A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage
Moggs, Jonathan G.; Grandi, Paola; Quivy, Jean-Pierre; Jónsson, Zophonías O.; Hübscher, Ulrich; Becker, Peter B.; Almouzni, Geneviève
2000-01-01
Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This nucleosome assembly pathway involves the histone chaperone chromatin assembly factor 1 (CAF-1). The largest subunit (p150) of this factor interacts directly with proliferating cell nuclear antigen (PCNA), and critical regions for this interaction on both proteins have been mapped. To isolate proteins specifically recruited during DNA repair, damaged DNA linked to magnetic beads was used. The binding of both PCNA and CAF-1 to this damaged DNA was dependent on the number of DNA lesions and required ATP. Chromatin assembly linked to the repair of single-strand breaks was disrupted by depletion of PCNA from a cell-free system. This defect was rescued by complementation with recombinant PCNA, arguing for role of PCNA in mediating chromatin assembly linked to DNA repair. We discuss the importance of the PCNA–CAF-1 interaction in the context of DNA damage processing and checkpoint control. PMID:10648606
DNA repair mechanisms in cancer development and therapy.
Torgovnick, Alessandro; Schumacher, Björn
2015-01-01
DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.
DNA repair mechanisms in cancer development and therapy
Torgovnick, Alessandro; Schumacher, Björn
2015-01-01
DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy. PMID:25954303
Ogara, María F; Sirkin, Pablo F; Carcagno, Abel L; Marazita, Mariela C; Sonzogni, Silvina V; Ceruti, Julieta M; Cánepa, Eduardo T
2013-01-01
The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.
Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie
2016-04-01
To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.
Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A; Grant, Gavin D; Chao, Hui Yan; Cook, Jeanette G; Purvis, Jeremy E
2017-11-22
Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krüger, Katharina; Ziegler, Verena; Hartmann, Christina
The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model.more » The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury. - Highlights: • Lovastatin blocks ATM/ATR-regulated DDR of tubular cells following CisPt treatment. • Lovastatin attenuates CisPt-induced activation of protein kinase ATM in vitro. • Statin-mediated DDR inhibition is independent of initial DNA damage formation. • Statin-mediated blockage of CisPt-triggered DDR leads to cytoprotection. • Lovastatin attenuates CisPt-induced kidney DNA damage and apoptosis in vivo.« less
Carcagno, Abel L.; Marazita, Mariela C.; Sonzogni, Silvina V.; Ceruti, Julieta M.; Cánepa, Eduardo T.
2013-01-01
The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies. PMID:23593412
Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao
2018-04-14
The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.
Dutertre, Martin; Vagner, Stéphan
2017-10-27
Upon DNA damage, cells trigger an early DNA-damage response (DDR) involving DNA repair and cell cycle checkpoints, and late responses involving gene expression regulation that determine cell fate. Screens for genes involved in the DDR have found many RNA-binding proteins (RBPs), while screens for novel RBPs have identified DDR proteins. An increasing number of RBPs are involved in early and/or late DDR. We propose to call this new class of actors of the DDR, which contain an RNA-binding activity, DNA-damage response RNA-binding proteins (DDRBPs). We then discuss how DDRBPs contribute not only to gene expression regulation in the late DDR but also to early DDR signaling, DNA repair, and chromatin modifications at DNA-damage sites through interactions with both long and short noncoding RNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.
DNA damage and polyploidization.
Chow, Jeremy; Poon, Randy Y C
2010-01-01
A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Tatsuya, E-mail: tatsuya.hasegawa@to.shiseido.co.jp; Nakashima, Masaya; Suzuki, Yoshiharu
Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE{sub 2}. In addition, inhibition of DNA damage repair by knockdown of XPA,more » which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.« less
Unrepaired clustered DNA lesions induce chromosome breakage in human cells
Asaithamby, Aroumougame; Hu, Burong; Chen, David J.
2011-01-01
Clustered DNA damage induced by ionizing radiation is refractory to repair and may trigger carcinogenic events for reasons that are not well understood. Here, we used an in situ method to directly monitor induction and repair of clustered DNA lesions in individual cells. We showed, consistent with biophysical modeling, that the kinetics of loss of clustered DNA lesions was substantially compromised in human fibroblasts. The unique spatial distribution of different types of DNA lesions within the clustered damages, but not the physical location of these damages within the subnuclear domains, determined the cellular ability to repair the damage. We then examined checkpoint arrest mechanisms and yield of gross chromosomal aberrations. Induction of nonrepairable clustered damage affected only G2 accumulation but not the early G2/M checkpoint. Further, cells that were released from the G2/M checkpoint with unrepaired clustered damage manifested a spectrum of chromosome aberrations in mitosis. Difficulties associated with clustered DNA damage repair and checkpoint release before the completion of clustered DNA damage repair appear to promote genome instability that may lead to carcinogenesis. PMID:21527720
Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks
Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa
2016-01-01
Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress. PMID:26765540
Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.
Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa
2016-01-01
Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.
Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect
Salvati, Erica; Leonetti, Carlo; Rizzo, Angela; Scarsella, Marco; Mottolese, Marcella; Galati, Rossella; Sperduti, Isabella; Stevens, Malcolm F.G.; D’Incalci, Maurizio; Blasco, Maria; Chiorino, Giovanna; Bauwens, Serge; Horard, Béatrice; Gilson, Eric; Stoppacciaro, Antonella; Zupi, Gabriella; Biroccio, Annamaria
2007-01-01
Functional telomeres are required for the replicability of cancer cells. The G-rich strand of telomeric DNA can fold into a 4-stranded structure known as the G-quadruplex (G4), whose stabilization alters telomere function limiting cancer cell growth. Therefore, the G4 ligand RHPS4 may possess antitumor activity. Here, we show that RHPS4 triggers a rapid and potent DNA damage response at telomeres in human transformed fibroblasts and melanoma cells, characterized by the formation of several telomeric foci containing phosphorylated DNA damage response factors γ-H2AX, RAD17, and 53BP1. This was dependent on DNA repair enzyme ATR, correlated with delocalization of the protective telomeric DNA–binding protein POT1, and was antagonized by overexpression of POT1 or TRF2. In mice, RHPS4 exerted its antitumor effect on xenografts of human tumor cells of different histotype by telomere injury and tumor cell apoptosis. Tumor inhibition was accompanied by a strong DNA damage response, and tumors overexpressing POT1 or TRF2 were resistant to RHPS4 treatment. These data provide evidence that RHPS4 is a telomere damage inducer and that telomere disruption selectively triggered in malignant cells results in a high therapeutic index in mice. They also define a functional link between telomere damage and antitumor activity and reveal the key role of telomere-protective factors TRF2 and POT1 in response to this anti-telomere strategy. PMID:17932567
Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation
Hodgson, Andrea; Wier, Eric M.; Wen, Matthew G.; Kamenyeva, Olena; Xia, Xue; Koo, Lily Y.
2016-01-01
The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. PMID:27635653
Tang, Jiang-bo; Goellner, Eva M.; Wang, Xiao-hong; Trivedi, Ram N.; Croix, Claudette M. St; Jelezcova, Elena; Svilar, David; Brown, Ashley R.; Sobol, Robert W.
2009-01-01
Base excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance (Polß deficiency or repair inhibition) enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation of cytotoxic DNA double-strand breaks, we report that DNA damage-induced cytotoxicity due to deficiency in the BER protein Polß triggers cell death dependent on PARP activation yet independent of poly(ADP-ribose) (PAR)-mediated AIF nuclear translocation or PARG, suggesting that cytotoxicity is not from PAR or PAR-catabolite signaling. Cell death is rescued by the NAD+ metabolite NMN and is synergistic with inhibition of NAD+ biosynthesis, demonstrating that DNA damage-induced cytotoxicity mediated via BER inhibition is primarily dependent on cellular metabolite bioavailability. We offer a mechanistic justification for the elevated alkylation-induced cytotoxicity of Polß deficient cells, suggesting a linkage between DNA repair, cell survival and cellular bioenergetics. PMID:20068071
Boege, Yannick; Malehmir, Mohsen; Healy, Marc E; Bettermann, Kira; Lorentzen, Anna; Vucur, Mihael; Ahuja, Akshay K; Böhm, Friederike; Mertens, Joachim C; Shimizu, Yutaka; Frick, Lukas; Remouchamps, Caroline; Mutreja, Karun; Kähne, Thilo; Sundaravinayagam, Devakumar; Wolf, Monika J; Rehrauer, Hubert; Koppe, Christiane; Speicher, Tobias; Padrissa-Altés, Susagna; Maire, Renaud; Schattenberg, Jörn M; Jeong, Ju-Seong; Liu, Lei; Zwirner, Stefan; Boger, Regina; Hüser, Norbert; Davis, Roger J; Müllhaupt, Beat; Moch, Holger; Schulze-Bergkamen, Henning; Clavien, Pierre-Alain; Werner, Sabine; Borsig, Lubor; Luther, Sanjiv A; Jost, Philipp J; Weinlich, Ricardo; Unger, Kristian; Behrens, Axel; Hillert, Laura; Dillon, Christopher; Di Virgilio, Michela; Wallach, David; Dejardin, Emmanuel; Zender, Lars; Naumann, Michael; Walczak, Henning; Green, Douglas R; Lopes, Massimo; Lavrik, Inna; Luedde, Tom; Heikenwalder, Mathias; Weber, Achim
2017-09-11
Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Rai, Priyamvada
2010-11-28
Activation of persistent DNA damage response (DDR) signaling is associated with the induction of a permanent proliferative arrest known as cellular senescence, a phenomenon intrinsically linked to both tissue aging as well as tumor suppression. The DNA damage observed in senescent cells has been attributed to elevated levels of reactive oxygen species (ROS), failing DNA damage repair processes, and/or oncogenic activation. It is not clear how labile molecules such as ROS are able to damage chromatin-bound DNA to a sufficient extent to invoke persistent DNA damage and DDR signaling. Recent evidence suggests that the nucleotide pool is a significant target for oxidants and that oxidized nucleotides, once incorporated into genomic DNA, can lead to the induction of a DNA strand break-associated DDR that triggers senescence in normal cells and in cells sustaining oncogene activation. Evasion of this DDR and resulting senescence is a key step in tumor progression. This review will explore the role of oxidation in the nucleotide pool as a major effector of oxidative stress-induced genotoxic damage and DDR in the context of cellular senescence and tumorigenic transformation. 2010 Elsevier B.V. All rights reserved.
DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication
2007-04-01
Conway, A., Lockhart, D. J., Davis, R. W., Brewer , B. J., and Fangman, W. L. (2001). Replication dynamics of the yeast genome. Science 294, 115–121... Brewer , B. J. (2001). An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint. Mol. Cell 7, 705–713. Vas, A., Mok, W., and...replication in yeast cells. We have demonstrated that re-replication induces a rapid and significant decrease in cell viability and a cellular DNA damage
ATRX Dysfunction Induces Replication Defects in Primary Mouse Cells
Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Taylor, Stephen; Mitson, Matthew; Bachrati, Csanád Z.; Higgs, Douglas R.; Gibbons, Richard J.
2014-01-01
The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells. PMID:24651726
Push back to respond better: regulatory inhibition of the DNA double-strand break response.
Panier, Stephanie; Durocher, Daniel
2013-10-01
Single DNA lesions such as DNA double-strand breaks (DSBs) can cause cell death or trigger genome rearrangements that have oncogenic potential, and so the pathways that mend and signal DNA damage must be highly sensitive but, at the same time, selective and reversible. When initiated, boundaries must be set to restrict the DSB response to the site of the lesion. The integration of positive and, crucially, negative control points involving post-translational modifications such as phosphorylation, ubiquitylation and acetylation is key for building fast, effective responses to DNA damage and for mitigating the impact of DNA lesions on genome integrity.
Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei
2017-11-01
Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.
Tran, Thai Q.; Ishak Gabra, Mari B.; Lowman, Xazmin H.; Yang, Ying; Reid, Michael A.; Pan, Min; O’Connor, Timothy R.
2017-01-01
Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer. PMID:29107960
Verbruggen, Paul; Ruf, Marius; Blakqori, Gjon; Överby, Anna K; Heidemann, Martin; Eick, Dirk; Weber, Friedemann
2011-02-04
La Crosse encephalitis virus (LACV) is a mosquito-borne member of the negative-strand RNA virus family Bunyaviridae. We have previously shown that the virulence factor NSs of LACV is an efficient inhibitor of the antiviral type I interferon system. A recombinant virus unable to express NSs (rLACVdelNSs) strongly induced interferon transcription, whereas the corresponding wt virus (rLACV) suppressed it. Here, we show that interferon induction by rLACVdelNSs mainly occurs through the signaling pathway leading from the pattern recognition receptor RIG-I to the transcription factor IRF-3. NSs expressed by rLACV, however, acts downstream of IRF-3 by specifically blocking RNA polymerase II-dependent transcription. Further investigations revealed that NSs induces proteasomal degradation of the mammalian RNA polymerase II subunit RPB1. NSs thereby selectively targets RPB1 molecules of elongating RNA polymerase II complexes, the so-called IIo form. This phenotype has similarities to the cellular DNA damage response, and NSs was indeed found to transactivate the DNA damage response gene pak6. Moreover, NSs expressed by rLACV boosted serine 139 phosphorylation of histone H2A.X, one of the earliest cellular reactions to damaged DNA. However, other DNA damage response markers such as up-regulation and serine 15 phosphorylation of p53 or serine 1524 phosphorylation of BRCA1 were not triggered by LACV infection. Collectively, our data indicate that the strong suppression of interferon induction by LACV NSs is based on a shutdown of RNA polymerase II transcription and that NSs achieves this by exploiting parts of the cellular DNA damage response pathway to degrade IIo-borne RPB1 subunits.
The human intra-S checkpoint response to UVC-induced DNA damage.
Kaufmann, William K
2010-05-01
The intra-S checkpoint response to 254 nm light (UVC)-induced DNA damage appears to have dual functions to slow the rate of DNA synthesis and stabilize replication forks that become stalled at sites of UVC-induced photoproducts in DNA. These functions should provide more time for repair of damaged DNA before its replication and thereby reduce the frequencies of mutations and chromosomal aberrations in surviving cells. This review tries to summarize the history of discovery of the checkpoint, the current state of understanding of the biological features of intra-S checkpoint signaling and its mechanisms of action with a focus primarily on intra-S checkpoint responses in human cells. The differences in the intra-S checkpoint responses to UVC and ionizing radiation-induced DNA damage are emphasized. Evidence that [6-4]pyrimidine-pyrimidone photoproducts in DNA trigger the response is discussed and the relationships between cellular responses to UVC and the molecular dose of UVC-induced DNA damage are briefly summarized. The role of the intra-S checkpoint response in protecting against solar radiation carcinogenesis remains to be determined.
Carreras Puigvert, Jordi; von Stechow, Louise; Siddappa, Ramakrishnaiah; Pines, Alex; Bahjat, Mahnoush; Haazen, Lizette C J M; Olsen, Jesper V; Vrieling, Harry; Meerman, John H N; Mullenders, Leon H F; van de Water, Bob; Danen, Erik H J
2013-01-22
In pluripotent stem cells, DNA damage triggers loss of pluripotency and apoptosis as a safeguard to exclude damaged DNA from the lineage. An intricate DNA damage response (DDR) signaling network ensures that the response is proportional to the severity of the damage. We combined an RNA interference screen targeting all kinases, phosphatases, and transcription factors with global transcriptomics and phosphoproteomics to map the DDR in mouse embryonic stem cells treated with the DNA cross-linker cisplatin. Networks derived from canonical pathways shared in all three data sets were implicated in DNA damage repair, cell cycle and survival, and differentiation. Experimental probing of these networks identified a mode of DNA damage-induced Wnt signaling that limited apoptosis. Silencing or deleting the p53 gene demonstrated that genotoxic stress elicited Wnt signaling in a p53-independent manner. Instead, this response occurred through reduced abundance of Csnk1a1 (CK1α), a kinase that inhibits β-catenin. Together, our findings reveal a balance between p53-mediated elimination of stem cells (through loss of pluripotency and apoptosis) and Wnt signaling that attenuates this response to tune the outcome of the DDR.
Mittra, Indraneel; Samant, Urmila; Sharma, Suvarna; Raghuram, Gorantla V; Saha, Tannistha; Tidke, Pritishkumar; Pancholi, Namrata; Gupta, Deepika; Prasannan, Preeti; Gaikwad, Ashwini; Gardi, Nilesh; Chaubal, Rohan; Upadhyay, Pawan; Pal, Kavita; Rane, Bhagyeshri; Shaikh, Alfina; Salunkhe, Sameer; Dutt, Shilpee; Mishra, Pradyumna K; Khare, Naveen K; Nair, Naveen K; Dutt, Amit
2017-01-01
Bystander cells of the tumor microenvironment show evidence of DNA damage and inflammation that can lead to their oncogenic transformation. Mediator(s) of cell–cell communication that brings about these pro-oncogenic pathologies has not been identified. We show here that cell-free chromatin (cfCh) released from dying cancer cells are the key mediators that trigger both DNA damage and inflammation in the surrounding healthy cells. When dying human cancer cells were cultured along with NIH3T3 mouse fibroblast cells, numerous cfCh emerged from them and rapidly entered into nuclei of bystander NIH3T3 cells to integrate into their genomes. This led to activation of H2AX and inflammatory cytokines NFκB, IL-6, TNFα and IFNγ. Genomic integration of cfCh triggered global deregulation of transcription and upregulation of pathways related to phagocytosis, DNA damage and inflammation. None of these activities were observed when living cancer cells were co-cultivated with NIH3T3 cells. However, upon intravenous injection into mice, both dead and live cells were found to be active. Living cancer cells are known to undergo extensive cell death when injected intravenously, and we observed that cfCh emerging from both types of cells integrated into genomes of cells of distant organs and induced DNA damage and inflammation. γH2AX and NFκB were frequently co-expressed in the same cells suggesting that DNA damage and inflammation are closely linked pathologies. As concurrent DNA damage and inflammation is a potent stimulus for oncogenic transformation, our results suggest that cfCh from dying cancer cells can transform cells of the microenvironment both locally and in distant organs providing a novel mechanism of tumor invasion and metastasis. The afore-described pro-oncogenic pathologies could be abrogated by concurrent treatment with chromatin neutralizing/degrading agents suggesting therapeutic possibilities. PMID:28580170
Laos, Maarja; Anttonen, Tommi; Kirjavainen, Anna; Hällström, Taija af; Laiho, Marikki; Pirvola, Ulla
2014-01-01
Supporting cells (SCs) of the cochlear (auditory) and vestibular (balance) organs hold promise as a platform for therapeutic regeneration of the sensory hair cells. Prior data have shown proliferative restrictions of adult SCs forced to re-enter the cell cycle. By comparing juvenile and adult SCs in explant cultures, we have here studied how proliferative restrictions are linked with DNA damage signaling. Cyclin D1 overexpression, used to stimulate cell cycle re-entry, triggered higher proliferative activity of juvenile SCs. Phosphorylated form of histone H2AX (γH2AX) and p53 binding protein 1 (53BP1) were induced in a foci-like pattern in SCs of both ages as an indication of DNA double-strand break formation and activated DNA damage response. Compared to juvenile SCs, γH2AX and the repair protein Rad51 were resolved with slower kinetics in adult SCs, accompanied by increased apoptosis. Consistent with the in vitro data, in a Rb mutant mouse model in vivo, cell cycle re-entry of SCs was associated with γH2AX foci induction. In contrast to cell cycle reactivation, pharmacological stimulation of SC-to-hair-cell transdifferentiation in vitro did not trigger γH2AX. Thus, DNA damage and its prolonged resolution are critical barriers in the efforts to stimulate proliferation of the adult inner ear SCs. PMID:25063730
What’s the Damage? The Impact of Pathogens on Pathways that Maintain Host Genome Integrity
Weitzman, Matthew D.; Weitzman, Jonathan B.
2014-01-01
Maintaining genome integrity and transmission of intact genomes is critical for cellular, organismal, and species survival. Cells can detect damaged DNA, activate checkpoints, and either enable DNA repair or trigger apoptosis to eliminate the damaged cell. Aberrations in these mechanisms lead to somatic mutations and genetic instability, which are hallmarks of cancer. Considering the long history of host-microbe coevolution, an impact of microbial infection on host genome integrity is not unexpected, and emerging links between microbial infections and oncogenesis further reinforce this idea. In this review, we compare strategies employed by viruses, bacteria, and parasites to alter, subvert, or otherwise manipulate host DNA damage and repair pathways. We highlight how microbes contribute to tumorigenesis by directly inducing DNA damage, inactivating checkpoint controls, or manipulating repair processes. We also discuss indirect effects resulting from inflammatory responses, changes in cellular metabolism, nuclear architecture, and epigenome integrity, and the associated evolutionary tradeoffs. PMID:24629335
Imtiaz, Muhammad; Mushtaq, Muhammad Adnan; Rizwan, Muhammad Shahid; Arif, Muhammad Saleem; Yousaf, Balal; Ashraf, Muhammad; Shuanglian, Xiong; Rizwan, Muhammad; Mehmood, Sajid; Tu, Shuxin
2016-10-01
The present study was done to elucidate the effects of vanadium (V) on photosynthetic pigments, membrane damage, antioxidant enzymes, protein, and deoxyribonucleic acid (DNA) integrity in the following chickpea genotypes: C-44 (tolerant) and Balkasar (sensitive). Changes in these parameters were strikingly dependent on levels of V, at 60 and 120 mg V L(-1) induced DNA damage in Balkasar only, while photosynthetic pigments and protein were decreased from 15 to 120 mg V L(-1) and membrane was also damaged. It was shown that photosynthetic pigments and protein production declined from 15 to 120 mg V L(-1) and the membrane was also damaged, while DNA damage was not observed at any level of V stress in C-44. Moreover, the antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were increased in both genotypes of chickpea against V stress; however, more activities were observed in C-44 than Balkasar. The results suggest that DNA damage in sensitive genotypes can be triggered due to exposure of higher vanadium.
DNA damage response in nephrotoxic and ischemic kidney injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Mingjuan; Tang, Chengyuan
DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore reliesmore » on a thorough elucidation of the DDR pathways in various forms of AKI.« less
Parvovirus infection-induced DNA damage response
Luo, Yong; Qiu, Jianming
2014-01-01
Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells. PMID:25429305
Knizhnik, Anna V.; Roos, Wynand P.; Nikolova, Teodora; Quiros, Steve; Tomaszowski, Karl-Heinz; Christmann, Markus; Kaina, Bernd
2013-01-01
Apoptosis, autophagy, necrosis and cellular senescence are key responses of cells that were exposed to genotoxicants. The types of DNA damage triggering these responses and their interrelationship are largely unknown. Here we studied these responses in glioma cells treated with the methylating agent temozolomide (TMZ), which is a first-line chemotherapeutic for this malignancy. We show that upon TMZ treatment cells undergo autophagy, senescence and apoptosis in a specific time-dependent manner. Necrosis was only marginally induced. All these effects were completely abrogated in isogenic glioma cells expressing O6-methylguanine-DNA methyltransferase (MGMT), indicating that a single type of DNA lesion, O6-methylguanine (O6MeG), is able to trigger all these responses. Studies with mismatch repair mutants and MSH6, Rad51 and ATM knockdowns revealed that autophagy induced by O6MeG requires mismatch repair and ATM, and is counteracted by homologous recombination. We further show that autophagy, which precedes apoptosis, is a survival mechanism as its inhibition greatly ameliorated the level of apoptosis following TMZ at therapeutically relevant doses (<100 µM). Cellular senescence increases with post-exposure time and, similar to autophagy, precedes apoptosis. If autophagy was abrogated, TMZ-induced senescence was reduced. Therefore, we propose that autophagy triggered by O6MeG adducts is a survival mechanism that stimulates cells to undergo senescence rather than apoptosis. Overall, the data revealed that a specific DNA adduct, O6MeG, has the capability of triggering autophagy, senescence and apoptosis and that the decision between survival and death is determined by the balance of players involved. The data also suggests that inhibition of autophagy may ameliorate the therapeutic outcome of TMZ-based cancer therapy. PMID:23383259
DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-Replication
2005-04-01
with 50’C SCE (1 M sorbitol, 0.1 M Na Antcdc6p becomes undetectable within 30 mi after galac- citrate , and 10 mM EDTA). Lyticase was added to a final...and then placed in SCEM + lyticase [1 M sorbitol, decrease in colony-forming units after 3 h in galactose. In 0.1 M Na citrate , 10 mM EDTA, 5% j3...nocodazole, exposed to 20 /g/ml of the DNA damag- sponse triggered by rereplication. The nearly complete con- ing agent phleomycin, and examined by
Reissig, Kathrin; Silver, Andrew; Hartig, Roland; Schinlauer, Antje; Walluscheck, Diana; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert; Poehlmann-Nitsche, Angela
2017-01-01
Dysregulation of c-Jun N -terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression.
Nickerson, John M.; Gao, Feng-juan; Sun, Zhongmou; Chen, Xin-ya; Zhang, Shu-jie; Gao, Feng; Chen, Jun-yi; Luo, Yi; Wang, Yan; Sun, Xing-huai
2015-01-01
Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. PMID:25478814
Tu, Zhigang; Aird, Katherine M.; Bitler, Benjamin G.; Nicodemus, Jasmine P.; Beeharry, Neil; Xia, Bing; Yen, Tim J.; Zhang, Rugang
2011-01-01
Summary Here, we report a cell-intrinsic mechanism by which oncogenic RAS promotes senescence while predisposing cells to senescence bypass by allowing for secondary hits. We show that oncogenic RAS inactivates the BRCA1 DNA repair complex by dissociating BRCA1 from chromatin. This event precedes senescence-associated cell cycle exit and coincides with the accumulation of DNA damage. Downregulation of BRIP1, a physiological partner of BRCA1 in the DNA repair pathway, triggers BRCA1 chromatin dissociation. Conversely, ectopic BRIP1 rescues BRCA1 chromatin dissociation and suppresses RAS-induced senescence and the DNA damage response. Significantly, cells undergoing senescence do not exhibit a BRCA1-dependent DNA repair response when exposed to DNA damage. Overall, our study provides a molecular basis by which oncogenic RAS promotes senescence. Since DNA damage has the potential to produce additional "hits" that promote senescence bypass, our findings may also suggest one way a small minority of cells might bypass senescence and contribute to cancer development. PMID:22137763
The Role of JMY in p53 Regulation.
Adighibe, Omanma; Pezzella, Francesco
2018-05-31
Following the event of DNA damage, the level of tumour suppressor protein p53 increases inducing either cell cycle arrest or apoptosis. Junctional Mediating and Regulating Y protein (JMY) is a transcription co-factor involved in p53 regulation. In event of DNA damage, JMY levels also upregulate in the nucleus where JMY forms a co-activator complex with p300/CREB-binding protein (p300/CBP), Apoptosis-stimulating protein of p53 (ASPP) and Stress responsive activator of p53 (Strap). This co-activator complex then binds to and increases the ability of p53 to induce transcription of proteins triggering apoptosis but not cell cycle arrest. This then suggests that the increase of JMY levels due to DNA damage putatively "directs" p53 activity toward triggering apoptosis. JMY expression is also linked to increased cell motility as it: (1) downregulates the expression of adhesion molecules of the Cadherin family and (2) induces actin nucleation, making cells less adhesive and more mobile, favouring metastasis. All these characteristics taken together imply that JMY possesses both tumour suppressive and tumour metastasis promoting capabilities.
Nakamura, Asako J.; Suzuki, Masatoshi; Redon, Christophe E.; Kuwahara, Yoshikazu; Yamashiro, Hideaki; Abe, Yasuyuki; Takahashi, Shintaro; Fukuda, Tomokazu; Isogai, Emiko; Bonner, William M.; Fukumoto, Manabu
2017-01-01
The Fukushima Daiichi Nuclear Power Plant (FNPP) accident, the largest nuclear incident since the 1986 Chernobyl disaster, occurred when the plant was hit by a tsunami triggered by the Great East Japan Earthquake on March 11, 2011. The subsequent uncontrolled release of radioactive substances resulted in massive evacuations in a 20-km zone. To better understand the biological consequences of the FNPP accident, we have been measuring DNA damage levels in cattle in the evacuation zone. DNA damage was evaluated by assessing the levels of DNA double-strand breaks in peripheral blood lymphocytes by immunocyto-fluorescence-based quantification of γ-H2AX foci. A greater than two-fold increase in the fraction of damaged lymphocytes was observed in all animal cohorts within the evacuation zone, and the levels of DNA damage decreased slightly over the 700-day sample collection period. While the extent of damage appeared to be independent of the distance from the accident site and the estimated radiation dose from radiocesium, we observed age-dependent accumulation of DNA damage. Thus, this study, which was the first to evaluate the biological impact of the FNPP accident utilizing the γ-H2AX assays, indicated the causal relation between high levels of DNA damage in animals living in the evacuation zone and the FNPP accident. PMID:28240558
Nakamura, Asako J; Suzuki, Masatoshi; Redon, Christophe E; Kuwahara, Yoshikazu; Yamashiro, Hideaki; Abe, Yasuyuki; Takahashi, Shintaro; Fukuda, Tomokazu; Isogai, Emiko; Bonner, William M; Fukumoto, Manabu
2017-05-01
The Fukushima Daiichi Nuclear Power Plant (FNPP) accident, the largest nuclear incident since the 1986 Chernobyl disaster, occurred when the plant was hit by a tsunami triggered by the Great East Japan Earthquake on March 11, 2011. The subsequent uncontrolled release of radioactive substances resulted in massive evacuations in a 20-km zone. To better understand the biological consequences of the FNPP accident, we have been measuring DNA damage levels in cattle in the evacuation zone. DNA damage was evaluated by assessing the levels of DNA double-strand breaks in peripheral blood lymphocytes by immunocytofluorescence-based quantification of γ-H2AX foci. A greater than two-fold increase in the fraction of damaged lymphocytes was observed in all animal cohorts within the evacuation zone, and the levels of DNA damage decreased slightly over the 700-day sample collection period. While the extent of damage appeared to be independent of the distance from the accident site and the estimated radiation dose from radiocesium, we observed age-dependent accumulation of DNA damage. Thus, this study, which was the first to evaluate the biological impact of the FNPP accident utilizing the γ-H2AX assays, indicated the causal relation between high levels of DNA damage in animals living in the evacuation zone and the FNPP accident.
A phosphorylation-and-ubiquitylation circuitry driving ATR activation and homologous recombination
Dubois, Jean-Christophe; Yates, Maïlyn; Gaudreau-Lapierre, Antoine; Clément, Geneviève; Cappadocia, Laurent; Gaudreau, Luc
2017-01-01
Abstract RPA-coated single-stranded DNA (RPA–ssDNA), a nucleoprotein structure induced by DNA damage, promotes ATR activation and homologous recombination (HR). RPA is hyper-phosphorylated and ubiquitylated after DNA damage. The ubiquitylation of RPA by PRP19 and RFWD3 facilitates ATR activation and HR, but how it is stimulated by DNA damage is still unclear. Here, we show that RFWD3 binds RPA constitutively, whereas PRP19 recognizes RPA after DNA damage. The recruitment of PRP19 by RPA depends on PIKK-mediated RPA phosphorylation and a positively charged pocket in PRP19. An RPA32 mutant lacking phosphorylation sites fails to recruit PRP19 and support RPA ubiquitylation. PRP19 mutants unable to bind RPA or lacking ubiquitin ligase activity also fail to support RPA ubiquitylation and HR. These results suggest that RPA phosphorylation enhances the recruitment of PRP19 to RPA–ssDNA and stimulates RPA ubiquitylation through a process requiring both PRP19 and RFWD3, thereby triggering a phosphorylation-ubiquitylation circuitry that promotes ATR activation and HR. PMID:28666352
Mitochondria damage checkpoint in apoptosis and genome stability.
Singh, Keshav K
2004-11-01
Mitochondria perform multiple cellular functions including energy production, cell proliferation and apoptosis. Studies described in this paper suggest a role for mitochondria in maintaining genomic stability. Genomic stability appears to be dependent on mitochondrial functions involved in maintenance of proper intracellular redox status, ATP-dependent transcription, DNA replication, DNA repair and DNA recombination. To further elucidate the role of mitochondria in genomic stability, I propose a mitochondria damage checkpoint (mitocheckpoint) that monitors and responds to damaged mitochondria. Mitocheckpoint can coordinate and maintain proper balance between apoptotic and anti-apoptotic signals. When mitochondria are damaged, mitocheckpoint can be activated to help cells repair damaged mitochondria, to restore normal mitochondrial function and avoid production of mitochondria-defective cells. If mitochondria are severely damaged, mitocheckpoint may not be able to repair the damage and protect cells. Such an event triggers apoptosis. If damage to mitochondria is continuous or persistent such as damage to mitochondrial DNA resulting in mutations, mitocheckpoint may fail which can lead to genomic instability and increased cell survival in yeast. In human it can cause cancer. In support of this proposal we provide evidence that mitochondrial genetic defects in both yeast and mammalian systems lead to impaired DNA repair, increased genomic instability and increased cell survival. This study reveals molecular genetic mechanisms underlying a role for mitochondria in carcinogenesis in humans.
Silver, Andrew; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert
2017-01-01
Dysregulation of c-Jun N-terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression. PMID:28751935
Kuwano, Yuki; Nishida, Kensei; Akaike, Yoko; Kurokawa, Ken; Nishikawa, Tatsuya; Masuda, Kiyoshi; Rokutan, Kazuhito
2016-01-01
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine kinase that phosphorylates and activates the apoptotic program through interaction with diverse downstream targets including tumor suppressor p53. HIPK2 is activated by genotoxic stimuli and modulates cell fate following DNA damage. The DNA damage response (DDR) is triggered by DNA lesions or chromatin alterations. The DDR regulates DNA repair, cell cycle checkpoint activation, and apoptosis to restore genome integrity and cellular homeostasis. Maintenance of the DDR is essential to prevent development of diseases caused by genomic instability, including cancer, defects of development, and neurodegenerative disorders. Recent studies reveal a novel HIPK2-mediated pathway for DDR through interaction with chromatin remodeling factor homeodomain protein 1γ. In this review, we will highlight the molecular mechanisms of HIPK2 and show its functions as a crucial DDR regulator. PMID:27689990
Liao, Hongwei; Ji, Fang; Geng, Xinwei; Xing, Meichun; Li, Wen; Chen, Zhihua; Shen, Huahao; Ying, Songmin
2017-01-01
Cyclin dependent kinase 1 (CDK1) is essential for cell viability and plays a vital role in many biological events including cell cycle control, DNA damage repair, and checkpoint activation. Here, we identify an unanticipated role for CDK1 in promoting nascent DNA synthesis during S-phase. We report that a short duration of CDK1 inhibition, which does not perturb cell cycle progression, triggers a replication-associated DNA damage response (DDR). This DDR is associated with a disruption of replication fork progression and leads to genome instability. Moreover, we show that compromised CDK1 activity dramatically increases the efficacy of chemotherapeutic agents that kill cancer cells through perturbing DNA replication, including Olaparib, an FDA approved PARP inhibitor. Our study has revealed an important role for CDK1 in the DNA replication program, and suggests that the therapeutic targeting CDK1 may be a novel approach for combination chemotherapy. PMID:29207595
Wu, Ji-Hong; Zhang, Sheng-Hai; Nickerson, John M; Gao, Feng-Juan; Sun, Zhongmou; Chen, Xin-Ya; Zhang, Shu-Jie; Gao, Feng; Chen, Jun-Yi; Luo, Yi; Wang, Yan; Sun, Xing-Huai
2015-02-01
Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Haibo; Dharmalingam, Prakash; Vasquez, Velmarini; Mitra, Joy; Boldogh, Istvan; Rao, K. S.; Kent, Thomas A.; Mitra, Sankar; Hegde, Muralidhar L.
2016-01-01
A foremost challenge for the neurons, which are among the most oxygenated cells, is the genome damage caused by chronic exposure to endogenous reactive oxygen species (ROS), formed as cellular respiratory byproducts. Strong metabolic activity associated with high transcriptional levels in these long lived post-mitotic cells render them vulnerable to oxidative genome damage, including DNA strand breaks and mutagenic base lesions. There is growing evidence for the accumulation of unrepaired DNA lesions in the central nervous system (CNS) during accelerated ageing and progressive neurodegeneration. Several germ line mutations in DNA repair or DNA damage response (DDR) signaling genes are uniquely manifested in the phenotype of neuronal dysfunction and are etiologically linked to many neurodegenerative disorders. Studies in our lab and elsewhere revealed that pro-oxidant metals, ROS and misfolded amyloidogenic proteins not only contribute to genome damage in CNS, but also impede their repair/DDR signaling leading to persistent damage accumulation, a common feature in sporadic neurodegeneration. Here, we have reviewed recent advances in our understanding of the etiological implications of DNA damage vs. repair imbalance, abnormal DDR signaling in triggering neurodegeneration and potential of DDR as a target for the amelioration of neurodegenerative diseases. PMID:27663141
Negureanu, Lacramioara; Salsbury, Freddie R.
2012-01-01
The cellular response to DNA damage signaling by MMR proteins is incompletely understood. It is generally accepted that MMR-dependent apoptosis pathway in response to DNA damage detection is independent of MMR's DNA repair function. In this study we investigate correlated motions in response to the binding of mismatched and PCL DNA fragments by MutSα, as derived from 50 ns molecular dynamics simulations. The protein dynamics in response to the mismatched and damaged DNA recognition suggests that MutSα signals their recognition through independent pathways providing evidence for the molecular origin of the MMR-dependent apoptosis. MSH2 subunit is indicated to play a key role in signaling both mismatched and damaged DNA recognition; localized and collective motions within the protein allow identifying sites on the MSH2 surface possible involved in recruiting proteins responsible for downstream events. Unlike in the mismatch complex, predicted key communication sites specific for the damage recognition are on the list of known cancer causing mutations or deletions. This confirms MSH2's role in signaling DNA-damage induced apoptosis and suggests that defects in MMR alone is sufficient to trigger tumorigenesis, supporting the experimental evidence that MMR-damage response function could protect from the early occurrence of tumors. Identifying these particular communication sites may have implications for the treatment of cancers that are not defective for MMR, but are unable to function optimally for MMR-dependent responses following DNA damage such as the case of resistance to cisplatin. PMID:22712459
PCNA-coupled p21 degradation after DNA damage: The exception that confirms the rule?
Soria, Gastón; Gottifredi, Vanesa
2010-04-04
While many are the examples of DNA damaging treatments that induce p21 accumulation, the conception of p21 upregulation as the universal response to genotoxic stress has come to an end. Compelling evidences have demonstrated the existence of converging signals that negatively regulate p21 bellow basal levels when replication forks are blocked. Moreover, conclusive reports identified the E3-ligase CRL4(CDT2) (CUL4-DDB1-CDT2) as the enzymatic complex that promotes p21 proteolysis when treatments such as UV irradiation trigger replication fork stress. A pre-requisite for CRL4(CDT2)-driven proteolysis is the interaction of p21 with PCNA. Interestingly as well, CRL4(CDT2)-dependent proteolysis is not limited to p21 and affects other PCNA partners, including the specialized DNA polymerase eta (pol eta). These recent discoveries are particularly intriguing since the UV-induced degradation of p21 has been shown to be required for efficient pol eta recruitment to DNA lesions. Herein we review the findings that lead to the identification of the molecular mechanism that triggers damage-induced PCNA-coupled protein proteolysis. We propose a novel model in which CRL4(CDT2)-dependent protein degradation facilitates a sequential and dynamic exchange between PIP box bearing proteins at stall forks during Translesion DNA synthesis (TLS). Moreover, given the tight spatiotemporal control that CRL4(CDT2)-driven proteolysis is able to confer to PCNA-regulated processes, we discuss the impact that this degradation mechanism might have in other molecular switches associated with the repair of damaged DNA. 2010 Elsevier B.V. All rights reserved.
Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan
2015-09-30
Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.
Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N.; Guo, Lei; Mei, Nan
2015-01-01
Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition. PMID:26419945
Global Reprogramming of Host SUMOylation during Influenza Virus Infection
Domingues, Patricia; Golebiowski, Filip; Tatham, Michael H.; Lopes, Antonio M.; Taggart, Aislynn; Hay, Ronald T.; Hale, Benjamin G.
2015-01-01
Summary Dynamic nuclear SUMO modifications play essential roles in orchestrating cellular responses to proteotoxic stress, DNA damage, and DNA virus infection. Here, we describe a non-canonical host SUMOylation response to the nuclear-replicating RNA pathogen, influenza virus, and identify viral RNA polymerase activity as a major contributor to SUMO proteome remodeling. Using quantitative proteomics to compare stress-induced SUMOylation responses, we reveal that influenza virus infection triggers unique re-targeting of SUMO to 63 host proteins involved in transcription, mRNA processing, RNA quality control, and DNA damage repair. This is paralleled by widespread host deSUMOylation. Depletion screening identified ten virus-induced SUMO targets as potential antiviral factors, including C18orf25 and the SMC5/6 and PAF1 complexes. Mechanistic studies further uncovered a role for SUMOylation of the PAF1 complex component, parafibromin (CDC73), in potentiating antiviral gene expression. Our global characterization of influenza virus-triggered SUMO redistribution provides a proteomic resource to understand host nuclear SUMOylation responses to infection. PMID:26549460
Hawkins, Simon J; Crompton, Lucy A; Sood, Aman; Saunders, Margaret; Boyle, Noreen T; Buckley, Amy; Minogue, Aedín M; McComish, Sarah F; Jiménez-Moreno, Natalia; Cordero-Llana, Oscar; Stathakos, Petros; Gilmore, Catherine E; Kelly, Stephen; Lane, Jon D; Case, C Patrick; Caldwell, Maeve A
2018-05-01
The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4B C74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.
Pairing of heterochromatin in response to cellular stress.
Abdel-Halim, H I; Mullenders, L H F; Boei, J J W A
2006-07-01
We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair.
NASA Astrophysics Data System (ADS)
Hawkins, Simon J.; Crompton, Lucy A.; Sood, Aman; Saunders, Margaret; Boyle, Noreen T.; Buckley, Amy; Minogue, Aedín M.; McComish, Sarah F.; Jiménez-Moreno, Natalia; Cordero-Llana, Oscar; Stathakos, Petros; Gilmore, Catherine E.; Kelly, Stephen; Lane, Jon D.; Case, C. Patrick; Caldwell, Maeve A.
2018-05-01
The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.
The thyroid hormone receptor β induces DNA damage and premature senescence.
Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M; Garesse, Rafael; Aranda, Ana
2014-01-06
There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.
Lee, Yann-Leei; Obiako, Boniface; Gorodnya, Olena M; Ruchko, Mykhaylo V; Kuck, Jamie L; Pastukh, Viktor M; Wilson, Glenn L; Simmons, Jon D; Gillespie, Mark N
2017-07-01
Although studies in rat cultured pulmonary artery endothelial cells, perfused lungs, and intact mice support the concept that oxidative mitochondrial (mt) DNA damage triggers acute lung injury (ALI), it has not yet been determined whether enhanced mtDNA repair forestalls development of ALI and its progression to multiple organ system failure (MOSF). Accordingly, here we examined the effect of a fusion protein construct targeting the DNA glycosylase, Ogg1, to mitochondria in a rat model intra-tracheal Pseudomonas aeruginosa (strain 103; PA103)-induced ALI and MOSF. Relative to controls, animals given PA103 displayed increases in lung vascular filtration coefficient accompanied by transient lung tissue oxidative mtDNA damage and variable changes in mtDNA copy number without evidence of nuclear DNA damage. The approximate 40% of animals surviving 24 h after bacterial administration exhibited multiple organ dysfunction, manifest as increased serum and tissue-specific indices of kidney and liver failure, along with depressed heart rate and blood pressure. While administration of mt-targeted Ogg1 to control animals was innocuous, the active fusion protein, but not a DNA repair-deficient mutant, prevented bacteria-induced increases in lung tissue oxidative mtDNA damage, failed to alter mtDNA copy number, and attenuated lung endothelial barrier degradation. These changes were associated with suppression of liver, kidney, and cardiovascular dysfunction and with decreased 24 h mortality. Collectively, the present findings indicate that oxidative mtDNA damage to lung tissue initiates PA103-induced ALI and MOSF in rats.
Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.
Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V
2017-01-01
ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.
Structural Basis for the Interaction of Mutasome Assembly Factor REV1 with Ubiquitin.
Cui, Gaofeng; Botuyan, Maria Victoria; Mer, Georges
2018-05-18
REV1 is an evolutionarily conserved translesion synthesis (TLS) DNA polymerase and an assembly factor key for the recruitment of other TLS polymerases to DNA damage sites. REV1-mediated recognition of ubiquitin in the proliferative cell nuclear antigen is thought to be the trigger for TLS activation. Here we report the solution NMR structure of a 108-residue fragment of human REV1 encompassing the two putative ubiquitin-binding motifs UBM1 and UBM2 in complex with ubiquitin. While in mammals UBM1 and UBM2 are both required for optimal association of REV1 with replication factories after DNA damage, we show that only REV1 UBM2 binds ubiquitin. Structure-guided mutagenesis in Saccharomyces cerevisiae further highlights the importance of UBM2 for REV1-mediated mutagenesis and DNA damage tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.
An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint.
van Brabant, A J; Buchanan, C D; Charboneau, E; Fangman, W L; Brewer, B J
2001-04-01
Checkpoint controls coordinate entry into mitosis with the completion of DNA replication. Depletion of nucleotide precursors by treatment with the drug hydroxyurea triggers such a checkpoint response. However, it is not clear whether the signal for this hydroxyurea-induced checkpoint pathway is the presence of unreplicated DNA, or rather the persistence of single-stranded or damaged DNA. In a yeast artificial chromosome (YAC) we have engineered an approximately 170 kb region lacking efficient replication origins that allows us to explore the specific effects of unreplicated DNA on cell cycle progression. Replication of this YAC extends the length of S phase and causes cells to engage an S/M checkpoint. In the absence of Rad9 the YAC becomes unstable, undergoing deletions within the origin-free region.
BRCA1 is Required for Post-replication Repair After UV-induced DNA Damage
Pathania, Shailja; Nguyen, Jenna; Hill, Sarah J.; Scully, Ralph; Feunteun, Jean; Livingston, David M.
2011-01-01
BRCA1 contributes to the response to UV irradiation. Utilizing its BRCT motifs, it is recruited during S/G2 to UV-damaged sites in a DNA replication-dependent, but nucleotide excision repair- independent manner. More specifically, at UV- stalled replication forks, it promotes photoproduct excision, suppression of translesion synthesis, and the localization and activation of replication factor C complex (RFC) subunits. The last function, in turn, triggers post-UV checkpoint activation and post- replicative repair. These BRCA1 functions differ from those required for DSBR. PMID:21963239
Heenen, M; Giacomoni, P U; Golstein, P
2001-10-01
A linear correlation between erythema intensity and DNA damage upon exposure to UV has not been firmly established. Many of the deleterious effects of UV exposure do occur after exposure to suberythemal doses. After DNA damage, cells undergo DNA repair. It is commonly accepted that when the burden of damage is beyond the repair capacities, the cell undergoes programmed cell death or apoptosis. The aim of this study is to quantify the amount of UV-induced DNA damage (estimated via the measurement of DNA repair or unscheduled DNA synthesis or UDS) and cellular damage (estimated via the determination of the density of sunburn cells or SBC). If DNA damage and erythema are correlated, similar intensity of UDS and similar density of SBC should be found in volunteers irradiated with a UV dose equal to two minimal erythema doses (MED). Our results show that in 15 different individuals the same relative dose (2 MEDs) provokes UDS values, which vary within a factor of 4. An even larger variability affects SBC counts after the same relative dose. When DNA damage or SBC are plotted versus the absolute dose (i.e. the dose expressed in J/m(2)), there is a rough correlation (with several exceptions) between dose and extent of UDS and SBC counts. It seems possible to divide the volunteers into two subpopulations with different susceptibilities to UV damage. It is well known that UDS and SBC measurements are often affected by large experimental indeterminacy, yet, the analysis of our results makes it plausible to suggest that for the triggering of erythema, a common threshold value for DNA damage or for SBC count are not to be found. In conclusion, the erythema response seems to be loosely correlated with DNA damage. This suggests that the protection offered by the sunscreens against DNA damage, the molecular basis of UV-induced mutagenesis, might not be related to the sun protection factor (SPF) indicated on the label of sunscreens, which is evaluated using the erythema as an endpoint.
Prakash, Anand; Jayaram, Sumithra
2012-01-01
Adenovirus (Ad) mutants that lack early region 4 (E4) activate the phosphorylation of cellular DNA damage response proteins. In wild-type Ad type 5 (Ad5) infections, E1b and E4 proteins target the cellular DNA repair protein Mre11 for redistribution and degradation, thereby interfering with its ability to activate phosphorylation cascades important during DNA repair. The characteristics of Ad infection that activate cellular DNA repair processes are not yet well understood. We investigated the activation of DNA damage responses by a replication-defective Ad vector (AdRSVβgal) that lacks E1 and fails to produce the immediate-early E1a protein. E1a is important for activating early gene expression from the other viral early transcription units, including E4. AdRSVβgal can deliver its genome to the cell, but it is subsequently deficient for viral early gene expression and DNA replication. We studied the ability of AdRSVβgal-infected cells to induce cellular DNA damage responses. AdRSVβgal infection does activate formation of foci containing the Mdc1 protein. However, AdRSVβgal fails to activate phosphorylation of the damage response proteins Nbs1 and Chk1. We found that viral DNA replication is important for Nbs1 phosphorylation, suggesting that this step in the viral life cycle may provide an important trigger for activating at least some DNA repair proteins. PMID:23015708
Smith, Rebecca; Sellou, Hafida; Chapuis, Catherine; Huet, Sébastien; Timinszky, Gyula
2018-05-04
One of the first events to occur upon DNA damage is the local opening of the compact chromatin architecture, facilitating access of repair proteins to DNA lesions. This early relaxation is triggered by poly(ADP-ribosyl)ation by PARP1 in addition to ATP-dependent chromatin remodeling. CHD4 recruits to DNA breaks in a PAR-dependent manner, although it lacks any recognizable PAR-binding domain, and has the ability to relax chromatin structure. However, its role in chromatin relaxation at the site of DNA damage has not been explored. Using a live cell fluorescence three-hybrid assay, we demonstrate that the recruitment of CHD4 to DNA damage, while being poly(ADP-ribosyl)ation-dependent, is not through binding poly(ADP-ribose). Additionally, we show that CHD3 is recruited to DNA breaks in the same manner as CHD4 and that both CHD3 and CHD4 play active roles in chromatin remodeling at DNA breaks. Together, our findings reveal a two-step mechanism for DNA damage induced chromatin relaxation in which PARP1 and the PAR-binding remodeler activities of Alc1/CHD1L induce an initial chromatin relaxation phase that promotes the subsequent recruitment of CHD3 and CHD4 via binding to DNA for further chromatin remodeling at DNA breaks.
Wei, Li; Zhu, Shanshan; Wang, Jing; Quan, Rong; Yan, Xu; Li, Zixue; Hou, Lei; Wang, Naidong; Yang, Yi; Jiang, Haijun; Liu, Jue
2016-01-01
Cellular DNA damage response (DDR) triggered by infection of DNA viruses mediate cell cycle checkpoint activation, DNA repair, or apoptosis induction. In the present study, infection of porcine circovirus type 2 (PCV2), which serves as a major etiological agent of PCV2-associated diseases (PCVAD), was found to elicit a DNA damage response (DDR) as observed by the phosphorylation of H2AX and RPA32 following infection. The response requires active viral replication, and all the ATM (ataxia telangiectasia-mutated kinase), ATR (ATM- and Rad3-related kinase), and DNA-PK (DNA-dependent protein kinase) are the transducers of the DDR signaling events in the PCV2-infected cells as demonstrated by the phosphorylation of ATM, ATR, and DNA-PK signalings as well as reductions in their activations after treatment with specific kinase inhibitors. Inhibitions of ATM, ATR, and DNA-PK activations block viral replication and prevent apoptotic responses as observed by decreases in cleaved poly-ADP ribose polymerase (PARP) and caspase-3 as well as fragmented DNA following PCV2 infection. These results reveal that PCV2 is able to exploit the cellular DNA damage response machinery for its own efficient replication and for apoptosis induction, further extending our understanding for the molecular mechanism of PCV2 infection. PMID:27982097
Lim, Hui Kheng; Gurung, Resham Lal; Hande, M Prakash
2017-12-01
Silver nanoparticles (Ag-np) were reported to be toxic to eukaryotic cells. These potentially detrimental effects of Ag-np can be advantageous in experimental therapeutics. They are currently being employed to enhance the therapeutic efficacy of cancer drugs. In this study, we demonstrate that Ag-np treatment trigger the activation of DNA-PKcs and JNK pathway at selected doses, presumably as a physiologic response to DNA damage and repair in normal and malignant cells. Ag-np altered the telomere dynamics by disrupting the shelterin complex located at the telomeres and telomere lengths. The genotoxic effect of Ag-np was not restricted to telomeres but the entire genome as Ag-np induced γ-H2AX foci formation, an indicator of global DNA damage. Inhibition of DNA-PKcs activity sensitised the cancer cells towards the cytotoxicity of Ag-np and substantiated the damaging effect of Ag-np at telomeres in human cancer cells. Abrogation of JNK mediated DNA repair and extensive damage of telomeres led to greater cell death following Ag-np treatment in DNA-PKcs inhibited cancer cells. Collectively, this study suggests that improved anti-proliferative and cytotoxic effects of Ag-np treatment in cancer cells can be achieved by the inhibition of DNA-PKcs. Copyright © 2017 Elsevier B.V. All rights reserved.
Wei, Leizhen; Nakajima, Satoshi; Böhm, Stefanie; Bernstein, Kara A; Shen, Zhiyuan; Tsang, Michael; Levine, Arthur S; Lan, Li
2015-07-07
Damage repair mechanisms at transcriptionally active sites during the G0/G1 phase are largely unknown. To elucidate these mechanisms, we introduced genome site-specific oxidative DNA damage and determined the role of transcription in repair factor assembly. We find that KU and NBS1 are recruited to damage sites independent of transcription. However, assembly of RPA1, RAD51C, RAD51, and RAD52 at such sites is strictly governed by active transcription and requires both wild-type Cockayne syndrome protein B (CSB) function and the presence of RNA in the G0/G1 phase. We show that the ATPase activity of CSB is indispensable for loading and binding of the recombination factors. CSB counters radiation-induced DNA damage in both cells and zebrafish models. Taken together, our results have uncovered a novel, RNA-based recombination mechanism by which CSB protects genome stability from strand breaks at transcriptionally active sites and may provide insight into the clinical manifestations of Cockayne syndrome.
Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling.
Nikolova, Teodora; Roos, Wynand P; Krämer, Oliver H; Strik, Herwig M; Kaina, Bernd
2017-08-01
Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O 6 -methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O 6 -chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide. Copyright © 2017 Elsevier B.V. All rights reserved.
Qi, Fei; Yan, Qiang; Zheng, Zhaozheng; Liu, Jian; Chen, Yan; Zhang, Guiyang
2018-01-01
Colon cancer ranks second in mortality among all human malignancies, creating thus a need for exploration of novel molecules that would prove effective, cost-effective and with lower toxicity. In the recent past monoterpenes have gained tremendous attention for their anticancer activity. In the present study we evaluated the anticancer effects of two important monoterpenes, geraniol and geranyl acetate against colo-205 cancer cells. The antiproliferative activity was determined by MTT assay. Apoptosis was assessed by DAPI staining and DNA damage was checked by comet assay. The cell cycle analysis was carried out by flow cytometry and protein expression was examined by western blotting. The results showed that both geraniol and geranyl acetate exhibited significant anticancer activity against colo-205 cancer cell line with IC50 values of 20 and 30 μM respectively. To find out the underlying mechanism, DAPI staining was carried out and it was observed that both the monoterpenes, geraniol and geranyl acetate, induced apoptosis in colo-205 cells. The apoptosis was also associated with upregulation of Bax and downregulation of Bcl-2 expressions, indicative of mitochondrial apoptosis. Moreover, these two monoterpenes could trigger DNA damage and G2/M cell cycle arrest in colo-205 cells. Taken together, we propose that geraniol and geranyl acetate may prove to be important lead molecular candidates for the treatment of colon cancer. Their anticancer activity can be attributed to the ability to trigger apoptosis, DNA damage and cell cycle arrest.
Ceruti, Julieta M; Scassa, María E; Marazita, Mariela C; Carcagno, Abel C; Sirkin, Pablo F; Cánepa, Eduardo T
2009-06-01
p19INK4d promotes survival of several cell lines after UV irradiation due to enhanced DNA repair, independently of CDK4 inhibition. To further understand the action of p19INK4d in the cellular response to DNA damage, we aimed to elucidate whether this novel regulator plays a role only in mechanisms triggered by UV or participates in diverse mechanisms initiated by different genotoxics. We found that p19INK4d is induced in cells injured with cisplatin or beta-amyloid peptide as robustly as with UV. The mentioned genotoxics transcriptionally activate p19INK4d expression as demonstrated by run-on assay without influencing its mRNA stability and with partial requirement of protein synthesis. It is not currently known whether DNA damage-inducible genes are turned on by the DNA damage itself or by the consequences of that damage. Experiments carried out in cells transfected with distinct damaged DNA structures revealed that the damage itself is not responsible for the observed up-regulation. It is also not known whether the increased expression of DNA-damage-inducible genes is related to immediate protective responses such as DNA repair or to more delayed responses such as cell cycle arrest or apoptosis. We found that ectopic expression of p19INK4d improves DNA repair ability and protects neuroblastoma cells from apoptosis caused by cisplatin or beta-amyloid peptide. Using clonal cell lines where p19INK4d levels can be modified at will, we show that p19INK4d expression correlates with increased survival and clonogenicity. The results presented here, prompted us to suggest that p19INK4d displays an important role in an early stage of cellular DNA damage response.
Song, Junqi; Bent, Andrew F
2014-04-01
Immune responses and DNA damage repair are two fundamental processes that have been characterized extensively, but the links between them remain largely unknown. We report that multiple bacterial, fungal and oomycete plant pathogen species induce double-strand breaks (DSBs) in host plant DNA. DNA damage detected by histone γ-H2AX abundance or DNA comet assays arose hours before the disease-associated necrosis caused by virulent Pseudomonas syringae pv. tomato. Necrosis-inducing paraquat did not cause detectable DSBs at similar stages after application. Non-pathogenic E. coli and Pseudomonas fluorescens bacteria also did not induce DSBs. Elevation of reactive oxygen species (ROS) is common during plant immune responses, ROS are known DNA damaging agents, and the infection-induced host ROS burst has been implicated as a cause of host DNA damage in animal studies. However, we found that DSB formation in Arabidopsis in response to P. syringae infection still occurs in the absence of the infection-associated oxidative burst mediated by AtrbohD and AtrbohF. Plant MAMP receptor stimulation or application of defense-activating salicylic acid or jasmonic acid failed to induce a detectable level of DSBs in the absence of introduced pathogens, further suggesting that pathogen activities beyond host defense activation cause infection-induced DNA damage. The abundance of infection-induced DSBs was reduced by salicylic acid and NPR1-mediated defenses, and by certain R gene-mediated defenses. Infection-induced formation of γ-H2AX still occurred in Arabidopsis atr/atm double mutants, suggesting the presence of an alternative mediator of pathogen-induced H2AX phosphorylation. In summary, pathogenic microorganisms can induce plant DNA damage. Plant defense mechanisms help to suppress rather than promote this damage, thereby contributing to the maintenance of genome integrity in somatic tissues.
Binnenkade, Lucas; Teichmann, Laura; Thormann, Kai M
2014-09-01
Prophages are ubiquitous elements within bacterial chromosomes and affect host physiology and ecology in multiple ways. We have previously demonstrated that phage-induced lysis is required for extracellular DNA (eDNA) release and normal biofilm formation in Shewanella oneidensis MR-1. Here, we investigated the regulatory mechanisms of prophage λSo spatiotemporal induction in biofilms. To this end, we used a functional fluorescence fusion to monitor λSo activation in various mutant backgrounds and in response to different physiological conditions. λSo induction occurred mainly in a subpopulation of filamentous cells in a strictly RecA-dependent manner, implicating oxidative stress-induced DNA damage as the major trigger. Accordingly, mutants affected in the oxidative stress response (ΔoxyR) or iron homeostasis (Δfur) displayed drastically increased levels of phage induction and abnormal biofilm formation, while planktonic cells were not or only marginally affected. To further investigate the role of oxidative stress, we performed a mutant screen and identified two independent amino acid substitutions in OxyR (T104N and L197P) that suppress induction of λSo by hydrogen peroxide (H2O2). However, λSo induction was not suppressed in biofilms formed by both mutants, suggesting a minor role of intracellular H2O2 in this process. In contrast, addition of iron to biofilms strongly enhanced λSo induction and eDNA release, while both processes were significantly suppressed at low iron levels, strongly indicating that iron is the limiting factor. We conclude that uptake of iron during biofilm formation triggers λSo-mediated lysis of a subpopulation of cells, likely by an increase in iron-mediated DNA damage sensed by RecA. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage
Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A; Gwerder, Myriam; Gutsche, Katrin; Altmeyer, Matthias; Jungmichel, Stephanie; Toledo, Luis I; Fink, Daniel; Rask, Maj-Britt; Grøfte, Merete; Lukas, Claudia; Nielsen, Michael L; Smerdon, Stephen J; Lukas, Jiri; Stucki, Manuel
2016-01-01
Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in-trans signaling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identified TCOF1-Treacle, a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle-dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in-trans in the presence of distant chromosome breaks. PMID:25064736
The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage.
Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A; Gwerder, Myriam; Gutsche, Katrin; Altmeyer, Matthias; Jungmichel, Stephanie; Toledo, Luis I; Fink, Daniel; Rask, Maj-Britt; Grøfte, Merete; Lukas, Claudia; Nielsen, Michael L; Smerdon, Stephen J; Lukas, Jiri; Stucki, Manuel
2014-08-01
Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in trans in the presence of distant chromosome breaks.
Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs
Furst, Audrey; Koch, Marc; Fischer, Benoit; Soutoglou, Evi
2016-01-01
DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation. PMID:26845027
Doimo, Nayara T S; Zárate-Bladés, Carlos R; Rodrigues, Rodrigo F; Tefé-Silva, Cristiane; Trotte, Marcele N S; Souza, Patrícia R M; Soares, Luana S; Rios, Wendy M; Floriano, Elaine M; Brandão, Izaira T; Masson, Ana P; Coelho, Verônica; Ramos, Simone G; Silva, Celio L
2014-01-01
Despite substantial efforts in recent years toward the development of new vaccines and drugs against tuberculosis (TB), success has remained elusive. Immunotherapy of TB with mycobacterial Hsp65 as a DNA vaccine (DNA-hsp65) results in a reduction of systemic bacterial loads and lung tissue damage, but the high homology of Hsp65 with the mammalian protein raises concern that pathological autoimmune responses may also be triggered. We searched for autoimmune responses elicited by DNA-hsp65 immunotherapy in mice chronically infected with TB by evaluating the humoral immune response and comprehensive histopathology using stereology. Cross-reactive antibodies between mycobacterial and mammalian Hsp60/65 were detected; however, no signs of pathological autoimmunity were found up to 60 days after the end of the therapy.
DNA Damage and Pulmonary Hypertension
Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien
2016-01-01
Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373
Ruiz-Magaña, María J.; Martínez-Aguilar, Rocío; Lucendo, Estefanía; Campillo-Davo, Diana; Schulze-Osthoff, Klaus; Ruiz-Ruiz, Carmen
2016-01-01
Epigenetic therapies have emerged as promising anticancer approaches, since epigenetic modifications play a major role in tumor initiation and progression. Hydralazine, an approved vasodilator and antihypertensive drug, has been recently shown to act as a DNA methylation inhibitor. Even though hydralazine is already tested in clinical cancer trials, its mechanism of antitumor action remains undefined. Here, we show that hydralazine induced caspase-dependent apoptotic cell death in human p53-mutant leukemic T cells. Moreover, we demonstrate that hydralazine triggered the mitochondrial pathway of apoptosis by inducing Bak activation and loss of the mitochondrial membrane potential. Hydralazine treatment further resulted in the accumulation of reactive oxygen species, whereas a superoxide dismutase mimetic inhibited hydralazine-induced cell death. Interestingly, caspase-9-deficient Jurkat cells or Bcl-2- and Bcl-xL-overexpressing cells were strongly resistant to hydralazine treatment, thereby demonstrating the dependence of hydralazine-induced apoptosis on the mitochondrial death pathway. Furthermore, we demonstrate that hydralazine treatment triggered DNA damage which might contribute to its antitumor effect. PMID:26942461
Rosenblat, Gennady; Meretski, Shai; Segal, Joseph; Tarshis, Mark; Schroeder, Avi; Zanin-Zhorov, Alexandra; Lion, Gilead; Ingber, Arieh; Hochberg, Malka
2011-05-01
Exposing skin to ultraviolet (UV) radiation contributes to photoaging and to the development of skin cancer by DNA lesions and triggering inflammatory and other harmful cellular cascades. The present study tested the ability of unique lipid molecules, polyhydroxylated fatty alcohols (PFA), extracted from avocado, to reduce UVB-induced damage and inflammation in skin. Introducing PFA to keratinocytes prior to their exposure to UVB exerted a protective effect, increasing cell viability, decreasing the secretion of IL-6 and PGE(2), and enhancing DNA repair. In human skin explants, treating with PFA reduced significantly UV-induced cellular damage. These results support the idea that PFA can play an important role as a photo-protective agent in UV-induced skin damage.
Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase
Sareen, Archana; Chaudhury, Indrajit; Adams, Nicole; Sobeck, Alexandra
2012-01-01
Fanconi anemia (FA) pathway members, FANCD2 and FANCI, contribute to the repair of replication-stalling DNA lesions. FA pathway activation relies on phosphorylation of FANCI by the ataxia telangiectasia and Rad3-related (ATR) kinase, followed by monoubiquitination of FANCD2 and FANCI by the FA core complex. FANCD2 and FANCI are thought to form a functional heterodimer during DNA repair, but it is unclear how dimer formation is regulated or what the functions of the FANCD2–FANCI complex versus the monomeric proteins are. We show that the FANCD2–FANCI complex forms independently of ATR and FA core complex, and represents the inactive form of both proteins. DNA damage-induced FA pathway activation triggers dissociation of FANCD2 from FANCI. Dissociation coincides with FANCD2 monoubiquitination, which significantly precedes monoubiquitination of FANCI; moreover, monoubiquitination responses of FANCD2 and FANCI exhibit distinct DNA substrate specificities. A phosphodead FANCI mutant fails to dissociate from FANCD2, whereas phosphomimetic FANCI cannot interact with FANCD2, indicating that FANCI phosphorylation is the molecular trigger for FANCD2–FANCI dissociation. Following dissociation, FANCD2 binds replicating chromatin prior to—and independently of—FANCI. Moreover, the concentration of chromatin-bound FANCD2 exceeds that of FANCI throughout replication. Our results suggest that FANCD2 and FANCI function separately at consecutive steps during DNA repair in S-phase. PMID:22753026
Duran-Flores, Dalia; Heil, Martin
2017-10-16
Mammals sense self or non-self extracellular or extranuclear DNA fragments (hereinafter collectively termed eDNA) as indicators of injury or infection and respond with immunity. We hypothesised that eDNA acts as a damage-associated molecular pattern (DAMP) also in plants and that it contributes to self versus non-self discrimination. Treating plants and suspension-cultured cells of common bean (Phaseolus vulgaris) with fragmented self eDNA (obtained from other plants of the same species) induced early, immunity-related signalling responses such as H 2 O 2 generation and MAPK activation, decreased the infection by a bacterial pathogen (Pseudomonas syringae) and increased an indirect defence to herbivores (extrafloral nectar secretion). By contrast, non-self DNA (obtained from lima bean, Phaseolus lunatus, and Acacia farnesiana) had significantly lower or no detectable effects. Only fragments below a size of 700 bp were active, and treating the eDNA preparation DNAse abolished its inducing effects, whereas treatment with RNAse or proteinase had no detectable effect. These findings indicate that DNA fragments, rather than small RNAs, single nucleotides or proteins, accounted for the observed effects. We suggest that eDNA functions a DAMP in plants and that plants discriminate self from non-self at a species-specific level. The immune systems of plants and mammals share multiple central elements, but further work will be required to understand the mechanisms and the selective benefits of an immunity response that is triggered by eDNA in a species-specific manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog
2016-01-01
Abstract Aims: Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. Results: We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. Innovation: This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. Conclusion: MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072–1083. PMID:26935406
Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog; Jurkunas, Ula V
2016-06-20
Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.
Function of the Plant DNA Polymerase Epsilon in Replicative Stress Sensing, a Genetic Analysis.
Pedroza-García, José-Antonio; Mazubert, Christelle; Del Olmo, Ivan; Bourge, Mickael; Domenichini, Séverine; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; Piñeiro, Manuel; Jarillo, José A; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile
2017-03-01
Faithful transmission of the genetic information is essential in all living organisms. DNA replication is therefore a critical step of cell proliferation, because of the potential occurrence of replication errors or DNA damage when progression of a replication fork is hampered causing replicative stress. Like other types of DNA damage, replicative stress activates the DNA damage response, a signaling cascade allowing cell cycle arrest and repair of lesions. The replicative DNA polymerase ε (Pol ε) was shown to activate the S-phase checkpoint in yeast in response to replicative stress, but whether this mechanism functions in multicellular eukaryotes remains unclear. Here, we explored the genetic interaction between Pol ε and the main elements of the DNA damage response in Arabidopsis ( Arabidopsis thaliana ). We found that mutations affecting the polymerase domain of Pol ε trigger ATR-dependent signaling leading to SOG1 activation, WEE1-dependent cell cycle inhibition, and tolerance to replicative stress induced by hydroxyurea, but result in enhanced sensitivity to a wide range of DNA damaging agents. Using knock-down lines, we also provide evidence for the direct role of Pol ε in replicative stress sensing. Together, our results demonstrate that the role of Pol ε in replicative stress sensing is conserved in plants, and provide, to our knowledge, the first genetic dissection of the downstream signaling events in a multicellular eukaryote. © 2017 American Society of Plant Biologists. All Rights Reserved.
Li, Da-wei; Sun, Jing-yi; Wang, Kun; Zhang, Shuai; Hou, Ya-jun; Yang, Ming-feng; Fu, Xiao-yan; Zhang, Zong-yong; Mao, Lei-lei; Yuan, Hui; Fang, Jie; Fan, Cun-dong; Zhu, Mei-jia; Sun, Bao-liang
2015-10-01
Cisplatin-based chemotherapy in clinic is severely limited by its adverse effect, including neurotoxicity. Oxidative damage contributes to cisplatin-induced neurotoxicity, but the mechanism remains unclearly. Cyanidin, a natural flavonoid compound, exhibits powerful antioxidant activity. Hence, we investigated the protective effects of cyanidin on PC12 cells against cisplatin-induced neurotoxicity and explored the underlying mechanisms. The results showed that cisplatin-induced cytotoxicity was completely reversed by cyanidin through inhibition of PC12 cell apoptosis, as proved by the attenuation of Sub-G1 peak, PARP cleavage, and caspases-3 activation. Mechanistically, cyanidin significantly inhibited reactive oxygen species (ROS)-induced DNA damage in cisplatin-treated PC12 cells. Our findings revealed that cyanidin as an apoptotic inhibitor effectively blocked cisplatin-induced neurotoxicity through inhibition of ROS-mediated DNA damage and apoptosis, predicating its therapeutic potential in prevention of chemotherapy-induced neurotoxicity. Cisplatin caused DNA damage, activated p53, and subsequently induced PC12 cells apoptosis by triggering ROS overproduction. However, cyanidin administration effectively inhibited DNA damage, attenuated p53 phosphorylation, and eventually reversed cisplatin-induced PC12 cell apoptosis through inhibition ROS accumulation.
Eustice, Moriah; Pillus, Lorraine
2014-01-01
Chromatin organization and structure are crucial for transcriptional regulation, DNA replication, and damage repair. Although initially characterized in remodeling cell wall glucans, the β-1,3-glucanosyltransferase Gas1 was recently discovered to regulate transcriptional silencing in a manner separable from its activity at the cell wall. However, the function of Gas1 in modulating chromatin remains largely unexplored. Our genetic characterization revealed that GAS1 had critical interactions with genes encoding the histone H3 lysine acetyltransferases Gcn5 and Sas3. Specifically, whereas the gas1gcn5 double mutant was synthetically lethal, deletion of both GAS1 and SAS3 restored silencing in Saccharomyces cerevisiae. The loss of GAS1 also led to broad DNA damage sensitivity with reduced Rad53 phosphorylation and defective cell cycle checkpoint activation following exposure to select genotoxins. Deletion of SAS3 in the gas1 background restored both Rad53 phosphorylation and checkpoint activation following exposure to genotoxins that trigger the DNA replication checkpoint. Our analysis thus uncovers previously unsuspected functions for both Gas1 and Sas3 in DNA damage response and cell cycle regulation. PMID:24532730
Lerner, Leticia K; Francisco, Guilherme; Soltys, Daniela T; Rocha, Clarissa R R; Quinet, Annabel; Vessoni, Alexandre T; Castro, Ligia P; David, Taynah I P; Bustos, Silvina O; Strauss, Bryan E; Gottifredi, Vanesa; Stary, Anne; Sarasin, Alain; Chammas, Roger; Menck, Carlos F M
2017-02-17
Genome lesions trigger biological responses that help cells manage damaged DNA, improving cell survival. Pol eta is a translesion synthesis (TLS) polymerase that bypasses lesions that block replicative polymerases, avoiding continued stalling of replication forks, which could lead to cell death. p53 also plays an important role in preventing cell death after ultraviolet (UV) light exposure. Intriguingly, we show that p53 does so by favoring translesion DNA synthesis by pol eta. In fact, the p53-dependent induction of pol eta in normal and DNA repair-deficient XP-C human cells after UV exposure has a protective effect on cell survival after challenging UV exposures, which was absent in p53- and Pol H-silenced cells. Viability increase was associated with improved elongation of nascent DNA, indicating the protective effect was due to more efficient lesion bypass by pol eta. This protection was observed in cells proficient or deficient in nucleotide excision repair, suggesting that, from a cell survival perspective, proper bypass of DNA damage can be as relevant as removal. These results indicate p53 controls the induction of pol eta in DNA damaged human cells, resulting in improved TLS and enhancing cell tolerance to DNA damage, which parallels SOS responses in bacteria. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage
Persson, Henrik; Købler, Carsten; Mølhave, Kristian; Samuelson, Lars; Tegenfeldt, Jonas O; Oredsson, Stina; Prinz, Christelle N
2013-01-01
Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA damage. These results are important guidelines to the design and interpretation of experiments involving nanowire-based transfection and electrical characterization of living cells. PMID:23813871
Buechner, Claudia N.; Heil, Korbinian; Michels, Gudrun; Carell, Thomas; Kisker, Caroline; Tessmer, Ingrid
2014-01-01
Recognition and removal of DNA damages is essential for cellular and organismal viability. Nucleotide excision repair (NER) is the sole mechanism in humans for the repair of carcinogenic UV irradiation-induced photoproducts in the DNA, such as cyclobutane pyrimidine dimers. The broad substrate versatility of NER further includes, among others, various bulky DNA adducts. It has been proposed that the 5′-3′ helicase XPD (xeroderma pigmentosum group D) protein plays a decisive role in damage verification. However, despite recent advances such as the identification of a DNA-binding channel and central pore in the protein, through which the DNA is threaded, as well as a dedicated lesion recognition pocket near the pore, the exact process of target site recognition and verification in eukaryotic NER still remained elusive. Our single molecule analysis by atomic force microscopy reveals for the first time that XPD utilizes different recognition strategies to verify structurally diverse lesions. Bulky fluorescein damage is preferentially detected on the translocated strand, whereas the opposite strand preference is observed for a cyclobutane pyrimidine dimer lesion. Both states, however, lead to similar conformational changes in the resulting specific complexes, indicating a merge to a “final” verification state, which may then trigger the recruitment of further NER proteins. PMID:24338567
Epstein-Barr Virus Hijacks DNA Damage Response Transducers to Orchestrate Its Life Cycle.
Hau, Pok Man; Tsao, Sai Wah
2017-11-16
The Epstein-Barr virus (EBV) is a ubiquitous virus that infects most of the human population. EBV infection is associated with multiple human cancers, including Burkitt's lymphoma, Hodgkin's lymphoma, a subset of gastric carcinomas, and almost all undifferentiated non-keratinizing nasopharyngeal carcinoma. Intensive research has shown that EBV triggers a DNA damage response (DDR) during primary infection and lytic reactivation. The EBV-encoded viral proteins have been implicated in deregulating the DDR signaling pathways. The consequences of DDR inactivation lead to genomic instability and promote cellular transformation. This review summarizes the current understanding of the relationship between EBV infection and the DDR transducers, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase), and discusses how EBV manipulates the DDR signaling pathways to complete the replication process of viral DNA during lytic reactivation.
Telomere shortening triggers a feedback loop to enhance end protection
Yang, Chia-Wei; Tseng, Shun-Fu; Yu, Chia-Jung; Chung, Chia-Yu; Chang, Cheng-Yen; Pobiega, Sabrina
2017-01-01
Abstract Telomere homeostasis is controlled by both telomerase machinery and end protection. Telomere shortening induces DNA damage sensing kinases ATM/ATR for telomerase recruitment. Yet, whether telomere shortening also governs end protection is poorly understood. Here we discover that yeast ATM/ATR controls end protection. Rap1 is phosphorylated by Tel1 and Mec1 kinases at serine 731, and this regulation is stimulated by DNA damage and telomere shortening. Compromised Rap1 phosphorylation hampers the interaction between Rap1 and its interacting partner Rif1, which thereby disturbs the end protection. As expected, reduction of Rap1–Rif1 association impairs telomere length regulation and increases telomere–telomere recombination. These results indicate that ATM/ATR DNA damage checkpoint signal contributes to telomere protection by strengthening the Rap1–Rif1 interaction at short telomeres, and the checkpoint signal oversees both telomerase recruitment and end capping pathways to maintain telomere homeostasis. PMID:28575419
Doimo, Nayara TS; Zárate-Bladés, Carlos R; Rodrigues, Rodrigo F; Tefé-Silva, Cristiane; Trotte, Marcele NS; Souza, Patrícia RM; Soares, Luana S; Rios, Wendy M; Floriano, Elaine M; Brandão, Izaira T; Masson, Ana P; Coelho, Verônica; Ramos, Simone G; Silva, Celio L
2014-01-01
Despite substantial efforts in recent years toward the development of new vaccines and drugs against tuberculosis (TB), success has remained elusive. Immunotherapy of TB with mycobacterial Hsp65 as a DNA vaccine (DNA-hsp65) results in a reduction of systemic bacterial loads and lung tissue damage, but the high homology of Hsp65 with the mammalian protein raises concern that pathological autoimmune responses may also be triggered. We searched for autoimmune responses elicited by DNA-hsp65 immunotherapy in mice chronically infected with TB by evaluating the humoral immune response and comprehensive histopathology using stereology. Cross-reactive antibodies between mycobacterial and mammalian Hsp60/65 were detected; however, no signs of pathological autoimmunity were found up to 60 days after the end of the therapy. PMID:24607935
The dark side of the ring: role of the DNA sliding surface of PCNA.
De March, Matteo; De Biasio, Alfredo
2017-12-01
The proliferating cell nuclear antigen (PCNA) sliding clamp lies at the heart of the accurate duplication of eukaryotic genomes. While the outer surface of the PCNA ring interacts with polymerases and other factors, the role of the inner wall facing the DNA is elusive. Recent evidence shows that conserved basic residues in the PCNA central channel create a specific surface that recognizes the DNA backbone and enables the clamp to slide by rotationally tracking the DNA helix. The sliding surface can be modulated (i) through lysine acetylation, which triggers PCNA degradation during nucleotide excision repair (NER) and stimulates repair by homologous recombination (HR) or (ii) through binding of the protein factor p15 PAF , which turns off DNA lesion bypass. Thus, the inner surface of PCNA is unexpectedly highly regulated to control resistance to DNA damage. From a structural viewpoint, we reflect on these findings that open a new perspective on PCNA function and offer opportunities to develop tools to manipulate the DNA damage response in cancer treatment.
Wei, Leizhen; Nakajima, Satoshi; Böhm, Stefanie; Bernstein, Kara A.; Shen, Zhiyuan; Tsang, Michael; Levine, Arthur S.; Lan, Li
2015-01-01
Damage repair mechanisms at transcriptionally active sites during the G0/G1 phase are largely unknown. To elucidate these mechanisms, we introduced genome site-specific oxidative DNA damage and determined the role of transcription in repair factor assembly. We find that KU and NBS1 are recruited to damage sites independent of transcription. However, assembly of RPA1, RAD51C, RAD51, and RAD52 at such sites is strictly governed by active transcription and requires both wild-type Cockayne syndrome protein B (CSB) function and the presence of RNA in the G0/G1 phase. We show that the ATPase activity of CSB is indispensable for loading and binding of the recombination factors. CSB counters radiation-induced DNA damage in both cells and zebrafish models. Taken together, our results have uncovered a novel, RNA-based recombination mechanism by which CSB protects genome stability from strand breaks at transcriptionally active sites and may provide insight into the clinical manifestations of Cockayne syndrome. PMID:26100862
Hashizume, Masahiro; Mouner, Marc; Chouteau, Joshua M; Gorodnya, Olena M; Ruchko, Mykhaylo V; Potter, Barry J; Wilson, Glenn L; Gillespie, Mark N; Parker, James C
2013-02-15
This study tested the hypothesis that oxidative mitochondrial-targeted DNA (mtDNA) damage triggered ventilator-induced lung injury (VILI). Control mice and mice infused with a fusion protein targeting the DNA repair enzyme, 8-oxoguanine-DNA glycosylase 1 (OGG1) to mitochondria were mechanically ventilated with a range of peak inflation pressures (PIP) for specified durations. In minimal VILI (1 h at 40 cmH(2)O PIP), lung total extravascular albumin space increased 2.8-fold even though neither lung wet/dry (W/D) weight ratios nor bronchoalveolar lavage (BAL) macrophage inflammatory protein (MIP)-2 or IL-6 failed to differ from nonventilated or low PIP controls. This increase in albumin space was attenuated by OGG1. Moderately severe VILI (2 h at 40 cmH(2)O PIP) produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio and marked increases in BAL MIP-2 and IL-6, accompanied by oxidative mitochondrial DNA damage, as well as decreases in the total tissue glutathione (GSH) and GSH/GSSH ratio compared with nonventilated lungs. All of these injury indices were attenuated in OGG1-treated mice. At the highest level of VILI (2 h at 50 cmH(2)O PIP), OGG1 failed to protect against massive lung edema and BAL cytokines or against depletion of the tissue GSH pool. Interestingly, whereas untreated mice died before completing the 2-h protocol, OGG1-treated mice lived for the duration of observation. Thus mitochondrially targeted OGG1 prevented VILI over a range of ventilation times and pressures and enhanced survival in the most severely injured group. These findings support the concept that oxidative mtDNA damage caused by high PIP triggers induction of acute lung inflammation and injury.
Sunlight damage to cellular DNA: Focus on oxidatively generated lesions.
Schuch, André Passaglia; Moreno, Natália Cestari; Schuch, Natielen Jacques; Menck, Carlos Frederico Martins; Garcia, Camila Carrião Machado
2017-06-01
The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Albendazole as a promising molecule for tumor control.
Castro, L S E P W; Kviecinski, M R; Ourique, F; Parisotto, E B; Grinevicius, V M A S; Correia, J F G; Wilhelm Filho, D; Pedrosa, R C
2016-12-01
This work evaluated the antitumor effects of albendazole (ABZ) and its relationship with modulation of oxidative stress and induction of DNA damage. The present results showed that ABZ causes oxidative cleavage on calf-thymus DNA suggesting that this compound can break DNA. ABZ treatment decreased MCF-7 cell viability (EC 50 =44.9 for 24h) and inhibited MCF-7 colony formation (~67.5% at 5μM). Intracellular ROS levels increased with ABZ treatment (~123%). The antioxidant NAC is able to revert the cytotoxic effects, ROS generation and loss of mitochondrial membrane potential of MCF-7 cells treated with ABZ. Ehrlich carcinoma growth was inhibited (~32%) and survival time was elongated (~50%) in animals treated with ABZ. Oxidative biomarkers (TBARS and protein carbonyl levels) and activity of antioxidant enzymes (CAT, SOD and GR) increased, and reduced glutathione (GSH) was depleted in animals treated with ABZ, indicating an oxidative stress condition, leading to a DNA damage causing phosphorylation of histone H2A variant, H2AX, and triggering apoptosis signaling, which was confirmed by increasing Bax/Bcl-xL rate, p53 and Bax expression. We propose that ABZ induces oxidative stress promoting DNA fragmentation and triggering apoptosis and inducing cell death, making this drug a promising leader molecule for development of new antitumor drugs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals
Cloutier, Jeffrey M.; Mahadevaiah, Shantha K.; ElInati, Elias; Nussenzweig, André; Tóth, Attila; Turner, James M. A.
2015-01-01
Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO) and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX). We find that DNA double-strand break (DSB) foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX) levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities. PMID:26509888
Culyba, Matthew J; Kubiak, Jeffrey M; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M
2018-06-01
Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.
Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya
2017-01-01
Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. PMID:27821713
Horigome, Chihiro; Bustard, Denise E.; Marcomini, Isabella; Delgoshaie, Neda; Tsai-Pflugfelder, Monika; Cobb, Jennifer A.; Gasser, Susan M.
2016-01-01
High-resolution imaging shows that persistent DNA damage in budding yeast localizes in distinct perinuclear foci for repair. The signals that trigger DNA double-strand break (DSB) relocation or determine their destination are unknown. We show here that DSB relocation to the nuclear envelope depends on SUMOylation mediated by the E3 ligases Siz2 and Mms21. In G1, a polySUMOylation signal deposited coordinately by Mms21 and Siz2 recruits the SUMO targeted ubiquitin ligase Slx5/Slx8 to persistent breaks. Both Slx5 and Slx8 are necessary for damage relocation to nuclear pores. When targeted to an undamaged locus, however, Slx5 alone can mediate relocation in G1-phase cells, bypassing the requirement for polySUMOylation. In contrast, in S-phase cells, monoSUMOylation mediated by the Rtt107-stabilized SMC5/6–Mms21 E3 complex drives DSBs to the SUN domain protein Mps3 in a manner independent of Slx5. Slx5/Slx8 and binding to pores favor repair by ectopic break-induced replication and imprecise end-joining. PMID:27056668
Park, Soyoung; Li, Cen; Zhao, Hong; Darzynkiewicz, Zbigniew; Xu, Dazhong
2016-01-01
Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI). PMID:26760771
SMC1-Mediated Intra-S-Phase Arrest Facilitates Bocavirus DNA Replication
Luo, Yong; Deng, Xuefeng; Cheng, Fang; Li, Yi
2013-01-01
Activation of a host DNA damage response (DDR) is essential for DNA replication of minute virus of canines (MVC), a member of the genus Bocavirus of the Parvoviridae family; however, the mechanism by which DDR contributes to viral DNA replication is unknown. In the current study, we demonstrate that MVC infection triggers the intra-S-phase arrest to slow down host cellular DNA replication and to recruit cellular DNA replication factors for viral DNA replication. The intra-S-phase arrest is regulated by ATM (ataxia telangiectasia-mutated kinase) signaling in a p53-independent manner. Moreover, we demonstrate that SMC1 (structural maintenance of chromosomes 1) is the key regulator of the intra-S-phase arrest induced during infection. Either knockdown of SMC1 or complementation with a dominant negative SMC1 mutant blocks both the intra-S-phase arrest and viral DNA replication. Finally, we show that the intra-S-phase arrest induced during MVC infection was caused neither by damaged host cellular DNA nor by viral proteins but by replicating viral genomes physically associated with the DNA damage sensor, the Mre11-Rad50-Nbs1 (MRN) complex. In conclusion, the feedback loop between MVC DNA replication and the intra-S-phase arrest is mediated by ATM-SMC1 signaling and plays a critical role in MVC DNA replication. Thus, our findings unravel the mechanism underlying DDR signaling-facilitated MVC DNA replication and demonstrate a novel strategy of DNA virus-host interaction. PMID:23365434
ATM and KAT5 safeguard replicating chromatin against formaldehyde damage
Ortega-Atienza, Sara; Wong, Victor C.; DeLoughery, Zachary; Luczak, Michal W.; Zhitkovich, Anatoly
2016-01-01
Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA. PMID:26420831
Uridine homeostatic disorder leads to DNA damage and tumorigenesis.
Cao, Zhe; Ma, Jun; Chen, Xinchun; Zhou, Boping; Cai, Chuan; Huang, Dan; Zhang, Xuewen; Cao, Deliang
2016-03-28
Uridine is a natural nucleoside precursor of uridine monophosphate in organisms and thus is considered to be safe and is used in a wide range of clinical settings. The far-reaching effects of pharmacological uridine have long been neglected. Here, we report that the homeostatic disorder of uridine is carcinogenic. Targeted disruption (-/-) of murine uridine phosphorylase (UPase) disrupted the homeostasis of uridine and increased spontaneous tumorigenesis by more than 3-fold. Multiple tumors (e.g., lymphoma, hepatoma and lung adenoma) occurred simultaneously in some UPase deficient mice, but not in wild-type mice raised under the same conditions. In the tissue from UPase -/- mice, the 2'-deoxyuridine,5'-triphosphate (dUTP) levels and uracil DNA were increased and p53 was activated with an increased phospho-Ser18 p53 level. Exposing cell lines (e.g., MCF-7, RKO, HCT-8 and NCI-H460) to uridine (10 or 30 µM) led to uracil DNA damage and p53 activation, which in turn triggered the DNA damage response. In these cells, phospho-ATM, phospho-CHK2, and phospho-γH2AX were increased by uridine. These data suggest that uridine homeostatic disorder leads to uracil DNA damage and that pharmacological uridine may be carcinogenic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Predicted Role of NAD Utilization in the Control of Circadian Rhythms during DNA Damage Response
Luna, Augustin; McFadden, Geoffrey B.; Aladjem, Mirit I.; Kohn, Kurt W.
2015-01-01
The circadian clock is a set of regulatory steps that oscillate with a period of approximately 24 hours influencing many biological processes. These oscillations are robust to external stresses, and in the case of genotoxic stress (i.e. DNA damage), the circadian clock responds through phase shifting with primarily phase advancements. The effect of DNA damage on the circadian clock and the mechanism through which this effect operates remains to be thoroughly investigated. Here we build an in silico model to examine damage-induced circadian phase shifts by investigating a possible mechanism linking circadian rhythms to metabolism. The proposed model involves two DNA damage response proteins, SIRT1 and PARP1, that are each consumers of nicotinamide adenine dinucleotide (NAD), a metabolite involved in oxidation-reduction reactions and in ATP synthesis. This model builds on two key findings: 1) that SIRT1 (a protein deacetylase) is involved in both the positive (i.e. transcriptional activation) and negative (i.e. transcriptional repression) arms of the circadian regulation and 2) that PARP1 is a major consumer of NAD during the DNA damage response. In our simulations, we observe that increased PARP1 activity may be able to trigger SIRT1-induced circadian phase advancements by decreasing SIRT1 activity through competition for NAD supplies. We show how this competitive inhibition may operate through protein acetylation in conjunction with phosphorylation, consistent with reported observations. These findings suggest a possible mechanism through which multiple perturbations, each dominant during different points of the circadian cycle, may result in the phase advancement of the circadian clock seen during DNA damage. PMID:26020938
Hattori, Hiroyoshi; Janky, Rekin's; Nietfeld, Wilfried; Aerts, Stein; Madan Babu, M; Venkitaraman, Ashok R
2014-01-01
The human DNA damage response (DDR) triggers profound changes in gene expression, whose nature and regulation remain uncertain. Although certain micro-(mi)RNA species including miR34, miR-18, miR-16 and miR-143 have been implicated in the DDR, there is as yet no comprehensive description of genome-wide changes in the expression of miRNAs triggered by DNA breakage in human cells. We have used next-generation sequencing (NGS), combined with rigorous integrative computational analyses, to describe genome-wide changes in the expression of miRNAs during the human DDR. The changes affect 150 of 1523 miRNAs known in miRBase v18 from 4-24 h after the induction of DNA breakage, in cell-type dependent patterns. The regulatory regions of the most-highly regulated miRNA species are enriched in conserved binding sites for p53. Indeed, genome-wide changes in miRNA expression during the DDR are markedly altered in TP53-/- cells compared to otherwise isogenic controls. The expression levels of certain damage-induced, p53-regulated miRNAs in cancer samples correlate with patient survival. Our work reveals genome-wide and cell type-specific alterations in miRNA expression during the human DDR, which are regulated by the tumor suppressor protein p53. These findings provide a genomic resource to identify new molecules and mechanisms involved in the DDR, and to examine their role in tumor suppression and the clinical outcome of cancer patients.
Defective removal of ribonucleotides from DNA promotes systemic autoimmunity
Günther, Claudia; Kind, Barbara; Reijns, Martin A.M.; Berndt, Nicole; Martinez-Bueno, Manuel; Wolf, Christine; Tüngler, Victoria; Chara, Osvaldo; Lee, Young Ae; Hübner, Norbert; Bicknell, Louise; Blum, Sophia; Krug, Claudia; Schmidt, Franziska; Kretschmer, Stefanie; Koss, Sarah; Astell, Katy R.; Ramantani, Georgia; Bauerfeind, Anja; Morris, David L.; Cunninghame Graham, Deborah S.; Bubeck, Doryen; Leitch, Andrea; Ralston, Stuart H.; Blackburn, Elizabeth A.; Gahr, Manfred; Witte, Torsten; Vyse, Timothy J.; Melchers, Inga; Mangold, Elisabeth; Nöthen, Markus M.; Aringer, Martin; Kuhn, Annegret; Lüthke, Kirsten; Unger, Leonore; Bley, Annette; Lorenzi, Alice; Isaacs, John D.; Alexopoulou, Dimitra; Conrad, Karsten; Dahl, Andreas; Roers, Axel; Alarcon-Riquelme, Marta E.; Jackson, Andrew P.; Lee-Kirsch, Min Ae
2014-01-01
Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-Goutières syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2–associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage–associated pathways in the initiation of autoimmunity. PMID:25500883
Mimmler, Maximilian; Peter, Simon; Kraus, Alexander; Stroh, Svenja; Nikolova, Teodora; Seiwert, Nina; Hasselwander, Solveig; Neitzel, Carina; Haub, Jessica; Monien, Bernhard H.; Nicken, Petra; Steinberg, Pablo; Shay, Jerry W.; Kaina, Bernd; Fahrer, Jörg
2016-01-01
PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs. PMID:27599846
Decreased Circulating mtDNA Levels in Professional Male Volleyball Players.
Nasi, Milena; Cristani, Alessandro; Pinti, Marcello; Lamberti, Igor; Gibellini, Lara; De Biasi, Sara; Guazzaloca, Alessandro; Trenti, Tommaso; Cossarizza, Andrea
2016-01-01
Exercise exerts various effects on the immune system, and evidence is emerging on its anti-inflammatory effects; the mechanisms on the basis of these modifications are poorly understood. Mitochondrial DNA (mtDNA) released from damaged cells acts as a molecule containing the so-called damage-associated molecular patterns and can trigger sterile inflammation. Indeed, high plasma levels of mtDNA are associated to several inflammatory conditions and physiological aging and longevity. The authors evaluated plasma mtDNA in professional male volleyball players during seasonal training and the possible correlation between mtDNA levels and clinical parameters, body composition, and physical performance. Plasma mtDNA was quantified by real-time PCR every 2 mo in 12 professional volleyball players (PVPs) during 2 consecutive seasons. As comparison, 20 healthy nonathlete male volunteers (NAs) were analyzed. The authors found lower levels of mtDNA in plasma of PVPs than in NAs. However, PVPs showed a decrease of circulating mtDNA only in the first season, while no appreciable variations were observed during the second season. No correlation was observed among mtDNA, hematochemical, and anthropometric parameters. Regular physical activity appeared associated with lower levels of circulating mtDNA, further confirming the protective, anti-inflammatory effect of exercise.
Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1.
Boddy, M N; Lopez-Girona, A; Shanahan, P; Interthal, H; Heyer, W D; Russell, P
2000-12-01
Cds1, a serine/threonine kinase, enforces the S-M checkpoint in the fission yeast Schizosaccharomyces pombe. Cds1 is required for survival of replicational stress caused by agents that stall replication forks, but how Cds1 performs these functions is largely unknown. Here we report that the forkhead-associated-1 (FHA1) protein-docking domain of Cds1 interacts with Mus81, an evolutionarily conserved damage tolerance protein. Mus81 has an endonuclease homology domain found in the XPF nucleotide excision repair protein. Inactivation of mus81 reveals a unique spectrum of phenotypes. Mus81 enables survival of deoxynucleotide triphosphate starvation, UV radiation, and DNA polymerase impairment. Mus81 is essential in the absence of Bloom's syndrome Rqh1 helicase and is required for productive meiosis. Genetic epistasis studies suggest that Mus81 works with recombination enzymes to properly replicate damaged DNA. Inactivation of Mus81 triggers a checkpoint-dependent delay of mitosis. We propose that Mus81 is involved in the recruitment of Cds1 to aberrant DNA structures where Cds1 modulates the activity of damage tolerance enzymes.
Saccharomyces cerevisiae as a Model to Study Replicative Senescence Triggered by Telomere Shortening
Teixeira, M. Teresa
2013-01-01
In many somatic human tissues, telomeres shorten progressively because of the DNA-end replication problem. Consequently, cells cease to proliferate and are maintained in a metabolically viable state called replicative senescence. These cells are characterized by an activation of DNA damage checkpoints stemming from eroded telomeres, which are bypassed in many cancer cells. Hence, replicative senescence has been considered one of the most potent tumor suppressor pathways. However, the mechanism through which short telomeres trigger this cellular response is far from being understood. When telomerase is removed experimentally in Saccharomyces cerevisiae, telomere shortening also results in a gradual arrest of population growth, suggesting that replicative senescence also occurs in this unicellular eukaryote. In this review, we present the key steps that have contributed to the understanding of the mechanisms underlying the establishment of replicative senescence in budding yeast. As in mammals, signals stemming from short telomeres activate the DNA damage checkpoints, suggesting that the early cellular response to the shortest telomere(s) is conserved in evolution. Yet closer analysis reveals a complex picture in which the apparent single checkpoint response may result from a variety of telomeric alterations expressed in the absence of telomerase. Accordingly, the DNA replication of eroding telomeres appears as a critical challenge for senescing budding yeast cells and the easy manipulation of S. cerevisiae is providing insights into the way short telomeres are integrated into their chromatin and nuclear environments. Finally, the loss of telomerase in budding yeast triggers a more general metabolic alteration that remains largely unexplored. Thus, telomerase-deficient S. cerevisiae cells may have more common points than anticipated with somatic cells, in which telomerase depletion is naturally programed, thus potentially inspiring investigations in mammalian cells. PMID:23638436
Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie
2017-05-11
Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mφ) direct trauma-induced inflammation, and Mφ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mφ and the subsequent regulation of Mφ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)-TLR4-MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mφ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mφ. However, autophagy activation also suppressed Mφ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mφ homeostasis in response to trauma.
Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie
2017-01-01
Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mϕ) direct trauma-induced inflammation, and Mϕ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mϕ and the subsequent regulation of Mϕ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)–TLR4–MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mϕ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mϕ. However, autophagy activation also suppressed Mϕ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mϕ homeostasis in response to trauma. PMID:28492546
Telomere shortening triggers a feedback loop to enhance end protection.
Yang, Chia-Wei; Tseng, Shun-Fu; Yu, Chia-Jung; Chung, Chia-Yu; Chang, Cheng-Yen; Pobiega, Sabrina; Teng, Shu-Chun
2017-08-21
Telomere homeostasis is controlled by both telomerase machinery and end protection. Telomere shortening induces DNA damage sensing kinases ATM/ATR for telomerase recruitment. Yet, whether telomere shortening also governs end protection is poorly understood. Here we discover that yeast ATM/ATR controls end protection. Rap1 is phosphorylated by Tel1 and Mec1 kinases at serine 731, and this regulation is stimulated by DNA damage and telomere shortening. Compromised Rap1 phosphorylation hampers the interaction between Rap1 and its interacting partner Rif1, which thereby disturbs the end protection. As expected, reduction of Rap1-Rif1 association impairs telomere length regulation and increases telomere-telomere recombination. These results indicate that ATM/ATR DNA damage checkpoint signal contributes to telomere protection by strengthening the Rap1-Rif1 interaction at short telomeres, and the checkpoint signal oversees both telomerase recruitment and end capping pathways to maintain telomere homeostasis. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Role of secondary low energy electrons in radiobiology and chemoradiation therapy of cancer
NASA Astrophysics Data System (ADS)
Sanche, Léon
2009-05-01
With the chemotherapeutic agent cisplatin bound to DNA, damage to the molecule by electrons of low and high energies increases by factors varying from 1.3 to 4.4. The enhancement in bond dissociation is triggered by modifications of the interaction of low energy electrons with DNA. From our understanding of the latter, the present Letter attempts to explain the basic radiation-damage mechanism responsible for the efficiency of the concomitant chemoradiation treatment of cancer. Such a basic comprehension of the direct effects of radiation may have implications in the design of new chemotherapeutic and radiosensitizing drugs, as well as in the development of more efficient protocols in chemoradiation therapy.
Combination of Pim kinase inhibitor, SGI-1776, with bendamustine in B-cell lymphoma
Yang, Qingshan; Chen, Lisa S; Neelapu, Sattva S.; Gandhi, Varsha
2013-01-01
SGI-1776 is a small molecule Pim kinase inhibitor that primarily targets c-Myc-driven transcription and cap-dependent translation in mantle cell lymphoma (MCL) cells. Bendamustine is an alkylating chemotherapeutic agent approved for use in B-cell lymphoma that is known to induce DNA damage and to initiate response to repair. We hypothesized that while each drug leads to the effects as stated above, combination of these drugs will enhance SGI-1776-induced inhibition of global transcription and translation processes, while promoting bendamustine-triggered decrease of DNA synthesis and DNA damage response in B-cell lymphoma. Both SGI-1776 and bendamustine as single agents effectively induced apoptosis and when used in combination, additive effect in cell killing was observed in MCL cell lines, JeKo-1 and Mino, as well as MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. As expected, SGI-1776 was effective in inducing decrease of global RNA and protein synthesis, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. When used in combination, effects were intensified in DNA, RNA and protein syntheses compared to single agent treatments. Together, these data provided foundation and suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma. PMID:24290221
Matsunuma, Ryoichi; Ohhata, Tatsuya; Kitagawa, Kyoko; Sakai, Satoshi; Uchida, Chiharu; Shiotani, Bunsyo; Matsumoto, Masaki; Nakayama, Keiichi I.; Ogura, Hiroyuki; Shiiya, Norihiko; Kitagawa, Masatoshi
2015-01-01
Histone acetyltransferase binding to ORC-1 (HBO1) is a critically important histone acetyltransferase for forming the prereplicative complex (pre-RC) at the replication origin. Pre-RC formation is completed by loading of the MCM2-7 heterohexameric complex, which functions as a helicase in DNA replication. HBO1 recruited to the replication origin by CDT1 acetylates histone H4 to relax the chromatin conformation and facilitates loading of the MCM complex onto replication origins. However, the acetylation status and mechanism of regulation of histone H3 at replication origins remain elusive. HBO1 positively regulates cell proliferation under normal cell growth conditions. Whether HBO1 regulates proliferation in response to DNA damage is poorly understood. In this study, we demonstrated that HBO1 was degraded after DNA damage to suppress cell proliferation. Ser50 and Ser53 of HBO1 were phosphorylated in an ATM/ATR DNA damage sensor-dependent manner after UV treatment. ATM/ATR-dependently phosphorylated HBO1 preferentially interacted with DDB2 and was ubiquitylated by CRL4DDB2. Replacement of endogenous HBO1 in Ser50/53Ala mutants maintained acetylation of histone H3K14 and impaired cell cycle regulation in response to UV irradiation. Our findings demonstrate that HBO1 is one of the targets in the DNA damage checkpoint. These results show that ubiquitin-dependent control of the HBO1 protein contributes to cell survival during UV irradiation. PMID:26572825
Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi
2017-01-01
Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
DNA damage-induced nuclear translocation of Apaf-1 is mediated by nucleoporin Nup107
Jagot-Lacoussiere, Léonard; Faye, Audrey; Bruzzoni-Giovanelli, Heriberto; Villoutreix, Bruno O; Rain, Jean-Christophe; Poyet, Jean-Luc
2015-01-01
Beside its central role in the mitochondria-dependent cell death pathway, the apoptotic protease activating factor 1 (Apaf-1) is involved in the DNA damage response through cell-cycle arrest induced by genotoxic stress. This non-apoptotic function requires a nuclear translocation of Apaf-1 during the G1-to-S transition. However, the mechanisms that trigger the nuclear accumulation of Apaf-1 upon DNA damage remain to be investigated. Here we show that the main 4 isoforms of Apaf-1 can undergo nuclear translocation and restore Apaf-1 deficient MEFs cell cycle arrest in the S phase following genotoxic stress through activation of Chk-1. Interestingly, DNA damage-dependent nuclear accumulation of Apaf-1 occurs independently of p53 and the retinoblastoma (pRb) pathway. We demonstrated that Apaf-1 associates with the nucleoporin Nup107 and this association is necessary for Apaf-1 nuclear import. The CED-4 domain of Apaf-1 directly binds to the central domain of Nup107 in an ATR-regulated, phosphorylation-dependent manner. Interestingly, expression of the Apaf-1-interacting domain of Nup107 interfered with Apaf-1 nuclear translocation upon genotoxic stress, resulting in a marked reduction of Chk-1 activation and cell cycle arrest. Thus, our results confirm the crucial role of Apaf-1 nuclear relocalization in mediating cell-cycle arrest induced by genotoxic stress and implicate Nup107 as a critical regulator of the DNA damage-induced intra-S phase checkpoint response. PMID:25695197
A steroid-controlled global switch in sensitivity to apoptosis during Drosophila development.
Kang, Yunsik; Bashirullah, Arash
2014-02-01
Precise control over activation of the apoptotic machinery is critical for development, tissue homeostasis and disease. In Drosophila, the decision to trigger apoptosis--whether in response to developmental cues or to DNA damage--converges on transcription of inhibitor of apoptosis protein (IAP) antagonists reaper, hid and grim. Here we describe a parallel process that regulates the sensitivity to, rather than the execution of, apoptosis. This process establishes developmental windows that are permissive or restrictive for triggering apoptosis, where the status of cells determines their capacity to die. We characterize one switch in the sensitivity to apoptotic triggers, from restrictive to permissive, that occurs during third-instar larval (L3) development. Early L3 animals are highly resistant to induction of apoptosis by expression of IAP-antagonists, DNA-damaging agents and even knockdown of the IAP diap1. This resistance to apoptosis, however, is lost in wandering L3 animals after acquiring a heightened sensitivity to apoptotic triggers. This switch in sensitivity to death activators is mediated by a change in mechanisms available for activating endogenous caspases, from an apoptosome-independent to an apoptosome-dependent pathway. This switch in apoptotic pathways is regulated in a cell-autonomous manner by the steroid hormone ecdysone, through changes in expression of critical pro-, but not anti-, apoptotic genes. This steroid-controlled switch defines a novel, physiologically-regulated, mechanism for controlling sensitivity to apoptosis and provides new insights into the control of apoptosis during development. © 2013 Published by Elsevier Inc.
Long, J; Fang, W Y; Chang, L; Gao, W H; Shen, Y; Jia, M Y; Zhang, Y X; Wang, Y; Dou, H B; Zhang, W J; Zhu, J; Liang, A B; Li, J M; Hu, Jiong
2017-12-01
Resistance to cytotoxic chemotherapy drugs remains as the major cause of treatment failure in acute myeloid leukemia. Histone deacetylases (HDAC) are important regulators to maintain chromatin structure and control DNA damage; nevertheless, how each HDAC regulates genome stability remains unclear, especially under genome stress conditions. Here, we identified a mechanism by which HDAC3 regulates DNA damage repair and mediates resistance to chemotherapy drugs. In addition to inducing DNA damage, chemotherapy drugs trigger upregulation of HDAC3 expression in leukemia cells. Using genetic and pharmacological approaches, we show that HDAC3 contributes to chemotherapy resistance by regulating the activation of AKT, a well-documented factor in drug resistance development. HDAC3 binds to AKT and deacetylates it at the site Lys20, thereby promoting the phosphorylation of AKT. Chemotherapy drug exposure enhances the interaction between HDAC3 and AKT, resulting in decrease in AKT acetylation and increase in AKT phosphorylation. Whereas HDAC3 depletion or inhibition abrogates these responses and meanwhile sensitizes leukemia cells to chemotoxicity-induced apoptosis. Importantly, in vivo HDAC3 suppression reduces leukemia progression and sensitizes MLL-AF9 + leukemia to chemotherapy. Our findings suggest that combination therapy with HDAC3 inhibitor and genotoxic agents may constitute a successful strategy for overcoming chemotherapy resistance.
Quryshi, Nabeel; Norwood Toro, Laura E.; Ait-Aissa, Karima; Kong, Amanda; Beyer, Andreas M.
2018-01-01
Although chemotherapeutics can be highly effective at targeting malignancies, their ability to trigger cardiovascular morbidity is clinically significant. Chemotherapy can adversely affect cardiovascular physiology, resulting in the development of cardiomyopathy, heart failure and microvascular defects. Specifically, anthracyclines are known to cause an excessive buildup of free radical species and mitochondrial DNA damage (mtDNA) that can lead to oxidative stress-induced cardiovascular apoptosis. Therefore, oncologists and cardiologists maintain a network of communication when dealing with patients during treatment in order to treat and prevent chemotherapy-induced cardiovascular damage; however, there is a need to discover more accurate biomarkers and therapeutics to combat and predict the onset of cardiovascular side effects. Telomerase, originally discovered to promote cellular proliferation, has recently emerged as a potential mechanism to counteract mitochondrial defects and restore healthy mitochondrial vascular phenotypes. This review details mechanisms currently used to assess cardiovascular damage, such as C-reactive protein (CRP) and troponin levels, while also unearthing recently researched biomarkers, including circulating mtDNA, telomere length and telomerase activity. Further, we explore a potential role of telomerase in the mitigation of mitochondrial reactive oxygen species and maintenance of mtDNA integrity. Telomerase activity presents a promising indicator for the early detection and treatment of chemotherapy-derived cardiac damage. PMID:29534446
Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated.
Tognetti, Silvia; Riera, Alberto; Speck, Christian
2015-03-01
A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.
The ATR Signaling Pathway Is Disabled during Infection with the Parvovirus Minute Virus of Mice
Adeyemi, Richard O.
2014-01-01
ABSTRACT The ATR kinase has essential functions in maintenance of genome integrity in response to replication stress. ATR is recruited to RPA-coated single-stranded DNA at DNA damage sites via its interacting partner, ATRIP, which binds to the large subunit of RPA. ATR activation typically leads to activation of the Chk1 kinase among other substrates. We show here that, together with a number of other DNA repair proteins, both ATR and its associated protein, ATRIP, were recruited to viral nuclear replication compartments (autonomous parvovirus-associated replication [APAR] bodies) during replication of the single-stranded parvovirus minute virus of mice (MVM). Chk1, however, was not activated during MVM infection even though viral genomes bearing bound RPA, normally a potent trigger of ATR activation, accumulate in APAR bodies. Failure to activate Chk1 in response to MVM infection was likely due to our observation that Rad9 failed to associate with chromatin at MVM APAR bodies. Additionally, early in infection, prior to the onset of the virus-induced DNA damage response (DDR), stalling of the replication of MVM genomes with hydroxyurea (HU) resulted in Chk1 phosphorylation in a virus dose-dependent manner. However, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to HU and various other drug treatments. Finally, ATR phosphorylation became undetectable upon MVM infection, and although virus infection induced RPA32 phosphorylation on serine 33, an ATR-associated phosphorylation site, this phosphorylation event could not be prevented by ATR depletion or inhibition. Together our results suggest that MVM infection disables the ATR signaling pathway. IMPORTANCE Upon infection, the parvovirus MVM activates a cellular DNA damage response that governs virus-induced cell cycle arrest and is required for efficient virus replication. ATM and ATR are major cellular kinases that coordinate the DNA damage response to diverse DNA damage stimuli. Although a significant amount has been discovered about ATM activation during parvovirus infection, involvement of the ATR pathway has been less studied. During MVM infection, Chk1, a major downstream target of ATR, is not detectably phosphorylated even though viral genomes bearing the bound cellular single-strand binding protein RPA, normally a potent trigger of ATR activation, accumulate in viral replication centers. ATR phosphorylation also became undetectable. In addition, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to hydroxyurea and various other drug treatments. Our results suggest that MVM infection disables this important cellular signaling pathway. PMID:24965470
The ATR signaling pathway is disabled during infection with the parvovirus minute virus of mice.
Adeyemi, Richard O; Pintel, David J
2014-09-01
The ATR kinase has essential functions in maintenance of genome integrity in response to replication stress. ATR is recruited to RPA-coated single-stranded DNA at DNA damage sites via its interacting partner, ATRIP, which binds to the large subunit of RPA. ATR activation typically leads to activation of the Chk1 kinase among other substrates. We show here that, together with a number of other DNA repair proteins, both ATR and its associated protein, ATRIP, were recruited to viral nuclear replication compartments (autonomous parvovirus-associated replication [APAR] bodies) during replication of the single-stranded parvovirus minute virus of mice (MVM). Chk1, however, was not activated during MVM infection even though viral genomes bearing bound RPA, normally a potent trigger of ATR activation, accumulate in APAR bodies. Failure to activate Chk1 in response to MVM infection was likely due to our observation that Rad9 failed to associate with chromatin at MVM APAR bodies. Additionally, early in infection, prior to the onset of the virus-induced DNA damage response (DDR), stalling of the replication of MVM genomes with hydroxyurea (HU) resulted in Chk1 phosphorylation in a virus dose-dependent manner. However, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to HU and various other drug treatments. Finally, ATR phosphorylation became undetectable upon MVM infection, and although virus infection induced RPA32 phosphorylation on serine 33, an ATR-associated phosphorylation site, this phosphorylation event could not be prevented by ATR depletion or inhibition. Together our results suggest that MVM infection disables the ATR signaling pathway. Upon infection, the parvovirus MVM activates a cellular DNA damage response that governs virus-induced cell cycle arrest and is required for efficient virus replication. ATM and ATR are major cellular kinases that coordinate the DNA damage response to diverse DNA damage stimuli. Although a significant amount has been discovered about ATM activation during parvovirus infection, involvement of the ATR pathway has been less studied. During MVM infection, Chk1, a major downstream target of ATR, is not detectably phosphorylated even though viral genomes bearing the bound cellular single-strand binding protein RPA, normally a potent trigger of ATR activation, accumulate in viral replication centers. ATR phosphorylation also became undetectable. In addition, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to hydroxyurea and various other drug treatments. Our results suggest that MVM infection disables this important cellular signaling pathway. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
FACT is a sensor of DNA torsional stress in eukaryotic cells
Safina, Alfiya; Cheney, Peter; Pal, Mahadeb; Brodsky, Leonid; Ivanov, Alexander; Kirsanov, Kirill; Lesovaya, Ekaterina; Naberezhnov, Denis; Nesher, Elimelech; Koman, Igor; Wang, Dan; Wang, Jianming; Yakubovskaya, Marianna; Winkler, Duane
2017-01-01
Abstract Transitions of B-DNA to alternative DNA structures (ADS) can be triggered by negative torsional strain, which occurs during replication and transcription, and may lead to genomic instability. However, how ADS are recognized in cells is unclear. We found that the binding of candidate anticancer drug, curaxin, to cellular DNA results in uncoiling of nucleosomal DNA, accumulation of negative supercoiling and conversion of multiple regions of genomic DNA into left-handed Z-form. Histone chaperone FACT binds rapidly to the same regions via the SSRP1 subunit in curaxin-treated cells. In vitro binding of purified SSRP1 or its isolated CID domain to a methylated DNA fragment containing alternating purine/pyrimidines, which is prone to Z-DNA transition, is much stronger than to other types of DNA. We propose that FACT can recognize and bind Z-DNA or DNA in transition from a B to Z form. Binding of FACT to these genomic regions triggers a p53 response. Furthermore, FACT has been shown to bind to other types of ADS through a different structural domain, which also leads to p53 activation. Thus, we propose that FACT acts as a sensor of ADS formation in cells. Recognition of ADS by FACT followed by a p53 response may explain the role of FACT in DNA damage prevention. PMID:28082391
Yang, Lu; Sun, Luxi; Teng, Yaqun; Chen, Hao; Gao, Ying; Levine, Arthur S.; Nakajima, Satoshi
2017-01-01
Abstract Oxidative DNA damage triggers telomere erosion and cellular senescence. However, how repair is initiated at telomeres is largely unknown. Here, we found unlike PARP1-mediated Poly-ADP-Ribosylation (PARylation) at genomic damage sites, PARylation at telomeres is mainly dependent on tankyrase1 (TNKS1). TNKS1 is recruited to damaged telomeres via its interaction with TRF1, which subsequently facilitates the PARylation of TRF1 after damage. TNKS inhibition abolishes the recruitment of the repair proteins XRCC1 and polymerase β at damaged telomeres, while the PARP1/2 inhibitor only has such an effect at non-telomeric damage sites. The ANK domain of TNKS1 is essential for the telomeric damage response and TRF1 interaction. Mutation of the tankyrase-binding motif (TBM) on TRF1 (13R/18G to AA) disrupts its interaction with TNKS1 concomitant recruitment of TNKS1 and repair proteins after damage. Either TNKS1 inhibition or TBM mutated TRF1 expression markedly sensitizes cells to telomere oxidative damage as well as XRCC1 inhibition. Together, our data reveal a novel role of TNKS1 in facilitating SSBR at damaged telomeres through PARylation of TRF1, thereby protecting genome stability and cell viability. PMID:28160604
Molecular and sensory mechanisms to mitigate sunlight-induced DNA damage in treefrog tadpoles.
Schuch, André P; Lipinski, Victor M; Santos, Mauricio B; Santos, Caroline P; Jardim, Sinara S; Cechin, Sonia Z; Loreto, Elgion L S
2015-10-01
The increased incidence of solar ultraviolet B (UVB) radiation has been proposed as an environmental stressor, which may help to explain the enigmatic decline of amphibian populations worldwide. Despite growing knowledge regarding the UV-induced biological effects in several amphibian models, little is known about the efficacy of DNA repair pathways. In addition, little attention has been given to the interplay between these molecular mechanisms with other physiological strategies that avoid the damage induced by sunlight. Here, DNA lesions induced by environmental doses of solar UVB and UVA radiation were detected in genomic DNA samples of treefrog tadpoles (Hypsiboas pulchellus) and their DNA repair activity was evaluated. These data were complemented by monitoring the induction of apoptosis in blood cells and tadpole survival. Furthermore, the tadpoles' ability to perceive and escape from UV wavelengths was evaluated as an additional strategy of photoprotection. The results show that tadpoles are very sensitive to UVB light, which could be explained by the slow DNA repair rates for both cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6,4) pyrimidone photoproducts (6,4PPs). However, they were resistant to UVA, probably as a result of the activation of photolyases during UVA irradiation. Surprisingly, a sensory mechanism that triggers their escape from UVB and UVA light avoids the generation of DNA damage and helps to maintain the genomic integrity. This work demonstrates the genotoxic impact of both UVB and UVA radiation on tadpoles and emphasizes the importance of the interplay between molecular and sensory mechanisms to minimize the damage caused by sunlight. © 2015. Published by The Company of Biologists Ltd.
Watson-Crick Base Pair Radical Cation as a Model for Oxidative Damage in DNA.
Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maitre, Philippe; Radom, Leo; O'Hair, Richard A J
2017-07-06
The deleterious cellular effects of ionizing radiation are well-known, but the mechanisms causing DNA damage are poorly understood. The accepted molecular events involve initial oxidation and deprotonation at guanine sites, triggering hydrogen atom abstraction reactions from the sugar moieties, causing DNA strand breaks. Probing the chemistry of the initially formed radical cation has been challenging. Here, we generate, spectroscopically characterize, and examine the reactivity of the Watson-Crick nucleobase pair radical cation in the gas phase. We observe rich chemistry, including proton transfer between the bases and propagation of the radical site in deoxyguanosine from the base to the sugar, thus rupturing the sugar. This first example of a gas-phase model system providing molecular-level details on the chemistry of an ionized DNA base pair paves the way toward a more complete understanding of molecular processes induced by radiation. It also highlights the role of radical propagation in chemistry, biology, and nanotechnology.
Forty years of research on xeroderma pigmentosum at the US National Institutes of Health.
Kraemer, Kenneth H; DiGiovanna, John J
2015-01-01
In 1968, Dr. James Cleaver reported defective DNA repair in cultured cells from patients with xeroderma pigmentosum. This link between clinical disease and molecular pathophysiology has sparked interest in understanding not only the clinical characteristics of sun sensitivity, damage and cancer that occurred in XP patients but also the mechanisms underlying the damage and repair. While affected patients are rare, their exaggerated UV damage provides a window into the workings of DNA repair. These studies have clarified the importance of a functioning DNA repair system to the maintenance of skin and neurologic health in the general population. Understanding the role of damage in causing cancer, neurologic degeneration, hearing loss and internal cancers provides an opportunity for prevention and treatment. Characterizing complementation groups pointed to the importance of different underlying genes. Studying differences in cancer age of onset and underlying molecular signatures in cancers occurring either in XP patients or the general population has led to insights into differences in carcinogenic mechanisms. The accelerated development of cancers in XP has been used as a model to discover new cancer chemopreventive agents. An astute insight can be a "tipping point" triggering decades of productive inquiry. © 2015 The American Society of Photobiology.
Forty Years of Research on Xeroderma Pigmentosum at the US National Institutes of Health†
Kraemer, Kenneth H.; DiGiovanna, John J.
2014-01-01
In 1968, Dr. James Cleaver reported defective DNA repair in cultured cells from patients with xeroderma pigmentosum. This link between clinical disease and molecular pathophysiology has sparked interest in understanding not only the clinical characteristics of sun sensitivity, damage and cancer that occurred in XP patients but also the mechanisms underlying the damage and repair. While affected patients are rare, their exaggerated UV damage provides a window into the workings of DNA repair. These studies have clarified the importance of a functioning DNA repair system to the maintenance of skin and neurologic health in the general population. Understanding the role of damage in causing cancer, neurologic degeneration, hearing loss and internal cancers provides an opportunity for prevention and treatment. Characterizing complementation groups pointed to the importance of different underlying genes. Studying differences in cancer age of onset and underlying molecular signatures in cancers occurring either in XP patients or the general population has led to insights into differences in carcinogenic mechanisms. The accelerated development of cancers in XP has been used as a model to discover new cancer chemopreventive agents. An astute insight can be a “tipping point” triggering decades of productive inquiry. PMID:25220021
Scherzad, Agmal; Meyer, Till; Kleinsasser, Norbert
2017-01-01
Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival. PMID:29240707
In silico nanodosimetry: new insights into nontargeted biological responses to radiation.
Kuncic, Zdenka; Byrne, Hilary L; McNamara, Aimee L; Guatelli, Susanna; Domanova, Westa; Incerti, Sébastien
2012-01-01
The long-held view that radiation-induced biological damage must be initiated in the cell nucleus, either on or near DNA itself, is being confronted by mounting evidence to suggest otherwise. While the efficacy of cell death may be determined by radiation damage to nuclear DNA, a plethora of less deterministic biological responses has been observed when DNA is not targeted. These so-called nontargeted responses cannot be understood in the framework of DNA-centric radiobiological models; what is needed are new physically motivated models that address the damage-sensing signalling pathways triggered by the production of reactive free radicals. To this end, we have conducted a series of in silico experiments aimed at elucidating the underlying physical processes responsible for nontargeted biological responses to radiation. Our simulation studies implement new results on very low-energy electromagnetic interactions in liquid water (applicable down to nanoscales) and we also consider a realistic simulation of extranuclear microbeam irradiation of a cell. Our results support the idea that organelles with important functional roles, such as mitochondria and lysosomes, as well as membranes, are viable targets for ionizations and excitations, and their chemical composition and density are critical to determining the free radical yield and ensuing biological responses.
Park, Ilwoo; Mukherjee, Joydeep; Ito, Motokazu; Chaumeil, Myriam M.; Jalbert, Llewellyn E.; Gaensler, Karin; Ronen, Sabrina M.; Nelson, Sarah J.; Pieper, Russell O.
2014-01-01
Recent findings show that exposure to temozolomide (TMZ), a DNA damaging drug used to treat glioblastoma, can suppress the conversion of pyruvate to lactate. To understand the mechanistic basis for this effect and its potential utility as a TMZ response biomarker, we compared the response of isogenic glioblastoma cell populations differing only in expression of the DNA repair protein MGMT, a TMZ-sensitivity determinant, after exposure to TMZ in vitro and in vivo. Hyperpolarized [1-(13)C]-pyruvate-based magnetic resonance imaging was used to monitor temporal effects on pyruvate metabolism in parallel with DNA damage responses and tumor cell growth. TMZ exposure decreased conversion of pyruvate to lactate only in MGMT-deficient cells. This effect coincided temporally with TMZ-induced increases in levels of the DNA damage response protein pChk1. Changes in pyruvate to lactate conversion triggered by TMZ preceded tumor growth suppression and were not associated with changes in levels of NADH or lactate dehydrogenase activity in tumors. Instead, they were associated with a TMZ-induced decrease in the expression and activity of pyruvate kinase PKM2, a glycolytic enzyme that indirectly controls pyruvate metabolism. PKM2 silencing decreased pyruvate kinase activity, intracellular lactate levels, and conversion of pyruvate to lactate in the same manner as TMZ, and Chk1 silencing blocked the TMZ-induced decrease in PKM2 expression. Overall, our findings showed how TMZ-induced DNA damage is linked through PKM2 to changes in pyruvate metabolism, and how these changes can be exploited by magnetic resonance imaging methods as an early sensor of TMZ therapeutic response. PMID:25320009
Da Silveira, Rita De Cássia Viveiros; Da Silva, Marcelo Santos; Nunes, Vinícius Santana; Perez, Arina Marina; Cano, Maria Isabel Nogueira
2013-04-01
We have previously shown that the subunit 1 of Leishmania amazonensis RPA (LaRPA-1) alone binds the G-rich telomeric strand and is structurally different from other RPA-1. It is analogous to telomere end-binding proteins described in model eukaryotes whose homologues were not identified in the protozoan´s genome. Here we show that LaRPA-1 is involved with damage response and telomere protection although it lacks the RPA1N domain involved with the binding with multiple checkpoint proteins. We induced DNA double-strand breaks (DSBs) in Leishmania using phleomycin. Damage was confirmed by TUNEL-positive nuclei and triggered a G1/S cell cycle arrest that was accompanied by nuclear accumulation of LaRPA-1 and RAD51 in the S phase of hydroxyurea-synchronized parasites. DSBs also increased the levels of RAD51 in non-synchronized parasites and of LaRPA-1 and RAD51 in the S phase of synchronized cells. More LaRPA-1 appeared immunoprecipitating telomeres in vivo and associated in a complex containing RAD51, although this interaction needs more investigation. RAD51 apparently co-localized with few telomeric clusters but it did not immunoprecipitate telomeric DNA. These findings suggest that LaRPA-1 and RAD51 work together in response to DNA DSBs and at telomeres, upon damage, LaRPA-1 works probably to prevent loss of single-stranded DNA and to assume a capping function.
Kuriakose, Teneema; Man, Si Ming; Malireddi, R.K. Subbarao; Karki, Rajendra; Kesavardhana, Sannula; Place, David E.; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi
2016-01-01
The interferon-inducible protein Z-DNA binding protein 1 (ZBP1, also known as DNA-dependent activator of IFN-regulatory factors (DAI) and DLM-1) was identified as a dsDNA sensor, which instigates innate immune responses. However, this classification has been disputed and whether ZBP1 functions as a pathogen sensor during an infection has remained unknown. Herein, we demonstrated ZBP1-mediated sensing of the influenza A virus (IAV) proteins NP and PB1, triggering cell death and inflammatory responses via the RIPK1–RIPK3–Caspase-8 axis. ZBP1 regulates NLRP3 inflammasome activation as well as induction of apoptosis, necroptosis and pyroptosis in IAV-infected cells. Importantly, ZBP1 deficiency protected mice from mortality during IAV infection owing to reduced inflammatory responses and epithelial damage. Overall, these findings indicate that ZBP1 is an innate immune sensor of IAV and highlight its importance in the pathogenesis of IAV infection. PMID:27917412
Guthrie, O'neil W
2017-10-01
In response to DNA damage from ultraviolet (UV) radiation, bacteria deploy the SOS response in order to limit cell death. This bacterial SOS response is characterized by an increase in the recA gene that transactivates expression of multiple DNA repair genes. The current series of experiments demonstrate that a mammalian organ system (the cochlea) that is not evolutionarily conditioned to UV radiation can elicit SOS responses that are reminiscent of that of bacteria. This mammalian SOS response is characterized by an increase in the p53 gene with activation of multiple DNA repair genes that harbor p53 response elements in their promoters. Furthermore, the experimental results provide support for the notion of a convergent trigger paradox, where independent SOS triggers facilitate disparate physiologic sequelae (loss vs. recovery of function). Therefore, it is proposed that the mammalian SOS response is multifunctional and manipulation of this endogenous response could be exploited in future biomedical interventions. Copyright © 2017 Elsevier Inc. All rights reserved.
Min, Jaewon; Wright, Woodring E.
2017-01-01
ABSTRACT Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae. Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer. PMID:28760773
De Souza, Colin P. C.; Ye, Xiang S.; Osmani, Stephen A.
1999-01-01
The G2 DNA damage and slowing of S-phase checkpoints over mitosis function through tyrosine phosphorylation of NIMXcdc2 in Aspergillus nidulans. We demonstrate that breaking these checkpoints leads to a defective premature mitosis followed by dramatic rereplication of genomic DNA. Two additional checkpoint functions, uvsB and uvsD, also cause the rereplication phenotype after their mutation allows premature mitosis in the presence of low concentrations of hydroxyurea. uvsB is shown to encode a rad3/ATR homologue, whereas uvsD displays homology to rad26, which has only previously been identified in Schizosaccharomyces pombe. uvsBrad3 and uvsDrad26 have G2 checkpoint functions over mitosis and another function essential for surviving DNA damage. The rereplication phenotype is accompanied by lack of NIMEcyclinB, but ectopic expression of active nondegradable NIMEcyclinB does not arrest DNA rereplication. DNA rereplication can also be induced in cells that enter mitosis prematurely because of lack of tyrosine phosphorylation of NIMXcdc2 and impaired anaphase-promoting complex function. The data demonstrate that lack of checkpoint control over mitosis can secondarily cause defects in the checkpoint system that prevents DNA rereplication in the absence of mitosis. This defines a new mechanism by which endoreplication of DNA can be triggered and maintained in eukaryotic cells. PMID:10564263
Natsume, Toyoaki; Nishimura, Kohei; Minocherhomji, Sheroy; Bhowmick, Rahul; Hickson, Ian D.; Kanemaki, Masato T.
2017-01-01
DNA replication fork progression can be disrupted at difficult to replicate loci in the human genome, which has the potential to challenge chromosome integrity. This replication fork disruption can lead to the dissociation of the replisome and the formation of DNA damage. To model the events stemming from replisome dissociation during DNA replication perturbation, we used a degron-based system for inducible proteolysis of a subunit of the replicative helicase. We show that MCM2-depleted cells activate a DNA damage response pathway and generate replication-associated DNA double-strand breaks (DSBs). Remarkably, these cells maintain some DNA synthesis in the absence of MCM2, and this requires the MCM8–9 complex, a paralog of the MCM2–7 replicative helicase. We show that MCM8–9 functions in a homologous recombination-based pathway downstream from RAD51, which is promoted by DSB induction. This RAD51/MCM8–9 axis is distinct from the recently described RAD52-dependent DNA synthesis pathway that operates in early mitosis at common fragile sites. We propose that stalled replication forks can be restarted in S phase via homologous recombination using MCM8–9 as an alternative replicative helicase. PMID:28487407
Erental, Ariel; Sharon, Idith; Engelberg-Kulka, Hanna
2012-01-01
In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin-antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin-antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway.
miR-30a can inhibit DNA replication by targeting RPA1 thus slowing cancer cell proliferation.
Zou, Zhenyou; Ni, Mengjie; Zhang, Jing; Chen, Yongfeng; Ma, Hongyu; Qian, Shihan; Tang, Longhua; Tang, Jiamei; Yao, Hailun; Zhao, Chengbin; Lu, Xiongwen; Sun, Hongyang; Qian, Jue; Mao, Xiaoting; Lu, Xulin; Liu, Qun; Zen, Juping; Wu, Hanbing; Bao, Zhaosheng; Lin, Shudan; Sheng, Hongyu; Li, Yunlong; Liang, Yong; Chen, Zhiqiang; Zong, Dan
2016-07-15
Cell proliferation was inhibited following forced over-expression of miR-30a in the ovary cancer cell line A2780DX5 and the gastric cancer cell line SGC7901R. Interestingly, miR-30a targets the DNA replication protein RPA1, hinders the replication of DNA and induces DNA fragmentation. Furthermore, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) were phosphorylated after DNA damage, which induced p53 expression, thus triggering the S-phase checkpoint, arresting cell cycle progression and ultimately initiating cancer cell apoptosis. Therefore, forced miR-30a over-expression in cancer cells can be a potential way to inhibit tumour development. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Sun, Yang; Wang, Peiling; Li, Hongyu; Dai, Jun
2018-06-26
A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm 2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases. © 2018 Wiley Periodicals, Inc.
An adaptive molecular timer in p53-meidated cell fate decision
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Peng; Wang, Ping; Liu, Feng; Wang, Wei
The tumor suppressor p53 decides cellular outcomes in the DNA damage response. It is intriguing to explore the link between p53 dynamics and cell fates. We developed a theoretical model of p53 signaling network to clarify the mechanism of cell fate decision mediated by its dynamics. We found that the interplay between p53-Mdm2 negative feedback loop and p53-PTEN-Mdm2 positive feedback loop shapes p53 dynamics. Depending on the intensity of DNA damage, p53 shows three modes of dynamics: persistent pulses, two-phase dynamics with pulses followed by sustained high levels and straightforward high levels. Especially, p53 shows two-phase dynamics upon moderated damage and the required number of p53 pulses before apoptosis induction decreases with increasing DNA damage. Our results suggested there exists an adaptive molecular timer that determines whether and when the apoptosis switch should be triggered. We clarified the mechanism behind the switching of p53 dynamical modes by bifurcation analysis. Moreover, we reproduced the experimental results that drug additions alter p53 pulses to sustained p53 activation and leads to senescence. Our work may advance the understanding the significance of p53 dynamics in tumor suppression. This work was supported by National Natural Science Foundation of China (Nos. 11175084, 11204126 and 31361163003).
Synergy between Prkdc and Trp53 regulates stem cell proliferation and GI-ARS after irradiation.
Gurley, Kay E; Ashley, Amanda K; Moser, Russell D; Kemp, Christopher J
2017-11-01
Ionizing radiation (IR) is one of the most widely used treatments for cancer. However, acute damage to the gastrointestinal tract or gastrointestinal acute radiation syndrome (GI-ARS) is a major dose-limiting side effect, and the mechanisms that underlie this remain unclear. Here we use mouse models to explore the relative roles of DNA repair, apoptosis, and cell cycle arrest in radiation response. IR induces DNA double strand breaks and DNA-PK mutant Prkdc scid/scid mice are sensitive to GI-ARS due to an inability to repair these breaks. IR also activates the tumor suppressor p53 to trigger apoptotic cell death within intestinal crypt cells and p53 deficient mice are resistant to apoptosis. To determine if DNA-PK and p53 interact to govern radiosensitivity, we compared the response of single and compound mutant mice to 8 Gy IR. Compound mutant Prkdc scid/scid /Trp53 -/- mice died earliest due to severe GI-ARS. While both Prkdc scid/scid and Prkdc scid/scid /Trp53 -/- mutant mice had higher levels of IR-induced DNA damage, particularly within the stem cell compartment of the intestinal crypt, in Prkdc scid/scid /Trp53 -/- mice these damaged cells abnormally progressed through the cell cycle resulting in mitotic cell death. This led to a loss of Paneth cells and a failure to regenerate the differentiated epithelial cells required for intestinal function. IR-induced apoptosis did not correlate with radiosensitivity. Overall, these data reveal that DNA repair, mediated by DNA-PK, and cell cycle arrest, mediated by p53, cooperate to protect the stem cell niche after DNA damage, suggesting combination approaches to modulate both pathways may be beneficial to reduce GI-ARS. As many cancers harbor p53 mutations, this also suggests targeting DNA-PK may be effective to enhance sensitivity of p53 mutant tumors to radiation.
Wakasugi, Mitsuo; Sasaki, Takuma; Matsumoto, Megumi; Nagaoka, Miyuki; Inoue, Keiko; Inobe, Manabu; Horibata, Katsuyoshi; Tanaka, Kiyoji; Matsunaga, Tsukasa
2014-10-10
Histone H2A variant H2AX is phosphorylated at Ser(139) in response to DNA double-strand break (DSB) and single-stranded DNA (ssDNA) formation. UV light dominantly induces pyrimidine photodimers, which are removed from the mammalian genome by nucleotide excision repair (NER). We previously reported that in quiescent G0 phase cells, UV induces ATR-mediated H2AX phosphorylation plausibly caused by persistent ssDNA gap intermediates during NER. In this study, we have found that DSB is also generated following UV irradiation in an NER-dependent manner and contributes to an earlier fraction of UV-induced H2AX phosphorylation. The NER-dependent DSB formation activates ATM kinase and triggers the accumulation of its downstream factors, MRE11, NBS1, and MDC1, at UV-damaged sites. Importantly, ATM-deficient cells exhibited enhanced UV sensitivity under quiescent conditions compared with asynchronously growing conditions. Finally, we show that the NER-dependent H2AX phosphorylation is also observed in murine peripheral T lymphocytes, typical nonproliferating quiescent cells in vivo. These results suggest that in vivo quiescent cells may suffer from NER-mediated secondary DNA damage including ssDNA and DSB. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells.
Wei, Ren-Jie; Lin, Su-Shuan; Wu, Wen-Ren; Chen, Lih-Ren; Li, Chien-Feng; Chen, Han-De; Chou, Chien-Ting; Chen, Ya-Chun; Liang, Shih-Shin; Chien, Shang-Tao; Shiue, Yow-Ling
2016-11-15
The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel anti-microtubule drug, ABT-751, in hepatocellular carcinoma-derived Huh-7 cells. Effects of ABT-751 were evaluated by immunocytochemistry, flow cytometric, alkaline comet, soft agar, immunoblotting, CytoID, green fluorescent protein-microtubule associated protein 1 light chain 3 beta detection, plasmid transfection, nuclear/cytosol fractionation, coimmunoprecipitation, quantitative reverse transcription-polymerase chain reaction, small-hairpin RNA interference and mitochondria/cytosol fractionation assays. Results showed that ABT-751 caused dysregulation of microtubule, collapse of mitochondrial membrane potential, generation of reactive oxygen species (ROS), DNA damage, G 2 /M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosis in Huh-7 cells. ABT-751 also induced early autophagy via upregulation of nuclear TP53 and downregulation of the AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (MTOR) pathway. Through modulation of the expression levels of DNA damage checkpoint proteins and G 2 /M cell cycle regulators, ABT-751 induced G 2 /M cell cycle arrest. Subsequently, ABT-751 triggered apoptosis with marked downregulation of B-cell CLL/lymphoma 2, upregulation of mitochondrial BCL2 antagonist/killer 1 and BCL2 like 11 protein levels, and cleavages of caspase 8 (CASP8), CASP9, CASP3 and DNA fragmentation factor subunit alpha proteins. Suppression of ROS significantly decreased ABT-751-induced autophagic and apoptotic cells. Pharmacological inhibition of autophagy significantly increased the percentages of ABT-751-induced apoptotic cells. The autophagy induced by ABT-751 plays a protective role to postpone apoptosis by exerting adaptive responses following microtubule damage, ROS and/or impaired mitochondria. Copyright © 2016 Elsevier Inc. All rights reserved.
Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins.
Park, Su-Jung; Ciccone, Samantha L M; Beck, Brian D; Hwang, Byounghoon; Freie, Brian; Clapp, D Wade; Lee, Suk-Hee
2004-07-16
Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.
Kemp, Michael G.; Lindsey-Boltz, Laura A.; Sancar, Aziz
2015-01-01
The mechanism by which ultraviolet (UV) wavelengths of sunlight trigger or exacerbate the symptoms of the autoimmune disorder lupus erythematosus is not known but may involve a role for the innate immune system. Here we show that UV radiation potentiates STING (stimulator of interferon genes)-dependent activation of the immune signaling transcription factor interferon regulatory factor 3 (IRF3) in response to cytosolic DNA and cyclic dinucleotides in keratinocytes and other human cells. Furthermore, we find that modulation of this innate immune response also occurs with UV-mimetic chemical carcinogens and in a manner that is independent of DNA repair and several DNA damage and cell stress response signaling pathways. Rather, we find that the stimulation of STING-dependent IRF3 activation by UV is due to apoptotic signaling-dependent disruption of ULK1 (Unc51-like kinase 1), a pro-autophagic protein that negatively regulates STING. Thus, deregulation of ULK1 signaling by UV-induced DNA damage may contribute to the negative effects of sunlight UV exposure in patients with autoimmune disorders. PMID:25792739
XPD-dependent activation of apoptosis in response to triplex-induced DNA damage
Kaushik Tiwari, Meetu; Rogers, Faye A.
2013-01-01
DNA sequences capable of forming triplexes are prevalent in the human genome and have been found to be intrinsically mutagenic. Consequently, a balance between DNA repair and apoptosis is critical to counteract their effect on genomic integrity. Using triplex-forming oligonucleotides to synthetically create altered helical distortions, we have determined that pro-apoptotic pathways are activated by the formation of triplex structures. Moreover, the TFIIH factor, XPD, occupies a central role in triggering apoptosis in response to triplex-induced DNA strand breaks. Here, we show that triplexes are capable of inducing XPD-independent double strand breaks, which result in the formation of γH2AX foci. XPD was subsequently recruited to the triplex-induced double strand breaks and co-localized with γH2AX at the damage site. Furthermore, phosphorylation of H2AX tyrosine 142 was found to stimulate the signaling pathway of XPD-dependent apoptosis. We suggest that this mechanism may play an active role in minimizing genomic instability induced by naturally occurring noncanonical structures, perhaps protecting against cancer initiation. PMID:23913414
A method for detecting genetic toxicity using the RNA synthesis response to DNA damage.
Morita, Yoko; Iwai, Shigenori; Kuraoka, Isao
2011-10-01
To date, biological risk assessment studies of chemicals that induce DNA lesions have been primarily based on the action of DNA polymerases during replication. However, DNA lesions interfere not only with replication but also with transcription. Therefore, detecting the damaging effects of DNA lesions during transcription might be important for estimating the safety of chemical mutagens and carcinogens. However, methods to address these effects have not been developed. Here, we report a simple, non-isotopic method for determining the toxicity of chemical agents by visualizing transcription in a mammalian cell system. The method is based on the measurement of the incorporation of bromouridine (as the uridine analogue) into the nascent RNA during RNA synthesis inhibition (RSI) induced by the stalling of RNA polymerases at DNA lesions on the transcribed DNA strand, which triggers transcription-coupled nucleotide excision repair (TC-NER). When we tested chemical agents (camptothecin, etoposide, 4-nitroquinoline-1-oxide, mitomycin C, methyl methanesulfonate, and cisplatin) in HeLa cells by the method, RSI indicative of genomic toxicity was observed in the nucleoli of the tested cells. This procedure provides the following advantages: 1) it uses common, affordable mammalian cells (HeLa cells, WI38VA13 cells, human dermal fibroblasts, or Chinese hamster ovary cells) rather than genetically modified microorganisms; 2) it can be completed within approximately 8 hr after the cells are prepared because RNA polymerase responses during TC-NER are faster than other DNA damage responses (replication, recombination, and apoptosis); and 3) it is safe because it uses non-radioactive bromouridine and antibodies to detect RNA synthesis on undamaged transcribed DNA strands.
Tse, Anfernee Kai-Wing; Chen, Ying-Jie; Fu, Xiu-Qiong; Su, Tao; Li, Ting; Guo, Hui; Zhu, Pei-Li; Kwan, Hiu-Yee; Cheng, Brian Chi-Yan; Cao, Hui-Hui; Lee, Sally Kin-Wah; Fong, Wang-Fun; Yu, Zhi-Ling
2017-04-01
Nitrosourea represents one of the most active classes of chemotherapeutic alkylating agents for metastatic melanoma. Treatment with nitrosoureas caused severe systemic side effects which hamper its clinical use. Here, we provide pharmacological evidence that reactive oxygen species (ROS) induction and IKKβ inhibition cooperatively enhance nitrosourea-induced cytotoxicity in melanoma cells. We identified SC-514 as a ROS-inducing IKKβ inhibitor which enhanced the function of nitrosoureas. Elevated ROS level results in increased DNA crosslink efficiency triggered by nitrosoureas and IKKβ inhibition enhances DNA damage signals and sensitizes nitrosourea-induced cell death. Using xenograft mouse model, we confirm that ROS-inducing IKKβ inhibitor cooperates with nitrosourea to reduce tumor size and malignancy in vivo. Taken together, our results illustrate a new direction in nitrosourea treatment, and reveal that the combination of ROS-inducing IKKβ inhibitors with nitrosoureas can be potentially exploited for melanoma therapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Transcription as a Threat to Genome Integrity.
Gaillard, Hélène; Aguilera, Andrés
2016-06-02
Genomes undergo different types of sporadic alterations, including DNA damage, point mutations, and genome rearrangements, that constitute the basis for evolution. However, these changes may occur at high levels as a result of cell pathology and trigger genome instability, a hallmark of cancer and a number of genetic diseases. In the last two decades, evidence has accumulated that transcription constitutes an important natural source of DNA metabolic errors that can compromise the integrity of the genome. Transcription can create the conditions for high levels of mutations and recombination by its ability to open the DNA structure and remodel chromatin, making it more accessible to DNA insulting agents, and by its ability to become a barrier to DNA replication. Here we review the molecular basis of such events from a mechanistic perspective with particular emphasis on the role of transcription as a genome instability determinant.
Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II.
Steurer, Barbara; Marteijn, Jurgen A
2017-10-27
The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Need telomere maintenance? Call 911.
Francia, Sofia; Weiss, Robert S; d'Adda di Fagagna, Fabrizio
2007-01-17
"Natura non facit saltum" (nature makes no leap) the Latins used to say, meaning that nature does not like discontinuities. Cells make no exception and indeed any discontinuity in the DNA double helix is promptly detected, triggering an alteration of cell proliferation and an attempt to repair. Yet, linear chromosomes bear DNA ends that are compatible with normal cell proliferation and they escape, under normal conditions, any repair. How telomeres, the chromosomes tips, achieve that is not fully understood. We recently observed that the Rad9/Hus1/Rad1 (911) complex, previously known for its functions in DNA metabolism and DNA damage responses, is constitutively associated with telomeres and plays an important role in their maintenance. Here, we summarize the available data and discuss the potential mechanisms of 911 action at telomeres.
Need telomere maintenance? Call 911
Francia, Sofia; Weiss, Robert S; d'Adda di Fagagna, Fabrizio
2007-01-01
"Natura non facit saltum" (nature makes no leap) the Latins used to say, meaning that nature does not like discontinuities. Cells make no exception and indeed any discontinuity in the DNA double helix is promptly detected, triggering an alteration of cell proliferation and an attempt to repair. Yet, linear chromosomes bear DNA ends that are compatible with normal cell proliferation and they escape, under normal conditions, any repair. How telomeres, the chromosomes tips, achieve that is not fully understood. We recently observed that the Rad9/Hus1/Rad1 (911) complex, previously known for its functions in DNA metabolism and DNA damage responses, is constitutively associated with telomeres and plays an important role in their maintenance. Here, we summarize the available data and discuss the potential mechanisms of 911 action at telomeres. PMID:17229321
Zahn, Astrid; Eranki, Anil K.; Patenaude, Anne-Marie; Methot, Stephen P.; Fifield, Heather; Cortizas, Elena M.; Foster, Paul; Imai, Kohsuke; Durandy, Anne; Larijani, Mani; Verdun, Ramiro E.; Di Noia, Javier M.
2014-01-01
Activation-induced deaminase (AID) triggers antibody class switch recombination (CSR) in B cells by initiating DNA double strand breaks that are repaired by nonhomologous end-joining pathways. A role for AID at the repair step is unclear. We show that specific inactivation of the C-terminal AID domain encoded by exon 5 (E5) allows very efficient deamination of the AID target regions but greatly impacts the efficiency and quality of subsequent DNA repair. Specifically eliminating E5 not only precludes CSR but also, causes an atypical, enzymatic activity-dependent dominant-negative effect on CSR. Moreover, the E5 domain is required for the formation of AID-dependent Igh-cMyc chromosomal translocations. DNA breaks at the Igh switch regions induced by AID lacking E5 display defective end joining, failing to recruit DNA damage response factors and undergoing extensive end resection. These defects lead to nonproductive resolutions, such as rearrangements and homologous recombination that can antagonize CSR. Our results can explain the autosomal dominant inheritance of AID variants with truncated E5 in patients with hyper-IgM syndrome 2 and establish that AID, through the E5 domain, provides a link between DNA damage and repair during CSR. PMID:24591601
Lin, Ru-Wei; Yang, Chia-Ning; Ku, ShengYu; Ho, Cheng-Jung; Huang, Shih-Bo; Yang, Min-Chi; Chang, Hsin-Wen; Lin, Chun-Mao; Hwang, Jaulang; Chen, Yeh-Long; Tzeng, Cherg-Chyi; Wang, Chihuei
2014-01-01
CFS-1686 (chemical name (E)-N-(2-(diethylamino)ethyl)-4-(2-(2-(5-nitrofuran-2-yl)vinyl)quinolin-4-ylamino)benzamide) inhibits cell proliferation and triggers late apoptosis in prostate cancer cell lines. Comparing the effect of CFS-1686 on cell cycle progression with the topoisomerase 1 inhibitor camptothecin revealed that CFS-1686 and camptothecin reduced DNA synthesis in S-phase, resulting in cell cycle arrest at the intra-S phase and G1-S boundary, respectively. The DNA damage in CFS-1686 and camptothecin treated cells was evaluated by the level of ATM phosphorylation, γH2AX, and γH2AX foci, showing that camptothecin was more effective than CFS-1686. However, despite its lower DNA damage capacity, CFS-1686 demonstrated 4-fold higher inhibition of topoisomerase 1 than camptothecin in a DNA relaxation assay. Unlike camptothecin, CFS-1686 demonstrated no activity on topoisomerase 1 in a DNA cleavage assay, but nevertheless it reduced the camptothecin-induced DNA cleavage of topoisomerase 1 in a dose-dependent manner. Our results indicate that CFS-1686 might bind to topoisomerase 1 to inhibit this enzyme from interacting with DNA relaxation activity, unlike campothecin's induction of a topoisomerase 1-DNA cleavage complex. Finally, we used a computer docking strategy to localize the potential binding site of CFS-1686 to topoisomerase 1, further indicating that CFS-1686 might inhibit the binding of Top1 to DNA.
Nakamura, Taichi; Ito, Tetsuhide; Igarashi, Hisato; Uchida, Masahiko; Hijioka, Masayuki; Oono, Takamasa; Fujimori, Nao; Niina, Yusuke; Suzuki, Koichi; Jensen, Robert T.; Takayanagi, Ryoichi
2012-01-01
Pancreatitis is an inflammatory disease of unknown causes. There are many triggers causing pancreatitis, such as alcohol, common bile duct stone, virus and congenital or acquired stenosis of main pancreatic duct, which often involve tissue injuries. Pancreatitis often occurs in sterile condition, where the dead/dying pancreatic parenchymal cells and the necrotic tissues derived from self-digested-pancreas were observed. However, the causal relationship between tissue injury and pancreatitis and how tissue injury could induce the inflammation of the pancreas were not elucidated fully until now. This study demonstrates that cytosolic double-stranded DNA increases the expression of several inflammatory genes (cytokines, chemokines, type I interferon, and major histocompatibility complex) in rat pancreatic stellate cells. Furthermore, these increase accompanied the multiple signal molecules genes, such as interferon regulatory factors, nuclear factor-kappa B, low-molecular-weight protein 2, and transporter associated with antigen processing 1. We suggest that this phenomenon is a plausible mechanism that might explain how cell damage of the pancreas or tissue injury triggers acute, chronic, and autoimmune pancreatitis; it is potentially relevant to host immune responses induced during alcohol consumption or other causes. PMID:22550608
Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.
Bunnell, Bryan E; Escobar, Jillian F; Bair, Kirsten L; Sutton, Mark D; Crane, John K
2017-01-01
Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx) and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.
Ha, Danbee; Joo, Haejin; Ahn, Ginnae; Kim, Min Ju; Bing, So Jin; An, Subin; Kim, Hyunki; Kang, Kyung-goo; Lim, Yoon-Kyu; Jee, Youngheun
2012-06-01
Vanadium, an essential micronutrient, has been implicated in controlling diabetes and carcinogenesis and in impeding reactive oxygen species (ROS) generation. γ-ray irradiation triggers DNA damage by inducing ROS production and causes diminution in radiosensitive immunocytes. In this study, we elucidate the immune activation capacities of Jeju water containing vanadium on immunosuppression caused by γ-ray irradiation, and identify its mechanism using various low doses of NaVO(3). We examined the intracellular ROS generation, DNA damage, cell proliferation, population of splenocytes, and cytokine/antibody profiles in irradiated mice drinking Jeju water for 180 days and in non-irradiated and in irradiated splenocytes both of which were treated with NaVO(3). Both Jeju water and 0.245 μM NaVO(3) attenuated the intracellular ROS generation and DNA damage in splenocytes against γ-ray irradiation. Splenocytes were significantly proliferated by the long-term intake of Jeju water and by 0.245 μM NaVO(3) treatment, and the expansion of B cells accounted for the increased number of splenocytes. Also, 0.245 μM NaVO(3) treatment showed the potency to amplify the production of IFN-γ and total IgG in irradiated splenocytes, which correlated with the expansion of B cells. Collectively, Jeju water containing vanadium possesses the immune activation property against damages caused by γ-irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.
DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells
Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.
2015-01-01
In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)2 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO3)2-treated cells, indicative of membrane rupture by Pb(NO3)2 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO3)2 exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO3)2 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO3)2 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO3)2 exposure and its associated adverse health effects. PMID:26703663
DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.
Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B
2015-12-22
In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects.
Zhao, Linlin; Krishnan, Sadagopan; Zhang, Yun; Schenkman, John B; Rusling, James F
2009-02-01
Tamoxifen, a therapeutic and chemopreventive breast cancer drug, was chosen as a model compound because of acknowledged species specific toxicity differences. Emerging approaches utilizing electro-optical arrays and nanoreactors based on DNA/microsome films were used to compare metabolite-mediated toxicity differences of tamoxifen in rodents versus humans. Hits triggered by liver enzyme metabolism were first provided by arrays utilizing a DNA damage end point. The arrays feature thin-film spots containing an electrochemiluminescent (ECL) ruthenium polymer ([Ru(bpy)(2)PVP(10)](2+); PVP, polyvinylpyridine), DNA, and liver microsomes. When DNA damage resulted from reactions with tamoxifen metabolites, it was detected by an increase in light from the oxidation of the damaged DNA by the ECL metallopolymer. The slope of ECL generation versus enzyme reaction time correlated with the rate of DNA damage. An approximate 2-fold greater ECL turnover rate was observed for spots with rat liver microsomes compared to that with human liver microsomes. These results were supported by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of reaction products using nanoreactors featuring analogous films on silica nanoparticles, allowing the direct measurement of the relative formation rate for alpha-(N(2)-deoxyguanosinyl)tamoxifen. We observed 2-5-fold more rapid formation rates for three major metabolites, i.e., alpha-hydroxytamoxifen, 4-hydroxytamoxifen, and tamoxifen N-oxide, catalyzed by rat liver microsomes compared to human liver microsomes. Comparable formation rates were observed for N-desmethyl tamoxifen with rat and human liver microsomes. A better detoxifying capacity for human liver microsomes than rat liver microsomes was confirmed utilizing glucuronyltransferase in microsomes together with UDP-glucuronic acid. Taken together, lower genotoxicity and higher detoxication rates presented by human liver microsomes correlate with the lower risk of tamoxifen in causing liver carcinoma in humans, provided the glucuronidation pathway is active.
Modeling photoionization of aqueous DNA and its components.
Pluhařová, Eva; Slavíček, Petr; Jungwirth, Pavel
2015-05-19
Radiation damage to DNA is usually considered in terms of UVA and UVB radiation. These ultraviolet rays, which are part of the solar spectrum, can indeed cause chemical lesions in DNA, triggered by photoexcitation particularly in the UVB range. Damage can, however, be also caused by higher energy radiation, which can ionize directly the DNA or its immediate surroundings, leading to indirect damage. Thanks to absorption in the atmosphere, the intensity of such ionizing radiation is negligible in the solar spectrum at the surface of Earth. Nevertheless, such an ionizing scenario can become dangerously plausible for astronauts or flight personnel, as well as for persons present at nuclear power plant accidents. On the beneficial side, ionizing radiation is employed as means for destroying the DNA of cancer cells during radiation therapy. Quantitative information about ionization of DNA and its components is important not only for DNA radiation damage, but also for understanding redox properties of DNA in redox sensing or labeling, as well as charge migration along the double helix in nanoelectronics applications. Until recently, the vast majority of experimental and computational data on DNA ionization was pertinent to its components in the gas phase, which is far from its native aqueous environment. The situation has, however, changed for the better due to the advent of photoelectron spectroscopy in liquid microjets and its most recent application to photoionization of aqueous nucleosides, nucleotides, and larger DNA fragments. Here, we present a consistent and efficient computational methodology, which allows to accurately evaluate ionization energies and model photoelectron spectra of aqueous DNA and its individual components. After careful benchmarking, the method based on density functional theory and its time-dependent variant with properly chosen hybrid functionals and polarizable continuum solvent model provides ionization energies with accuracy of 0.2-0.3 eV, allowing for faithful modeling and interpretation of DNA photoionization. The key finding is that the aqueous medium is remarkably efficient in screening the interactions within DNA such that, unlike in the gas phase, ionization of a base, nucleoside, or nucleotide depends only very weakly on the particular DNA context. An exception is the electronic interaction between neighboring bases which can lead to sequence-specific effects, such as a partial delocalization of the cationic hole upon ionization enabled by presence of adjacent bases of the same type.
Orsi, Guillermo A; Joyce, Eric F; Couble, Pierre; McKim, Kim S; Loppin, Benjamin
2010-10-15
The Drosophila I-R type of hybrid dysgenesis is a sterility syndrome (SF sterility) associated with the mobilization of the I retrotransposon in female germ cells. SF sterility results from a maternal-effect embryonic lethality whose origin has remained unclear since its discovery about 40 years ago. Here, we show that meiotic divisions in SF oocytes are catastrophic and systematically fail to produce a functional female pronucleus at fertilization. As a consequence, most embryos from SF females rapidly arrest their development with aneuploid or damaged nuclei, whereas others develop as non-viable, androgenetic haploid embryos. Finally, we show that, in contrast to mutants affecting the biogenesis of piRNAs, SF egg chambers do not accumulate persistent DNA double-strand breaks, suggesting that I-element activity might perturb the functional organization of meiotic chromosomes without triggering an early DNA damage response.
Kamps, Kara; Leek, Rachael; Luebke, Lanette; Price, Race; Nelson, Megan; Simonet, Stephanie; Eggert, David Joeseph; Ateşin, Tülay Aygan; Brown, Eric Michael Bratsolias
2013-01-01
Chemically and biologically modified nanoparticles are increasingly considered as viable and multifunctional tools to be used in cancer theranostics. Herein, we demonstrate that coordination of alizarin blue black B (ABBB) to the TiO(2) nanoparticle surface enhances the resulting nanoparticles by (1) creating distinct fluorescence emission spectra that differentiate smaller TiO(2) nanoparticles from larger TiO(2) nanoparticle aggregates (both in vitro and intracellular) and (2) enhancing visible light activation of TiO(2) nanoparticles above previously described methods to induce in vitro and intracellular damage to DNA and other targets. ABBB-TiO(2) nanoparticles are characterized through sedimentation, spectral absorbance, and gel electrophoresis. The possible coordination modes of ABBB to the TiO(2) nanoparticle surface are modeled by computational methods. Fluorescence emission spectroscopy studies indicate that ABBB coordination on TiO(2) nanoparticles enables discernment between nanoparticles and nanoparticle aggregates both in vitro and intracellular through fluorescence confocal microscopy. Visible light activated ABBB-TiO(2) nanoparticles are capable of inflicting increased DNA cleavage through localized production of reactive oxygen species as visualized by plasmid DNA damage detected through gel electrophoresis and atomic force microscopy. Finally, visible light excited ABBB-TiO(2) nanoparticles are capable of inflicting damage upon HeLa (cervical cancer) cells by inducing alterations in DNA structure and membrane associated proteins. The multifunctional abilities of these ABBB-TiO(2) nanoparticles to visualize and monitor aggregation in real time, as well as inflict visible light triggered damage upon cancer targets will enhance the use of TiO(2) nanoparticles in cancer theranostics.
Hoover, Sharon E; Xu, Weihong; Xiao, Wenzhong; Burkholder, William F
2010-08-01
The SOS response to DNA damage in bacteria is a well-known component of the complex transcriptional responses to genotoxic environmental stresses such as exposure to reactive oxygen species, alkylating agents, and many of the antibiotics targeting DNA replication. However, bacteria such as Bacillus subtilis also respond to conditions that perturb DNA replication via a transcriptional response mediated by the replication initiation protein DnaA. In addition to regulating the initiation of DNA replication, DnaA directly regulates the transcription of specific genes. Conditions that perturb DNA replication can trigger the accumulation of active DnaA, activating or repressing the transcription of genes in the DnaA regulon. We report here that simply growing B. subtilis in LB medium altered DnaA-dependent gene expression in a manner consistent with the accumulation of active DnaA and that this was part of a general transcriptional response to manganese limitation. The SOS response to DNA damage was not induced under these conditions. One of the genes positively regulated by DnaA in Bacillus subtilis encodes a protein that inhibits the initiation of sporulation, Sda. Sda expression was induced as cells entered stationary phase in LB medium but not in LB medium supplemented with manganese, and the induction of Sda inhibited sporulation-specific gene expression and the onset of spore morphogenesis. In the absence of Sda, manganese-limited cells initiated spore development but failed to form mature spores. These data highlight that DnaA-dependent gene expression may influence the response of bacteria to a range of environmental conditions, including conditions that are not obviously associated with genotoxic stress.
Hoover, Sharon E.; Xu, Weihong; Xiao, Wenzhong; Burkholder, William F.
2010-01-01
The SOS response to DNA damage in bacteria is a well-known component of the complex transcriptional responses to genotoxic environmental stresses such as exposure to reactive oxygen species, alkylating agents, and many of the antibiotics targeting DNA replication. However, bacteria such as Bacillus subtilis also respond to conditions that perturb DNA replication via a transcriptional response mediated by the replication initiation protein DnaA. In addition to regulating the initiation of DNA replication, DnaA directly regulates the transcription of specific genes. Conditions that perturb DNA replication can trigger the accumulation of active DnaA, activating or repressing the transcription of genes in the DnaA regulon. We report here that simply growing B. subtilis in LB medium altered DnaA-dependent gene expression in a manner consistent with the accumulation of active DnaA and that this was part of a general transcriptional response to manganese limitation. The SOS response to DNA damage was not induced under these conditions. One of the genes positively regulated by DnaA in Bacillus subtilis encodes a protein that inhibits the initiation of sporulation, Sda. Sda expression was induced as cells entered stationary phase in LB medium but not in LB medium supplemented with manganese, and the induction of Sda inhibited sporulation-specific gene expression and the onset of spore morphogenesis. In the absence of Sda, manganese-limited cells initiated spore development but failed to form mature spores. These data highlight that DnaA-dependent gene expression may influence the response of bacteria to a range of environmental conditions, including conditions that are not obviously associated with genotoxic stress. PMID:20511500
Rey, Benjamin; Dégletagne, Cyril; Bodennec, Jacques; Monternier, Pierre-Axel; Mortz, Mathieu; Roussel, Damien; Romestaing, Caroline; Rouanet, Jean-Louis; Tornos, Jeremy; Duchamp, Claude
2016-08-01
Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure in diving birds. Initial immersions in cold-water may initiate an hormetic response triggering essential changes in the adaptive antioxidant response to marine life. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Ying; Wu, Nandan; Tian, Sijia; Li, Fan; Hu, Huan; Chen, Pei; Cai, Xiaoxiao; Xu, Lijun; Zhang, Jing; Chen, Zhao; Ge, Jian; Yu, Keming; Zhuang, Jing
2016-11-17
Neurons display genomic fragility and show fragmented DNA in pathological degeneration. A failure to repair DNA breaks may result in cell death or apoptosis. Lithium protects retinal neurocytes following nutrient deprivation or partial nerve crush, but the underlying mechanisms are not well defined. Here we demonstrate that pretreatment with lithium protects retinal neurocytes from ischemia-induced damage and enhances light response in rat retina following ischemia-reperfusion injury. Moreover, we found that DNA nonhomologous end-joining (NHEJ) repair is implicated in this process because in ischemic retinal neurocytes, lithium significantly reduces the number of γ-H2AX foci (well-characterized markers of DNA double-strand breaks in situ) and increases the DNA ligase IV expression level. Furthermore, we also demonstrate that nuclear respiratory factor 1 (Nrf-1) and phosphorylated cyclic AMP-response element binding protein-1 (P-CREB1) bind to ligase IV promoter to cause upregulation of ligase IV in neurocytes. The ischemic upregulation of Nrf-1 and lithium-induced increase of P-CREB1 cooperate to promote transcription of ligase IV. Short hairpin RNAs against Nrf-1 and CREB1 could significantly inhibit the increase in promoter activity and expression of ligase IV observed in the control oligos following lithium treatment in retinal neurocytes. More importantly, ischemic stimulation triggers the expression of ligase IV. Taken together, our results thus reveal a novel mechanism that lithium offers neuroprotection from ischemia-induced damage by enhancing DNA NHEJ repair.
Yang, Ying; Wu, Nandan; Tian, Sijia; Li, Fan; Hu, Huan; Chen, Pei; Cai, Xiaoxiao; Xu, Lijun; Zhang, Jing; Chen, Zhao; Ge, Jian; Yu, Keming; Zhuang, Jing
2016-01-01
Neurons display genomic fragility and show fragmented DNA in pathological degeneration. A failure to repair DNA breaks may result in cell death or apoptosis. Lithium protects retinal neurocytes following nutrient deprivation or partial nerve crush, but the underlying mechanisms are not well defined. Here we demonstrate that pretreatment with lithium protects retinal neurocytes from ischemia-induced damage and enhances light response in rat retina following ischemia–reperfusion injury. Moreover, we found that DNA nonhomologous end-joining (NHEJ) repair is implicated in this process because in ischemic retinal neurocytes, lithium significantly reduces the number of γ-H2AX foci (well-characterized markers of DNA double-strand breaks in situ) and increases the DNA ligase IV expression level. Furthermore, we also demonstrate that nuclear respiratory factor 1 (Nrf-1) and phosphorylated cyclic AMP-response element binding protein-1 (P-CREB1) bind to ligase IV promoter to cause upregulation of ligase IV in neurocytes. The ischemic upregulation of Nrf-1 and lithium-induced increase of P-CREB1 cooperate to promote transcription of ligase IV. Short hairpin RNAs against Nrf-1 and CREB1 could significantly inhibit the increase in promoter activity and expression of ligase IV observed in the control oligos following lithium treatment in retinal neurocytes. More importantly, ischemic stimulation triggers the expression of ligase IV. Taken together, our results thus reveal a novel mechanism that lithium offers neuroprotection from ischemia-induced damage by enhancing DNA NHEJ repair. PMID:27853172
Lin, Chiou-Feng; Chien, Shun-Yi; Chen, Chia-Ling; Hsieh, Chia-Yuan; Tseng, Po-Chun; Wang, Yu-Chih
2016-02-01
Treatment of interferon-γ (IFN-γ) causes cell growth inhibition and cytotoxicity in lung epithelial malignancies. Regarding the induction of autophagy related to IFN-γ signaling, this study investigated the link between autophagy and IFN-γ cytotoxicity. In A549 human lung cancer cells, IFN-γ treatment induced concurrent apoptotic and nonapoptotic events. Unexpectedly, the nonapoptotic cells present mimic extracellular trap cell death (ETosis), which was regulated by caspase-3 and by autophagy induction through immunity-related GTPase family M protein 1 and activating transcription factor 6. Furthermore, IFN-γ signaling controlled mimic ETosis through a mechanism involving an autophagy- and Fas-associated protein with death domain-controlled caspase-8/-3 activation. Following caspase-mediated lamin degradation, IFN-γ caused DNA damage-associated ataxia telangiectasia and Rad3-related protein (ATR)/ataxia telangiectasia mutated (ATM)-regulated mimic ETosis. Upon ATR/ATM signaling, peptidyl arginine deiminase 4 (PAD4)-mediated histone 3 citrullination promoted mimic ETosis. Such IFN-γ-induced effects were defective in PC14PE6/AS2 human lung cancer cells, which were unsusceptible to IFN-γ-induced autophagy. Due to autophagy-based caspase cascade activation, IFN-γ triggers unconventional caspase-mediated DNA damage, followed by ATR/ATM-regulated PAD4-mediated histone citrullination during mimic ETosis in lung epithelial malignancy.
A self-lysis pathway that enhances the virulence of a pathogenic bacterium.
McFarland, Kirsty A; Dolben, Emily L; LeRoux, Michele; Kambara, Tracy K; Ramsey, Kathryn M; Kirkpatrick, Robin L; Mougous, Joseph D; Hogan, Deborah A; Dove, Simon L
2015-07-07
In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.
Effects on DNA repair in human lymphocytes exposed to the food dye tartrazine yellow.
Soares, Bruno Moreira; Araújo, Taíssa Maíra Thomaz; Ramos, Jorge Amando Batista; Pinto, Laine Celestino; Khayat, Bruna Meireles; De Oliveira Bahia, Marcelo; Montenegro, Raquel Carvalho; Burbano, Rommel Mario Rodríguez; Khayat, André Salim
2015-03-01
Tartrazine is a food additive that belongs to a class of artificial dyes and contains an azo group. Studies about its genotoxic, cytotoxic and mutagenic effects are controversial and, in some cases, unsatisfactory. This work evaluated the potential in vitro cytotoxicity, genotoxicity and effects on DNA repair of human lymphocytes exposed to the dye. We assessed the cytotoxicity of tartrazine by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide test and the response of DNA repair through comet assay (alkaline version). We used different concentrations of the dye, ranging from 0.25-64.0 mM. The results demonstrated that tartrazine has no cytotoxic effects. However, this dye had a significant genotoxic effect at all concentrations tested. Although most of the damage was amenable to repair, some damage remained higher than positive control after 24 h of repair. These data demonstrate that tartrazine may be harmful to health and its prolonged use could trigger carcinogenesis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion
Fouquerel, Elise; Goellner, Eva M.; Yu, Zhongxun; Gagné, Jean-Philippe; de Moura, Michelle Barbi; Feinstein, Tim; Wheeler, David; Redpath, Philip; Li, Jianfeng; Romero, Guillermo; Migaud, Marie; Van Houten, Bennett; Poirier, Guy G.; Sobol, Robert W.
2014-01-01
Summary ARTD1 (PARP1) is a key enzyme involved in DNA repair by synthesizing poly(ADP-ribose) (PAR) in response to strand breaks and plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD+ depletion and ATP loss, however the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we directly compared the effects of ARTD1 activation and direct NAD+ depletion. We found that ARTD1-mediated PAR synthesis, but not direct NAD+ depletion, resulted in a block to glycolysis and ATP loss. We then established a proteomics based PAR-interactome after DNA damage and identified hexokinase 1 (HK1) as a PAR binding protein. HK1 activity is suppressed following nuclear ARTD1 activation and binding by PAR. These findings help explain how prolonged activation of ARTD1 triggers energy collapse and cell death, revealing new insight on the importance of nucleus to mitochondria communication via ARTD1 activation. PMID:25220464
Local, Andrea; Zhang, Hongying; Benbatoul, Khalid D; Folger, Peter; Sheng, Xia; Tsai, Cheng-Yu; Howell, Stephen B; Rice, William G
2018-06-01
APTO-253 is a phase I clinical stage small molecule that selectively induces CDKN1A (p21), promotes G 0 -G 1 cell-cycle arrest, and triggers apoptosis in acute myeloid leukemia (AML) cells without producing myelosuppression in various animal species and humans. Differential gene expression analysis identified a pharmacodynamic effect on MYC expression, as well as induction of DNA repair and stress response pathways. APTO-253 was found to elicit a concentration- and time-dependent reduction in MYC mRNA expression and protein levels. Gene ontogeny and structural informatic analyses suggested a mechanism involving G-quadruplex (G4) stabilization. Intracellular pharmacokinetic studies in AML cells revealed that APTO-253 is converted intracellularly from a monomer to a ferrous complex [Fe(253) 3 ]. FRET assays demonstrated that both monomeric APTO-253 and Fe(253) 3 stabilize G4 structures from telomeres, MYC, and KIT promoters but do not bind to non-G4 double-stranded DNA. Although APTO-253 exerts a host of mechanistic sequelae, the effect of APTO-253 on MYC expression and its downstream target genes, on cell-cycle arrest, DNA damage, and stress responses can be explained by the action of Fe(253) 3 and APTO-253 on G-quadruplex DNA motifs. Mol Cancer Ther; 17(6); 1177-86. ©2018 AACR . ©2018 American Association for Cancer Research.
RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice
Herold, Marco J.
2016-01-01
Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA. However, loss of both these mediators (even together with defects in p53-mediated induction of cell cycle arrest and cell senescence) does not recapitulate the tumor susceptibility observed in p53−/− mice. Thus, potentially oncogenic DNA lesions are likely to also trigger apoptosis through additional, p53-independent processes. We found that loss of the BH3-only protein BIM accelerated lymphoma development in p53-deficient mice. This process was negated by concomitant loss of RAG1/2-mediated antigen receptor gene rearrangement. This demonstrates that BIM is critical for the induction of apoptosis caused by potentially oncogenic DNA lesions elicited by RAG1/2-induced gene rearrangement. Furthermore, this highlights the role of a BIM-mediated tumor suppressor pathway that acts in parallel to the p53 pathway and remains active even in the absence of wild-type p53 function, suggesting this may be exploited in the treatment of p53-deficient cancers. PMID:27621418
Sauvaigo, Sylvie; Sarrazy, Fanny; Batal, Mohamed; Caillat, Sylvain; Pitiot, Benoit; Mouret, Stéphane; Cléry-Barraud, Cécile; Boudry, Isabelle; Douki, Thierry
2016-01-22
Sulfur mustard (SM) is a chemical warfare agent that, upon topical application, damages skin and reaches internal organs through diffusion in blood. Two major toxic consequences of SM exposure are inflammation, associated with oxidative stress, and the formation of alkylated DNA bases. In the present study, we investigated the impact of exposure to SM on DNA repair, using two different functional DNA repair assays which provide information on several Base Excision Repair (BER) and Excision/Synthesis Repair (ESR) activities. BER activities were reduced in all organs as early as 4h after exposure, with the exception of the defense systems against 8-oxo-guanine and hypoxanthine which were stimulated. Interestingly, the resulting BER intermediates could activate inflammation signals, aggravating the inflammation triggered by SM exposure and leading to increased oxidative stress. ESR activities were found to be mostly inhibited in skin, brain and kidneys. In contrast, in the lung there was a general increase in ESR activities. In summary, exposure to SM leads to a significant decrease in DNA repair in most organs, concomitant with the formation of DNA damage. These synergistic genotoxic effects are likely to participate in the high toxicity of this alkylating agent. Lungs, possibly better equipped with repair enzymes to handle exogenous exposure, are the exception. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Berniak, K; Rybak, P; Bernas, T; Zarębski, M; Biela, E; Zhao, H; Darzynkiewicz, Z; Dobrucki, J W
2013-10-01
A method of quantitative analysis of spatial (3D) relationship between discrete nuclear events detected by confocal microscopy is described and applied in analysis of a dependence between sites of DNA damage signaling (γH2AX foci) and DNA replication (EdU incorporation) in cells subjected to treatments with camptothecin (Cpt) or hydrogen peroxide (H2O2). Cpt induces γH2AX foci, likely reporting formation of DNA double-strand breaks (DSBs), almost exclusively at sites of DNA replication. This finding is consistent with the known mechanism of induction of DSBs by DNA topoisomerase I (topo1) inhibitors at the sites of collisions of the moving replication forks with topo1-DNA "cleavable complexes" stabilized by Cpt. Whereas an increased level of H2AX histone phosphorylation is seen in S-phase of cells subjected to H2O2, only a minor proportion of γH2AX foci coincide with DNA replication sites. Thus, the increased level of H2AX phosphorylation induced by H2O2 is not a direct consequence of formation of DNA lesions at the sites of moving DNA replication forks. These data suggest that oxidative stress induced by H2O2 and formation of the primary H2O2-induced lesions (8-oxo-7,8-dihydroguanosine) inhibits replication globally and triggers formation of γH2AX at various distances from replication forks. Quantitative analysis of a frequency of DNA replication sites and γH2AX foci suggests also that stalling of replicating forks by Cpt leads to activation of new DNA replication origins. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.
RAD51 interconnects between DNA replication, DNA repair and immunity.
Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame
2017-05-05
RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Differential expression of thymic DNA repair genes in low-dose-rate irradiated AKR/J mice
Bong, Jin Jong; Kang, Yu Mi; Shin, Suk Chul; Choi, Seung Jin
2013-01-01
We previously determined that AKR/J mice housed in a low-dose-rate (LDR) (137Cs, 0.7 mGy/h, 2.1 Gy) γ-irradiation facility developed less spontaneous thymic lymphoma and survived longer than those receiving sham or high-dose-rate (HDR) (137Cs, 0.8 Gy/min, 4.5 Gy) radiation. Interestingly, histopathological analysis showed a mild lymphomagenesis in the thymus of LDR-irradiated mice. Therefore, in this study, we investigated whether LDR irradiation could trigger the expression of thymic genes involved in the DNA repair process of AKR/J mice. The enrichment analysis of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways showed immune response, nucleosome organization, and the peroxisome proliferator-activated receptors signaling pathway in LDR-irradiated mice. Our microarray analysis and quantitative polymerase chain reaction data demonstrated that mRNA levels of Lig4 and RRM2 were specifically elevated in AKR/J mice at 130 days after the start of LDR irradiation. Furthermore, transcriptional levels of H2AX and ATM, proteins known to recruit DNA repair factors, were also shown to be upregulated. These data suggest that LDR irradiation could trigger specific induction of DNA repair-associated genes in an attempt to repair damaged DNA during tumor progression, which in turn contributed to the decreased incidence of lymphoma and increased survival. Overall, we identified specific DNA repair genes in LDR-irradiated AKR/J mice. PMID:23820165
Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases.
Nakayama, Hiroyuki; Otsu, Kinya
2018-03-06
Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases. © 2018 The Author(s).
Yamamoto, Kazuhiko; Nihrane, Abdallah; Aglipay, Jason; Sironi, Juan; Arkin, Steven; Lipton, Jeffrey M; Ouchi, Toru; Liu, Johnson M
2008-01-01
Fanconi anemia (FA) predisposes to hematopoietic failure, birth defects, leukemia, and squamous cell carcinoma of the head and neck (HNSCC) and cervix. The FA/BRCA pathway includes 8 members of a core complex and 5 downstream gene products closely linked with BRCA1 or BRCA2. Precancerous lesions are believed to trigger the DNA damage response (DDR), and we focused on the DDR in FA and its putative role as a checkpoint barrier to cancer. In primary fibroblasts with mutations in the core complex FANCA protein, we discovered that basal expression and phosphorylation of ATM (ataxia telangiectasia mutated) and p53 induced by irradiation (IR) or mitomycin C (MMC) were upregulated. This heightened response appeared to be due to increased basal levels of ATM in cultured FANCA-mutant cells, highlighting the new observation that ATM can be regulated at the transcriptional level in addition to its well-established activation by autophosphorylation. Functional analysis of this response using gamma-H2AX foci as markers of DNA double-stranded breaks (DSBs) demonstrated abnormal persistence of only MMC- and not IR-induced foci. Thus, we describe a processing defect that leads to general DDR upregulation but specific persistence of DNA crosslinker-induced damage response foci. Underscoring the significance of these findings, we found resistance to DNA crosslinker-induced cell cycle arrest and apoptosis in a TP53-mutant, patient-derived HNSCC cell line, whereas a lymphoblastoid cell line derived from this same individual was not mutated at TP53 and retained DNA crosslinker sensitivity. Our results suggest that cancer in FA may arise from selection for cells that escape from a chronically activated DDR checkpoint.
HaCaT anchorage blockade leads to oxidative stress, DNA damage and DNA methylation changes.
da Silva, Rodrigo A; Sammartino Mariano, Flavia; Planello, Aline C; Line, Sergio R P; de Souza, Ana Paula
2015-07-01
Cell adhesion plays an important role in neoplastic transformation. Thus, anchorage-independent growth and epithelial-mesenchymal transition, which are features associated to anoikis-resistance, are vital steps in cancer progression and metastatic colonization. Cell attachment loss may induce intracellular oxidative stress, which triggers DNA damage as methylation changes. HaCaT lineage cells were submitted to periods of 1, 3, 5 and 24 h of anchorage blockage with the purpose of study of oxidative stress effect on changes in the DNA methylation pattern, derived from attachment blockade. Through this study, HaCaT anchorage blockage-induced oxidative stress was reported to mediate alterations in global DNA methylation changes and into TP53 gene promoter pattern during anoikis-resistance acquisition. Furthermore, at the first experimental time-periods (1, 3 and 5 h), genome hypermethylation was found; however, genome hypomethylation was observed in later time-periods (24 h) of attachment impediment. The TP 53 methylation analyses were performed after 24 h of replated anoikis-resistance cells and same methylation pattern was observed, occurring an early (1 and 3 h) hypermethylation that was followed by late (5 and 24 h) hypomethylation. However, LINE-1, a marker of genomic instability, was perceived in time-dependent hypomethylation. The mRNA levels of the DNMTs enzymes were influenced by cell attachment blockage, but non-conclusive results were obtained in order to match DNMTs transcription to pattern methylation results. In conclusion, DNA damage was found, leaded by oxidative stress that has come up from HaCaT anchorage blockade, which rises a global genome hypomethylation tendency as consequence, which might denote genomic instability.
Fox, Raymond; Kim, Hyung-Suk; Reddick, Robert L; Kujoth, Gregory C; Prolla, Tomas A; Tsutsumi, Shuichi; Wada, Youichiro; Smithies, Oliver; Maeda, Nobuyo
2011-05-24
Diabetes and the development of its complications have been associated with mitochondrial DNA (mtDNA) dysfunction, but causal relationships remain undetermined. With the objective of testing whether increased mtDNA mutations exacerbate the diabetic phenotype, we have compared mice heterozygous for the Akita diabetogenic mutation (Akita) with mice homozygous for the D257A mutation in mitochondrial DNA polymerase gamma (Polg) or with mice having both mutations (Polg-Akita). The Polg-D257A protein is defective in proofreading and increases mtDNA mutations. At 3 mo of age, the Polg-Akita and Akita male mice were equally hyperglycemic. Unexpectedly, as the Polg-Akita males aged to 9 mo, their diabetic symptoms decreased. Thus, their hyperglycemia, hyperphagia and urine output declined significantly. The decrease in their food intake was accompanied by increased plasma leptin and decreased plasma ghrelin, while hypothalamic expression of the orexic gene, neuropeptide Y, was lower and expression of the anorexic gene, proopiomelanocortin, was higher. Testis function progressively worsened with age in the double mutants, and plasma testosterone levels in 9-mo-old Polg-Akita males were significantly reduced compared with Akita males. The hyperglycemia and hyperphagia returned in aged Polg-Akita males after testosterone administration. Hyperglycemia-associated distal tubular damage in the kidney also returned, and Polg-D257A-associated proximal tubular damage was enhanced. The mild diabetes of female Akita mice was not affected by the Polg-D257A mutation. We conclude that reduced diabetic symptoms of aging Polg-Akita males results from appetite suppression triggered by decreased testosterone associated with damage to the Leydig cells of the testis.
EdU induces DNA damage response and cell death in mESC in culture.
Kohlmeier, Fanni; Maya-Mendoza, Apolinar; Jackson, Dean A
2013-03-01
Recently, a novel DNA replication precursor analogue called 5-ethynyl-2'-deoxyuridine (EdU) has been widely used to monitor DNA synthesis as an alternative to bromodeoxyuridine. Use of EdU benefits from simplicity and reproducibility and the simple chemical detection systems allows excellent preservation of nuclear structure. However, the alkyne moiety is highly reactive, raising the possibility that incorporation might compromise genome stability. To assess the extent of possible DNA damage, we have analysed the effect of EdU incorporation into DNA during short- and long-term cell culture using a variety of cell lines. We show that EdU incorporation has no measurable impact on the rate of elongation of replication forks during synthesis. However, using different cell lines we find that during long-term cell culture variable responses to EdU incorporation are seen, which range from delayed cell cycle progression to complete cell cycle arrest. The most profound phenotypes were seen in mouse embryonic stem cells, which following incorporation of EdU accumulated in the G2/M-phase of the cell cycle before undergoing apoptosis. In long-term cell culture, EdU incorporation also triggered a DNA damage response in all cell types analysed. Our study shows that while EdU is extremely useful to tag sites of on-going replication, for long-term studies (i.e. beyond the cell cycle in which labelling is performed), a careful analysis of cell cycle perturbations must be performed in order to ensure that any conclusions made after EdU treatment are not a direct consequence of EdU-dependent activation of cell stress responses.
Di Pietro, Angela; Visalli, Giuseppa; La Maestra, Sebastiano; Micale, Rosanna; Baluce, Barbara; Matarese, Giovanni; Cingano, Luciano; Scoglio, Maria Elena
2008-02-29
Dental fillings provide a major iatrogenic exposure to xenobiotic compounds due to the high prevalence of surface restorations in developed countries. Experimental data suggest that both amalgams, which contain mercury, and resin-based dental materials cause an impairment of the cellular pro- and anti-oxidant redox balance. The aim of this study was to assess the potential genotoxicity of dental restorative compounds in peripheral blood lymphocytes of young exposed subjects compared with controls. The study examined, by use of the comet assay, 68 carefully selected subjects taking into account the major known confounding factors. In the 44 exposed subjects, the mean numbers of restored surfaces was 3.0 and 3.8 in males and females, respectively. Tail length, percentage of DNA in the tail, tail moment or Olive tail moment were twofold higher in the exposed group than in unexposed controls, with significant differences. No significant difference was observed between amalgam and composite fillings. Furthermore, as shown by multivariate analysis, the association between dental fillings and DNA damage was enhanced by the number of fillings and by the exposure time. Among the lifestyle variables, a moderate physical activity showed a protective effect, being inversely correlated to the DNA damage parameters evaluated. On the whole, the use of DNA-migration allowed us to detect for the first time the potential adverse impact on human health of both kinds of dental filling constituents, the amalgams and the methacrylates. The main mechanism underlying the genotoxicity of dental restorative materials of various nature may be ascribed to the ability of both amalgams and methacrylates to trigger the generation of cellular reactive oxygen species, able to cause oxidative DNA lesions.
The Effect of Ozone on Colonic Epithelial Cells.
Himuro, Hidetomo
2018-05-21
Due to its strong oxidation activity, ozone has been well known to kill bacteria and exert toxic effects on human tissues. At the same time, ozone is being used for the treatment of diseases such as inflammatory bowel disease in some European countries. However, the use of ozone for therapeutic purposes, despite its strong toxic effects, remains largely unexplored. Interestingly, we found that intrarectal administration of ozone gas induced transient colonic epithelial cell damage characterized by the impairment of cell survival pathways involved in DNA replication, cell cycle, and mismatch repair. However, the damaged cells were rapidly extruded from the epithelial layer, and appeared to immediately stimulate turnover of the epithelial layer in the colon. Therefore, it is possible that ozone gas is able to trigger damage-induced rapid regeneration of intestinal epithelial cells, and that this explains why ozone does not cause harmful or persistent damage in the colon.
Architecture and DNA Recognition Elements of the Fanconi Anemia FANCM-FAAP24 Complex
Coulthard, Rachel; Deans, Andrew J.; Swuec, Paolo; Bowles, Maureen; Costa, Alessandro; West, Stephen C.; McDonald, Neil Q.
2013-01-01
Summary Fanconi anemia (FA) is a disorder associated with a failure in DNA repair. FANCM (defective in FA complementation group M) and its partner FAAP24 target other FA proteins to sites of DNA damage. FANCM-FAAP24 is related to XPF/MUS81 endonucleases but lacks endonucleolytic activity. We report a structure of an FANCM C-terminal fragment (FANCMCTD) bound to FAAP24 and DNA. This S-shaped structure reveals the FANCM (HhH)2 domain is buried, whereas the FAAP24 (HhH)2 domain engages DNA. We identify a second DNA contact and a metal center within the FANCM pseudo-nuclease domain and demonstrate that mutations in either region impair double-stranded DNA binding in vitro and FANCM-FAAP24 function in vivo. We show the FANCM translocase domain lies in proximity to FANCMCTD by electron microscopy and that binding fork DNA structures stimulate its ATPase activity. This suggests a tracking model for FANCM-FAAP24 until an encounter with a stalled replication fork triggers ATPase-mediated fork remodeling. PMID:23932590
Leptospira interrogans serovar copenhageni harbors two lexA genes involved in SOS response.
Fonseca, Luciane S; da Silva, Josefa B; Milanez, Juliana S; Monteiro-Vitorello, Claudia B; Momo, Leonardo; de Morais, Zenaide M; Vasconcellos, Silvio A; Marques, Marilis V; Ho, Paulo L; da Costa, Renata M A
2013-01-01
Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2) one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.
Leptospira interrogans serovar Copenhageni Harbors Two lexA Genes Involved in SOS Response
Fonseca, Luciane S.; da Silva, Josefa B.; Milanez, Juliana S.; Monteiro-Vitorello, Claudia B.; Momo, Leonardo; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Marques, Marilis V.; Ho, Paulo L.; da Costa, Renata M. A.
2013-01-01
Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2) one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN 10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence. PMID:24098496
Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D
2015-11-05
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.
Buisson, Rémi; Boisvert, Jessica L.; Benes, Cyril H.; Zou, Lee
2015-01-01
The ATR-Chk1 pathway is critical for DNA damage responses and cell cycle progression. Chk1 inhibition is more deleterious to cycling cells than ATR inhibition, raising questions about ATR and Chk1 functions in the absence of extrinsic replication stress. Here, we show that a key role of ATR in S phase is to coordinate RRM2 accumulation and origin firing. ATR inhibitor (ATRi) induces massive ssDNA accumulation and replication catastrophe in a fraction of early S-phase cells. In other S-phase cells, however, ATRi induces moderate ssDNA and triggers a DNA-PK and Chk1-mediated backup pathway to suppress origin firing. The backup pathway creates a threshold such that ATRi selectively kills cells under high replication stress, whereas Chk1 inhibitor induces cell death at a lower threshold. The levels of ATRi-induced ssDNA correlate with ATRi sensitivity in a panel of cell lines, suggesting that ATRi-induced ssDNA could be predictive of ATRi sensitivity in cancer cells. PMID:26365377
Zhuo, Ming; Gorgun, Murat F; Englander, Ella W
2018-06-01
Peripheral Nervous System (PNS) neurotoxicity caused by cancer drugs hinders attainment of chemotherapy goals. Due to leakiness of the blood nerve barrier, circulating chemotherapeutic drugs reach PNS neurons and adversely affect their function. Chemotherapeutic drugs are designed to target dividing cancer cells and mechanisms underlying their toxicity in postmitotic neurons remain to be fully clarified. The objective of this work was to elucidate progression of events triggered by antimitotic drugs in postmitotic neurons. For proof of mechanism study, we chose cytarabine (ara-C), an antimetabolite used in treatment of hematological cancers. Ara-C is a cytosine analog that terminates DNA synthesis. To investigate how ara-C affects postmitotic neurons, which replicate mitochondrial but not genomic DNA, we adapted a model of Dorsal Root Ganglion (DRG) neurons. We showed that DNA polymerase γ, which is responsible for mtDNA synthesis, is inhibited by ara-C and that sublethal ara-C exposure of DRG neurons leads to reduction in mtDNA content, ROS generation, oxidative mtDNA damage formation, compromised mitochondrial respiration and diminution of NADPH and GSH stores, as well as, activation of the DNA damage response. Hence, it is plausible that in ara-C exposed DRG neurons, ROS amplified by the high mitochondrial content shifts from physiologic to pathologic levels signaling stress to the nucleus. Combined, the findings suggest that ara-C neurotoxicity in DRG neurons originates in mitochondria and that continuous mtDNA synthesis and reliance on oxidative phosphorylation for energy needs sensitize the highly metabolic neurons to injury by mtDNA synthesis terminating cancer drugs. Copyright © 2018 Elsevier Inc. All rights reserved.
Lee, Yuan-Hao; Sun, Youping; Glickman, Randolph D.
2014-01-01
Ultraviolet (UV) light is a leading cause of diseases, such as skin cancers and cataracts. A main process mediating UV-induced pathogenesis is the production of reactive oxygen species (ROS). Excessive ROS levels induce the formation of DNA adducts (e.g., pyrimidine dimers) and result in stalled DNA replication forks. In addition, ROS promotes phosphorylation of tyrosine kinase-coupled hormone receptors and alters downstream energy metabolism. With respect to the risk of UV-induced photocarcinogenesis and photodamage, the antitumoral and antioxidant functions of natural compounds become important for reducing UV-induced adverse effects. One important question in the field is what determines the differential sensitivity of various types of cells to UV light and how exogenous molecules, such as phytochemicals, protect normal cells from UV-inflicted damage while potentiating tumor cell death, presumably via interaction with intracellular target molecules and signaling pathways. Several endogenous molecules have emerged as possible players mediating UV-triggered DNA damage responses. Specifically, UV activates the PIKK (phosphatidylinositol 3-kinase-related kinase) family members, which include DNA-PKcs, ATM (ataxia telangiectasia mutated) and mTOR (mammalian target of rapamycin), whose signaling can be affected by energy metabolism; however, it remains unclear to what extent the activation of hormone receptors regulates PIKKs and whether this crosstalk occurs in all types of cells in response to UV. This review focuses on proteomic descriptions of the relationships between cellular photosensitivity and the phenotypic expression of the insulin/insulin-like growth receptor. It covers the cAMP-dependent pathways, which have recently been shown to regulate the DNA repair machinery through interactions with the PIKK family members. Finally, this review provides a strategic illustration of how UV-induced mitogenic activity is modulated by the insulin sensitizer, ursolic acid (UA), which results in the metabolic adaptation of normal cells against UV-induced ROS, and the metabolic switch of tumor cells subject to UV-induced damage. The multifaceted natural compound, UA, specifically inhibits photo-oxidative DNA damage in retinal pigment epithelial cells while enhancing that in skin melanoma. Considering the UA-mediated differential effects on cell bioenergetics, this article reviews the disparities in glucose metabolism between tumor and normal cells, along with (peroxisome proliferator-activated receptor-γ coactivator 1α)-dependent mitochondrial metabolism and redox (reduction-oxidation) control to demonstrate UA-induced synthetic lethality in tumor cells. PMID:28250388
Alonso-Lecue, Pilar; de Pedro, Isabel; Coulon, Vincent; Molinuevo, Rut; Lorz, Corina; Segrelles, Carmen; Ceballos, Laura; López-Aventín, Daniel; García-Valtuille, Ana; Bernal, José M; Mazorra, Francisco; Pujol, Ramón M; Paramio, Jesús; Ramón Sanz, J; Freije, Ana; Toll, Agustí; Gandarillas, Alberto
2017-01-01
Squamous cell carcinoma (SCC) or epidermoid cancer is a frequent and aggressive malignancy. However in apparent paradox it retains the squamous differentiation phenotype except for very dysplastic lesions. We have shown that cell cycle stress in normal epidermal keratinocytes triggers a squamous differentiation response involving irreversible mitosis block and polyploidisation. Here we show that cutaneous SCC cells conserve a partial squamous DNA damage-induced differentiation response that allows them to overcome the cell division block. The capacity to divide in spite of drug-induced mitotic stress and DNA damage made well-differentiated SCC cells more genomically instable and more malignant in vivo. Consistently, in a series of human biopsies, non-metastatic SCCs displayed a higher degree of chromosomal alterations and higher expression of the S phase regulator Cyclin E and the DNA damage signal γH2AX than the less aggressive, non-squamous, basal cell carcinomas. However, metastatic SCCs lost the γH2AX signal and Cyclin E, or accumulated cytoplasmic Cyclin E. Conversely, inhibition of endogenous Cyclin E in well-differentiated SCC cells interfered with the squamous phenotype. The results suggest a dual role of cell cycle stress-induced differentiation in squamous cancer: the resulting mitotic blocks would impose, when irreversible, a proliferative barrier, when reversible, a source of genomic instability, thus contributing to malignancy. PMID:28661481
Fusarium infection causes genotoxic disorders and antioxidant-based damages in Orobanche spp.
Aybeke, Mehmet
2017-08-01
This study aims to evaluate the toxic effects of Fusarium oxysporum on root parasitic weed, Orobanche spp. Comparative genetic and gene expression studies were conducted on uninfected and fungus-infected orobanches. In genetic studies, isolated total DNA was amplified by RAPD PCR. Fragment properties were analysed by GTS test. According to the results, the fragment properties of control and Fusarium infected (experimental) groups varied widely; and it has been observed that Fusarium has genotoxic effects on the DNA of orobanches. In gene expression studies, the expression levels of genes encoding enzymes or proteins were associated with ROS damage and toxic effects, therefore, gene expressions of Mn-superoxide dismutase (SOD), Zn-superoxide dismutase (=SOD2, mitochondrial), glutamine synthetase (GS), heat shock protein gene (HSP70), BAX, Caspase-3 and BCL2 were significantly higher in the experimental group. In the light of obtained data, it was concluded that F. oxysporum (1) caused heavy ROS damage in Orobanche (2) induced significant irrevocable genotoxic effects on the DNA of Orobanche, (3) degraded protein metabolism and synthesis, and finally (4) triggered apoptosis. The results of this study can be a ground for further research on reducing the toxic effects of Fusarium on agricultural products, so that advancements in bio-herbicide technology may provide a sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.
Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity
Coin, Frédéric; Auriol, Jérome; Tapias, Angel; Clivio, Pascale; Vermeulen, Wim; Egly, Jean-Marc
2004-01-01
Nucleotide excision repair (NER) removes damage from DNA in a tightly regulated multiprotein process. The xeroderma pigmentosum group B (XPB) helicase subunit of TFIIH functions in NER and transcription. The serine 751 (S751) residue of XPB was found to be phosphorylated in vivo. This phosphorylation inhibits NER and the microinjection of a phosphomimicking XPB-S751E mutant is unable to correct the NER defect of XP-B cells. Conversely, XPB-S751 dephosphorylation or its substitution with alanine (S751A) restores NER both in vivo and in vitro. Surprisingly, phospho/dephosphorylation of S751 spares TFIIH-dependent transcription. Finally, the phosphorylation of XPB-S751 does not impair the TFIIH unwinding of the DNA around the lesion, but rather prevents the 5′ incision triggered by the ERCC1-XPF endonuclease. These data support an additional role for XPB in promoting the incision of the damaged fragment and reveal a point of NER regulation on TFIIH without interference in its transcription activity. PMID:15549133
Marjanović, Marko; Sánchez-Huertas, Carlos; Terré, Berta; Gómez, Rocío; Scheel, Jan Frederik; Pacheco, Sarai; Knobel, Philip A; Martínez-Marchal, Ana; Aivio, Suvi; Palenzuela, Lluís; Wolfrum, Uwe; McKinnon, Peter J; Suja, José A; Roig, Ignasi; Costanzo, Vincenzo; Lüders, Jens; Stracker, Travis H
2015-07-09
CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63-deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death, and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63-deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination.
Marjanović, Marko; Sánchez-Huertas, Carlos; Terré, Berta; Gómez, Rocío; Scheel, Jan Frederik; Pacheco, Sarai; Knobel, Philip A.; Martínez-Marchal, Ana; Aivio, Suvi; Palenzuela, Lluís; Wolfrum, Uwe; McKinnon, Peter J.; Suja, José A.; Roig, Ignasi; Costanzo, Vincenzo; Lüders, Jens; Stracker, Travis H.
2015-01-01
CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63 deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63 deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination. PMID:26158450
Antagonism between curcumin and the topoisomerase II inhibitor etoposide
Saleh, Ekram M.; El-awady, Raafat A; Eissa, Nadia A.; Abdel-Rahman, Wael M.
2012-01-01
The use of combinations of chemotherapy and natural products has recently emerged as a new method of cancer therapy, relying on the capacity of certain natural compounds to trigger cell death with low doses of chemotherapeutic agents and few side effects. The current study aims to evaluate the modulatory effects of curcumin (CUR), Nigella sativa (NS) and taurine on etoposide (ETP) cytotoxicity in a panel of cancer cell lines and to identify their underlying mechanisms. CUR alone showed potent antitumor activity, but surprisingly, its interaction with ETP was antagonistic in four out of five cancer cell lines. Neither taurine nor Nigella sativa affect the sensitivity of cancer cells to ETP. Examination of the DNA damage response machinery (DDR) showed that both ETP and CUR elicited DNA double-strand breaks (DSB) and evoked γ-H2AX foci formation at doses as low as 1 µg/ml. Cell cycle analysis revealed S phase arrest after ETP or CUR application, whereas co-treatment with ETP and CUR led to increased arrest of the cell cycle in S phase (MCF-7 cells) or the accumulation of cells in G2/M phases (HCT116, and HeLa cells). Furthermore, cotreatment with ETP and CUR resulted in modulation of the level of DNA damage induction and repair compared with either agent alone. Electron microscopic examination demonstrated that different modalities of cell death occurred with each treatment. CUR alone induced autophagy, apoptosis and necrosis, whereas ETP alone or in combination with CUR led to apoptosis and necrosis. Conclusions: Cotreatment with ETP and CUR resulted in an antagonistic interaction. This antagonism is related, in part, to the enhanced arrest of tumor cells in both S and G2/M phases, which prevents the cells from entering M-phase with damaged DNA and, consequently, prevents cell death from occurring. This arrest allows time for the cells to repair DNA damage so that cell cycle -arrested cells can eventually resume cell cycle progression and continue their physiological program. PMID:22895066
Testing Whether Defective Chromatin Assembly in S-Phase Contributes to Breast Cancer
2005-10-01
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT...that defects in chromatin assembly trigger DNA damage, a potent source of genome instability and cause of human cancers. Although we failed to make a ...studies might reveal such. a link. Second, we showed that the bistone chaperones HIRA and ASF I a drive formation of specialized domains of facultative
Role of Secondary Low-Energy Electrons in the Concomitant Chemoradiation Therapy of Cancer
NASA Astrophysics Data System (ADS)
Zheng, Yi; Hunting, Darel J.; Ayotte, Patrick; Sanche, Léon
2008-05-01
Solid films of DNA with and without the chemotherapeutic agent cisplatin bonded to guanine were bombarded with electrons of 1, 10, 100, and 60 000 eV causing single and double strand breaks. In the presence of cisplatin this damage was increased by factors varying from 1.3 to 4.4 owing to an increase in bond dissociation triggered by the formation of transient anions. This mechanism may lie at the basis of the efficiency of concomitant cisplatin-radiation therapy.
eIF2 kinases mediate β-lapachone toxicity in yeast and human cancer cells
Menacho-Márquez, Mauricio; Rodríguez-Hernández, Carlos J; Villaronga, M Ángeles; Pérez-Valle, Jorge; Gadea, José; Belandia, Borja; Murguía, José R
2015-01-01
β-lapachone (β-lap) is a novel anticancer agent that selectively induces cell death in human cancer cells, by activation of the NQO1 NAD(P)H dehydrogenase and radical oxygen species (ROS) generation. We characterized the gene expression profile of budding yeast cells treated with β-lap using cDNA microarrays. Genes involved in tolerance to oxidative stress were differentially expressed in β-lap treated cells. β-lap treatment generated reactive oxygen species (ROS), which were efficiently blocked by dicoumarol, an inhibitor of NADH dehydrogenases. A yeast mutant in the mitocondrial NADH dehydrogenase Nde2p was found to be resistant to β-lap treatment, despite inducing ROS production in a WT manner. Most interestingly, DNA damage responses triggered by β-lap were abolished in the nde2Δ mutant. Amino acid biosynthesis genes were also induced in β-lap treated cells, suggesting that β-lap exposure somehow triggered the General Control of Nutrients (GCN) pathway. Accordingly, β-lap treatment increased phosphorylation of eIF2α subunit in a manner dependent on the Gcn2p kinase. eIF2α phosphorylation required Gcn1p, Gcn20p and Nde2p. Gcn2p was also required for cell survival upon exposure to β-lap and to elicit checkpoint responses. Remarkably, β-lap treatment increased phosphorylation of eIF2α in breast tumor cells, in a manner dependent on the Nde2p ortholog AIF, and the eIF2 kinase PERK. These findings uncover a new target pathway of β-lap in yeast and human cells and highlight a previously unknown functional connection between Nde2p, Gcn2p and DNA damage responses. PMID:25590579
Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.
Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica
2018-01-01
The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways are currently being targeted for clinical application in oncology.
Ho, Cyrus K; Choi, Siu-wai; Siu, Parco M; Benzie, Iris F F
2014-06-01
Regular intake of green tea (Camellia sinensis) lowers DNA damage in humans, but molecular mechanisms of genoprotection are not clear. Protection could be via direct antioxidant effects of tea catechins, but, paradoxically, catechins have pro-oxidant activity in vitro, and it is hypothesized that mechanisms relate to redox-sensitive cytoprotective adaptations. We investigated this hypothesis, focusing particularly on effects on the DNA repair enzyme human oxoguanine glycosylase 1 (hOGG1), and heme oxygenase-1, a protein that has antioxidant and anti-inflammatory effects. A randomized, placebo-controlled, human supplementation study of crossover design was performed. Subjects (n = 16) took a single dose (200 mL of 1.5%, w/v) and 7-days of (2 × 200 mL 1%, w/v per day) green tea (with water as control treatment). Lymphocytic DNA damage was ∼30% (p < 0.001) lower at 60 and 120 min after the single dose and in fasting samples collected after 7-day tea supplementation. Lymphocytic hOGG1 activity was higher (p < 0.0001) at 60 and 120 min after tea ingestion. Significant increases (p < 0.0005) were seen in hOGG1 activity and heme oxygenase-1 after 7 days. Results indicate that molecular triggering of redox-sensitive cytoprotective adaptations and posttranslational changes affecting hOGG1 occur in vivo in response to both a single dose and regular intake of green tea, and contribute to the observed genoprotective effects of green tea. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bhattacharjee, Arin; Basu, Abhishek; Biswas, Jaydip; Bhattacharya, Sudin
2015-07-01
Chemotherapy is an integral part of modern day treatment regimen but anticancer drugs fail to demarcate between cancerous and normal cells thereby causing severe form of systemic toxicity. Among which pulmonary toxicity is a dreadful complication developed in cancer patients upon cyclophosphamide (CP) therapy. Oxidative stress, fibrosis, and apoptosis are the major patho-mechanisms involved in CP-induced pulmonary toxicity. In the present study, we have synthesized Nano-Se, nanotechnology-based new form of elemental selenium which has significantly lower toxicity and acceptable bioavailability. In order to meet the need of effective drugs against CP-induced adverse effects, nano selenium (Nano-Se) was tested for its possible protective efficacy on CP-induced pulmonary toxicity and bone marrow toxicity. CP intoxication resulted in structural and functional lung impairment which was revealed by massive histopathological changes. Lung injury was associated with oxidative stress/lipid peroxidation as evident by increased in reactive oxygen species, nitric oxide level, and malondialdehyde (MDA) formation with decreased in level of antioxidants such as reduced glutathione, glutathione-S-transferase, glutathione peroxidase, superoxide dismutase, and catalase. Furthermore, CP at a dose of 25 mg/kg b.w. increased pulmonary DNA damage ('comet tail') and triggered DNA fragmentation and apoptosis in mouse bone marrow cells. On the other hand, Nano-Se at a dose of 2 mg Se/kg b.w., significantly inhibited CP-induced DNA damage in bronchoalveolar lavage cells, and decreased the apoptosis and percentage of DNA fragmentation in bone marrow cells and also antagonized the reduction of the activities of antioxidant enzymes and the increase level of MDA. Thus, our results suggest that Nano-Se in pre- and co-administration may serve as a promising preventive strategy against CP-induced pulmonary toxicity.
Lakatos, Petra; Hegedűs, Csaba; Salazar Ayestarán, Nerea; Juarranz, Ángeles; Kövér, Katalin E; Szabó, Éva; Virág, László
2016-08-01
A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.
Stein, B; Rahmsdorf, H J; Steffen, A; Litfin, M; Herrlich, P
1989-01-01
UV irradiation of human and murine cells enhances the transcription of several genes. Here we report on the primary target of relevant UV absorption, on pathways leading to gene activation, and on the elements receiving the UV-induced signal in the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, in the gene coding for collagenase, and in the cellular oncogene fos. In order to induce the expression of genes. UV radiation needs to be absorbed by DNA and to cause DNA damage of the kind that cannot be repaired by cells from patients with xeroderma pigmentosum group A. UV-induced activation of the three genes is mediated by the major enhancer elements (located between nucleotide positions -105 and -79 of HIV-1, between positions -72 and -65 of the collagenase gene, and between positions -320 and -299 of fos). These elements share no apparent sequence motif and bind different trans-acting proteins; a member of the NF kappa B family binds to the HIV-1 enhancer, the heterodimer of Jun and Fos (AP-1) binds to the collagenase enhancer, and the serum response factors p67 and p62 bind to fos. DNA-binding activities of the factors recognizing the HIV-1 and collagenase enhancers are augmented in extracts from UV-treated cells. The increase in activity is due to posttranslational modification. While AP-1 resides in the nucleus and must be modulated there, NF kappa B is activated in the cytoplasm, indicating the existence of a cytoplasmic signal transduction pathway triggered by UV-induced DNA damage. In addition to activation, new synthesis of AP-1 is induced by UV radiation. Images PMID:2557547
A self-lysis pathway that enhances the virulence of a pathogenic bacterium
McFarland, Kirsty A.; Dolben, Emily L.; LeRoux, Michele; Kambara, Tracy K.; Ramsey, Kathryn M.; Kirkpatrick, Robin L.; Mougous, Joseph D.; Hogan, Deborah A.; Dove, Simon L.
2015-01-01
In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system. PMID:26100878
Direct non transcriptional role of NF-Y in DNA replication.
Benatti, Paolo; Belluti, Silvia; Miotto, Benoit; Neusiedler, Julia; Dolfini, Diletta; Drac, Marjorie; Basile, Valentina; Schwob, Etienne; Mantovani, Roberto; Blow, J Julian; Imbriano, Carol
2016-04-01
NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Antimicrobial Histones and DNA Traps in Invertebrate Immunity
Poirier, Aurore C.; Schmitt, Paulina; Rosa, Rafael D.; Vanhove, Audrey S.; Kieffer-Jaquinod, Sylvie; Rubio, Tristan P.; Charrière, Guillaume M.; Destoumieux-Garzón, Delphine
2014-01-01
Although antimicrobial histones have been isolated from multiple metazoan species, their role in host defense has long remained unanswered. We found here that the hemocytes of the oyster Crassostrea gigas release antimicrobial H1-like and H5-like histones in response to tissue damage and infection. These antimicrobial histones were shown to be associated with extracellular DNA networks released by hemocytes, the circulating immune cells of invertebrates, in response to immune challenge. The hemocyte-released DNA was found to surround and entangle vibrios. This defense mechanism is reminiscent of the neutrophil extracellular traps (ETs) recently described in vertebrates. Importantly, oyster ETs were evidenced in vivo in hemocyte-infiltrated interstitial tissues surrounding wounds, whereas they were absent from tissues of unchallenged oysters. Consistently, antimicrobial histones were found to accumulate in oyster tissues following injury or infection with vibrios. Finally, oyster ET formation was highly dependent on the production of reactive oxygen species by hemocytes. This shows that ET formation relies on common cellular and molecular mechanisms from vertebrates to invertebrates. Altogether, our data reveal that ET formation is a defense mechanism triggered by infection and tissue damage, which is shared by relatively distant species suggesting either evolutionary conservation or convergent evolution within Bilateria. PMID:25037219
Bartz, Raquel R.; Fu, Ping; Suliman, Hagir B.; Crowley, Stephen D.; MacGarvey, Nancy Chou; Welty-Wolf, Karen; Piantadosi, Claude A.
2014-01-01
Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection. PMID:24988481
Wang, Hsiang-Tsui; Chen, Tzu-Ying; Weng, Ching-Wen; Yang, Chun-Hsiang; Tang, Moon-Shong
2016-12-06
Acrolein (Acr) is a potent cytotoxic and DNA damaging agent which is ubiquitous in the environment and abundant in tobacco smoke. Acr is also an active cytotoxic metabolite of the anti-cancer drugs cyclophosphamide and ifosfamide. The mechanisms via which Acr exerts its anti-cancer activity and cytotoxicity are not clear. In this study, we found that Acr induces cytotoxicity and cell death in human cancer cells with different activities of p53. Acr preferentially binds nucleolar ribosomal DNA (rDNA) to form Acr-deoxyguanosine adducts, and induces oxidative damage to both rDNA and ribosomal RNA (rRNA). Acr triggers ribosomal stress responses, inhibits rRNA synthesis, reduces RNA polymerase I binding to the promoter of rRNA gene, disrupts nucleolar integrity, and impairs ribosome biogenesis and polysome formation. Acr causes an increase in MDM2 levels and phosphorylation of MDM2 in A549 and HeLa cells which are p53 active and p53 inactive, respectively. It enhances the binding of ribosomal protein RPL11 to MDM2 and reduces the binding of p53 and E2F-1 to MDM2 resulting in stabilization/activation of p53 in A549 cells and degradation of E2F-1 in A549 and HeLa cells. We propose that Acr induces ribosomal stress which leads to activation of MDM2 and RPL11-MDM2 binding, consequently, activates p53 and enhances E2F-1 degradation, and that taken together these two processes induce apoptosis and cell death.
Bailis, Julie M; Weidmann, Alyson G; Mariano, Natalie F; Barton, Jacqueline K
2017-07-03
The DNA mismatch repair (MMR) pathway recognizes and repairs errors in base pairing and acts to maintain genome stability. Cancers that have lost MMR function are common and comprise an important clinical subtype that is resistant to many standard of care chemotherapeutics such as cisplatin. We have identified a family of rhodium metalloinsertors that bind DNA mismatches with high specificity and are preferentially cytotoxic to MMR-deficient cells. Here, we characterize the cellular mechanism of action of the most potent and selective complex in this family, [Rh(chrysi)(phen)(PPO)] 2+ (Rh-PPO). We find that Rh-PPO binding induces a lesion that triggers the DNA damage response (DDR). DDR activation results in cell-cycle blockade and inhibition of DNA replication and transcription. Significantly, the lesion induced by Rh-PPO is not repaired in MMR-deficient cells, resulting in selective cytotoxicity. The Rh-PPO mechanism is reminiscent of DNA repair enzymes that displace mismatched bases, and is differentiated from other DNA-targeted chemotherapeutics such as cisplatin by its potency, cellular mechanism, and selectivity for MMR-deficient cells.
Mori, Tetsuya; Nakamura, Tatsuro; Okazaki, Naoto; Furukohri, Asako; Maki, Hisaji; Akiyama, Masahiro Tatsumi
2012-01-01
The SOS response is readily triggered by replication fork stalling caused by DNA damage or a dysfunctional replicative apparatus in Escherichia coli cells. E. coli dinB encodes DinB DNA polymerase and its expression is upregulated during the SOS response. DinB catalyzes translesion DNA synthesis in place of a replicative DNA polymerase III that is stalled at a DNA lesion. We showed previously that DNA replication was suppressed without exogenous DNA damage in cells overproducing DinB. In this report, we confirm that this was due to a dose-dependent inhibition of ongoing replication forks by DinB. Interestingly, the DinB-overproducing cells did not significantly induce the SOS response even though DNA replication was perturbed. RecA protein is activated by forming a nucleoprotein filament with single-stranded DNA, which leads to the onset of the SOS response. In the DinB-overproducing cells, RecA was not activated to induce the SOS response. However, the SOS response was observed after heat-inducible activation in strain recA441 (encoding a temperature-sensitive RecA) and after replication blockage in strain dnaE486 (encoding a temperature-sensitive catalytic subunit of the replicative DNA polymerase III) at a non-permissive temperature when DinB was overproduced in these cells. Furthermore, since catalytically inactive DinB could avoid the SOS response to a DinB-promoted fork block, it is unlikely that overproduced DinB takes control of primer extension and thus limits single-stranded DNA. These observations suggest that DinB possesses a feature that suppresses DNA replication but does not abolish the cell's capacity to induce the SOS response. We conclude that DinB impedes replication fork progression in a way that does not activate RecA, in contrast to obstructive DNA lesions and dysfunctional replication machinery.
Winnicki, Konrad; Maszewski, Janusz
2012-11-01
Genotoxic stress caused by a variety of chemical and physical agents may lead to DNA breaks and genome instability. Response to DNA damage depends on ATM/ATR sensor kinases and their downstream proteins, which arrange cell cycle checkpoints. Activation of ATM (ataxia-telangiectasia-mutated)/ATR (ATM and Rad 3-related) signaling pathway triggers cell cycle arrest (by keeping cyclin-Cdk complexes inactive), combined with gamma-phosphorylation of histone H2A.X and induction of DNA repair processes. However, genotoxic stress activates also mitogen-activated protein kinases (MAPKs) which may control the functions of checkpoint proteins both directly, by post-translational modifications, or indirectly, by regulation of their expression. Our results indicate that in root meristem cells of Vicia faba, MAP kinase signaling pathway takes part in response to hydroxyurea-induced genotoxic stress. It is shown that SB202190, an inhibitor of p38 MAP kinase, triggers PCC (premature chromosome condensation) more rapidly, but only if cell cycle checkpoints are alleviated by caffeine. Since SB202190 and, independently, caffeine reduces HU-mediated histone H4 Lys5 acetylation, it may be that there is a cooperation of MAP kinase signaling pathways and ATM/ATR-dependent checkpoints during response to genotoxic stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Guidotti, Serena; Minguzzi, Manuela; Platano, Daniela; Cattini, Luca; Trisolino, Giovanni; Mariani, Erminia; Borzì, Rosa Maria
2015-01-01
Recent evidence suggests that GSK3 activity is chondroprotective in osteoarthritis (OA), but at the same time, its inactivation has been proposed as an anti-inflammatory therapeutic option. Here we evaluated the extent of GSK3β inactivation in vivo in OA knee cartilage and the molecular events downstream GSK3β inactivation in vitro to assess their contribution to cell senescence and hypertrophy. In vivo level of phosphorylated GSK3β was analyzed in cartilage and oxidative damage was assessed by 8-oxo-deoxyguanosine staining. The in vitro effects of GSK3β inactivation (using either LiCl or SB216763) were evaluated on proliferating primary human chondrocytes by combined confocal microscopy analysis of Mitotracker staining and reactive oxygen species (ROS) production (2',7'-dichlorofluorescin diacetate staining). Downstream effects on DNA damage and senescence were investigated by western blot (γH2AX, GADD45β and p21), flow cytometric analysis of cell cycle and light scattering properties, quantitative assessment of senescence associated β galactosidase activity, and PAS staining. In vivo chondrocytes from obese OA patients showed higher levels of phosphorylated GSK3β, oxidative damage and expression of GADD45β and p21, in comparison with chondrocytes of nonobese OA patients. LiCl mediated GSK3β inactivation in vitro resulted in increased mitochondrial ROS production, responsible for reduced cell proliferation, S phase transient arrest, and increase in cell senescence, size and granularity. Collectively, western blot data supported the occurrence of a DNA damage response leading to cellular senescence with increase in γH2AX, GADD45β and p21. Moreover, LiCl boosted 8-oxo-dG staining, expression of IKKα and MMP-10. In articular chondrocytes, GSK3β activity is required for the maintenance of proliferative potential and phenotype. Conversely, GSK3β inactivation, although preserving chondrocyte survival, results in functional impairment via induction of hypertrophy and senescence. Indeed, GSK3β inactivation is responsible for ROS production, triggering oxidative stress and DNA damage response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin
2011-03-25
Research highlights: {yields} Activation of PPAR{delta} by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. {yields} Agonist-activated PPAR{delta} suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. {yields} GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. {yields} Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) {delta} as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPAR{delta} by GW501516, a specific agonist ofmore » PPAR{delta}, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPAR{delta} suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPAR{delta}-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondovcik, Stephanie L.; Tamblyn, Laura; McPherson, John Peter
2013-07-01
Methylmercury (MeHg) is a persistent environmental contaminant with potent neurotoxic action for which the underlying molecular mechanisms remain to be conclusively delineated. Our objectives herein were twofold: first, to corroborate our previous findings of an increased sensitivity of spontaneously-immortalized oxoguanine glycosylase 1-null (Ogg1{sup −/−}) murine embryonic fibroblasts (MEFs) to MeHg through generation of Simian virus 40 (SV40) large T antigen-immortalized wild-type and Ogg1{sup −/−} MEFs; and second, to determine whether MeHg toxicity is proliferation-dependent. As with the spontaneously-immortalized cells used previously, the SV40 large T antigen-immortalized cells exhibited similar tendencies to undergo MeHg-initiated cell cycle arrest, with increased sensitivity inmore » the Ogg1{sup −/−} MEFs as measured by clonogenic survival and DNA damage. Compared to exponentially growing cells, those seeded at a higher density exhibited compromised proliferation, which proved protective against MeHg-mediated cell cycle arrest and induction of DNA double strand breaks (DSBs), measured by phosphorylation of the core histone H2A variant (H2AX) on serine 139 (γH2AX), and by its functional confirmation by micronucleus assessment. This enhanced sensitivity of Ogg1{sup −/−} MEFs to MeHg toxicity using discrete SV40 immortalization corroborates our previous studies, and suggests a novel role for OGG1 in minimizing MeHg-initiated DNA lesions that trigger replication-associated DSBs. Furthermore, proliferative capacity may determine MeHg toxicity in vivo and in utero. Accordingly, variations in cellular proliferative capacity and interindividual variability in repair activity may modulate the risk of toxicological consequences following MeHg exposure. - Highlights: • SV40 large T antigen-immortalized Ogg1{sup −/−} cells are more sensitive to MeHg. • Sensitivity to MeHg is dependent on cellular proliferation capacity. • OGG1 maintains genomic integrity following MeHg-initiated DNA damage. • OGG1 may limit MeHg-initiated DNA lesions that trigger replication-associated DSBs. • Variations in proliferation and repair activity may modulate toxicological risk.« less
Hatakeyama, Hideyuki; Goto, Yu-Ichi
2016-04-01
Mitochondria contain multiple copies of their own genome (mitochondrial DNA; mtDNA). Once mitochondria are damaged by mutant mtDNA, mitochondrial dysfunction is strongly induced, followed by symptomatic appearance of mitochondrial diseases. Major genetic causes of mitochondrial diseases are defects in mtDNA, and the others are defects of mitochondria-associating genes that are encoded in nuclear DNA (nDNA). Numerous pathogenic mutations responsible for various types of mitochondrial diseases have been identified in mtDNA; however, it remains uncertain why mitochondrial diseases present a wide variety of clinical spectrum even among patients carrying the same mtDNA mutations (e.g., variations in age of onset, in affected tissues and organs, or in disease progression and phenotypic severity). Disease-relevant induced pluripotent stem cells (iPSCs) derived from mitochondrial disease patients have therefore opened new avenues for understanding the definitive genotype-phenotype relationship of affected tissues and organs in various types of mitochondrial diseases triggered by mtDNA mutations. In this concise review, we briefly summarize several recent approaches using patient-derived iPSCs and their derivatives carrying various mtDNA mutations for applications in human mitochondrial disease modeling, drug discovery, and future regenerative therapeutics. © 2016 AlphaMed Press.
NASA Astrophysics Data System (ADS)
Shin, Weon Sup; Han, Jiyou; Kumar, Rajesh; Lee, Gyung Gyu; Sessler, Jonathan L.; Kim, Jong-Hoon; Kim, Jong Seung
2016-07-01
We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a cancer targeting unit (biotin). Upon light activation in cancer cells, PT-1 interferes with DNA re-ligation, diminishes the expression of topoisomerase I, and enhances the expression of inter alia mitochondrial apoptotic genes, death receptors, and caspase enzymes, inducing DNA damage and eventually leading to apoptosis. In vitro and in vivo studies showed significant inhibition of cancer growth and the hybrid system PT-1 thus shows promise as a programmed photo-therapeutic (“phototheranostic”).
A non-isotopic assay uses bromouridine and RNA synthesis to detect DNA damage responses.
Hasegawa, Mayu; Iwai, Shigenori; Kuraoka, Isao
2010-06-17
Individuals with inherited xeroderma pigmentosum (XP) disorder and Cockayne syndrome (CS) are deficient in nucleotide excision repair and experience hypersensitivity to sunlight. Although there are several diagnostic assays for these disorders, the recovery of RNA synthesis (RRS) assay that can discriminate between XP cells and CS cells is very laborious. Here, we report on a novel non-radioisotope RRS assay that uses bromouridine (a uridine analog) as an alternative to (3)H-uridine. This assay can easily detect RNA polymerase I transcription in nucleoli and RNA polymerase II transcription in nuclei. The non-RI RSS assay also can rapidly detect normal RRS activity in HeLa cells. Thus, this assay is useful as a novel and easy technique for CS diagnosis. Because RRS is thought to be related to transcription-coupled DNA repair, which is triggered by the blockage of transcriptional machinery by DNA lesions, this assay may be of use for analysis of DNA repair, transcription, and/or genetic toxicity. Copyright 2010 Elsevier B.V. All rights reserved.
Wartlick, Friedrich; Bopp, Anita; Henninger, Christian; Fritz, Gerhard
2013-12-01
Here, we investigated the influence of Rac family small GTPases on mechanisms of the DNA damage response (DDR) stimulated by topoisomerase II poisons. To this end, we examined the influence of the Rac-specific small molecule inhibitor EHT1864 on Ser139 phosphorylation of histone H2AX, a widely used marker of the DDR triggered by DNA double-strand breaks. EHT1864 attenuated the doxorubicin-stimulated DDR in a subset of cell lines tested, including HepG2 hepatoma cells. EHT1864 reduced the level of DNA strand breaks and increased viability following treatment of HepG2 cells with topo II poisons. Protection by EHT1864 was observed in both p53 wildtype (HepG2) and p53 deficient (Hep3B) human hepatoma cells and, furthermore, remained unaffected upon pharmacological inhibition of p53 in HepG2. Apparently, the impact of Rac on the DDR is independent of p53. Protection from doxorubicin-induced DNA damage by EHT1864 comprises both S and G2 phase cells. The inhibitory effect of EHT1864 on doxorubicin-stimulated DDR was mimicked by pharmacological inhibition of various protein kinases, including JNK, ERK, PI3K, PAK and CK1. EHT1864 and protein kinase inhibitors also attenuated the formation of the topo II-DNA cleavable complex. Moreover, EHT1864 mitigated the constitutive phosphorylation of topoisomerase IIα at positions S1106, S1213 and S1247. Doxorubicin transport, nuclear import/export of topoisomerase II and Hsp90-related mechanisms are likely not of relevance for doxorubicin-stimulated DDR impaired by EHT1864. We suggest that multiple kinase-dependent but p53- and heat shock protein-independent Rac-regulated nuclear mechanisms are required for activation of the DDR following treatment with topo II poisons. © 2013.
Wang, Shu-Huei; Lin, Pei-Ya; Chiu, Ya-Chen; Huang, Ju-Sui; Kuo, Yi-Tsen; Wu, Jen-Chine; Chen, Chin-Chuan
2015-01-01
Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity. PMID:26218133
Zemp, Franz J; Sidler, Corinne; Kovalchuk, Igor
2012-07-01
X-ray and UVC are the two physical agents that damage DNA directly, with both agents capable of inducing double-strand breaks. Some of our recent work has demonstrated that local exposure to UVC results in a systemic increase in recombination frequency, suggesting that information about exposure can be passed from damaged to non-damaged tissue. Indeed, we recently showed that plants sharing the same enclosed environment with UVC-irradiated plants exhibit similar increase in homologous recombination frequency as irradiated plants. Here, we further tested whether yet another DNA-damaging agent, X-ray, is capable of increasing recombination rate (RR) in neighboring plants grown in a Petri dish. To test this, we grew plants exposed to X-ray or UVC irradiation in an enclosed environment next to non-exposed plants. We found that both X-ray and UVC-irradiated plants and neighboring plants exhibited comparable increases in the levels of strand breaks and the RR. We further showed that pre-exposure of plants to radical scavenger DMSO substantially alleviates the radiation-induced increase in RR and prevents formation of bystander signal. Our results suggest that the increase in RR in bystander plants can also be triggered by X-ray and that radicals may play some role in initiation or maintenance of this signal.
Zemp, Franz J.; Sidler, Corinne; Kovalchuk, Igor
2012-01-01
X-ray and UVC are the two physical agents that damage DNA directly, with both agents capable of inducing double-strand breaks. Some of our recent work has demonstrated that local exposure to UVC results in a systemic increase in recombination frequency, suggesting that information about exposure can be passed from damaged to non-damaged tissue. Indeed, we recently showed that plants sharing the same enclosed environment with UVC-irradiated plants exhibit similar increase in homologous recombination frequency as irradiated plants. Here, we further tested whether yet another DNA-damaging agent, X-ray, is capable of increasing recombination rate (RR) in neighboring plants grown in a Petri dish. To test this, we grew plants exposed to X-ray or UVC irradiation in an enclosed environment next to non-exposed plants. We found that both X-ray and UVC-irradiated plants and neighboring plants exhibited comparable increases in the levels of strand breaks and the RR. We further showed that pre-exposure of plants to radical scavenger DMSO substantially alleviates the radiation-induced increase in RR and prevents formation of bystander signal. Our results suggest that the increase in RR in bystander plants can also be triggered by X-ray and that radicals may play some role in initiation or maintenance of this signal. PMID:22751301
Choi, Siu-Wai; Yeung, Vincent T F; Collins, Andrew R; Benzie, Iris F F
2015-01-01
Green tea has many reported health benefits, including genoprotective and antioxidant effects, but green tea has pro-oxidant activity in vitro. A tea-induced pro-oxidant shift that triggers cytoprotective adaptations has been postulated, but human data are lacking. We investigated effects on oxidation-induced DNA damage and redox-linked cytoprotective factors, including 8-oxoguanine glycosylase (hOGG1) and heme oxygenase 1 (HMOX-1) in lymphocytes in a randomised, placebo-controlled, cross-over supplementation trial. hOGG1 catalyses the first step in base excision repair; increased HMOX-1 is a sign of cytoprotective response to pro-oxidant change. The influence of microsatellite polymorphisms in the HMOX-1 promoter region was also explored. Higher numbers of GT repeats [GT(n)] in this region reportedly diminish response to pro-oxidant change. Green tea [2 × 150 ml of 1% w/v tea/day (or water as control)] was taken for 12 weeks by 43 Type 2 diabetes subjects {20 with short [S/S; GT(n) < 25] and 23 with long [L/L; GT(n) ≥ 25]}. Fasting venous blood was collected before and after each treatment. The formamidopyrimidine DNA glycosylase-assisted comet assay was used to measure DNA damage in lymphocytes. For measuring hOGG1 activity, we used photo-damaged HeLa cells incubated with lymphocyte extracts from test subjects, in combination with the comet assay. Lymphocyte HMOX-1 and hOGG1 protein concentrations and expression (mRNA) of redox-sensitive genes, including HMOX-1 and hOGG1, were also investigated. Results showed significantly (P < 0.01) lower (~15%) DNA damage, higher (~50%) hOGG1 activity and higher (~40%) HMOX-1 protein concentration after tea. No changes in mRNA expression were seen. Baseline HMOX-1 protein and hOGG1 activity were higher (P < 0.05) in the S/S group, but tea-associated responses were similar in both GT(n) groups. Green tea is clearly associated with lowered DNA damage, increased hOGG1 activity and higher HMOX-1 protein levels. Further study is needed to confirm a cause and effect relationship and to establish if these effects are mediated by post-translational changes in proteins or by increased gene expression. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2015-01-01
Diesel exhaust has been classified as a potential carcinogen and is associated with various health effects. A previous study showed that the doses for manifesting the mutagenetic effects of diesel exhaust could be reduced when coexposed with ultraviolet-A (UVA) in a cellular system. However, the mechanisms underlying synergistic effects remain to be clarified, especially in an in vivo system. In the present study, using Caenorhabditis elegans (C. elegans) as an in vivo system we studied the synergistic effects of diesel particulate extract (DPE) plus UVA, and the underlying mechanisms were dissected genetically using related mutants. Our results demonstrated that though coexposure of wild type worms at young adult stage to low doses of DPE (20 μg/mL) plus UVA (0.2, 0.5, and 1.0 J/cm2) did not affect worm development (mitotic germ cells and brood size), it resulted in a significant induction of germ cell death. Using the strain of hus-1::gfp, distinct foci of HUS-1::GFP was observed in proliferating germ cells, indicating the DNA damage after worms were treated with DPE plus UVA. Moreover, the induction of germ cell death by DPE plus UVA was alleviated in single-gene loss-of-function mutations of core apoptotic, checkpoint HUS-1, CEP-1/p53, and MAPK dependent signaling pathways. Using a reactive oxygen species (ROS) probe, it was found that the production of ROS in worms coexposed to DPE plus UVA increased in a time-dependent manner. In addition, employing a singlet oxygen (1O2) trapping probe, 2,2,6,6-tetramethyl-4-piperidone, coupled with electron spin resonance analysis, we demonstrated the increased 1O2 production in worms coexposed to DPE plus UVA. These results indicated that UVA could enhance the apoptotic induction of DPE at low doses through a DNA damage-triggered pathway and that the production of ROS, especially 1O2, played a pivotal role in initiating the synergistic process. PMID:24841043
A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Ren-Jie
The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel anti-microtubule drug, ABT-751, in hepatocellular carcinoma-derived Huh-7 cells. Effects of ABT-751 were evaluated by immunocytochemistry, flow cytometric, alkaline comet, soft agar, immunoblotting, CytoID, green fluorescent protein-microtubule associated protein 1 light chain 3 beta detection, plasmid transfection, nuclear/cytosol fractionation, coimmunoprecipitation, quantitative reverse transcription-polymerase chain reaction, small-hairpin RNA interference and mitochondria/cytosol fractionation assays. Results showed that ABT-751 caused dysregulation of microtubule, collapse of mitochondrial membrane potential, generation of reactive oxygen species (ROS), DNA damage, G{sub 2}/M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosismore » in Huh-7 cells. ABT-751 also induced early autophagy via upregulation of nuclear TP53 and downregulation of the AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (MTOR) pathway. Through modulation of the expression levels of DNA damage checkpoint proteins and G{sub 2}/M cell cycle regulators, ABT-751 induced G{sub 2}/M cell cycle arrest. Subsequently, ABT-751 triggered apoptosis with marked downregulation of B-cell CLL/lymphoma 2, upregulation of mitochondrial BCL2 antagonist/killer 1 and BCL2 like 11 protein levels, and cleavages of caspase 8 (CASP8), CASP9, CASP3 and DNA fragmentation factor subunit alpha proteins. Suppression of ROS significantly decreased ABT-751-induced autophagic and apoptotic cells. Pharmacological inhibition of autophagy significantly increased the percentages of ABT-751-induced apoptotic cells. The autophagy induced by ABT-751 plays a protective role to postpone apoptosis by exerting adaptive responses following microtubule damage, ROS and/or impaired mitochondria. - Highlights: • An anti-microtubule agent, ABT-751, induces autophagy and apoptosis in Huh-7 cells. • ABT-751 induces early autophagy and delays apoptosis. • ABT-751 induces autophagy via modulations of nuclear TP53 and AKT/MTOR pathways. • ABT-751-induced apoptosis is ROS-, mitochondria- and caspase-dependent. • Inhibition of autophagy enhances ABT-751-induced apoptosis.« less
[SOS response of DNA repair and genetic cell instability under hypoxic conditions].
Vasil'eva, S V; Strel'tsova, D A
2011-01-01
The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.
NASA Astrophysics Data System (ADS)
Handayani, S.; Dani, I. C.; Budiawan; Pakuanisa, D.
2017-05-01
The research of DNA adduct formation 8-hydroxy-2’-Deoxyguanosine (8-OHdG) as a biomarker of DNA damage due to oxidative stress was carried out by reacting the DNA base 2’-deoxyguanosine-5’-monophosphate with TBHQ and BHT. The formationof 8-OHdG was carried out in various conditions, at temperature of 37° C and 60° C, pH 7.4 and pH 8.4, within 5 hours of incubation time and in the addition of FeSO4. The formation of DNA adducts profile were analyzed using reversed phase HPLC with UV detector at a wavelength of 254 nm. The results of the study showed that TBHQ and BHT can trigger the formation of 8-OHdG from the reaction of 2’-hydroxy Deoxyguanosine-5’-monophosphate in the presence of Fe (II). Meanwhile, in the addition of hydrogen peroxide, the formation of DNA adducts only occur in the test substance TBHQ. The results showed that the condition of higher temperature at 60°C and pH 8,4 affects the higher formation of DNA adducts.
Recruitment of TRF2 to laser-induced DNA damage sites.
Huda, Nazmul; Abe, Satoshi; Gu, Ling; Mendonca, Marc S; Mohanty, Samarendra; Gilley, David
2012-09-01
Several lines of evidence suggest that the telomere-associated protein TRF2 plays critical roles in the DNA damage response. TRF2 is rapidly and transiently phosphorylated by an ATM-dependent pathway in response to DNA damage and this DNA damage-induced phosphoryation is essential for the DNA-PK-dependent pathway of DNA double-strand break repair (DSB). However, the type of DNA damage that induces TRF2 localization to the damage sites, the requirement for DNA damage-induced phosphorylation of TRF2 for its recruitment, as well as the detailed kinetics of TRF2 accumulation at DNA damage sites have not been fully investigated. In order to address these questions, we used an ultrafast femtosecond multiphoton laser and a continuous wave 405-nm single photon laser to induce DNA damage at defined nuclear locations. Our results showed that DNA damage produced by a femtosecond multiphoton laser was sufficient for localization of TRF2 to these DNA damage sites. We also demonstrate that ectopically expressed TRF2 was recruited to DNA lesions created by a 405-nm laser. Our data suggest that ATM and DNA-PKcs kinases are not required for TRF2 localization to DNA damage sites. Furthermore, we found that phosphorylation of TRF2 at residue T188 was not essential for its recruitment to laser-induced DNA damage sites. Thus, we provide further evidence that a protein known to function in telomere maintenance, TRF2, is recruited to sites of DNA damage and plays critical roles in the DNA damage response. Copyright © 2012 Elsevier Inc. All rights reserved.
González-Mille, Donaji J; Ilizaliturri-Hernández, César A; Espinosa-Reyes, Guillermo; Costilla-Salazar, Rogelio; Díaz-Barriga, Fernando; Ize-Lema, Irina; Mejía-Saavedra, Jesús
2010-10-01
The region of Coatzacoalcos, Veracruz hosts one of the largest and most important industrial areas of Mexico and Latin America. Industrial development and rapid population growth, have triggered a severe impact on aquatic ecosystems of the region. The aim of this study was to determine the levels of POPs in sediment and in muscle tissue of five fish species from different trophic levels in downstream residents of the Coatzacoalcos River, and their integration with DNA damage in the fish, evaluated with the comet assay in whole blood as a biological indicator of stress, in order to obtain a baseline of the ecological condition of the region. The compounds detected in sediment and in muscle tissue were hexachlorobenzene (HCB), α-, β-, γ-hexachlorocyclohexane (HCH), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), mirex and polychlorinated biphenyls (PCBs). Sediment concentrations of these pollutants (except for mirex) exceeded the values of protection provided by international guidelines, suggesting a potential risk to aquatic life in the region. DNA damage recorded in the fish species is evidence of exposure to a mix of genotoxic pollutants, which combined with exposure to POPs, reflects the degree of environmental stress of aquatic organisms in the region. The results of this study show the importance of determining the presence of contaminants in the environment, the bioaccumulation in tissues and their effects on exposed organisms, providing an integrated approach in assessing the health of aquatic ecosystems.
Cai, Qing; Wang, Juan-Juan; Shao, Wei; Ying, Sheng-Hua; Feng, Ming-Guang
2018-04-27
Rtt109 is a histone acetyltransferase that catalyzes histone H3K56 acetylation required for genomic stability, DNA damage repair and virulence-related gene activity in yeast-like human pathogens but remains functionally unknown in fungal insect pathogens. This study seeks to elucidate catalytic activity of Rtt109 orthologue and its possible role in sustaining biological control potential of Beauveria bassiana, a fungal entomopathogen. Deletion of rtt109 in B. bassiana abolished histone H3K56 acetylation and triggered histone H2A-S129 phosphorylation. Consequently, the deletion mutant showed increased sensitivities to the stresses of DNA damage, oxidation, cell wall perturbation, high osmolarity and heat shock during colony growth, severe conidiation defects under normal culture conditions, reduced conidial hydrophobicity, decreased conidial UV-B resistance, and attenuated virulence through normal cuticle infection. These phenotypic changes correlated well with reduced transcript levels of many genes, which encode the families of H2A-S129 dephosphorylation-related protein phosphotases, DNA damage-repairing factors, antioxidant enzymes, heat-shock proteins, key developmental activators, hydrophobins and cuticle-degrading Pr1 proteases respectively. Rtt109 can acetylate H3K56 and dephosphorylate H2A-S129 in direct and indirect manners respectively, and hence plays an essential role in sustaining genomic stability and global gene activity required for conidiation capacity, environmental fitness and pest-control potential in B. bassiana. This article is protected by copyright. All rights reserved.
de Souza Grinevicius, Valdelúcia Maria Alves; Kviecinski, Maicon Roberto; Santos Mota, Nádia Sandrini Ramos; Ourique, Fabiana; Porfirio Will Castro, Luiza Sheyla Evenni; Andreguetti, Rafaela Rafognato; Gomes Correia, João Francisco; Filho, Danilo Wilhem; Pich, Claus Tröger; Pedrosa, Rozangela Curi
2016-08-02
Ayurvedic and Chinese traditional medicine and tribal people use herbal preparations containing Piper nigrum fruits for the treatment of many health disorders like inflammation, fever, asthma and cancer. In Brazil, traditional maroon culture associates the spice Piper nigrum to health recovery and inflammation attenuation. The aim of the current work was to evaluate the relationship between reactive oxygen species (ROS) overproduction, DNA fragmentation, cell cycle arrest and apoptosis induced by Piper nigrum ethanolic extract and its antitumor activity. The plant was macerated in ethanol. Extract constitution was assessed by TLC, UV-vis and ESI-IT-MS/MS spectrometry. The cytotoxicity, proliferation and intracellular ROS generation was evaluated in MCF-7 cells. DNA damage effects were evaluated through intercalation into CT-DNA, plasmid DNA cleavage and oxidative damage in CT-DNA. Tumor growth inhibition, survival time increase, apoptosis, cell cycle arrest and oxidative stress were assessed in Ehrlich ascites carcinoma-bearing mice. Extraction yielded 64mg/g (36% piperine and 4.2% piperyline). Treatments caused DNA damage and reduced cell viability (EC50=27.1±2.0 and 80.5±6.6µg/ml in MCF-7 and HT-29 cells, respectively), inhibiting cell proliferation by 57% and increased ROS generation in MCF-7 cells (65%). Ehrlich carcinoma was inhibited by the extract, which caused reduction of tumor growth (60%), elevated survival time (76%), cell cycle arrest and induced apoptosis. The treatment with extract increased Bax and p53 and inhibited Bcl-xL and cyclin A expression. It also induced an oxidative stress in vivo verified as enhanced lipid peroxidation and carbonyl proteins content and increased activities of glutathione reductase, superoxide dismutase and catalase. GSH concentration was decreased in tumor tissue from mice. The ethanolic extract has cytotoxic and antiproliferative effect on MCF-7 cells and antitumor effect in vivo probably due to ROS overproduction that induced oxidative stress affecting key proteins involved in cell cycle arrest at G1/S and triggering apoptosis. Finally, the overall data from this study are well in line with the traditional claims for the antitumor effect of Piper nigrum fruits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cytosolic sensing of immuno-stimulatory DNA, the enemy within.
Dhanwani, Rekha; Takahashi, Mariko; Sharma, Sonia
2018-02-01
In the cytoplasm, DNA is sensed as a universal danger signal by the innate immune system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor/enzyme that catalyzes formation of 2'-5'-cGAMP, an atypical cyclic di-nucleotide second messenger that binds and activates the Stimulator of Interferon Genes (STING), resulting in recruitment of Tank Binding Kinase 1 (TBK1), activation of the transcription factor Interferon Regulatory Factor 3 (IRF3), and trans-activation of innate immune response genes, including type I Interferon cytokines (IFN-I). Activation of the pro-inflammatory cGAS-STING-IRF3 response is triggered by direct recognition of the DNA genomes of bacteria and viruses, but also during RNA virus infection, neoplastic transformation, tumor immunotherapy and systemic auto-inflammatory diseases. In these circumstances, the source of immuno-stimulatory DNA has often represented a fundamental yet poorly understood aspect of the response. This review focuses on recent findings related to cGAS activation by an array of self-derived DNA substrates, including endogenous retroviral elements, mitochondrial DNA (mtDNA) and micronuclei generated as a result of genotoxic stress and DNA damage. These findings emphasize the role of the cGAS axis as a cell-intrinsic innate immune response to a wide variety of genomic insults. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, N.; Kumar, S.; Marlowe, T.
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less
Ozdian, Tomas; Holub, Dusan; Maceckova, Zuzana; Varanasi, Lakshman; Rylova, Gabriela; Rehulka, Jiri; Vaclavkova, Jana; Slavik, Hanus; Moudry, Pavel; Znojek, Pawel; Stankova, Jarmila; de Sanctis, Juan Bautista; Hajduch, Marian; Dzubak, Petr
2017-06-06
Oxaliplatin is widely used to treat colorectal cancer in both palliative and adjuvant settings. It is also being tested for use in treating hematological, esophageal, biliary tract, pancreatic, gastric, and hepatocellular cancers. Despite its routine clinical use, little is known about the responses it induces in cancer cells. Therefore the whole-cell proteomics study was conducted to characterize the cellular response induced by oxaliplatin. Chemosensitive CCRF-CEM cells were treated with oxaliplatin at 29.3μM (5×IC 50 ) for 240min (half-time to caspase activation). The proteomes of un-/treated cells were then compared by high-resolution mass spectrometry, revealing 4049 proteins expressed over 3 biological replicates. Among these proteins, 76 were significantly downregulated and 31 significantly upregulated in at least two replicates. In agreement with the DNA-damaging effects of platinum drugs, proteins involved in DNA damage responses were present in both the upregulated and downregulated groups. The downregulated proteins were divided into three subgroups; i) centrosomal proteins, ii) RNA processing and iii) ribosomal proteins, which indicates nucleolar and ribosomal stress. In conclusion, our data supported by further validation experiments indicate the initial cellular response to oxaliplatin is the activation of DNA damage response, which in turn or in parallel triggers nucleolar and ribosomal stress. We have performed a whole-cell proteomic study of cellular response to oxaliplatin treatment, which is the drug predominantly used in the treatment of colorectal cancer. Compared to its predecessors, cisplatin and carboplatin, there is only a small fraction of studies dedicated to oxaliplatin. From those studies, most of them are focused on modification of treatment regimens or study of oxaliplatin in new cancer diagnoses. Cellular response hasn't been studied deeply and to our best knowledge, this is the first whole-cell proteomics study focused exclusively to this important topic, which can help to understand molecular mechanisms of action. Copyright © 2017 Elsevier B.V. All rights reserved.
Yadav, N.; Kumar, S.; Marlowe, T.; ...
2015-11-05
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less
Fernandez-Palomo, Cristian; Mothersill, Carmel; Bräuer-Krisch, Elke; Laissue, Jean; Seymour, Colin; Schültke, Elisabeth
2015-01-01
Objective Synchrotron radiation has shown high therapeutic potential in small animal models of malignant brain tumours. However, more studies are needed to understand the radiobiological effects caused by the delivery of high doses of spatially fractionated x-rays in tissue. The purpose of this study was to explore the use of the γ-H2AX antibody as a marker for dose deposition in the brain of rats after synchrotron microbeam radiation therapy (MRT). Methods Normal and tumour-bearing Wistar rats were exposed to 35, 70 or 350 Gy of MRT to their right cerebral hemisphere. The brains were extracted either at 4 or 8 hours after irradiation and immediately placed in formalin. Sections of paraffin-embedded tissue were incubated with anti γ-H2AX primary antibody. Results While the presence of the C6 glioma does not seem to modulate the formation of γ-H2AX in normal tissue, the irradiation dose and the recovery versus time are the most important factors affecting the development of γ-H2AX foci. Our results also suggest that doses of 350 Gy can trigger the release of bystander signals that significantly amplify the DNA damage caused by radiation and that the γ-H2AX biomarker does not only represent DNA damage produced by radiation, but also damage caused by bystander effects. Conclusion In conclusion, we suggest that the γ-H2AX foci should be used as biomarker for targeted and non-targeted DNA damage after synchrotron radiation rather than a tool to measure the actual physical doses. PMID:25799425
Pathophysiology of ocular surface squamous neoplasia
Gichuhi, Stephen; Ohnuma, Shin-ichi; Sagoo, Mandeep S.; Burton, Matthew J.
2014-01-01
The incidence of ocular surface squamous neoplasia (OSSN) is strongly associated with solar ultraviolet (UV) radiation, HIV and human papilloma virus (HPV). Africa has the highest incidence rates in the world. Most lesions occur at the limbus within the interpalpebral fissure particularly the nasal sector. The nasal limbus receives the highest intensity of sunlight. Limbal epithelial crypts are concentrated nasally and contain niches of limbal epithelial stem cells in the basal layer. It is possible that these are the progenitor cells in OSSN. OSSN arises in the basal epithelial cells spreading towards the surface which resembles the movement of corneo-limbal stem cell progeny before it later invades through the basement membrane below. UV radiation damages DNA producing pyrimidine dimers in the DNA chain. Specific CC → TT base pair dimer transformations of the p53 tumour-suppressor gene occur in OSSN allowing cells with damaged DNA past the G1-S cell cycle checkpoint. UV radiation also causes local and systemic photoimmunosuppression and reactivates latent viruses such as HPV. The E7 proteins of HPV promote proliferation of infected epithelial cells via the retinoblastoma gene while E6 proteins prevent the p53 tumour suppressor gene from effecting cell-cycle arrest of DNA-damaged and infected cells. Immunosuppression from UV radiation, HIV and vitamin A deficiency impairs tumour immune surveillance allowing survival of aberrant cells. Tumour growth and metastases are enhanced by; telomerase reactivation which increases the number of cell divisions a cell can undergo; vascular endothelial growth factor for angiogenesis and matrix metalloproteinases (MMPs) that destroy the intercellular matrix between cells. Despite these potential triggers, the disease is usually unilateral. It is unclear how HPV reaches the conjunctiva. PMID:25447808
Light-Triggered Release of DNA from Plasmon-Resonant Nanoparticles
NASA Astrophysics Data System (ADS)
Huschka, Ryan
Plasmon-resonant nanoparticle complexes show promising potential for lighttriggered, controllable delivery of deoxyribonucleic acids (DNA) for research and therapeutic purposes. For example, the approach of RNA interference (RNAi) . using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein . is very useful in dissecting genetic function and holds promise as a molecular therapeutic. Herein, we investigate the mechanism and probe the in vitro therapeutic potential of DNA light-triggered release from plasmonic nanoparticles. First, we investigate the mechanism of light-triggered release by dehybridizing double-stranded (dsDNA) via laser illumination from two types of nanoparticle substrates: gold (Au) nanoshells and Au nanorods. Both light-triggered and thermally induced releases are distinctly observable from nanoshell-based complexes. Surprisingly, no analogous measurable light-triggered release was observable from nanorod-based complexes below the DNA melting temperature. These results suggest that a nonthermal mechanism may play a role in light-triggered DNA release. Second, we demonstrate the in vitro light-triggered release of molecules noncovalently attached within dsDNA bound to the Au nanoshell surface. DAPI (4',6- diamidino-2-phenylindole), a bright blue fluorescent molecule that binds reversibly to double-stranded DNA, was chosen to visualize this intracellular light-induced release process. Illumination through the cell membrane of the nanoshell-dsDNA-DAPI complexes dehybridizes the DNA and releases the DAPI molecules within living cells. The DAPI molecules diffuse to the nucleus and associate with the cell's endogenous DNA. This work could have future applications towards drug delivery of molecules that associate with dsDNA. Finally, we demonstrate an engineered Au nanoshell (AuNS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on demand upon illumination with a near-infrared (NIR) laser. A poly(L)lysine peptide (PLL) epilayer coated onto the AuNS surface (AuNS-PLL) is used to capture intact, single-stranded antisense DNA oligonucleotide, or alternatively, double-stranded short-interfering RNA (siRNA) molecules. A green fluorescent protein (GFP)-expressing human lung cancer H1299 cell line was used to determine cellular uptake and GFP gene silencing mediated by AuNS-PLL delivery vector. The light-triggered release of oligonucleotides could have broad applications in the study of cellular processes and in the development of intracellular targeted therapies.
11th International Conference of Radiation Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-07-18
Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNAmore » repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.« less
Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells.
Lin, Zhi-Kun; Liu, Jia; Jiang, Guo-Qiang; Tan, Guang; Gong, Peng; Luo, Hai-Feng; Li, Hui-Min; Du, Jian; Ning, Zhen; Xin, Yi; Wang, Zhong-Yu
2017-03-01
Hepatocellular carcinoma (HCC) accounts for approximately 90% of all cases of primary liver cancer, and the majority of patients with HCC are deprived of effective curative methods. Osthole is a Chinese herbal medicine which has been reported to possess various pharmacological functions, including hepatocellular protection. In the present study, we investigated the anticancer activity of osthole using HCC cell lines. We found that osthole inhibited HCC cell proliferation, induced cell cycle arrest, triggered DNA damage and suppressed migration in HCC cell lines. Furthermore, we demonstrated that osthole not only contributed to cell cycle G2/M phase arrest via downregulation of Cdc2 and cyclin B1 levels, but also induced DNA damage via an increase in ERCC1 expression. In addition, osthole inhibited the migration of HCC cell lines by significantly downregulating MMP-2 and MMP-9 levels. Finally, we demonstrated that osthole inhibited epithelial-mesenchymal transition (EMT) via increasing the expression of epithelial biomarkers E-cadherin and β-catenin, and significantly decreasing mesenchymal N-cadherin and vimentin protein expression. These results suggest that osthole may have potential chemotherapeutic activity against HCC.
Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.
Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi
2011-01-01
Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.
Nedelcu, Aurora M; Marcu, Oana; Michod, Richard E
2004-08-07
Organisms are constantly subjected to factors that can alter the cellular redox balance and result in the formation of a series of highly reactive molecules known as reactive oxygen species (ROS). As ROS can be damaging to biological structures, cells evolved a series of mechanisms (e.g. cell-cycle arrest, programmed cell death) to respond to high levels of ROS (i.e. oxidative stress). Recently, we presented evidence that in a facultatively sexual lineage--the multicellular green alga Volvox carteri--sex is an additional response to increased levels of stress, and probably ROS and DNA damage. Here we show that, in V. carteri, (i) sex is triggered by an approximately twofold increase in the level of cellular ROS (induced either by the natural sex-inducing stress, namely heat, or by blocking the mitochondrial electron transport chain with antimycin A), and (ii) ROS are responsible for the activation of sex genes. As most types of stress result in the overproduction of ROS, we believe that our findings will prove to extend to other facultatively sexual lineages, which could be indicative of the ancestral role of sex as an adaptive response to stress and ROS-induced DNA damage. Copyright 2004 The Royal Society
Rao, Feng; Xu, Jing; Khan, A. Basit; Gadalla, Moataz M.; Cha, Jiyoung Y.; Xu, Risheng; Tyagi, Richa; Dang, Yongjun; Chakraborty, Anutosh; Snyder, Solomon H.
2014-01-01
Inositol polyphosphates containing an energetic pyrophosphate bond are formed primarily by a family of three inositol hexakisphosphate (IP6) kinases (IP6K1–3). The Cullin-RING ubiquitin ligases (CRLs) regulate diverse biological processes through substrate ubiquitylation. CRL4, comprising the scaffold Cullin 4A/B, the E2-interacting Roc1/2, and the adaptor protein damage-specific DNA-binding protein 1, is activated by DNA damage. Basal CRL4 activity is inhibited by binding to the COP9 signalosome (CSN). UV radiation and other stressors dissociate the complex, leading to E3 ligase activation, but signaling events that trigger signalosome dissociation from CRL4 have been unclear. In the present study, we show that, under basal conditions, IP6K1 forms a ternary complex with CSN and CRL4 in which IP6K1 and CRL4 are inactive. UV dissociates IP6K1 to generate IP7, which then dissociates CSN–CRL4 to activate CRL4. Thus, IP6K1 is a novel CRL4 subunit that transduces UV signals to mediate disassembly of the CRL4–CSN complex, thereby regulating nucleotide excision repair and cell death. PMID:25349427
Sankar, Savita; Patterson, Ethan; Lewis, Emily M.; Waller, Laura E.; Tong, Caili; Dearborn, Joshua; Wozniak, David; Rubin, Joshua B.; Kroll, Kristen L.
2017-01-01
Medulloblastoma is the most common malignant brain cancer of childhood. Further understanding of tumorigenic mechanisms may define new therapeutic targets. Geminin maintains genome fidelity by controlling re-initiation of DNA replication within a cell cycle. In some contexts, Geminin inhibition induces cancer-selective cell cycle arrest and apoptosis and/or sensitizes cancer cells to Topoisomerase IIα inhibitors such as etoposide, which is used in combination chemotherapies for medulloblastoma. However, Geminin's potential role in medulloblastoma tumorigenesis remained undefined. Here, we found that Geminin is highly expressed in human and mouse medulloblastomas and in murine granule neuron precursor (GNP) cells during cerebellar development. Conditional Geminin loss significantly enhanced survival in the SmoA1 mouse medulloblastoma model. Geminin loss in this model also reduced numbers of preneoplastic GNPs persisting at one postnatal month, while at two postnatal weeks these cells exhibited an elevated DNA damage response and apoptosis. Geminin knockdown likewise impaired human medulloblastoma cell growth, activating G2 checkpoint and DNA damage response pathways, triggering spontaneous apoptosis, and enhancing G2 accumulation of cells in response to etoposide treatment. Together, these data suggest preneoplastic and cancer cell-selective roles for Geminin in medulloblastoma, and suggest that targeting Geminin may impair tumor growth and enhance responsiveness to Topoisomerase IIα-directed chemotherapies. PMID:29234490
Boovarahan, Sri Rahavi; Kurian, Gino A
2018-01-18
Air pollution has become an environmental burden with regard to non-communicable diseases, particularly heart disease. It has been reported that air pollution can accelerate the development of heart failure and atrial fibrillation. Air pollutants encompass various particulate matters (PMs), which change the blood composition and heart rate and eventually leads to cardiac failure by triggering atherosclerotic plaque ruptures or by developing irreversible ischemia. A series of major epidemiological and observational studies have established the noxious effect of air pollutants on cardiovascular diseases (CVD), but the underlying molecular mechanisms of its susceptibility and the pathological disease events remain largely elusive and are predicted to be initiated in the cell organelle. The basis of this belief is that mitochondria are one of the major targets of environmental toxicants that can damage mitochondrial morphology, function and its DNA (manifested in non-communicable diseases). In this article, we review the literature related to air pollutants that adversely affect the progression of CVD and that target mitochondrial morphological and functional activities and how mitochondrial DNA (mtDNA) copy number variation, which reflects the airborne oxidant-induced cell damage, correlates with heart failure. We conclude that environmental health assessment should focus on the cellular/circulatory mitochondrial functional copy number status, which can predict the outcome of CVD.
Kitanovic, Ana; Walther, Thomas; Loret, Marie Odile; Holzwarth, Jinda; Kitanovic, Igor; Bonowski, Felix; Van Bui, Ngoc; Francois, Jean Marie; Wölfl, Stefan
2009-06-01
Maintenance and adaptation of energy metabolism could play an important role in the cellular ability to respond to DNA damage. A large number of studies suggest that the sensitivity of cells to oxidants and oxidative stress depends on the activity of cellular metabolism and is dependent on the glucose concentration. In fact, yeast cells that utilize fermentative carbon sources and hence rely mainly on glycolysis for energy appear to be more sensitive to oxidative stress. Here we show that treatment of the yeast Saccharomyces cerevisiae growing on a glucose-rich medium with the DNA alkylating agent methyl methanesulphonate (MMS) triggers a rapid inhibition of respiration and enhances reactive oxygen species (ROS) production, which is accompanied by a strong suppression of glycolysis. Further, diminished activity of pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase upon MMS treatment leads to a diversion of glucose carbon to glycerol, trehalose and glycogen accumulation and an increased flux through the pentose-phosphate pathway. Such conditions finally result in a significant decline in the ATP level and energy charge. These effects are dependent on the glucose concentration in the medium. Our results clearly demonstrate that calorie restriction reduces MMS toxicity through increased respiration and reduced ROS accumulation, enhancing the survival and recovery of cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanan, Raynoo; Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507; Ma, Ning
2012-05-04
Highlights: Black-Right-Pointing-Pointer Inflammation by Barrett's esophagus (BE) is a risk factor of its adenocarcinoma (BEA). Black-Right-Pointing-Pointer 8-Nitroguanine and 8-oxodG are inflammation-related DNA lesions. Black-Right-Pointing-Pointer DNA lesions and iNOS expression were higher in the order, BEA > BE > normal tissues. Black-Right-Pointing-Pointer Proton pump inhibitors suppress DNA damage by increasing Mn-SOD via Nrf2 activation. Black-Right-Pointing-Pointer DNA lesions can be useful biomarkers to predict risk of BEA in BE patients. -- Abstract: Barrett's esophagus (BE), an inflammatory disease, is a risk factor for Barrett's esophageal adenocarcinoma (BEA). Treatment of BE patients with proton pump inhibitors (PPIs) is expected to reduce the riskmore » of BEA. We performed an immunohistochemical study to examine the formation of nitrative and oxidative DNA lesions, 8-nitroguanine and 8-oxo-7,8-dihydro-2 Prime -deoxygaunosine (8-oxodG), in normal esophageal, BE with pre- and post-treatment by PPIs and BEA tissues. We also observed the expression of an oxidant-generating enzyme (iNOS) and its transcription factor NF-{kappa}B, an antioxidant enzyme (Mn-SOD), its transcription factor (Nrf2) and an Nrf2 inhibitor (Keap1). The immunoreactivity of DNA lesions was significantly higher in the order of BEA > BE > normal tissues. iNOS expression was significantly higher in the order of BEA > BE > normal tissues, while Mn-SOD expression was significantly lower in the order of BEA < BE < normal tissues. Interestingly, Mn-SOD expression and the nuclear localization of Nrf2 were significantly increased, and the formation of DNA lesions was significantly decreased in BE tissues after PPIs treatment for 3-6 months. Keap1 and iNOS expression was not significantly changed by the PPIs treatment in BE tissues. These results indicate that 8-nitroguanine and 8-oxodG play a role in BE-derived BEA. Additionally, PPIs treatment may trigger the activation and nuclear translocation of Nrf2 resulting in the expression of antioxidant genes, leading to DNA damage suppression. These DNA lesions can be useful biomarkers to predict both the risk of BEA and the efficacy of PPIs treatment to prevent BEA in BE patients.« less
Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.
Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio
2017-08-31
Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.
Bhargava, Arpit; Tamrakar, Shivani; Aglawe, Aniket; Lad, Harsha; Srivastava, Rupesh Kumar; Mishra, Dinesh Kumar; Tiwari, Rajnarayan; Chaudhury, Koel; Goryacheva, Irina Yu; Mishra, Pradyumna Kumar
2018-03-01
Particulate matter (PM), broadly defined as coarse (2.5-10 μm), fine (0.1-2.5 μm) and ultrafine particles (≤0.1 μm), is a major constituent of ambient air pollution. Recent studies have linked PM exposure (coarse and fine particles) with several human diseases including cancer. However, the molecular mechanisms underlying ultrafine PM exposure induced cellular and sub-cellular repercussions are ill-defined. Since mitochondria are one of the major targets of different environmental pollutants, we herein aimed to understand the molecular repercussion of ultrafine PM exposure on mitochondrial machinery in peripheral blood lymphocytes. Upon comparative analysis, a significantly higher DCF fluorescence was observed in ultrafine PM exposed cells that confirmed the strong pro-oxidant nature of these particles. In addition, the depleted activity of antioxidant enzymes, glutathione reductase and superoxide dismutase suggested the strong association of ultrafine PM with oxidative stress. These results further coincided with mitochondrial membrane depolarization, altered mitochondrial respiratory chain enzyme activity and decline in mtDNA copy number. Moreover, the higher accumulation of DNA damage response proteins (γH2AX, pATM, p-p53), suggested that exposure to ultrafine PM induces DNA damage and triggers phosphatidylinositol 3 kinase mediated response pathway. Further, the alterations in mitochondrial machinery and redox balance among ultrafine PM exposed cells were accompanied by a considerably elevated pro-inflammatory cytokine response. Interestingly, the lower apoptosis levels observed in ultrafine particle treated cells suggest the possibility that the marked alterations may lead to the impairment of mitochondrial-nuclear cross talk. Together, our results showed that ultrafine PM, because of their smaller size possesses significant ability to disturb mitochondrial redox homeostasis and activates phosphatidylinositol 3 kinase mediated DNA damage response pathway, an unknown molecular paradigm of ultrafine PM exposure. Our findings also indicate that maneuvering through the mitochondrial function might be a viable, indirect method to modulate lymphocyte homeostasis in air pollution associated immune disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars
2014-06-01
The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
Study on Excitation-triggered Damage Mechanism in Perilous Rock
NASA Astrophysics Data System (ADS)
Chen, Hongkai; Wang, Shengjuan
2017-12-01
Chain collapse is easy to happen for perilous rock aggregate locating on steep high slope, and one of the key scientific problems is the damage mechanism of perilous rock under excitation action at perilous rock rupture. This paper studies excitation-triggered damage mechanism in perilous rock by wave mechanics, which gives three conclusions. Firstly, when only the normal incidence attenuation spread of excitation wave is considered, while the energy loss is ignored for excitation wave to spread in perilous rock aggregate, the paper establishes one method to calculate peak velocity when excitation wave passes through boundary between any two perilous rock blocks in perilous rock aggregate. Secondly, following by Sweden and Canmet criteria, the paper provides one wave velocity criterion for excitation-triggered damage in the aggregate. Thirdly, assuming double parameters of volume strain of cracks or fissures in rock meet the Weibull distribution, one method to estimate micro-fissure in excitation-triggered damage zone in perilous rock aggregate is established. The studies solve the mechanical description problem for excitation-triggered damage in perilous rock, which is valuable in studies on profoundly rupture mechanism.
Protein Interactions in T7 DNA Replisome Facilitate DNA Damage Bypass.
Zou, Zhenyu; Chen, Ze; Xue, Qizhen; Xu, Ying; Xiong, Jingyuan; Yang, Ping; Le, Shuai; Zhang, Huidong
2018-06-14
DNA replisome inevitably encounters DNA damage during DNA replication. T7 DNA replisome contains DNA polymerase (gp5), the processivity factor thioredoxin (trx), helicase-primase (gp4), and ssDNA binding protein (gp2.5). T7 protein interactions mediate this DNA replication. However, whether the protein interactions could promote DNA damage bypass is still little addressed. In this study, we investigated the strand-displacement DNA synthesis past 8-oxoG or O6-MeG at the synthetic DNA fork by T7 DNA replisome. DNA damage does not obviously affect the binding affinities among helicase, polymerase, and DNA fork. Relative to unmodified G, both 8-oxoG and O6-MeG, as well as GC-rich template sequence clusters, inhibit the strand-displacement DNA synthesis and produce partial extension products. Relative to gp4 ΔC-tail, gp4 promotes the DNA damage bypass. The presence of gp2.5 further promotes this bypass. Thus, the interactions of polymerase with helicase and ssDNA binidng protein faciliate the DNA damage bypass. Similarly, accessory proteins in other complicated DNA replisomes also facilitate the DNA damage bypass. This work provides the novel mechanism information of DNA damage bypass by DNA replisome. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.
Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H
2017-03-01
Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.
Interplay between DNA repair and inflammation, and the link to cancer
Kidane, Dawit; Chae, Wook Jin; Czochor, Jennifer; Eckert, Kristin A.; Glazer, Peter M.; Bothwell, Alfred L. M.; Sweasy, Joann B.
2015-01-01
DNA damage and repair are linked to cancer. DNA damage that is induced endogenously or from exogenous sources has the potential to result in mutations and genomic instability if not properly repaired, eventually leading to cancer. Inflammation is also linked to cancer. Reactive oxygen and nitrogen species (RONs) produced by inflammatory cells at sites of infection can induce DNA damage. RONs can also amplify inflammatory responses, leading to increased DNA damage. Here, we focus on the links between DNA damage, repair, and inflammation, as they relate to cancer. We examine the interplay between chronic inflammation, DNA damage and repair and review recent findings in this rapidly emerging field, including the links between DNA damage and the innate immune system, and the roles of inflammation in altering the microbiome, which subsequently leads to the induction of DNA damage in the colon. Mouse models of defective DNA repair and inflammatory control are extensively reviewed, including treatment of mouse models with pathogens, which leads to DNA damage. The roles of microRNAs in regulating inflammation and DNA repair are discussed. Importantly, DNA repair and inflammation are linked in many important ways, and in some cases balance each other to maintain homeostasis. The failure to repair DNA damage or to control inflammatory responses has the potential to lead to cancer. PMID:24410153
López-López, Linnette; Nieves-Plaza, Mariely; Castro, María del R.; Font, Yvonne M.; Torres-Ramos, Carlos; Vilá, Luis M.; Ayala-Peña, Sylvette
2014-01-01
Objective To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. Methods A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson’s chi-square test (or Fisher’s exact test) as appropriate. Results Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. Conclusion PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. PMID:24899636
López-López, L; Nieves-Plaza, M; Castro, M del R; Font, Y M; Torres-Ramos, C A; Vilá, L M; Ayala-Peña, S
2014-10-01
To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson's chi-square test (or Fisher's exact test) as appropriate. Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Liu, Shangfeng; Chu, Jessica; Yucer, Nur; Leng, Mei; Wang, Shih-Ya; Chen, Benjamin P C; Hittelman, Walter N; Wang, Yi
2011-06-24
DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.
Types and Consequences of DNA Damage
This review provides a concise overview of the types of DNA damage and the molecular mechanisms by which a cell senses DNA damage, repairs the damage, converts the damage into a mutation, or dies as a consequence of unrepaired DNA damage. Such information is important in consid...
Cho, Min-Guk; Ahn, Ju-Hyun; Choi, Hee-Song; Lee, Jae-Ho
2017-07-01
Aneuploidy, an abnormal number of chromosomes that is a hallmark of cancer cells, can arise from tetraploid/binucleated cells through a failure of cytokinesis. Reactive oxygen species (ROS) have been implicated in various diseases, including cancer. However, the nature and role of ROS in cytokinesis progression and related mechanisms has not been clearly elucidated. Here, using time-lapse analysis of asynchronously growing cells and immunocytochemical analyses of synchronized cells, we found that hydrogen peroxide (H 2 O 2 ) treatment at early mitosis (primarily prometaphase) significantly induced cytokinesis failure. Cytokinesis failure and the resultant formation of binucleated cells containing nucleoplasmic bridges (NPBs) seemed to be caused by increases in DNA double-strand breaks (DSBs) and subsequent unresolved chromatin bridges. We further found that H 2 O 2 induced mislocalization of Aurora B during mitosis. All of these effects were attenuated by pretreatment with N-acetyl-L-cysteine (NAC) or overexpression of Catalase. Surprisingly, the PARP inhibitor PJ34 also reduced H 2 O 2 -induced Aurora B mislocalization and binucleated cell formation. Results of parallel experiments with etoposide, a topoisomerase IIα inhibitor that triggers DNA DSBs, suggested that both DNA DSBs and Aurora B mislocalization contribute to chromatin bridge formation. Aurora B mislocalization also appeared to weaken the "abscission checkpoint". Finally, we showed that KRAS-induced binucleated cell formation appeared to be also H 2 O 2 -dependent. In conclusion, we propose that a ROS, mainly H 2 O 2 increases binucleation through unresolved chromatin bridges caused by DNA damage and mislocalization of Aurora B, the latter of which appears to augment the effect of DNA damage on chromatin bridge formation. Copyright © 2017 Elsevier Inc. All rights reserved.
RNF168 forms a functional complex with RAD6 during the DNA damage response
Liu, Chao; Wang, Degui; Wu, Jiaxue; Keller, Jennifer; Ma, Teng; Yu, Xiaochun
2013-01-01
Summary Protein ubiquitination plays an important role in initiating the DNA damage response. Following DNA damage, E2 ubiquitin conjugating enzymes are crucial for catalyzing substrate ubiquitination that recruits downstream DNA repair factors to DNA lesions. To identify novel E2 conjugating enzymes important for initiating the DNA-damage-induced ubiquitination cascade, we screened most of the known E2 enzymes and found that RAD6A and RAD6B function together with RNF168 in the ionizing radiation (IR)-induced DNA damage response. Similarly to RNF168-deficient cells, RAD6A- or RAD6B-deficient cells exhibit a reduction in DNA-damage-induced protein ubiquitination. Correspondingly, DNA-damage-induced foci formation of DNA damage repair proteins, such as BRCA1 and 53BP1, is impaired in the absence of RAD6A or RAD6B. Moreover, the RNF168–RAD6 complex targeted histone H1.2 for ubiquitination in vitro and regulated DNA-damage-induced histone H1.2 ubiquitination in vivo. Collectively, these data demonstrate that RNF168, in complex with RAD6A or RAD6B, is activated in the DNA-damage-induced protein ubiquitination cascade. PMID:23525009
Enhancement of DNA ligase I level by gemcitabine in human cancer cells.
Sun, Daekyu; Urrabaz, Rheanna; Kelly, Susan; Nguyen, Myhanh; Weitman, Steve
2002-04-01
DNA ligase I is an essential enzyme for completing DNA replication and DNA repair by ligating Okazaki fragments and by joining single-strand breaks formed either directly by DNA-damaging agents or indirectly by DNA repair enzymes, respectively. In this study, we examined whether the DNA ligase I level could be modulated in human tumor cell lines by treatment with gemcitabine (2', 2'-difluoro-2'-deoxycytidine), which is a nucleoside analogue of cytidine with proven antitumor activity against a broad spectrum of human cancers in clinical studies. To determine the effect of gemcitabine on DNA ligase I expression, Western blot analysis was used to measure the DNA ligase I levels in MiaPaCa, NGP, and SK-N-BE cells treated with different concentrations of gemcitabine and harvested at different time intervals. Cell cycle analysis was also performed to determine the underlying mechanism of DNA ligase I level enhancement in response to gemcitabine. In addition, other agents that share the same mechanism of action with gemcitabine were used to elucidate further details. When different types of tumor cell lines, including MiaPaCa, NGP, and SK-N-BE, were treated with gemcitabine, the level of DNA ligase I increased severalfold despite significant cell growth inhibition. In contrast, other DNA ligases (III and IV) either remained unchanged or decreased with treatment. Cell cycle analysis showed that arrest in S-phase corresponded to an increase of DNA ligase I levels in gemcitabine treated cells. Other agents, such as 1-beta-D-arabinofuranosylcytosine and hydroxyurea, which partly share mechanisms of action with gemcitabine by targeting DNA polymerases and ribonucleotide reductase, respectively, also caused an increase of DNA ligase I levels. However, 5-fluorouracil, which predominantly targets thymidylate synthase, did not cause an increase of DNA ligase I level. Our results suggest that an arrest of DNA replication caused by gemcitabine treatment through incorporation of gemcitabine triphosphate into replicating DNA and inhibition of ribonucleotide reductase would trigger an increase in DNA ligase I levels in cancer cells. The elevated presence of DNA ligase I in S-phase-arrested cells leads us to speculate that DNA ligase I might have an important role in repairing DNA damage caused by stalled replication forks.
Hori, Akiko; Yoshida, Minoru; Shibata, Takehiko; Ling, Feng
2009-02-01
Mitochondrial DNA (mtDNA) encodes proteins that are essential for cellular ATP production. Reactive oxygen species (ROS) are respiratory byproducts that damage mtDNA and other cellular components. In Saccharomyces cerevisiae, the oxidized base excision-repair enzyme Ntg1 introduces a double-stranded break (DSB) at the mtDNA replication origin ori5; this DSB initiates the rolling-circle mtDNA replication mediated by the homologous DNA pairing protein Mhr1. Thus, ROS may play a role in the regulation of mtDNA copy number. Here, we show that the treatment of isolated mitochondria with low concentrations of hydrogen peroxide increased mtDNA copy number in an Ntg1- and Mhr1-dependent manner. This treatment elevated the DSB levels at ori5 of hypersuppressive [rho(-)] mtDNA only if Ntg1 was active. In vitro Ntg1-treatment of hypersuppressive [rho(-)] mtDNA extracted from hydrogen peroxide-treated mitochondria revealed increased oxidative modifications at ori5 loci. We also observed that purified Ntg1 created breaks in single-stranded DNA harboring oxidized bases, and that ori5 loci have single-stranded character. Furthermore, chronic low levels of hydrogen peroxide increased in vivo mtDNA copy number. We therefore propose that ROS act as a regulator of mtDNA copy number, acting through the Mhr1-dependent initiation of rolling-circle replication promoted by Ntg1-induced DSB in the single-stranded regions at ori5.
Gong, Lu; Pan, Xiao; Chen, Haide; Rao, Lingjun; Zeng, Yelin; Hang, Honghui; Peng, Jinrong; Xiao, Lei; Chen, Jun
2016-11-22
Human induced pluripotent stem (iPS) cells have great potential in regenerative medicine, but this depends on the integrity of their genomes. iPS cells have been found to contain a large number of de novo genetic alterations due to DNA damage response during reprogramming. Thus, to maintain the genetic stability of iPS cells is an important goal in iPS cell technology. DNA damage response can trigger tumor suppressor p53 activation, which ensures genome integrity of reprogramming cells by inducing apoptosis and senescence. p53 isoform Δ133p53 is a p53 target gene and functions to not only antagonize p53 mediated apoptosis, but also promote DNA double-strand break (DSB) repair. Here we report that Δ133p53 is induced in reprogramming. Knockdown of Δ133p53 results 2-fold decrease in reprogramming efficiency, 4-fold increase in chromosomal aberrations, whereas overexpression of Δ133p53 with 4 Yamanaka factors showes 4-fold increase in reprogamming efficiency and 2-fold decrease in chromosomal aberrations, compared to those in iPS cells induced only with 4 Yamanaka factors. Overexpression of Δ133p53 can inhibit cell apoptosis and promote DNA DSB repair foci formation during reprogramming. Our finding demonstrates that the overexpression of Δ133p53 not only enhances reprogramming efficiency, but also results better genetic quality in iPS cells.
Sun, Chuan; Wei, Xiaoxia; Fei, Yue; Su, Liling; Zhao, Xinyuan; Chen, Guangdi; Xu, Zhengping
2016-11-18
Radiofrequency electromagnetic fields (RF-EMFs) have been classified by the International Agency for Research on Cancer as possible carcinogens to humans; however, this conclusion is based on limited epidemiological findings and lacks solid support from experimental studies. In particular, there are no consistent data regarding the genotoxicity of RF-EMFs. Ataxia telangiectasia mutated (ATM) is recognised as a chief guardian of genomic stability. To address the debate on whether RF-EMFs are genotoxic, we compared the effects of 1,800 MHz RF-EMF exposure on genomic DNA in mouse embryonic fibroblasts (MEFs) with proficient (Atm +/+ ) or deficient (Atm -/- ) ATM. In Atm +/+ MEFs, RF-EMF exposure for 1 h at an average special absorption rate of 4.0 W/kg induced significant DNA single-strand breaks (SSBs) and activated the SSB repair mechanism. This effect reduced the DNA damage to less than that of the background level after 36 hours of exposure. In the Atm -/- MEFs, the same RF-EMF exposure for 12 h induced both SSBs and double-strand breaks and activated the two repair processes, which also reduced the DNA damage to less than the control level after prolonged exposure. The observed phenomenon is similar to the hormesis of a toxic substance at a low dose. To the best of our knowledge, this study is the first to report a hormesis-like effect of an RF-EMF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa
2013-04-01
Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation inmore » a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarantopoulou, E., E-mail: esarant@eie.gr; Stefi, A.; Kollia, Z.
Ultraviolet photons can damage microorganisms, which rarely survive prolonged irradiation. In addition to the need for intact DNA, cell viability is directly linked to the functionality of the cell wall and membrane. In this work, Cladosporium herbarum spore monolayers exhibit high viability (7%) when exposed to 157 nm laser irradiation (412 kJm⁻²) or vacuum-ultraviolet irradiation (110–180 nm) under standard pressure and temperature in a nitrogen atmosphere. Spore viability can be determined by atomic-force microscopy, nano-indentation, mass, μ-Raman and attenuated reflectance Fourier-transform far-infrared spectroscopies and DNA electrophoresis. Vacuum ultraviolet photons cause molecular damage to the cell wall, but radiation resistance inmore » spores arises from the activation of a photon-triggered signaling reaction, expressed via the exudation of intracellular substances, which, in combination with the low penetration depth of vacuum-ultraviolet photons, shields DNA from radiation. Resistance to phototoxicity under standard conditions was assessed, as was resistance to additional environmental stresses, including exposure in a vacuum, under different rates of change of pressure during pumping time and low (10 K) temperatures. Vacuum conditions were far more destructive to spores than vacuum-ultraviolet irradiation, and UV-B photons were two orders of magnitude more damaging than vacuum-ultraviolet photons. The viability of irradiated spores was also enhanced at 10 K. This work, in addition to contributing to the photonic control of the viability of microorganisms exposed under extreme conditions, including decontamination of biological warfare agents, outlines the basis for identifying bio-signaling in vivo using physical methodologies.« less
Shi, Danlu; Zhuang, Kai; Xia, Yan; Zhu, Changhua; Chen, Chen; Hu, Zhubing; Shen, Zhenguo
2017-12-01
Because of the accumulation of heavy metals, Hydrilla verticillata (L.f.) Royle, a rooted submerged perennial aquatic herb, is being developed as a potential tool to clean the aquatic ecosystem polluted by heavy metals. However, its physiological responses for heavy metal remain to be elucidated. Here, through employing proteomics approach, we found that excess Cu significantly induced the expressions of four DNA methylation related proteins in H. verticillata, which were the homologues of two domains rearranged methyltransferases (DRM), a methyltransferases chromomethylase (CMT) and a histone H3 lysine-9 specific SUVH6-like (SUVH6). Consistently, a dramatic change in DNA methylation patterns was detected in excess Cu-exposed H. verticillata. Surprisingly, administration of the NADPH oxidase inhibitors, diphenylene iodonium (DPI) and imidazole (IMZ) that block production of reactive oxygen species (ROS) could trigger the remethylation of genomic sites that were demethylated by excess Cu, indicating that Cu-induced ROS might be another way to affect DNA methylation. Further analysis suggested this changed DNA methylation may be owing to the ROS-induced DNA damage. Taken together, our findings demonstrate that two different ways to influence DNA methylation in excess Cu-treated H. verticillata. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Juan; Huang, Shujuan; Xing, Lingxiao; Cui, Jinfeng; Tian, Ziqiang; Shen, Haitao; Jiang, Xiujuan; Yan, Xia; Wang, Junling; Zhang, Xianghong
2015-11-01
Sterigmatocystin (ST), a mycotoxin commonly found in food and feed commodities, has been classified as a "possible human carcinogen." Our previous studies suggested that ST exposure might be a risk factor for esophageal cancer and that ST may induce DNA damage and G2 phase arrest in immortalized human esophageal epithelial cells (Het-1A). To further confirm and explore the cellular responses of ST in human esophageal epithelia, we comparatively evaluated DNA damage, cell cycle distribution and the relative mechanisms in primary cultured human esophageal epithelial cells (EPC), which represent a more representative model of the in vivo state, and Het-1A cells. In this study, we found that ST could induce DNA damage in both EPC and Het-1A cells but led to G1 phase arrest in EPC cells and G2 phase arrest in Het-1A cells. Furthermore, our results indicated that the activation of the ATM-Chk2 pathway was involved in ST-induced G1 phase arrest in EPC cells, whereas the p53-p21 pathway activation in ST-induced G2 phase arrest in Het-1A cells. Studies have demonstrated that SV40 large T-antigen (SV40LT) may disturb cell cycle progression by inactivating some of the proteins involved in the G1/S checkpoint. Het-1A is a non-cancerous epithelial cell line immortalized by SV40LT. To evaluate the possible perturbation effect of SV40LT on ST-induced cell cycle disturbance in Het-1A cells, we knocked down SV40LT of Het-1A cells with siRNA and found that under this condition, ST-induced G2 arrest was significantly attenuated, whereas the proportion of cells in the G1 phase was significantly increased. Furthermore, SV40LT-siRNA also inhibited the activation of the p53-p21 signaling pathway induced by ST. In conclusion, our data indicated that ST could induce DNA damage in both primary cultured and immortalized esophageal epithelial cells. In primary human esophageal epithelial cells, ST induced DNA damage and then triggered the ATM-Chk2 pathway, resulting in G1 phase arrest, whereas in SV40LT-immortalized human esophageal epithelial cells, SV40LT-mediated G1 checkpoint inactivation occurred, and ST-DNA damage activated p53-p21 signaling pathway, up-regulating G2/M phase regulatory proteins and finally leading to a G2 phase arrest. Thus, the SV40LT-mediated G1 checkpoint inactivation is responsible for the difference in the cell cycle arrest by ST between immortalized and primary cultured human esophageal epithelial cells.
Engineering a Cell-surface Aptamer Circuit for Targeted and Amplified Photodynamic Cancer Therapy
Han, Da; Zhu, Guizhi; Wu, Cuichen; Zhu, Zhi; Chen, Tao; Zhang, Xiaobing
2013-01-01
Photodynamic therapy (PDT) is one of the most promising and noninvasive methods for clinical treatment of different malignant diseases. Here, we present a novel strategy of designing an aptamer-based DNA nanocircuit capable of the selective recognition of cancer cells, controllable activation of photosensitizer and amplification of photodynamic therapeutic effect. The aptamers can selectively recognize target cancer cells and bind to the specific proteins on cell membranes. Then the overhanging catalyst sequence on aptamer can trigger a toehold-mediated catalytic strand displacement to activate photosensitizer and achieve amplified therapeutic effect. The specific binding-induced activation allows the DNA circuit to distinguish diseased cells from healthy cells, reducing damage to nearby healthy cells. Moreover, the catalytic amplification reaction will only take place close to the target cancer cells, resulting in a high local concentration of singlet oxygen to selectively kill the target cells. The principle employed in this study demonstrated the feasibility of assembling a DNA circuit on cell membranes and could further broaden the utility of DNA circuits for applications in biology, biotechnology, and biomedicine. PMID:23397942
Maya Miles, Douglas; Peñate, Xenia; Sanmartín Olmo, Trinidad; Jourquin, Frederic; Muñoz Centeno, Maria Cruz; Mendoza, Manuel; Simon, Marie-Noelle; Chavez, Sebastian; Geli, Vincent
2018-03-27
Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1 WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28 CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones. © 2018, Maya Miles et al.
Peñate, Xenia; Sanmartín Olmo, Trinidad; Jourquin, Frederic; Muñoz Centeno, Maria Cruz; Mendoza, Manuel; Simon, Marie-Noelle; Chavez, Sebastian
2018-01-01
Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones. PMID:29580382
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Degui; Yu, Tianyu; Liu, Yongqiang
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenicmore » mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.« less
Histone deacetylase inhibitors promote the tumoricidal effect of HAMLET.
Brest, Patrick; Gustafsson, Mattias; Mossberg, Ann-Kristin; Gustafsson, Lotta; Duringer, Caroline; Hamiche, Ali; Svanborg, Catharina
2007-12-01
Histone deacetylase inhibitors (HDIs) and HAMLET (human alpha-lactalbumin made lethal to tumor cells) interact with histones, modify the structure of chromatin, and trigger tumor cell death. This study investigated how the combination of HDIs and HAMLET influences cell viability, histone acetylation, and DNA integrity. The pretreatment of tumor cells with HDIs was shown to enhance the lethal effect of HAMLET and the histone hyperacetylation response to HDIs increased even further after HAMLET treatment. HDIs and HAMLET were shown to target different histone domains as HAMLET bound tailless core histones, whereas HDIs modify the acetylation of the histone tail. DNA damage in response to HAMLET was increased by HDIs. The DNA repair response (p21WAFI expression) was induced by both agonists but abolished when the two agonists were combined. The results suggest that the synergy of HDIs and HAMLET is based on different but converging death pathways, both involving chromatin alterations. We speculate that HAMLET and HDIs might be combined to promote tumor cell death in vivo.
Catch the live show: Visualizing damaged DNA in vivo.
Oshidari, Roxanne; Mekhail, Karim
2018-06-01
The health of an organism is intimately linked to its ability to repair damaged DNA. Importantly, DNA repair processes are highly dynamic. This highlights the necessity of characterizing DNA repair in live cells. Advanced genome editing and imaging approaches allow us to visualize damaged DNA and its associated factors in real time. Here, we summarize both established and recent methods that are used to induce DNA damage and visualize damaged DNA and its repair in live cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Method for assaying clustered DNA damages
Sutherland, Betsy M.
2004-09-07
Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.
Song, Weiling; Yin, Wenshuo; Sun, Wenbo; Guo, Xiaoyan; He, Peng; Yang, Xiaoyan; Zhang, Xiaoru
2018-04-24
Detection of ultralow concentrations of nucleic acid sequences is a central challenge in the early diagnosis of genetic diseases. Herein, we developed a target-triggering cascade multiple cycle amplification for ultrasensitive DNA detection using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). It was based on the exonuclease Ⅲ (Exo Ⅲ)-assisted signal amplification and the hybridization chain reaction (HCR). The streptavidin-coated Au-NPs (Au-NPs-SA) were assembled on the HCR products as recognition element. Upon sensing of target DNA, the duplex DNA probe triggered the Exo Ⅲ cleavage process, accompanied by generating a new secondary target DNA and releasing target DNA. The released target DNA and the secondary target DNA were recycled. Simultaneously, numerous single strands were liberated and acted as the trigger of HCR to generate further signal amplification, resulting in the immobilization of abundant Au-NPs-SA on the gold substrate. The QCM sensor results were found to be comparable to that achieved using a SPR sensor platform. This method exhibited a high sensitivity toward target DNA with a detection limit of 0.70 fM. The high sensitivity and specificity make this method a great potential for detecting DNA with trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier Inc. All rights reserved.
Lymphocyte DNA damage in Turkish asphalt workers detected by the comet assay.
Bacaksiz, Aysegul; Kayaalti, Zeliha; Soylemez, Esma; Tutkun, Engin; Soylemezoglu, Tulin
2014-01-01
Asphalt has a highly complex structure and it contains several organic compounds including polycyclic aromatic hydrocarbons and heterocyclic compounds. In this study, comet assay was used to detect the DNA damage in blood lymphocytes of 30 workers exposed to asphalt fumes and 30 nonexposed controls. This is the first report on Turkish asphalt workers' investigated DNA damage using the alkaline single cell gel electrophoresis (SCGE). The DNA damage was evaluated by the percentage of DNA in the comet tail (% tail DNA) for each cell. According to our results, workers exposed to asphalt fumes had higher DNA damage than the control group (p < 0.01). The present study showed that asphalt fumes caused a significant increase in DNA damage and the comet assay is a suitable method for determining DNA damage in asphalt workers.
Chromosomal instability in women with primary ovarian insufficiency.
Katari, Sunita; Aarabi, Mahmoud; Kintigh, Angela; Mann, Susan; Yatsenko, Svetlana A; Sanfilippo, Joseph S; Zeleznik, Anthony J; Rajkovic, Aleksandar
2018-02-07
What is the prevalence of somatic chromosomal instability among women with idiopathic primary ovarian insufficiency (POI)? A subset of women with idiopathic POI may have functional impairment in DNA repair leading to chromosomal instability in their soma. The formation and repair of DNA double-strand breaks during meiotic recombination are fundamental processes of gametogenesis. Oocytes with compromised DNA integrity are susceptible to apoptosis which could trigger premature ovarian aging and accelerated wastage of the human follicle reserve. Genomewide association studies, as well as whole exome sequencing, have implicated multiple genes involved in DNA damage repair. However, the prevalence of defective DNA damage repair in the soma of women with POI is unknown. In total, 46 women with POI and 15 family members were evaluated for excessive mitomycin-C (MMC)-induced chromosome breakage. Healthy fertile females (n = 20) and two lymphoblastoid cell lines served as negative and as positive controls, respectively. We performed a pilot functional study utilizing MMC to assess chromosomal instability in the peripheral blood of participants. A high-resolution array comparative genomic hybridization (aCGH) was performed on 16 POI patients to identify copy number variations (CNVs) for a set of 341 targeted genes implicated in DNA repair. Array CGH revealed three POI patients (3/16, 18.8%) with pathogenic CNVs. Excessive chromosomal breakage suggestive of a constitutional deficiency in DNA repair was detected in one POI patient with the 16p12.3 duplication. In two patients with negative chromosome breakage analysis, aCGH detected a Xq28 deletion comprising the Centrin EF-hand Protein 2 (CETN2) and HAUS Augmin Like Complex Subunit 7 (HAUS7) genes essential for meiotic DNA repair, and a duplication in the 3p22.2 region comprising a part of the ATPase domain of the MutL Homolog 1 (MLH1) gene. Peripheral lymphocytes, used as a surrogate tissue to quantify induced chromosome damage, may not be representative of all the affected tissues. Another limitation pertains to the MMC assay which detects homologous repair pathway defects and does not test deficiencies in other DNA repair pathways. Our results provide evidence for functional impairment of DNA repair in idiopathic POI, which may predispose the patients to other DNA repair-related conditions such as accelerated aging and/or cancer susceptibility. Funding was provided by the National Institute of Child Health and Human Development. There were no competing interests to declare. © The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
DNA Damage and Repair: Relevance to Mechanisms of Neurodegeneration
Martin, Lee J.
2008-01-01
DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling non-neuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons. PMID:18431258
Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang
2016-01-01
Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621
Transcription and DNA Damage: Holding Hands or Crossing Swords?
D'Alessandro, Giuseppina; d'Adda di Fagagna, Fabrizio
2017-10-27
Transcription has classically been considered a potential threat to genome integrity. Collision between transcription and DNA replication machinery, and retention of DNA:RNA hybrids, may result in genome instability. On the other hand, it has been proposed that active genes repair faster and preferentially via homologous recombination. Moreover, while canonical transcription is inhibited in the proximity of DNA double-strand breaks, a growing body of evidence supports active non-canonical transcription at DNA damage sites. Small non-coding RNAs accumulate at DNA double-strand break sites in mammals and other organisms, and are involved in DNA damage signaling and repair. Furthermore, RNA binding proteins are recruited to DNA damage sites and participate in the DNA damage response. Here, we discuss the impact of transcription on genome stability, the role of RNA binding proteins at DNA damage sites, and the function of small non-coding RNAs generated upon damage in the signaling and repair of DNA lesions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mitochondrial DNA Damage and Diseases.
Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata
2015-01-01
Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage. One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.
Interplay of space radiation and microgravity in DNA damage and DNA damage response.
Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu
2017-01-01
In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.
Kido, Ryoko; Sato, Itaru; Tsuda, Shuji
2006-01-01
Ethanol is principal ingredient of alcohol beverage, but considered as human carcinogen, and has neurotoxicity. Alcohol consumption during pregnancy often causes fetal alcohol syndrome. The DNA damage is one of the important factors in carcinogenicity or teratogenicity. To detect the DNA damage induced by ethanol, we used an in vivo alkaline single cell gel electrophoresis (Comet) assay in pregnant mice organs and embryos. Pregnant ICR mice on Day 7 of gestation were treated with 2, 4 or 8 g/kg ethanol, and maternal organs/tissues and embryos were subjected to the Comet assay at 4, 8, 12 and 24 hr after ethanol treatment. Four and 8 g/kg ethanol induced DNA damage in brain, lung and embryos at 4 or 8 hr after the treatment. Two g/kg ethanol did not cause any DNA damage, and 8 g/kg ethanol only increased the duration of DNA damage without distinct increase in the degree of the damage. No significant DNA damage was observed in the liver. To detect the effect of acetaldehyde, disulfiram, acetaldehyde dehydrogenase inhibitor, was administered before 4 g/kg ethanol treatment. No significant increase of DNA damage was observed in the disulfiram pre-treated group. These data indicate that ethanol induces DNA damage, which might be related to ethanol toxicity. Since pre-treatment of disulfiram did not increase DNA damage, DNA damage observed in this study might not be the effect of acetaldehyde.
Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression
Cline, Susan D.
2012-01-01
How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831
Xie, Chen; Li, Xiuyi; Tong, Jianping; Gu, Yangshun; Shen, Ye
2014-01-01
Cataract is the major cause for legal blindness in the world. Oxidative stress on the lens epithelial cells (hLECs) is the most important factor in cataract formation. Cumulative light-exposure from widely used light-emitting diodes (LEDs) may pose a potential oxidative threat to the lens epithelium, due to the high-energy blue light component in the white-light emission from diodes. In the interest of perfecting biosafety standards for LED domestic lighting, this study analyzed the photobiological effect of white LED light with different correlated color temperatures (CCTs) on cultured hLECs. The hLECs were cultured and cumulatively exposed to multichromatic white LED light with CCTs of 2954, 5624, and 7378 K. Cell viability of hLECs was measured by Cell Counting Kit-8 (CCK-8) assay. DNA damage was determined by alkaline comet assay. Intracellular reactive oxygen species (ROS) generation, cell cycle, and apoptosis were quantified by flow cytometry. Compared with 2954 and 5624 K LED light, LED light having a CCT of 7378 K caused overproduction of intracellular ROS and severe DNA damage, which triggered G2 /M arrest and apoptosis. These results indicate that white LEDs with a high CCT could cause significant photobiological damage to hLECs. © 2014 The American Society of Photobiology.
Gasser, Stephan; Zhang, Wendy Y L; Tan, Nikki Yi Jie; Tripathi, Shubhita; Suter, Manuel A; Chew, Zhi Huan; Khatoo, Muznah; Ngeow, Joanne; Cheung, Florence S G
2017-07-01
The presence of damaged and microbial DNA can pose a threat to the survival of organisms. Cells express various sensors that recognize specific aspects of such potentially dangerous DNA. Recognition of damaged or microbial DNA by sensors induces cellular processes that are important for DNA repair and inflammation. Here, we review recent evidence that the cellular response to DNA damage and microbial DNA are tightly intertwined. We also discuss insights into the parameters that enable DNA sensors to distinguish damaged and microbial DNA from DNA present in healthy cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The effects of metal ions on the DNA damage induced by hydrogen peroxide.
Kobayashi, S; Ueda, K; Komano, T
1990-01-01
The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong
2017-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong
2016-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair.
Khoronenkova, Svetlana V; Dianov, Grigory L
2013-02-01
The E3 ubiquitin ligase Mule/ARF-BP1 plays an important role in the cellular DNA damage response by controlling base excision repair and p53 protein levels. However, how the activity of Mule is regulated in response to DNA damage is currently unknown. Here, we report that the Ser18-containing isoform of the USP7 deubiquitylation enzyme (USP7S) controls Mule stability by preventing its self-ubiquitylation and subsequent proteasomal degradation. We find that in response to DNA damage, downregulation of USP7S leads to self-ubiquitylation and proteasomal degradation of Mule, which eventually leads to p53 accumulation. Cells that are unable to downregulate Mule show reduced ability to upregulate p53 levels in response to DNA damage. We also find that, as Mule inactivation is required for stabilization of base excision repair enzymes, the failure of cells to downregulate Mule after DNA damage results in deficient DNA repair. Our data describe a novel mechanism by which Mule is regulated in response to DNA damage and coordinates cellular DNA damage responses and DNA repair.
Feedback between p21 and reactive oxygen production is necessary for cell senescence
Passos, João F; Nelson, Glyn; Wang, Chunfang; Richter, Torsten; Simillion, Cedric; Proctor, Carole J; Miwa, Satomi; Olijslagers, Sharon; Hallinan, Jennifer; Wipat, Anil; Saretzki, Gabriele; Rudolph, Karl Lenhard; Kirkwood, Tom B L; von Zglinicki, Thomas
2010-01-01
Cellular senescence—the permanent arrest of cycling in normally proliferating cells such as fibroblasts—contributes both to age-related loss of mammalian tissue homeostasis and acts as a tumour suppressor mechanism. The pathways leading to establishment of senescence are proving to be more complex than was previously envisaged. Combining in-silico interactome analysis and functional target gene inhibition, stochastic modelling and live cell microscopy, we show here that there exists a dynamic feedback loop that is triggered by a DNA damage response (DDR) and, which after a delay of several days, locks the cell into an actively maintained state of ‘deep' cellular senescence. The essential feature of the loop is that long-term activation of the checkpoint gene CDKN1A (p21) induces mitochondrial dysfunction and production of reactive oxygen species (ROS) through serial signalling through GADD45-MAPK14(p38MAPK)-GRB2-TGFBR2-TGFβ. These ROS in turn replenish short-lived DNA damage foci and maintain an ongoing DDR. We show that this loop is both necessary and sufficient for the stability of growth arrest during the establishment of the senescent phenotype. PMID:20160708
Links between DNA Replication, Stem Cells and Cancer
Vassilev, Alex; DePamphilis, Melvin L.
2017-01-01
Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells. PMID:28125050
Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon
2014-01-01
Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.
Mitomycin C and decarbamoyl mitomycin C induce p53-independent p21WAF1/CIP1 activation
Cheng, Shu-Yuan; Seo, Jiwon; Huang, Bik Tzu; Napolitano, Tanya; Champeil, Elise
2016-01-01
Mitomycin C (MC), a commonly used anticancer drug, induces DNA damage via DNA alkylation. Decarbamoyl mitomycin C (DMC), another mitomycin lacking the carbamate at C10, generates similar lesions as MC. Interstrand cross-links (ICLs) are believed to be the lesions primarily responsible for the cytotoxicity of MC and DMC. The major ICL generated by MC (α-ICL) has a trans stereochemistry at the guanine-drug linkage whereas the major ICL from DMC (β-ICL) has the opposite, cis, stereochemistry. In addition, DMC can provoke strong p53-independent cell death. Our hypothesis is that the stereochemistry of the major unique β-ICL generated by DMC is responsible for this p53-independent cell death signaling. p53 gene is inactively mutated in more than half of human cancers. p21WAF1/CIP1 known as a major effector of p53 is involved in p53-dependent and -independent control of cell proliferation and death. This study revealed the role of p21WAF1/CIP1 on MC and DMC triggered cell damage. MCF-7 (p53-proficient) and K562 (p53-deficient) cells were used. Cell cycle distributions were shifted to the G1/S phase in MCF-7 treated with MC and DMC, but were shifted to the S phase in K562. p21WAF1/CIP1 activation was observed in both cells treated with MC and DMC, and DMC triggered more significant activation. Knocking down p53 in MCF-7 did not attenuate MC and DMC induced p21WAF1/CIP1 activation. The α-ICL itself was enough to cause p21WAF1/CIP1 activation. PMID:27666201
Involvement of oxidatively damaged DNA and repair in cancer development and aging
Tudek, Barbara; Winczura, Alicja; Janik, Justyna; Siomek, Agnieszka; Foksinski, Marek; Oliński, Ryszard
2010-01-01
DNA damage and DNA repair may mediate several cellular processes, like replication and transcription, mutagenesis and apoptosis and thus may be important factors in the development and pathology of an organism, including cancer. DNA is constantly damaged by reactive oxygen species (ROS) and reactive nitrogen species (RNS) directly and also by products of lipid peroxidation (LPO), which form exocyclic adducts to DNA bases. A wide variety of oxidatively-generated DNA lesions are present in living cells. 8-oxoguanine (8-oxoGua) is one of the best known DNA lesions due to its mutagenic properties. Among LPO-derived DNA base modifications the most intensively studied are ethenoadenine and ethenocytosine, highly miscoding DNA lesions considered as markers of oxidative stress and promutagenic DNA damage. Although at present it is impossible to directly answer the question concerning involvement of oxidatively damaged DNA in cancer etiology, it is likely that oxidatively modified DNA bases may serve as a source of mutations that initiate carcinogenesis and are involved in aging (i.e. they may be causal factors responsible for these processes). To counteract the deleterious effect of oxidatively damaged DNA, all organisms have developed several DNA repair mechanisms. The efficiency of oxidatively damaged DNA repair was frequently found to be decreased in cancer patients. The present work reviews the basis for the biological significance of DNA damage, particularly effects of 8-oxoGua and ethenoadduct occurrence in DNA in the aspect of cancer development, drawing attention to the multiplicity of proteins with repair activities. PMID:20589166
Mitochondrial DNA Damage and Diseases
Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata
2015-01-01
Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage. One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments. PMID:27508052
Ireno, Ivanildce C; Baumann, Cindy; Stöber, Regina; Hengstler, Jan G; Wiesmüller, Lisa
2014-05-01
In vitro genotoxicity tests are known to suffer from several shortcomings, mammalian cell-based assays, in particular, from low specificities. Following a novel concept of genotoxicity detection, we developed a fluorescence-based method in living human cells. The assay quantifies DNA recombination events triggered by DNA double-strand breaks and damage-induced replication fork stalling predicted to detect a broad spectrum of genotoxic modes of action. To maximize sensitivities, we engineered a DNA substrate encompassing a chemoresponsive element from the human genome. Using this substrate, we screened various human tumor and non-transformed cell types differing in the DNA damage response, which revealed that detection of genotoxic carcinogens was independent of the p53 status but abrogated by apoptosis. Cell types enabling robust and sensitive genotoxicity detection were selected for the generation of reporter clones with chromosomally integrated DNA recombination substrate. Reporter cell lines were scrutinized with 21 compounds, stratified into five sets according to the established categories for identification of carcinogenic compounds: genotoxic carcinogens ("true positives"), non-genotoxic carcinogens, compounds without genotoxic or carcinogenic effect ("true negatives") and non-carcinogenic compounds, which have been reported to induce chromosomal aberrations or mutations in mammalian cell-based assays ("false positives"). Our results document detection of genotoxic carcinogens in independent cell clones and at levels of cellular toxicities <60 % with a sensitivity of >85 %, specificity of ≥90 % and detection of false-positive compounds <17 %. Importantly, through testing cyclophosphamide in combination with primary hepatocyte cultures, we additionally provide proof-of-concept for the identification of carcinogens requiring metabolic activation using this novel assay system.
Telomeres, Reproductive Aging, and Genomic Instability During Early Development.
Keefe, David L
2016-12-01
Implantation rate decreases and miscarriage rate increases with advancing maternal age. The oocyte must be the locus of reproductive aging because donation of oocytes from younger to older women abrogates the effects of aging on fecundity. Nuclear transfer experiments in a mouse model of reproductive aging show that the reproductive aging phenotype segregates with the nucleus rather than the cytoplasm. A number of factors within the nucleus have been hypothesized to mediate reproductive aging, including disruption of cohesions, reduced chiasma, aneuploidy, disrupted meiotic spindles, and DNA damage caused by chronic exposure to reactive oxygen species. We have proposed telomere attrition as a parsimonious way to explain these diverse effects of aging on oocyte function. Telomeres are repetitive sequences of DNA and associated proteins, which form a loop (t loop) at chromosome ends. Telomeres prevent the blunt end of DNA from triggering a DNA damage response. Previously, we showed that experimental telomere shortening phenocopies reproductive aging in mice. Telomere shortening causes reduced synapsis and chiasma, chromosome fusions, embryo arrest and fragmentation, and abnormal meiotic spindles. Telomere length of polar bodies predicts the fragmentation of human embryos. Telomerase, the reverse transcriptase capable of reconstituting shortened telomeres, is only minimally active in oocytes and preimplantation embryos. Intriguingly, during the first cell cycles following activation, telomeres robustly elongate via a DNA double-strand break mechanism called alternative lengthening of telomeres (ALTs). Alternative lengthening of telomere takes place even in telomerase-null mice. This mechanism of telomere elongation previously had been found only in cancer cells lacking telomerase activity. We propose that ALT elongates telomeres across generations but does so at the cost of extensive genomic instability in preimplantation embryos. © The Author(s) 2016.
DNA damage induced by ascorbate in the presence of Cu2+.
Kobayashi, S; Ueda, K; Morita, J; Sakai, H; Komano, T
1988-01-25
DNA damage induced by ascorbate in the presence of Cu2+ was investigated by use of bacteriophage phi X174 double-stranded supercoiled DNA and linear restriction fragments as substrates. Single-strand cleavage was induced when supercoiled DNA was incubated with 5 microM-10 mM ascorbate and 50 microM Cu2+ at 37 degrees C for 10 min. The induced DNA damage was analyzed by sequencing of fragments singly labeled at their 5'- or 3'-end. DNA was cleaved directly and almost uniformly at every nucleotide by ascorbate and Cu2+. Piperidine treatment after the reaction showed that ascorbate and Cu2+ induced another kind of DNA damage different from the direct cleavage. The damage proceeded to DNA cleavage by piperidine treatment and was sequence-specific rather than random. These results indicate that ascorbate induces two classes of DNA damage in the presence of Cu2+, one being direct strand cleavage, probably via damage to the DNA backbone, and the other being a base modification labile to alkali treatment. These two classes of DNA damage were inhibited by potassium iodide, catalase and metal chelaters, suggesting the involvement of radicals generated from ascorbate hydroperoxide.
Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response.
Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E; Harper, J Wade; Elledge, Stephen J
2014-12-30
The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage.
Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response
Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E.; Harper, J. Wade; Elledge, Stephen J.
2014-01-01
The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage. PMID:25512513
Maréchal, Alexandre; Wu, Ching-Shyi; Yazinski, Stephanie A.; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E.; Jin, Jianping; Zou, Lee
2014-01-01
Summary PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). While the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 binds RPA directly and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ATR kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, the recovery of stalled replication forks, and the progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. PMID:24332808
Faisal, Mohammad; Saquib, Quaiser; Alatar, Abdulrahman A; Al-Khedhairy, Abdulaziz A; Ahmed, Mukhtar; Ansari, Sabiha M; Alwathnani, Hend A; Dwivedi, Sourabh; Musarrat, Javed; Praveen, Shelly
2016-03-18
Despite manifold benefits of nanoparticles (NPs), less information on the risks of NPs to human health and environment has been studied. Cobalt oxide nanoparticles (Co3O4-NPs) have been reported to cause toxicity in several organisms. In this study, we have investigated the role of Co3O4-NPs in inducing phytotoxicity, cellular DNA damage and apoptosis in eggplant (Solanum melongena L. cv. Violetta lunga 2). To the best of our knowledge, this is the first report on Co3O4-NPs showing phytotoxicity in eggplant. The data revealed that eggplant seeds treated with Co3O4-NPs for 2 h at a concentration of 1.0 mg/ml retarded root length by 81.5 % upon 7 days incubation in a moist chamber. Ultrastructural analysis by transmission electron microscopy (TEM) demonstrated the uptake and translocation of Co3O4-NPs into the cytoplasm. Intracellular presence of Co3O4-NPs triggered subcellular changes such as degeneration of mitochondrial cristae, abundance of peroxisomes and excessive vacuolization. Flow cytometric analysis of Co3O4-NPs (1.0 mg/ml) treated root protoplasts revealed 157, 282 and 178 % increase in reactive oxygen species (ROS), membrane potential (ΔΨm) and nitric oxide (NO), respectively. Besides, the esterase activity in treated protoplasts was also found compromised. About 2.4-fold greater level of DNA damage, as compared to untreated control was observed in Comet assay, and 73.2 % of Co3O4-NPs treated cells appeared apoptotic in flow cytometry based cell cycle analysis. This study demonstrate the phytotoxic potential of Co3O4-NPs in terms of reduction in seed germination, root growth, greater level of DNA and mitochondrial damage, oxidative stress and cell death in eggplant. The data generated from this study will provide a strong background to draw attention on Co3O4-NPs environmental hazards to vegetable crops.
PERK inhibits DNA replication during the Unfolded Protein Response via Claspin and Chk1.
Cabrera, E; Hernández-Pérez, S; Koundrioukoff, S; Debatisse, M; Kim, D; Smolka, M B; Freire, R; Gillespie, D A
2017-02-02
Stresses such as hypoxia, nutrient deprivation and acidification disturb protein folding in the endoplasmic reticulum (ER) and activate the Unfolded Protein Response (UPR) to trigger adaptive responses through the effectors, PERK, IRE1 and ATF6. Most of these responses relate to ER homoeostasis; however, here we show that the PERK branch of the UPR also controls DNA replication. Treatment of cells with the non-genotoxic UPR agonist thapsigargin led to a rapid inhibition of DNA synthesis that was attributable to a combination of DNA replication fork slowing and reduced replication origin firing. DNA synthesis inhibition was dependent on the UPR effector PERK and was associated with phosphorylation of the checkpoint adaptor protein Claspin and activation of the Chk1 effector kinase, both of which occurred in the absence of detectable DNA damage. Remarkably, thapsigargin did not inhibit bulk DNA synthesis or activate Chk1 in cells depleted of Claspin, or when Chk1 was depleted or subject to chemical inhibition. In each case thapsigargin-resistant DNA synthesis was due to an increase in replication origin firing that compensated for reduced fork progression. Taken together, our results unveil a new aspect of PERK function and previously unknown roles for Claspin and Chk1 as negative regulators of DNA replication in the absence of genotoxic stress. Because tumour cells proliferate in suboptimal environments, and frequently show evidence of UPR activation, this pathway could modulate the response to DNA replication-targeted chemotherapies.
Nowicka, Anna M; Kowalczyk, Agata; Stojek, Zbigniew; Hepel, Maria
2010-01-01
Electrochemical and nanogravimetric DNA-hybridization biosensors have been developed for sensing single mismatches in the probe-target ssDNA sequences. The voltammetric transduction was achieved by coupling ferrocene moiety to streptavidin linked to biotinylated tDNA. The mass-related frequency transduction was implemented by immobilizing the sensory pDNA on a gold-coated quartz crystal piezoresonators oscillating in the 10MHz band. The high sensitivity of these sensors enabled us to study DNA damage caused by representative toxicants and environmental pollutants, including Cr(VI) species, common pesticides and herbicides. We have found that the sensor responds rapidly to any damage caused by Cr(VI) species, with more severe DNA damage observed for Cr(2)O(7)(2-) and for CrO(4)(2-) in the presence of H(2)O(2) as compared to CrO(4)(2-) alone. All herbicides and pesticides examined caused DNA damage or structural alterations leading to the double-helix unwinding. Among these compounds, paraoxon-ethyl and atrazine caused the fastest and most severe damage to DNA. The physico-chemical mechanism of damaging interactions between toxicants and DNA has been proposed. The methodology of testing voltammetric and nanogravimetric DNA-hybridization biosensors developed in this work can be employed as a simple protocol to obtain rapid comparative data concerning DNA damage caused by herbicide, pesticides and other toxic pollutants. The DNA-hybridization biosensor can, therefore, be utilized as a rapid screening device for classifying environmental pollutants and to evaluate DNA damage induced by these compounds.
Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung
2015-11-01
Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. © 2014 Wiley Periodicals, Inc.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2018-05-01
This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the energy deposition increases with the complexity of clustered DNA damage, and therefore, the clustered DNA damage with high complexity still needs to be considered in the study of radiation biological effects, in spite of their small contributions to all clustered DNA damage.
Sperm DNA damage has a negative association with live-birth rates after IVF.
Simon, L; Proutski, I; Stevenson, M; Jennings, D; McManus, J; Lutton, D; Lewis, S E M
2013-01-01
Sperm DNA damage has a negative impact on pregnancy rates following assisted reproduction treatment (ART). The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage. Following IVF, couples with <25% sperm DNA fragmentation had a live-birth rate of 33%; in contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13%. Following ICSI, no significant differences in sperm DNA damage were found between any groups of patients. Sperm DNA damage was also associated with low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men with idiopathic infertility have high sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Sperm DNA damage has a negative impact on assisted reproduction treatment outcome, in particular, on pregnancy rates. The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage and treatment outcome. Following IVF, couples with <25% sperm DNA fragmentation had a live birth rate of 33%. In contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13% following IVF. Following ICSI, there were no significant differences in levels of sperm DNA damage between any groups of patients. Sperm DNA damage was also associated with the very low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men have high level of sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain
NASA Astrophysics Data System (ADS)
Ramesh, Govindarajan; Wu, Honglu
Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.
Wiegering, Armin; Matthes, Niels; Mühling, Bettina; Koospal, Monika; Quenzer, Anne; Peter, Stephanie; Germer, Christoph-Thomas; Linnebacher, Michael; Otto, Christoph
2017-04-01
Colorectal carcinoma (CRC) is the most common cancer of the gastrointestinal tract with frequently dysregulated intracellular signaling pathways, including p53 signaling. The mainstay of chemotherapy treatment of CRC is 5-fluorouracil (5FU) and oxaliplatin. The two anticancer drugs mediate their therapeutic effect via DNA damage-triggered signaling. The small molecule reactivating p53 and inducing tumor apoptosis (RITA) is described as an activator of wild-type and reactivator of mutant p53 function, resulting in elevated levels of p53 protein, cell growth arrest, and cell death. Additionally, it has been shown that RITA can induce DNA damage signaling. It is expected that the therapeutic benefits of 5FU and oxaliplatin can be increased by enhancing DNA damage signaling pathways. Therefore, we highlighted the antiproliferative response of RITA alone and in combination with 5FU or oxaliplatin in human CRC cells. A panel of long-term established CRC cell lines (n=9) including p53 wild-type, p53 mutant, and p53 null and primary patient-derived, low-passage cell lines (n=5) with different p53 protein status were used for this study. A substantial number of CRC cells with pronounced sensitivity to RITA (IC 50 <3.0 μmol/l) were identified within established (4/9) and primary patient-derived (2/5) CRC cell lines harboring wild-type or mutant p53 protein. Sensitivity to RITA appeared independent of p53 status and was associated with an increase in antiproliferative response to 5FU and oxaliplatin, a transcriptional increase of p53 targets p21 and NOXA, and a decrease in MYC mRNA. The effect of RITA as an inducer of DNA damage was shown by a strong elevation of phosphorylated histone variant H2A.X, which was restricted to RITA-sensitive cells. Our data underline the primary effect of RITA, inducing DNA damage, and demonstrate the differential antiproliferative effect of RITA to CRC cells independent of p53 protein status. We found a substantial number of RITA-sensitive CRC cells within both panels of established CRC cell lines and primary patient-derived CRC cell lines (6/14) that provide a rationale for combining RITA with 5FU or oxaliplatin to enhance the antiproliferative response to both chemotherapeutic agents. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism
Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G
2016-01-01
Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041
Kirkpatrick, Donald S; Bustos, Daisy J; Dogan, Taner; Chan, Jocelyn; Phu, Lilian; Young, Amy; Friedman, Lori S; Belvin, Marcia; Song, Qinghua; Bakalarski, Corey E; Hoeflich, Klaus P
2013-11-26
Targeted therapeutics that block signal transduction through the RAS-RAF-MEK and PI3K-AKT-mTOR pathways offer significant promise for the treatment of human malignancies. Dual inhibition of MAP/ERK kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) with the potent and selective small-molecule inhibitors GDC-0973 and GDC-0941 has been shown to trigger tumor cell death in preclinical models. Here we have used phosphomotif antibodies and mass spectrometry (MS) to investigate the effects of MEK/PI3K dual inhibition during the period immediately preceding cell death. Upon treatment, melanoma cell lines responded by dramatically increasing phosphorylation on proteins containing a canonical DNA damage-response (DDR) motif, as defined by a phosphorylated serine or threonine residue adjacent to glutamine, [s/t]Q. In total, >2,000 [s/t]Q phosphorylation sites on >850 proteins were identified by LC-MS/MS, including an extensive network of DDR proteins. Linear mixed-effects modeling revealed 101 proteins in which [s/t]Q phosphorylation was altered significantly in response to GDC-0973/GDC-0941. Among the most dramatic changes, we observed rapid and sustained phosphorylation of sites within the ABCDE cluster of DNA-dependent protein kinase. Preincubation of cells with the inhibitors of the DDR kinases DNA-dependent protein kinase or ataxia-telangiectasia mutated enhanced GDC-0973/GDC-0941-mediated cell death. Network analysis revealed specific enrichment of proteins involved in RNA metabolism along with canonical DDR proteins and suggested a prominent role for this pathway in the response to MEK/PI3K dual inhibition.
Kirkpatrick, Donald S.; Bustos, Daisy J.; Dogan, Taner; Chan, Jocelyn; Phu, Lilian; Young, Amy; Friedman, Lori S.; Belvin, Marcia; Song, Qinghua; Bakalarski, Corey E.; Hoeflich, Klaus P.
2013-01-01
Targeted therapeutics that block signal transduction through the RAS–RAF–MEK and PI3K–AKT–mTOR pathways offer significant promise for the treatment of human malignancies. Dual inhibition of MAP/ERK kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) with the potent and selective small-molecule inhibitors GDC-0973 and GDC-0941 has been shown to trigger tumor cell death in preclinical models. Here we have used phosphomotif antibodies and mass spectrometry (MS) to investigate the effects of MEK/PI3K dual inhibition during the period immediately preceding cell death. Upon treatment, melanoma cell lines responded by dramatically increasing phosphorylation on proteins containing a canonical DNA damage-response (DDR) motif, as defined by a phosphorylated serine or threonine residue adjacent to glutamine, [s/t]Q. In total, >2,000 [s/t]Q phosphorylation sites on >850 proteins were identified by LC-MS/MS, including an extensive network of DDR proteins. Linear mixed-effects modeling revealed 101 proteins in which [s/t]Q phosphorylation was altered significantly in response to GDC-0973/GDC-0941. Among the most dramatic changes, we observed rapid and sustained phosphorylation of sites within the ABCDE cluster of DNA-dependent protein kinase. Preincubation of cells with the inhibitors of the DDR kinases DNA-dependent protein kinase or ataxia-telangiectasia mutated enhanced GDC-0973/GDC-0941–mediated cell death. Network analysis revealed specific enrichment of proteins involved in RNA metabolism along with canonical DDR proteins and suggested a prominent role for this pathway in the response to MEK/PI3K dual inhibition. PMID:24218548
Chen, Hsing-Yin; Chen, Hui-Fen; Kao, Chai-Lin; Yang, Po-Yu; Hsu, Sodio C N
2014-09-28
Cisplatin, Pt(NH3)2Cl2, is a leading chemotherapeutic agent that has been widely used for various cancers. Recent experiments show that combining cisplatin and electron sources can dramatically enhance DNA damage and the cell-killing rate and, therefore, is a promising way to overcome the side effects and the resistance of cisplatin. However, the molecular mechanisms underlying this phenomenon are not clear yet. By using density functional theory calculations, we confirm that cisplatin can efficiently capture the prehydrated electrons and then undergo dissociation. The first electron attachment triggers a spontaneous departure of the chloride ion, forming a T-shaped [Pt(NH3)2Cl]˙ neutral radical, whereas the second electron attachment leads to a spontaneous departure of ammine, forming a linear [Pt(NH3)Cl](-) anion. We further recognize that the one-electron reduced product [Pt(NH3)2Cl]˙ is extremely harmful to DNA. It can abstract hydrogen atoms from the C-H bonds of the ribose moiety and the methyl group of thymine, which in turn leads to DNA strand breaks and cross-link lesions. The activation energies of these hydrogen abstraction reactions are relatively small compared to the hydrolysis of cisplatin, a prerequisite step in the normal mechanism of action of cisplatin. These results rationalize the improved cytotoxicity of cisplatin by supplying electrons. Although the biological effects of the two-electron reduced product [Pt(NH3)Cl](-) are not clear at this stage, our calculations indicate that it might be protonated by the surrounding water.
Akkaya, Çağlayan; Yavuzer, Serap Sahin; Yavuzer, Hakan; Erkol, Gökhan; Bozluolcay, Melda; Dinçer, Yıldız
2017-07-15
The aim of the current study was to compare oxidative DNA damage, DNA susceptibility to oxidation, and ratio of GSH/GSSG in patients with Alzheimer's disease (AD) treated with acetylcholinesterase inhibitor (AChEI) and combined AChEI+memantine. The study included 67 patients with AD and 42 volunteers as control. DNA damage parameters (strand breaks, oxidized purines, H 2 O 2 -induced DNA damage) in lymphocyte DNA and GSH/GSSG ratio in erythrocytes were determined by the comet assay and spectrophotometric assay, respectively. DNA damage was found to be higher, GSH/GSSG ratio was found to be lower in the AD group than those in the control group. DNA strand breaks and H 2 O 2 -induced DNA damage were lower in the patients taking AChEI+memantine than those in the patients taking AChEI but no significant difference was determined between the groups for oxidized purines and GSH/GSSG ratio. In conclusion, increased systemic oxidative DNA damage and DNA susceptibility to oxidation may be resulted from diminished GSH/GSSG ratio in AD patients. Although DNA strand breaks and H 2 O 2 -induced DNA damage are lower in the AD patients treated with combined AChEI and memantine, this may not indicate protective effect of memantine against DNA oxidation due to similar levels of oxidized purines in the patients treated with AChEI and AChEI+memantine. Copyright © 2017 Elsevier B.V. All rights reserved.
Growth hormone is a cellular senescence target in pituitary and nonpituitary cells
Chesnokova, Vera; Zhou, Cuiqi; Ben-Shlomo, Anat; Zonis, Svetlana; Tani, Yuji; Ren, Song-Guang; Melmed, Shlomo
2013-01-01
Premature proliferative arrest in benign or early-stage tumors induced by oncoproteins, chromosomal instability, or DNA damage is associated with p53/p21 activation, culminating in either senescence or apoptosis, depending on cell context. Growth hormone (GH) elicits direct peripheral metabolic actions as well as growth effects mediated by insulin-like growth factor 1 (IGF1). Locally produced peripheral tissue GH, in contrast to circulating pituitary-derived endocrine GH, has been proposed to be both proapoptotic and prooncogenic. Pituitary adenomas expressing and secreting GH are invariably benign and exhibit DNA damage and a senescent phenotype. We therefore tested effects of nutlin-induced p53-mediated senescence in rat and human pituitary cells. We show that DNA damage senescence induced by nutlin triggers the p53/p21 senescent pathway, with subsequent marked induction of intracellular pituitary GH in vitro. In contrast, GH is not induced in cells devoid of p53. Furthermore we show that p53 binds specific GH promoter motifs and enhances GH transcription and secretion in senescent pituitary adenoma cells and also in nonpituitary (human breast and colon) cells. In vivo, treatment with nutlin results in up-regulation of both p53 and GH in the pituitary gland, as well as increased GH expression in nonpituitary tissues (lung and liver). Intracrine GH acts in pituitary cells as an apoptosis switch for p53-mediated senescence, likely protecting the pituitary adenoma from progression to malignancy. Unlike in the pituitary, in nonpituitary cells GH exerts antiapoptotic properties. Thus, the results show that GH is a direct p53 transcriptional target and fulfills criteria as a p53 target gene. Induced GH is a readily measurable cell marker for p53-mediated cellular senescence. PMID:23940366
Anderson, Chastain; Majeste, Andrew; Hanus, Jakub; Wang, Shusheng
2016-12-01
Cigarette smoking remains one of the leading causes of preventable death worldwide. Vascular cell death and dysfunction is a central or exacerbating component in the majority of cigarette smoking related pathologies. The recent development of the electronic nicotine delivery systems known as e-cigarettes provides an alternative to conventional cigarette smoking; however, the potential vascular health risks of e-cigarette use remain unclear. This study evaluates the effects of e-cigarette aerosol extract (EAE) and conventional cigarette smoke extract (CSE) on human umbilical vein endothelial cells (HUVECs). A laboratory apparatus was designed to produce extracts from e-cigarettes and conventional cigarettes according to established protocols for cigarette smoking. EAE or conventional CSE was applied to human vascular endothelial cells for 4-72 h, dependent on the assay. Treated cells were assayed for reactive oxygen species, DNA damage, cell viability, and markers of programmed cell death pathways. Additionally, the anti-oxidants α-tocopherol and n-acetyl-l-cysteine were used to attempt to rescue e-cigarette induced cell death. Our results indicate that e-cigarette aerosol is capable of inducing reactive oxygen species, causing DNA damage, and significantly reducing cell viability in a concentration dependent fashion. Immunofluorescent and flow cytometry analysis indicate that both the apoptosis and programmed necrosis pathways are triggered by e-cigarette aerosol treatment. Additionally, anti-oxidant treatment provides a partial rescue of the induced cell death, indicating that reactive oxygen species play a causal role in e-cigarette induced cytotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sinha, Niharika; Panda, Prashanta K; Naik, Prajna P; Das, Durgesh N; Mukhopadhyay, Subhadip; Maiti, Tapas K; Shanmugam, Muthu K; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman A; Sethi, Gautam; Agarwal, Rajesh; Bhutia, Sujit K
2017-11-01
Oral cancer, a type of head and neck cancer, is ranked as one of the top most malignancies in India. Herein, we evaluated the anticancer efficacy of Abrus agglutinin (AGG), a plant lectin, in oral squamous cell carcinoma. AGG selectively inhibited cell growth, and caused cell cycle arrest and mitochondrial apoptosis through a reactive oxygen species (ROS)-mediated ATM-p73 dependent pathway in FaDu cells. AGG-induced ROS accumulation was identified as the major mechanism regulating apoptosis, DNA damage and DNA-damage response, which were significantly reversed by ROS scavenger N-acetylcysteine (NAC). Moreover, AGG was found to interact with mitochondrial manganese-dependent superoxide dismutase that might inhibit its activity and increase ROS in FaDu cells. In oral cancer p53 is mutated, thus we focused on p73; AGG resulted in p73 upregulation and knock down of p73 caused a decrease in AGG-induced apoptosis. Interestingly, AGG-dependent p73 expression was found to be regulated by ROS, which was reversed by NAC treatment. A reduction in the level of p73 in AGG-treated shATM cells was found to be associated with a decreased apoptosis. Moreover, administration of AGG (50 μg/kg body weight) significantly inhibited the growth of FaDu xenografts in athymic nude mice. In immunohistochemical analysis, the xenografts from AGG-treated mice displayed a decrease in PCNA expression and an increase in caspase-3 activation as compared to the controls. In conclusion, we established a connection among ROS, ATM and p73 in AGG-induced apoptosis, which might be useful in enhancing the therapeutic targeting of p53 deficient oral squamous cell carcinoma. © 2017 Wiley Periodicals, Inc.
Diamantis, Dimitrios A; Ramesova, Sarka; Chatzigiannis, Christos M; Degano, Ilaria; Gerogianni, Paraskevi S; Karadima, Constantina; Perikleous, Sonia; Rekkas, Dimitrios; Gerothanassis, Ioannis P; Galaris, Dimitrios; Mavromoustakos, Thomas; Valsami, Georgia; Sokolova, Romana; Tzakos, Andreas G
2018-06-07
Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry) UV-Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H 2 O 2 -induced DNA damage. Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and oxidation profile is retained in its encapsulated state. Although the protective ability of the quercetin-2HP-β-CD complex against H 2 O 2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. The oxidation profile of a natural product once it is encapsulated in a supramolecular cyclodextrin carrier as also it was discovered that decomplexation can be triggered by a chemical stimulus. Copyright © 2018. Published by Elsevier B.V.
Ziegler, Verena; Henninger, Christian; Simiantonakis, Ioannis; Buchholzer, Marcel; Ahmadian, Mohammad Reza; Budach, Wilfried; Fritz, Gerhard
2017-01-01
Thoracic radiotherapy causes damage of normal lung tissue, which limits the cumulative radiation dose and, hence, confines the anticancer efficacy of radiotherapy and impacts the quality of life of tumor patients. Ras-homologous (Rho) small GTPases regulate multiple stress responses and cell death. Therefore, we investigated whether pharmacological targeting of Rho signaling by the HMG-CoA-reductase inhibitor lovastatin influences ionizing radiation (IR)-induced toxicity in primary human lung fibroblasts, lung epithelial and lung microvascular endothelial cells in vitro and subchronic mouse lung tissue damage following hypo-fractionated irradiation (4x4 Gy). The statin improved the repair of radiation-induced DNA double-strand breaks (DSBs) in all cell types and, moreover, protected lung endothelial cells from IR-induced caspase-dependent apoptosis, likely involving p53-regulated mechanisms. Under the in vivo situation, treatment with lovastatin or the Rac1-specific small molecule inhibitor EHT1864 attenuated the IR-induced increase in breathing frequency and reduced the percentage of γH2AX and 53BP1-positive cells. This indicates that inhibition of Rac1 signaling lowers IR-induced residual DNA damage by promoting DNA repair. Moreover, lovastatin and EHT1864 protected lung tissue from IR-triggered apoptosis and mitigated the IR-stimulated increase in regenerative proliferation. Our data document beneficial anti-apoptotic and genoprotective effects of pharmacological targeting of Rho signaling following hypo-fractionated irradiation of lung cells in vitro and in vivo. Rac1-targeting drugs might be particular useful for supportive care in radiation oncology and, moreover, applicable to improve the anticancer efficacy of radiotherapy by widening the therapeutic window of thoracic radiation exposure. PMID:28796249
Hashimoto, Kiyohiro; Sharma, Vyom; Sasanuma, Hiroyuki; Tian, Xu; Takata, Minoru; Takeda, Shunichi; Swenberg, James A.; Nakamura, Jun
2016-01-01
Isopropyl methanesulfonate (IPMS) is the most potent genotoxic compound among methanesulfonic acid esters. The genotoxic potential of alkyl sulfonate esters is believed to be due to their alkylating ability of the O6 position of guanine. Understanding the primary repair pathway activated in response to IPMS-induced DNA damage is important to profile the genotoxic potential of IPMS. In the present study, both chicken DT40 and human TK6 cell-based DNA damage response (DDR) assays revealed that dysfunction of the FANC pathway resulted in higher sensitivity to IPMS compared to EMS or MMS. O6-alkyl dG is primarily repaired by methyl guanine methyltransferase (MGMT), while isopropyl dG is less likely to be a substrate for MGMT. Comparison of the cytotoxic potential of IPMS and its isomer n-propyl methanesulfonate (nPMS) revealed that the isopropyl moiety avoids recognition by MGMT and leads to higher cytotoxicity. Next, the micronucleus (MN) assay showed that FANC deficiency increases the sensitivity of DT40 cells to MN induction by IPMS. Pretreatment with O6-benzyl guanine (OBG), an inhibitor of MGMT, increased the MN frequency in DT40 cells treated with nPMS, but not IPMS. Lastly, IPMS induced more double strand breaks in FANC-deficient cells compared to wild-type cells in a time-dependent manner. All together, these results suggest that IPMS-derived O6-isopropyl dG escapes recognition by MGMT, and the unrepaired DNA damage leads to double strand breaks, resulting in MN induction. FANC, therefore, plays a pivotal role in preventing MN induction and cell death caused by IPMS. PMID:27486975
Basourakos, Spyridon P.; Li, Likun; Aparicio, Ana M.; Corn, Paul G.; Kim, Jeri; Thompson, Timothy C.
2017-01-01
Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a “molecular landscape,” i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with ”BRCAness”, i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that establish a molecular landscape that can be further exploited therapeutically; (2) multiple points of potential intervention after ICL agent–induced crosslinking that further predispose to cell death and can be incorporated into a systematic, therapeutic rationale for combination/maintenance therapy using DDR-targeting agents; and (3) available agents that can be considered for use in combination/maintenance clinical protocols with platinum-based agents for patients with advanced malignancies. PMID:27978798
Basourakos, Spyridon P; Li, Likun; Aparicio, Ana M; Corn, Paul G; Kim, Jeri; Thompson, Timothy C
2017-01-01
Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a "molecular landscape," i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with "BRCAness", i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that establish a molecular landscape that can be further exploited therapeutically; (2) multiple points of potential intervention after ICL agent-induced crosslinking that further predispose to cell death and can be incorporated into a systematic, therapeutic rationale for combination/ maintenance therapy using DDR-targeting agents; and (3) available agents that can be considered for use in combination/maintenance clinical protocols with platinum-based agents for patients with advanced malignancies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Guzder, S N; Sung, P; Prakash, L; Prakash, S
1998-11-20
Saccharomyces cerevisiae Rad4 and Rad23 proteins are required for the nucleotide excision repair of UV light-damaged DNA. Previous studies have indicated that these two DNA repair proteins are associated in a tight complex, which we refer to as nucleotide excision repair factor 2 (NEF2). In a reconstituted nucleotide excision repair reaction, incision of UV-damaged DNA is dependent on NEF2, indicating a role of NEF2 in an early step of the repair process. NEF2 does not, however, possess an enzymatic activity, and its function in the damage-specific incision reaction has not yet been defined. Here we use a DNA mobility shift assay to demonstrate that NEF2 binds specifically to UV-damaged DNA. Elimination of cyclobutane pyrimidine dimers from the UV-damaged DNA by enzymatic photoreactivation has little effect on the affinity of NEF2 for the DNA, suggesting that NEF2 recognizes the 6-(1, 2)-dihydro-2-oxo-4-pyrimidinyl)-5-methyl-2,4-(1H,3H)-pyrimidinedione photoproducts in the damaged DNA. These results highlight the intricacy of the DNA damage-demarcation reaction during nucleotide excision repair in eukaryotes.
Visualizing the Search for Radiation-damaged DNA Bases in Real Time.
Lee, Andrea J; Wallace, Susan S
2016-11-01
The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.
Visualizing the search for radiation-damaged DNA bases in real time
NASA Astrophysics Data System (ADS)
Lee, Andrea J.; Wallace, Susan S.
2016-11-01
The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.
DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing
Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming
2016-01-01
The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress. PMID:27455298
Song, Zhangfa; von Figura, Guido; Liu, Yan; Kraus, Johann M.; Torrice, Chad; Dillon, Patric; Rudolph-Watabe, Masami; Ju, Zhenyu; Kestler, Hans A.; Sanoff, Hanna; Rudolph, K. Lenhard
2010-01-01
Summary Cellular aging is characterised by telomere shortening, which can lead to uncapping of chromosome ends (telomere dysfunction) and that activation of DNA damage responses. There is some evidence the DNA damage accumulates during human aging and that lifestyle factors contribute to the accumulation of DNA damage. Recent studies have identified a set of serum markers that are induced by telomere dysfunction and DNA damage and these markers showed an increased expression in blood during human aging. Here, we investigated the influence of lifestyle factors (such as exercise, smoking, body mass) on the aging associated expression of serum markers of DNA damage (CRAMP, EF-1α, Stathmin, n-acetyl-glucosaminidase, and chitinase) in comparison to other described markers of cellular aging (p16INK4a upregulation and telomere shortening) in human peripheral blood. The study shows that lifestyle factors have an age-independent impact on the expression level of biomarkers of DNA damage. Smoking and increased body mass indices were associated with elevated levels of biomarkers of DNA damage independent of the age of the individuals. In contrast, exercise was associated with an age-independent reduction in the expression of biomarkers of DNA damage in human blood. The expression of biomarkers of DNA damage correlated positively with p16INK4a expression and negatively with telomere length in peripheral blood T-lymphocytes. Together, these data provide experimental evidence that both aging and lifestyle impact on the accumulation of DNA damage during human aging. PMID:20560902
Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets.
Xie, Ming-Zhang; Shoulkamy, Mahmoud I; Salem, Amir M H; Oba, Shunya; Goda, Mizuki; Nakano, Toshiaki; Ide, Hiroshi
2016-04-01
Aldehydes are genotoxic and cytotoxic molecules and have received considerable attention for their associations with the pathogenesis of various human diseases. In addition, exposure to anthropogenic aldehydes increases human health risks. The general mechanism of aldehyde toxicity involves adduct formation with biomolecules such as DNA and proteins. Although the genotoxic effects of aldehydes such as mutations and chromosomal aberrations are directly related to DNA damage, the role of DNA damage in the cytotoxic effects of aldehydes is poorly understood because concurrent protein damage by aldehydes has similar effects. In this study, we have analysed how saturated and α,β-unsaturated aldehydes exert cytotoxic effects through DNA and protein damage. Interestingly, DNA repair is essential for alleviating the cytotoxic effect of weakly toxic aldehydes such as saturated aldehydes but not highly toxic aldehydes such as long α,β-unsaturated aldehydes. Thus, highly toxic aldehydes inactivate cells exclusively by protein damage. Our data suggest that DNA interstrand crosslinks, but not DNA-protein crosslinks and DNA double-strand breaks, are the critical cytotoxic DNA damage induced by aldehydes. Further, we show that the depletion of intracellular glutathione and the oxidation of thioredoxin 1 partially account for the DNA damage-independent cytotoxicity of aldehydes. On the basis of these findings, we have proposed a mechanistic model of aldehyde cytotoxicity mediated by DNA and protein damage. Copyright © 2016 Elsevier B.V. All rights reserved.
Sykora, Peter; Chiari, Ylenia; Heaton, Andrew; Moreno, Nickolas; Glaberman, Scott; Sobol, Robert W
2018-05-01
DNA damage has been linked to genomic instability and the progressive breakdown of cellular and organismal homeostasis, leading to the onset of disease and reduced longevity. Insults to DNA from endogenous sources include base deamination, base hydrolysis, base alkylation, and metabolism-induced oxidative damage that can lead to single-strand and double-strand DNA breaks. Alternatively, exposure to environmental pollutants, radiation or ultra-violet light, can also contribute to exogenously derived DNA damage. We previously validated a novel, high through-put approach to measure levels of DNA damage in cultured mammalian cells. This new CometChip Platform builds on the classical single cell gel electrophoresis or comet methodology used extensively in environmental toxicology and molecular biology. We asked whether the CometChip Platform could be used to measure DNA damage in samples derived from environmental field studies. To this end, we determined that nucleated erythrocytes from multiple species of turtle could be successfully evaluated in the CometChip Platform to quantify levels of DNA damage. In total, we compared levels of DNA damage in 40 animals from two species: the box turtle (Terrapene carolina) and the red-eared slider (Trachemys scripta elegans). Endogenous levels of DNA damage were identical between the two species, yet we did discover some sex-linked differences and changes in DNA damage accumulation. Based on these results, we confirm that the CometChip Platform allows for the measurement of DNA damage in a large number of samples quickly and accurately, and is particularly adaptable to environmental studies using field-collected samples. Environ. Mol. Mutagen. 59:322-333, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders
2001-05-01
We are interested in the molecular mechanisms involved in DNA replication arrest by the S phase DNA damage checkpoints. Using in vitro simian virus...40 DNA replication assays, we have found three factors that directly contribute to DNA damage-induced DNA replication arrest: Replication Protein A...trans-acting inhibitors. RPA is the major eukaryotic single-stranded DNA binding protein required for DNA replication , repair and recombination. Upon DNA
Sallustio, Benedetta C; Degraaf, Yvette C; Weekley, Josephine S; Burcham, Philip C
2006-05-01
Nonenzymatic modification of proteins by acyl glucuronides is well documented; however, little is known about their potential to damage DNA. We have previously reported that clofibric acid undergoes glucuronidation-dependent bioactivation to DNA-damaging species in cultured mouse hepatocytes. The aim of this study was to investigate the mechanisms underlying such DNA damage, and to screen chemically diverse carboxylic acid drugs for their DNA-damaging potential in glucuronidation proficient murine hepatocytes. Cells were incubated with each aglycone for 18 h, followed by assessment of compound cytotoxicity using the MTT assay and evaluation of DNA damage using the Comet assay. Relative cytotoxic potencies were ketoprofen > diclofenac, benoxaprofen, nafenopin > gemfibrozil, probenecid > bezafibrate > clofibric acid. At a noncytotoxic (0.1 mM) concentration, only benoxaprofen, nafenopin, clofibric acid, and probenecid significantly increased Comet moments (P < 0.05 Kruskal-Wallis). Clofibric acid and probenecid exhibited the greatest DNA-damaging potency, producing significant DNA damage at 0.01 mM concentrations. The two drugs produced maximal increases in Comet moment of 4.51 x and 2.57 x control, respectively. The glucuronidation inhibitor borneol (1 mM) abolished the induction of DNA damage by 0.5 mM concentrations of clofibric acid and probenecid. In an in vitro cell-free system, clofibric acid glucuronide was 10 x more potent than glucuronic acid in causing DNA strand-nicking, although both compounds showed similar rates of autoxidation to generate hydroxyl radicals. In cultured hepatocytes, the glycation inhibitor, aminoguanidine, and the iron chelator, desferrioxamine mesylate, inhibited DNA damage by clofibric acid, whereas the free radical scavengers Trolox and butylated hydroxytoluene, and the superoxide dismutase mimetic bis-3,5-diisopropylsalicylate had no effect. In conclusion, clinically relevant concentrations of two structurally unrelated carboxylic acids, probenecid and clofibric acid, induced DNA damage in isolated hepatocytes via glucuronidation- dependent pathways. These findings suggest acyl glucuronides are able to access and damage nuclear DNA via iron-catalyzed glycation/glycoxidative processes.
Imani, Saber; Panahi, Yunes; Salimian, Jafar; Fu, Junjiang; Ghanei, Mostafa
2015-01-01
Sulfur mustard (SM, bis- (2-chloroethyl) sulphide) is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is addressed by DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs expression. It seems SM can induce the epigenetic modifications that are translated into change in gene expression. Classification of epigenetic modifications long after exposure to SM would clarify its mechanism and paves a better strategy for the treatment of SM-affected patients. In this study, we review the key aberrant epigenetic modifications that have important roles in chronic obstructive pulmonary disease (COPD) and compared with mustard lung. PMID:26557960
Wyatt, Lauren H; Luz, Anthony L; Cao, Xiou; Maurer, Laura L; Blawas, Ashley M; Aballay, Alejandro; Pan, William K Y; Meyer, Joel N
2017-04-01
Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Reported impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl 2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H 2 O 2 ), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl 2 , low-level DNA damage (∼0.25 lesions/10kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H 2 O 2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H 2 O 2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H 2 O 2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl 2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. Copyright © 2017 Elsevier B.V. All rights reserved.
Wyatt, Lauren H.; Luz, Anthony L.; Cao, Xiou; Maurer, Laura L.; Blawas, Ashley M.; Aballay, Alejandro; Pan, William K.; Meyer, Joel N.
2017-01-01
Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H2O2), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl2, low-level DNA damage (~0.25 lesions/10 kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H2O2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H2O2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H2O2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. PMID:28242054
Characterization of UVC-induced DNA damage in bloodstains: forensic implications.
Hall, Ashley; Ballantyne, Jack
2004-09-01
The ability to detect DNA polymorphisms using molecular genetic techniques has revolutionized the forensic analysis of biological evidence. DNA typing now plays a critical role within the criminal justice system, but one of the limiting factors with the technology is that DNA isolated from biological stains recovered from the crime scene is sometimes so damaged as to be intractable to analysis. Potential remedies for damaged DNA are likely to be dependent upon the precise nature of the DNA damage present in any particular sample but, unfortunately, current knowledge of the biochemical nature, and the extent, of such DNA damage in dried biological stains is rudimentary. As a model for DNA damage assessment in biological stains recovered from crime scenes, we have subjected human bloodstains and naked DNA in the hydrated and dehydrated states to varying doses of UVC radiation. It was possible to damage the DNA sufficiently in a bloodstain to cause a standard autosomal short tandem repeat (STR) profile to be lost. However, a detailed analysis of the process, based upon assays developed to detect bipyrimidine photoproducts (BPPPs), single- and double-strand breaks, and DNA-DNA crosslinks, produced some unexpected findings. Contrary to the situation with living tissues or cells in culture, the predominant UVC-induced damage to DNA in bloodstains appears not to be pyrimidine dimers. Although some evidence for the presence of BPPPs and DNA crosslinks was obtained, the major form of UVC damage causing genetic profile loss appeared to be single-strand breaks. It was not possible, however, to preclude the possibility that a combination of damage types was responsible for the profile loss observed. We demonstrate here that a significant measure of protection against UVC-mediated genetic profile loss in dried biological stain material is afforded by the dehydrated state of the DNA and, to a lesser extent, the DNA cellular milieu.
House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs.
Chan, Tze Khee; Loh, Xin Yi; Peh, Hong Yong; Tan, W N Felicia; Tan, W S Daniel; Li, Na; Tay, Ian J J; Wong, W S Fred; Engelward, Bevin P
2016-07-01
Asthma is related to airway inflammation and oxidative stress. High levels of reactive oxygen and nitrogen species can induce cytotoxic DNA damage. Nevertheless, little is known about the possible role of allergen-induced DNA damage and DNA repair as modulators of asthma-associated pathology. We sought to study DNA damage and DNA damage responses induced by house dust mite (HDM) in vivo and in vitro. We measured DNA double-strand breaks (DSBs), DNA repair proteins, and apoptosis in an HDM-induced allergic asthma model and in lung samples from asthmatic patients. To study DNA repair, we treated mice with the DSB repair inhibitor NU7441. To study the direct DNA-damaging effect of HDM on human bronchial epithelial cells, we exposed BEAS-2B cells to HDM and measured DNA damage and reactive oxygen species levels. HDM challenge increased lung levels of oxidative damage to proteins (3-nitrotyrosine), lipids (8-isoprostane), and nucleic acid (8-oxoguanine). Immunohistochemical evidence for HDM-induced DNA DSBs was revealed by increased levels of the DSB marker γ Histone 2AX (H2AX) foci in bronchial epithelium. BEAS-2B cells exposed to HDM showed enhanced DNA damage, as measured by using the comet assay and γH2AX staining. In lung tissue from human patients with asthma, we observed increased levels of DNA repair proteins and apoptosis, as shown by caspase-3 cleavage, caspase-activated DNase levels, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining. Notably, NU7441 augmented DNA damage and cytokine production in the bronchial epithelium and apoptosis in the allergic airway, implicating DSBs as an underlying driver of asthma pathophysiology. This work calls attention to reactive oxygen and nitrogen species and HDM-induced cytotoxicity and to a potential role for DNA repair as a modulator of asthma-associated pathophysiology. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves
2013-01-01
Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789
Maréchal, Alexandre; Li, Ju-Mei; Ji, Xiao Ye; Wu, Ching-Shyi; Yazinski, Stephanie A; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E; Jin, Jianping; Zou, Lee
2014-01-23
PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). Although the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 directly binds RPA and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA-damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ataxia telangiectasia mutated and Rad3-related (ATR) kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, recovery of stalled replication forks, and progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. Copyright © 2014 Elsevier Inc. All rights reserved.
Mitochondrial Dysregulation and Protection in Cisplatin Nephrotoxicity
Yang, Yuan; Liu, Hong; Liu, Fuyou; Dong, Zheng
2014-01-01
Nephrotoxicity is a major side effect of cisplatin in chemotherapy. Pathologically, cisplatin nephrotoxicity is characterized by cell injury and death in renal tubules. The research in the past decade has gained significant understanding of the cellular and molecular mechanisms of tubular cell death, revealing a central role of mitochondrial dysregulation. The pathological changes of mitochondria in cisplatin nephrotoxicity are mainly triggered by DNA damage response, pro-apoptotic protein attack, disruption of mitochondrial dynamics, and oxidative stress. As such, inhibitory strategies targeting these cytotoxic events may provide renal protection. Nonetheless, ideal approaches for renoprotection should not only protect kidneys but also enhance the anti-cancer efficacy of cisplatin in chemotherapy. PMID:24859930
Casorelli, Ida; Bossa, Cecilia; Bignami, Margherita
2012-01-01
Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers. PMID:23066388
NASA Technical Reports Server (NTRS)
Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)
2003-01-01
Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.
Hamperl, Stephan; Cimprich, Karlene A.
2014-01-01
Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923
Direct Detection and Sequencing of Damaged DNA Bases
2011-01-01
Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597
Direct detection and sequencing of damaged DNA bases.
Clark, Tyson A; Spittle, Kristi E; Turner, Stephen W; Korlach, Jonas
2011-12-20
Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications.
Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.
Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin
2012-09-15
A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.
Repair of Clustered Damage and DNA Polymerase Iota.
Belousova, E A; Lavrik, O I
2015-08-01
Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.
Noise Induced DNA Damage Within the Auditory Nerve.
Guthrie, O'neil W
2017-03-01
An understanding of the molecular pathology that underlies noise induced neurotoxicity is a prerequisite to the design of targeted therapies. The objective of the current experiment was to determine whether or not DNA damage is part of the pathophysiologic sequela of noise induced neurotoxicity. The experiment consisted of 41 hooded Long-Evans rats (2 month old males) that were randomized into control and noise exposed groups. Both the control and the noise group followed the same time schedule and therefore started and ended the experiment together. The noise dose consisted of a 6000 Hz noise band at 105 dB SPL. Temporal bones from both groups were harvested, and immunohistochemistry was used to identify neurons with DNA damage. Quantitative morphometric analyses was then employed to determine the level of DNA damage. Neural action potentials were recorded to assess the functional impact of noise induced DNA damage. Immunohistochemical reactions revealed that the noise exposure precipitated DNA damage within the nucleus of auditory neurons. Quantitative morphometry confirmed the noise induced increase in DNA damage levels and the precipitation of DNA damage was associated with a significant loss of nerve sensitivity. Therefore, DNA damage is part of the molecular pathology that drives noise induced neurotoxicity. Anat Rec, 300:520-526, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DNA-damage response during mitosis induces whole-chromosome missegregation.
Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A
2014-11-01
Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.
Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension
Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.
2017-01-01
Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562
Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.
Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan
2006-10-10
Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (p<0.05), while total antioxidant capacity was significantly lower (p<0.001). While there was a positive correlation between total antioxidant capacity and hemoglobin levels (r=0.706, p<0.001), both total antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.
RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage.
Paul, Atanu; Wang, Bin
2017-05-18
Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response. Copyright © 2017 Elsevier Inc. All rights reserved.
Garaj-Vrhovac, Vera; Gajski, Goran; Trosić, Ivancica; Pavicić, Ivan
2009-05-17
The aim of this study was to assess whether microwave-induced DNA damage is basal or it is also generated through reactive oxygen species (ROS) formation. After having irradiated Wistar rats with 915MHz microwave radiation, we assessed different DNA alterations in peripheral leukocytes using standard and formamidopyrimidine DNA-glycosylase (Fpg)-modified comet assay. The first is a sensitive tool for detecting primary DNA damage, and the second is much more specific for detecting oxidative damage. The animals were irradiated for 1h a day for 2 weeks at a field power density of 2.4W/m(2), and the whole-body average specific absorption rate (SAR) of 0.6W/kg. Both the standard and the Fpg-modified comet assay detected increased DNA damage in blood leukocytes of the exposed rats. The significant increase in Fpg-detected DNA damage in the exposed rats suggests that oxidative stress is likely to be responsible. DNA damage detected by the standard comet assay indicates that some other mechanisms may also be involved. In addition, both methods served proved sensitive enough to measure basal and oxidative DNA damage after long-term exposure to 915MHz microwave radiation in vivo.
Mishra, Manish; Lillvis, John; Seyoum, Berhane; Kowluru, Renu A.
2016-01-01
Purpose In the development of diabetic retinopathy, retinal mitochondria become dysfunctional, and mitochondrial DNA (mtDNA) is damaged. Because retinopathy is a progressive disease, and circulating glucose levels are high in diabetes, our aim was to investigate if peripheral blood mtDNA damage can serve as a potential biomarker of diabetic retinopathy. Methods Peripheral blood mtDNA damage was investigated by extended-length PCR in rats and mice, diabetic for 10 to 12 months (streptozotocin-induced, type 1 model), and in 12- and 40-week-old Zucker diabetic fatty rats (ZDF, type 2). Mitochondrial copy number (in gDNA) and transcription (in cDNA) were quantified by qPCR. Similar parameters were measured in blood from diabetic patients with/without retinopathy. Results Peripheral blood from diabetic rodents had significantly increased mtDNA damage and decreased copy numbers and transcription. Lipoic acid administration in diabetic rats, or Sod2 overexpression or MMP-9 knockdown in mice, the therapies that prevent diabetic retinopathy, also ameliorated blood mtDNA damage and restored copy numbers and transcription. Although blood from 40-week-old ZDF rats had significant mtDNA damage, 12-week-old rats had normal mtDNA. Diabetic patients with retinopathy had increased blood mtDNA damage, and decreased transcription and copy numbers compared with diabetic patients without retinopathy and nondiabetic individuals. Conclusions Type 1 diabetic rodents with oxidative stress modulated by pharmacologic/genetic means, and type 2 animal model and patients with/without diabetic retinopathy, demonstrate a strong relation between peripheral blood mtDNA damage and diabetic retinopathy, and suggest the possibility of use of peripheral blood mtDNA as a noninvasive biomarker of diabetic retinopathy. PMID:27494345
Bhute, Vijesh J.; Palecek, Sean P.
2015-01-01
Genomic instability is one of the hallmarks of cancer. Several chemotherapeutic drugs and radiotherapy induce DNA damage to prevent cancer cell replication. Cells in turn activate different DNA damage response (DDR) pathways to either repair the damage or induce cell death. These DDR pathways also elicit metabolic alterations which can play a significant role in the proper functioning of the cells. The understanding of these metabolic effects resulting from different types of DNA damage and repair mechanisms is currently lacking. In this study, we used NMR metabolomics to identify metabolic pathways which are altered in response to different DNA damaging agents. By comparing the metabolic responses in MCF-7 cells, we identified the activation of poly (ADP-ribose) polymerase (PARP) in methyl methanesulfonate (MMS)-induced DNA damage. PARP activation led to a significant depletion of NAD+. PARP inhibition using veliparib (ABT-888) was able to successfully restore the NAD+ levels in MMS-treated cells. In addition, double strand break induction by MMS and veliparib exhibited similar metabolic responses as zeocin, suggesting an application of metabolomics to classify the types of DNA damage responses. This prediction was validated by studying the metabolic responses elicited by radiation. Our findings indicate that cancer cell metabolic responses depend on the type of DNA damage responses and can also be used to classify the type of DNA damage. PMID:26478723
Ionizing radiation (IR) is a commonly employed cancer treatment that kills cancer cells by damaging their DNA. While the DNA damage response (DDR) pathway may be key to determining tumor responses, radiochemical damage due to IR can target the patients’ healthy dividing cells, leading to the formation of secondary hematologic and solid tumors after DNA-damaging therapy.
Ding, Wei; Bishop, Michelle E.; Lyn-Cook, Lascelles E.; Davis, Kelly J.; Manjanatha, Mugimane G.
2016-01-01
Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals. PMID:27166647
Ding, Wei; Bishop, Michelle E; Lyn-Cook, Lascelles E; Davis, Kelly J; Manjanatha, Mugimane G
2016-05-04
Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.
Colorimetric detection of DNA damage by using hemin-graphene nanocomposites
NASA Astrophysics Data System (ADS)
Wei, W.; Zhang, D. M.; Yin, L. H.; Pu, Y. P.; Liu, S. Q.
2013-04-01
A colorimetric method for detection of DNA damage was developed by using hemin-graphene nanosheets (H-GNs). H-GNs were skillfully synthesized by adsorping of hemin on graphene through π-π interactions. The as-prepared H-GNs possessed both the ability of graphene to differentiate the damage DNA from intact DNA and the catalytic action of hemin. The damaged DNA made H-GNs coagulated to different degrees from the intact DNA because there were different amount of negative charge exposed on their surface, which made a great impact on the solubility of H-GNs. As a result, the corresponding centrifugal supernatant of H-GNs solution showed different color in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, which could be discriminated by naked eyes or by ultraviolet (UV)-visible spectrometer. Based on this, the damaged effects of styrene oxide (SO), NaAsO2 and UV radiation on DNA were studied. Results showed that SO exerted most serious damage effect on DNA although all of them damaged DNA seriously. The new method for detection of DNA damage showed good prospect in the evaluation of genotoxicity of new compounds, the maximum limit of pesticide residue, food additives, and so on, which is important in the fields of food science, pharmaceutical science and pesticide science.
Assessment of the role of DNA repair in damaged forensic samples.
Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; King, Jonathan; Budowle, Bruce
2014-11-01
Previous studies on DNA damage and repair have involved in vitro laboratory procedures that induce a single type of lesion in naked templates. Although repair of singular, sequestered types of DNA damage has shown some success, forensic and ancient specimens likely contain a number of different types of lesions. This study sought to (1) develop protocols to damage DNA in its native state, (2) generate a pool of candidate samples for repair that more likely emulate authentic forensic samples, and (3) assess the ability of the PreCR(TM) Repair Mix to repair the resultant lesions. Complexed, native DNA is more difficult to damage than naked DNA. Modified procedures included the use of higher concentrations and longer exposure times. Three types of samples, those that demonstrated damage based on short tandem repeat (STR) profile signals, were selected for repair experiments: environmentally damaged bloodstains, bleach-damaged whole blood, and human skeletal remains. Results showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR(TM) assay. The data suggest that the use of PreCR in casework should be considered with caution due to the assay's varied results.
The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henninger, Christian; Institute of Toxicology, University Duesseldorf, Medical Faculty, Universitätsstrasse 1, D-40225 Duesseldorf; Huelsenbeck, Johannes
2012-05-15
Liver is the main detoxifying organ and therefore the target of high concentrations of genotoxic compounds, such as environmental carcinogens and anticancer drugs. Here, we investigated the usefulness of lovastatin, which is nowadays widely used for lipid lowering purpose, as a hepatoprotective drug following the administration of the anthracycline derivative doxorubicin in vivo. To this end, BALB/c mice were exposed to either a single high dose or three consecutive low doses of doxorubicin. Acute and subacute hepatotoxicities were analyzed with or without lovastatin co-treatment. Lovastatin protected the liver against doxorubicin-induced acute pro-inflammatory and pro-fibrotic stress responses as indicated by anmore » attenuated mRNA expression of tumor necrosis factor alpha (TNFα) and connective tissue growth factor (CTGF), respectively. Hepatoprotection by lovastatin was due to a reduced induction of DNA damage following doxorubicin treatment. The statin also mitigated subacute anthracycline-provoked hepatotoxicity as shown on the level of doxorubicin- and epirubicin-stimulated CTGF mRNA expression as well as histopathologically detectable fibrosis and serum concentration of marker enzymes of hepatotoxicity (GPT/GLDH). Kidney damage following doxorubicin exposure was not detectable under our experimental conditions. Moreover, lovastatin showed multiple inhibitory effects on doxorubicin-triggered hepatic expression of genes involved in oxidative stress response, drug transport, DNA repair, cell cycle progression and cell death. Doxorubicin also stimulated the formation of ceramides. Ceramide production, however, was not blocked by lovastatin, indicating that hepatoprotection by lovastatin is independent of the sphingolipid metabolism. Overall, the data show that lovastatin is hepatoprotective following genotoxic stress induced by anthracyclines. Based on the data, we hypothesize that statins might be suitable to lower hepatic injury following anthracycline-based anticancer therapy. -- Highlights: ► Normal tissue damage is the therapy limiting side effect of anthracyclines. ► The effect of lovastatin on doxorubicin-induced hepatic damage was analyzed in vivo. ► Lovastatin protects the liver against DNA damage induced by doxorubicin. ► Lovastatin protects against acute and subacute doxorubicin-induced hepatotoxicity. ► Hepatoprotection by lovastatin is independent of the shingolipid metabolism.« less
Suzuki, Yohei; Sato, Tadashi; Sugimoto, Masataka; Baskoro, Hario; Karasutani, Keiko; Mitsui, Aki; Nurwidya, Fariz; Arano, Naoko; Kodama, Yuzo; Hirano, Shin-Ichi; Ishigami, Akihito; Seyama, Kuniaki; Takahashi, Kazuhisa
2017-10-07
Chronic obstructive pulmonary disease (COPD) is predominantly a cigarette smoke (CS)-triggered disease with features of chronic systemic inflammation. Oxidants derived from CS can induce DNA damage and stress-induced premature cellular senescence in the respiratory system, which play significant roles in COPD. Therefore, antioxidants should provide benefits for the treatment of COPD; however, their therapeutic potential remains limited owing to the complexity of this disease. Recently, molecular hydrogen (H 2 ) has been reported as a preventive and therapeutic antioxidant. Molecular H 2 can selectively reduce hydroxyl radical accumulation with no known side effects, showing potential applications in managing oxidative stress, inflammation, apoptosis, and lipid metabolism. However, there have been no reports on the efficacy of molecular H 2 in COPD patients. In the present study, we used a mouse model of COPD to investigate whether CS-induced histological damage in the lungs could be attenuated by administration of molecular H 2 . We administered H 2 -rich pure water to senescence marker protein 30 knockout (SMP30-KO) mice exposed to CS for 8 weeks. Administration of H 2 -rich water attenuated the CS-induced lung damage in the SMP30-KO mice and reduced the mean linear intercept and destructive index of the lungs. Moreover, H 2 -rich water significantly restored the static lung compliance in the CS-exposed mice compared with that in the CS-exposed H 2 -untreated mice. Moreover, treatment with H 2 -rich water decreased the levels of oxidative DNA damage markers such as phosphorylated histone H2AX and 8-hydroxy-2'-deoxyguanosine, and senescence markers such as cyclin-dependent kinase inhibitor 2A, cyclin-dependent kinase inhibitor 1, and β-galactosidase in the CS-exposed mice. These results demonstrated that H 2 -rich pure water attenuated CS-induced emphysema in SMP30-KO mice by reducing CS-induced oxidative DNA damage and premature cell senescence in the lungs. Our study suggests that administration of molecular H 2 may be a novel preventive and therapeutic strategy for COPD. Copyright © 2017 Elsevier Inc. All rights reserved.
DNA Damage, DNA Repair, Aging, and Neurodegeneration
Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.
2015-01-01
Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091
The DNA damage response during mitosis.
Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M
2013-10-01
Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
DNA damage in an animal model of maple syrup urine disease.
Scaini, Giselli; Jeremias, Isabela C; Morais, Meline O S; Borges, Gabriela D; Munhoz, Bruna P; Leffa, Daniela D; Andrade, Vanessa M; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L
2012-06-01
Maple syrup urine disease is an inborn error of metabolism caused by a severe deficiency of the branched chain alpha-ketoacid dehydrogenase complex. Neurological dysfunction is a common finding in patients with maple syrup urine disease. However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly understood. In this study, we investigated whether acute or chronic administration of a branched chain amino acid pool (leucine, isoleucine and valine) causes transient DNA damage, as determined by the alkaline comet assay, in the brain and blood of rats during development and whether antioxidant treatment prevented the alterations induced by branched chain amino acids. Our results showed that the acute administration of branched chain amino acids increased the DNA damage frequency and damage index in the hippocampus. However, the chronic administration of branched chain amino acids increased the DNA damage frequency and damage index in both the hippocampus and the striatum, and the antioxidant treatment was able to prevent DNA damage in the hippocampus and striatum. The present study demonstrated that metabolite accumulation in MSUD induces DNA damage in the hippocampus and striatum and that it may be implicated in the neuropathology observed in the affected patients. We demonstrated that the effect of antioxidant treatment (N-acetylcysteine plus deferoxamine) prevented DNA damage, suggesting the involvement of oxidative stress in DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.
Solar UV radiation-induced DNA Bipyrimidine photoproducts: formation and mechanistic insights.
Cadet, Jean; Grand, André; Douki, Thierry
2015-01-01
This review chapter presents a critical survey of the main available information on the UVB and UVA bipyrimidine photoproducts which constitute the predominant recipient classes of photo-induced DNA damage. Evidence is provided that UVB irradiation of isolated DNA in aqueous solutions and in cells gives rise to the predominant generation of cis-syn cyclobutane pyrimidine dimers (CPDs) and, to a lesser extent, of pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), the importance of which is strongly primary sequence dependent. A notable change in the photoproduct distribution is observed when DNA either in the dry or in desiccated microorganisms is exposed to UVC or UVB photons with an overwhelming formation of 5-(α-thymidyl)-5,6-dihydrothymidine, also called spore photoproduct (dSP), at the expense of CPDs and 6-4PPs. UVA irradiation of isolated and cellular DNA gives rise predominantly to bipyrimidine photoproducts with the overwhelming formation of thymine-containing cyclobutane pyrimidine dimers at the exclusion of 6-4PPs. UVA photons have been shown to modulate the distribution of UVB dimeric pyrimidine photoproducts by triggering isomerization of the 6-4PPs into related Dewar valence isomers. Mechanistic aspects of the formation of bipyrimidine photoproducts are discussed in the light of recent photophysical and theoretical studies.
Modulation of inflammation and disease tolerance by DNA damage response pathways.
Neves-Costa, Ana; Moita, Luis F
2017-03-01
The accurate replication and repair of DNA is central to organismal survival. This process is challenged by the many factors that can change genetic information such as replication errors and direct damage to the DNA molecule by chemical and physical agents. DNA damage can also result from microorganism invasion as an integral step of their life cycle or as collateral damage from host defense mechanisms against pathogens. Here we review the complex crosstalk of DNA damage response and immune response pathways that might be evolutionarily connected and argue that DNA damage response pathways can be explored therapeutically to induce disease tolerance through the activation of tissue damage control processes. Such approach may constitute the missing pillar in the treatment of critical illnesses caused by multiple organ failure, such as sepsis and septic shock. © 2016 Federation of European Biochemical Societies.
Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki
2015-05-01
Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Seidel, Clemens; Lautenschläger, Christine; Dunst, Jürgen; Müller, Arndt-Christian
2012-04-20
To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivas, L.; Shalini, V.K.
Twigs-dry leaves smoke condensate (TDS), as a source of clastogenic ROS and carcinogenic PAH, was investigated for its in vitro DNA-damaging effect in calf thymus DNA and human peripheral lymphocytes. An aqueous turmeric component--Aq.T--with an established antioxidant activity, was tested as a DNA protectant. TDS induced 13-fold damage to calf thymus DNA as judged by the emergence of a DNA damage specific, fluorescent product (em: 405 nm). Aq.T at 800 ng/microL extended 69% protection to calf thymus DNA and was comparable to the other protectants such as curcumin, BHA, vitamin E, SOD, and CAT. In human peripheral lymphocytes, TDS inducedmore » extensive DNA damage in comparison with the tumor promoter TPA, as judged by FADU. Aq.T at 300 ng/microL extended 90% protection to human lymphocyte DNA against TDS-induced damage, and was more effective than the other protectants--DABCO, D-mannitol, sodium benzoate, vitamin E (ROS quenchers), SOD, CAT (antioxidant enzymes), tannic acid, flufenamic acid, BHA, BHT, n-PG, curcumin and quercetin (antioxidants). Aq.T offered 65% protection to human lymphocyte DNA against TPA-induced damage and was comparable to SOD. The above results indicate that TDS induces substantial DNA damage in calf thymus DNA and human lymphocytes and Aq.T is an efficient protectant.« less
Muratori, Monica; Tamburrino, Lara; Marchiani, Sara; Cambi, Marta; Olivito, Biagio; Azzari, Chiara; Forti, Gianni; Baldi, Elisabetta
2015-01-01
Sperm DNA fragmentation (sDF) represents a threat to male fertility, human reproduction and the health of the offspring. The causes of sDF are still unclear, even if apoptosis, oxidative assault and defects in chromatin maturation are hypothesized. Using multicolor flow cytometry and sperm sorting, we challenged the three hypothesized mechanisms by simultaneously evaluating sDF and signs of oxidative damage (8-hydroxy, 2′-deoxyguanosine [8-OHdG] and malondialdehyde [MDA]), apoptosis (caspase activity and cleaved poly[ADP-ribose] polymerase [cPARP]) and sperm immaturity (creatine phosphokinase [CK] and excess of residual histones). Active caspases and c-PARP were concomitant with sDF in a high percentage of spermatozoa (82.6% ± 9.1% and 53.5% ± 16.4%, respectively). Excess of residual histones was significantly higher in DNA-fragmented sperm versus sperm without DNA fragmentation (74.8% ± 17.5% and 37.3% ± 16.6%, respectively, p < 0.005), and largely concomitant with active caspases. Conversely, oxidative damage was scarcely concomitant with sDF in the total sperm population, at variance with live sperm, where 8-OHdG and MDA were clearly associated to sDF. In addition, most live cells with active caspase also showed 8-OHdG, suggesting activation of apoptotic pathways in oxidative-injured live cells. This is the first investigation on the origin of sDF directly evaluating the simultaneous presence of the signs of the hypothesized mechanisms with DNA breaks at the single cell level. The results indicate that the main pathway leading to sperm DNA breaks is a process of apoptosis, likely triggered by an impairment of chromatin maturation in the testis and by oxidative stress during the transit in the male genital tract. These findings are highly relevant for clinical studies on the effects of drugs on sDF and oxidative stress in infertile men and for the development of new therapeutic strategies. PMID:25786204
NASA Technical Reports Server (NTRS)
Sanchez, Hugo; Lewis, Brian; Hanel, Robert
2015-01-01
We are designing and developing a 6U (10 x 22 x 34 cm; 14 kg) nanosatellite as a secondary payload to fly aboard NASAs Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinels 12- to 18-month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and allow us to compare that to information from onboard physical radiation sensors. In order to understand the relative contributions of the space environments two dominant biological perturbations, reduced gravity and ionizing radiation, results from deep space will be directly compared to data obtained in LEO (on ISS) and on Earth. These data points will be available for validation of existing biological radiation damage and repair models, and for extrapolation to humans, to assist in mitigating risks during future long-term exploration missions beyond LEO. The BioSentinel Payload occupies 4U of the spacecraft and will utilize the monocellular eukaryotic organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from ambient space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. Yeast was selected because of 1) its similarity to cells in higher organisms, 2) the well-established history of strains engineered to measure DSB repair, 3) its spaceflight heritage, and 4) the wealth of available ground and flight reference data. The S. cerevisiae flight strain will include engineered genetic defects to prevent growth and division until a radiation-induced DSB activates the yeasts DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its successful repair. The yeast will be carried in the dry state within the 1-atm PL container in 18 separate fluidics cards with each card having 16 independent culture microwells, with integral microchannels and filters to supply nutrients and reagents, confine the yeast to the wells, and enable optical measurement. The measurement subsystem will monitor each subgroup of culture wells continuously for several weeks, optically tracking DSB-triggered cell growth and metabolism. BioSentinel will also include physical radiation sensors based on the TimePix sensor, as implemented by JSCs RadWorks group, which record individual radiation events including estimates of their linear-energy-transfer (LET) values. Radiation-dose and LET data will be compared directly to the rate of DSB-and-repair events measured by the S. cerevisiae biosentinels.
Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.
Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S
2013-10-01
Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.
Kuong, Kawai J.; Kuzminov, Andrei
2012-01-01
Thymineless death strikes cells unable to synthesize DNA precursor dTTP, with the nature of chromosomal damage still unclear. Thymine starvation stalls replication forks, whereas accumulating evidence indicates the replication origin is also affected. Using a novel DNA labeling technique, here we show that replication slowly continues in thymine-starved cells, but the newly synthesized DNA becomes fragmented and degraded. This degradation apparently releases enough thymine to sustain initiation of new replication bubbles from the chromosomal origin, which destabilizes the origin in a RecA-dependent manner. Marker frequency analysis with gene arrays 1) reveals destruction of the origin-centered chromosomal segment in RecA+ cells; 2) confirms origin accumulation in the recA mutants; and 3) identifies the sites around the origin where destruction initiates in the recBCD mutants. We propose that thymineless cells convert persistent single-strand gaps behind replication forks into double-strand breaks, using the released thymine for new initiations, whereas subsequent disintegration of small replication bubbles causes replication origin destruction. PMID:22621921
NASA Astrophysics Data System (ADS)
Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao
2016-08-01
Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells.
Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.
Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline
2012-09-01
Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.
Phosphorylation of human INO80 is involved in DNA damage tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Dai; Waki, Mayumi; Umezawa, Masaki
Highlights: Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced PCNA ubiquitination. Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. Black-Right-Pointing-Pointer Western blot analyses showed phosphorylated hINO80 C-terminus. Black-Right-Pointing-Pointer Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in themore » DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.« less
Aging of the Immune System. Mechanisms and Therapeutic Targets.
Weyand, Cornelia M; Goronzy, Jörg J
2016-12-01
Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.
A drug-induced accelerated senescence (DIAS) is a possibility to study aging in time lapse.
Alili, Lirija; Diekmann, Johanna; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter
2014-06-01
Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. Accordingly, a stress-induced senescence-like phenotype of human dermal fibroblasts can be induced in vitro by the exposure of human diploid fibroblasts to subcytotoxic concentrations of hydrogen peroxide. However, several biomarkers of replicative senescence e.g. cell cycle arrest and enlarged morphology are abrogated 14 days after treatment, indicating that reactive oxygen species (ROS) rather acts as a trigger for short-term senescence (1-3 days) than being responsible for the maintenance of the senescence-like phenotype. Further, DNA-damaging factors are discussed resulting in a permanent senescent cell type. To induce long-term premature senescence and to understand the molecular alterations occurring during the aging process, we analyzed mitomycin C (MMC) as an alkylating DNA-damaging agent and ROS producer. Human dermal fibroblasts (HDF), used as model for skin aging, were exposed to non-cytotoxic concentrations of MMC and analyzed for potential markers of cellular aging, for example enlarged morphology, activity of senescence-associated-ß-galactosidase, cell cycle arrest, increased ROS production and MMP1-activity, which are well-documented for HDF in replicative senescence. Our data show that mitomycin C treatment results in a drug-induced accelerated senescence (DIAS) with long-term expression of senescence markers, demonstrating that a combination of different susceptibility factors, here ROS and DNA alkylation, are necessary to induce a permanent senescent cell type.
Rybaczek, Dorota; Musiałek, Marcelina Weronika; Balcerczyk, Aneta
2015-01-01
We have demonstrated that the activation of apoptosis-like programmed cell death (AL-PCD) was a secondary result of caffeine (CF) induced premature chromosome condensation (PCC) in hydroxyurea-synchronized Vicia faba root meristem cells. Initiation of the apoptotic-like cell degradation pathway seemed to be the result of DNA damage generated by treatment with hydroxyurea (HU) [double-stranded breaks (DSBs) mostly] and co-treatment with HU/CF [single-stranded breaks (SSBs) mainly]. A single chromosome comet assay was successfully used to study different types of DNA damage (neutral variant–DSBs versus alkaline–DSBs or SSBs). The immunocytochemical detection of H2AXS139Ph and PARP-2 were used as markers for DSBs and SSBs, respectively. Acridine orange and ethidium bromide (AO/EB) were applied for quantitative immunofluorescence measurements of dead, dying and living cells. Apoptotic-type DNA fragmentation and positive TUNEL reaction finally proved that CF triggers AL-PCD in stressed V. faba root meristem cells. In addition, the results obtained under transmission electron microscopy (TEM) further revealed apoptotic-like features at the ultrastructural level of PCC-type cells: (i) extensive vacuolization; (ii) abnormal chromatin condensation, its marginalization and concomitant degradation; (iii) formation of autophagy-like vesicles (iv) protoplast shrinkage (v) fragmentation of cell nuclei and (vi) extensive degeneration of the cells. The results obtained have been discussed with respect to the vacuolar/autolytic type of plant-specific AL-PCD. PMID:26545248
Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms
Faust, Thomas W.; Chang, Eric H.; Kowal, Czeslawa; Berlin, RoseAnn; Gazaryan, Irina G.; Bertini, Eva; Zhang, Jie; Sanchez-Guerrero, Jorge; Fragoso-Loyo, Hilda E.; Volpe, Bruce T.; Diamond, Betty; Huerta, Patricio T.
2010-01-01
Damaging interactions between antibodies and brain antigenic targets may be responsible for an expanding range of neurological disorders. In the case of systemic lupus erythematosus (SLE), patients generate autoantibodies (AAbs) that frequently bind dsDNA. Although some symptoms of SLE may arise from direct reactivity to dsDNA, much of the AAb-mediated damage originates from cross-reactivity with other antigens. We have studied lupus AAbs that bind dsDNA and cross-react with the NR2A and NR2B subunits of the NMDA receptor (NMDAR). In adult mouse models, when the blood–brain barrier is compromised, these NMDAR-reactive AAbs access the brain and elicit neuronal death with ensuing cognitive dysfunction and emotional disturbance. The cellular mechanisms that underlie these deleterious effects remain incompletely understood. Here, we show that, at low concentration, the NMDAR-reactive AAbs are positive modulators of receptor function that increase the size of NMDAR-mediated excitatory postsynaptic potentials, whereas at high concentration, the AAbs promote excitotoxicity through enhanced mitochondrial permeability transition. Other synaptic receptors are completely unaffected by the AAbs. NMDAR activation is required for producing both the synaptic and the mitochondrial effects. Our study thus reveals the mechanisms by which NMDAR-reactive AAbs trigger graded cellular alterations, which are likely to be responsible for the transient and permanent neuropsychiatric symptoms observed in patients with SLE. Our study also provides a model in which local AAb concentration determines the exact nature of the cellular response. PMID:20921396
DNA damage in cells exhibiting radiation-induced genomic instability
Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.
2015-02-22
Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less
Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation
NASA Technical Reports Server (NTRS)
Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)
2000-01-01
Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.
Son, Hokyoung; Fu, Minmin; Lee, Yoonji; Lim, Jae Yun; Min, Kyunghun; Kim, Jin-Cheol; Choi, Gyung Ja; Lee, Yin-Won
2016-01-01
Cell cycle regulation and the maintenance of genome integrity are crucial for the development and virulence of the pathogenic plant fungus Fusarium graminearum. To identify transcription factors (TFs) related to these processes, four DNA-damaging agents were applied to screen a F. graminearum TF mutant library. Sixteen TFs were identified to be likely involved in DNA damage responses. Fhs1 is a fungal specific Zn(II)2Cys6 TF that localises exclusively to nuclei. fhs1 deletion mutants were hypersensitive to hydroxyurea and defective in mitotic cell division. Moreover, deletion of FHS1 resulted in defects in perithecia production and virulence and led to the accumulation of DNA damage. Our genetic evidence demonstrated that the FHS1-associated signalling pathway for DNA damage response is independent of the ATM or ATR pathways. This study identified sixteen genes involved in the DNA damage response and is the first to characterise the novel transcription factor gene FHS1, which is involved in the DNA damage response. The results provide new insights into mechanisms underlying DNA damage responses in fungi, including F. graminearum. PMID:26888604
Polyphosphate is a key factor for cell survival after DNA damage in eukaryotic cells.
Bru, Samuel; Samper-Martín, Bàrbara; Quandt, Eva; Hernández-Ortega, Sara; Martínez-Laínez, Joan M; Garí, Eloi; Rafel, Marta; Torres-Torronteras, Javier; Martí, Ramón; Ribeiro, Mariana P C; Jiménez, Javier; Clotet, Josep
2017-09-01
Cells require extra amounts of dNTPs to repair DNA after damage. Polyphosphate (polyP) is an evolutionary conserved linear polymer of up to several hundred inorganic phosphate (Pi) residues that is involved in many functions, including Pi storage. In the present article, we report on findings demonstrating that polyP functions as a source of Pi when required to sustain the dNTP increment essential for DNA repair after damage. We show that mutant yeast cells without polyP produce less dNTPs upon DNA damage and that their survival is compromised. In contrast, when polyP levels are ectopically increased, yeast cells become more resistant to DNA damage. More importantly, we show that when polyP is reduced in HEK293 mammalian cell line cells and in human dermal primary fibroblasts (HDFa), these cells become more sensitive to DNA damage, suggesting that the protective role of polyP against DNA damage is evolutionary conserved. In conclusion, we present polyP as a molecule involved in resistance to DNA damage and suggest that polyP may be a putative target for new approaches in cancer treatment or prevention. Copyright © 2017 Elsevier B.V. All rights reserved.
Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.
Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M
2016-11-29
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.
Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage
Hill, Sarah J.; Mordes, Daniel A.; Cameron, Lisa A.; Neuberg, Donna S.; Landini, Serena; Eggan, Kevin; Livingston, David M.
2016-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis. PMID:27849576
Kværner, Ane Sørlie; Minaguchi, Jun; Yamani, Naouale El; Henriksen, Christine; Ræder, Hanna; Paur, Ingvild; Henriksen, Hege Berg; Wiedswang, Gro; Smeland, Sigbjørn; Blomhoff, Rune; Collins, Andrew Richard; Bøhn, Siv Kjølsrud
2018-03-01
DNA damage can be considered as a biomarker for toxicity and response to chemotherapy. It is not known whether the chemotherapy-induced genotoxicity is associated with malnutrition. In this pilot study, we assess genotoxicity by means of DNA damage in patients with lymph-node positive colorectal cancer (CRC) and explore associations with chemotherapy treatment and nutritional status. DNA damage was compared between patients receiving chemotherapy (n = 24) and those not receiving chemotherapy (n = 20). DNA damage was measured in frozen whole blood by the comet assay. Associations between DNA damage and various indicators of malnutrition were also explored, including Patient-Generated Subjective Global Assessment (PG-SGA), bioelectrical impedance analysis (BIA) and anthropometric measurements, using multiple linear regression models. Patients on chemotherapy have higher levels of DNA damage in blood cells than patients not receiving chemotherapy (median of 16.9 and 7.9% tail DNA respectively, p = 0.001). The moderately malnourished patients (PG-SGA category B), representing 41% of the patients, have higher levels of cellular DNA damage than patients with good nutritional status (mean difference of 7.5% tail DNA, p = 0.033). In conclusion, adjuvant chemotherapy and malnutrition are both associated with increased levels of DNA damage in blood cells of CRC patients. Carefully controlled longitudinal studies or randomized controlled trials should be performed to determine whether good nutritional status may protect against chemotherapy-induced genotoxicity and enhance compliance to therapy in CRC patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Gajski, Goran; Garaj-Vrhovac, Vera
2009-01-01
The aim of this study is to investigate the radioprotective effect of bee venom against DNA damage induced by 915-MHz microwave radiation (specific absorption rate of 0.6 W/kg) in Wistar rats. Whole blood lymphocytes of Wistar rats are treated with 1 microg/mL bee venom 4 hours prior to and immediately before irradiation. Standard and formamidopyrimidine-DNA glycosylase (Fpg)-modified comet assays are used to assess basal and oxidative DNA damage produced by reactive oxygen species. Bee venom shows a decrease in DNA damage compared with irradiated samples. Parameters of Fpg-modified comet assay are statistically different from controls, making this assay more sensitive and suggesting that oxidative stress is a possible mechanism of DNA damage induction. Bee venom is demonstrated to have a radioprotective effect against basal and oxidative DNA damage. Furthermore, bee venom is not genotoxic and does not produce oxidative damage in the low concentrations used in this study.
Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells
Burke, Russell T.; Marcus, Joshua M.; Orth, James D.
2017-01-01
Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers. PMID:28467801
Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage.
Perron, Nathan R; García, Carla R; Pinzón, Julio R; Chaur, Manuel N; Brumaghim, Julia L
2011-05-01
Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy. Copyright © 2011 Elsevier Inc. All rights reserved.
Liu, Chun-Hsin; Finke, Andreas; Díaz, Mariana; Rozhon, Wilfried; Poppenberger, Brigitte; Baubec, Tuncay; Pecinka, Ales
2015-01-01
DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage in a cell cycle stage-independent manner, zebularine induces damage specifically during strand synthesis in DNA replication. The signaling of this damage is mediated by additive activity of ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED and ATAXIA TELANGIECTASIA MUTATED kinases, which cause postreplicative cell cycle arrest and increased endoreplication. The repair requires a functional STRUCTURAL MAINTENANCE OF CHROMOSOMES5 (SMC5)-SMC6 complex and is accomplished predominantly by synthesis-dependent strand-annealing homologous recombination. Here, we provide insight into the response mechanism for coping with the genotoxic effects of zebularine and identify several components of the zebularine-induced DNA damage repair pathway. PMID:26023162
Mathematical Methods for Studying DNA and Protein Interactions
NASA Astrophysics Data System (ADS)
LeGresley, Sarah
Deoxyribnucleic Acid (DNA) damage can lead to health related issues such as developmental disorders, aging, and cancer. It has been estimated that damage rates may be as high as 100,000 per cell per day. Because of the devastating effects that DNA damage can have, DNA repair mechanisms are of great interest yet are not completely understood. To gain a better understanding of possible DNA repair mechanisms, my dissertation focused on mathematical methods for understanding the interactions between DNA and proteins. I developed a damaged DNA model to estimate the probabilities of damaged DNA being located at specific positions. Experiments were then performed that suggested that the damaged DNA may be repositioned. These experimental results were consistent with the model's prediction that damaged DNA has preferred locations. To study how proteins might be moving along the DNA, I studied the use of the uniform motion "n-step" model. The n-step model has been used to determine the kinetics parameters (e.g. rates at which a protein moves along the DNA, how much energy is required to move a protein along a specified amount of DNA, etc.) of proteins moving along the DNA. Monte Carlo methods were used to simulate proteins moving with different types of non-uniform motion (e.g. backward, jumping, etc.) along the DNA. Estimates for the kinetics parameters in the n-step model were found by fitting of the Monte Carlo simulation data. Analysis indicated that non-uniform motion of the protein may lead to over or underestimation of the kinetic parameters of this n-step model.
On binding specificity of (6-4) photolyase to a T(6-4)T DNA photoproduct*
NASA Astrophysics Data System (ADS)
Jepsen, Katrine Aalbæk; Solov'yov, Ilia A.
2017-06-01
Different factors lead to DNA damage and if it is not repaired in due time, the damaged DNA could initiate mutagenesis and cancer. To avoid this deadly scenario, specific enzymes can scavenge and repair the DNA, but the enzymes have to bind first to the damaged sites. We have investigated this binding for a specific enzyme called (6-4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines and lysines turn out to be important. Especially R421 is crucial, as it keeps the DNA strands at the damaged site inside the repair pocket of the enzyme separated. DNA photolyase is structurally highly homologous to a protein called cryptochrome. Both proteins are biologically activated similarly, namely through flavin co-factor photoexcitation. It is, however, striking that cryptochrome cannot repair UV-damaged DNA. The present investigation allowed us to conclude on the small but, apparently, critical differences between photolyase and cryptochrome. The performed analysis gives insight into important factors that govern the binding of UV-damaged DNA and reveal why cryptochrome cannot have this functionality.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2017-03-01
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
2012-01-01
Background To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Methods Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Results Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Conclusions Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity. PMID:22520045
Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc
Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.
2013-01-01
Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. PMID:23523584
Lehmann, Alan R; McGibbon, David; Stefanini, Miria
2011-11-01
Xeroderma pigmentosum (XP) is defined by extreme sensitivity to sunlight, resulting in sunburn, pigment changes in the skin and a greatly elevated incidence of skin cancers. It is a rare autosomal recessive disorder and has been found in all continents and racial groups. Estimated incidences vary from 1 in 20, 000 in Japan to 1 in 250, 000 in the USA, and approximately 2.3 per million live births in Western Europe.The first features are either extreme sensitivity to sunlight, triggering severe sunburn, or, in patients who do not show this sun-sensitivity, abnormal lentiginosis (freckle-like pigmentation due to increased numbers of melanocytes) on sun-exposed areas. This is followed by areas of increased or decreased pigmentation, skin aging and multiple skin cancers, if the individuals are not protected from sunlight. A minority of patients show progressive neurological abnormalities. There are eight XP complementation groups, corresponding to eight genes, which, if defective, can result in XP. The products of these genes are involved in the repair of ultraviolet (UV)-induced damage in DNA. Seven of the gene products (XPA through G) are required to remove UV damage from the DNA. The eighth (XPV or DNA polymerase η) is required to replicate DNA containing unrepaired damage. There is wide variability in clinical features both between and within XP groups. Diagnosis is made clinically by the presence, from birth, of an acute and prolonged sunburn response at all exposed sites, unusually early lentiginosis in sun-exposed areas or onset of skin cancers at a young age. The clinical diagnosis is confirmed by cellular tests for defective DNA repair. These features distinguish XP from other photodermatoses such as solar urticaria and polymorphic light eruption, Cockayne Syndrome (no pigmentation changes, different repair defect) and other lentiginoses such as Peutz-Jeghers syndrome, Leopard syndrome and Carney complex (pigmentation not sun-associated), which are inherited in an autosomal dominant fashion. Antenatal diagnosis can be performed by measuring DNA repair or by mutation analysis in CVS cells or in amniocytes. Although there is no cure for XP, the skin effects can be minimised by rigorous protection from sunlight and early removal of pre-cancerous lesions. In the absence of neurological problems and with lifetime protection against sunlight, the prognosis is good. In patients with neurological problems, these are progressive, leading to disabilities and a shortened lifespan.
Design and analysis of linear cascade DNA hybridization chain reactions using DNA hairpins
NASA Astrophysics Data System (ADS)
Bui, Hieu; Garg, Sudhanshu; Miao, Vincent; Song, Tianqi; Mokhtar, Reem; Reif, John
2017-01-01
DNA self-assembly has been employed non-conventionally to construct nanoscale structures and dynamic nanoscale machines. The technique of hybridization chain reactions by triggered self-assembly has been shown to form various interesting nanoscale structures ranging from simple linear DNA oligomers to dendritic DNA structures. Inspired by earlier triggered self-assembly works, we present a system for controlled self-assembly of linear cascade DNA hybridization chain reactions using nine distinct DNA hairpins. NUPACK is employed to assist in designing DNA sequences and Matlab has been used to simulate DNA hairpin interactions. Gel electrophoresis and ensemble fluorescence reaction kinetics data indicate strong evidence of linear cascade DNA hybridization chain reactions. The half-time completion of the proposed linear cascade reactions indicates a linear dependency on the number of hairpins.
Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C.; Westbrook, Thomas F.; Harper, J. Wade; Elledge, Stephen J.
2015-01-01
Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify new DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors and >70% of randomly tested transcription factors localized to sites of DNA damage and approximately 90% were PARP-dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding domain-dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP-dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. PMID:26004182
Lai, Chao-Qiang; Tucker, Katherine L; Parnell, Laurence D; Adiconis, Xian; García-Bailo, Bibiana; Griffith, John; Meydani, Mohsen; Ordovás, José M
2008-04-01
Individuals with type 2 diabetes exhibit higher DNA damage and increased risk of cardiovascular disease (CVD). However, mechanisms underlying the association between DNA damage and development of type 2 diabetes and CVD are not understood. We sought to link peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PPARGC1A), a master transcriptional regulator of mitochondrial oxidative phosphorylation and cellular energy metabolism, with DNA damage, type 2 diabetes, and CVD. We measured DNA damage as urinary 8-hydroxydeoxyguanosine (8-OHdG) concentration and examined the relationship between nine PPARGC1A genetic variants, DNA damage, type 2 diabetes, and self-reported CVD in 959 participants of the Boston Puerto Rican Health Study. With respect to urinary 8-OHdG, PPARGC1A variants showed significant association, and PPARGC1A haplotypes exhibited significant association after correction for multiple testing. Two independent PPARGC1A variants associated significantly with type 2 diabetes (odds ratios [ORs] 1.35 and 2.46; P = 0.045 and <0.001). Carriers of minor alleles of two other PPARGC1A variants, both in strong linkage disequilibrium and associated with lower DNA damage, showed lower prevalence of CVD (ORs 0.53 and 0.65; P = 0.030 and 0.175). Moreover, we found that physical activity correlated negatively with DNA damage. It is plausible that low physical activity combined with risk haplotyes contribute to the high prevalence of type 2 diabetes in this population. We propose that PPARGC1A influences development of type 2 diabetes and CVD via DNA damage. Increasing physical activity, which induces PPARGC1A expression, is a potential strategy to slow DNA damage, thereby decreasing the risk of CVD for individuals with type 2 diabetes.
Wang, Zhong; Chen, Qiang; Li, Bin; Xie, Jia-Ming; Yang, Xiao-Dong; Zhao, Kui; Wu, Yong; Ye, Zhen-Yu; Chen, Zheng-Rong; Qin, Zheng-Hong; Xing, Chun-Gen
2018-05-31
Escin, a triterpene saponin isolated from horse chestnut seed, has been used to treat encephaledema, tissue swelling and chronic venous insufficiency. Recent studies show that escin induces cell cycle arrest, tumor proliferation inhibition and tumor cell apoptosis. But the relationship between escin-induced DNA damage and cell apoptosis in tumor cells remains unclear. In this study, we investigated whether and how escin-induced DNA damage contributed to escin-induced apoptosis in human colorectal cancer cells. Escin (5-80 μg/mL) dose-dependently inhibited the cell viability and colony formation in HCT116 and HCT8 cells. Escin treatment induced DNA damage, leading to p-ATM and γH2AX upregulation. Meanwhile, escin treatment increased the expression of p62, an adaptor protein, which played a crucial role in controlling cell survival and tumorigenesis, and had a protective effect against escin-induced DNA damage: knockdown of p62 apparently enhanced escin-induced DNA damage, whereas overexpression of p62 reduced escin-induced DNA damage. In addition, escin treatment induced concentration- and time-dependent apoptosis. Similarly, knockdown of p62 significantly increased escin-induced apoptosis in vitro and produced en escin-like antitumor effect in vivo. Overexpression of p62 decreased the rate of apoptosis. Further studies revealed that the functions of p62 in escin-induced DNA damage were associated with escin-induced apoptosis, and p62 knockdown combined with the ATM inhibitor KU55933 augmented escin-induced DNA damage and further increased escin-induced apoptosis. In conclusion, our results demonstrate that p62 regulates ATM/γH2AX pathway-mediated escin-induced DNA damage and apoptosis.
Ionizing Radiation-Induced Responses in Human Cells with Differing TP53 Status
Mirzayans, Razmik; Andrais, Bonnie; Scott, April; Wang, Ying W.; Murray, David
2013-01-01
Ionizing radiation triggers diverse responses in human cells encompassing apoptosis, necrosis, stress-induced premature senescence (SIPS), autophagy, and endopolyploidy (e.g., multinucleation). Most of these responses result in loss of colony-forming ability in the clonogenic survival assay. However, not all modes of so-called clonogenic cell “death” are necessarily advantageous for therapeutic outcome in cancer radiotherapy. For example, the crosstalk between SIPS and autophagy is considered to influence the capacity of the tumor cells to maintain a prolonged state of growth inhibition that unfortunately can be succeeded by tumor regrowth and disease recurrence. Likewise, endopolyploid giant cells are able to segregate into near diploid descendants that continue mitotic activities. Herein we review the current knowledge on the roles that the p53 and p21WAF1 tumor suppressors play in determining the fate of human fibroblasts (normal and Li-Fraumeni syndrome) and solid tumor-derived cells after exposure to ionizing radiation. In addition, we discuss the important role of WIP1, a p53-regulated oncogene, in the temporal regulation of the DNA damage response and its contribution to p53 dynamics post-irradiation. This article highlights the complexity of the DNA damage response and provides an impetus for rethinking the nature of cancer cell resistance to therapeutic agents. PMID:24232458
Ames, Bruce N.
2006-01-01
Inadequate dietary intakes of vitamins and minerals are widespread, most likely due to excessive consumption of energy-rich, micronutrient-poor, refined food. Inadequate intakes may result in chronic metabolic disruption, including mitochondrial decay. Deficiencies in many micronutrients cause DNA damage, such as chromosome breaks, in cultured human cells or in vivo. Some of these deficiencies also cause mitochondrial decay with oxidant leakage and cellular aging and are associated with late onset diseases such as cancer. I propose DNA damage and late onset disease are consequences of a triage allocation response to micronutrient scarcity. Episodic shortages of micronutrients were common during evolution. Natural selection favors short-term survival at the expense of long-term health. I hypothesize that short-term survival was achieved by allocating scarce micronutrients by triage, in part through an adjustment of the binding affinity of proteins for required micronutrients. If this hypothesis is correct, micronutrient deficiencies that trigger the triage response would accelerate cancer, aging, and neural decay but would leave critical metabolic functions, such as ATP production, intact. Evidence that micronutrient malnutrition increases late onset diseases, such as cancer, is discussed. A multivitamin-mineral supplement is one low-cost way to ensure intake of the Recommended Dietary Allowance of micronutrients throughout life. PMID:17101959
Ube2V2 Is a Rosetta Stone Bridging Redox and Ubiquitin Codes, Coordinating DNA Damage Responses.
Zhao, Yi; Long, Marcus J C; Wang, Yiran; Zhang, Sheng; Aye, Yimon
2018-02-28
Posttranslational modifications (PTMs) are the lingua franca of cellular communication. Most PTMs are enzyme-orchestrated. However, the reemergence of electrophilic drugs has ushered mining of unconventional/non-enzyme-catalyzed electrophile-signaling pathways. Despite the latest impetus toward harnessing kinetically and functionally privileged cysteines for electrophilic drug design, identifying these sensors remains challenging. Herein, we designed "G-REX"-a technique that allows controlled release of reactive electrophiles in vivo. Mitigating toxicity/off-target effects associated with uncontrolled bolus exposure, G-REX tagged first-responding innate cysteines that bind electrophiles under true k cat / K m conditions. G-REX identified two allosteric ubiquitin-conjugating proteins-Ube2V1/Ube2V2-sharing a novel privileged-sensor-cysteine. This non-enzyme-catalyzed-PTM triggered responses specific to each protein. Thus, G-REX is an unbiased method to identify novel functional cysteines. Contrasting conventional active-site/off-active-site cysteine-modifications that regulate target activity, modification of Ube2V2 allosterically hyperactivated its enzymatically active binding-partner Ube2N, promoting K63-linked client ubiquitination and stimulating H2AX-dependent DNA damage response. This work establishes Ube2V2 as a Rosetta-stone bridging redox and ubiquitin codes to guard genome integrity.
From Snow to Hill to ALS: An epidemiological odyssey in search of ALS causation.
Armon, Carmel
2018-05-21
Establishing mechanisms of disease causation in neurodegenerative diseases has long seemed to be beyond the pale of traditional epidemiological tools. Establishing a plausible mechanism for initiation of amyotrophic lateral sclerosis (ALS) has appeared a particularly elusive goal. This review shows that a likely mechanism for ALS initiation may be inferred by applying classical methods of epidemiological inference. Advances in characterizing the biology of ALS suggest that most cases of ALS are cortically-generated, part of the ALS-FTD spectrum, with focal onset and spread by contiguity within the motor super-network. Evidence-based methods identified the most credible exogenous risk factor - smoking. AB Hill's nine viewpoints to inferring causation from association were invoked. The most likely mechanism consistent with smoking being a risk factor for ALS was inferred: cumulative DNA damage, akin to cumulative somatic mutations in carcinogenesis. Focal onset supports the concept that these changes, occurring in a single cell, may trigger the cascade leading to clinical ALS. The plausibility of this mechanism was affirmed by its coherence/consistency with other observations in sporadic, familial and western Pacific ALS. Application of traditional epidemiological reasoning suggests that cumulative DNA damage may contribute to disease onset in ALS. Copyright © 2018 Elsevier B.V. All rights reserved.
Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi
2012-06-22
Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to S(N)2 alkylating agents. We show that after treatment of cells with the S(N)2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by S(N)2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage.
Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi
2012-01-01
Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to SN2 alkylating agents. We show that after treatment of cells with the SN2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by SN2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage. PMID:22544757
Rottenberg, Hagai; Hoek, Jan B
2017-10-01
Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Antoccia, Antonio; Sgura, Antonella; Berardinelli, Francesco; Cavinato, Maria; Cherubini, Roberto; Gerardi, Silvia; Tanzarella, Caterina
2009-09-01
The effect of graded doses of high-linear energy transfer (LET) low-energy protons to induce cycle perturbations and genotoxic damage was investigated in normal human fibroblasts. Furthermore, such effects were compared with those produced by low-LET radiations. HFFF2, human primary fibroblasts were exposed to either protons (LET = 28.5 keV/microm) or X/gamma-rays, and endpoints related to cell cycle kinetics and DNA damage analysed. Following both type of irradiations, unsynchronized cells suffered an inhibition to entry into S-phase for doses of 1-4 Gy and remained arrested in the G(1)-phase for several days. The levels of induction of regulator proteins, such as TP53 and CDKN1A showed a clear LET-dependence. DSB induction and repair as measured by scoring for gamma-H2AX foci indicated that protons, with respect to X-rays, yielded a lower number of DSBs per Gy, which showed a slower kinetics of disappearance. Such result was in agreement with the extent of MN induction in binucleated cells after X-irradiation. No significant differences between the two types of radiations were observed with the clonogenic assay, resulting anyway the slope of gamma-ray curve higher than that the proton one. In conclusion, in normal human primary fibroblasts cell cycle arrest at the G(1)/S transition can be triggered shortly after irradiation and maintained for several hours post-irradiation of both protons and X-rays. DNA damage produced by protons appears less amenable to be repaired and could be transformed in cytogenetic damage in the form of MN.
What triggers differential DNA methylation of genes and TEs: contribution of body methylation?
Inagaki, S; Kakutani, T
2012-01-01
Transposable elements (TEs) are epigenetically silenced with extensive DNA methylation. The silent epigenetic marks should, however, be excluded from active genes. By genetic approaches, we study mechanisms to remove the heterochromatin marks from transcribed genes. Based on our observations on control of TE transcription, we propose a possible trigger for the TE-specific accumulation of DNA methylation. A critical difference between TEs and genes could be their responses to the DNA methylation in the internal part of transcribed regions. When their internal region is methylated, genes are still transcribed, but TEs could be silenced, which may reflect the obligatory position of every critical cis-acting element within the TE itself. This initial difference of TEs and genes will be amplified by positive feedback loops to stabilize active or silent states. Thus, the mechanisms to accumulate heterochromatin marks within transcribed regions could provide a trigger to induce differential DNA methylation between genes and TEs.
Markers of oxidative DNA damage in human interventions with fruit and berries.
Freese, Riitta
2006-01-01
Diets rich in fruit and vegetables are associated with a decreased risk of several cancers via numerous possible mechanisms. For example, phytochemicals may decrease oxidative DNA damage and enhance DNA repair. Markers of oxidative DNA damage in human dietary intervention trials used most frequently include oxidized nucleosides such as 7-hydro-8-oxo-2'-deoxyguanosine, which can be analyzed from isolated DNA or urine. Single-cell gel electrophoresis has been widely used to measure baseline or H2O2-induced DNA strand breaks or sites of modified bases sensitive to repair enzymes recognizing oxidized purines or pyrimidines. Recently, markers of DNA repair also have been used. Few controlled human dietary interventions have investigated the specific effects of fruit or berries. There are indications that kiwifruit can decrease H2O2 sensitivity of lymphocyte DNA ex vivo and enhance DNA repair. Carefully controlled studies with flavonoid-rich fruit or berry juices found only few significant differences; less rigorously controlled studies gave more optimistic results. Data on the effects of fruit and berries on DNA damage in humans are scarce and inconclusive; adequately controlled studies with validated markers are needed. Because levels of DNA damage are usually low in young healthy volunteers, groups with an enhanced risk of DNA damage should be studied.
Singh, Shilpee; Englander, Ella W
2012-11-01
Apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) is a multifunctional protein critical for cellular survival. Its involvement in adaptive survival responses includes key roles in redox sensing, transcriptional regulation, and repair of DNA damage via the base excision repair (BER) pathway. Ape1 is abundant in most cell types and central in integrating the first BER step catalyzed by different DNA glycosylases. BER is the main process for removal of oxidative DNA lesions in postmitotic brain cells, and after ischemic brain injury preservation of Ape1 coincides with neuronal survival, while its loss has been associated with neuronal death. Here, we report that in cultured primary neurons, diminution of cellular ATP by either oligomycin or H(2)O(2) is accompanied by depletion of nuclear Ape1, while other BER proteins are unaffected and retain their nuclear localization under these conditions. Importantly, while H(2)O(2) induces γH2AX phosphorylation, indicative of chromatin rearrangements in response to DNA damage, oligomycin does not. Furthermore, despite comparable diminution of ATP content, H(2)O(2) and oligomycin differentially affect critical parameters of mitochondrial respiration that ultimately determine cellular ATP content. Taken together, our findings demonstrate that in neurons, nuclear compartmentalization of Ape1 depends on ATP and loss of nuclear Ape1 reflects disruption of neuronal energy homeostasis. Energy crisis is a hallmark of stroke and other ischemic/hypoxic brain injuries. In vivo studies have shown that Ape1 deficit precedes neuronal loss in injured brain regions. Thus, our findings bring to light the possibility that energy failure-induced Ape1 depletion triggers neuronal death in ischemic brain injuries. Copyright © 2012 Elsevier Inc. All rights reserved.
Negureanu, Lacramioara; Salsbury, Freddie R
2013-11-01
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα's surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.
Shang, Hung-Sheng; Chang, Chuan-Hsun; Chou, Yu-Ru; Yeh, Ming-Yang; Au, Man-Kuan; Lu, Hsu-Feng; Chu, Yung-Lin; Chou, Hsiao-Min; Chou, Hsiu-Chen; Shih, Yung-Luen; Chung, Jing-Gung
2016-10-01
Cervical cancer is one of the most common cancers in women worldwide and it is a prominent cause of cancer mortality. Curcumin is one of the major compounds from Turmeric and has been shown to induce cytotoxic cell death in human cervical cancer cells. However, there is no study to show curcumin induced DNA damage action via the effect on the DNA damage and repair protein in cervical cancer cells in detail. In this study, we investigated whether or not curcumin induced cell death via DNA damage, chromatin condensation in human cervical cancer HeLa cells by using comet assay and DAPI staining, respectively, we found that curcumin induced cell death through the induction of DNA damage, and chromatin condensation. Western blotting and confocal laser microscopy examination were used to examine the effects of curcumin on protein expression associated with DNA damage, repair and translocation of proteins. We found that curcumin at 13 µM increased the protein levels associated with DNA damage and repair, such as O6-methylguanine-DNA methyltransferase, early-onset breast cancer 1 (BRCA1), mediator of DNA damage checkpoint 1, p-p53 and p-H2A.XSer140 in HeLa cells. Results from confocal laser systems microscopy indicated that curcumin increased the translocation of p-p53 and p-H2A.XSer140 from cytosol to nuclei in HeLa cells. In conclusion, curcumin induced cell death in HeLa cells via induction of DNA damage, and chromatin condensation in vitro.
Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém
2011-01-01
DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605
Evaluation of optimal DNA staining for triggering by scanning fluorescence microscopy (SFM)
NASA Astrophysics Data System (ADS)
Mittag, Anja; Marecka, Monika; Pierzchalski, Arkadiusz; Malkusch, Wolf; Bocsi, József; Tárnok, Attila
2009-02-01
In imaging and flow cytometry, DNA staining is a common trigger signal for cell identification. Selection of the proper DNA dye is restricted by the hardware configuration of the instrument. The Zeiss Imaging Solutions GmbH (München, Germany) introduced a new automated scanning fluorescence microscope - SFM (Axio Imager.Z1) which combines fluorescence imaging with cytometric parameters measurement. The aim of the study was to select optimal DNA dyes as trigger signal in leukocyte detection and subsequent cytometric analysis of double-labeled leukocytes by SFM. Seven DNA dyes (DAPI, Hoechst 33258, Hoechst 33342, POPO-3, PI, 7-AAD, and TOPRO-3) were tested and found to be suitable for the implemented filtersets (fs) of the SFM (fs: 49, fs: 44, fs: 20). EDTA blood was stained after erythrocyte lysis with DNA dye. Cells were transferred on microscopic slides and embedded in fluorescent mounting medium. Quality of DNA fluorescence signal as well as spillover signals were analyzed by SFM. CD45-APC and CD3-PE as well as CD4-FITC and CD8-APC were selected for immunophenotyping and used in combination with Hoechst. Within the tested DNA dyes DAPI showed relatively low spillover and the best CV value. Due to the low spillover of UV DNA dyes a triple staining of Hoechst and APC and PE (or APC and FITC, respectively) could be analyzed without difficulty. These results were confirmed by FCM measurements. DNA fluorescence is applicable for identifying and triggering leukocytes in SFM analyses. Although some DNA dyes exhibit strong spillover in other fluorescence channels, it was possible to immunophenotype leukocytes. DAPI seems to be best suitable for use in the SFM system and will be used in protocol setups as primary parameter.
A Ubiquitin-Proteasome Pathway for the Repair of Topoisomerase I-DNA Covalent Complexes*S⃞
Lin, Chao-Po; Ban, Yi; Lyu, Yi Lisa; Desai, Shyamal D.; Liu, Leroy F.
2008-01-01
Reversible topoisomerase I (Top1)-DNA cleavage complexes are the key DNA lesion induced by anticancer camptothecins (e.g. topotecan and irinotecan) as well as structurally perturbed DNAs (e.g. oxidatively damaged DNA, UV-irradiated DNA, alkylated DNA, uracil-substituted DNA, mismatched DNA, gapped and nicked DNA, and DNA with abasic sites). Top1 cleavage complexes arrest transcription and trigger transcription-dependent degradation of Top1, a phenomenon termed Top1 down-regulation. In the current study, we have investigated the role of Top1 down-regulation in the repair of Top1 cleavage complexes. Using quiescent (serum-starved) human WI-38 cells, camptothecin (CPT) was shown to induce Top1 down-regulation, which paralleled the induction of DNA single-strand breaks (SSBs) (assayed by comet assays) and ATM autophosphorylation (at Ser-1981). Interestingly, Top1 down-regulation, induction of DNA SSBs and ATM autophosphorylation were all abolished by the proteasome inhibitor MG132. Furthermore, studies using immunoprecipitation and dominant-negative ubiquitin mutants have suggested a specific requirement for the assembly of Lys-48-linked polyubiquitin chains for CPT-induced Top1 down-regulation. In contrast to the effect of proteasome inhibition, inactivation of PARP1 was shown to increase the amount of CPT-induced SSBs and the level of ATM autophosphorylation. Together, these results support a model in which Top1 cleavage complexes arrest transcription and activate a ubiquitin-proteasome pathway leading to the degradation of Top1 cleavage complexes. Degradation of Top1 cleavage complexes results in the exposure of Top1-concealed SSBs for repair through a PARP1-dependent process. PMID:18515798
Mechanisms of free radical-induced damage to DNA.
Dizdaroglu, Miral; Jaruga, Pawel
2012-04-01
Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2015-10-01
Evidence suggests that the sudden triggering of rainfall-induced shallow landslides is preceded by accumulation of local internal failures in the soil mantle before their abrupt coalescence into a landslide failure plane. The mechanical status of a hillslope at any given time reflects competition between local damage accumulated during antecedent rainfall events and rates of mechanical healing (e.g., rebonding of microcracks and root regrowth). This dynamic interplay between damage accumulation and healing rates determines the initial mechanical state for landslide modeling. We evaluated the roles of these dynamic processes on landslide characteristics and patterns using a hydromechanical landslide-triggering model for a sequence of rainfall scenarios. The progressive nature of soil failure was represented by the fiber bundle model formalism that considers threshold strength of mechanical bonds linking adjacent soil columns and bedrock. The antecedent damage induced by prior rainfall events was expressed by the fraction of broken fibers that gradually regain strength or mechanically heal at rates specific to soil and roots. Results indicate that antecedent damage accelerates landslide initiation relative to pristine (undamaged) hillslopes. The volumes of first triggered landslides increase with increasing antecedent damage; however, for heavily damaged hillslopes, landslide volumes tend to decrease. Elapsed time between rainfall events allows mechanical healing that reduces the effects of antecedent damage. This study proposed a quantitative framework for systematically incorporating hydromechanical loading history and information on precursor events (e.g., such as recorded by acoustic emissions) into shallow landslide hazard assessment.
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS
One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE
A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...
A Green's Function Approach to Simulate DNA Damage by the Indirect Effect
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cicinotta, Francis A.
2013-01-01
The DNA damage is of fundamental importance in the understanding of the effects of ionizing radiation. DNA is damaged by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research, many questions on the DNA damage by ionizing radiation remains. In the recent years, the Green's functions of the diffusion equation (GFDE) have been used extensively in biochemistry [1], notably to simulate biochemical networks in time and space [2]. In our future work on DNA damage, we wish to use an approach based on the GFDE to refine existing models on the indirect effect of ionizing radiation on DNA. To do so, we will use the code RITRACKS [3] developed at the NASA Johnson Space Center to simulate the radiation track structure and calculate the position of radiolytic species after irradiation. We have also recently developed an efficient Monte-Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state [4], which can be modified and adapted to simulate DNA damage by free radicals. To do so, we will use the known reaction rate constants between radicals (OH, eaq, H,...) and the DNA bases, sugars and phosphates and use the sampling algorithms to simulate the diffusion of free radicals and chemical reactions with DNA. These techniques should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.
DNA Damage Response, Redox Status and Hematopoiesis
Weiss, Cary N.; Ito, Keisuke
2013-01-01
The ability of hematopoietic stem cells (HSCs) to self-renew and differentiate into progenitors is essential for homeostasis of the hematopoietic system. The longevity of HSCs makes them vulnerable to accumulating DNA damage, which may be leukemogenic or result in senescence and cell death. Additionally, the ability of HSCs to self-renew and differentiate allows DNA damage to spread throughout the hematologic system, leaving the organism vulnerable to disease. In this review we discuss cell fate decisions made in the face of DNA damage and other cellular stresses, and the role of reactive oxygen species in the long-term maintenance of HSCs and their DNA damage response. PMID:24041596
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Satyender; Kumar, Vivek; Vashisht, Kapil
2011-11-15
Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activitymore » toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.« less
Formation of Clustered DNA Damage after High-LET Irradiation: A Review
NASA Technical Reports Server (NTRS)
Hada, Megumi; Georgakilas, Alexandros G.
2008-01-01
Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.
Dalrymple, Annette; Ordoñez, Patricia; Thorne, David; Dillon, Debbie; Meredith, Clive
2015-06-01
Smoking is a cause of serious diseases, including lung cancer, emphysema, chronic bronchitis and heart disease. DNA damage is thought to be one of the mechanisms by which cigarette smoke (CS) initiates disease in the lung. Indeed, CS induced DNA damage can be measured in vitro and in vivo. The potential of the Comet assay to measure DNA damage in isolated rat lung alveolar type II epithelial cells (AEC II) was explored as a means to include a genotoxicity end-point in rodent sub-chronic inhalation studies. In this study, published AEC II isolation methods were improved to yield viable cells suitable for use in the Comet assay. The improved method reduced the level of basal DNA damage and DNA repair in isolated AEC II. CS induced DNA damage could also be quantified in isolated cells following a single or 5 days CS exposure. In conclusion, the Comet assay has the potential to determine CS or other aerosol induced DNA damage in AEC II isolated from rodents used in sub-chronic inhalation studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Duncan, C J
1987-05-01
Agents (A23187, caffeine) believed to raise [Ca]i in vertebrate cardiac and skeletal muscles cause rapid and characteristic subcellular damage in vitro and in vivo. By using saponin-skinned amphibian pectoris cutaneous muscle and Ca-EGTA-buffered solutions it is shown that low [Ca] consistently triggers the same rapid (2-20 min), ultrastructural damage. Electron micrographs reveal a close similarity between the damaged intact and skinned preparations, namely loss of myofilament organization, specific Z-line damage, dissolution and hypercontraction bands, characteristic mitochondrial swelling and division. Where both actin and myosin filaments were lost, an underlying cytoskeletal network frequently remained, still attached to the Z-line framework. Ca was effective in skinned preparations from 5 X 10(-7) M to 8 X 10(-6) M, within the concentration range experienced by a contracting muscle. Damage was [Ca]- and time-dependent and it is suggested that it is probably the active movement of Ca ions across key membrane sites that is critical in triggering damage of the myofilament apparatus. Strontium can substitute for Ca at higher concentrations. The action of saponin suggests that the chemically skinned cell is partially activated. Ca-triggering can be bypassed experimentally by membrane-active agents or by sulphydryl agents. Ruthenium Red and trifluoperazine indirectly cause damage in the intact cell by raising [Ca]i. Studies with saponin-skinned cells and protease inhibitors show that changes in pHi, loss of ATP, Ca-activated neutral protease, or release of lysosomal enzymes (cathepsins B, D, L or H), are not involved in characteristic rapid myofilament damage.
Remely, Marlene; Ferk, Franziska; Sterneder, Sonja; Setayesh, Tahereh; Kepcija, Tatjana; Roth, Sylvia; Noorizadeh, Rahil; Greunz, Martina; Rebhan, Irene; Wagner, Karl-Heinz; Knasmüller, Siegfried; Haslberger, Alexander
2017-06-14
Obesity is associated with low-grade inflammation, increased ROS production and DNA damage. Supplementation with antioxidants might ameliorate DNA damage and support epigenetic regulation of DNA repair. C57BL/6J male mice were fed a high-fat (HFD) or a control diet (CD) with and without vitamin E supplementation (4.5 mg/kg body weight (b.w.)) for four months. DNA damage, DNA promoter methylation and gene expression of Dnmt1 and a DNA repair gene ( MLH1 ) were assayed in liver and colon. The HFD resulted in organ specific changes in DNA damage, the epigenetically important Dnmt1 gene, and the DNA repair gene MLH1 . Vitamin E reduced DNA damage and showed organ-specific effects on MLH1 and Dnmt1 gene expression and methylation. These results suggest that interventions with antioxidants and epigenetic active food ingredients should be developed as an effective prevention for obesity-and oxidative stress-induced health risks.
Lee, Andrea J; Wallace, Susan S
2017-06-01
The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Margaret Pratt, M.; King, Leon C.; Adams, Linda D.; John, Kaarthik; Sirajuddin, Paul; Olivero, Ofelia A.; Manchester, David K.; Sram, Radim J.; DeMarini, David M.; Poirier, Miriam C.
2010-01-01
Three classes of DNA damage were assessed in human placentas collected (in 2000-4) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by 32P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with r7, t8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49–312 PAH-DNA adducts/108 nucleotides, were found by IHC/ACIS in 14 immediately-fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7 – 8.6 stable/bulky DNA adducts/108 nucleotides and 0.6 – 47.2 AB sites/105 nucleotides. For all methods there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and non-smokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi. PMID:20839217
Pratt, M Margaret; King, Leon C; Adams, Linda D; John, Kaarthik; Sirajuddin, Paul; Olivero, Ofelia A; Manchester, David K; Sram, Radim J; DeMarini, David M; Poirier, Miriam C
2011-01-01
Three classes of DNA damage were assessed in human placentas collected (2000-2004) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by (32)P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49-312 PAH-DNA adducts/10(8) nucleotides, were found by IHC/ACIS in 14 immediately fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7-8.6 stable/bulky DNA adducts/10(8) nucleotides and 0.6-47.2 AB sites/10(5) nucleotides. For all methods, there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and nonsmokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi. Copyright © 2010 Wiley-Liss, Inc.
MGMT hypomethylation is associated with DNA damage in workers exposed to low-dose benzene.
Li, Jie; Zhang, Xinjie; He, Zhini; Sun, Qing; Qin, Fei; Huang, Zhenlie; Zhang, Xiao; Sun, Xin; Liu, Linhua; Chen, Liping; Gao, Chen; Wang, Shan; Wang, Fangping; Li, Daochuan; Zeng, Xiaowen; Deng, Qifei; Wang, Qing; Zhang, Bo; Tang, Huanwen; Chen, Wen; Xiao, Yongmei
2017-07-01
This study aims to assess the effects of low-dose benzene on DNA damage and O 6 -methylguanine-DNA methyltransferase (MGMT) methylation in occupational workers. We recruited 96 nonsmoking male petrochemical industry workers exposed to low-dose benzene and 100 matched control workers. Urinary S-phenylmercapturic acid (SPMA) and S-benzylmercapturic acid (SBMA) were measured for indicating internal exposure of benzene and toluene. The degree of DNA damage was determined by the Comet assay. The levels of MGMT methylation were detected quantitatively by bisulphite-PCR pyrosequencing assay. The benzene-exposed workers had significantly higher levels of urinary SPMA, degree of DNA damage but decreased MGMT methylation than the controls (all p < 0.05). In contrast, the level of urinary SBMA does not differ between benzene-exposed workers and the controls. In all participants, MGMT methylation was negatively associated with the urinary SPMA and the degree of DNA damage, indicating that epigenetic regulation might be involved in response to low-dose benzene exposure-induced genetic damage. MGMT methylation could be a potent biomarker associated with low-dose benzene exposure and benzene-induced DNA damage.
Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage.
Bot, Christopher; Pfeiffer, Annika; Giordano, Fosco; Manjeera, Dharani E; Dantuma, Nico P; Ström, Lena
2017-03-15
NIPBL is required to load the cohesin complex on to DNA. While the canonical role of cohesin is to couple replicated sister chromatids together until the onset of mitosis, it also promotes tolerance to DNA damage. Here, we show that NIPBL is recruited to DNA damage throughout the cell cycle via independent mechanisms, influenced by type of damage. First, the heterochromatin protein HP1γ (also known as CBX3) recruits NIPBL to DNA double-strand breaks (DSBs) through the corresponding HP1-binding motif within the N-terminus. By contrast, the C-terminal HEAT repeat domain is unable to recruit NIPBL to DSBs but independently targets NIPBL to laser microirradiation-induced DNA damage. Each mechanism is dependent on the RNF8 and RNF168 ubiquitylation pathway, while the recruitment of the HEAT repeat domain requires further ATM or ATR activity. Thus, NIPBL has evolved a sophisticated response to damaged DNA that is influenced by the form of damage, suggesting a highly dynamic role for NIPBL in maintaining genomic stability. © 2017. Published by The Company of Biologists Ltd.
Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.
Gredilla, R; Barja, G; López-Torres, M
2001-10-01
Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.
Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.
Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna
2017-03-24
Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.
Aging of hematopoietic stem cells: DNA damage and mutations?
Moehrle, Bettina M; Geiger, Hartmut
2016-10-01
Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
You, B-J; Wu, Y-C; Lee, C-L; Lee, H-Z
2014-03-01
4β-Hydroxywithanolide E is a bioactive withanolide extracted from Physalis peruviana. 4β-Hydroxywithanolide E caused reactive oxygen species production and cell apoptosis in human breast cancer MCF-7 cells. We further found that 4β-hydroxywithanolide E induced DNA damage and regulated the DNA damage signaling in MCF-7 cells. The DNA damage sensors and repair proteins act promptly to remove DNA lesions by 4β-hydroxywithanolide E. The ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway is involved in 4β-hydroxywithanolide E-induced apoptosis of MCF-7 cells. Non-homologous end joining pathway, but not homologous recombination, is the major route of protection of MCF-7 cells against 4β-hydroxywithanolide E-induced DNA damage. 4β-Hydroxywithanolide E had no significant impact on the base excision repair pathway. In this study, we examined the 4β-hydroxywithanolide E-induced DNA damage as a research tool in project investigating the DNA repair signaling in breast cancer cells. We also suggest that 4β-hydroxywithanolide E assert its anti-tumor activity in carcinogenic progression and develop into a dietary chemopreventive agent. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gajski, Goran; Domijan, Ana-Marija; Garaj-Vrhovac, Vera
2012-07-01
Bee venom (BV) has toxic effects in a variety of cell systems and oxidative stress has been proposed as a possible mechanism of its toxicity. This study investigated the in vitro effect of BV on glutathione (GSH) and malondialdehyde (MDA) levels, and their association with BV-induced DNA strand breaks and oxidative DNA damage in human peripheral blood leukocytes (HPBLs). Blood samples were treated with BV at concentrations ranging from 0.1 to 10 μg/ml over different lengths of time, and DNA damage in HPBLs was monitored with the alkaline and formamidopyrimidine glycoslyase (FPG)-modified comet assays, while GSH and MDA levels were determined in whole blood. Results showed a significant increase in overall DNA damage and FPG-sensitive sites in DNA of HPBLs exposed to BV compared with HPBLs from controls. An increase in DNA damage (assessed with both comet assays) was significantly associated with changes in MDA and GSH levels. When pretreated with N-acetyl-L-cysteine, a source of cysteine for the synthesis of the endogenous antioxidant GSH, a significant reduction of the DNA damaging effects of BV in HPBLs was noted. This suggests that oxidative stress is at least partly responsible for the DNA damaging effects of BV. Copyright © 2012 Wiley Periodicals, Inc.
Cwikel, Julie G; Gidron, Yori; Quastel, Michael
2010-01-01
Radiation causes DNA damage, increases risk of cancer, and is associated with psychological stress responses. This article proposes an evidence-based integrative model in which psychological factors could interact with radiation by either augmenting or moderating the adverse effects of radiation on DNA integrity and eventual tumorigenesis. Based on a review of the literature, we demonstrate the following: (1) the effects of low-dose radiation exposures on DNA integrity and on tumorigenesis; (2) the effects of low-dose radiation exposure on psychological distress; (3) the relationship between psychological factors and DNA damage; and (4) the possibility that psychological stress augments and that psychological resource variables moderate radiation-induced DNA damage and risk of cancer. The additional contribution of psychological processes to radiation-DNA damage-cancer relationships needs further study, and if verified, has clinical implications.
Mus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila
Díaz-Valdés, Nancy; Comendador, Miguel A.; Sierra, L. María
2010-01-01
The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308−) conditions, the ethylating agent diethyl sulfate (DES) was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system. PMID:20936147
Chromosome territories reposition during DNA damage-repair response
2013-01-01
Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response. PMID:24330859
Broome, Jacqueline E.; Lis, Agnieszka
2016-01-01
In previous work, we identified xanthine oxidase (XO) as an important enzyme in the interaction between the host and enteropathogenic Escherichia coli (EPEC) and Shiga-toxigenic E. coli (STEC). Many of the biological effects of XO were due to the hydrogen peroxide produced by the enzyme. We wondered, however, if uric acid generated by XO also had biological effects in the gastrointestinal tract. Uric acid triggered inflammatory responses in the gut, including increased submucosal edema and release of extracellular DNA from host cells. While uric acid alone was unable to trigger a chloride secretory response in intestinal monolayers, it did potentiate the secretory response to cyclic AMP agonists. Uric acid crystals were formed in vivo in the lumen of the gut in response to EPEC and STEC infections. While trying to visualize uric acid crystals formed during EPEC and STEC infections, we noticed that uric acid crystals became enmeshed in the neutrophilic extracellular traps (NETs) produced from host cells in response to bacteria in cultured cell systems and in the intestine in vivo. Uric acid levels in the gut lumen increased in response to exogenous DNA, and these increases were enhanced by the actions of DNase I. Interestingly, addition of DNase I reduced the numbers of EPEC bacteria recovered after a 20-h infection and protected against EPEC-induced histologic damage. PMID:26787720
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.
Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia
2016-12-02
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.
Genotoxic effect of ethacrynic acid and impact of antioxidants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, William M.; Hoffman, Jared D.; Loo, George, E-mail: g_loo@uncg.edu
It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased themore » production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA decreased glutathione levels, not prevented by ascorbic acid or trolox. • Buthionine sulfoxime intensified the DNA damage caused by EA.« less
DNA Damage among Wood Workers Assessed with the Comet Assay
Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.
2016-01-01
Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027
[Study on three kinds of gasoline oxygenates-induced DNA damage in mice fibroblasts].
Song, Chonglin; Zhang, Zhifu; Chen, Xue; Zhang, Yanfeng; Wang, Chunhua; Liu, Keming
2002-10-01
To study DNA damage of three kinds of gasoline oxygenates. Single cell gel electrophoresis assay(Comet assay) was used to detect the damage effects of three gasoline oxygenates[methyl tertiary butyl ether(MTBE), ethanol anhydrous(EA) and dimethyl carbonate(DMC)] on DNA in L-929 mice fibroblasts. In certain concentation(37.500-150.000 mg/ml), MTBE could directly cause DNA damage of L-929 mice fibroblasts. There was obvious dose-effect relationship, i.e. when the concentration of MTBE was increased from 9.375 to 150.000 mg/ml, the comet rate also increased from 4% to 85%, and the length of comet tail changed correspondingly. The results of EA and DMC were negative. Under the condition of this experiment(150.000 mg/ml), MTBE could directly cause DNA damage while the effect of EA and DMC on DNA damage was not found.
Population Dynamics of Viral Inactivation
NASA Astrophysics Data System (ADS)
Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex
We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.
DNA damage in blood cells exposed to low-level lasers.
Sergio, Luiz Philippe da Silva; Silva, Ana Paula Almeida da; Amorim, Philipi Freitas; Campos, Vera Maria Araújo; Magalhães, Luis Alexandre Gonçalves; de Paoli, Flavia; de Souza da Fonseca, Adenilson
2015-04-01
In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers. © 2015 Wiley Periodicals, Inc.
ATM directs DNA damage responses and proteostasis via genetically separable pathways
Lee, Ji-Hoon; Mand, Michael R.; Kao, Chung-Hsuan; Zhou, Yi; Ryu, Seung W.; Richards, Alicia L.; Coon, Joshua J.; Paull, Tanya T.
2018-01-01
The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes Ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. Here, we genetically separated DNA damage activation of ATM from oxidative activation using separation-of-function mutations. We found that deficiency in ATM activation by Mre11-Rad50-Nbs1 and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of ATM lacking oxidative activation generates widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicates ATM in the control of protein homeostasis. PMID:29317520
Lewis, Sheena E M; John Aitken, R; Conner, Sarah J; Iuliis, Geoffry De; Evenson, Donald P; Henkel, Ralph; Giwercman, Aleksander; Gharagozloo, Parviz
2013-10-01
Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. With all of these fertility check points, it shows more promise than conventional semen parameters from a diagnostic perspective. Despite this, few infertility clinics use it routinely. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths and weaknesses and clinical applicability of current sperm DNA fragmentation tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of increased oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. As those working in this field of clinical research, we conclude that DNA damage in human spermatozoa is an important attribute of semen quality which should be carefully assessed in the clinical work up of infertile couples and that properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu
Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6more » μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.« less
Negureanu, Lacramioara; Salsbury, Freddie R
2013-01-01
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα’s surveillance for DNA errors would possible be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations. PMID:24061854
UV and ionizing radiations induced DNA damage, differences and similarities
NASA Astrophysics Data System (ADS)
Ravanat, Jean-Luc; Douki, Thierry
2016-11-01
Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.
Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.
Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben
2017-11-01
Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Bausinger, Julia; Speit, Günter
2014-11-01
The comet assay is widely used in human biomonitoring to measure DNA damage in whole blood or isolated peripheral blood mononuclear cells (PBMC) as a marker of exposure to genotoxic agents. Cytogenetic assays with phytohemagglutinin (PHA)-stimulated cultured T lymphocytes are also frequently performed in human biomonitoring. Cytogenetic effects (micronuclei, chromosome aberrations, sister chromatid exchanges) may be induced in vivo but also occur ex vivo during the cultivation of lymphocytes as a consequence of DNA damage present in lymphocytes at the time of sampling. To better understand whether DNA damage measured by the comet assay in PBMC is representative for DNA damage in T cells, we comparatively investigated DNA damage and its repair in PBMC and T cells obtained by immunomagnetic cell sorting. PBMC cultures and T cell cultures were exposed to mutagens with different modes of genotoxic action and DNA damage was measured by the comet assay after the end of a 2h exposure and after 18h post-incubation. The mutagens tested were methyl methanesulfonate (MMS), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), 4-nitroquinoline-1-oxide (4NQO), styrene oxide and potassium bromate. MMS and potassium bromate were also tested by the modified comet assay with formamido pyrimidine glycosylase (FPG) protein. The results indicate that the mutagens tested induce DNA damage in PBMC and T cells in the same range of concentrations and removal of induced DNA lesions occurs to a comparable extent. Based on these results, we conclude that the comet assay with PBMC is suited to predict DNA damage and its removal in T cells. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu
Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fishermore » 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96 h in medium containing DMSO ± 60 μM PM or KU 55933 (48 h; 10 nM). PM-induced activation of DNA damage repair genes was observed as early as 12 h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96 h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity. - Highlights: • PM exposure induces DNA damage repair gene expression. • Inhibition of ATM prevented PM-induced follicle depletion. • PKCδ deficiency did not impact PM-induced ovotoxicity.« less
McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A
2015-01-01
Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents. Copyright © 2014 Elsevier GmbH. All rights reserved.
Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-01-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms. PMID:16710445
Epigenetic telomere protection by Drosophila DNA damage response pathways.
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-05-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.
Effects of different extenders on DNA integrity of boar spermatozoa following freezing-thawing.
Hu, Jian-hong; Li, Qing-wang; Jiang, Zhong-liang; Li, Wen-ye
2008-12-01
The sperm-rich fraction, collected from eight mature Yorkshire boars, was frozen in an extender containing 9% LDL (w/v), 100mM trehalose, or 20% yolk (v/v), respectively. Sperm DNA integrity was assessed using the single-cell gel electrophoresis (SCGE). Other sperm quality characteristics such as motility, acrosome and membrane integrity were also monitored. The results showed that freezing-thawing caused an increase in sperm DNA fragmentation, and extender containing 9% LDL could significantly protect sperm DNA integrity (P<0.05) from the damage caused by cryopreservation and decrease DNA damages compared with extender containing 100mM trehalose and 20% yolk (v/v). No significant difference in damaged DNA was detected between frozen and unfrozen semen samples for extender of 9% LDL and 100mM trehalose, but cryopreservation could increase the degree of DNA damage (P<0.05), the percentage of damaged DNA degree of grade 2 and 3 was significantly increased. The deterioration in post-thaw sperm DNA integrity was concurrent with reduced sperm characteristics. The data here demonstrated that the cryoprotectant played a fundamental role in reducing boar sperm DNA damage and protecting DNA integrity. It can be suggested that evaluation of sperm DNA integrity, coupled with correlative and basic characteristics such as motility, acrosome integrity and membrane integrity, may aid in determining the quality of frozen boar semen.
Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro
Purohit, Nupur K.; Robu, Mihaela; Shah, Rashmi G.; Geacintov, Nicholas E.; Shah, Girish M.
2016-01-01
The existing methodologies for studying robust responses of poly (ADP-ribose) polymerase-1 (PARP-1) to DNA damage with strand breaks are often not suitable for examining its subtle responses to altered DNA without strand breaks, such as UV-damaged DNA. Here we describe two novel assays with which we characterized the interaction of PARP-1 with UV-damaged DNA in vivo and in vitro. Using an in situ fractionation technique to selectively remove free PARP-1 while retaining the DNA-bound PARP-1, we demonstrate a direct recruitment of the endogenous or exogenous PARP-1 to the UV-lesion site in vivo after local irradiation. In addition, using the model oligonucleotides with single UV lesion surrounded by multiple restriction enzyme sites, we demonstrate in vitro that DDB2 and PARP-1 can simultaneously bind to UV-damaged DNA and that PARP-1 casts a bilateral asymmetric footprint from −12 to +9 nucleotides on either side of the UV-lesion. These techniques will permit characterization of different roles of PARP-1 in the repair of UV-damaged DNA and also allow the study of normal housekeeping roles of PARP-1 with undamaged DNA. PMID:26753915
Chemical determination of free radical-induced damage to DNA.
Dizdaroglu, M
1991-01-01
Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.
Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C; Westbrook, Thomas F; Harper, J Wade; Elledge, Stephen J
2015-06-09
Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Mechanisms of DNA damage, repair and mutagenesis
Chatterjee, Nimrat; Walker, Graham C.
2017-01-01
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. PMID:28485537
Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.
Gahlon, Hailey L; Romano, Louis J; Rueda, David
2017-11-20
Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.
Murray, V
1999-01-01
This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.
Increased oxidative phosphorylation in response to acute and chronic DNA damage
Brace, Lear E; Vose, Sarah C; Stanya, Kristopher; Gathungu, Rose M; Marur, Vasant R; Longchamp, Alban; Treviño-Villarreal, Humberto; Mejia, Pedro; Vargas, Dorathy; Inouye, Karen; Bronson, Roderick T; Lee, Chih-Hao; Neilan, Edward; Kristal, Bruce S; Mitchell, James R
2016-01-01
Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. PMID:28721274
NASA Astrophysics Data System (ADS)
Park, Yeunsoo
2015-09-01
It is well known that low energy electrons (LEE, especially below 10 eV) can generate DNA damage via indirect action named dissociative electron attachment (DEA). We can now explain some parts of the exact mechanism on DNA damage by LEE collision with direct ionization effect when cancer patients get the radiotherapy. It is kind of remarkable information in the field of radiation therapy. However, it is practically very difficult to directly apply this finding to human disease cure due to difficulty of LEE therapy actualization and request of further clinical studies. Recently, there is a novel challenge in plasma application, that is, how we can apply plasma technology to diagnosis and treatment of many serious diseases like cancer. Cold atmospheric pressure plasma (CAPP) is a very good source to apply to plasma medicine and bio-applications because of low temperature, low cost, and easy handling. Some scientists have already reported good results related to clinical plasma application. The purposes of this study are to further find out exact mechanisms of DNA damage by LEE at the molecular level, to verify new DNA damage like structural alteration on DNA subunits and to compare DNA damage by LEE and plasma source. We will keep expanding our study to DNA damage by plasma source to develop plasma-based new medical and biological applications. We will show some recent results, DNA damage by LEE and non-thermal plasma.
Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.
Morris, Lydia P; Conley, Andrew B; Degtyareva, Natalya; Jordan, I King; Doetsch, Paul W
2017-11-01
The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
Kahn, Jason S; Hu, Yuwei; Willner, Itamar
2017-04-18
The base sequence of nucleic acids encodes structural and functional information into the DNA biopolymer. External stimuli such as metal ions, pH, light, or added nucleic acid fuel strands provide triggers to reversibly switch nucleic acid structures such as metal-ion-bridged duplexes, i-motifs, triplex nucleic acids, G-quadruplexes, or programmed double-stranded hybrids of oligonucleotides (DNA). The signal-triggered oligonucleotide structures have been broadly applied to develop switchable DNA nanostructures and DNA machines, and these stimuli-responsive assemblies provide functional scaffolds for the rapidly developing area of DNA nanotechnology. Stimuli-responsive hydrogels undergoing signal-triggered hydrogel-to-solution transitions or signal-controlled stiffness changes attract substantial interest as functional matrices for controlled drug delivery, materials exhibiting switchable mechanical properties, acting as valves or actuators, and "smart" materials for sensing and information processing. The integration of stimuli-responsive oligonucleotides with hydrogel-forming polymers provides versatile means to exploit the functional information encoded in the nucleic acid sequences to yield stimuli-responsive hydrogels exhibiting switchable physical, structural, and chemical properties. Stimuli-responsive DNA-based nucleic acid structures are integrated in acrylamide polymer chains and reversible, switchable hydrogel-to-solution transitions of the systems are demonstrated by applying external triggers, such as metal ions, pH-responsive strands, G-quadruplex, and appropriate counter triggers that bridge and dissociate the polymer chains. By combining stimuli-responsive nucleic acid bridges with thermosensitive poly(N-isopropylacrylamide) (pNIPAM) chains, systems undergoing reversible solution ↔ hydrogel ↔ solid transitions are demonstrated. Specifically, by bridging acrylamide polymer chains by two nucleic acid functionalities, where one type of bridging unit provides a stimuli-responsive element and the second unit acts as internal "bridging memory", shape-memory hydrogels undergoing reversible and switchable transitions between shaped hydrogels and shapeless quasi-liquid states are demonstrated. By using stimuli-responsive hydrogel cross-linking units that can assemble the bridging units by two different input signals, the orthogonally-triggered functions of the shape-memory were shown. Furthermore, a versatile approach to assemble stimuli-responsive DNA-based acrylamide hydrogel films on surfaces is presented. The method involves the activation of the hybridization chain-reaction (HCR) by a surface-confined promoter strand, in the presence of acrylamide chains modified with two DNA hairpin structures and appropriate stimuli-responsive tethers. The resulting hydrogel-modified surfaces revealed switchable stiffness properties and signal-triggered catalytic functions. By applying the method to assemble the hydrogel microparticles, substrate-loaded, stimuli-responsive microcapsules are prepared. The signal-triggered DNA-based hydrogel microcapsules are applied as drug carriers for controlled release. The different potential applications and future perspectives of stimuli responsive hydrogels are discussed. Specifically, the use of these smart materials and assemblies as carriers for controlled drug release and as shape-memory matrices for information storage and inscription and the use of surface-confined stimuli-responsive hydrogels, exhibiting switchable stiffness properties, for catalysis and controlled growth of cells are discussed.
DNA Damage Signals and Space Radiation Risk
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2011-01-01
Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.
In situ analysis of DNA damage response and repair using laser microirradiation.
Kim, Jong-Soo; Heale, Jason T; Zeng, Weihua; Kong, Xiangduo; Krasieva, Tatiana B; Ball, Alexander R; Yokomori, Kyoko
2007-01-01
A proper response to DNA damage is critical for the maintenance of genome integrity. However, it is difficult to study the in vivo kinetics and factor requirements of the damage recognition process in mammalian cells. In order to address how the cell reacts to DNA damage, we utilized a second harmonic (532 nm) pulsed Nd:YAG laser to induce highly concentrated damage in a small area in interphase cell nuclei and cytologically analyzed both protein recruitment and modification. Our results revealed for the first time the sequential recruitment of factors involved in two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR), and the cell cycle-specific recruitment of the sister chromatid cohesion complex cohesin to the damage site. In this chapter, the strategy developed to study the DNA damage response using the 532-nm Nd:YAG laser will be summarized.
Evaluating In Vitro DNA Damage Using Comet Assay.
Lu, Yanxin; Liu, Yang; Yang, Chunzhang
2017-10-11
DNA damage is a common phenomenon for each cell during its lifespan, and is defined as an alteration of the chemical structure of genomic DNA. Cancer therapies, such as radio- and chemotherapy, introduce enormous amount of additional DNA damage, leading to cell cycle arrest and apoptosis to limit cancer progression. Quantitative assessment of DNA damage during experimental cancer therapy is a key step to justify the effectiveness of a genotoxic agent. In this study, we focus on a single cell electrophoresis assay, also known as the comet assay, which can quantify single and double-strand DNA breaks in vitro. The comet assay is a DNA damage quantification method that is efficient and easy to perform, and has low time/budget demands and high reproducibility. Here, we highlight the utility of the comet assay for a preclinical study by evaluating the genotoxic effect of olaparib/temozolomide combination therapy to U251 glioma cells.
Bijangi-Vishehsaraei, Khadijeh; Reza Saadatzadeh, M; Wang, Haiyan; Nguyen, Angie; Kamocka, Malgorzata M; Cai, Wenjing; Cohen-Gadol, Aaron A; Halum, Stacey L; Sarkaria, Jann N; Pollok, Karen E; Safa, Ahmad R
2017-12-01
OBJECTIVE Defects in the apoptotic machinery and augmented survival signals contribute to drug resistance in glioblastoma (GBM). Moreover, another complexity related to GBM treatment is the concept that GBM development and recurrence may arise from the expression of GBM stem cells (GSCs). Therefore, the use of a multifaceted approach or multitargeted agents that affect specific tumor cell characteristics will likely be necessary to successfully eradicate GBM. The objective of this study was to investigate the usefulness of sulforaphane (SFN)-a constituent of cruciferous vegetables with a multitargeted effect-as a therapeutic agent for GBM. METHODS The inhibitory effects of SFN on established cell lines, early primary cultures, CD133-positive GSCs, GSC-derived spheroids, and GBM xenografts were evaluated using various methods, including GSC isolation and the sphere-forming assay, analysis of reactive oxygen species (ROS) and apoptosis, cell growth inhibition assay, comet assays for assessing SFN-triggered DNA damage, confocal microscopy, Western blot analysis, and the determination of in vivo efficacy as assessed in human GBM xenograft models. RESULTS SFN triggered the significant inhibition of cell survival and induced apoptotic cell death, which was associated with caspase 3 and caspase 7 activation. Moreover, SFN triggered the formation of mitochondrial ROS, and SFN-triggered cell death was ROS dependent. Comet assays revealed that SFN increased single- and double-strand DNA breaks in GBM. Compared with the vehicle control cells, a significantly higher amount of γ-H2AX foci correlated with an increase in DNA double-strand breaks in the SFN-treated samples. Furthermore, SFN robustly inhibited the growth of GBM cell-induced cell death in established cell cultures and early-passage primary cultures and, most importantly, was effective in eliminating GSCs, which play a major role in drug resistance and disease recurrence. In vivo studies revealed that SFN administration at 100 mg/kg for 5-day cycles repeated for 3 weeks significantly decreased the growth of ectopic xenografts that were established from the early passage of primary cultures of GBM10. CONCLUSIONS These results suggest that SFN is a potent anti-GBM agent that targets several apoptosis and cell survival pathways and further preclinical and clinical studies may prove that SFN alone or in combination with other therapies may be potentially useful for GBM therapy.
Mertens, Barbara; Nogueira, Tatiane; Stranska, Ruzena; Naesens, Lieve; Andrei, Graciela; Snoeck, Robert
2016-07-26
Human papillomavirus (HPV) causes cervical cancer and a large fraction of head and neck squamous cell carcinomas (HNSCC). Cidofovir (CDV) proved efficacious in the treatment of several HPV-induced benign and malignant hyper proliferations. To provide a better insight into how CDV selectively eradicates transformed cells, HPV+ and HPV- cervical carcinoma and HNSCC cell lines were compared to normal cells for antiproliferative effects, CDV metabolism, drug incorporation into cellular DNA, and DNA damage. Incorporation of CDV into cellular DNA was higher in tumor cells than in normal cells and correlated with CDV antiproliferative effects, which were independent of HPV status. Increase in phospho-ATM levels was detected following CDV exposure and higher levels of γ-H2AX (a quantitative marker of double-strand breaks) were measured in tumor cells compared to normal cells. A correlation between DNA damage and CDV incorporation into DNA was found but not between DNA damage and CDV antiproliferative effects. These data indicate that CDV antiproliferative effects result from incorporation of the drug into DNA causing DNA damage. However, the anti-tumor effects of CDV cannot be exclusively ascribed to DNA damage. Furthermore, CDV can be considered a promising broad spectrum anti-cancer agent, not restricted to HPV+ lesions.
Shaw, Jyoti; Chakraborty, Ayan; Nag, Arijit; Chattopadyay, Arnab; Dasgupta, Anjan K; Bhattacharyya, Maitreyee
2017-11-01
To investigate the cause and effects of intracellular iron overload in lymphocytes of thalassemia major patients. Sixty-six thalassemia major patients having iron overload and 10 age-matched controls were chosen for the study. Blood sample was collected, and serum ferritin, oxidative stress; lymphocyte DNA damage were examined, and infective episodes were also counted. Case-control analysis revealed significant oxidative stress, iron overload, DNA damage, and rate of infections in thalassemia cases as compared to controls. For cases, oxidative stress (ROS) and iron overload (serum ferritin) showed good correlation with R 2 = 0.934 and correlation between DNA damage and ROS gave R 2 = 0.961. We also demonstrated that intracellular iron overload in thalassemia caused oxidative damage of lymphocyte DNA as exhibited by DNA damage assay. The inference is further confirmed by partial inhibition of such damage by chelation of iron and the concurrent lowering of the ROS level in the presence of chelator deferasirox. Therefore, intracellular iron overload caused DNA fragmentation, which may ultimately hamper lymphocyte function, and this may contribute to immune dysfunction and increased susceptibility to infections in thalassemia patients as indicated by the good correlation (R 2 = 0.91) between lymphocyte DNA damage and rate of infection found in this study. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Differences in DNA-damage in non-smoking men and women exposed to environmental tobacco smoke (ETS).
Collier, Abby C; Dandge, Sachin D; Woodrow, James E; Pritsos, Chris A
2005-07-28
There is much data implicating environmental tobacco smoke (ETS) in the development and progression of disease, notably cancer, yet the mechanisms for this remain unclear. As ETS is both a pro-oxidant stressor and carcinogen, we investigated the relationship of ETS exposure to intracellular and serum levels of DNA-damage, both oxidative 8-hydroxy-2-deoxyguanosine (8OHdG) and general, in non-smokers from non-smoking households, occupationally exposed to ETS. General DNA-damage consisting of single and double strand breaks, alkali-labile sites and incomplete base-excision repair, increased significantly in a dose-dependent manner with ETS exposure in men (P=0.015, n=32, Pearson) but not women (P=0.736, n=17). Intracellular 8OHdG-DNA-damage and general DNA-damage were both greater in men than women (P=0.0005 and 0.016, respectively) but 8OHdG serum levels did not differ between the genders. Neither 8OHdG-DNA-damage nor serum levels correlated with increasing ETS exposure. This is the first study to demonstrate dose-dependent increases in DNA-damage from workplace ETS exposure. Perhaps most interesting was that despite equivalent ETS exposure, significantly greater DNA-damage occurred in men than women. These data may begin to provide a mechanistic rationale for the generally higher incidence of some diseases in males due to tobacco smoke and/or other genotoxic stressors.
Foster, Patricia L.; Lee, Heewook; Popodi, Ellen; Townes, Jesse P.; Tang, Haixu
2015-01-01
A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1–2 × 10−3 mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3′ base can affect the mutability of a purine by oxidative damage by as much as eightfold. PMID:26460006
Inturi, Swetha; Tewari-Singh, Neera; Gu, Mallikarjuna; Shrotriya, Sangeeta; Gomez, Joe; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh
2011-12-15
Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1h, that was sustained for 24h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH-CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities. Copyright © 2011 Elsevier Inc. All rights reserved.
E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells.
Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás
2015-01-01
E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells.
E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells
Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás
2015-01-01
E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells. PMID:25892555
Alteration/deficiency in activation-3 (Ada3) plays a critical role in maintaining genomic stability
Mirza, Sameer; Katafiasz, Bryan J.; Kumar, Rakesh; Wang, Jun; Mohibi, Shakur; Jain, Smrati; Gurumurthy, Channabasavaiah Basavaraju; Pandita, Tej K.; Dave, Bhavana J.; Band, Hamid; Band, Vimla
2012-01-01
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability. PMID:23095635
DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis.
Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M; Li, Yang; Brown, Eric J; Russell, Helen R; McKinnon, Peter J
2017-01-25
The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G 2 /M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G 2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system. Copyright © 2017 the authors 0270-6474/17/370893-13$15.00/0.
Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes
Binladen, Jonas; Wiuf, Carsten; Gilbert, M. Thomas P.; Bunce, Michael; Barnett, Ross; Larson, Greger; Greenwood, Alex D.; Haile, James; Ho, Simon Y. W.; Hansen, Anders J.; Willerslev, Eske
2006-01-01
To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences. PMID:16299392
Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis
Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy
2017-01-01
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816
Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.
Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G
2017-07-18
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.
Lisowska, Halina; Cheng, Lei; Sollazzo, Alice; Lundholm, Lovisa; Wegierek-Ciuk, Aneta; Sommer, Sylwester; Lankoff, Anna; Wojcik, Andrzej
2018-06-01
Low temperature at exposure has been shown to act in a radioprotective manner at the level of cytogenetic damage. It was suggested to be due to an effective transformation of DNA damage to chromosomal damage at low temperature. The purpose of the study was to analyze the kinetics of aberration formation during the first hours after exposing human peripheral blood lymphocytes to ionizing radiation at 0.8 °C and 37 °C. To this end, we applied the technique of premature chromosome condensation. In addition, DNA damage response was analyzed by measuring the levels of phosphorylated DNA damage responsive proteins ATM, DNA-PK and p53 and mRNA levels of the radiation-responsive genes BBC3, FDXR, GADD45A, XPC, MDM2 and CDKN1A. A consistently lower frequency of chromosomal breaks was observed in cells exposed at 0.8 °C as compared to 37 °C already after 30 minutes postexposure. This effect was accompanied by elevated levels of phosphorylated ATM and DNA-PK proteins and a reduced immediate level of phosphorylated p53 and of the responsive genes. Low temperature at exposure appears to promote DNA repair leading to reduced transformation of DNA damage to chromosomal aberrations.
Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents
Proctor, Michael; Flaherty, Patrick; Jordan, Michael I; Arkin, Adam P; Davis, Ronald W; Nislow, Corey; Giaever, Guri
2005-01-01
The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups. PMID:16121259
Structural Basis of Mec1-Ddc2-RPA Assembly and Activation on Single-Stranded DNA at Sites of Damage.
Deshpande, Ishan; Seeber, Andrew; Shimada, Kenji; Keusch, Jeremy J; Gut, Heinz; Gasser, Susan M
2017-10-19
Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-sensing kinase that is recruited through the single-stranded (ss) DNA-binding replication protein A (RPA) to initiate the DNA damage checkpoint response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important that damage-specific recruitment precedes kinase activation, which is achieved at least in part by Mec1-Ddc2 homodimerization. Here, we report a structural, biochemical, and functional characterization of the yeast Mec1-Ddc2-RPA assembly. High-resolution co-crystal structures of Ddc2-Rfa1 and Ddc2-Rfa1-t11 (K45E mutant) N termini and of the Ddc2 coiled-coil domain (CCD) provide insight into Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA and that Ddc2's recruitment domain and CCD are important for Mec1-dependent survival of UV-light-induced DNA damage. Copyright © 2017 Elsevier Inc. All rights reserved.