revealed significant coupling between blood pressure-tremor and between heart rate-tremor for all individuals. The strength of this coupling was greatest for the older, hypertensive individuals. Together these results show that, for older adults, the combined effects of age and cardiac disease have the greatest impact on physiological tremor rather than any single factor alone. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Vocal tract characteristics in Parkinson's disease.

    PubMed

    Gillivan-Murphy, Patricia; Carding, Paul; Miller, Nick

    2016-06-01

    Voice tremor is strongly linked to the Parkinson's disease speech-voice symptom complex. Little is known about the underlying anatomic source(s) of voice tremor when it occurs. We review recent literature addressing this issue. Additionally we report findings from a study we conducted employing rating of vocal tract structures viewed using nasolaryngoscopy during vocal and nonspeech tasks. In Parkinson's disease, using laryngeal electromyography, tremor has not been identified in muscles in the vocal folds even when perceived auditorily. Preliminary findings using nasolaryngoscopy suggest that Parkinson's disease voice tremor is not associated with the vocal folds and may involve the palate, the global larynx, and the arytenoids. Tremor in the vertical larynx on /a/, and tremor in the arytenoid cartilages on /s/ differentiated patients with Parkinson's disease from neurologically healthy controls. Visual reliable detection of tremor when it is absent or borderline present, is challenging. Parkinson's disease voice tremor is likely to be related to oscillatory movement in structures across the vocal tract rather than just the vocal folds. To progress clinical practice, more refined tools for the visual rating of tremor would be beneficial. How far voice tremor represents a functionally significant factor for speakers would also add to the literature.

  14. Quality of life and its determinants in essential tremor.

    PubMed

    Chandran, Vijay; Pal, Pramod Kumar

    2013-01-01

    Despite Essential Tremor (ET) being the commonest movement disorder, there are few studies on the quality of life (QOL) in patients with ET, with most studies employing generic questionnaires. We studied QOL in 50 patients with ET attending the outpatient of a hospital using the Quality of life in Essential Tremor (QUEST) questionnaire a disease specific QOL instrument. The severity of tremor was assessed using a modified Fahn Tolosa Marin tremor rating scale (mFTMRS), co morbid anxiety and depression were studied using the Hamilton Anxiety (HARS) and Depression (HDRS) rating scales respectively. We also analyzed the influence of gender, age at presentation, age of onset, duration of tremor, distribution of tremor, family history and use of medications on the QOL. The mean age of onset of tremor was 32.2 ± 18.9 years, mean duration of tremor was 8.4 ± 10.0 years, mean QUEST summary index (QSI) was 24.2 ± 19.2; mean scores in each of the domains were as follows--physical 29.3 ± 26.7, psychosocial 36.4 ± 28.7, communication 23.9 ± 36.9, work & finance 23.5 ± 29.9, hobbies 6.8 ± 17.3. The QSI had significant positive correlation with the mFTMRS, HARS and HDRS. Gender, age at presentation, age of onset, duration of tremor, distribution of tremor, family history and use of medication did not influence the QOL. Psychosocial aspects are important in determining the QOL in patients with ET. Tremor severity, co morbid anxiety and depression are associated with a lower QOL whereas tremor characteristics like age of onset, duration, distribution do not influence the QOL. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Bilateral cerebellar activation in unilaterally challenged essential tremor.

    PubMed

    Broersma, Marja; van der Stouwe, Anna M M; Buijink, Arthur W G; de Jong, Bauke M; Groot, Paul F C; Speelman, Johannes D; Tijssen, Marina A J; van Rootselaar, Anne-Fleur; Maurits, Natasha M

    2016-01-01

    Essential tremor (ET) is one of the most common hyperkinetic movement disorders. Previous research into the pathophysiology of ET suggested underlying cerebellar abnormalities. In this study, we added electromyography as an index of tremor intensity to functional Magnetic Resonance Imaging (EMG-fMRI) to study a group of ET patients selected according to strict criteria to achieve maximal homogeneity. With this approach we expected to improve upon the localization of the bilateral cerebellar abnormalities found in earlier fMRI studies. We included 21 propranolol sensitive patients, who were not using other tremor medication, with a definite diagnosis of ET defined by the Tremor Investigation Group. Simultaneous EMG-fMRI recordings were performed while patients were off tremor medication. Patients performed unilateral right hand and arm extension, inducing tremor, alternated with relaxation (rest). Twenty-one healthy, age- and sex-matched participants mimicked tremor during right arm extension. EMG power variability at the individual tremor frequency as a measure of tremor intensity variability was used as a regressor, mathematically independent of the block regressor, in the general linear model used for fMRI analysis, to find specific tremor-related activations. Block-related activations were found in the classical upper-limb motor network, both for ET patients and healthy participants in motor, premotor and supplementary motor areas. In ET patients, we found tremor-related activations bilaterally in the cerebellum: in left lobules V, VI, VIIb and IX and in right lobules V, VI, VIIIa and b, and in the brainstem. In healthy controls we found simulated tremor-related activations in right cerebellar lobule V. Our results expand on previous findings of bilateral cerebellar involvement in ET. We have identified specific areas in the bilateral somatomotor regions of the cerebellum: lobules V, VI and VIII.

  16. The long-term outcome of orthostatic tremor.

    PubMed

    Ganos, Christos; Maugest, Lucie; Apartis, Emmanuelle; Gasca-Salas, Carmen; Cáceres-Redondo, María T; Erro, Roberto; Navalpotro-Gómez, Irene; Batla, Amit; Antelmi, Elena; Degos, Bertrand; Roze, Emmanuel; Welter, Marie-Laure; Mestre, Tiago; Palomar, Francisco J; Isayama, Reina; Chen, Robert; Cordivari, Carla; Mir, Pablo; Lang, Anthony E; Fox, Susan H; Bhatia, Kailash P; Vidailhet, Marie

    2016-02-01

    Orthostatic tremor is a rare condition characterised by high-frequency tremor that appears on standing. Although the essential clinical features of orthostatic tremor are well established, little is known about the natural progression of the disorder. We report the long-term outcome based on the largest multicentre cohort of patients with orthostatic tremor. Clinical information of 68 patients with clinical and electrophysiological diagnosis of orthostatic tremor and a minimum follow-up of 5 years is presented. There was a clear female preponderance (76.5%) with a mean age of onset at 54 years. Median follow-up was 6 years (range 5-25). On diagnosis, 86.8% of patients presented with isolated orthostatic tremor and 13.2% had additional neurological features. At follow-up, seven patients who initially had isolated orthostatic tremor later developed further neurological signs. A total 79.4% of patients reported worsening of orthostatic tremor symptoms. These patients had significantly longer symptom duration than those without reported worsening (median 15.5 vs 10.5 years, respectively; p=0.005). There was no change in orthostatic tremor frequency over time. Structural imaging was largely unremarkable and dopaminergic neuroimaging (DaTSCAN) was normal in 18/19 cases. Pharmacological treatments were disappointing. Two patients were treated surgically and showed improvement. Orthostatic tremor is a progressive disorder with increased disability although tremor frequency is unchanged over time. In most cases, orthostatic tremor represents an isolated syndrome. Drug treatments are unsatisfactory but surgery may hold promise. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Temporal Variation of Tectonic Tremor Activity Associated with Nearby Earthquakes

    NASA Astrophysics Data System (ADS)

    Chao, K.; Van der Lee, S.; Hsu, Y. J.; Pu, H. C.

    2017-12-01

    Tectonic tremor and slow slip events, located downdip from the seismogenic zone, hold the key to recurring patterns of typical earthquakes. Several findings of slow aseismic slip during the prenucletion processes of nearby earthquakes have provided new insight into the study of stress transform of slow earthquakes in fault zones prior to megathrust earthquakes. However, how tectonic tremor is associated with the occurrence of nearby earthquakes remains unclear. To enhance our understanding of the stress interaction between tremor and earthquakes, we developed an algorithm for the automatic detection and location of tectonic tremor in the collisional tectonic environment in Taiwan. Our analysis of a three-year data set indicates a short-term increase in the tremor rate starting at 19 days before the 2010 ML6.4 Jiashian main shock (Chao et al., JGR, 2017). Around the time when the tremor rate began to rise, one GPS station recorded a flip in its direction of motion. We hypothesize that tremor is driven by a slow-slip event that preceded the occurrence of the shallower nearby main shock, even though the inferred slip is too small to be observed by all GPS stations. To better quantify what the necessary condition for tremor to response to nearby earthquakes is, we obtained a 13-year ambient tremor catalog from 2004 to 2016 in the same region. We examine the spatiotemporal relationship between tremor and 37 ML>=5.0 (seven events with ML>=6.0) nearby earthquakes located within 0.5 degrees to the active tremor sources. The findings from this study can enhance our understanding of the interaction among tremor, slow slip, and nearby earthquakes in the high seismic hazard regions.

  18. Dramatic response to levetiracetam in post-ischaemic Holmes’ tremor

    PubMed Central

    Striano, P; Elefante, Andrea; Coppola, Antonietta; Tortora, Fabio; Zara, Federico; Minetti, Carlo

    2009-01-01

    Holmes’ tremor refers to an unusual combination of rest, postural and kinetic tremor of extremities. Common causes of Holmes’ tremor include stroke, trauma, vascular malformations and multiple sclerosis, with lesions involving the thalamus, brain stem or cerebellum. Although some drugs (eg, levodopa and dopaminergic drugs, clonazepam and propranolol) have been occasionally reported to give some benefit, medical treatment of Holmes’ tremor is unsatisfactory, and many patients require thalamic surgery to achieve satisfactory control. We report a patient in whom post-ischaemic Holmes’ tremor dramatically responded to levetiracetam treatment. PMID:21686707

  19. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    PubMed

    Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A

    2014-01-01

    Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico-basal ganglia-thalamocortical circuits play a role in the modulation of the serial correlations of timing fluctuations exhibited in skilled musical performance.

  20. ETS and tidal stressing: Fault weakening after main slip pulse

    NASA Astrophysics Data System (ADS)

    Houston, H.

    2013-12-01

    Time-varying stresses from solid Earth tides and ocean loading influence slow slip (Hawthorne and Rubin, 2010) and, consequently, the frequency of occurrence and intensity of tremor during ETS episodes (Rubinstein et al., 2008). This relationship can illuminate changes in the mechanical response of the rupture surfaces(s) during slip in ETS. I compare the influence of tidal loading when and after the propagating ETS slip front (estimated by tremor density in time) ruptures the fault at a given spot. Using estimates of slip fronts that I derived from tremor locations, I divide ETS tremor into two groups: that occurring within a day of the start of the inferred slip front and that occurring over several days thereafter. The tremor catalog used contains 50K waveform cross-correlation locations of tremor in 7 large ETS in northern Cascadia between 2005 and 2012. I calculate normal, shear and volumetric stresses due to the Earth and ocean tides at numerous locations on the inferred rupture plane of the ETS following the method of Hawthorne and Rubin (2010). The Coulomb stress increment at each tremor time and location is compared with tremor occurrence for the two groups of tremor. Unreasonable results appear if the effective frictional coefficient mu > 0.2, and results are most 'reasonable' when mu is very near or equal to zero. Following passage of the main slip pulse, tremor generation is notably more sensitive to tidal stressing. One kPa of encouraging tidal Coulomb stress boosts the occurrence of tremor after the main slip pulse by about 50% above the average value, while the same amount of discouraging stress decreases the occurrence of such tremor by a similar factor. The greater the encouraging or discouraging stress, the greater the effect. In contrast, tremor in the main slip pulse is much less affected by positive or negative tidal stresses. I interpret the greater sensitivity to tidal stressing of the tremor after the main slip pulse as a measure of the weakening of the fault plane following its initial rupture. Considering up- and down-dip sensitivities to tidal stress, tremor generation on the up-dip region is affected roughly 50% more by both positive and negative tidal stresses than tremor down-dip. Furthermore, for the down-dip tremor, there is less contrast in sensitivity to stress between the tremor at the main slip front and the later tremor, i.e., the fault downdip is both less sensitive to tidal stress and weakens less due to the rupture. These results are consistent with the timing and geometry of Rapid Tremor Reversals, which also indicate weakening of the fault after the main slip front has passed through a region (Houston et al., 2011). RTRs occur on updip parts of the fault, after the main slip front, and at times of encouraging tidal stress (Thomas et al., 2013).

  1. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor

    NASA Astrophysics Data System (ADS)

    Dideriksen, Jakob L.; Gallego, Juan A.; Holobar, Ales; Rocon, Eduardo; Pons, Jose L.; Farina, Dario

    2015-08-01

    Objective. Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Approach. Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson’s disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. Main results. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. Signficance. The results indicate that the neural drive in pathological tremor is compatible with one central network providing neural oscillations at the tremor frequency. Moreover, the regularity of this neural oscillation varies across tremor pathologies, making the relative amplitude of tremor harmonics a potential biomarker for diagnostic use.

  2. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor.

    PubMed

    Dideriksen, Jakob L; Gallego, Juan A; Holobar, Ales; Rocon, Eduardo; Pons, Jose L; Farina, Dario

    2015-08-01

    Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson's disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. SIGNFICANCE: The results indicate that the neural drive in pathological tremor is compatible with one central network providing neural oscillations at the tremor frequency. Moreover, the regularity of this neural oscillation varies across tremor pathologies, making the relative amplitude of tremor harmonics a potential biomarker for diagnostic use.

  3. Monochromatic infrasonic tremor driven by persistent degassing and convection at Villarrica Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; Marchetti, E.; Bonadonna, C.; Harris, A. J. L.; Pioli, L.; Ulivieri, G.

    2010-08-01

    Infrasonic data collected at Villarrica volcano (Chile) in March 2009 show a sustained, continuous, infrasonic oscillation (tremor) with a monochromatic low frequency content at ˜0.75 Hz. This tremor is extremely stable in time both at the summit and at a distal (˜4 km) small aperture array. Infrasonic tremor is characterized by discrete high amplitude bursts with a cyclic recurrence time of ˜40 s and is well correlated (0.93) with seismic tremor. These new data are compared with previous datasets collected in 2002 and 2004 during different levels of activity. All data show the same persistent infrasonic tremor and have the same strong correlation with seismic tremor. The stability and correlation of infrasonic and seismic tremor indicate the existence of a sustained and continuous process, which we suggest is related to the gravity-driven bubble column dynamics responsible for conduit convection.

  4. Quantification of sound instability in embouchure tremor based on the time-varying fundamental frequency.

    PubMed

    Lee, André; Voget, Jakob; Furuya, Shinichi; Morise, Masanori; Altenmüller, Eckart

    2016-05-01

    Task-specific tremor in musicians is an involuntary oscillating muscular activity mostly of the hand or the embouchure, which predominantly occurs while playing the instrument. In contrast to arm or hand tremors, which have been examined and objectified based on movement kinematics and muscular activity, embouchure tremor has not yet been investigated. To quantify and describe embouchure tremor we analysed sound production and investigated the fluctuation of the time-varying fundamental frequency of sustained notes. A comparison between patients with embouchure tremor and healthy controls showed a significantly higher fluctuation of the fundamental frequency for the patients in the high pitch with a tremor frequency range between 3 and 8 Hz. The present findings firstly provide further information about a scarcely described movement disorder and secondly further evaluate a new quantification method for embouchure tremor, which has recently been established for embouchure dystonia.

  5. Automated detection and characterization of harmonic tremor in continuous seismic data

    NASA Astrophysics Data System (ADS)

    Roman, Diana C.

    2017-06-01

    Harmonic tremor is a common feature of volcanic, hydrothermal, and ice sheet seismicity and is thus an important proxy for monitoring changes in these systems. However, no automated methods for detecting harmonic tremor currently exist. Because harmonic tremor shares characteristics with speech and music, digital signal processing techniques for analyzing these signals can be adapted. I develop a novel pitch-detection-based algorithm to automatically identify occurrences of harmonic tremor and characterize their frequency content. The algorithm is applied to seismic data from Popocatepetl Volcano, Mexico, and benchmarked against a monthlong manually detected catalog of harmonic tremor events. During a period of heightened eruptive activity from December 2014 to May 2015, the algorithm detects 1465 min of harmonic tremor, which generally precede periods of heightened explosive activity. These results demonstrate the algorithm's ability to accurately characterize harmonic tremor while highlighting the need for additional work to understand its causes and implications at restless volcanoes.

  6. A new method for the measurement of tremor at rest.

    PubMed

    Comby, B; Chevalier, G; Bouchoucha, M

    1992-01-01

    This paper establishes a standard method for measuring human tremor. The electronic instrument described is an application of this method. It solves the need for an effective and simple tremor-measuring instrument fit for wide distribution. This instrument consists of a piezoelectric accelerometer connected to an electronic circuit and to an LCD display. The signal is also analysed by a computer after accelerometer analogic/digital conversion in order to test the method. The tremor of 1079 healthy subjects was studied. Spectral analysis showed frequency peaks between 5.85 and 8.80 Hz. Chronic cigarette-smoking and coffee drinking did not modify the tremor as compared with controls. Relaxation session decreased tremor significantly in healthy subjects (P less than 0.01). This new tremor-measuring method opens new horizons in the understanding of physiological and pathological tremor, stress, anxiety and in the means to avoid or compensate them.

  7. Spike shape analysis of electromyography for parkinsonian tremor evaluation.

    PubMed

    Marusiak, Jarosław; Andrzejewska, Renata; Świercz, Dominika; Kisiel-Sajewicz, Katarzyna; Jaskólska, Anna; Jaskólski, Artur

    2015-12-01

    Standard electromyography (EMG) parameters have limited utility for evaluation of Parkinson disease (PD) tremor. Spike shape analysis (SSA) EMG parameters are more sensitive than standard EMG parameters for studying motor control mechanisms in healthy subjects. SSA of EMG has not been used to assess parkinsonian tremor. This study assessed the utility of SSA and standard time and frequency analysis for electromyographic evaluation of PD-related resting tremor. We analyzed 1-s periods of EMG recordings to detect nontremor and tremor signals in relaxed biceps brachii muscle of seven mild to moderate PD patients. SSA revealed higher mean spike amplitude, duration, and slope and lower mean spike frequency in tremor signals than in nontremor signals. Standard EMG parameters (root mean square, median, and mean frequency) did not show differences between the tremor and nontremor signals. SSA of EMG data is a sensitive method for parkinsonian tremor evaluation. © 2015 Wiley Periodicals, Inc.

  8. Improvement of mouse controlling in Essential tremor by a tremor filter: A case report.

    PubMed

    López-Blanco, Roberto; Méndez-Guerrero, Antonio; Velasco, Miguel A

    2018-07-15

    The interaction with electronic devices is crucial in our technological society. Hand kinetic tremor complicates mouse driving in Essential tremor patients. To solve this issue some technological solutions are available and accessible online. We present a 71-year-old patient with prominent mouse controlling tremor who improved with one of these systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation.

    PubMed

    Hao, Man-Zhao; Xu, Shao-Qin; Hu, Zi-Xiang; Xu, Fu-Liang; Niu, Chuan-Xin M; Xiao, Qin; Lan, Ning

    2017-07-14

    Recent study suggests that tremor signals are transmitted by way of multi-synaptic corticospinal pathway. Neurophysiological studies have also demonstrated that cutaneous afferents exert potent inhibition to descending motor commands by way of spinal interneurons. We hypothesize in this study that cutaneous afferents could also affect the transmission of tremor signals, thus, inhibit tremor in patients with PD. We tested this hypothesis by activating cutaneous afferents in the dorsal hand skin innervated by superficial radial nerve using transcutaneous electrical nerve stimulation (TENS). Eight patients with PD having tremor dominant symptom were recruited to participate in this study using a consistent experimental protocol for tremor inhibition. Resting tremor and electromyogram (EMG) of muscles in the upper extremity of these subjects with PD were recorded, while surface stimulation was applied to the dorsal skin of the hand. Fifteen seconds of data were recorded for 5 s prior to, during and post stimulation. Power spectrum densities (PSDs) of tremor and EMG signals were computed for each data segment. The peak values of PSDs in three data segments were compared to detect evidence of tremor inhibition. At stimulation intensity from 1.5 to 1.75 times of radiating sensation threshold, apparent suppressions of tremor at wrist, forearm and upper arm and in the EMGs were observed immediately at the onset of stimulation. After termination of stimulation, tremor and rhythmic EMG bursts reemerged gradually. Statistical analysis of peak spectral amplitudes showed a significant difference in joint tremors and EMGs during and prior to stimulation in all 8 subjects with PD. The average percentage of suppression was 61.56% in tremor across all joints of all subjects, and 47.97% in EMG of all muscles. The suppression appeared to occur mainly in distal joints and muscles. There was a slight, but inconsistent effect on tremor frequency in the 8 patients with PD tested. Our results provide direct evidence that tremor in the upper extremity of patients with PD can be inhibited to a large extent with evoked cutaneous reflexes via surface stimulation of the dorsal hand skin area innervated by the superficial radial nerve.

  10. Shallow outgassing changes disrupt steady lava lake activity, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Swanson, D. A.; Lev, E.

    2015-12-01

    Persistent lava lakes are a testament to sustained magma supply and outgassing in basaltic systems, and the surface activity of lava lakes has been used to infer processes in the underlying magmatic system. At Kilauea Volcano, Hawai`i, the lava lake in Halema`uma`u Crater has been closely studied for several years with webcam imagery, geophysical, petrological and gas emission techniques. The lava lake in Halema`uma`u is now the second largest on Earth, and provides an unprecedented opportunity for detailed observations of lava lake outgassing processes. We observe that steady activity is characterized by continuous southward motion of the lake's surface and slow changes in lava level, seismic tremor and gas emissions. This normal, steady activity can be abruptly interrupted by the appearance of spattering - sometimes triggered by rockfalls - on the lake surface, which abruptly shifts the lake surface motion, lava level and gas emissions to a more variable, unstable regime. The lake commonly alternates between this a) normal, steady activity and b) unstable behavior several times per day. The spattering represents outgassing of shallowly accumulated gas in the lake. Therefore, although steady lava lake behavior at Halema`uma`u may be deeply driven by upwelling of magma, we argue that the sporadic interruptions to this behavior are the result of shallow processes occurring near the lake surface. These observations provide a cautionary note that some lava lake behavior is not representative of deep-seated processes. This behavior also highlights the complex and dynamic nature of lava lake activity.

  11. Tremor in the Elderly: Essential and Aging-Related Tremor

    PubMed Central

    Deuschl, Günthe; Petersen, Inge; Lorenz, Delia; Christensen, Kaare

    2016-01-01

    Isolated tremor in the elderly is commonly diagnosed as essential tremor (ET). The prevalence of tremor increases steeply with increasing age, whereas hereditary tremor is becoming less common. Moreover, late-manifesting tremor seems to be associated with dementia and earlier mortality. We hypothesize that different entities underlie tremor in the elderly. Two thousand four hundred forty-eight subjects from the Longitudinal Study of Aging Danish Twins older than 70 y answered screening questions for ET in 2001. Two thousan fifty-six (84%) participants drew Archimedes spirals to measure their tremor severity, and classical aging phenotypes were assessed. A subgroup of 276 individuals fulfilling either screening criteria for ET or being controls were personally assessed. Medications and mortality data are available. The spiral score increased with age. The spiral score correlated with tremor severity. For the whole cohort, mortality was significantly correlated with the spiral score, and higher spiral scores were associated with lower physical and cognitive functioning. Multivariate analysis identified higher spiral scores as an independent risk factor for mortality. In contrast, the ET patients did not show an increased but rather a lower mortality rate although it was not statistically significant. Consistent with a slower than normal aging, they were also physically and cognitively better functioning than controls. Because incident tremors beyond 70 y of age show worse aging parameters and mortality than controls and ET, we propose to label it ‘aging-related tremor’ (ART). This tremor starts later in life and is accompanied by subtle signs of aging both cognitively and physically. More detailed clinical features and pathogenesis warrant further assessment. PMID:26095699

  12. Dynamic triggering of deep earthquakes within a fossil slab

    NASA Astrophysics Data System (ADS)

    Cai, Chen; Wiens, Douglas A.

    2016-09-01

    The 9 November 2009 Mw 7.3 Fiji deep earthquake is the largest event in a region west of the Tonga slab defined by scattered seismicity and velocity anomalies. The main shock rupture was compact, but the aftershocks were distributed along a linear feature at distances of up to 126 km. The aftershocks and some background seismicity define a sharp northern boundary to the zone of outboard earthquakes, extending westward toward the Vitiaz deep earthquake cluster. The northern earthquake lineament is geometrically similar to tectonic reconstructions of the relict Vitiaz subduction zone at 8-10 Ma, suggesting the earthquakes are occurring in the final portion of the slab subducted at the now inactive Vitiaz trench. A Coulomb stress change calculation suggests many of the aftershocks were dynamically triggered. We propose that fossil slabs contain material that is too warm for earthquake nucleation but may be near the critical stress susceptible to dynamic triggering.

  13. Effects of timolol and atenolol on benign essential tremor: placebo-controlled studies based on quantitative tremor recording.

    PubMed

    Dietrichson, P; Espen, E

    1981-08-01

    Two different beta-adrenoreceptor antagonists, atenolol and timolol, were separately compared with a placebo in the suppression of essential tremor. In two-week single-blind placebo-controlled studies with cross-over, timolol (5 mg twice daily) and atenolol (100 mg once daily) produced an equal reduction in sitting heart rate and sitting blood pressure. Timolol was effective in reducing tremor while atenolol failed to reduce tremor amplitude. These results indicate that essential tremor can be reduced but not blocked, by the adrenergic blocker timolol with both beta 1 and beta 2 blocking properties; but not by the relatively selective beta 1 blocking drug atenolol. Possibly, the tremor reduction is medicated by a peripheral effect on beta 2 adrenoreceptors.

  14. [Strychnine poisoning].

    PubMed

    Scheffold, N; Heinz, B; Albrecht, H; Pickert, A; Cyran, J

    2004-10-15

    A 46-year-old man presented two hours after ingestion of about 250 mg strychnine with severe violent, generalized convulsions, triggered by external stimuli. During the convulsion-free periods there were no abnormal signs in the physical examination. The presence of strychnine was confirmed by urine analysis with gas chromatography-mass spectrometry. Because diazepam as anticonvulsant of choice was not effective in abating the convulsions the patient was intubated. A combination with midazolam, fentanyl and pancuronium was effective in controlling the convulsions. The patient was discharged from ICU on day three. Fatal outcome of strychnine poisoning demands an aggressive management with early intubation, control of muscle tremors and prevention of rhabdomyolisis and renal failure.

  15. Treatment of Essential Tremor

    MedlinePlus

    ... successfully treats limb tremor is weakened by the research methods involved. DBS and thalamotomy each pose some risk. They are used only when tremor is very disabling and drugs do not ... is best? Research on treatments for essential tremor is limited. No ...

  16. Image-guided modified deep anterior lamellar keratoplasty (DALK) corneal transplant using intraoperative optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tao, Yuankai K.; LaBarbera, Michael; Ehlers, Justis P.; Srivastava, Sunil K.; Dupps, William J.

    2015-03-01

    Deep anterior lamellar keratoplasty (DALK) is an alternative to full-thickness corneal transplant and has advantages including the absence of allograft rejection; shortened duration of topical corticosteroid treatment and reduced associated risk of glaucoma, cataract, or infection; and enables use of grafts with poor endothelial quality. DALK begins by performing a trephination of approximately 80% stromal thickness, as measured by pachymetry. After removal of the anterior stoma, a needle is inserted into the residual stroma to inject air or viscoelastic to dissect Descemet's membrane. These procedures are inherently difficult and intraoperative rates of Descemet's membrane perforation between 4-39% have been reported. Optical coherence tomography (OCT) provides high-resolution images of tissue microstructures in the cornea, including Descemet's membrane, and allows quantitation of corneal layer thicknesses. Here, we use crosssectional intraoperative OCT (iOCT) measurements of corneal thickness during surgery and a novel micrometeradjustable biopsy punch to precision-cut the stroma down to Descemet's membrane. Our prototype cutting tool allows us to establish a dissection plane at the corneal endothelium interface, mitigates variability in cut-depths as a result of tremor, reduces procedure complexity, and reduces complication rates. iOCT-guided modified DALK procedures were performed on 47 cadaveric porcine eyes by non-experts and achieved a perforation rate of ~5% with a mean corneal dissection time <18 minutes. The procedure was also successful performed on a human donor eye without perforation. Our data shows the potential for iOCT-guided precision anterior segment surgery without variability as a result of tremor and improvements to standard clinical care.

  17. The pros and cons of intraoperative CT scan in evaluation of deep brain stimulation lead implantation: A retrospective study

    PubMed Central

    Servello, Domenico; Zekaj, Edvin; Saleh, Christian; Pacchetti, Claudio; Porta, Mauro

    2016-01-01

    Background: Deep brain stimulation (DBS) is an established therapy for movement disorders, such as Parkinson's disease (PD), dystonia, and tremor. The efficacy of DBS depends on the correct lead positioning. The commonly adopted postoperative radiological evaluation is performed with computed tomography (CT) scan and/or magnetic resonance imaging (MRI). Methods: We conducted a retrospective study on 202 patients who underwent DBS from January 2009 to October 2013. DBS indications were PD, progressive supranuclear palsy, tremor, dystonia, Tourette syndrome, obsessive compulsive disorder, depression, and Huntington's disease. Preoperatively, all patients underwent brain MRI and brain CT scan with the stereotactic frame positioned. The lead location was confirmed intraoperatively with CT. The CT images were subsequently transferred to the Stealth Station Medtronic and merged with the preoperative planning. On the first or second day after, implantation we performed a brain MRI to confirm the correct position of the lead. Results: In 14 patients, leads were in suboptimal position after intraoperative CT scan positioning. The cases with alteration in the Z-axis were corrected immediately under fluoroscopic guidance. In all the 14 patients, an immediate repositioning was done. Conclusions: Based on our data, intraoperative CT scan is fast, safe, and a useful tool in the evaluation of the position of the implanted lead. It also reduces the patient's discomfort derived from the transfer of the patient from the operating room to the radiological department. However, intraoperative CT should not be considered as a substitute for postoperative MRI. PMID:27583182

  18. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    USGS Publications Warehouse

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.

    2010-01-01

    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  19. Spatial extent of a hydrothermal system at Kilauea Volcano, Hawaii, determined from array analyses of shallow long-period seismicity 2. Results

    USGS Publications Warehouse

    Almendros, J.; Chouet, B.; Dawson, P.

    2001-01-01

    Array data from a seismic experiment carried out at Kilauea Volcano, Hawaii, in February 1997, are analyzed by the frequency-slowness method. The slowness vectors are determined at each of three small-aperture seismic antennas for the first arrivals of 1129 long-period (LP) events and 147 samples of volcanic tremor. The source locations are determined by using a probabilistic method which compares the event azimuths and slownesses with a slowness vector model. The results show that all the LP seismicity, including both discrete LP events and tremor, was generated in the same source region along the east flank of the Halemaumau pit crater, demonstrating the strong relation that exists between the two types of activities. The dimensions of the source region are approximately 0.6 X 1.0 X 0.5 km. For LP events we are able to resolve at least three different clusters of events. The most active cluster is centered ???200 m northeast of Halemaumau at depths shallower than 200 m beneath the caldera floor. A second cluster is located beneath the northeast quadrant of Halemaumau at a depth of ???400 m. The third cluster is <200 m deep and extends southeastward from the northeast quadrant of Halemaumau. Only one source zone is resolved for tremor. This zone is coincident with the most active source zone of LP events, northeast of Halemaumau. The location, depth, and size of the source region suggest a hydrothermal origin for all the analyzed LP seismicity. Copyright 2001 by the American Geophysical Union.

  20. Medical and surgical treatment of tremors.

    PubMed

    Schneider, Susanne A; Deuschl, Günther

    2015-02-01

    Tremor is a hyperkinetic movement disorder characterized by rhythmic oscillations of one or more body parts. Disease severity ranges from mild to severe with various degrees of impact on quality of life. Essential tremor and parkinsonian tremor are the most common etiologic subtypes. Treatment may be challenging; although several drugs are available, response may be unsatisfactory. For some tremor forms, controlled data are scarce or completely missing and treatment is often based on anecdotal evidence. In this article, we review the current literature on tremor treatment, with a focus on common forms. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Neural computational modeling reveals a major role of corticospinal gating of central oscillations in the generation of essential tremor.

    PubMed

    Qu, Hong-En; Niu, Chuanxin M; Li, Si; Hao, Man-Zhao; Hu, Zi-Xiang; Xie, Qing; Lan, Ning

    2017-12-01

    Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.

  2. White matter microstructure damage in tremor-dominant Parkinson's disease patients.

    PubMed

    Luo, ChunYan; Song, Wei; Chen, Qin; Yang, Jing; Gong, QiYong; Shang, Hui-Fang

    2017-07-01

    Resting tremor is one of the cardinal motor features of Parkinson's disease (PD). Several lines of evidence suggest resting tremor may have different underlying pathophysiological processes from those of bradykinesia and rigidity. The current study aims to identify white matter microstructural abnormalities associated with resting tremor in PD. We recruited 60 patients with PD (30 with tremor-dominant PD and 30 with nontremor-dominant PD) and 26 normal controls. All participants underwent clinical assessment and diffusion tensor MRI. We used tract-based spatial statistics to investigate white matter integrity across the entire white matter tract skeleton. Compared with both healthy controls and the nontremor-dominant PD patients, the tremor-dominant PD patients were characterized by increased mean diffusivity (MD) and axial diffusivity (AD) along multiple white matter tracts, mainly involving the cerebello-thalamo-cortical (CTC) pathway. The mean AD value in clusters with significant difference was correlated with resting tremor score in the tremor-dominant PD patients. There was no significant difference between the nontremor-dominant PD patients and controls. Our results support the notion that resting tremor in PD is a distinct condition in which significant microstructural white matter changes exist and provide evidence for the involvement of the CTC in tremor genesis of PD.

  3. Semiology of Tremors.

    PubMed

    Molina-Negro, P; Hardy, J

    1975-02-01

    Since the description by Galen in the 2nd Century, A.D., clinical neurology has acknowledged the existence of two types of tremor: that which occurs at rest and that occuring during the execution of movement. With the help of refined methods of analysis, E.M.G. and cinephotography, the authors have carried out a detailed clinical assessment in more than 400 patients. The basic criterion used to define a tremor was the classical definition of Dejerine: "An involuntary, rhythmical and symmetrical movement about an axis of equilibrium." As a result of this study, the conclusion has been reached that there are two types of tremor: postural tremor and tremor of attitude. Both are present while the limb remains immobile, whether by wilful design or when at rest in a position of posture and subject only to the action of gravity. During voluntary movement, tremor is not present. Irregular, asymmetrical and non-rhythmic oscillations may appear however - as in so-called intention tremor, of cerebellar origin - but this abnormal movement can hardly be called a real tremor. It is merely a manifestation of ataxia. As a consequence of this study, it is suggested that further understanding of the basic mechanism of tremor can be reached by the investigation of the central neural structures which are involved in the physiology of posture and attitude.

  4. The effect of cannabis on tremor in patients with multiple sclerosis.

    PubMed

    Fox, P; Bain, P G; Glickman, S; Carroll, C; Zajicek, J

    2004-04-13

    Disabling tremor is common in patients with multiple sclerosis (MS). Data from animal model experiments and subjective and small objective studies involving patients suggest that cannabis may be an effective treatment for tremor associated with MS. To our knowledge, there are no published double-blind randomized controlled trials of cannabis as a treatment for tremor in MS patients. The authors conducted a randomized double-blind placebo-controlled crossover trial to examine the effect of oral cannador (cannabis extract) on 14 patients with MS with upper limb tremors. There were eight women and six men, with a mean age of 45 years and mean Expanded Disability Status Scale score of 6.25. Patients were randomly assigned to receive each treatment and the doses escalated over a 2-week period before each assessment. The primary outcome was change on a tremor index, measured using a validated tremor rating scale. The study was powered to detect a functionally significant 50% improvement in the tremor index. Secondary outcomes included accelerometry, an ataxia scale, spiral drawing, finger tapping, and nine-hole pegboard test performance. Analysis of the data showed no significant improvement in any of the objective measures of upper limb tremor with cannabis extract compared to placebo. Finger tapping was faster on placebo compared to cannabis extract (p < 0.02). However, there was a nonsignificant trend for patients to experience more subjective relief from their tremors while on cannabis extract compared to placebo. Cannabis extract does not produce a functionally significant improvement in MS-associated tremor.

  5. Effects of timolol and atenolol on benign essential tremor: placebo-controlled studies based on quantitative tremor recording.

    PubMed Central

    Dietrichson, P; Espen, E

    1981-01-01

    Two different beta-adrenoreceptor antagonists, atenolol and timolol, were separately compared with a placebo in the suppression of essential tremor. In two-week single-blind placebo-controlled studies with cross-over, timolol (5 mg twice daily) and atenolol (100 mg once daily) produced an equal reduction in sitting heart rate and sitting blood pressure. Timolol was effective in reducing tremor while atenolol failed to reduce tremor amplitude. These results indicate that essential tremor can be reduced but not blocked, by the adrenergic blocker timolol with both beta 1 and beta 2 blocking properties; but not by the relatively selective beta 1 blocking drug atenolol. Possibly, the tremor reduction is medicated by a peripheral effect on beta 2 adrenoreceptors. Images PMID:7028921

  6. Functional tremor.

    PubMed

    Schwingenschuh, P; Deuschl, G

    2016-01-01

    Functional tremor is the commonest reported functional movement disorder. A confident clinical diagnosis of functional tremor is often possible based on the following "positive" criteria: a sudden tremor onset, unusual disease course, often with fluctuations or remissions, distractibility of the tremor if attention is removed from the affected body part, tremor entrainment, tremor variability, and a coactivation sign. Many patients show excessive exhaustion during examination. Other somatizations may be revealed in the medical history and patients may show additional functional neurologic symptoms and signs. In cases where the clinical diagnosis remains challenging, providing a "laboratory-supported" level of certainty aids an early positive diagnosis. In rare cases, in which the distinction from Parkinson's disease is difficult, dopamine transporter single-photon emission computed tomography (DAT-SPECT) can be indicated. © 2016 Elsevier B.V. All rights reserved.

  7. Essential tremor quantification based on the combined use of a smartphone and a smartwatch: The NetMD study.

    PubMed

    López-Blanco, Roberto; Velasco, Miguel A; Méndez-Guerrero, Antonio; Romero, Juan Pablo; Del Castillo, María Dolores; Serrano, J Ignacio; Benito-León, Julián; Bermejo-Pareja, Félix; Rocon, Eduardo

    2018-06-01

    The use of wearable technology is an emerging field of research in movement disorders. This paper introduces a clinical study to evaluate the feasibility, clinical correlation and reliability of using a system based in smartwatches to quantify tremor in essential tremor (ET) patients and check its acceptance as clinical monitoring tool. The system is based on a commercial smartwatch and an Android smartphone. An investigational Android application controls the process of recording raw data from the smartwatch three-dimensional gyroscopes. Thirty-four ET patients were consecutively enrolled in the experiments and assessed along one year. Arm tremor was videofilmed and scored using the Fahn-Tolosa-Marin Tremor Rating Scale (FTM-TRS). Tremor intensity was quantified with the root mean square of angular velocity measured in the patients' wrists. Eighty-two assessments with smartwatches were performed. Spearman's correlation coefficients (ρ) between clinical tremor (FTM-TRS) scores and smartwatch measures for tremor intensity were 0.590 at rest; ρ = 0.738 in steady posture; ρ = 0.189 in finger-to-nose maneuvers; and ρ = 0.652 in pouring water task. Smartwatch reliability was checked by intraclass realiability coefficients: 0.85, 0.95, 0.91, 0.95 respectively. Most of patients showed good acceptance of the system. This commodity hardware contributes to quantify tremor objectively in a consulting-room by customized Android smart devices as clinical monitoring tool. The NetMD system for tremor analysis is feasible, well-correlated with clinical scores, reliable and well-accepted by patients to tremor follow-up. Therefore, it could be an option to objectively quantify tremor in ET patients during their regular follow-up. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Subclinical Tremor in Normal Controls with vs. without a Family History of Essential Tremor: Data from the United States and Turkey

    PubMed Central

    Louis, Elan D.; Dogu, Okan; Ottman, Ruth

    2009-01-01

    Background Mild action tremor is very common in the population. One fundamental question is whether this tremor is related to the neurological disease essential tremor (ET), which occurs in a much smaller segment of the population? ET is often genetic and variable phenotypic expression is well-documented in the literature. We determined whether normal controls who report a family history of ET have greater action tremor than normal controls who do not report such a history. Methods Controls, enrolled in two epidemiological studies (New York and Turkey), were examined in detail and action tremor was rated using a valid and reliable clinical rating scale, resulting in a total tremor score (range 0 – 36). Results In New York, the total tremor score was higher in 44/406 (10.8%) controls who reported a family history of ET than in 362/406 controls with no such history (4.25 ± 2.51 vs. 3.78 ± 2.93, p = 0.02). Controls who reported a first-degree relative with ET had the highest total tremor scores. In Turkey, the total tremor score was higher in 7/89 (7.9%) controls with a family history than in 82/89 controls with no family history (3.43 ± 4.54 vs. 1.13 ± 2.54, p = 0.048). All affected relatives in Turkey were first-degree. Conclusions These data suggest that some of the normal tremor exhibited by people in the population is likely to be subclinical, partially-expressed ET and that the sphere of ET is wider than is apparent from a consideration of clinically-diagnosed cases. PMID:19968704

  9. Three-dimensional assessment of postural tremor during goal-directed aiming.

    PubMed

    Kelleran, K J; Morrison, S; Russell, D M

    2016-12-01

    The performance of fine motor tasks which require a degree of precision can be negatively affected by physiological tremor. This study examined the effect of different aiming positions on anterior-posterior (AP), medial-lateral (ML) and vertical (VT) postural tremor. Participants were required to aim a mock handgun at a target located in front of them at eye level. Changes in AP, ML and VT tremor from the forearm and gun barrel were assessed as a function of limb (i.e., whether one or both arms were used) and upper arm position (elbow bent or extended). Tremor was recorded using triaxial accelerometers. Results showed that, across all tasks, the ML and VT tremor for any point was characterized by two frequency peaks (between 1-4 and 8-12 Hz) with amplitude increasing from proximal (forearm) to distal (gun barrel). Interestingly, irrespective of the posture adopted, ML accelerations were of greater amplitude than VT oscillations. AP oscillations were markedly smaller compared to VT and ML tremor, did not display consistent frequency peaks, and were not altered by the arm conditions. Altering the aiming posture resulted in changes in VT and ML tremor amplitude, with oscillations being greater when using a single arm as compared to when two arms were used together. Similarly, tremor amplitude was reduced when the task was performed with the elbow bent compared to the straight arm condition. Overall, these results highlight that ML oscillations make as significant a contribution to the overall tremor dynamics as those observed in the VT direction. However, the origin of ML tremor is not simply the product of voluntary adjustments to maintain aim on the target, but also exhibits features similar to the neural generated 8-12-Hz tremor seen under postural conditions.

  10. Corticomuscular transmission of tremor signals by propriospinal neurons in Parkinson's disease.

    PubMed

    Hao, Manzhao; He, Xin; Xiao, Qin; Alstermark, Bror; Lan, Ning

    2013-01-01

    Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson's disease (PD). But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN) in C3-C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG) of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA) model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the neuromuscular dynamics demonstrated a frequency dependent damping on tremor, which may prevent tremor above 8 Hz to occur.

  11. Lead Exposure and Tremor among Older Men: The VA Normative Aging Study

    PubMed Central

    Power, Melinda C.; Sparrow, David; Spiro, Avron; Hu, Howard; Louis, Elan D.; Weisskopf, Marc G.

    2015-01-01

    Background: Tremor is one of the most common neurological signs, yet its etiology is poorly understood. Case–control studies suggest an association between blood lead and essential tremor, and that this association is modified by polymorphisms in the δ-aminolevulinic acid dehydrogenase (ALAD) gene. Objective: We aimed to examine the relationship between lead and tremor, including modification by ALAD, in a prospective cohort study, using both blood lead and bone lead—a biomarker of cumulative lead exposure. Methods: We measured tibia (n = 670) and patella (n = 672) bone lead and blood lead (n = 807) among older men (age range, 50–98 years) in the VA Normative Aging Study cohort. A tremor score was created based on an approach using hand-drawing samples. ALAD genotype was dichotomized as ALAD-2 carriers or not. We used linear regression adjusted for age, education, smoking, and alcohol intake to estimate the associations between lead biomarkers and tremor score. Results: In unadjusted analyses, there was a marginal association between quintiles of all lead biomarkers and tremor scores (p-values < 0.13), which did not persist in adjusted models. Age was the strongest predictor of tremor. Among those younger than the median age (68.9 years), tremor increased significantly with blood lead (p = 0.03), but this pattern was not apparent for bone lead. We did not see modification by ALAD or an association between bone lead and change in tremor score over time. Conclusion: Our results do not strongly support an association between lead exposure and tremor, and suggest no association with cumulative lead biomarkers, although there is some suggestion that blood lead may be associated with tremor among the younger men in our cohort. Citation: Ji JS, Power MC, Sparrow D, Spiro A III, Hu H, Louis ED, Weisskopf MG. 2015. Lead exposure and tremor among older men: the VA Normative Aging Study. Environ Health Perspect 123:445–450; http://dx.doi.org/10.1289/ehp.1408535 PMID:25633720

  12. Corticomuscular Transmission of Tremor Signals by Propriospinal Neurons in Parkinson's Disease

    PubMed Central

    Hao, Manzhao; He, Xin; Xiao, Qin; Alstermark, Bror; Lan, Ning

    2013-01-01

    Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson's disease (PD). But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN) in C3–C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG) of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA) model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the neuromuscular dynamics demonstrated a frequency dependent damping on tremor, which may prevent tremor above 8 Hz to occur. PMID:24278189

  13. Using a Smart Phone as a Standalone Platform for Detection and Monitoring of Pathological Tremors

    PubMed Central

    Daneault, Jean-François; Carignan, Benoit; Codère, Carl Éric; Sadikot, Abbas F.; Duval, Christian

    2013-01-01

    Introduction: Smart phones are becoming ubiquitous and their computing capabilities are ever increasing. Consequently, more attention is geared toward their potential use in research and medical settings. For instance, their built-in hardware can provide quantitative data for different movements. Therefore, the goal of the current study was to evaluate the capabilities of a standalone smart phone platform to characterize tremor. Results: Algorithms for tremor recording and online analysis can be implemented within a smart phone. The smart phone provides reliable time- and frequency-domain tremor characteristics. The smart phone can also provide medically relevant tremor assessments. Discussion: Smart phones have the potential to provide researchers and clinicians with quantitative short- and long-term tremor assessments that are currently not easily available. Methods: A smart phone application for tremor quantification and online analysis was developed. Then, smart phone results were compared to those obtained simultaneously with a laboratory accelerometer. Finally, results from the smart phone were compared to clinical tremor assessments. PMID:23346053

  14. Proposing a Parkinson's disease-specific tremor scale from the MDS-UPDRS.

    PubMed

    Forjaz, Maria João; Ayala, Alba; Testa, Claudia M; Bain, Peter G; Elble, Rodger; Haubenberger, Dietrich; Rodriguez-Blazquez, Carmen; Deuschl, Günther; Martinez-Martin, Pablo

    2015-07-01

    This article proposes an International Parkinson and Movement Disorder Society (MDS)-UPDRS tremor-based scale and describes its measurement properties, with a view to developing an improved scale for assessing tremor in Parkinson's disease (PD). This was a cross-sectional, multicenter study of 435 PD patients. Rasch analysis was performed on the 11 MDS-UPDRS tremor items. Construct validity, precision, and test-retest reliability were also analyzed. After some modifications, which included removal of an item owing to redundancy, the obtained MDS-UPDRS tremor scale showed moderate reliability, unidimensionality, absence of differential item functioning, satisfactory convergent validity with medication, and better precision than the raw sum score. However, the scale displayed a floor effect and a need for more items measuring lower levels of tremor. The MDS-UPDRS tremor scale provides linear scores that can be used to assess tremor in PD in a valid, reliable way. The scale might benefit from modifications and studies that analyze its responsiveness. © 2015 International Parkinson and Movement Disorder Society.

  15. Effects of AIT-082, a purine derivative, on tremor induced by arecoline or oxotremorine in mice.

    PubMed

    Nannan, Gao; Runmei, Yang; Fusheng, Lin; Shoulan, Zhang; Guangqing, Lei

    2007-01-01

    The effects of AIT-082, a hypoxanthine derivative, on tremor in mice were investigated. The mice received intragastric administration of AIT-082 for consecutive 60 days at doses of 150, 300 and 600 mg.kg(-1). The results showed that AIT-082 not only effectively inhibited the tremor induced by arecoline or oxotremorine, but also alleviated the tremor intensity and significantly shortened the tremor durations. The inhibition of tremor was perhaps associated with the central cholinergic nerve depressant effects as well as the stimulation of proliferation and differentiation of nerve cells. Copyright (c) 2007 S. Karger AG, Basel.

  16. Estimation of the phase response curve from Parkinsonian tremor.

    PubMed

    Saifee, Tabish A; Edwards, Mark J; Kassavetis, Panagiotis; Gilbertson, Tom

    2016-01-01

    Phase response curves (PRCs), characterizing the response of an oscillator to weak external perturbation, have been estimated from a broad range of biological oscillators, including single neurons in vivo. PRC estimates, in turn, provide an intuitive insight into how oscillatory systems become entrained and how they can be desynchronized. Here, we explore the application of PRC theory to the case of Parkinsonian tremor. Initial attempts to establish a causal effect of subthreshold transcranial magnetic stimulation applied to primary motor cortex on the filtered tremor phase were unsuccessful. We explored the possible explanations of this and demonstrate that assumptions made when estimating the PRC in a traditional setting, such as a single neuron, are not arbitrary when applied to the case of tremor PRC estimation. We go on to extract the PRC of Parkinsonian tremor using an iterative method that requires varying the definition of the tremor cycle and estimating the PRC at multiple peristimulus time samples. Justification for this method is supported by estimates of PRC from simulated single neuron data. We provide an approach to estimating confidence limits for tremor PRC and discuss the interpretational caveats introduced by tremor harmonics and the intrinsic variability of the tremor's period. Copyright © 2016 the American Physiological Society.

  17. Estimation of the phase response curve from Parkinsonian tremor

    PubMed Central

    Saifee, Tabish A.; Edwards, Mark J.; Kassavetis, Panagiotis

    2015-01-01

    Phase response curves (PRCs), characterizing the response of an oscillator to weak external perturbation, have been estimated from a broad range of biological oscillators, including single neurons in vivo. PRC estimates, in turn, provide an intuitive insight into how oscillatory systems become entrained and how they can be desynchronized. Here, we explore the application of PRC theory to the case of Parkinsonian tremor. Initial attempts to establish a causal effect of subthreshold transcranial magnetic stimulation applied to primary motor cortex on the filtered tremor phase were unsuccessful. We explored the possible explanations of this and demonstrate that assumptions made when estimating the PRC in a traditional setting, such as a single neuron, are not arbitrary when applied to the case of tremor PRC estimation. We go on to extract the PRC of Parkinsonian tremor using an iterative method that requires varying the definition of the tremor cycle and estimating the PRC at multiple peristimulus time samples. Justification for this method is supported by estimates of PRC from simulated single neuron data. We provide an approach to estimating confidence limits for tremor PRC and discuss the interpretational caveats introduced by tremor harmonics and the intrinsic variability of the tremor's period. PMID:26561596

  18. Risk Factors for Tremor in a Population of Patients with Severe Mental Illness: An 18-year Prospective Study in a Geographically Representative Sample (The Curacao Extrapyramidal Syndromes Study XI)

    PubMed Central

    Mentzel, Charlotte L.; Bakker, P. Roberto; van Os, Jim; Drukker, Marjan; van den Oever, Michiel R. H.; Matroos, Glenn E.; Hoek, Hans W.; Tijssen, Marina AJ; van Harten, Peter N.

    2017-01-01

    Background The aim was to assess incidence, prevalence and risk factors of medication-induced tremor in African-Caribbean patients with severe mental illness (SMI). Method A prospective study of SMI patients receiving care from the only mental health service of the previous Dutch Antilles. Eight clinical assessments, over 18 years, focused on movement disorders, medication use, and resting tremor (RT) and (postural) action tremor (AT). Risk factors were modeled with logistic regression for both current (having) tremor and for tremor at the next time point (developing). The latter used a time-lagged design to assess medication changes prior to a change in tremor state. Results Yearly tremor incidence rate was 2.9% and mean tremor point prevalence was 18.4%. Over a third of patients displayed tremor during the study. Of the patients, 5.2% had AT with 25% of cases persisting to the next time point, while 17.1% of patients had RT of which 65.3% persisted. When tremor data were examined in individual patients, they often had periods of tremor interspersed with periods of no tremor. Having RT was associated with age (OR=1.07 per year; 95% confidence interval 1.03–1.11), sex (OR=0.17 for males; 0.05–0.78), cocaine use (OR=10.53; 2.22–49.94), dyskinesia (OR=0.90; 0.83–0.97), and bradykinesia (OR=1.16; 1.09–1.22). Developing RT was strongly associated with previous measurement RT (OR=9.86; 3.80–25.63), with previous RT severity (OR=1.22; 1.05–1.41), and higher anticholinergic load (OR= 1.24; 1.08–1.43). Having AT was associated with tremor-inducing medication (OR= 4.54; 1.90–10.86), cocaine use (OR=14.04; 2.38–82.96), and bradykinesia (OR=1.07; 1.01–1.15). Developing AT was associated with, previous AT severity (OR=2.62 per unit; 1.64–4.18) and tremor reducing medication (OR=0.08; 0.01–0.55). Conclusions Long-stay SMI patients are prone to developing tremors, which show a relapsing–remitting course. Differentiation between RT and AT is important as risk factors differ and they require different prevention and treatment strategies. PMID:28690921

  19. Pharmacological and Physiological Characterization of the Tremulous Jaw Movement Model of Parkinsonian Tremor: Potential Insights into the Pathophysiology of Tremor

    PubMed Central

    Collins-Praino, Lyndsey E.; Paul, Nicholas E.; Rychalsky, Kristen L.; Hinman, James R.; Chrobak, James J.; Senatus, Patrick B.; Salamone, John D.

    2011-01-01

    Tremor is a cardinal symptom of parkinsonism, occurring early on in the disease course and affecting more than 70% of patients. Parkinsonian resting tremor occurs in a frequency range of 3–7 Hz and can be resistant to available pharmacotherapy. Despite its prevalence, and the significant decrease in quality of life associated with it, the pathophysiology of parkinsonian tremor is poorly understood. The tremulous jaw movement (TJM) model is an extensively validated rodent model of tremor. TJMs are induced by conditions that also lead to parkinsonism in humans (i.e., striatal DA depletion, DA antagonism, and cholinomimetic activity) and reversed by several antiparkinsonian drugs (i.e., DA precursors, DA agonists, anticholinergics, and adenosine A2A antagonists). TJMs occur in the same 3–7 Hz frequency range seen in parkinsonian resting tremor, a range distinct from that of dyskinesia (1–2 Hz), and postural tremor (8–14 Hz). Overall, these drug-induced TJMs share many characteristics with human parkinsonian tremor, but do not closely resemble tardive dyskinesia. The current review discusses recent advances in the validation of the TJM model, and illustrates how this model is being used to develop novel therapeutic strategies, both surgical and pharmacological, for the treatment of parkinsonian resting tremor. PMID:21772815

  20. Motor network disruption in essential tremor: a functional and effective connectivity study.

    PubMed

    Buijink, Arthur W G; van der Stouwe, A M Madelein; Broersma, Marja; Sharifi, Sarvi; Groot, Paul F C; Speelman, Johannes D; Maurits, Natasha M; van Rootselaar, Anne-Fleur

    2015-10-01

    Although involvement of the cerebello-thalamo-cortical network has often been suggested in essential tremor, the source of oscillatory activity remains largely unknown. To elucidate mechanisms of tremor generation, it is of crucial importance to study the dynamics within the cerebello-thalamo-cortical network. Using a combination of electromyography and functional magnetic resonance imaging, it is possible to record the peripheral manifestation of tremor simultaneously with brain activity related to tremor generation. Our first aim was to study the intrinsic activity of regions within the cerebello-thalamo-cortical network using dynamic causal modelling to estimate effective connectivity driven by the concurrently recorded tremor signal. Our second aim was to objectify how the functional integrity of the cerebello-thalamo-cortical network is affected in essential tremor. We investigated the functional connectivity between cerebellar and cortical motor regions showing activations during a motor task. Twenty-two essential tremor patients and 22 healthy controls were analysed. For the effective connectivity analysis, a network of tremor-signal related regions was constructed, consisting of the left primary motor cortex, premotor cortex, supplementary motor area, left thalamus, and right cerebellar motor regions lobule V and lobule VIII. A measure of variation in tremor severity over time, derived from the electromyogram, was included as modulatory input on intrinsic connections and on the extrinsic cerebello-thalamic connections, giving a total of 128 models. Bayesian model selection and random effects Bayesian model averaging were used. Separate seed-based functional connectivity analyses for the left primary motor cortex, left supplementary motor area and right cerebellar lobules IV, V, VI and VIII were performed. We report two novel findings that support an important role for the cerebellar system in the pathophysiology of essential tremor. First, in the effective connectivity analysis, tremor variation during the motor task has an excitatory effect on both the extrinsic connection from cerebellar lobule V to the thalamus, and the intrinsic activity of cerebellar lobule V and thalamus. Second, the functional integrity of the motor network is affected in essential tremor, with a decrease in functional connectivity between cortical and cerebellar motor regions. This decrease in functional connectivity, related to the motor task, correlates with an increase in clinical tremor severity. Interestingly, increased functional connectivity between right cerebellar lobules I-IV and the left thalamus correlates with an increase in clinical tremor severity. In conclusion, our findings suggest that cerebello-dentato-thalamic activity and cerebello-cortical connectivity is disturbed in essential tremor, supporting previous evidence of functional cerebellar changes in essential tremor. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Analysis of nonvolcanic tremor on the San Andreas Fault near Parkfield, CA using U.S. Geological Survey Parkfield Seismic Array

    USGS Publications Warehouse

    Fletcher, Jon B.; Baker, Lawrence M.

    2010-01-01

    Reports by Nadeau and Dolenc (2005) that tremor had been detected near Cholame Valley spawned an effort to use UPSAR (U. S. Geological Survey Parkfield Seismic Array) to study characteristics of tremor. UPSAR was modified to record three channels of velocity at 40–50 sps continuously in January 2005 and ran for about 1 month, during which time we recorded numerous episodes of tremor. One tremor, on 21 January at 0728, was recorded with particularly high signal levels as well as another episode 3 days later. Both events were very emergent, had a frequency content between 2 and 8 Hz, and had numerous high-amplitude, short-duration arrivals within the tremor signal. Here using the first episode as an example, we discuss an analysis procedure, which yields azimuth and apparent velocity of the tremor at UPSAR. We then provide locations for both tremor episodes. The emphasis here is how the tremor episode evolves. Twelve stations were operating at the time of recording. Slowness of arrivals was determined using cross correlation of pairs of stations; the same method used in analyzing the main shock data from 28 September 2004. A feature of this analysis is that 20 s of the time series were used at a time to calculate correlation; the longer windows resulted in more consistent estimates of slowness, but lower peak correlations. These values of correlation (peaks of about 0.25), however, are similar to that obtained for the S wave of a microearthquake. Observed peaks in slowness were traced back to source locations assumed to lie on the San Andreas fault. Our inferred locations for the two tremor events cluster near the locations of previously observed tremor, south of the Cholame Valley. Tremor source depths are in the 14–24 km range, which is below the seismogenic brittle zone, but above the Moho. Estimates of error do not preclude locations below the Moho, however. The tremor signal is very emergent but contains packets that are several times larger than the background tremor signal and lasts about 5 s. These impulsive wavelets are similar to low-frequency earthquakes signals seen in Japan but appear to be broader band rather than just higher in low-frequency energy. They may be more appropriately called high-energy tremor (HET). HET signals at UPSAR correlate well with the record of this event from station GHIB of the HRSN borehole array at Parkfield and HETs typically have a higher cross-correlation coefficient than the rest of the tremor event. The amplitudes of a large HET are consistent with a magnitude of 0.1 when compared with a M2.3 event that had about the same epicenter. Polarizations of the tremor episode at UPSAR are mostly just north of east. Both linearity and azimuth evolve over time suggesting a change in tremor source location over time and linearity is typically higher at the HETs.

  2. What is It? Difficult to Pigeon Hole Tremor: a Clinical–Pathological Study of a Man with Jaw Tremor

    PubMed Central

    Louis, Elan D.; Bain, Peter G.; Hallett, Mark; Jankovic, Joseph; Vonsattel, Jean-Paul G.

    2013-01-01

    Background The phenomenology of tremor is broad and its classification is complicated. Furthermore, the full range of tremor phenomenology with respect to specific neurological and neurodegenerative diseases has not been fully elaborated. Case Report This right-handed man had a chief complaint of jaw tremor, which began approximately 20 years prior to death at age 101 years. He had been diagnosed with essential tremor (ET) by a local doctor. His examination at age 100 years was notable for marked jaw tremor at rest in the absence of other clear features of parkinsonism, mild kinetic tremor of the hands and, in the last year of life, a score of 22/41 on a cognitive screen. A senior movement disorder neurologist raised doubt about the “ET” diagnosis. The history and videotaped examination were reviewed by three additional senior tremor experts, who raised a number of diagnostic possibilities. A complete postmortem examination was performed by a senior neuropathologist, and was notable for the presence of tufted astrocytes, AT8-labeled glial cytoplasmic inclusions, and globose neuronal tangles. These changes were widespread and definitive. A neuropathological diagnosis of progressive supranuclear palsy was assigned. Discussion This case presents with mixed and difficult to clinically classify tremor phenomenology and other neurological findings. The postmortem diagnosis was not predicted based on the clinical features, and it is possible that it does not account for all of the features. The case raises many interesting issues and provides a window into the complexity of the interpretation, nosology, and classification of tremor phenomenology. PMID:23864988

  3. Is postural tremor size controlled by interstitial potassium concentration in muscle?

    PubMed Central

    Lakie, M; Hayes, N; Combes, N; Langford, N

    2004-01-01

    Objectives: To determine whether factors associated with postural tremor operate by altering muscle interstitial K+. Methods: An experimental approach was used to investigate the effects of procedures designed to increase or decrease interstitial K+. Postural physiological tremor was measured by conventional means. Brief periods of ischaemic muscle activity were used to increase muscle interstitial K+. Infusion of the ß2 agonist terbutaline was used to decrease plasma (and interstitial) K+. Blood samples were taken for the determination of plasma K+. Results: Ischaemia rapidly reduced tremor size, but only when the muscle was active. The ß2 agonist produced a slow and progressive rise in tremor size that was almost exactly mirrored by a slow and progressive decrease in plasma K+. Conclusions: Ischaemic reduction of postural tremor has been attributed to effects on muscle spindles or an unexplained effect on muscle. This study showed that ischaemia did not reduce tremor size unless there was accompanying muscular activity. An accumulation of K+ in the interstitium of the ischaemic active muscle may blunt the response of the muscle and reduce its fusion frequency, so that the force output becomes less pulsatile and tremor size decreases. When a ß2 agonist is infused, the rise in tremor mirrors the resultant decrease in plasma K+. Decreased plasma K+ reduces interstitial K+ concentration and may produce greater muscular force fluctuation (more tremor). Many other factors that affect postural tremor size may exert their effect by altering plasma K+ concentration, thereby changing the concentration of K+ in the interstitial fluid. PMID:15201362

  4. Validation of Digital Spiral Analysis as Outcome Parameter for Clinical Trials in Essential Tremor

    PubMed Central

    Haubenberger, Dietrich; Kalowitz, Daniel; Nahab, Fatta B.; Toro, Camilo; Ippolito, Dominic; Luckenbaugh, David A.; Wittevrongel, Loretta; Hallett, Mark

    2014-01-01

    Essential tremor, one of the most prevalent movement disorders, is characterized by kinetic and postural tremor affecting activities of daily living. Spiral drawing is commonly used to visually rate tremor intensity, as part of the routine clinical assessment of tremor and as a tool in clinical trials. We present a strategy to quantify tremor severity from spirals drawn on a digitizing tablet. We validate our method against a well-established visual spiral rating method and compare both methods on their capacity to capture a therapeutic effect, as defined by the change in clinical essential tremor rating scale after an ethanol challenge. Fifty-four Archimedes spirals were drawn using a digitizing tablet by nine ethanol-responsive patients with essential tremor before and at five consecutive time points after the administration of ethanol in a standardized treatment intervention. Quantitative spiral tremor severity was estimated from the velocity tremor peak amplitude after numerical derivation and Fourier transformation of pen-tip positions. In randomly ordered sets, spirals were scored by seven trained raters, using Bain and Findley’s 0 to 10 rating scale. Computerized scores correlated with visual ratings (P < 0.0001). The correlation was significant at each time point before and after ethanol (P < 0.005). Quantitative ratings provided better sensitivity than visual rating to capture the effects of an ethanol challenge (P < 0.05). Using a standardized treatment approach, we were able to demonstrate that spirography time-series analysis is a valid, reliable method to document tremor intensity and a more sensitive measure for small effects than currently available visual spiral rating methods. PMID:21714004

  5. Intraoperative tremor in surgeons and trainees.

    PubMed

    Verrelli, David I; Qian, Yi; Wilson, Michael K; Wood, James; Savage, Craig

    2016-09-01

    Tremor may be expected to interfere with the performance of fine motor tasks such as surgery. While tremor is readily quantified in inactive subjects, it is more challenging to measure tremor as the subjects perform complex tasks. The objective of this work was to quantify tremor during the performance of a realistic simulated surgery. Our novel surgical simulator incorporates a force sensor that allows identification and quantification of the intraoperative effects of tremor on the manipulandum. We have collected preliminary data from trainees and experienced surgeons carrying out multiple simulated anastomoses on silicone vessels, mimicking a procedure such as distal coronary anastomosis. We calculated transient and overall tremor intensity, and tested for a hypothesized 'learning effect'. Several of the recordings of intraoperative force data manifested distinctive features corresponding to substantial oscillation in the range of 8-12 Hz. We attribute this to enhanced physiological tremor. These early results indicate a significant reduction in the transmission of surgeon's tremor to the operative field from the first attempt to later attempts (P = 0.039, standardized effect size = 0.91), which may be associated with increasing confidence. This new method does not just quantify tremor, but quantifies the transmission of tremor to a manipulandum in the operative field during high-fidelity simulated coronary surgery. This may be used to assess and provide feedback on the performance of trainees and experienced surgeons, along with other fields in which fine motor skills are of vital importance. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. Control of lithium tremor with propranolol.

    PubMed

    Lapierre, Y D

    1976-04-03

    Lithium tremor is an irregular, nonrhythmic tremor of the distal extremities, variable in both intensity and frequency. It is clinically differentiated from essential tremor and tremors due to anxiety and neuroleptics. The pathophysiologic mechanisms are hypothesized to be of perpheral origin. Five patients were successfully treated with propranolol. In general, the dosage of propranolol must be individually adjusted and is usually from 30 to 40 mg daily in divided doses. This blocker of beta-adrenergic receptors remains effective with long-term administration and increases in dosage are not required.

  7. Infrasonic component of volcano-seismic eruption tremor

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Fee, David

    2014-03-01

    Air-ground and ground-air elastic wave coupling are key processes in the rapidly developing field of seismoacoustics and are particularly relevant for volcanoes. During a sustained explosive volcanic eruption, it is typical to record a sustained broadband signal on seismometers, termed eruption tremor. Eruption tremor is usually attributed to a subsurface seismic source process, such as the upward migration of magma and gases through the shallow conduit and vent. However, it is now known that sustained explosive volcanic eruptions also generate powerful tremor signals in the atmosphere, termed infrasonic tremor. We investigate infrasonic tremor coupling down into the ground and its contribution to the observed seismic tremor. Our methodology builds on that proposed by Ichihara et al. (2012) and involves cross-correlation, coherence, and cross-phase spectra between waveforms from nearly collocated seismic and infrasonic sensors; we apply it to datasets from Mount St. Helens, Tungurahua, and Redoubt Volcanoes.

  8. Brittle and ductile friction and the physics of tectonic tremor

    USGS Publications Warehouse

    Daub, Eric G.; Shelly, David R.; Guyer, Robert A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place.

  9. A zero phase adaptive fuzzy Kalman filter for physiological tremor suppression in robotically assisted minimally invasive surgery.

    PubMed

    Sang, Hongqiang; Yang, Chenghao; Liu, Fen; Yun, Jintian; Jin, Guoguang; Chen, Fa

    2016-12-01

    Hand physiological tremor of surgeons can cause vibration at the surgical instrument tip, which may make it difficult for the surgeon to perform fine manipulations of tissue, needles, and sutures. A zero phase adaptive fuzzy Kalman filter (ZPAFKF) is proposed to suppress hand tremor and vibration of a robotic surgical system. The involuntary motion can be reduced by adding a compensating signal that has the same magnitude and frequency but opposite phase with the tremor signal. Simulations and experiments using different filters were performed. Results show that the proposed filter can avoid the loss of useful motion information and time delay, and better suppress minor and varying tremor. The ZPAFKF can provide less error, preferred accuracy, better tremor estimation, and more desirable compensation performance, to suppress hand tremor and decrease vibration at the surgical instrument tip. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Diagnoses behind patients with hard-to-classify tremor and normal DaT-SPECT: a clinical follow up study.

    PubMed

    Menéndez-González, Manuel; Tavares, Francisco; Zeidan, Nahla; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2014-01-01

    The [(123)I]ioflupane-a dopamine transporter radioligand-SPECT (DaT-SPECT) has proven to be useful in the differential diagnosis of tremor. Here, we investigate the diagnoses behind patients with hard-to-classify tremor and normal DaT-SPECT. Therefore, 30 patients with tremor and normal DaT-SPECT were followed up for 2 years. In 18 cases we were able to make a diagnosis. The residual 12 patients underwent a second DaT-SPECT, were then followed for additional 12 months and thereafter the diagnosis was reconsidered again. The final diagnoses included cases of essential tremor, dystonic tremor, multisystem atrophy, vascular parkinsonism, progressive supranuclear palsy, corticobasal degeneration, fragile X-associated tremor ataxia syndrome, psychogenic parkinsonism, iatrogenic parkinsonism and Parkinson's disease. However, for 6 patients the diagnosis remained uncertain. Larger series are needed to better establish the relative frequency of the different conditions behind these cases.

  11. Propranolol, clonidine, urapidil and trazodone infusion in essential tremor: a double-blind crossover trial.

    PubMed

    Caccia, M R; Osio, M; Galimberti, V; Cataldi, G; Mangoni, A

    1989-05-01

    Accelerometric tremorgrams were recorded from 25 subjects affected by essential tremor and analysed by a Berg-Fourier frequency analyser before and during venous infusion of the following drugs: propranolol (beta-blocker), clonidine (alpha-presynaptic adrenergic agonist), urapidil (alpha-postsynaptic blocker), trazodone (adrenolytic agent) and placebo. The washout interval between infusions was 3 days. Recordings and data analyses were performed in a double-blind crossover trial. Tremor was classified as: at rest; postural (arms hyperextended); and intention (finger-nose test). Analysis of the results showed that propranolol and clonidine reduced significantly (P = 0.01 and P = 0.009, respectively) the power spectrum of postural tremor, but left at rest and intention tremors unchanged. No significant effects on the tremor power spectrum were observed after placebo, urapidil or trazodone administration. None of the drugs had any effect on tremor frequency.

  12. Measurement of tremor transmission during microsurgery.

    PubMed

    Verrelli, David I; Qian, Yi; Wood, James; Wilson, Michael K

    2016-12-01

    Tremor is a major impediment to performing fine motor tasks, as in microsurgery. However, conventional measurements do not involve tasks representative of microsurgery. We developed a low-cost surgical simulator incorporating a force transducer capable of detecting and quantifying the effects of tremor upon high-fidelity silicone replicas of cardiac vessels and substrate muscle. Experienced and trainee surgeons performed simulated anastomoses on this rig. We characterized procedures in terms of tremor intensity, based on Lomb-Scargle periodograms. Distinctive force oscillations occurred at 8-12 Hz, characteristic of enhanced physiological tremor, yielding peaks in power spectral density. These early results suggest a significantly lower transmission of tremor to the operative field by the experienced surgeon in comparison to the trainees. This new device quantifies the action of tremor upon a manipulandum during a complex task, which may be used for assessment and providing feedback to trainee surgeons. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Shooting performance is related to forearm temperature and hand tremor size.

    PubMed

    Lakie, M; Villagra, F; Bowman, I; Wilby, R

    1995-08-01

    The changes in postural tremor of the hand and the subsequent effect on shooting performance produced by moderate cooling and heating of the forearm were studied in six subjects. Cooling produced a large decrease in tremor size of the ipsilateral hand, whereas warming the limb produced an increase in tremor size. Cooling or warming the forearm did not change the peak frequency of tremor significantly, which was quite stable for each subject. The improvement in shooting performance after cooling the forearm, as measured by grouping pattern of the shots, reached statistical significance and warming caused a significant worsening. This measure of performance was shown to correlate (r = 0.776) inversely with tremor size. The causes and implications of these changes are discussed. It is suggested that local cooling may be useful for people who wish temporarily to reduce tremor in order to improve dexterity for shooting and for other purposes.

  14. Strongly gliding harmonic tremor during the 2009 eruption of Redoubt Volcano

    USGS Publications Warehouse

    Hotovec, Alicia J.; Prejean, Stephanie G.; Vidale, John E.; Gomberg, Joan S.

    2013-01-01

    During the 2009 eruption of Redoubt Volcano, Alaska, gliding harmonic tremor occurred prominently before six nearly consecutive explosions during the second half of the eruptive sequence. The fundamental frequency repeatedly glided upward from < 1 Hz to as high as 30 Hz in less than 10 min, followed by a relative seismic quiescence of 10 to 60 s immediately prior to explosion. High frequency (5 to 20 Hz) gliding returned during the extrusive phase, and lasted for 20 min to 3 h at a time. Although harmonic tremor is not uncommon at volcanoes, tremor at such high frequencies is a rare observation. These frequencies approach or exceed the plausible upper limits of many models that have been suggested for volcanic tremor. We also analyzed the behavior of a swarm of repeating earthquakes that immediately preceded the first instance of pre-explosion gliding harmonic tremor. We find that these earthquakes share several traits with upward gliding harmonic tremor, and favor the explanation that the gliding harmonic tremor at Redoubt Volcano is created by the superposition of increasingly frequent and regular, repeating stick–slip earthquakes through the Dirac comb effect.

  15. Spatio-temporal Variations in Slow Earthquakes along the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ide, S.; Maury, J.; Cruz-Atienza, V. M.; Kostoglodov, V.

    2017-12-01

    Slow earthquakes in Mexico have been investigated independently in different areas. Here, we review differences in tremor behavior and slow slip events along the entire subduction zone to improve our understanding of its segmentation. Some similarities are observed between the Guerrero and Oaxaca areas. By combining our improved tremor detection capabilities with previous results, we suggest that there is no gap in tremor between Guerrero and Oaxaca. However some differences between Michoacan and Guerrero are seen (e.g., SSE magnitude, tremor zone width, tremor rate), suggesting that these two areas behave differently. Tremor initiation shows clear tidal sensitivity along the entire subduction zone. Tremor in Guerrero is sensitive to small tidal normal stress as well as shear stress suggesting the subduction plane may include local variations in dip. Estimation of the energy rate shows similar values along the subduction zone interface. The scaled tremor energy estimates are similar to those calculated in Nankai and Cascadia, suggesting a common mechanism. Along-strike differences in slow deformation may be related to variations in the subduction interface that yield different geometrical and temperature profiles.

  16. Tremor in multiple sclerosis: The intriguing role of the cerebellum.

    PubMed

    Ayache, Samar S; Chalah, Moussa A; Al-Ani, Tarik; Farhat, Wassim H; Zouari, Hela G; Créange, Alain; Lefaucheur, Jean-Pascal

    2015-11-15

    Tremor is frequently encountered in multiple sclerosis (MS) patients. However, its underlying pathophysiological mechanisms remain poorly understood. Our aim was to assess the potential role of the cerebellum and brain stem structures in the generation of MS tremor.We performed accelerometric (ACC) and electromyographic(EMG) assessment of tremor in 32MS patients with manual clumsiness. In addition to clinical examination, patients underwent a neurophysiological exploration of the brainstem and cerebellar functions,which consisted of blink and masseter inhibitory reflexes, cerebello-thalamo-cortical inhibition (CTCi), and somatosensory evoked potentials. Tremor was clinically visible in 18 patients and absent in 14. Patients with visible tremor had more severe score of ataxia and clinical signs of cerebellar dysfunction, as well as a more reduced CTCi on neurophysiological investigation. However, ACC and EMG recordings confirmed the presence of a real rhythmic activity in only one patient. In most MS patients, the clinically visible tremor corresponded to a pseudorhythmic activity without coupling between ACC and EMG recordings. Cerebellar dysfunction may contribute to the occurrence of this pseudorhythmic activity mimicking tremor during posture and movement execution.

  17. Spatiotemporal Variations in Slow Earthquakes Along the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Maury, J.; Ide, S.; Cruz-Atienza, V. M.; Kostoglodov, V.

    2018-02-01

    Slow earthquakes in Mexico have been investigated independently in different areas. Here we review differences in tremor behavior and slow slip events along the entire subduction zone to improve our understanding of its segmentation. Some similarities are observed between the Guerrero and Oaxaca areas. By combining our improved tremor detection capabilities with previous results, we suggest that there is no gap in tremor between Guerrero and Oaxaca. However, some differences between Michoacan and Guerrero are seen (e.g., SSE magnitude, tremor zone width, and tremor rate), suggesting that these two areas behave differently. Tremor initiation shows clear tidal sensitivity along the entire subduction zone. Tremor in Guerrero is sensitive to small tidal normal stress as well as shear stress, suggesting that the subduction plane may include local variations in dip. Estimation of the energy rate shows similar values along the subduction zone interface. The scaled tremor energy estimates are similar to those calculated in Nankai and Cascadia, suggesting a common mechanism. Along-strike differences in slow deformation may be related to variations in the subduction interface that yield different geometrical and temperature profiles.

  18. Task-specific kinetic finger tremor affects the performance of carrom players.

    PubMed

    Kahathuduwa, Chanaka N; Weerasinghe, Vajira S; Dassanayake, Tharaka L; Priyadarshana, Rajeewa; Dissanayake, Arunika L; Perera, Christine

    2016-01-01

    We aimed to determine the effect of task-specific kinetic finger tremor, as indexed by surface electromyography (EMG), on the accuracy of a carrom stroke. Surface EMG of extensor digitorum communis muscle of the playing arm was recorded during rest, isometric contraction and stroke execution in 17 male carrom players with clinically observed finger tremor and 18 skill- and age-matched controls. Log-transformed power spectral densities (LogPSDs) of surface EMG activity (signifying tremor severity) at a 1-s pre-execution period correlated with angular error of the stroke. LogPSDs in 4-10 Hz range were higher in players with tremor than controls during pre-execution (P < 0.001), but not during the resting state (P = 0.067). Pre-execution tremor amplitude correlated with angular deviation (r = 0.45, P = 0.007). For the first time, we document a task-specific kinetic finger tremor in carrom players. This finger tremor during the immediate pre-execution phase appears to be a significant determinant of stroke accuracy.

  19. Physiological and harmonic components in neural and muscular coherence in Parkinsonian tremor.

    PubMed

    Wang, Shouyan; Aziz, Tipu Z; Stein, John F; Bain, Peter G; Liu, Xuguang

    2006-07-01

    To differentiate physiological from harmonic components in coherence analysis of the tremor-related neural and muscular signals by comparing power, cross-power and coherence spectra. Influences of waveform, burst-width and additional noise on generating harmonic peaks in the power, cross-power and coherence spectra were studied using simulated signals. The local field potentials (LFPs) of the subthalamic nucleus (STN) and the EMGs of the contralateral forearm muscles in PD patients with rest tremor were analysed. (1) Waveform had significant effect on generating harmonics; (2) noise significantly decreased the coherence values in a frequency-dependent fashion; and (3) cross-spectrum showed high resistance to harmonics. Among six examples of paired LFP-EMG signals, significant coherence appeared at the tremor frequency only, both the tremor and double tremor frequencies and the double-tremor frequency only. In coherence analysis of neural and muscular signals, distortion in waveform generates significant harmonic peaks in the coherence spectra and the coherence values of both physiological and harmonic components are modulated by extra noise or non-tremor related activity. The physiological or harmonic nature of a coherence peak at the double tremor frequency may be differentiated when the coherence spectra are compared with the power and in particular the cross-power spectra.

  20. Resistance Training Reduces Force Tremor and Improves Manual Dexterity in Older Individuals With Essential Tremor.

    PubMed

    Kavanagh, Justin J; Wedderburn-Bisshop, Jacob; Keogh, Justin W L

    2016-01-01

    Although symptoms of Essential Tremor (ET) are typically controlled with medication, it is of interest to explore additional therapies to assist with functionality. The purpose of this study was to determine if a generalized upper limb resistance training (RT) program improves manual dexterity and reduces force tremor in older individuals with ET. Ten Essential Tremor and 9 controls were recruited into a dual group, pretest-posttest intervention study. Participants performed 6 weeks of upper-limb RT, and battery of manual dexterity and isometric force tremor assessments were performed before and after the RT to determine the benefits of the program. The six-week, high-load, RT program produced strength increases in each limb for the ET and healthy older group. These changes in strength aligned with improvements in manual dexterity and tremor-most notably for the ET group. The least affected limb and the most affected limb exhibited similar improvements in functional assessments of manual dexterity, whereas reductions in force tremor amplitude following the RT program were restricted to the most affected limb of the ET group. These findings suggest that generalized upper limb RT program has the potential to improve aspects of manual dexterity and reduce force tremor in older ET patients.

  1. On the Origin of Tremor in Parkinson’s Disease

    PubMed Central

    Dovzhenok, Andrey; Rubchinsky, Leonid L.

    2012-01-01

    The exact origin of tremor in Parkinson’s disease remains unknown. We explain why the existing data converge on the basal ganglia-thalamo-cortical loop as a tremor generator and consider a conductance-based model of subthalamo-pallidal circuits embedded into a simplified representation of the basal ganglia-thalamo-cortical circuit to investigate the dynamics of this loop. We show how variation of the strength of dopamine-modulated connections in the basal ganglia-thalamo-cortical loop (representing the decreasing dopamine level in Parkinson’s disease) leads to the occurrence of tremor-like burst firing. These tremor-like oscillations are suppressed when the connections are modulated back to represent a higher dopamine level (as it would be the case in dopaminergic therapy), as well as when the basal ganglia-thalamo-cortical loop is broken (as would be the case for ablative anti-parkinsonian surgeries). Thus, the proposed model provides an explanation for the basal ganglia-thalamo-cortical loop mechanism of tremor generation. The strengthening of the loop leads to tremor oscillations, while the weakening or disconnection of the loop suppresses them. The loop origin of parkinsonian tremor also suggests that new tremor-suppression therapies may have anatomical targets in different cortical and subcortical areas as long as they are within the basal ganglia-thalamo-cortical loop. PMID:22848541

  2. Serotonergic modulation of nicotine-induced kinetic tremor in mice.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Nomura, Yuji; Onishi, Misaki; Matsubara, Nami; Shimizu, Saki; Ohno, Yukihiro

    2017-06-01

    We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh) receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT 1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT), significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT 1A antagonist). In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT 2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT 2 antagonist). The 5-HT 3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT 3 antagonist) or SB-258585 (5-HT 6 antagonist). These results suggest that postsynaptic 5-HT 1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT 2 receptors have an inhibitory modulatory role in induction of nicotine tremor. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. Non-contact measurement of tremor for the characterisation of Parkinsonian individuals: comparison between Kinect and Laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Casacanditella, L.; Cosoli, G.; Ceravolo, MG; Tomasini, EP

    2017-08-01

    Parkinson’s disease is a progressive neurodegenerative disorder affecting the central nervous system. One of its main and most evident symptoms is the tremor, which usually manifests at rest with varying intensity during time. An important diagnostic challenge is the differential diagnosis between Parkinson’s disease and the other most widely represented tremor syndrome, i.e. Essential (or senile) tremor. At present there are no standard methods for the quantification of tremor and the diagnosis of both Parkinson’s disease and Essential tremor is mainly done on the base of clinical criteria and by using rating scales. The aim of this work is to objectively and non-invasively assess the tremor linked to the quoted diseases, using non-contact techniques: Laser Doppler Vibrometer (LDV) and Kinect for Windows device. Two subjects with Parkinson’s disease and one with Essential tremor were tested in different conditions: at rest, during a cognitive task, with forward stretched arms and in “Wing position”. The results from data processing in terms of tremor frequency seem to be comparable, with a mean deviation of 0.31 Hz. Furthermore, the values computed are consistent with what is stated in the literature (i.e. 4-12 Hz). So, both LDV and Kinect device can be considered suitable to be used as an objective means for the assessment and monitoring of Parkinson’s disease tremor, helping the clinician in the choice of the most suitable treatment for the patients.

  4. Distinguishing the central drive to tremor in Parkinson's disease and essential tremor.

    PubMed

    Brittain, John-Stuart; Cagnan, Hayriye; Mehta, Arpan R; Saifee, Tabish A; Edwards, Mark J; Brown, Peter

    2015-01-14

    Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders. Both have been associated with similar patterns of network activation leading to the suggestion that they may result from similar network dysfunction, specifically involving the cerebellum. Here, we demonstrate that parkinsonian tremors and ETs result from distinct patterns of interactions between neural oscillators. These patterns are reflected in the tremors' derived frequency tolerance, a novel measure readily attainable from bedside accelerometry. Frequency tolerance characterizes the temporal evolution of tremor by quantifying the range of frequencies over which the tremor may be considered stable. We found that patients with PD (N = 24) and ET (N = 21) were separable based on their frequency tolerance, with PD associated with a broad range of stable frequencies whereas ET displayed characteristics consistent with a more finely tuned oscillatory drive. Furthermore, tremor was selectively entrained by transcranial alternating current stimulation applied over cerebellum. Narrow frequency tolerances predicted stronger entrainment of tremor by stimulation, providing good evidence that the cerebellum plays an important role in pacing those tremors. The different patterns of frequency tolerance could be captured with a simple model based on a broadly coupled set of neural oscillators for PD, but a more finely tuned set of oscillators in ET. Together, these results reveal a potential organizational principle of the human motor system, whose disruption in PD and ET dictates how patients respond to empirical, and potentially therapeutic, interventions that interact with their underlying pathophysiology. Copyright © 2015 Brittain et al.

  5. Low-dose acute vanillin is beneficial against harmaline-induced tremors in rats.

    PubMed

    Abdulrahman, Al Asmari; Faisal, Kunnathodi; Meshref, Ali Al Amri; Arshaduddin, Mohammed

    2017-03-01

    To study the effect of pretreatment with low doses of vanillin, a flavoring agent used as a food additive, on harmaline-induced tremor in rats. Sprague Dawley rats (110 ± 5 g) were divided into groups of six animals each. Vanillin (6.25 mg, 12.5 mg, and 25 mg/kg) was administered by gavage to different groups of rats, 30 minutes before the induction of tremor. Harmaline (10 mg/kg, i.p.) was used for the induction of tremor. The latency of onset, duration, tremor intensity, tremor index, and spontaneous locomotor activity were recorded. A separate batch of animals was used for the determination of serotonin (5HT) and 5 hydroxyindole acetic acid (5HIAA) levels in the brain. Harmaline treatment resulted in characteristic tremor that lasted for more than 2 hours and decreased the locomotor activity of rats. Pre-treatment with vanillin significantly reduced the duration, intensity, and tremor index of harmaline-treated animals. Vanillin treatment also significantly attenuated harmaline-induced decrease in the locomotor activity. An increase in 5HT levels and the changes in 5HIAA/5HT ratio observed in harmaline treated rats were significantly corrected in vanillin pretreated animals. Vanillin in low doses reduces harmaline-induced tremor in rats, probably through its modulating effect on serotonin levels in the brain. These findings suggest a beneficial effect of vanillin in essential tremor.

  6. Distinguishing the Central Drive to Tremor in Parkinson's Disease and Essential Tremor

    PubMed Central

    Brittain, John-Stuart; Cagnan, Hayriye; Mehta, Arpan R.; Saifee, Tabish A.; Edwards, Mark J.

    2015-01-01

    Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders. Both have been associated with similar patterns of network activation leading to the suggestion that they may result from similar network dysfunction, specifically involving the cerebellum. Here, we demonstrate that parkinsonian tremors and ETs result from distinct patterns of interactions between neural oscillators. These patterns are reflected in the tremors' derived frequency tolerance, a novel measure readily attainable from bedside accelerometry. Frequency tolerance characterizes the temporal evolution of tremor by quantifying the range of frequencies over which the tremor may be considered stable. We found that patients with PD (N = 24) and ET (N = 21) were separable based on their frequency tolerance, with PD associated with a broad range of stable frequencies whereas ET displayed characteristics consistent with a more finely tuned oscillatory drive. Furthermore, tremor was selectively entrained by transcranial alternating current stimulation applied over cerebellum. Narrow frequency tolerances predicted stronger entrainment of tremor by stimulation, providing good evidence that the cerebellum plays an important role in pacing those tremors. The different patterns of frequency tolerance could be captured with a simple model based on a broadly coupled set of neural oscillators for PD, but a more finely tuned set of oscillators in ET. Together, these results reveal a potential organizational principle of the human motor system, whose disruption in PD and ET dictates how patients respond to empirical, and potentially therapeutic, interventions that interact with their underlying pathophysiology. PMID:25589772

  7. A teaching videotape for the assessment of essential tremor.

    PubMed

    Louis, E D; Barnes, L; Wendt, K J; Ford, B; Sangiorgio, M; Tabbal, S; Lewis, L; Kaufmann, P; Moskowitz, C; Comella, C L; Goetz, C C; Lang, A E

    2001-01-01

    Teaching videotapes, developed to aid in the evaluation of several movement disorders, have not been used in essential tremor research. As part of the Washington Heights-Inwood Genetic Study of Essential Tremor (WHIGET), we developed a reliable and valid tremor rating scale. Because this rating scale is currently being used by investigators at other centers, we developed a teaching videotape to aid in the consistent application of this scale. To develop a teaching videotape for a revised version of the WHIGET Tremor Rating Scale and to assess the interrater agreement among raters who used this videotape to rate tremor. The revised WHIGET Tremor Rating Scale was used to rate action tremor from 0 to 4 during six tests: arm extension, pouring, drinking, using a spoon, finger-to-nose, and drawing spirals. A 22-minute teaching videotape was developed that includes a 29-item educational section and a self-assessment section consisting of 20 examples of tremor ratings chosen by the two WHIGET study neurologists. Eight raters, including senior movement disorder specialists, movement disorder fellows, general neurologists, and a movement disorder nurse practitioner, independently viewed the videotape and rated tremor during the self-assessment section. Interobserver reliability was assessed with weighted kappa statistics (kappa(w)). Eight raters each rated 20 items (160 ratings total). Total kappa(w) was 0.97 (nearly perfect agreement). Interrater reliability was as follows: kappa(w) = 0.99 (movement disorder specialists), kappa(w) = 0.98 (movement disorder fellows), and kappa(w) = 0.97 (general neurologists); all kappa(w) were nearly perfect. This teaching videotape may be used to improve the uniform application of the revised WHIGET Tremor Rating Scale by raters with various levels of experience in movement disorders.

  8. Parkinsonian Rest Tremor Is Associated With Modulations of Subthalamic High-Frequency Oscillations.

    PubMed

    Hirschmann, Jan; Butz, Markus; Hartmann, Christian J; Hoogenboom, Nienke; Özkurt, Tolga E; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons

    2016-10-01

    High frequency oscillations (>200 Hz) have been observed in the basal ganglia of PD patients and were shown to be modulated by the administration of levodopa and voluntary movement. The objective of this study was to test whether the power of high-frequency oscillations in the STN is associated with spontaneous manifestation of parkinsonian rest tremor. The electromyogram of both forearms and local field potentials from the STN were recorded in 11 PD patients (10 men, age 58 [9.4] years, disease duration 9.2 [6.3] years). Patients were recorded at rest and while performing repetitive hand movements before and after levodopa intake. High-frequency oscillation power was compared across epochs containing rest tremor, tremor-free rest, or voluntary movement and related to the tremor cycle. We observed prominent slow (200-300 Hz) and fast (300-400 Hz) high-frequency oscillations. The ratio between slow and fast high-frequency oscillation power increased when tremor became manifest. This increase was consistent across nuclei (94%) and occurred in medication ON and OFF. The ratio outperformed other potential markers of tremor, such as power at individual tremor frequency, beta power, or low gamma power. For voluntary movement, we did not observe a significant difference when compared with rest or rest tremor. Finally, rhythmic modulations of high-frequency oscillation power occurred within the tremor cycle. Subthalamic high-frequency oscillation power is closely linked to the occurrence of parkinsonian rest tremor. The balance between slow and fast high-frequency oscillation power combines information on motor and medication state. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  9. Continuous Monitoring of Essential Tremor Using a Portable System Based on Smartwatch.

    PubMed

    Zheng, Xiaochen; Vieira Campos, Alba; Ordieres-Meré, Joaquín; Balseiro, Jose; Labrador Marcos, Sergio; Aladro, Yolanda

    2017-01-01

    Essential tremor (ET) shows amplitude fluctuations throughout the day, presenting challenges in both clinical and treatment monitoring. Tremor severity is currently evaluated by validated rating scales, which only provide a timely and subjective assessment during a clinical visit. Motor sensors have shown favorable performances in quantifying tremor objectively. A new highly portable system was used to monitor tremor continuously during daily lives. It consists of a smartwatch with a triaxial accelerometer, a smartphone, and a remote server. An experiment was conducted involving eight ET patients. The average effective data collection time per patient was 26 (±6.05) hours. Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS) was adopted as the gold standard to classify tremor and to validate the performance of the system. Quantitative analysis of tremor severity on different time scales is validated. Significant correlations were observed between neurologist's FTMTRS and patient's FTMTRS auto-assessment scores ( r  = 0.84; p  = 0.009), between the device quantitative measures and the scores from the standardized assessments of neurologists ( r  = 0.80; p  = 0.005) and patient's auto-evaluation ( r  = 0.97; p  = 0.032), and between patient's FTMTRS auto-assessment scores day-to-day ( r  = 0.87; p  < 0.001). A graphical representation of four patients with different degrees of tremor was presented, and a representative system is proposed to summarize the tremor scoring at different time scales. This study demonstrates the feasibility of prolonged and continuous monitoring of tremor severity during daily activities by a highly portable non-restrictive system, a useful tool to analyze efficacy and effectiveness of treatment.

  10. Neuroimaging essentials in essential tremor: A systematic review

    PubMed Central

    Sharifi, Sarvi; Nederveen, Aart J.; Booij, Jan; van Rootselaar, Anne-Fleur

    2014-01-01

    Background Essential tremor is regarded to be a disease of the central nervous system. Neuroimaging is a rapidly growing field with potential benefits to both diagnostics and research. The exact role of imaging techniques with respect to essential tremor in research and clinical practice is not clear. A systematic review of the different imaging techniques in essential tremor is lacking in the literature. Methods We performed a systematic literature search combining the terms essential tremor and familial tremor with the following keywords: imaging, MRI, VBM, DWI, fMRI, PET and SPECT, both in abbreviated form as well as in full form. We summarize and discuss the quality and the external validity of each study and place the results in the context of existing knowledge regarding the pathophysiology of essential tremor. Results A total of 48 neuroimaging studies met our search criteria, roughly divided into 19 structural and 29 functional and metabolic studies. The quality of the studies varied, especially concerning inclusion criteria. Functional imaging studies indicated cerebellar hyperactivity during rest and during tremor. The studies also pointed to the involvement of the thalamus, the inferior olive and the red nucleus. Structural studies showed less consistent results. Discussion and conclusion Neuroimaging techniques in essential tremor give insight into the pathophysiology of essential tremor indicating the involvement of the cerebellum as the most consistent finding. GABAergic dysfunction might be a major premise in the pathophysiological hypotheses. Inconsistencies between studies can be partly explained by the inclusion of heterogeneous patient groups. Improvement of scientific research requires more stringent inclusion criteria and application of advanced analysis techniques. Also, the use of multimodal neuroimaging techniques is a promising development in movement disorders research. Currently, the role of imaging techniques in essential tremor in daily clinical practice is limited. PMID:25068111

  11. Differences in postural tremor dynamics with age and neurological disease.

    PubMed

    Morrison, Steven; Newell, Karl M; Kavanagh, Justin J

    2017-06-01

    The overlap of dominant tremor frequencies and similarly amplified tremor observed for Parkinson's disease (PD) and essential tremor (ET) means differentiating between these pathologies is often difficult. As tremor exhibits non-linear properties, employing both linear and non-linear analyses may help distinguish between the tremor dynamics of aging, PD and ET. This study was designed to examine postural tremor in healthy older adults, PD and ET using standard linear and non-linear metrics. Hand and finger postural tremor was recorded in 15 healthy older adults (64 ± 6 years), 15 older individuals with PD (63 ± 6 years), and 10 persons with ET (68 ± 7 years). Linear measures of amplitude, frequency, and between-limb coupling (coherence) were performed. Non-linear measures of regularity (ApEn) and coupling (Cross-ApEn) were also used. Additionally, receiver operating characteristic analyses were performed for those measures that were significantly different between all groups. The results revealed that the linear measures only showed significant differences between the healthy adults and ET/PD persons, but no differences between the two neurological groups. Coherence showed higher bilateral coupling for ET but no differences in inter-limb coupling between PD and healthy subjects. However, ApEn values for finger tremor revealed significant differences between all groups, with tremor for ET persons being more regular (lower ApEn) overall. Similarly, Cross-ApEn results also showed differences between all groups, with ET persons showing strongest inter-limb coupling followed by PD and elderly. Overall, our findings point to the diagnostic potential for non-linear measures of coupling and tremor structure as biomarkers for discriminating between ET, PD and healthy persons.

  12. Validation of "laboratory-supported" criteria for functional (psychogenic) tremor.

    PubMed

    Schwingenschuh, Petra; Saifee, Tabish A; Katschnig-Winter, Petra; Macerollo, Antonella; Koegl-Wallner, Mariella; Culea, Valeriu; Ghadery, Christine; Hofer, Edith; Pendl, Tamara; Seiler, Stephan; Werner, Ulrike; Franthal, Sebastian; Maurits, Natasha M; Tijssen, Marina A; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2016-04-01

    In a small group of patients, we have previously shown that a combination of electrophysiological tests was able to distinguish functional (psychogenic) tremor and organic tremor with excellent sensitivity and specificity. This study aims to validate an electrophysiological test battery as a tool to diagnose patients with functional tremor with a "laboratory-supported" level of certainty. For this prospective data collection study, we recruited 38 new patients with functional tremor (mean age 37.9 ± 24.5 years; mean disease duration 5.9 ± 9.0 years) and 73 new patients with organic tremor (mean age 55.4 ± 25.4 years; mean disease duration 15.8 ± 17.7 years). Tremor was recorded at rest, posture (with and without loading), action, while performing tapping tasks (1, 3, and 5 Hz), and while performing ballistic movements with the less-affected hand. Electrophysiological tests were performed by raters blinded to the clinical diagnosis. We calculated a sum score for all performed tests (maximum of 10 points) and used a previously suggested cut-off score of 3 points for a diagnosis of laboratory-supported functional tremor. We demonstrated good interrater reliability and test-retest reliability. Patients with functional tremor had a higher average score on the test battery when compared with patients with organic tremor (3.6 ± 1.4 points vs 1.0 ± 0.8 points; P < .001), and the predefined cut-off score for laboratory-supported functional tremor yielded a test sensitivity of 89.5% and a specificity of 95.9%. We now propose this test battery as the basis of laboratory-supported criteria for the diagnosis of functional tremor, and we encourage its use in clinical and research practice. © 2016 International Parkinson and Movement Disorder Society.

  13. Refining diagnosis of Parkinson's disease with deep learning-based interpretation of dopamine transporter imaging.

    PubMed

    Choi, Hongyoon; Ha, Seunggyun; Im, Hyung Jun; Paek, Sun Ha; Lee, Dong Soo

    2017-01-01

    Dopaminergic degeneration is a pathologic hallmark of Parkinson's disease (PD), which can be assessed by dopamine transporter imaging such as FP-CIT SPECT. Until now, imaging has been routinely interpreted by human though it can show interobserver variability and result in inconsistent diagnosis. In this study, we developed a deep learning-based FP-CIT SPECT interpretation system to refine the imaging diagnosis of Parkinson's disease. This system trained by SPECT images of PD patients and normal controls shows high classification accuracy comparable with the experts' evaluation referring quantification results. Its high accuracy was validated in an independent cohort composed of patients with PD and nonparkinsonian tremor. In addition, we showed that some patients clinically diagnosed as PD who have scans without evidence of dopaminergic deficit (SWEDD), an atypical subgroup of PD, could be reclassified by our automated system. Our results suggested that the deep learning-based model could accurately interpret FP-CIT SPECT and overcome variability of human evaluation. It could help imaging diagnosis of patients with uncertain Parkinsonism and provide objective patient group classification, particularly for SWEDD, in further clinical studies.

  14. Control of lithium tremor with propranolol.

    PubMed Central

    Lapierre, Y. D.

    1976-01-01

    Lithium tremor is an irregular, nonrhythmic tremor of the distal extremities, variable in both intensity and frequency. It is clinically differentiated from essential tremor and tremors due to anxiety and neuroleptics. The pathophysiologic mechanisms are hypothesized to be of perpheral origin. Five patients were successfully treated with propranolol. In general, the dosage of propranolol must be individually adjusted and is usually from 30 to 40 mg daily in divided doses. This blocker of beta-adrenergic receptors remains effective with long-term administration and increases in dosage are not required. PMID:1260604

  15. Intermediate-depth icequakes and harmonic tremor in an Alpine glacier (Glacier d'Argentière, France): Evidence for hydraulic fracturing?

    NASA Astrophysics Data System (ADS)

    Helmstetter, Agnès.; Moreau, Luc; Nicolas, Barbara; Comon, Pierre; Gay, Michel

    2015-03-01

    We detected several thousand deep englacial icequakes on Glacier d'Argentière (Mont-Blanc massif) between 30 March and 3 May 2012. These events have been classified in eight clusters. Inside each cluster, the waveforms are similar for P waves and S waves, although the time delay between the P waves and the S waves vary by up to 0.03 s, indicating an extended source area. Although these events were recorded by a single accelerometer, they were roughly located using a polarization analysis. The deepest events were located at a depth of 130 m, 60 m above the ice/bed interface. The clusters are separated in space. The largest cluster extends over about 100 m. For this cluster, the strike of the rupture plane is nearly parallel to the direction of the open crevasses, and the dip angle is 56°. Deep icequakes occur in bursts of activity that last for a few hours and are separated by quiet periods. Many events occurred on 28 and 29 April 2012, during the warmest days, when snowmelting was likely important. The distributions of interevent times and peak amplitudes obey power laws as also observed for earthquakes, but with larger exponents. The polarity of the P waves for all of the events is consistent with tensile faulting. Finally, between 25 April and 3 May, we observed a gliding harmonic tremor with a fundamental resonance frequency that varied between 30 Hz and 38 Hz, with additional higher-frequency harmonics. During this time we also observed shallow hybrid events with high-frequency onsets and a monochromatic coda. These events might be produced by the propagation of fractures and the subsequent flow of water into the fracture. The strongest resonance was observed just after a strong burst of deep icequakes and during an unusually warm period when the snow height decreased by 60 cm in 1 week. The resonance frequency shows a succession of several sharp decreases and phases of progressive increases. One of the strongest negative steps of the resonance frequency on 28 April coincides with a burst of deep icequakes. These events appear to be associated with the propagation of fractures, which can explain the decrease in the resonance frequency. Finally, we observed an acceleration of glacier flow on 29 April, suggesting that meltwater had reached the ice/bed interface. These observations suggest that deep icequakes are due to hydraulic fracturing and that they can be used to track fluid flow inside glaciers.

  16. Event Recognition Based on Deep Learning in Chinese Texts

    PubMed Central

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%. PMID:27501231

  17. Event Recognition Based on Deep Learning in Chinese Texts.

    PubMed

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  18. Differential effects of deep brain stimulation target on motor subtypes in Parkinson's disease.

    PubMed

    Katz, Maya; Luciano, Marta San; Carlson, Kimberly; Luo, Ping; Marks, William J; Larson, Paul S; Starr, Philip A; Follett, Kenneth A; Weaver, Frances M; Stern, Matthew B; Reda, Domenic J; Ostrem, Jill L

    2015-04-01

    The Veterans Administration Cooperative Studies Program #468, a multicenter study that randomized Parkinson's disease (PD) patients to either subthalamic nucleus (STN) or globus pallidus internus (GPi) deep brain stimulation (DBS), found that stimulation at either target provided similar overall motoric benefits. We conducted an additional analysis of this data set to evaluate whether PD motor subtypes responded differently to the 2 stimulation targets. We classified 235 subjects by motor subtype: tremor dominant (TD), intermediate (I), or postural instability gait difficulty (PIGD), based on pre-DBS baseline Unified Parkinson's Disease Rating Scale (UPDRS) scores off-medication. The primary outcome was change in UPDRS part III (UPDRS-III) off-medication scores from baseline to 24 months post-DBS, compared among subjects with particular PD motor subtypes and by DBS target (STN vs GPi). Changes in tremor, rigidity, akinesia, and gait scores were also assessed using the UPDRS. TD patients had greater mean overall motor improvement, measured by UPDRS-III, after GPi DBS, compared to STN DBS (17.5 ± 13.0 vs 14.6 ± 14.9, p = 0.02), with improvement in gait accounting for this difference. Regardless of stimulation target, PIGD subjects had lower mean overall improvement in UPDRS-III scores compared with I or TD subjects (8.7 ± 12.2 vs 21.7 ± 11.2 vs 16.3 ± 13.8, p = 0.001). Our results suggest that responsiveness to both GPi and STN DBS is similar among different PD motor subtypes, although the TD motor subtype may have a greater response to GPi DBS with respect to gait. PIGD patients obtained less overall benefit from stimulation. © 2015 American Neurological Association.

  19. Psychiatric and neuropsychiatric adverse events associated with deep brain stimulation: A meta-analysis of ten years' experience.

    PubMed

    Appleby, Brian S; Duggan, Patrick S; Regenberg, Alan; Rabins, Peter V

    2007-09-15

    Deep brain stimulation (DBS) has been approved by the FDA for use in the treatment of Parkinson's disease, essential tremor, and dystonia. Case reports and case series have reported significant psychiatric side effects in some individuals. The goal of this meta-analysis is to characterize the risks and benefits of DBS and to assess its possible use within the psychiatric setting. A search was conducted on PubMed, EBSCO, and PsycInfo in January 2006 that covered the time period 1 Jan 1996-30 Dec 2005. All identified articles were reviewed and those describing adverse events were further examined with a structured instrument. The initial searches yielded 2667 citations; 808 articles met inclusion criteria for the meta-analysis; 98.2% of studies that specifically assessed motor function reported some level of improvement. Most reported side effects were device or procedure related (e.g., infection and lead fracture). The prevalence of depression was 2-4%, mania 0.9-1.7%, emotional changes 0.1-0.2%, and the prevalence of suicidal ideation/suicide attempt was 0.3-0.7%. The completed suicide rate was 0.16-0.32%. In conclusion, DBS is an effective treatment for Parkinson's disease, dystonia, and essential tremor, and case reports suggest that major depression and OCD may also respond to DBS. Reported rates of depression, cognitive impairment, mania, and behavior change are low, but there is a high rate of suicide in patients treated with DBS, particularly with thalamic and GPi stimulation. Because of the high suicide rate, patients should be prescreened for suicide risk prior to DBS surgery. Additionally, patients should be monitored closely for suicidal behavior post-operatively. (c) 2007 Movement Disorder Society.

  20. Observations of volcanic tremor during January-February 2005 eruption of Mt. Veniaminof, Alaska

    USGS Publications Warehouse

    De Angelis, Slivio; McNutt, Stephen R.

    2007-01-01

    Mt. Veniaminof, Alaska Peninsula, is a stratovolcano with a summit ice-filled caldera containing a small intracaldera cone and active vent. From January 2 to February 21, 2005, Mt. Veniaminof erupted. The eruption was characterized by numerous small ash emissions (VEI 0 to 1) and accompanied by low-frequency earthquake activity and volcanic tremor. We have performed spectral analyses of the seismic signals in order to characterize them and to constrain their source. Continuous tremor has durations of minutes to hours with dominant energy in the band 0.5– 4.0 Hz, and spectra characterized by narrow peaks either irregularly (non-harmonic tremor) or regularly spaced (harmonic tremor). The spectra of non-harmonic tremor resemble those of low-frequency events recorded simultaneously with surface ash explosions, suggesting that the source mechanisms might be similar or related. We propose that non-harmonic tremor at Mt. Veniaminof results from the coalescence of gas bubbles while low-frequency events are related to the disruption of large gas pockets within the conduit. Harmonic tremor, characterized by regular and quasisinusoidal waveforms, has duration of hours. Spectra containing up to five harmonics suggest the presence of a resonating source volume that vibrates in a longitudinal acoustic mode. An interesting feature of harmonic tremor is that frequency is observed to change over time; spectral lines move towards higher or lower values while the harmonic nature of the spectra is maintained. Factors controlling the variable characteristics of harmonic tremor include changes in acoustic velocity at the source and variations of the effective size of the resonator.

  1. Cognitive and neuropsychiatric features of orthostatic tremor: A case-control comparison.

    PubMed

    Benito-León, Julián; Louis, Elan D; Puertas-Martín, Verónica; Romero, Juan Pablo; Matarazzo, Michele; Molina-Arjona, José Antonio; Domínguez-González, Cristina; Sánchez-Ferro, Álvaro

    2016-02-15

    Evidence suggests that the cerebellum could play a role in the pathophysiology of orthostatic tremor. The link between orthostatic tremor and the cerebellum is of interest, especially in light of the role the cerebellum plays in cognition, and it raises the possibility that orthostatic tremor patients could have cognitive deficits consistent with cerebellar dysfunction. Our aim was to examine whether orthostatic tremor patients had cognitive deficits and distinct personality profiles when compared with matched controls. Sixteen consecutive orthostatic tremor patients (65.7 ± 13.3 years) and 32 healthy matched controls underwent a neuropsychological battery and the Personality Assessment Inventory. In linear regression models, the dependent variable was each one of the neuropsychological test scores or the Personality Assessment Inventory subscales and the independent variable was orthostatic tremor vs. Adjusted for age in years, sex, years of education, comorbidity index, current smoker, and depressive symptoms, diagnosis (orthostatic tremor vs. healthy control) was associated with poor performance on tests of executive function, visuospatial ability, verbal memory, visual memory, and language tests, and on a number of the Personality Assessment Inventory subscales (somatic concerns, anxiety related disorders, depression, and antisocial features). Older-onset OT (>60 years) patients had poorer scores on cognitive and personality testing compared with their younger-onset OT counterparts. Orthostatic tremor patients have deficits in specific aspects of neuropsychological functioning, particularly those thought to rely on the integrity of the prefrontal cortex, which suggests involvement of frontocerebellar circuits. Cognitive impairment and personality disturbances could be disease-associated nonmotor manifestations of orthostatic tremor. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Beta-Adrenergic Modulation of Tremor and Corticomuscular Coherence in Humans

    PubMed Central

    Baker, Mark R.; Baker, Stuart N.

    2012-01-01

    Coherence between the bioelectric activity of sensorimotor cortex and contralateral muscles can be observed around 20 Hz. By contrast, physiological tremor has a dominant frequency around 10 Hz. Although tremor has multiple sources, it is partly central in origin, reflecting a component of motoneuron discharge at this frequency. The motoneuron response to ∼20 Hz descending input could be altered by non-linear interactions with ∼10 Hz motoneuron firing. We investigated this further in eight healthy human subjects by testing the effects of the beta-adrenergic agents propranolol (non-selective β-antagonist) and salbutamol (β2-agonist), which are known to alter the size of physiological tremor. Corticomuscular coherence was assessed during an auxotonic precision grip task; tremor was quantified using accelerometry during index finger extension. Experiments with propranolol used a double-blind, placebo-controlled crossover design. A single oral dose of propranolol (40 mg) significantly increased beta band (15.3–32.2 Hz) corticomuscular coherence compared with placebo, but reduced tremor in the 6.2–11.9 Hz range. Salbutamol (2.5 mg) was administered by inhalation. Whilst salbutamol significantly increased tremor amplitude as expected, it did not change corticomuscular coherence. The opposite direction of the effects of propranolol on corticomuscular coherence and tremor, and the fact that salbutamol enhances tremor but does not affect coherence, implies that the magnitude of corticomuscular coherence is little influenced by non-linear interactions with 10 Hz oscillations in motoneurons or the periphery. Instead, we suggest that propranolol and salbutamol may affect both tremor and corticomuscular coherence partly via a central site of action. PMID:23185297

  3. Volcanic tremor masks its seismogenic source: Results from a study of noneruptive tremor recorded at Mount St. Helens, Washington

    USGS Publications Warehouse

    Denlinger, Roger P.; Moran, Seth C.

    2014-01-01

    On 2 October 2004, a significant noneruptive tremor episode occurred during the buildup to the 2004–2008 eruption of Mount St. Helens (Washington). This episode was remarkable both because no explosion followed, and because seismicity abruptly stopped following the episode. This sequence motivated us to consider a model for volcanic tremor that does not involve energetic gas release from magma but does involve movement of conduit magma through extension on its way toward the surface. We found that the tremor signal was composed entirely of Love and Rayleigh waves and that its spectral bandwidth increased and decreased with signal amplitude, with broader bandwidth signals containing both higher and lower frequencies. Our modeling results demonstrate that the forces giving rise to this tremor were largely normal to conduit walls, generating hybrid head waves along conduit walls that are coupled to internally reflected waves. Together these form a crucial part of conduit resonance, giving tremor wavefields that are largely a function of waveguide geometry and velocity. We find that the mechanism of tremor generation fundamentally masks the nature of the seismogenic source giving rise to resonance. Thus multiple models can be invoked to explain volcanic tremor, requiring that information from other sources (such as visual observations, geodesy, geology, and gas geochemistry) be used to constrain source models. With concurrent GPS and field data supporting rapid rise of magma, we infer that tremor resulted from drag of nearly solid magma along rough conduit walls as magma was forced toward the surface.

  4. Multiple Resting-State Networks Are Associated With Tremors and Cognitive Features in Essential Tremor.

    PubMed

    Fang, Weidong; Chen, Huiyue; Wang, Hansheng; Zhang, Han; Liu, Mengqi; Puneet, Munankami; Lv, Fajin; Cheng, Oumei; Wang, Xuefeng; Lu, Xiurong; Luo, Tianyou

    2015-12-01

    The heterogeneous clinical features of essential tremor indicate that the dysfunctions of this syndrome are not confined to motor networks, but extend to nonmotor networks. Currently, these neural network dysfunctions in essential tremor remain unclear. In this study, independent component analysis of resting-state functional MRI was used to study these neural network mechanisms. Thirty-five essential tremor patients and 35 matched healthy controls with clinical and neuropsychological tests were included, and eight resting-state networks were identified. After considering the structure and head-motion factors and testing the reliability of the selected resting-state networks, we assessed the functional connectivity changes within or between resting-state networks. Finally, image-behavior correlation analysis was performed. Compared to healthy controls, essential tremor patients displayed increased functional connectivity in the sensorimotor and salience networks and decreased functional connectivity in the cerebellum network. Additionally, increased functional network connectivity was observed between anterior and posterior default mode networks, and a decreased functional network connectivity was noted between the cerebellum network and the sensorimotor and posterior default mode networks. Importantly, the functional connectivity changes within and between these resting-state networks were correlated with the tremor severity and total cognitive scores of essential tremor patients. The findings of this study provide the first evidence that functional connectivity changes within and between multiple resting-state networks are associated with tremors and cognitive features of essential tremor, and this work demonstrates a potential approach for identifying the underlying neural network mechanisms of this syndrome. © 2015 International Parkinson and Movement Disorder Society.

  5. Analysis of dystonic tremor in musicians using empirical mode decomposition.

    PubMed

    Lee, A; Schoonderwaldt, E; Chadde, M; Altenmüller, E

    2015-01-01

    Test the hypotheses that tremor amplitude in musicians with task-specific dystonia is higher at the affected finger (dystonic tremor, DT) or the adjacent finger (tremor associated with dystonia, TAD) than (1) in matched fingers of healthy musicians and non-musicians and (2) within patients in the unaffected and non-adjacent fingers of the affected side within patients. We measured 21 patients, 21 healthy musicians and 24 non-musicians. Participants exerted a flexion-extension movement. Instantaneous frequency and amplitude values were obtained with empirical mode decomposition and a Hilbert-transform, allowing to compare tremor amplitudes throughout the movement at various frequency ranges. We did not find a significant difference in tremor amplitude between patients and controls for either DT or TAD. Neither differed tremor amplitude in the within-patient comparisons. Both hypotheses were rejected and apparently neither DT nor TAD occur in musician's dystonia of the fingers. This is the first study assessing DT and TAD in musician's dystonia. Our finding suggests that even though MD is an excellent model for malplasticity due to excessive practice, it does not seem to provide a good model for DT. Rather it seems that musician's dystonia may manifest itself either as dystonic cramping without tremor or as task-specific tremor without overt dystonic cramping. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Tremor pattern differentiates drug-induced resting tremor from Parkinson disease.

    PubMed

    Nisticò, R; Fratto, A; Vescio, B; Arabia, G; Sciacca, G; Morelli, M; Labate, A; Salsone, M; Novellino, F; Nicoletti, A; Petralia, A; Gambardella, A; Zappia, M; Quattrone, A

    2016-04-01

    DAT-SPECT, is a well-established procedure for distinguishing drug-induced parkinsonism from Parkinson's disease (PD). We investigated the usefulness of blink reflex recovery cycle (BRrc) and of electromyographic parameters of resting tremor for the differentiation of patients with drug-induced parkinsonism with resting tremor (rDIP) from those with resting tremor due to PD. This was a cross-sectional study. In 16 patients with rDIP and 18 patients with PD we analysed electrophysiological parameters (amplitude, duration, burst and pattern) of resting tremor. BRrc at interstimulus intervals (ISI) of 100, 150, 200, 300, 400, 500 and 750 msec was also analysed in patients with rDIP, patients with PD and healthy controls. All patients and controls underwent DAT-SPECT. Rest tremor amplitude was higher in PD patients than in rDIP patients (p < 0.001), while frequency and burst duration were higher in rDIP than in PD (p < 0.001, p < 0.003, respectively). Resting tremor showed a synchronous pattern in all patients with rDIP, whereas it had an alternating pattern in all PD patients (p < 0.001). DAT-SPECT was normal in rDIP patients while it was markedly abnormal in patients with PD. In the absence of DAT-SPECT, the pattern of resting tremor can be considered a useful investigation for differentiating rDIP from PD. Copyright © 2016. Published by Elsevier Ltd.

  7. Tremor

    MedlinePlus

    ... recommend the use of weights, splints, other adaptive equipment, and special plates and utensils for eating. Speech- ... on tremor also is available from the following organizations: International Essential Tremor Foundation P.O. Box 14005 ...

  8. Wrist sensor-based tremor severity quantification in Parkinson's disease using convolutional neural network.

    PubMed

    Kim, Han Byul; Lee, Woong Woo; Kim, Aryun; Lee, Hong Ji; Park, Hye Young; Jeon, Hyo Seon; Kim, Sang Kyong; Jeon, Beomseok; Park, Kwang S

    2018-04-01

    Tremor is a commonly observed symptom in patients of Parkinson's disease (PD), and accurate measurement of tremor severity is essential in prescribing appropriate treatment to relieve its symptoms. We propose a tremor assessment system based on the use of a convolutional neural network (CNN) to differentiate the severity of symptoms as measured in data collected from a wearable device. Tremor signals were recorded from 92 PD patients using a custom-developed device (SNUMAP) equipped with an accelerometer and gyroscope mounted on a wrist module. Neurologists assessed the tremor symptoms on the Unified Parkinson's Disease Rating Scale (UPDRS) from simultaneously recorded video footages. The measured data were transformed into the frequency domain and used to construct a two-dimensional image for training the network, and the CNN model was trained by convolving tremor signal images with kernels. The proposed CNN architecture was compared to previously studied machine learning algorithms and found to outperform them (accuracy = 0.85, linear weighted kappa = 0.85). More precise monitoring of PD tremor symptoms in daily life could be possible using our proposed method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Median Filtering Methods for Non-volcanic Tremor Detection

    NASA Astrophysics Data System (ADS)

    Damiao, L. G.; Nadeau, R. M.; Dreger, D. S.; Luna, B.; Zhang, H.

    2016-12-01

    Various properties of median filtering over time and space are used to address challenges posed by the Non-volcanic tremor detection problem. As part of a "Big-Data" effort to characterize the spatial and temporal distribution of ambient tremor throughout the Northern San Andreas Fault system, continuous seismic data from multiple seismic networks with contrasting operational characteristics and distributed over a variety of regions are being used. Automated median filtering methods that are flexible enough to work consistently with these data are required. Tremor is characterized by a low-amplitude, long-duration signal-train whose shape is coherent at multiple stations distributed over a large area. There are no consistent phase arrivals or mechanisms in a given tremor's signal and even the durations and shapes among different tremors vary considerably. A myriad of masquerading noise, anthropogenic and natural-event signals must also be discriminated in order to obtain accurate tremor detections. We present here results of the median methods applied to data from four regions of the San Andreas Fault system in northern California (Geysers Geothermal Field, Napa, Bitterwater and Parkfield) to illustrate the ability of the methods to detect tremor under diverse conditions.

  10. Effect on finger tremor of withdrawal of long-term treatment with propranolol or atenolol.

    PubMed Central

    Wharrad, H J; Birmingham, A T; Wilson, C G; Williams, E J; Roland, J M

    1984-01-01

    The effect of the withdrawal of long-term beta-adrenoceptor blockade on pulse rate and finger tremor was studied in 27 patients who had been treated for 2 years following an uncomplicated myocardial infarction with either atenolol, propranolol or placebo. During treatment, pulse rate was significantly lower in patients treated with propranolol or atenolol compared with placebo. Compared with the response in the placebo group the mean increase in tremor on withdrawal of propranolol was statistically significant for postural and for work tremor in both hands. A significant increase in tremor on withdrawal of atenolol occurred only in the postural position and in a narrow frequency band (left hand, 7-11 Hz; right hand, 7-9 Hz). The differences in the effect on tremor of withdrawal of treatment with propranolol or atenolol in doses which produced similar reductions in heart rate, emphasise the beta 2 classification of peripheral receptors associated with normal muscle tremor but do not exclude the involvement of beta 1-adrenoceptors. PMID:6487471

  11. The Slip Behavior of Serpentinite and its Significance in Controlling the Mode of Fault Failure

    NASA Astrophysics Data System (ADS)

    Scuderi, M.; Carpenter, B. M.; Marone, C.; Saffer, D. M.

    2013-12-01

    Recent observations of deep tremor and low-frequency earthquakes (LFE) have raised fundamental questions about the physics and processes responsible for such slip behaviors. Current hypotheses propose that these events represent shear failure on a critically stressed fault, possibly in the presence of near-lithostatic pore fluid pressure. The presence of serpentinite at characteristic P-T conditions where most deep tremor and LFE are located is suggested by slow seismic velocities, high Poisson`s ratios, and studies of exhumed fault systems. Despite the inferred presence of serpentinite and its role in the generation of tremors and LFE, little is known about its physical and mechanical properties under conditions of extremely low effective stress. Here, we report on experiments designed to investigate the frictional behavior of intact serpentinite recovered from New Idria, California. These serpentinites were emplaced as diapirs associated with Cretaceous subduction predating the formation of the SAF. They currently outcrop along the SAF, and are believed to represent protolith for material present at depth along the fault zone. In this context, they serve as important natural analogs for serpentinites associated with both subduction megathrusts and the SAF. We cut samples parallel to the original foliation from intact blocks, and sheared them in a single direct shear configuration (SDS) using a true triaxial deformation apparatus. To simulate shear between oceanic and continental wall rocks, we sheared intact wafers of serpentine against intact Westerly granite. To simulate internal deformation within the serpentine body, we sheared two intact blocks of serpentinite against each other. Additional experiments were performed on pulverized serpentinite gouge in a double direct shear configuration and under similar boundary conditions for comparison. Effective normal stress (σ'n = σ n - Pp) was kept constant throughout our experiments at values of 2 MPa (with Pp = 1.5 MPa). Shear stress was applied via a constant load point displacement rate, and velocity was increased stepwise from 0.1 to 300 μm/s, after which a series of slide-hold-slide (SHS), were performed to characterize frictional constitutive properties. Our initial results show that powders are stronger (μ ~ 0.65) than the intact wafers (0.2 <μ< 0.3). When serpentinite is sheared against Westerly granite, we observe stick-slip failure events during the initial stage of shearing at constant velocity. Our experimental materials exhibit overall velocity strengthening behavior, for both powders and intact wafers, with values of the frictional parameter, b, becoming more negative as velocity increases for the serpentinite against Westerly granite case. During SHS tests, friction increases log-linearly with time for pulverized gouge. However, for intact wafers we observe zero to negative frictional healing. Our findings suggest that when intact wafers of serpentinite gouge are sheared against simulated wall rock, it can behave unstably and has the potentiality to generate tremors and LFE. Conversely, failure through aseismic creep is suggested when serpentinite fault gouge is present.

  12. The nature of primary vocal tremor.

    PubMed

    Hachinski, V C; Thomsen, I V; Buch, N H

    1975-08-01

    Three elderly women with marked progressive voice tremor, without other neurological symptoms, and negative family histories were investigated. All had a 4-5 Hz respiratory tremor in expiration and, to a lesser degree, in inspiration; and all had vocal tremulousness synchronous with their respiratory irregularity. Articulation of phonemes was normal. In two cases the neurological examination was otherwise normal; in the third case there was a minimal 71/2 Hz tremor in the left thumb and index finger. Simultaneous speech and vocal air pressure recordings, as well as cinematographic studies of the vocal apparatus and diaphragm were carried out. It is suggested that these cases represent primarily an action tremor of respiration, that they belong in the spectrum of essential tremor, and hence may be amenable to treatment with propranolol.

  13. Development of Tremor Suppression Control System Using Adaptive Filter and Its Application to Meal-assist Robot

    NASA Astrophysics Data System (ADS)

    Yano, Ken'ichi; Ohara, Eiichi; Horihata, Satoshi; Aoki, Takaaki; Nishimoto, Yutaka

    A robot that supports independent living by assisting with eating and other activities which use the operator's own hand would be helpful for people suffering from tremors of the hand or any other body part. The proposed system using adaptive filter estimates tremor frequencies with a time-varying property and individual differences online. In this study, the estimated frequency is used to adjusting the tremor suppression filter which insulates the voluntary motion signal from the sensor signal containing tremor components. These system are integrated into the control system of the Meal-Assist Robot. As a result, the developed system makes it possible for the person with a tremor to manipulate the supporting robot without causing operability to deteriorate and without hazards due to improper operation.

  14. Spatio-temporal distribution of energy radiation from low frequency tremor

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Obara, K.

    2007-12-01

    Recent fine-scale hypocenter locations of low frequency tremors (LFTs) estimated by cross-correlation technique (Shelly et al. 2006; Maeda et al. 2006) and new finding of very low frequency earthquake (Ito et al. 2007) suggest that these slow events occur at the plate boundary associated with slow slip events (Obara and Hirose, 2006). However, the number of tremor detected by above technique is limited since continuous tremor waveforms are too complicated. Although an envelope correlation method (ECM) (Obara, 2002) enables us to locate epicenters of LFT without arrival time picks, however, ECM fails to locate LFTs precisely especially on the most active stage of tremor activity because of the low-correlation of envelope amplitude. To reveal total energy release of LFT, here we propose a new method for estimating the location of LFTs together with radiated energy from the tremor source by using envelope amplitude. The tremor amplitude observed at NIED Hi-net stations in western Shikoku simply decays in proportion to the reciprocal of the source-receiver distance after the correction of site- amplification factor even though the phases of the tremor are very complicated. So, we model the observed mean square envelope amplitude by time-dependent energy radiation with geometrical spreading factor. In the model, we do not have origin time of the tremor since we assume that the source of the tremor continuously radiates the energy. Travel-time differences between stations estimated by the ECM technique also incorporated in our locating algorithm together with the amplitude information. Three-component 1-hour Hi-net velocity continuous waveforms with a pass-band of 2-10 Hz are used for the inversion after the correction of site amplification factors at each station estimated by coda normalization method (Takahashi et al. 2005) applied to normal earthquakes in the region. The source location and energy are estimated by applying least square inversion to the 1-min window iteratively. As a first application of our method, we estimated the spatio-temporal distribution of energy radiation for 2006 May episodic tremor and slip event occurred in western Shikoku, Japan, region. Tremor location and their radiated energy are estimated for every 1 minute. We counted the number of located LFTs and summed up their total energy at each grid having 0.05-degree spacing at each day to figure out the spatio-temporal distribution of energy release of tremors. The resultant spatial distribution of radiated energy is concentrated at a specific region. Additionally, we see the daily change of released energy, both of location and amount, which corresponds to the migration of tremor activity. The spatio-temporal distribution of energy radiation of tremors is in good agreement with a spatio-temporal slip distribution of slow slip event estimated from Hi-net tiltmeter record (Hirose et al. 2007). This suggests that small continuous tremors occur associated with a rupture process of slow slip.

  15. Essential tremor.

    PubMed Central

    Murray, T. J.

    1981-01-01

    Essential tremor, including the juvenile and senile variations, may be a result of a disorder of the servomechanism that controls physiologic tremor. Hands and arms are affected most commonly, and the tremor can vary in amplitude as well as frequency. Long-term treatment with propranolol has been helpful for some patients, although older patients are less likely to benefit. Other drugs and behaviour modification therapy have been less successful. Surgical treatment is effective but should probably be reserved for severe cases. An effective instrument for measuring the subjective and objective aspects of the tremor is still needed, as is an effective long-term method of treatment. PMID:7018658

  16. Complex behavior and source model of the tremor at Arenal volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Lesage, Philippe; Mora, Mauricio M.; Alvarado, Guillermo E.; Pacheco, Javier; Métaxian, Jean-Philippe

    2006-09-01

    Typical records of volcanic tremor and explosion quakes at Arenal volcano are analyzed with a high-resolution time-frequency method. The main characteristics of these seismic signals are: (1) numerous regularly spaced spectral peaks including both odd and even overtones; (2) frequency gliding in the range [0.9-2] Hz of the fundamental peak; (3) frequency jumps with either positive or negative increments; (4) tremor episodes with two simultaneous systems of spectral peaks affected by independent frequency gliding; (5) progressive transitions between spasmodic tremor and harmonic tremor; (6) lack of clear and systematic relationship between the occurrence of explosions and tremor. Some examples of alternation between two states of oscillation characterized by different fundamental frequencies are also observed. Some tremor and explosion codas are characterized by acoustic and seismic waves with identical spectral content and frequency gliding, which suggests a common excitation process. We propose a source model for the tremor at Arenal in which intermittent gas flow through fractures produces repetitive pressure pulses. The repeating period of the pulses is stabilized by a feedback mechanism associated with standing or traveling waves in the magmatic conduit. The pressure pulses generate acoustic waves in the atmosphere and act as excitation of the interface waves in the conduit. When the repeating period of the pulses is stable enough, they produce regularly spaced spectral peaks by the Dirac comb effect and hence harmonic tremor. When the period stability is lost, because of failures in the feedback mechanism, the tremor becomes spasmodic. The proposed source model of tremor is similar to the sound emission process of a clarinet. Fractures in the solid or viscous layer capping the lava pool in the crater act as the clarinet reed, and the conduit filled with low velocity bubbly magma is equivalent to the pipe of the musical instrument. The frequency gliding is related to variations of the pressure in the conduit, which modify the gas fraction, the wave velocity and, possibly, the length of the resonator. Moreover, several observations suggest that two seismic sources, associated with two magmatic conduits, are active in Arenal volcano. They could explain in particular the apparent independence of tremor and explosions and the episodes of tremor displaying two simultaneous systems of spectral peaks.

  17. A Kinematic Model of Slow Slip Constrained by Tremor-Derived Slip Histories in Cascadia

    NASA Astrophysics Data System (ADS)

    Schmidt, D. A.; Houston, H.

    2016-12-01

    We explore new ways to constrain the kinematic slip distributions for large slow slip events using constraints from tremor. Our goal is to prescribe one or more slip pulses that propagate across the fault and scale appropriately to satisfy the observations. Recent work (Houston, 2015) inferred a crude representative stress time history at an average point using the tidal stress history, the static stress drop, and the timing of the evolution of tidal sensitivity of tremor over several days of slip. To convert a stress time history into a slip time history, we use simulations to explore the stressing history of a small locked patch due to an approaching rupture front. We assume that the locked patch releases strain through a series of tremor bursts whose activity rate is related to the stressing history. To test whether the functional form of a slip pulse is reasonable, we assume a hypothetical slip time history (Ohnaka pulse) timed with the occurrence of tremor to create a rupture front that propagates along the fault. The duration of the rupture front for a fault patch is constrained by the observed tremor catalog for the 2010 ETS event. The slip amplitude is scaled appropriately to match the observed surface displacements from GPS. Through a forward simulation, we evaluate the ability of the tremor-derived slip history to accurately predict the pattern of surface displacements observed by GPS. We find that the temporal progression of surface displacements are well modeled by a 2-4 day slip pulse, suggesting that some of the longer duration of slip typically found in time-dependent GPS inversions is biased by the temporal smoothing. However, at some locations on the fault, the tremor lingers beyond the passage of the slip pulse. A small percentage (5-10%) of the tremor appears to be activated ahead of the approaching slip pulse, and tremor asperities experience a driving stress on the order of 10 kPa/day. Tremor amplitude, rather than just tremor counts, is needed to better refine the pattern of slip across the fault.

  18. Tectonic Tremor along the San Jacinto Fault Zone near Anza, California

    NASA Astrophysics Data System (ADS)

    Brown, J. R.

    2013-12-01

    In several tectonic settings where it is observed, low frequency tremor is proven as a useful tool to probe slow fault slip at depth (e.g., southwest Japan, Cascadia, Parkfield). However, tremor is difficult to detect due to its long durations and low amplitudes close to the noise band. This is particularly true in southern California where cultural noise sources are both spatially and temporally pervasive. Visually scanning continuous seismic recordings of the Southern California Seismic Network from 2001-2011 we find three pervasive occurrences of tremor: fall 2001, summer 2005 and summer 2010. In this presentation we focus on our analysis of the summer 2010 tremors on account of the enhanced instrumentation from the EarthScope Plate Boundary Observatory. During summer 2010 we detect ~240 hours of tremor-like signals in vicinity of the San Jacinto fault zone (SJFZ) near Anza. Visual inspection of continuous recordings up to 100 km northeast and southwest of the SJFZ do not record tremor-like signals indicating the source is both weak and local. Tremor is discriminated from other noise sources by calculating their spectral shapes to assure the signals are distinct from local noise sources and earthquakes. Similar to tremor spectra in other settings, the tremor signals in vicinity of the SJFZ are spectrally flat up to 9 Hz. In order to characterize the tremor source, we employ a combination of running autocorrelation and matched-filter techniques to detect and locate low frequency earthquakes (LFE) along the SJFZ one hour at a time. The autocorrelation of the north and vertical components of 14 stations detects over 13500 LFEs. We identify S-wave arrivals using the cross-correlation of 6 s windows for event pairs using the north component. Preliminary analysis of S-waves reveals a localized swarm of LFE epicenters extending 5 to 10 km SE of the Anza Gap with a horizontal error of +/- 4 km. Tremor depths are poorly constrained due to the lack of clear P-wave arrivals. The LFE epicenters reveal a zone of slow slip activity to the SE of the Anza Gap during early summer of 2010.

  19. Cataloging tremor at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Thelen, W. A.; Wech, A.

    2013-12-01

    Tremor is a ubiquitous seismic feature on Kilauea volcano, which emanates from at least three distinct sources. At depth, intermittent tremor and earthquakes thought to be associated with the underlying plumbing system of Kilauea (Aki and Koyanagi, 1981) occurs approximately 40 km below and 40 km SW of the summit. At the summit of the volcano, nearly continuous tremor is recorded close to a persistently degassing lava lake, which has been present since 2008. Much of this tremor is correlated with spattering at the lake surface, but tremor also occurs in the absence of spattering, and was observed at the summit of the volcano prior to the appearance of the lava lake, predominately in association with inflation/deflation events. The third known source of tremor is in the area of Pu`u `O`o, a vent that has been active since 1983. The exact source location and depth is poorly constrained for each of these sources. Consistently tracking the occurrence and location of tremor in these areas through time will improve our understanding of the plumbing geometry beneath Kilauea volcano and help identify precursory patterns in tremor leading to changes in eruptive activity. The continuous and emergent nature of tremor precludes the use of traditional earthquake techniques for automatic detection and location of seismicity. We implement the method of Wech and Creager (2008) to both detect and localize tremor seismicity in the three regions described above. The technique uses an envelope cross-correlation method in 5-minute windows that maximizes tremor signal coherency among seismic stations. The catalog is currently being built in near-realtime, with plans to extend the analysis to the past as time and continuous data availability permits. This automated detection and localization method has relatively poor depth constraints due to the construction of the envelope function. Nevertheless, the epicenters distinguish activity among the different source regions and serve as starting points for more sophisticated location techniques using cross-correlation and/or amplitude-based locations. The resulting timelines establish a quantitative baseline of behavior for each source to better understand and forecast Kilauea activity.

  20. Frequency-dependent moment release of very low frequency earthquakes in the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Houston, H.

    2014-12-01

    Episodic tremor and slip (ETS) has been observed in Cascadia subduction zone at two different time scales: tremor at a high-frequency range of 2-8 Hz and slow slip events at a geodetic time-scale of days-months. The intermediate time scale is needed to understand the source spectrum of slow earthquakes. Ghosh et al. (2014, IRIS abs) recently reported the presence of very low frequency earthquakes (VLFEs) in Cascadia. In southwest Japan, VLFEs are usually observed at a period range around 20-50 s, and coincide with tremors (e.g., Ito et al. 2007). In this study, we analyzed VLFEs in and around the Olympic Peninsula to confirm their presence and estimate their moment release. We first detected VLFE events by using broadband seismograms with a band-pass filter of 20-50 s. The preliminary result shows that there are at least 16 VLFE events with moment magnitudes of 3.2-3.7 during the M6.8 2010 ETS. The focal mechanisms are consistent with the thrust earthquakes at the subducting plate interface. To detect signals of VLFEs below noise level, we further stacked long-period waveforms at the peak timings of tremor amplitudes for tremors within a 10-15 km radius by using tremor catalogs in 2006-2010, and estimated the focal mechanisms for each tremor source region as done in southwest Japan (Takeo et al. 2010 GRL). As a result, VLFEs could be detected for almost the entire tremor source region at a period range of 20-50 s with average moment magnitudes in each 5-min tremor window of 2.4-2.8. Although the region is limited, we could also detect VLFEs at a period range of 50-100 s with average moment magnitudes of 3.0-3.2. The moment release at 50-100 s is 4-8 times larger than that at 20-50 s, roughly consistent with an omega-squared spectral model. Further study including tremor, slow slip events and characteristic activities, such as rapid tremor reversal and tremor streaks, will reveal the source spectrum of slow earthquakes in a broader time scale from 0.1 s to days.

Top