Fram, Miranda S.; Berghouse, Joshua K.; Bergamaschi, Brian A.; Fujii, Roger; Goodwin, Kelly D.; Clark, Jordan F.
2002-01-01
The U.S. Geological Survey, in cooperation with the Los Angeles County Department of Public Works and the Antelope Valley-East Kern Water Agency, conducted three cycles of injection, storage, and recovery tests to evaluate the feasibility of artificially recharging ground water in the Lancaster area of Antelope Valley, California. During the third cycle (March 1998 through April 1999), the tests included investigations of the formation and fate of trihalomethanes in the aquifer. Trihalomethanes are disinfection by-products formed by reaction between natural dissolved organic carbon that is present in water and chlorine that is added during the drinking-water-treatment process. This report includes a discussion of the design of the investigation; descriptions of the sampling, analytical, and experimental methods used in the investigation; and a presentation of the data collected. During the third cycle, 60 million gallons of chlorinated water was injected into the aquifer through well 7N/12W-27P2 in the Los Angeles County Department of Public Works well field in Lancaster between April 15 and June 16, 1998. One hundred fifty million gallons of water was extracted from the same well between June 30, 1998, and April 29, 1999. Water-quality samples were collected during the entire cycle from the well and from a nearby set of nested piezometers, and were analyzed for residual chlorine, dissolved organic carbon, trihalomethane, major anion, and dissolved solid concentrations; ultraviolet absorbance spectra; and a number of field water-quality parameters. A statistical analysis was done to evaluate the analytical precision of the residual chlorine, dissolved organic carbon, trihalomethane, and ultraviolet absorbance measurements on these samples. The formation of trihalomethanes in the injection water was examined in laboratory experiments: Trihalomethane concentrations in samples of injection water were monitored during a storage period, and trihalomethane formation potential in the presence of excess chlorine was measured. The role of mixing between injection water and ground water and the conservative or non-conservative behavior of trihalomethanes was studied by adding a conservative tracer, sulfur hexafluoride, to the injection water and monitoring its concentration in the extraction water. The potential for biodegradation of trihalomethanes by aquifer bacteria was assessed in laboratory experiments: Microcosms containing ground water or extraction water and sediment or concentrated bacteria were spiked with trihalomethanes, and the amount of trihalomethanes was monitored during an incubation period. The potential for sorption of trihalomethanes to aquifer sediments was assessed in laboratory experiments: Mixtures of sediment and water were spiked with trihalomethanes, and then the trihalomethane concentrations were measured after an equilibration period.
Ships' Ballast Water Treatment by Chlorination Can Generate Toxic Trihalomethanes.
Hernandez, Marco R; Ismail, Nargis; Drouillard, Ken G; MacIsaac, Hugh J
2017-08-01
The International Maritime Organization (IMO) will enforce a new abundance-based performance standard for ballast water in September, 2017. Strong oxidants, like chlorine, have been proposed as a method for achieving this standard. However chlorine treatment of ballast water can produce hazardous trihalomethanes. We assessed maximum trihalomethane production from one chlorine dose for three types of ballast water (fresh, brackish and marine) and three levels of total organic carbon (TOC) concentration (natural, filtered, enhanced). While the current standard test considers a 5 day voyage, there is a high possibility of shorter trips and sudden change of plans that will release treated waters in the environment. Water source and TOC significantly affected trihalomethane production, with the highest amounts generated in brackish waters and enhanced TOC concentration. The concentration of brominated trihalomethanes increased from background levels and was highest in brackish water, followed by marine and fresh water.
Chloramine chemistry - web based application
Chlorine disinfection remains quite popular in the United States, but because of the Stage 1 and Stage 2 Disinfectants and Disinfection Byproducts Rules, many United States utilities now use combinations of chlorine and chloramines to avoid excessive regulated trihalomethane and ...
Mouly, Damien; Joulin, Eric; Rosin, Christophe; Beaudeau, Pascal; Zeghnoun, Abdelkrim; Olszewski-Ortar, Agnès; Munoz, Jean François; Welté, Bénédicte; Joyeux, Michel; Seux, René; Montiel, Antoine; Rodriguez, M J
2010-10-01
Epidemiological studies have demonstrated that chlorination by-products in drinking water may cause some types of cancer in humans. However, due to differences in methodology between the various studies, it is not possible to establish a dose-response relationship. This shortcoming is due primarily to uncertainties about how exposure is measured-made difficult by the great number of compounds present-the exposure routes involved and the variation in concentrations in water distribution systems. This is especially true for trihalomethanes for which concentrations can double between the water treatment plant and the consumer tap. The aim of this study is to describe the behaviour of trihalomethanes in three French water distribution systems and develop a mathematical model to predict concentrations in the water distribution system using data collected from treated water at the plant (i.e. the entrance of the distribution system). In 2006 and 2007, samples were taken successively from treated water at the plant and at several points in the water distribution system in three French cities. In addition to the concentrations of the four trihalomethanes (chloroform, dichlorobromomethane, chlorodibromomethane, bromoform), many other parameters involved in their formation that affect their concentration were also measured. The average trihalomethane concentration in the three water distribution systems ranged from 21.6 μg/L to 59.9 μg/L. The increase in trihalomethanes between the treated water at the plant and a given point in the water distribution system varied by a factor of 1.1-5.7 over all of the samples. A log-log linear regression model was constructed to predict THM concentrations in the water distribution system. The five variables used were trihalomethane concentration and free residual chlorine for treated water at the plant, two variables that characterize the reactivity of organic matter (specific UV absorbance (SUVA), an indicator developed for the free chlorine consumption in the treatment plant before distribution δ) and water residence time in the distribution system. French regulations impose a minimum trihalomethane level for drinking water and most tests are performed on treated water at the plant. Applied in this context, the model developed here helps better to understand trihalomethane exposure in the French population, particularly useful for epidemiological studies. Copyright © 2010 Elsevier Ltd. All rights reserved.
Several drinking water treatment plants in the United States have altered their treatment methods and adopted alternative disinfectants in order to comply with a U.S. Environmental Protection Agency (EPA) regulation that limits the level of trihalomethanes (THMs) in drinking wate...
DISINFECTION BY-PRODUCTS IN DRINKING WATER TREATMENT SYSTEMS
Due to concerns over trihalomethanes (THMs) and other halogenated by-products that can be formed during chlorination of drinking water, alternative disinfectants are being explored. Several drinking water treatment plants in the United States have altered their treatment methods...
CHARACTERIZING TOXICOLOGICALLY IMPORTANT DRINKING WATER DISINFECTION BY-PRODUCTS
Due to concerns over trihalomethanes (THMs) and other halogenated by-products that can be formed during chlorination of drinking water, alternative disinfectants are being explored. Several drinking water treatment plants in the United States have altered their treatment methods...
Pope, L.M.; Arruda, J.A.; Fromm, C.H.
1988-01-01
The formation of carcinogenic trihalomethanes during the treatment of public surface water supplies has become a potentially serious problem. The U. S. Geological Survey, in cooperation with the Kansas Department of Health and Environment , investigated the potential for trihalomethane formation in water from 15 small, public water supply lakes in eastern Kansas from April 1984 through April 1986 in order to define the principal factors that affect or control the potential for trihalomethane formation during the water treatment process. Relations of mean concentrations of trihalomethane-formation potential to selected water quality and lake and watershed physical characteristics were investigated using correlation and regression analysis. Statistically significant, direct relations were developed between trihalomethanes produced in unfiltered and filtered lake water and mean concentrations of total and dissolved organic carbon. Correlation coefficients for these relations ranged from 0.86 to 0.93. Mean values of maximum depth of lake were shown to have statistically significant inverse relations to mean concentrations of trihalomethane-formation potential and total and dissolved organic carbon. Correlation coefficients for these relations ranged from -0.76 to -0.81. (USGS)
Analytical procedures for environmental quality control. Volume 2. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.K.; Wang, M.H.S.
1989-01-15
This report covers sixteen important documents. Some examples are: The determination of the maximum total trihalomethane potential; Nationwide approval of alternative test procedure for analysis of trihalomethanes; Volatile organic compounds in eater by purge and trap capillary column gas chromatography with photoionization and electrolytic conductivity detectors in series; Analysis of organohalide pesticides and arclors in drinking water by microextraction and gas chromatography; Testing for lead in school drinking water; Simplified methods for food and feed testing; Determination of nitroaromatic compounds and isophorone in industrial and municipal wastewaters; Sampling for giardia and/or cryptosporidium; determination of TCDD in industrial and municipal wastewaters;more » Determination of volatile organics in industrial and municipal wastewaters; Determination of polynuclear aromatic hydrocarbons in industrial and municipal wastewaters.« less
TREATMENT TECHNIQUES FOR CONTROLLING TRIHALOMETHANES IN DRINKING WATER
In this volume, the authors attempt to bring together information developed over the past 6 years, on all aspects of trihalomethanes as they relate to drinking water. Section I summarizes with references to the primary literature the discovery of the trihalomethane problem, healt...
Crepeau, Kathryn L.; Fram, Miranda S.; Bush, Noel
2004-01-01
An analytical method for the determination of the trihalomethane formation potential of water samples has been developed. The trihalomethane formation potential is measured by dosing samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine, and then analyzing the resulting trihalomethanes by purge and trap/gas chromatography equipped with an electron capture detector. Detailed explanations of the method and quality-control practices are provided. Method validation experiments showed that the trihalomethane formation potential varies as a function of time between sample collection and analysis, residual-free chlorine concentration, method of sample dilution, and the concentration of bromide in the sample.
FORMATION AND CONTROL OF NON-TRIHALOMETHANE BYPRODUCTS
Hundreds of organic byproducts of chlorination are now known to occur in drinking water along with the trihalomethanes. About twenty of these appear to be found with sufficient concentration are now known to occur in drinking water along with the trihalomethanes. bout twenty of t...
Factorial analysis of trihalomethanes formation in drinking water.
Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James
2010-06-01
Disinfection of drinking water reduces pathogenic infection, but may pose risks to human health through the formation of disinfection byproducts. The effects of different factors on the formation of trihalomethanes were investigated using a statistically designed experimental program, and a predictive model for trihalomethanes formation was developed. Synthetic water samples with different factor levels were produced, and trihalomethanes concentrations were measured. A replicated fractional factorial design with center points was performed, and significant factors were identified through statistical analysis. A second-order trihalomethanes formation model was developed from 92 experiments, and the statistical adequacy was assessed through appropriate diagnostics. This model was validated using additional data from the Drinking Water Surveillance Program database and was applied to the Smiths Falls water supply system in Ontario, Canada. The model predictions were correlated strongly to the measured trihalomethanes, with correlations of 0.95 and 0.91, respectively. The resulting model can assist in analyzing risk-cost tradeoffs in the design and operation of water supply systems.
Kogevinas, Manolis; Bustamante, Mariona; Gracia-Lavedán, Esther; Ballester, Ferran; Cordier, Sylvaine; Costet, Nathalie; Espinosa, Ana; Grazuleviciene, Regina; Danileviciute, Asta; Ibarluzea, Jesus; Karadanelli, Maria; Krasner, Stuart; Patelarou, Evridiki; Stephanou, Euripides; Tardón, Adonina; Toledano, Mireille B; Wright, John; Villanueva, Cristina M; Nieuwenhuijsen, Mark
2016-11-01
We examined the association between exposure during pregnancy to trihalomethanes, the most common water disinfection by-products, and birth outcomes in a European cohort study (Health Impacts of Long-Term Exposure to Disinfection By-Products in Drinking Water). We took into account exposure through different water uses, measures of water toxicity, and genetic susceptibility. We enrolled 14,005 mothers (2002-2010) and their children from France, Greece, Lithuania, Spain, and the UK. Information on lifestyle- and water-related activities was recorded. We ascertained residential concentrations of trihalomethanes through regulatory records and ad hoc sampling campaigns and estimated route-specific trihalomethane uptake by trimester and for whole pregnancy. We examined single nucleotide polymorphisms and copy number variants in disinfection by-product metabolizing genes in nested case-control studies. Average levels of trihalomethanes ranged from around 10 μg/L to above the regulatory limits in the EU of 100 μg/L between centers. There was no association between birth weight and total trihalomethane exposure during pregnancy (β = 2.2 g in birth weight per 10 μg/L of trihalomethane, 95% confidence interval = 3.3, 7.6). Birth weight was not associated with exposure through different routes or with specific trihalomethane species. Exposure to trihalomethanes was not associated with low birth weight (odds ratio [OR] per 10 μg/L = 1.02, 95% confidence interval = 0.95, 1.10), small-for-gestational age (OR = 0.99, 0.94, 1.03) and preterm births (OR = 0.98, 0.9, 1.05). We found no gene-environment interactions for mother or child polymorphisms in relation to preterm birth or small-for-gestational age. In this large European study, we found no association between birth outcomes and trihalomethane exposures during pregnancy in the total population or in potentially genetically susceptible subgroups. (See video abstract at http://links.lww.com/EDE/B104.).
Exposure to drinking water disinfection by-products and pregnancy loss.
Savitz, David A; Singer, Philip C; Herring, Amy H; Hartmann, Katherine E; Weinberg, Howard S; Makarushka, Christina
2006-12-01
Previous research has suggested that exposure to elevated levels of drinking water disinfection by-products (DBPs) may cause pregnancy loss. In 2000-2004, the authors conducted a study in three US locations of varying DBP levels and evaluated 2,409 women in early pregnancy to assess their tap water DBP concentrations, water use, other risk factors, and pregnancy outcome. Tap water concentrations were measured in the distribution system weekly or biweekly. The authors considered DBP concentration and ingested amount and, for trihalomethanes only, bathing/showering and integrated exposure that included ingestion. On the basis of 258 pregnancy losses, they did not find an increased risk of pregnancy loss in relation to trihalomethane, haloacetic acid, or total organic halide concentrations; ingested amounts; or total exposure. In contrast to a previous study, pregnancy loss was not associated with high personal trihalomethane exposure (> or =75 micro g/liter and > or =5 glasses of water/day) (odds ratio = 1.1, 95% confidence interval: 0.7, 1.7). Sporadic elevations in risk were found across DBPs, most notably for ingested total organic halide (odds ratio = 1.5, 95% confidence interval: 1.0, 2.2 for the highest exposure quintile). These results provide some assurance that drinking water DBPs in the range commonly encountered in the United States do not affect fetal survival.
Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.
1998-01-01
Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions. Dissolved organic carbon concentration, trihalomethane formation potential, and ultraviolet absorbance were all highly correlated, showing that trihalomethane precursors increased with increasing dissolved organic carbon and ultraviolet absorbance for whole water samples. Contrary to the generally accepted conceptual model for trihalomethane formation that assumes that aromatic forms of carbon are primary precursors to trihalomethanes, results from this study indicate that dissolved organic carbon aromaticity appears unrelated to trihalomethane formation on a carbon-normalized basis. Thus, dissolved organic carbon aromaticity alone cannot fully explain or predict trihalomethane precursor content, and further investigation of aromatic and nonaromatic forms of carbon will be needed to better identify trihalomethane precursors.
Performance and Biofilm Activity of Nitrifying Biofilters Removing Trihalomethanes
Nitrifying biofilters seeded with three different mixed-culture sources degraded trichloromethane (TCM) and dibromochloromethane (DBCM). In addition, resuspended biofilm degraded TCM, bromododichloromethane (BDCM), DBCM, and tribromomethane (TBM) in backwash batch kinetic tests,...
Secondary formation of disinfection by-products by UV treatment of swimming pool water.
Spiliotopoulou, Aikaterini; Hansen, Kamilla M S; Andersen, Henrik R
2015-07-01
Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant effect on DBP formation was observed due to photo-inducible radical forming molecules NO3- (potentially present in high concentrations in pool water) and H2O2 (added as part of commercially employed DBP reducing practices). Copyright © 2015 Elsevier B.V. All rights reserved.
Nitrifying biofilters degrading the four regulated trihalomethanes (THMs) trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM) -were analyzed for the presence and activity of ammonia-oxidizing bacteria (AOB). Biofilter perfor...
Pyrosequencing Analysis of Bench-Scale Nitrifying BiofiltersRemoving Trihalomethanes
The bacterial biofilm communities in four nitrifying biofilters degrading regulated drinking water trihalomethanes were characterized by 454 pyrosequencing. The three most abundant phylotypes based on total diversity were Nitrosomonas (70%), Nitrobacter (14%), and Chitinophagace...
The decomposition of trihaloacetic acids [bromodichloroacetic acid (BDCAA), dibromochloroacetic acid (DBCAA), tribromoacetic acid (TBAA)], and the formation of the corresponding trihalomethanes [bromodichloromethane (BDCM), dibromochloromethane (DBCM), tribromomethane (TBM)] w...
TRIHALOMETHANE LEVELS AND SEMEN QUALITY
Trihalomethanes (THMs) are common byproducts of chlorinating drinking water. The effects of disinfection byproducts on semen quality have not yet been studied in humans, despite animal studies linking exposure to sperm abnormalities. We are currently analyzing the relationship of...
Espigares, Miguel; Lardelli, Pablo; Ortega, Pedro
2003-10-01
The presence of trihalomethanes (THMs) in potable-water sources is an issue of great interest because of the negative impact THMs have on human health. The objective of this study was to correlate the presence of trihalomethanes with more routinely monitored parameters of water quality, in order to facilitate THM control. Water samples taken at various stages of treatment from a water treatment plant were analyzed for the presence of trihalomethanes with the Fujiwara method. The data collected from these determinations were compared with the values obtained for free-residual-chlorine and combined-residual-chlorine levels as well as standard physico-chemical and microbiological indicators such as chemical oxygen demand (by the KMnO4 method), total chlorophyll, conductivity, pH, alkalinity, turbidity, chlorides, sulfates, nitrates, nitrites, phosphates, ammonia, calcium, magnesium, heterotrophic bacteria count, Pseudomonas spp., total and fecal coliforms, and fecal streptococci. The data from these determinations were compiled, and statistical analysis was performed to determine which variables correlate best with the presence and quantity of trihalomethanes in the samples. Levels of THMs in water seem to correlate directly with levels of combined residual chlorine and nitrates, and inversely with the level of free residual chlorine. Statistical analysis with multiple linear regression was conducted to determine the best-fitting models. The models chosen incorporate between two and four independent variables and include chemical oxygen demand, nitrites, and ammonia. These indicators, which are commonly determined during the water treatment process, demonstrate the strongest correlation with the levels of trihalomethanes in water and offer great utility as an accessible method for THM detection and control.
EPA Identifier: FP916412
Title: Cometabolism of Trihalomethanes by Nitrifying Biofilters Under Drinking Water Treatment Plant Conditions
Fellow (Principal Investigator): David G. Wahman
Institution: University of Texas at Austin
EPA ...
REMOVING TRIHALOMETHANES FROM DRINKING WATER - AN OVERVIEW OF TREATMENT TECHNIQUES
In 1974 trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) were discovered to be formed during the disinfection step of drinking water if free chlorine was the disinfectant. This, coupled with the perceived hazard to the consumer's health, led...
The carcinogenic potential of chlorinated organics is of direct importance in human risk assessment. Most drinking water chlorinated organics are disinfection by products (DBPs) of water chlorination and many test positive in rodent bioassays. Trihalomethanes (THMs) are the most ...
BROMIDE-OXIDANT INTERACTIONS AND THM (TRIHALOMETHANE) FORMATION: A LITERATURE REVIEW
The review focuses on the interactions, not only of bromide and chlorine, but also of bromide and two common oxidation alternatives to chlorine--chlorine dioxide and monochloramine. The data evaluations include discussions of reaction products, potentials for trihalomethane (THM)...
Nitrates, chlorates and trihalomethanes in swimming pool water.
Beech, J A; Diaz, R; Ordaz, C; Palomeque, B
1980-01-01
Water from swimming pools in the Miami area was analyzed for nitrates, chlorates and trihalomethanes. The average concentrations of nitrate and chlorate found in freshwater pools were 8.6 mg/liter and 16 mg/liter respectively, with the highest concentrations being 54.9 mg/liter and 124 mg/liter, respectively. The average concentration of total trihalomethanes found in freshwater pools was 125 micrograms/liter (mainly chloroform) and in saline pools was 657 micrograms/liter (mainly bromoform); the highest concentration was 430 micrograms/liter (freshwater) and 1287 micrograms/liter (saltwater). The possible public health significance of these results is briefly discussed. PMID:7350831
TRIHALOMETHANE PRECURSOR REMOVAL BY THE MAGNESIUM CARBONATE PROCESS
A project was conducted to determine and improve the ability of the magnesium carbonate process to remove trihalomethane (THM) precursors in treated drinking water. The project was conducted at a drinking water treatment plant in Melbourne, FL, which had been developed and instal...
ALTERNATIVE OXIDANT AND DISINFECTANT TREATMENT STRATEGIES FOR CONTROLLING TRIHALOMETHANE FORMATION
To comply with the maximum contaminant level (MCL) for total trihalomethanes (TTHM), many utilities have modified their pre-oxidation and disinfection practices by switching to alternative oxidants and disinfectants in place of free chlorine. To evaluate the impact of these chang...
INDUCTION OF DNA STRAND BREAKS BY TRIHALOMETHANES IN PRIMARY HUMAN LUNG EPITHELIAL CELLS
Abstract
Trihalomethanes (TEMs) are disinfection by-products and suspected human carcinogens present in chlorinated drinking water. Previous studies have shown that many THMs induce sister chromatid exchanges and DNA strand breaks in human peripheral blood lymphocyte...
REDUCTION OF INGESTION EXPOSURE TO TRIHALOMETHANES DUE TO VOLATILIZATION. (R825362)
Ingestion of tap water is one of the principal exposure
pathways for disinfection byproducts (DBPs). One major
class of DBPs, trihalomethanes (THM), are highly volatile,
and volatilization will tend to lower ingestion exposures.
This study quantifies volatilization...
The Formation of Trihalomethanes.
ERIC Educational Resources Information Center
Trussell, R. Rhodes; Umphres, Mark D.
1978-01-01
Reviewed are a number of factors important in the formation of trihalomethanes (THM) including the nature of aquatic humus and the influences of preozonation, bromide, pH, and chlorine. A brief investigation is also conducted into the kinetics of the THM reaction. Several major research needs are represented. (CS)
Analysis of Trihalomethanes in Soft Drinks: An Instrumental Analysis Experiment.
ERIC Educational Resources Information Center
Graham, Richard C.; Robertson, John K.
1988-01-01
Describes an experimental procedure for determining trihalomethanes (THMs) in liquids by gas chromatography. Provides recommendations for reactants and supplies to obtain acceptable results. Discusses the analysis of water from various sources: pools, lakes, and drinking water; compares these to three cola drinks. (ML)
Although disinfection of drinking water is important for control of microbial contamination, it results in the formation of hundreds of disinfection by-products (DBPs). The most prevalent DBPs are trihalomethanes (THMs; chloroform, bromodichloromethane, chlorodibromomethane, bro...
TIME TO PREGNANCY IN RELATION TO TOTAL TRIHALOMETHANE LEVELS IN TAP WATER
Time to pregnancy in relation to total trihalomethane levels in tap water
Shanna H. Swan, Cuirong Ren, Gayle C. Windham, Laura Fenster, Kirsten Waller. (University of Missouri and California Department of Health Services).
We have previously reported increased risks o...
Trihalomethanes are common contaminants of chlorinated drinking water. Studies of their health effects have been hampered by exposure misclassification, due in part to limitations inherent in using utility sampling records. We used two exposure assessment methods, one based on ut...
The National Center for Environmental Assessment (NCEA) has released a final report that presents and applies a method to estimate distributions of internal concentrations of trihalomethanes (THMs) in humans resulting from a residential drinking water exposure. The report presen...
ANALYSIS OF IN VIVO AND IN VITRO DNA STRAND BREAKS FROM TRIHALOMETHANE EXPOSURE
Abstract
Background: Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of two major causes of human mortality, colorectal and bladder cancer. Trihalomethanes (THMs) are by-products formed when chlorine is used to disinfect d...
This project summary describes an improved approach for estimating route-specific exposures and tissue doses for trihalomethane (THM) compounds found in drinking water.
Environmental Protection Agency rules stipulate that corrective action be taken for drinking water distribution systems that exceed the maximum contaminant level (MCL) for total Trihalomethanes (TTHMs) 80μg/L. Real-time, or even periodic, monitoring of drinking water i...
JOURNAL ARTICLE: ANALYSIS OF IN VIVO AND IN VITRO DNA STRAND BREAKS FROM TRIHALOMETHANE EXPOSURE
Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of two major causes of human mortality, colorectal and bladder cancer. Trihalomethanes (THMs) are by-products formed when chlorine is used to disinfect drinking water. The pur...
TRIHALOMETHANE LEVELS IN HOME TAP WATER AND SEMEN QUALITY
Trihalomethane Levels in Home Tap Water and Semen Quality
Laura Fenster, 1 Kirsten Waller, 2 Gayle Windham, 1 Tanya Henneman, 2 Meredith Anderson, 2 Pauline Mendola, 3 James W. Overstreet, 4 Shanna H. Swan5
1California Department of Health Services, Division of Environm...
40 CFR 142.60 - Variances from the maximum contaminant level for total trihalomethanes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... level for total trihalomethanes. 142.60 Section 142.60 Protection of Environment ENVIRONMENTAL... IMPLEMENTATION Identification of Best Technology, Treatment Techniques or Other Means Generally Available § 142..., pursuant to section 1415(a)(1)(A) of the Act, hereby identifies the following as the best technology...
Chlorination of drinking water results in the formation of hundreds of disinfection byproducts (DBPs), the most prevalent are trihalomethanes (THMs) and haloacetic acids (HAAs). Four THMs (chloroform, bromodichloromethane, chlorodibromomethane, bromoform) and five HAAs (chloroac...
MECHANISTIC INFORMATION ON DISINFECTION BY-PRODUCTS FOR RISK ASSESSMENT
Colon cancer is the second most common cancer in people from developed countries, and populations exposed t o 50?g/L or more of trihalomethanes for at 1east 35 years have been estimated to be 1.5 times more likely to develop colon cancer. Trihalomethanes are one of the classes ...
ANALYSIS OF IN VITRO AND IN VIVO DNA STRAND BREAKS INDUCED BY TRIHALOMETHANES (THMS)
Analysis of In Vitro and In Vivo DNA Strand Breaks Induced by Trihalomethanes (TRMs)
The THMs are the most widely distributed and the most concentrated of the cWorine disinfection by-products (D BPs) found in finished drinking water. All of the THMs, cWoroform (CHCI3), br...
Trihalomethane and nonpurgeable total organic-halide formation potentials of the Mississippi river
Rathbun, R.E.
1996-01-01
Trihalomethane and nonpurgeable total organic-hallide formation potentials were determined for water samples from 12 sites along the Mississippi River from Minneapolis, MN, to New Orleans, LA, for the summer and fall of 1991 and the spring of 1992. The formation potentials increased with distance upstream, approximately paralleling the increase of the dissolved organic- carbon concentration. The pH and the dissolved organic-carbon and free- chlorine concentrations were significant variables in the prediction of the formation potentials. The trihalomethane formation potential increased as the pH increased, whereas the nonpurgeable total organic-halide formation potential decreased. All formation potentials increased as the dissolved organic-carbon and free-chlorine concentrations increased, with the dissolved organic-carbon concentration having a much greater effect.
THE INDUCTION OF ABERRANT CRYPT FOCI IN THE COLONS OF MALE F344/N
RATS EXPOSED TO TRIHALOMETHANE MIXTURES IN THE DRINKING WATER
The trihalomethanes (THM), bromoform (TBM) and bromodichloromethane (BDCM), administered by corn oil gavage were found to increase large...
Speciation of trihalomethane mixtures for the Mississippi, Missouri, and Ohio Rivers
Rathbun, R.E.
1996-01-01
Trihalomethane formation potentials were determined for the chlorination of water samples from the Mississippi, Missouri, and Ohio Rivers. Samples were collected during the summer and fall of 1991 and the spring of 1992 at 12 locations on the Mississippi from New Orleans, LA, to Minneapolis, MN, and on the Missouri and Ohio 1.6 km upstream from their confluences with the Mississippi. Formation potentials were determined as a function of pH and initial free-chlorine concentration. Chloroform concentrations decreased with distance downstream and approximately paralleled the decrease of the dissolved organic-carbon concentration. Bromide concentrations were 3.7-5.7 times higher for the Missouri and 1.4-1.6 times higher for the Ohio than for the Mississippi above their confluences, resulting in an overall increase of the bromide concentration with distance downstream. Variations of the concentrations of the brominated trihalomethanes with distance downstream approximately paralleled the variation of the bromide concentration. Concentrations of all four trihalomethanes increased as the pH increased. Concentrations of chloroform and bromodichloromethane increased slightly and the concentration of bromoform decreased as the initial free-chlorine concentration increased; the chlorodibromomethane concentration had little dependence on the free-chlorine concentration.
Peleato, Nicolás M; Andrews, Robert C
2015-01-01
This work investigated the application of several fluorescence excitation-emission matrix analysis methods as natural organic matter (NOM) indicators for use in predicting the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). Waters from four different sources (two rivers and two lakes) were subjected to jar testing followed by 24hr disinfection by-product formation tests using chlorine. NOM was quantified using three common measures: dissolved organic carbon, ultraviolet absorbance at 254 nm, and specific ultraviolet absorbance as well as by principal component analysis, peak picking, and parallel factor analysis of fluorescence spectra. Based on multi-linear modeling of THMs and HAAs, principle component (PC) scores resulted in the lowest mean squared prediction error of cross-folded test sets (THMs: 43.7 (μg/L)(2), HAAs: 233.3 (μg/L)(2)). Inclusion of principle components representative of protein-like material significantly decreased prediction error for both THMs and HAAs. Parallel factor analysis did not identify a protein-like component and resulted in prediction errors similar to traditional NOM surrogates as well as fluorescence peak picking. These results support the value of fluorescence excitation-emission matrix-principal component analysis as a suitable NOM indicator in predicting the formation of THMs and HAAs for the water sources studied. Copyright © 2014. Published by Elsevier B.V.
Presence of Trihalomethanes in ready-to-eat vegetables disinfected with chlorine.
Coroneo, Valentina; Carraro, Valentina; Marras, Barbara; Marrucci, Alessandro; Succa, Sara; Meloni, Barbara; Pinna, Antonella; Angioni, Alberto; Sanna, Adriana; Schintu, Marco
2017-12-01
Trihalomethanes (THMs) - CHCl 3 , CHCl 2 Br, CHClBr 2 and CHBr 3 - are drinking water disinfection by-products (DBPs). These compounds can also be absorbed by different types of foods, including ready-to-eat (RTE) fresh vegetables. The potential absorption of THMs during washing of RTE vegetables could pose a potential risk to consumers' health. The concentration of THMs in the water used in the manufacturing process of these products shall not exceed the limit of 100 or 80 µgL -1 according to European Union (EU) and United States legislation, respectively. By contrast, there is little information about the presence of such compounds in the final product. This study evaluated the concentration of THMs in different types of RTE vegetables (carrots, iceberg lettuce, lettuce, mixed salad, parsley, parsley and garlic, rocket salad, valerian) after washing with chlorinated water. In the 115 samples analysed, the average value of total THMs was equal to 76.7 ng g -1 . Chloroform was the THM present in the largest percentage in all the RTE vegetables. These results show that the process of washing RTE vegetables should be optimised in order to reduce the risk for consumers associated with the presence of DBPs.
THE INDUCTION OF COLORECTAL NEOPLASIA BY A MIXTURE HIGH IN BROMINA TED TRIHALOMETHANES (THMS) ADMINISTERED IN THE DRINKING W A TER TO MALE F344/N RA TS.
Abstract:
The THMs are the most widely distributed and concentrated of the chlorine disinfection by-products (D...
Domínguez-Tello, A; Arias-Borrego, A; García-Barrera, T; Gómez-Ariza, J L
2015-07-10
Trihalomethanes (THMs) are regulated disinfection by-products (DBPs) most commonly analyzed in quality control water supply due to their harmful effects on health. However, few data exist about the content of emerging iodo-trihalomethanes (I-THMs) which are present in drinking water at very low concentrations (in the order of ngL(-1)). For this reason a two-phase hollow fiber liquid phase microextraction method for the simultaneous determination of four regulated trihalomethanes and six emerging iodo-trihalomethanes using GC-μECD and GC-MS with detection limits in the range of few ngL(-1) has been developed. A central composite design was used to optimize conditions for simultaneous extraction. The best extraction recovery was obtained with 19.2min at 27.1°C and 900rpm, without salt addition, using a supported hollow fiber membrane of 10.5cm (0.6mm id) and 1-octanol as acceptor phase. The limits of detection for the regulated THMs and I-THMs were 3-44ngL(-1) and 1-3ngL(-1), respectively. The calibration curves showed good linearity (R(2)>0.995) and good repeatibility (3-22%). The relative recoveries in water were between 96.5% and 105.2%. The method was applied for the simultaneous determination of trihalomethanes in supply water samples from seven water distribution systems (WDS) in the Huelva area, located at the southwest Spain, which use different water-treatment processes. The highest concentrations of I-THMs, particularly CHBrClI and CHCl2I, were detected in water treated with advanced treatment process using pre-ozonation, however these compounds were not detected or decreased along distribution system. In the samples of treated water with conventional treatment, using pre-oxidation by permanganate and distribution network, CHCl2I, CHBrClI, CHClI2, CHBrI2 and CHI3 were detected at very low concentrations (1-18ngL(-1)). Finally, in water samples from underground origin without oxidation treatment, in which only disinfection with sodium hypochlorite was applied, I-THMs were not detected. Copyright © 2015 Elsevier B.V. All rights reserved.
Cunha, G C; Romão, L P C; Santos, M C; Costa, A S; Alexandre, M R
2012-03-30
The objective of the present work was to develop a thermal desorption method for the removal of trihalomethanes (THM) adsorbed by humin, followed by multiple recycling of the fixed bed column in order to avoid excessive consumption of materials and reduce operating costs. The results obtained for adsorption on a fixed bed column confirmed the effectiveness of humin as an adsorbent, extracting between 45.9% and 90.1% of the total THM (TTHM). In none of the tests was the column fully saturated after 10h. Experiments involving thermal desorption were used to evaluate the potential of the technique for column regeneration. The adsorptive capacity of the humin bed increased significantly (p<0.05) between the first and fifth desorption cycle, by 18.9%, 18.1%, 24.2%, 20.2% and 24.2% for CHBr(3), CHBr(2)Cl, CHBrCl(2), CHCl(3) and TTHM, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species were observed in finished water at several Western Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in br...
2002-01-01
during preparation of this report, and reviews by Darnella Murphy, Greg Mendez , Rick Iwatsubo, and Peter Martin contributed immensely to this work...Mary Gibson and Carol Sanchez edited the report, and Cathy Munday constructed figure 1. WATER-QUALITY MONITORING AT WELLS Water samples were
ERIC Educational Resources Information Center
Huang, Shu Rong; Palmer, Peter T.
2017-01-01
This paper describes a method for determination of trihalomethanes (THMs) in drinking water via solid-phase microextraction (SPME) GC/MS as a means to develop and improve student understanding of the use of GC/MS for qualitative and quantitative analysis. In the classroom, students are introduced to SPME, GC/MS instrumentation, and the use of MS…
The Effects of a High Animal Fat Diet on the Induction of Aberrant Crypt Foci in the Colons of Male F344/N Rats Exposed to Trihalomethanes in the Drinking Water
Abstract
Aberrant crypt foci (ACF), identified as the putative precursor lesion in the development of co...
Li, Cong; Luo, Feng; Dong, Feilong; Zhao, Jingguo; Zhang, Tuqiao; He, Guilin; Cizmas, Leslie; Sharma, Virender K
2017-11-01
This paper presents the effect of preoxidation with ferrate(VI) (Fe VI O 4 2- , Fe(VI)) prior to chlorination on chlorine decay and formation of disinfection by-products in filtered raw water from a full-scale drinking water treatment plant. The rate of chlorine decay became significantly faster as the concentration of ferrate(VI) increased. Chlorine degradation followed two first-order decay reactions with rate constants k 1 and k 2 for fast and slow decay, respectively. Kinetic modeling established the relationships between k 1 and k 2 and varying dosages of chlorine and ferrate(VI). When ferrate(VI) was used as a pre-oxidant, the levels of trihalomethanes (trichloromethane (TCM), dichlorobromomethane (DCBM), dibromochloromethane (DBCM), and tribromomethane (TBM)) in water samples decreased as the ferrate(VI) concentration increased. The concentrations of these trihalomethanes followed the order TCM > DCBM ≈ DBCM > TBM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of reaction time on the formation of disinfection byproducts
Rathbun, R.E.
1997-01-01
The effect of reaction time on the trihalomethane and nonpurgeable total organic-halide formation potentials was determined by chlorinating water samples from the Mississippi, Missouri, and Ohio Rivers. Samples were collected for three seasons at 12 locations on the Mississippi from Minneapolis, Minnesota, to New Orleans, Louisiana, and on the Missouri and Ohio 1.6 kilometers above their confluences with the Mississippi. Both types of compounds formed rapidly during the initial stages of the reaction-time period, with formation rates decreasing with time. The ratio of the nonpurgeable total organic-halide and trihalomethane concentrations decreased with time, with the nonpurgeable total organic-halide compounds forming faster during the first stages of the time period and the trihalomethane compounds forming faster during the latter stages of the time period. Variation with distance along the Mississippi River of the formation rates approximately paralleled the variation of the dissolved organic carbon concentration, indicating that the rates of formation, as well as the concentrations of the compounds formed, depended on the dissolved organic carbon concentration.
Trihalomethane levels in Madras public drinking water supply system and its impact on public health.
Rajan, S; Azariah, J; Bauer, U
1990-02-01
It is known that trihalomethanes (THM) are formed during chlorination of drinking water for disinfection. Heightened concern about these substances is due to the fact that THMs are now characterized as potential mutagen, carcinogen and teratogen. Thus, it is a risk factor in human beings. In the present study, a total number of 13 stations located in different drinking water trunk mains of the city of Madras were analysed for THM using the Gas Liquid Chromatographic method. It is reported that THM are formed after treatment of raw water with chlorine at the levels required for disinfection. The THM level in drinking water increased towards the dead-end of the water trunk mains. A relationship between the distance travelled by the potable water and the level of THM was established. At certain stations, the total trihalomethanes level (TTHM) was found to exceed the EPA's maximum contaminant level. Further, an intermittent addition of the precursors for the formation of THM through the seepage of polluted River Cooum water into the pipe lines has been demonstrated. An experiment on the trihalomethane formation potential (THMFP) clearly revealed the occurrence of higher magnitude of humic substances in source water. Therefore, it is suggested that if suitable steps are not taken, various environmental factors may trigger the THM kinetics. Hence, it is obvious that pretreatment regulations proposed by developed countries are essential if safe drinking water is to be supplied to the people of Madras.
Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.
2012-01-01
Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.
Alkhatib, E; Peters, R
2008-04-01
During rain storm events, land surface runoff and resuspension of bottom sediments cause an increase in Trihalomethane (THM) precursors in rivers. These precursors, when chlorinated at water treatment facilities will lead to the formation of THMs and hence impact drinking water resources. In order to evaluate the wet weather impact on the potential formation of THMs, river samples were collected before, during and after three rain storms ranging from 15.2 to 24.9 mm precipitation. The samples were tested for THM formation potential and other indicators including UV254 absorbance, turbidity and volatile suspended solid (VSS). Average levels of THMs increased from 61 microg/l during dry weather to 131 microg/l during wet weather, and then went back to 81 microg/l after rain ended. Wet weather values of THM are well above the maximum contaminant level (MCL) 80 microg/l, set by EPA for drinking water. THM indicators also exhibited similar trends. Average levels increased from 0.6 to 1.8 abs; 2.6 to 6 ntu; and 7.5 to 15 mg/l respectively for UV254, turbidity and VSS. A positive correlation was observed between THM formation and THM indicators. The t-test of significance (p-value) was less than 0.05 for all indicators, and R values ranged from 0.85 to 0.92 between THMs and the indicators, and 0.72 to 0.9 among indicators themselves.
Singh, Kunwar P; Rai, Premanjali; Pandey, Priyanka; Sinha, Sarita
2012-01-01
The present research aims to investigate the individual and interactive effects of chlorine dose/dissolved organic carbon ratio, pH, temperature, bromide concentration, and reaction time on trihalomethanes (THMs) formation in surface water (a drinking water source) during disinfection by chlorination in a prototype laboratory-scale simulation and to develop a model for the prediction and optimization of THMs levels in chlorinated water for their effective control. A five-factor Box-Behnken experimental design combined with response surface and optimization modeling was used for predicting the THMs levels in chlorinated water. The adequacy of the selected model and statistical significance of the regression coefficients, independent variables, and their interactions were tested by the analysis of variance and t test statistics. The THMs levels predicted by the model were very close to the experimental values (R(2) = 0.95). Optimization modeling predicted maximum (192 μg/l) TMHs formation (highest risk) level in water during chlorination was very close to the experimental value (186.8 ± 1.72 μg/l) determined in laboratory experiments. The pH of water followed by reaction time and temperature were the most significant factors that affect the THMs formation during chlorination. The developed model can be used to determine the optimum characteristics of raw water and chlorination conditions for maintaining the THMs levels within the safe limit.
Bonou, Samuella G; Levallois, Patrick; Giguère, Yves; Rodriguez, Manuel; Bureau, Alexandre
2017-10-01
Genetic susceptibility may modulate chlorination by-products (CBPs) effects on fetal growth, especially genes coding for the cytochrome P450 involved in the metabolism of CBPs and steroidogenesis. In a case-control study of 1432 mother-child pairs, we assessed the association between maternal and child single nucleotide polymorphisms (SNPs) within CYP1A2, CYP2A6, CYP2D6 and CYP17A1 genes and small-for-gestational-age neonates (SGA<10th percentile) as well as interaction between these SNPs and maternal exposure to trihalomethanes or haloacetic acids (HAAs) during the third trimester of pregnancy. Interactions were found between mother and neonate carrying CYP17A1 rs4919687A and rs743572G alleles and maternal exposure to total trihalomethanes or five regulated HAAs species. However, these interactions became non statistically significant after correction for multiple testing. There is some evidence, albeit weak, of a potential effect modification of the association between CBPs and SGA by SNPs in CYP17A1 gene. Further studies are needed to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.
Bergamaschi, Brian A.; Fram, Miranda S.; Fujii, Roger; Aiken, George R.; Kendall, Carol; Silva, Steven R.
2000-01-01
Over 20 million people drink water from the Sacramento-San Joaquin Delta despite problematic levels of natural organic matter (NOM) and bromide in Delta water, which can form trihalomethanes (THMs) during the treatment process. It is widely believed that NOM released from Delta peat islands is a substantial contributor to the pool of THM precursors present in Delta waters. Dissolved NOM was isolated from samples collected at five channel sites within the Sacramento-San Joaquin Rivers and Delta, California, USA, and from a peat island agricultural drain. To help understand the sources of THM precursors, samples were analyzed to determine their chemical and isotopic composition, their propensity to form THMs, and the isotopic composition of the THMs.The chemical composition of the isolates was quite variable, as indicated by significant differences in carbon-13 nuclear magnetic resonance spectra and carbon-to-nitrogen concentration ratios. The lowest propensity to form THMs per unit of dissolved organic carbon was observed in the peat island agricultural drain isolate, even though it possessed the highest fraction of aromatic material and the highest specific ultraviolet absorbance. Changes in the chemical and isotopic composition of the isolates and the isotopic composition of the THMs suggest that the source of the THMs precursors was different between samples and between isolates. The pattern of variability in compositional and isotopic data for these samples was not consistent with simple mixing of river- and peat-derived organic material.
Cardador, Maria Jose; Gallego, Mercedes
2016-07-08
Canned vegetables appear to be a possible exposure pathway for hazardous disinfection by-products due to the use of sanitizers and treated water by the canning industry in the preparation of these foods. This work reports on two static headspace-gas chromatography-mass spectrometry methods for the simultaneous determination of 10 trihalomethanes (THMs) and 13 haloacetic acids (HAAs) in both solid and liquid phases of the canned vegetables. Both methods carry out the whole process (including the leaching of target analytes from the vegetable), derivatization of HAAs and volatilization of THMs and HAA esters, in a single step within a static headspace unit. The methods proposed provide an efficient and simple tool for the determination of regulated disinfection by-products in canned vegetables. Average limits of detection for THMs and HAAs were 0.19 and 0.45μg/kg, respectively, in the solid phase of canned vegetables, and 0.05 and 0.09μg/L, respectively, in the liquid phase. Satisfactory recoveries (90-99%) and precision, calculated as relative standard deviations (RSD≤10%), were obtained in both phases of canned vegetables. The methods proposed were applied for the analysis of frequently-used canned vegetables and confirmed the presence of up to 3 THMs and 5 HAAs at microgram per kilogram or liter levels in both phases of the samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Ufermann, Petra; Petersen, Hauke; Exner, Martin
2011-12-01
The world-wide deployment of cruise liners and naval units has caused an increased need for the disinfection of drinking water. The main cause for this is the unknown quality of drinking water in foreign harbours--besides the formation of bio-films due to the climatically disadvantageous conditions in the operational area. Water conduits on board are currently disinfected with calcium hypochlorite in case of microbiological contamination. Chemical and physical analyses after disinfection with calcium hypochlorite have shown that organic by-products consisting of trihalomethanes develop in considerable amounts during disinfection. Furthermore, the method is susceptible to handling errors and thus often leads to insufficient disinfection results. Hitherto, the use of other disinfection methods allowed by government regulations, especially chlorine dioxide, is not widely spread. Unlike disinfection with calcium hypochlorite, chlorine dioxide does not lead to the formation of trihalomethanes. Typical disinfection by-products (DBP) are the anions chlorite and chlorate, which are formed in oxidative processes. The formation conditions of these anions have not yet been elucidated. For this reason, the probability of the generation of inorganic by-products after disinfection with chlorine dioxide has been determined, and their occurrence in drinking water on board has been examined with respect to a possible correlation between water quality and the formation of chlorate and chlorite. Therefore, a chromatographic method was developed and validated in order to determine the periodical development of chlorate and chlorite from chorine dioxide in purified water at different pH-values as well as in actual drinking water samples from water conduits on board. The formation of the by-products chlorite and chlorate after disinfection with chlorine dioxide is influenced neither by pH-value nor by chemical properties of the disinfected water. Considering the examined conditions, chlorine dioxide is suitable for usage on board due to its simple handling and the low potential of producing by-products. Copyright © 2011 Elsevier GmbH. All rights reserved.
Danileviciute, Asta; Grazuleviciene, Regina; Vencloviene, Jone; Paulauskas, Algimantas; Nieuwenhuijsen, Mark J
2012-12-06
Little is known about genetic susceptibility to individual trihalomethanes (THM) in relation to adverse pregnancy outcomes. We conducted a nested case-control study of 682 pregnant women in Kaunas (Lithuania) and, using individual information on drinking water, ingestion, showering and bathing, and uptake factors of THMs in blood, estimated an internal THM dose. We used logistic regression to evaluate the relationship between internal THM dose, birth outcomes and individual and joint (modifying) effects of metabolic gene polymorphisms. THM exposure during entire pregnancy and specific trimesters slightly increased low birth weight (LBW) risk. When considering both THM exposure and maternal genotypes, the largest associations were found for third trimester among total THM (TTHM) and chloroform-exposed women with the GSTM1-0 genotype (OR: 4.37; 95% CI: 1.36-14.08 and OR: 5.06; 95% CI: 1.50-17.05, respectively). A test of interaction between internal THM dose and GSTM1-0 genotype suggested a modifying effect of exposure to chloroform and bromodichloromethane on LBW risk. However, the effect on small for gestational age (SGA) was not statistically significant. These data suggest that THM internal dose may affect foetal growth and that maternal GSTM1 genotype modifies the THM exposure effects on LBW.
1989-02-01
PLAN A Health and Safety Plan has been developed for the prevention of occupational injuries and illnesses during field activities at RMA. This plan...Bicycloheptadiene BCHPD 0(2) Bromoform CHBR3 100(4) note: total trihalomethanes Cadmium CD 10(1) 5(3)* 10(4) I Carbon tetrachloride CCL4 0(3) 5(4) Chlordane CLDAN...comments, numerous carcinogenicity tests in a variety of animals indicate that aldrin and dieldrin promote only liver tumors and the tumors develop only
Li, Angzhen; Zhao, Xu; Mao, Ran; Liu, Huijuan; Qu, Jiuhui
2014-04-30
In this study, the disinfection byproduct formation potential (DBPFP) of three surface waters with the dissolved organic carbon (DOC) content of 2.5, 5.2, and 7.9mg/L was investigated. The formation and distribution of trihalomethanes and haloacetic acids were evaluated. Samples collected from three surface waters in China were fractionated based on molecular weight and hydrophobicity. The raw water containing more hydrophobic (Ho) fraction exhibited higher formation potentials of haloacetic acid and trihalomethane. The DBPFP of the surface waters did not correlate with the DOC value. The values of DBPFP per DOC were correlated with the specific ultraviolet absorbance (SUVA) for Ho and Hi fractions. The obtained results suggested that SUVA cannot reveal the ability of reactive sites to form disinfection byproducts for waters with few aromatic structures. Combined with the analysis of FTIR and nuclear magnetic resonance spectra of the raw waters and the corresponding fractions, it was concluded that the Ho fraction with phenolic hydroxyl and conjugated double bonds was responsible for the production of trichloromethanes and trichloroacetic acids. The Hi fraction with amino and carboxyl groups had the potential to form dichloroacetic acids and chlorinated trihalomethanes. Copyright © 2014. Published by Elsevier B.V.
Pifer, Ashley D.; Fairey, Julian L.
2014-01-01
Abstract Broadly applicable disinfection by-product (DBP) precursor surrogate parameters could be leveraged at drinking water treatment plants (DWTPs) to curb formation of regulated DBPs, such as trihalomethanes (THMs). In this study, dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV254), fluorescence excitation/emission wavelength pairs (IEx/Em), and the maximum fluorescence intensities (FMAX) of components from parallel factor (PARAFAC) analysis were evaluated as total THM formation potential (TTHMFP) precursor surrogate parameters. A diverse set of source waters from eleven DWTPs located within watersheds underlain by six different soil orders were coagulated with alum at pH 6, 7, and 8, resulting in 44 sample waters. DOC, UV254, IEx/Em, and FMAX values were measured to characterize dissolved organic matter in raw and treated waters and THMs were quantified following formation potential tests with free chlorine. For the 44 sample waters, the linear TTHMFP correlation with UV254 was stronger (r2=0.89) than I240/562 (r2=0.81, the strongest surrogate parameter from excitation/emission matrix pair picking), FMAX from a humic/fulvic acid-like PARAFAC component (r2=0.78), and DOC (r2=0.75). Results indicate that UV254 was the most accurate TTHMFP precursor surrogate parameter assessed for a diverse group of raw and alum-coagulated waters. PMID:24669183
Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min
2016-04-15
Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kerger, Brent D; Suder, David R; Schmidt, Chuck E; Paustenbach, Dennis J
2005-03-26
This study evaluates airborne concentrations of common trihalomethane compounds (THM) in selected living spaces of homes supplied with chlorinated tap water containing >85 ppb total THM. Three small homes in an arid urban area were selected, each having three bedrooms, a full bath, and approximately 1000 square feet; two homes had standard (refrigeration-type) central air conditioning and the third had a central evaporative cooling system ("swamp cooler"). A high-end water-use pattern was used at each home in this exposure simulation. THM were concurrently measured on 4 separate test days in tap water and air in the bathroom, living room, the bedroom closest to the bathroom, and outside using Summa canisters. Chloroform (trichloromethane, TCM), bromodichloromethane (BDCM), and dibromochloromethane (DBCM) concentrations were quantified using U.S. EPA Method TO-14. The apparent volatilization fraction consistently followed the order: TCM > BDCM > DBCM. Relatively low airborne THM concentrations (similar to outdoors) were found in the living room and bedroom samples for the home with evaporative cooling, while the refrigeration-cooled homes showed significantly higher THM levels (three- to fourfold). This differential remained after normalizing the air concentrations based on estimated THM throughput or water concentrations. These findings indicate that, despite higher throughput of THM-containing water in homes using evaporative coolers, the higher air exchange rates associated with these systems rapidly clears THM to levels similar to ambient outdoor concentrations.
Jiang, Jingyi; Zhang, Xiangru; Zhu, Xiaohu; Li, Yu
2017-03-21
During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.
Carrasco-Turigas, Glòria; Villanueva, Cristina M.; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J.
2013-01-01
Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies. PMID:23476675
Awad, John; van Leeuwen, John; Chow, Christopher; Drikas, Mary; Smernik, Ronald J; Chittleborough, David J; Bestland, Erick
2016-05-05
Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character dependent on their sources within catchments. The character of DOM further influences the formation of disinfection by products when precursor DOM present in drinking water reacts with chlorine during disinfection. Here we report the development of models that describe the formation potential of trihalomethanes (THMFP) dependent on the character of DOM in waters from discrete catchments with specific land-use and soil textures. DOM was characterized based on UV absorbance at 254 nm, apparent molecular weight and relative abundances of protein-like and humic-like compounds. DOM character and Br concentration (up to 0.5 mg/L) were used as variables in models (R(2)>0.93) of THMFP, which ranged from 19 to 649 μg/L. Chloroform concentration (12-594 μg/L) and relative abundance (27-99%) were first modeled (R(2)>0.85) and from these, the abundances of bromodichloromethane and chlorodibromomethane estimated using power and exponential functions, respectively (R(2)>0.98). From these, the abundance of bromoform is calculated. The proposed model may be used in risk assessment of catchment factors on formation of trihalomethanes in drinking water, in context of treatment efficiency for removal of organic matter. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Predicting Trihalomethanes (THMs) in the New York City Water Supply
NASA Astrophysics Data System (ADS)
Mukundan, R.; Van Dreason, R.
2013-12-01
Chlorine, a commonly used disinfectant in most water supply systems, can combine with organic carbon to form disinfectant byproducts including carcinogenic trihalomethanes (THMs). We used water quality data from 24 monitoring sites within the New York City (NYC) water supply distribution system, measured between January 2009 and April 2012, to develop site-specific empirical models for predicting total trihalomethane (TTHM) levels. Terms in the model included various combinations of the following water quality parameters: total organic carbon, pH, specific conductivity, and water temperature. Reasonable estimates of TTHM levels were achieved with overall R2 of about 0.87 and predicted values within 5 μg/L of measured values. The relative importance of factors affecting TTHM formation was estimated by ranking the model regression coefficients. Site-specific models showed improved model performance statistics compared to a single model for the entire system most likely because the single model did not consider locational differences in the water treatment process. Although never out of compliance in 2011, the TTHM levels in the water supply increased following tropical storms Irene and Lee with 45% of the samples exceeding the 80 μg/L Maximum Contaminant Level (MCL) in October and November. This increase was explained by changes in water quality parameters, particularly by the increase in total organic carbon concentration and pH during this period.
Alexandrou, Lydon D; Meehan, Barry J; Morrison, Paul D; Jones, Oliver A H
2017-05-15
Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid-liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9-9.3 µg/L).
Landmeyer, J.E.; Bradley, P.M.; Thomas, J.M.
2000-01-01
The biodegradation potential of two drinking water disinfection byproducts was investigated using aquifer materials obtained from approximately 100 and 200 meters below land surface in an aerobic aquifer system undergoing aquifer storage recovery of treated surface water. No significant biodegradation of a model trihalomethane compound, chloroform, was observed in aquifer microcosms under aerobic or anaerobic conditions. In contrast, between 16 and 27 percent mineralization of a radiolabeled model haloacetic acid compound, chloroacetic acid, was observed. These results indicate that although the potential for biodegradation of chloroacetic acid exists in deep aquifer systems, chloroform entrained within these aquifers or formed in situ will tend to persist. These results have important implications for water managers planning to meet anticipated lowered permissible levels of tri-halomethanes in drinking water.The biodegradation potential of two drinking water disinfection byproducts was investigated using aquifer materials obtained from approximately 100 and 200 meters below land surface in an aerobic aquifer system undergoing aquifer storage recovery of treated surface water. No significant biodegradation of a model trihalomethane compound, chloroform, was observed in aquifer microcosms under aerobic or anaerobic conditions. In contrast, between 16 and 27 percent mineralization of a radiolabeled model haloacetic acid compound, chloroacetic acid, was observed. These results indicate that although the potential for biodegradation of chloroacetic acid exists in deep aquifer systems, chloroform entrained within these aquifers or formed in situ will tend to persist. These results have important implications for water managers planning to meet anticipated lowered permissible levels of trihalomethanes in drinking water.Aquifer-storage-recovery injection water often contains disinfection byproducts. Results are presented from a study in which two model disinfection byproducts, chloroform and chloroacetic acid, were used to examine biodegradation by indigenous microorganisms. The recharge system studied was near Las Vegas, NV, where the aquifers are recharged artificially during the winter months. Microcosms were constructed using aquifer material recovered from two layers. Results showed that no significant biodegradation of chloroform occurred under aerobic or anaerobic conditions, but chloroacetic acid was biodegraded under both aerobic and anaerobic conditions.
Iszatt, Nina; Nieuwenhuijsen, Mark J; Bennett, James E; Toledano, Mireille B
2014-12-01
During 2003-2004, United Utilities water company in North West England introduced enhanced coagulation (EC) to four treatment works to mitigate disinfection by-product (DBP) formation. This enabled examination of the relation between DBPs and birth outcomes whilst reducing socioeconomic confounding. We compared stillbirth, and low and very low birth weight rates three years before (2000-2002) with three years after (2005-2007) the intervention, and in relation to categories of THM change. We created exposure metrics for EC and trihalomethane (THM) concentration change (n=258 water zones). We linked 429,599 live births and 2279 stillbirths from national birth registers to the water zone at birth. We used Poisson regression to model the differences in birth outcome rates with an interaction between before/after the intervention and EC or THM change. EC treatment reduced chloroform concentrations more than non-treatment (mean -29.7 µg/l vs. -14.5 µg/l), but not brominated THM concentrations. Only 6% of EC water zones received 100% EC water, creating exposure misclassification concerns. EC intervention was not associated with a statistically significant reduction in birth outcome rates. Areas with the highest chloroform decrease (30 - 65 μg/l) had the greatest percentage decrease in low -9 % (-12, -5) and very low birth weight -16% (-24, -8) rates. The interaction between before/after intervention and chloroform change was statistically significant only for very low birth weight, p=0.02. There were no significant decreases in stillbirth rates. In a novel approach for studying DBPs and adverse reproductive outcomes, the EC intervention to reduce DBPs did not affect birth outcome rates. However, a measured large decrease in chloroform concentrations was associated with statistically significant reductions in very low birth weight rates. Copyright © 2014 Elsevier Ltd. All rights reserved.
40 CFR 141.600 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... levels for total trihalomethanes (TTHM) and haloacetic acids (five)(HAA5). You must use an Initial... noncommunity water system that serves at least 10,000 people and uses a primary or residual disinfectant other...
Chen, Shi; Deng, Jing; Li, Lei; Gao, Naiyun
2018-02-01
This study evaluated the effect of low-pressure ultraviolet (UV) irradiation on the formation of disinfection by-products (DBPs) from algal organic matter of Microcystis aeruginosa during subsequent chlorination and chloramination. The algal organic matter includes extracellular organic matter (EOM) and intracellular organic matter (IOM). The fluorescence excitation-emission matrix spectra indicated that the humic/fulvic acid-like organics of EOM and the protein-like organics of IOM may be preferentially degraded by UV treatment. UV irradiation with low specific UV absorbance values was effective in reducing the formation of trihalomethanes and dichloroacetic acid from EOM and IOM during the subsequent chlorination. During the UV-chloramine process, higher UV dose (1000 mJ/cm 2 ) led to the decrease of the formation of dichloroacetic acid, trichloroacetic acid, and haloketones from IOM by an average of 24%. Furthermore, UV irradiation can slightly increase the bromine substitution factors (BSFs) of haloacetic acids from EOM during chlorination, including dihaloacetic acids and trihaloacetic acids in the presence of bromide (50 μg/L). However, UV irradiation did not shift the formation of DBPs from IOM to more brominated species, since the BSFs of trihalomethanes, dihaloacetic acids, trihaloacetic acids, and dihaloacetonitriles almost kept unchanged during UV-chlorine process. As for UV-chloramine process, UV irradiation decreased the BSFs of trihalomethanes, while increased the BSFs of dihaloacetic acid for both EOM and IOM. Overall, the UV pretreatment process is a potential technology in treating algae-rich water.
Alexandrou, Lydon D.; Meehan, Barry J.; Morrison, Paul D.; Jones, Oliver A. H.
2017-01-01
Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid–liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9–9.3 µg/L). PMID:28505068
40 CFR 141.64 - Maximum contaminant levels for disinfection byproducts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... trihalomethanes (TTHM) and Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening or GAC10... Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening, plus GAC10; or nanofiltration with...
40 CFR 141.64 - Maximum contaminant levels for disinfection byproducts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... trihalomethanes (TTHM) and Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening or GAC10... Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening, plus GAC10; or nanofiltration with...
40 CFR 141.64 - Maximum contaminant levels for disinfection byproducts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... trihalomethanes (TTHM) and Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening or GAC10... Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening, plus GAC10; or nanofiltration with...
40 CFR 141.64 - Maximum contaminant levels for disinfection byproducts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... trihalomethanes (TTHM) and Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening or GAC10... Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening, plus GAC10; or nanofiltration with...
This chapter reports on the efforts of the USEPA to study chloramines, chlorine dioxide and ozone as alternative oxidants/disinfectants to chlorine for the control of disinfection by-rpdocuts (DBPs) in drinking water. It examines the control of DBPs like trihalomethanes and haloa...
BROMODICHLOROMETHANE TOXICOKINETICS: LINKING METABOLISM TO EFFECT
Bromodichloromethane (BDCM), a trihalomethane (THM), is among the most prevalent disinfection byproducts found in chlorinated drinking water. Weak associations between THM exposure and cancers of the bladder and lower GI tract have been suggested by positive epidemiological s...
Molecular dynamics simulations of trihalomethanes removal from water using boron nitride nanosheets.
Azamat, Jafar; Khataee, Alireza; Joo, Sang Woo
2016-04-01
Molecular dynamics simulations were performed to investigate the separation of trihalomethanes (THMs) from water using boron nitride nanosheets (BNNSs). The studied systems included THM molecules and a functionalized BNNS membrane immersed in an aqueous solution. An external pressure was applied to the z axis of the systems. Two functionalized BNNSs with large fluorinated-hydrogenated pore (F-H-pores) and small hydrogen-hydroxyl pore (H-OH-pores) were used. The pores of the BNNS membrane were obtained by passivating each nitrogen and boron atoms at the pore edges with fluorine and hydrogen atoms in the large pore or with hydroxyl and hydrogen atoms in the small pore. The results show that the BNNS with a small functionalized pore was impermeable to THM molecules, in contrast to the BNNS with a large functionalized pore. Using these membranes, water contaminants can be removed at lower cost.
Disinfection byproduct yields from the chlorination of natural waters
Rathbun, R.E.
1996-01-01
Yields for the formation of trihalomethane and nonpurgeable total organic-halide disinfection byproducts were determined as a function of pH and initial free-chlorine concentration for the chlorination of water from the Mississippi, Missouri, and Ohio Rivers. Samples were collected at 12 sites on the Mississippi River from Minneapolis, MN, to New Orleans. LA, and on the Missouri and Ohio Rivers 1.6 km above their confluences with the Mississippi during the summer, fall, and spring seasons of the year. Yields varied little with distance along the Mississippi River, although the dissolved organic-carbon concentration decreased considerably with distance downstream. Yields for the Missouri and Ohio were comparable to yields for the Mississippi, despite much higher bromide concentrations for the Missouri and Ohio. Trihalomethane yields increased as the pH and initial free- chlorine concentration increased. Nonpurgeable total organic-halide yields also increased as the initial free-chlorine concentration increased, but decreased as the pH increased.
CONTRIBUTIONS OF WATER FILTRATION TO IMPROVING WATER QUALITY
A variety of water quality improvements can be accomplished by properly operated filtration plants. These include reduction of turbidity, micro-organisms, asbestos fibers, color, trihalomethane precursors, and organics adsorbed to particulate matter. The focus of the paper is on ...
40 CFR 141.64 - Maximum contaminant levels for disinfection byproducts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... disinfection byproducts. 141.64 Section 141.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking... source water: Disinfection byproduct Best available technology Total trihalomethanes (TTHM) and...
The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...
IDENTIFICATION OF NEW DISINFECTION BY-PRODUCTS IN DRINKING WATER
Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfectants are being explored. Ozone, chlorine dioxide, and chloramine are popular alternatives, as they produce low...
PBPK-MODEL ESTIMATES OF BROMODICHLOROMETHANE (BDCM) DISTRIBUTION IN URINE AND BLADDER TISSUE
Recent data indicate that noningestion exposure to trihalomethanes (THMs), including BDCM is highly correlated with urinary THM levels. Characterizing urinary levels of drinking water disinfection byproducts (DBPs) will likely be important for understanding DBP-associated bladde...
PBPK-MODEL ESTIMATES OF BROMODICHLOROMETHANE (BDCM) DELIVERY TO THE HUMAN URINARY BLADDER
Recent data indicate that noningestion exposure to trihalomethanes (THMs), including BDCM is highly correlated with urinary THM levels. Characterizing urinary levels of drinking water disinfection byproducts (DBPs) will likely be important for understanding DBP-associated bladde...
The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by-products (DBPS) including total organic halide, trihalomethanes, haloacetic acids, haloacentonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along with ...
PREGNANCY LOSS IN THE RAT CAUSED BY BROMODICHLOROMETHANE
Bromodichloromethane (BDCM), a trihalomethane, is a by-product of the chlorination of drinking water. In a recent epidemiological study, consumption of BDCM was associated with an increased risk of spontaneous abortion in pregnant women. We have previously shown that bromodich...
IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER
Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...
IDENTIFICATION OF CHLORINE DIOXIDE AND CHLORAMINE DRINKING WATER DISINFECTION BY-PRODUCTS
Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide and chloramine are two popular alternative disinfectants, with...
Dairy-impacted wastewater is a source of iodinated disinfection byproducts in the environment
Hladik, Michelle; Hubbard, Laura E.; Kolpin, Dana W.; Focazio, Michael J.
2016-01-01
Iodinated disinfection byproducts (DBPs) are among the most toxic DBPs, but they are not typically measured in treated water. Iodinated DBPs can be toxic to humans, and they also have the potential to affect aquatic communities. Because of the specific use of iodine and iodine-containing compounds in dairies, such livestock operations can be a potential source of iodinated DBPs in corresponding receiving water bodies. DBPs [trihalomethanes (THMs), including iodinated THMs] were measured within dairy processing facilities (milking and cheese manufacturing) and surface waters that receive dairy-impacted effluents [either directly from the dairy or through wastewater treatment plants (WWTPs)] in three areas of the United States (California, New York, and Wisconsin). Iodo-THMs comprised 15−29% of the total THMs in surface water near WWTP effluents that were impacted by dairy waste and 0−100% of the total THMs in samples from dairy processing facilities.
Zhang, Ying; Zhang, Ning; Zhao, Peng; Niu, Zhiguang
2018-03-01
The characteristics of dissolved organic matter (DOM) and bromide ion concentration have a significant influence on the formation of disinfection by-products (DBPs). In order to identify the main DBP precursors, DOM was divided into five fractions based on molecular weight (MW), trihalomethane formation potential and haloacetic acid formation potential were determined for fractions, and the change in contents of different fractions and total DBPs during treatment processes (pre-chlorination, coagulation, sand filtration, disinfection) were studied. Moreover, the relationship between bromide concentration and DBP generation characteristics in processes was also analyzed. The results showed that the main DBP precursors were the fraction with MW <1kDa and fraction with MW 3-10kDa, and the DBP's generation ability of lower molecular weight DOM (<10kDa) was higher than that of higher molecular weight DOM. During different processes, pre-chlorination and disinfection had limited effect on removing organics but could alter the MW distribution, and coagulation and filtration could effectively remove organics with higher MW. For DBPs, trihalomethanes (THMs) were mainly generated in pre-chlorination and disinfection, while haloacetic acids (HAAs) were mostly generated during pre-chlorination; coagulation and sand filtration had little effect on THMs but resulted in a slight removal of HAAs. In addition, the results of ANOVA tests suggested that molecular sizes and treatment processes have significant influence on DBP formation. With increasing bromide concentration, the brominated DBPs significantly increased, but the bromine incorporation factor in the processes was basically consistent at each concentration. Copyright © 2017. Published by Elsevier B.V.
Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors
Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.
2010-01-01
Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.
THE UPTAKE OF WATER DISINFECTION BY-PRODUCTS INTO FOODS DURING HOME PROCESSING
A variety of organic compounds in tap water are produced as a result of disinfection process. Use of chlorine-containing chemicals for disinfection produces many disinfection by-products (DBPs) including trihalomethanes, haloacetonitriles and haloacetic acid. Ozonation with secon...
Modeling Trihalomethane Formation Potential from Wastewater Chlorination
1994-09-01
Aerated Lagoon Chlor/Dechlor - - - King Salmon River Luke, AZ Tertiary Ultraviolet 1.2 MGD Agua Fria River / Irrigation MacDD, FL Activated Sludge...November 1988). Tchobanoglous, George and Burton, Franklin L. Wastewater engineering: treatment, disposal, and reuse / Metcalf & Eddy, Inc. -3rd ed
Exhaled human breath analysis has become a standard technique for assessing exposure to exogenous volatile organic compounds (VOCs) such as trihalomethanes from water chlorination; aromatics, hydrocarbons, and oxygenates from fuels usage; and various chlorinated solvents from i...
Presentation not available. Abstract provided. The chlorination of potable water leads to the formation of harmful disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). Many of these compounds are volatile organic compounds (VOCs). DBPs may ...
BROMINATED TRIHALOMETHANE (BrTHM) TOXICITY IN HUMAN BLADDER CELL LINES
Epidemiology studies have consistently found that greater exposure to drinking water disinfection byproducts (DBPs) is associated with an increased risk for bladder cancer. In 2010, Cantor et al. (Environ. Health Perspect. 118: 1545) reported that this increased risk was depende...
DRINKING WATER DISINFECTION BYPRODUCTS AND DURATION OF GESTATION
Recent studies of drinking water disinfection by-products (DBPs) suggest high exposure decreases risk of preterm birth. We examined this association with total trihalomethane (TTHM) and five haloacetic acids (HAA5) among 2,041 women in a prospective pregnancy study conducted from...
TECHNIQUES FOR ANALYZING COMPLEX MIXTURES OF DRINKING WATER DBPS
Although chlorine has been used to disinfect drinking water for approximately 100 years, there have been concerns raised over its use, due to the formation of potentially hazardous by-products. Trihalomethanes (THMs) were the first disinfection by-products (DBPs) identified and ...
Van Haute, Sam; Holvoet, Kevin; Uyttendaele, Mieke
2013-01-01
Chlorine was assessed as a reconditioning agent and wash water disinfectant in the fresh-cut produce industry. Artificial fresh-cut lettuce wash water, made from butterhead lettuce, was used for the experiments. In the reconditioning experiments, chlorine was added to artificial wash water inoculated with Escherichia coli O157 (6 log CFU/ml). Regression models were constructed based on the inactivation data and validated in actual wash water from leafy vegetable processing companies. The model that incorporated chlorine dose and chemical oxygen demand (COD) of the wash water accurately predicted inactivation. Listeria monocytogenes was more resistant to chlorine reconditioning in artificial wash water than Salmonella spp. and Escherichia coli O157. During the washing process with inoculated lettuce (4 log CFU/g), in the absence of chlorine, there was a rapid microbial buildup in the water that accumulated to 5.4 ± 0.4 log CFU/100 ml after 1 h. When maintaining a residual concentration of 1 mg/liter free chlorine, wash water contamination was maintained below 2.7, 2.5, and 2.5 log CFU/100 ml for tap water and artificial process water with COD values of 500 and 1,000 mg O2/liter, respectively. A model was developed to predict water contamination during the dynamic washing process. Only minor amounts of total trihalomethanes were formed in the water during reconditioning. Total trihalomethanes accumulated to larger amounts in the water during the wash water disinfection experiments and reached 124.5 ± 13.4 μg/liter after 1 h of execution of the washing process in water with a COD of 1,000 mg O2/liter. However, no total trihalomethanes were found on the fresh-cut lettuce after rinsing. PMID:23396332
Musikavong, Charongpun; Wattanachira, Suraphong
2013-01-01
The characteristic and quantity of dissolved organic matter (DOM) as trihalomethanes precursors in water from the U-Tapao Basin, Songkhla, Thailand was investigated. The sources of water in the basin consisted of two reservoirs and the U-Tapao canal. The canal receives water discharge from reservoirs, treated and untreated wastewater from agricultural processes, communities and industries. Water downstream of the canal is utilized as a raw water supply. Water samples were collected from two reservoirs, upstream and midstream of the canal, and the raw water supply in the rainy season and summer. The DOM level in the canal water was higher than that of the reservoir water. The highest trihalomethane formation potential (THMFP) was formed in the raw water supply. Fourier-transform infrared peaks of the humic acid were detected in the reservoir and canal waters. Aliphatic hydrocarbon and organic nitrogen were the major chemical classes in the reservoir and canal water characterized by a pyrolysis gas chromatography mass spectrometer. The optimal condition of the poly aluminum chloride (PACl) coagulation was obtained at a dosage of 40 mg/L at pH 7. This condition could reduce the average UV-254 to 57%, DOC to 64%, and THMFP to 42%. In the coagulated water, peaks of O-H groups or H-bonded NH, C˭O of cyclic and acyclic compounds, ketones and quinines, aromatic C˭C, C-O of alcohols, ethers, and carbohydrates, deformation of COOH, and carboxylic acid salts were detected. The aliphatic hydrocarbon, organic nitrogen and aldehydes and ketones were the major chemical classes. These DOM could be considered as the prominent DOM for the water supply plant that utilized PACl as a coagulant.
Formation of trihalomethanes of dissolved organic matter fractions in reservoir and canal waters.
Musikavong, Charongpun; Srimuang, Kanjanee; Tachapattaworakul Suksaroj, Thunwadee; Suksaroj, Chaisri
2016-07-28
The formation of trihalomethanes (THMs) of hydrophobic organic fraction (HPO), transphilic organic fraction (TPI), and hydrophilic organic fraction (HPI) of reservoir and canal waters from the U-Tapao River Basin, Songkhla, Thailand was investigated. Water samples were collected three times from two reservoirs, upstream, midstream, and downstream of the U-Tapao canal. The HPO was the major dissolved organic matter (DOM) fraction in reservoir and canal waters. On average, the HPO accounted for 53 and 45% of the DOM in reservoir and canal waters, respectively. The TPI of 19 and 23% in reservoir and canal waters were determined, respectively. The HPI of 29% of the reservoir water and HPI of 32% of the canal water were detected. For the reservoir water, the highest trihalomethane formation potential (THMFP)/dissolved organic carbon (DOC) was determined for the HPI, followed by the TPI and HPO, respectively. The average values of the THMFP/DOC of the HPI, TPI, and HPO of the reservoir water were 78, 52, and 49 µg THMs/mg C, respectively. The highest THMFP/DOC of the canal water was detected for the HPI, followed by HPO and TPI, respectively. Average values of the THMFP/DOC of HPI of water at upstream and midstream locations of 58 µg THMs/mg C and downstream location of 113 µg THMs/mg C were determined. Average values of THMFP/DOC of HPO of water at upstream and midstream and downstream locations were 48 and 93 µg THMs/mg C, respectively. For the lowest THMFP/DOC fraction, the average values of THMFP/DOC of TPI of water at upstream and midstream and downstream locations were 35 and 73 µg THMs/mg C, respectively.
Van Haute, Sam; Sampers, Imca; Holvoet, Kevin; Uyttendaele, Mieke
2013-05-01
Chlorine was assessed as a reconditioning agent and wash water disinfectant in the fresh-cut produce industry. Artificial fresh-cut lettuce wash water, made from butterhead lettuce, was used for the experiments. In the reconditioning experiments, chlorine was added to artificial wash water inoculated with Escherichia coli O157 (6 log CFU/ml). Regression models were constructed based on the inactivation data and validated in actual wash water from leafy vegetable processing companies. The model that incorporated chlorine dose and chemical oxygen demand (COD) of the wash water accurately predicted inactivation. Listeria monocytogenes was more resistant to chlorine reconditioning in artificial wash water than Salmonella spp. and Escherichia coli O157. During the washing process with inoculated lettuce (4 log CFU/g), in the absence of chlorine, there was a rapid microbial buildup in the water that accumulated to 5.4 ± 0.4 log CFU/100 ml after 1 h. When maintaining a residual concentration of 1 mg/liter free chlorine, wash water contamination was maintained below 2.7, 2.5, and 2.5 log CFU/100 ml for tap water and artificial process water with COD values of 500 and 1,000 mg O2/liter, respectively. A model was developed to predict water contamination during the dynamic washing process. Only minor amounts of total trihalomethanes were formed in the water during reconditioning. Total trihalomethanes accumulated to larger amounts in the water during the wash water disinfection experiments and reached 124.5 ± 13.4 μg/liter after 1 h of execution of the washing process in water with a COD of 1,000 mg O2/liter. However, no total trihalomethanes were found on the fresh-cut lettuce after rinsing.
Toledano, Mireille B.; Nieuwenhuijsen, Mark J.; Best, Nicky; Whitaker, Heather; Hambly, Peter; de Hoogh, Cornelis; Fawell, John; Jarup, Lars; Elliott, Paul
2005-01-01
We investigated the association between total trihalomethanes (TTHMs) and risk of stillbirth and low and very low birth weight in three water regions in England, 1992–1998; associations with individual trihalomethanes (THMs) were also examined. Modeled estimates of quarterly TTHM concentrations in water zones, categorized as low (< 30 μg/L), medium (30–59 μg/L), or high (≥60 μg/L), were linked to approximately 1 million routine birth and stillbirth records using maternal residence at time of birth. In one region, where there was a positive socioeconomic deprivation gradient across exposure categories, there was also a positive, significant association of TTHM with risk of stillbirth and low and very low birth weight. Overall summary estimates across the three regions using a random-effects model to allow for between-region heterogeneity in exposure effects showed small excess risks in areas with high TTHM concentrations for stillbirths [odds ratio (OR) = 1.11; 95% confidence interval (CI), 1.00–1.23), low birth weight (OR = 1.09; 95% CI, 0.93–1.27), and very low birth weight (OR = 1.05; 95% CI, 0.82–1.34). Among the individual THMs, chloroform showed a similar pattern of risk as TTHM, but no association was found with concentrations of bromodichloromethane or total brominated THMs. Our findings overall suggest a significant association of stillbirths with maternal residence in areas with high TTHM exposure. Further work is needed looking at cause-specific stillbirths and effects of other disinfection by-products and to help differentiate between alternative (noncausal) explanations and those that may derive from the water supply. PMID:15687062
Toledano, Mireille B; Nieuwenhuijsen, Mark J; Best, Nicky; Whitaker, Heather; Hambly, Peter; de Hoogh, Cornelis; Fawell, John; Jarup, Lars; Elliott, Paul
2005-02-01
We investigated the association between total trihalomethanes (TTHMs) and risk of stillbirth and low and very low birth weight in three water regions in England, 1992-1998; associations with individual trihalomethanes (THMs) were also examined. Modeled estimates of quarterly TTHM concentrations in water zones, categorized as low (< 30 microg/L), medium (30-59 microg/L), or high (> or = 60 microg/L), were linked to approximately 1 million routine birth and stillbirth records using maternal residence at time of birth. In one region, where there was a positive socioeconomic deprivation gradient across exposure categories, there was also a positive, significant association of TTHM with risk of stillbirth and low and very low birth weight. Overall summary estimates across the three regions using a random-effects model to allow for between-region heterogeneity in exposure effects showed small excess risks in areas with high TTHM concentrations for stillbirths [odds ratio (OR) = 1.11; 95% confidence interval (CI), 1.00-1.23), low birth weight (OR = 1.09; 95% CI, 0.93-1.27), and very low birth weight (OR = 1.05; 95% CI, 0.82-1.34). Among the individual THMs, chloroform showed a similar pattern of risk as TTHM, but no association was found with concentrations of bromodichloromethane or total brominated THMs. Our findings overall suggest a significant association of stillbirths with maternal residence in areas with high TTHM exposure. Further work is needed looking at cause-specific stillbirths and effects of other disinfection by-products and to help differentiate between alternative (noncausal) explanations and those that may derive from the water supply.
Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan
2018-02-20
The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.
ADDITIVITY ASSESSMENT OF TRIHALOMETHANE MIXTURES BY PROPORTIONAL RESPONSE ADDITION
If additivity is known or assumed, the toxicity of a chemical mixture may be predicted from the dose response curves of the individual chemicals comprising the mixture. As single chemical data are abundant and mixture data sparse, mixture risk methods that utilize single chemical...
Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Ozone, chlorine dioxide, and chloramine are currently popular alternatives to ...
Due to concern over the potential adverse health effects of trihalomethanes (THMs), haloacetic acids, and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Chlorine dioxide is a popular alternative, with over 500 dri...
Benson, Nsikak U; Akintokun, Oyeronke A; Adedapo, Adebusayo E
2017-01-01
Levels of trihalomethanes (THMs) in drinking water from water treatment plants (WTPs) in Nigeria were studied using a gas chromatograph (GC Agilent 7890A with autosampler Agilent 7683B) equipped with electron capture detector (ECD). The mean concentrations of the trihalomethanes ranged from zero in raw water samples to 950 μ g/L in treated water samples. Average concentration values of THMs in primary and secondary disinfection samples exceeded the standard maximum contaminant levels. Results for the average THMs concentrations followed the order TCM > BDCM > DBCM > TBM. EPA-developed models were adopted for the estimation of chronic daily intakes (CDI) and excess cancer incidence through ingestion pathway. Higher average intake was observed in adults (4.52 × 10 -2 mg/kg-day), while the ingestion in children (3.99 × 10 -2 mg/kg-day) showed comparable values. The total lifetime cancer incidence rate was relatively higher in adults than children with median values 244 and 199 times the negligible risk level.
Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel
2008-10-31
A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.
Rathbun, R.E.
1996-01-01
The bromine incorporation factor describes the distribution of the four trihalomethane compounds in the mixture formed when a natural water is chlorinated. This factor was determined for the Mississippi, Missouri, and Ohio Rivers by chlorinating water samples at three levels each of pH and free chlorine concentration. Samples were collected during the summer, fall, and spring seasons of the year at 12 sites on the Mississippi River from Minneapolis, MN, to New Orleans, LA, and on the Missouri and Ohio Rivers 1.6 kilometers upstream from their confluences with the Mississippi. The bromine incorporation factor increased as the bromide concentration increased, and decreased as the pH, initial free-chlorine and dissolved organic-carbon concentrations increased. Variation of the bromine incorporation factor with distance along the Mississippi River approximately paralleled the variation of the bromide concentration with distance along the river, with the Missouri River samples having the highest bromine incorporation factors for all combinations of pH and free-chlorine concentration.
Chemical modifications of estuarine water by a power plant using continuous chlorination
Helz, G.R.; Sugam, R.; Sigleo, A.C.
1984-01-01
A season long study at a major electric power plant on the Patuxent Estuary, MD, indicated that more than 88% of the applied chlorine (22-38 ??N) disappeared within the plant. The remainder decayed in a manner approximated by a first-order rate law (T1/2 = 0.6-4.6 h). Increases in dissolved ammonia (contrary to conventional breakpoint chemistry) and losses in dissolved manganese were generally observed between the intake and discharge canals. The ammonia buildup must have derived either from the particulate (e.g., microorganism) nitrogen or from dissolved organic nitrogen. Only traces of trihalomethanes were observed, but there was evidence for a >6 km long discharge plume containing colloidal bromocarbons. The near absence of trihalomethanes is believed to be a result of the extremely rapid disappearance of free halogen oxidants. Sediments in the discharge canal were notably enriched in copper, probably from the Cu90Ni10 condenser tubes, but negligible enrichment was observed beyond the discharge canal. ?? 1984 American Chemical Society.
A thin layer electrochemical cell for disinfection of water contaminated with Staphylococcus aureus
Gusmão, Isabel C. P.; Moraes, Peterson B.; Bidoia, Ederio D.
2009-01-01
A thin layer electrochemical cell was tested and developed for disinfection treatment of water artificially contaminated with Staphylococcus aureus. Electrolysis was performed with a low-voltage DC power source applying current densities of 75 mA cm-2 (3 A) or 25 mA cm-2 (1 A). A dimensionally stable anode (DSA) of titanium coated with an oxide layer of 70%TiO2 plus 30%RuO2 (w/w) and a 3 mm from a stainless-steel 304 cathode was used in the thin layer cell. The experiments were carried out using a bacteria suspension containing 0.08 M sodium sulphate with chloride-free to determine the bacterial inactivation efficacy of the thin layer cell without the generation of chlorine. The chlorine can promote the formation of trihalomethanes (THM) that are carcinogenic. S. aureus inactivation increased with electrolysis time and lower flow rate. The flow rates used were 200 or 500 L h-1. At 500 L h-1 and 75 mA cm-2 the inactivation after 60 min was about three logs of decreasing for colony forming units by mL. However, 100% inactivation for S. aureus was observed at 5.6 V and 75 mA cm-2 after 30 min. Thus, significant disinfection levels can be achieved without adding oxidant substances or generation of chlorine in the water. PMID:24031410
The removal of disinfection by-product precursors from water with ceramic membranes.
Harman, B I; Koseoglu, H; Yigit, N O; Sayilgan, E; Beyhan, M; Kitis, M
2010-01-01
The main objective of this work was to investigate the effectiveness of ceramic ultrafiltration (UF) membranes with different pore sizes in removing natural organic matter (NOM) from model solutions and drinking water sources. A lab-scale, cross-flow ceramic membrane test unit was used in all experiments. Two different single-channel tubular ceramic membrane modules were tested with average pore sizes of 4 and 10 nm. The impacts of membrane pore size and pressure on permeate flux and the removals of UV(280 nm) absorbance, specific UV absorbance (SUVA(280 nm)), and dissolved organic carbon (DOC) were determined. Prior to experiments with model solutions and raw waters, clean water flux tests were conducted. UV(280) absorbance reductions ranged between 63 and 83% for all pressures and membranes tested in the raw water. More than 90% of UV(280) absorbance reduction was consistently achieved with both membranes in the model NOM solutions. Such high UV absorbance reductions are advantageous due to the fact that UV absorbing sites of NOM are known to be one of the major precursors to disinfection by-products (DBP) such as trihalomethanes and haloacetic acids. For both UF membranes, the ranges of DOC removals in the raw water and model NOM solutions were 55-73% and 79-91%, respectively. SUVA(280) value of the raw water decreased from 2 to about 1.5 L/mg-m by both membranes. For the model solutions, SUVA(280) values were consistently reduced to < or =1 L/mg-m levels after membrane treatment. As the SUVA(280) value of the NOM source increased, the extent of SUVA(280) reduction and DOC removal by the tested ceramic UF membranes also increased. The results overall indicated that ceramic UF membranes, especially the one with 4 nm average pore size, appear to be effective in removing organic matter and DBP precursors from drinking water sources with relatively high and sustainable permeate flux values.
Previous research has shown that bromine incorporation into trihalogenated acetic acids (TXAAs) was similar to that of the trihalomethanes (THMs). Likewise, occurrence data for other trihalogenated DBPs (e.g., halonitromethanes [HNMs], haloacetaldehydes [HAs]) showed similar or ...
Petkewich, Matthew D.; Parkhurst, David L.; Conlon, Kevin J.; Campbell, Bruce G.; Mirecki, June E.
2004-01-01
The hydrologic and geochemical effects of aquifer storage recovery were evaluated to determine the potential for supplying the city of Charleston, South Carolina, with large quantities of potable water during emergencies, such as earthquakes, hurricanes, or hard freezes. An aquifer storage recovery system, including a production well and three observation wells, was installed at a site located on the Charleston peninsula. The focus of this study was the 23.2-meter thick Tertiary-age carbonate and sand aquifer of the Santee Limestone and the Black Mingo Group, the northernmost equivalent of the Floridan aquifer system. Four cycles of injection, storage, and recovery were conducted between October 1999 and February 2002. Each cycle consisted of injecting between 6.90 and 7.19 million liters of water for storage periods of 1, 3, or 6 months. The volume of recovered water that did not exceed the U.S. Environmental Protection Agency secondary standard for chloride (250 milligrams per liter) varied from 1.48 to 2.46 million liters, which is equivalent to 21 and 34 percent of the total volume injected for the individual tests. Aquifer storage recovery testing occurred within two productive zones of the brackish Santee Limestone/Black Mingo aquifer. The individual productive zones were determined to be approximately 2 to 4 meters thick, based on borehole geophysical logs, electromagnetic flow-meter testing, and specific-conductance profiles collected within the observation wells. A transmissivity and storage coefficient of 37 meters squared per day and 3 x 10-5, respectively, were determined for the Santee Limestone/Black Mingo aquifer. Water-quality and sediment samples collected during this investigation documented baseline aquifer and injected water quality, aquifer matrix composition, and changes in injected/aquifer water quality during injection, storage, and recovery. A total of 193 water-quality samples were collected and analyzed for physical properties, major and minor ions, and nutrients. The aquifer and treated surface water were sodiumchloride and calcium/sodium-bicarbonate water types, respectively. Forty-five samples were collected and analyzed for total trihalomethane. Total trihalomethane data collected during aquifer storage recovery cycle 4 indicated that this constituent would not restrict the use of recovered water for drinking-water purposes. Analysis of six sediment samples collected from a cored well located near the aquifer storage recovery site showed that quartz and calcite were the dominant minerals in the Santee Limestone/Black Mingo aquifer. Estimated cation exchange capacity ranged from 12 to 36 milliequivalents per 100 grams in the lower section of the aquifer. A reactive transport model was developed that included two 2-meter thick layers to describe each of the production zones. The four layers composing the production zones were assigned porosities ranging from 0.1 to 0.3 and hydraulic conductivities ranging from 1 to 8.4 meters per day. Specific storage of the aquifer and confining units was estimated to be 1.5 x 10-5 meter-1. Longitudinal dispersivity of all layers was specified to be 0.5 meter. Leakage through the confining unit was estimated to be minimal and, therefore, not used in the reactive transport modeling. Inverse geochemical modeling indicates that mixing, cation exchange, and calcite dissolution are the dominant reactions that occur during aquifer storage recovery testing in the Santee Limestone/Black Mingo aquifer. Potable water injected into the Santee Limestone/Black Mingo aquifer evolved chemically by mixing with brackish background water and reaction with calcite and cation exchangers in the sediment. Reactive-transport model simulations indicated that the calcite and exchange reactions could be treated as equilibrium processes. Simulations with the calibrated reactive transport model indicated that approximately one-fourth of the total volume of water injected into
Bromodichloromethane (BDCM), a trihalomethane, is a by-product of the chlorination of drinking water. In an epidemiological study, consumption of drinking water with high levels of BDCM was associated with an increased risk of spontaneous abortion in pregnant women (Waller et al....
Epidemiological and animal toxicity studies have raised concerns regarding possible adverse reproductive and developmental effects of disinfection by-products (DBPs) in drinking water. To address these concerns, we provided mixtures of the regulated trihalomethanes (THMs; chlorof...
Use of biotrickling filter (BTF) for gas phase treatment of volatile trihalomethanes (THMs) stripped from water treatment plants could be an attractive treatment option. The aim of this study is to use laboratory-scale anaerobic BTF to treat gaseous chloroform (recalcitrant to bi...
40 CFR 142.60 - Variances from the maximum contaminant level for total trihalomethanes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... disinfectant or oxidant. (2) Use of chlorine dioxide as an alternate or supplemental disinfectant or oxidant... of raw water. Use of ozone as an alternate or supplemental disinfectant or oxidant. (d) If the... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS...
Many epidemiologic studies concerning by-products of water disinfection use utility monitoring data to estimate exposure. Use of such data requires linkage of residence location to a specific water utility and associated monitoring data during a given exposure period. The inabil...
The primary objective of this project was to evaluate cost-effective aeration technology solutions to address TTHM compliance at a water treatment plant clearwell. The project team worked closely with EPA Region 6 and the EPA Office of Research and Development (ORD) to identify a...
Oxidizing disinfectants reduce microbial contamination but react with inorganic and organic materials in water forming disinfection byproducts (DBPs). The U.S. EPA regulates 4 THM DBPs (chloroform, CHCI3; bromodichloromethane, BDCM; chlorodibromomethane, CDBM; bromoform, CHBr3) a...
Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging
Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical cen...
Exposure to disinfection by-products (DBPs) has been associated with cancer risk, but the mechanisms of action are poorly understood. A recent study found increased bladder cancer risk among subjects attending swimming pools, where uptake of DBPs, such as trihalomethanes (THMs) c...
The discovery of chlorination and chloramination by-products other than the regulated trihalomethanes and haloacetic acids has created a need for short-term in vitro assays to address toxicities that might be associated with human exposure. Approximately 600 disinfection by-produ...
It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments ...
Occurrence and Mammalian Cell Toxicity of Iodinated Disinfection Byproducts in Drinking Water
An occurrence study was conducted to measure five iodo-acids (iodoacetic acid, bromoiodoacetic acid, (Z)-3-bromo-3-iodo-propenoic acid, (E)-3-bromo-3-iodo-propenoic acid, and (E)-2-iodo-3-methylbutenedioic acid) and two iodo-trihalomethanes (iodo-THMs), (dichloroiodomethane and b...
BACKGROUND:Trihalomethanes (THMs) and haloaretic acids (HAAs) are regulated disinfection by-products (DBPs); their joint reproductive toxicity in drinking water is unknown.OBJECTIVE: We aimed to evaluate a drinking water mixture of the four regulated THMs and five regulated HAAs ...
Total organic carbon (TOC) in surface waters, markedly of seasonal variations, is a known precursor of disinfection byproducts such as Total Trihalomethanes (TTHM) in drinking water treatment. Real-time knowledge of TOC distribution in source water can help treatment operation to...
PROMOTION OF TRIHALOMETHANE-INDUCED COLON, ABERRANT CRYPT FOCI (ACF) BY A HIGH FAT DIET
Abstract:
Bromodichloromethane (BOCM) and tribromomethane (TBM) enhanced neoplasia in the large intestine of rats when given by corn oil gavage; BOCM in the drinking water to male rats did not induce colon tumors, but did increase liver tumors. However, TBM and a mixture o...
40 CFR 142.60 - Variances from the maximum contaminant level for total trihalomethanes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... disinfectant or oxidant. (2) Use of chlorine dioxide as an alternate or supplemental disinfectant or oxidant... to reduce TTHM formation and, where necessary, substituting for the use of chlorine as a pre-oxidant chloramines, chlorine dioxide or potassium permanganate. (5) Use of powdered activated carbon for THM...
Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of colorectal cancer. The THMs [trichloromethane, TCM, bromo'dichloromethane, BDCM, dibromochloromethane, DBCM, and tribromomethane, TBM] comprise a major class of by-products (...
Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of colorectal cancer. The THMs [trichloromethane, TCM, bromodichloromethane, BDCM, dibromochloromethane, DBCM, and tribromomethane, TBM] comprise a major class of by-products (D...
Bromodichloromethane (BDCM) and bromoform (TBM) had been demonstrated to be colon carcinogens in male and female F344/N rats following administration by corn oil gavage. Our chronic bioassay of BDCM administered in the drinking water failed to demonstrate an enhanced colon cance...
This project is a collaborative drinking water research study. EPA is evaluating water samples collected by PWS operators in order to investigate relationships between bromide in source water and the formation of brominated DBPs in finished drinking water. This study will includ...
40 CFR 142.60 - Variances from the maximum contaminant level for total trihalomethanes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS... average basis. (b) The Administrator in a state that does not have primary enforcement responsibility or a... community water system to install and/or use any treatment method identified in § 142.60(a) as a condition...
40 CFR 142.60 - Variances from the maximum contaminant level for total trihalomethanes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS... average basis. (b) The Administrator in a state that does not have primary enforcement responsibility or a... community water system to install and/or use any treatment method identified in § 142.60(a) as a condition...
Akintokun, Oyeronke A.; Adedapo, Adebusayo E.
2017-01-01
Levels of trihalomethanes (THMs) in drinking water from water treatment plants (WTPs) in Nigeria were studied using a gas chromatograph (GC Agilent 7890A with autosampler Agilent 7683B) equipped with electron capture detector (ECD). The mean concentrations of the trihalomethanes ranged from zero in raw water samples to 950 μg/L in treated water samples. Average concentration values of THMs in primary and secondary disinfection samples exceeded the standard maximum contaminant levels. Results for the average THMs concentrations followed the order TCM > BDCM > DBCM > TBM. EPA-developed models were adopted for the estimation of chronic daily intakes (CDI) and excess cancer incidence through ingestion pathway. Higher average intake was observed in adults (4.52 × 10−2 mg/kg-day), while the ingestion in children (3.99 × 10−2 mg/kg-day) showed comparable values. The total lifetime cancer incidence rate was relatively higher in adults than children with median values 244 and 199 times the negligible risk level. PMID:28900447
Lantagne, Daniele S.; Cardinali, Fred; Blount, Ben C.
2010-01-01
Almost a billion persons lack access to improved drinking water, and diarrheal diseases cause an estimated 1.87 million deaths per year. Sodium dichloroisocyanurate (NaDCC) tablets are widely recommended for household water treatment to reduce diarrhea. Because NaDCC is directly added to untreated water sources, concerns have been raised about the potential health impact of disinfection by-products. This study investigated trihalomethane (THM) production in water from six sources used for drinking (0.6–888.5 nephelometric turbidity units) near Arusha, Tanzania. No sample collected at 1, 8, and 24 hours after NaDCC addition exceeded the World Health Organization guideline values for either individual or total THMs. Ceramic filtration, sand filtration, cloth filtration, and settling and decanting were not effective mitigation strategies to reduce THM formation. Chlorine residual and THM formation were not significantly different in NaDCC and sodium hypochlorite treatment. Household chlorination of turbid and non-turbid waters did not create THM concentrations that exceeded health risk guidelines. PMID:20595492
Cao, Wen-Cheng; Zeng, Qiang; Luo, Yan; Chen, Hai-Xia; Miao, Dong-Yue; Li, Li; Cheng, Ying-Hui; Li, Min; Wang, Fan; You, Ling; Wang, Yi-Xin; Yang, Pan; Lu, Wen-Qing
2015-01-01
Background: Previous studies have suggested that elevated exposure to disinfection by-products (DBPs) in drinking water during gestation may result in adverse birth outcomes. However, the findings of these studies remain inconclusive. Objective: The purpose of our study was to examine the association between blood biomarkers of late pregnancy exposure to trihalomethanes (THMs) in drinking water and fetal growth and gestational age. Methods: We recruited 1,184 pregnant women between 2011 and 2013 in Wuhan and Xiaogan City, Hubei, China. Maternal blood THM concentrations, including chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM), were measured as exposure biomarkers during late pregnancy. We estimated associations with gestational age and fetal growth indicators [birth weight, birth length, and small for gestational age (SGA)]. Results: Total THMs (TTHMs; sum of TCM, BDCM, DBCM, and TBM) were associated with lower mean birth weight (–60.9 g; 95% CI: –116.2, –5.6 for the highest vs. lowest tertile; p for trend = 0.03), and BDCM and DBCM exposures were associated with smaller birth length (e.g., –0.20 cm; 95% CI: –0.37, –0.04 for the highest vs. lowest tertile of DBCM; p for trend = 0.02). SGA was increased in association with the second and third tertiles of TTHMs (OR = 2.91; 95% CI: 1.32, 6.42 and OR = 2.25; 95% CI: 1.01, 5.03; p for trend = 0.08). Conclusions: Our results suggested that elevated maternal THM exposure may adversely affect fetal growth. Citation: Cao WC, Zeng Q, Luo Y, Chen HX, Miao DY, Li L, Cheng YH, Li M, Wang F, You L, Wang YX, Yang P, Lu WQ. 2016. Blood biomarkers of late pregnancy exposure to trihalomethanes in drinking water and fetal growth measures and gestational age in a Chinese cohort. Environ Health Perspect 124:536–541; http://dx.doi.org/10.1289/ehp.1409234 PMID:26340795
Predictors of Blood Trihalomethane Concentrations in NHANES 1999–2006
Dhingra, Radhika; Blount, Benjamin C.; Steenland, Kyle
2014-01-01
Background: Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999–2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. Objectives: We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. Methods: We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). Results: From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%–76% in blood and 38%–52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002–2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. Conclusions: We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study. Citation: Riederer AM, Dhingra R, Blount BC, Steenland K. 2014. Predictors of blood trihalomethane concentrations in NHANES 1999–2006. Environ Health Perspect 122:695–702; http://dx.doi.org/10.1289/ehp.1306499 PMID:24647036
Arnold, Mayara; Batista, Jacimaria; Dickenson, Eric; Gerrity, Daniel
2018-07-01
The purpose of this research was to investigate the impacts of ozone dose and empty bed contact time (EBCT) in ozone-biofiltration systems on disinfection byproduct (DBP) formation potential. The data were used to evaluate the possibility of using DBP formation potential as an alternative guideline for total organic carbon (TOC) removal in potable reuse applications. A pilot-scale ozone-biofiltration system was operated with O 3 /TOC ratios ranging from 0.1 to 2.25 and EBCTs ranging from 2 to 20 min. The biofiltration columns contained anthracite or biological activated carbon (BAC). Bench-scale chlorination was performed using the uniform formation conditions (UFC) approach, and quenched samples were analyzed for total trihalomethanes (TTHMs) and regulated haloacetic acids (HAA5s). The data demonstrated that ozone-biofiltration achieved TOC removals ranging from ∼10 to 30%, depending on operational conditions, but biofiltration without ozone generally achieved <10% TOC removal. UFC testing demonstrated that ozone alone was efficient in transforming bulk organic matter and reducing DBP formation potential by 10-30%. The synergistic combination of ozone and biofiltration achieved average overall reductions in TTHM and HAA5 formation potential of 26% and 51%, respectively. Finally, a maximum TOC concentration of 2.0 mg/L was identified as a recommended treatment target for reliable compliance with TTHM and HAA5 regulations for potable reuse systems in the United States. Copyright © 2018 Elsevier Ltd. All rights reserved.
Using RSSCTs to predict field-scale GAC control of DBP formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, L.; Summers, R.S.
1994-06-01
The primary objective of this study was to evaluate the use of the rapid small-scale column test (RSSCT) for predicting the control of disinfection by-product (DBP) formation by granular activated carbon (GAC). DBP formation was assessed by using a simulated distribution system (SDS) test and measuring trihalomethanes and total organic halide in the influent and effluent of the laboratory- and field-scale columns. It was observed that for the water studied, the RSSCTs effectively predicted the nonabsorbable fraction, time to 50 percent breakthrough, and the shape of the breakthrough curve for DBP formation. The advantage of RSSCTs is that conclusions aboutmore » the amenability of a GAC for DBP control can be reached in a short time period instead of at the end of a long-term pilot study. The authors recommend that similar studies be conducted with a range of source waters because the effectiveness of GAC is site-specific.« less
Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of colorectal cancer. THMs and HAAs were found to increase cancer in laboratory animals, but no toxicity studies exist for the recently identified HNMs. Normal Human colonocytes...
Waste stream recycling: Its effect on water quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornwell, D.A.; Lee, R.G.
1994-11-01
Waste streams recycled to the influent of a water treatment plant typically contain contaminants at concentrations that are of concern. These contaminants may include giardia and Cryptosporidium, trihalomethanes, manganese, and assimilable organic carbon. This research shows that proper management--treatment, equalization, and monitoring--of the waste streams can render them suitable for recycling in many situations.
Chlorine added to surface waters for the purposes of disinfection, reacts with humic material in the water to produce a variety of compounds collectively known as disinfection by-product (DBPs). The trihalomethanes (THM), the class of DBPs that occur at the highest concentrations...
Trihalomethanes in Comerio Drinking Water and Their Reduction by Nanostructured Materials
Bourdon, Jorge Hernandez; Linares, Francisco Marquez
2014-01-01
The formation of disinfection by-products (DBPs) during chlorination of drinking water is an issue which has drawn significant scientific attention due to the possible adverse effects that these compounds have on human health and the formation of another DBPs. Some factors that affect the formation of DBPs include: chlorine dose and residue, contact time, temperature, pH and natural organic matter (NOM). The most frequently detected DBPs in drinking water are trihalomethanes (THMs) and haloacetic acids (HAAs). The MCLs are standards established by the United States Environmental Protection Agency (USEPA) for drinking water quality established in Stage 1, Disinfectants and Disinfectionmore » Byproducts Rule (DBPR), and they limit the amount of potentially hazardous substances that are allowed in drinking water. The water quality data for THMs were evaluated in the Puerto Rico Aqueduct and Sewer Authority (PRASA). During this evaluation, the THMs exceeded the maximum contamination limit (MCLs) for the Comerio Water Treatment Plant (CWTP). USEPA classified the THMs as Group B2 carcinogens (shown to cause cancer in laboratory animals). This research evaluated the THMs concentrations in the following sampling sites: CWTP, Río Hondo and Piñas Abajo schools, Comerio Health Center (CDT), and the Vázquez Ortiz family, in the municipality of Comerio Puerto Rcio. The results show that the factors affecting the formation of THMs occur in different concentrations across the distribution line. Furthermore, there are not specific ranges to determine the formation of THMs in drinking water when the chemical and physical parameters were evaluated. Three different nanostructured materials (graphene, mordenite (MOR) and multiwalled carbon nanotubes (MWCNTs)) were used in this research, to reduce the THMs formation by adsorption in specific contact times. The results showed that graphene is the best nanomaterial to reduce THMs in drinking water. Graphene can reduce 80 parts per billion (ppb) of THMs in about 2 hours. In addition mordenite can reduce approximately 80 ppb of THMs and MWCNTs adsorbs 71 ppb of THMs in the same period of time respectively. Finally, in order to complement the adsorption results previously obtained, total organic carbon (TOC) analyses were measured, after different contact times with the nanomaterials.« less
Khallef, Messaouda; Cenkci, Süleyman; Akyil, Dilek; Özkara, Arzu; Konuk, Muhsin; Benouareth, Djamel Eddine
2018-01-28
Chloroform and Bromoform are two abundant trihalomethanes found in Algerian drinking water. The investigation of the mutagenic hazard of these disinfection by-products was studied by Ames test as prokaryotic bioassay to show their mutagenic effects. For this, Salmonella typhimurium TA98 and TA100 strains were employed. Both chloroform and bromoform showed a direct mutagenic effect since the number of revertant colonies gradually increase in dose-dependent manner with all concentrations tested with the two bacterial strains and these were both in the absence and presence of S9 metabolic activation. The genotoxic hazard was also studied by random amplified polymorphic DNA test on the root cells of Allium cepa as eukaryotic bioassay. DNA extracted from the roots of the onion were incubated at different concentrations of chloroform and bromoform and then amplified by polymerase chain reaction. This was based on demonstrating a major effect of disappearance of bands compared to roots incubated in the negative control (distilled water). The results showed that these two compounds affected genomic DNA by breaks although by mutations.
Formation of trihalomethanes as disinfection byproducts in herbal spa pools.
Fakour, Hoda; Lo, Shang-Lien
2018-04-09
Herbal spa treatments are favorite recreational activities throughout the world. The water in spas is often disinfected to control pathogenic microorganisms and guarantee hygiene. However, chlorinated water may cause the formation of disinfection byproducts (DBPs). Although there have been many studies on DBP formation in swimming pools, the role of organic matter derived from herbal medicines applied in herbal spa water has been largely neglected. Accordingly, the present study investigated the effect of herbal medicines on the formation of trihalomethanes (THMs) in simulated herbal spa water. Water samples were collected from a spa pool, and then, disinfection and herbal addition experiments were performed in a laboratory. The results showed that the organic molecules introduced by the herbal medicines are significant precursors to the formation of THMs in spa pool water. Since at least 50% of THMs were produced within the first six hours of the reaction time, the presence of herbal medicines in spa water could present a parallel route for THM exposure. Therefore, despite the undeniable benefits of herbal spas, the effect of applied herbs on DBP formation in chlorinated water should be considered to improve the water quality and health benefits of spa facilities.
Drinking water disinfection by-products and time to pregnancy.
MacLehose, Richard F; Savitz, David A; Herring, Amy H; Hartmann, Katherine E; Singer, Philip C; Weinberg, Howard S
2008-05-01
Laboratory evidence suggests tap water disinfection by-products (DBPs) could have an effect very early in pregnancy, typically before clinical detectability. Undetected early losses would be expected to increase the reported number of cycles to clinical pregnancy. We investigated the association between specific DBPs (trihalomethanes, haloacetic acids, brominated-trihalomethanes, brominated-haloacetic acids, total organic halides, and bromodichloromethane) and time to pregnancy among women who enrolled in a study of drinking water and reproductive outcomes. We quantified exposure to DBPs through concentrations in tap water, quantity ingested through drinking, quantity inhaled or absorbed while showering or bathing, and total integrated exposure. The effect of DBPs on time to pregnancy was estimated using a discrete time hazard model. Overall, we found no evidence of an increased time to pregnancy among women who were exposed to higher levels of DBPs. A modestly decreased time to pregnancy (ie, increased fecundability) was seen among those exposed to the highest level of ingested DBPs, but not for tap water concentration, the amount absorbed while showering or bathing, or the integrated exposure. Our findings extend those of a recently published study suggesting a lack of association between DBPs and pregnancy loss.
Xu, Jianeng; Huang, Conghui; Shi, Xiaoyang; Dong, Shengkun; Yuan, Baoling; Nguyen, Thanh H
2018-06-13
PVC pipe loops were constructed to simulate household premise plumbing. These pipe loops were exposed to water treated by physical processes at three water treatment plants in Xiamen, China from August 2016 to June 2017. After the biofilms were allowed to develop inside the pipes, these pipes were deconstructed and exposed to organic-free chlorine solution buffered at pH 6.8 ± 0.2 for 48 h. The decay of chlorine by these biofilms was higher than by the effluent waters that were used to grow the biofilms. A chlorine consumption mass balance model elucidated the role of both the diffusion of chlorine into the biofilm and the reaction of chlorine with the biofilm matrix. Comparable concentrations of trihalomethanes were quantified from the reaction between chlorine and source water organic matters, and chlorine and the biofilm, further emphasizing the role of biofilms in the safety of disinfected drinking water. These findings imply that when chlorine is used in the drinking water distribution system, the ubiquitous presence of biofilms may cause the depletion of chlorine and the formation of non-negligible levels of toxic disinfection byproducts. Copyright © 2018 Elsevier B.V. All rights reserved.
Identification of Trihalomethanes (THMs) Levels in Water Supply: A Case Study in Perlis, Malaysia
NASA Astrophysics Data System (ADS)
Jalil, Mohd Faizal Ab; Hamidin, Nasrul; Anas Nagoor Gunny, Ahmad; Nihla Kamarudzaman, Ain
2018-03-01
In Malaysia, chlorination is used for drinking water disinfection at water treatment plants due to its cost-effectiveness and efficiency. However, the use of chlorine poses potential health risks due to the formation of disinfection by-products such as trihalomethanes (THMs). THMs are formed due to the reaction between chlorine and some natural organic matter. The objective of the study is to analyze the level of THMs in the water supply in Perlis, Malaysia. The water samples were collected from end-user tap water near the water treatment plant (WTP) located in Perlis, including Timah Tasoh WTP, Kampung Sungai Baru WTP, Arau Phase I, II, III, and IV WTPs. The THMs were analyzed using a Gas Chromatography-Mass Spectrometry (GC/MS). The results showed that the water supply from Timah Tasoh WTP generates the most THMs, whereas Kuala Sungai Baru shows the fewest amounts of total THMs. In conclusion, the presence of THMs in tap water has caused great concern since these components can cause cancer in humans. Therefore, the identification of THM formation is crucial in order to make sure that the tap water quality remains at acceptable safety levels.
Montoya-Pachongo, Carolina; Douterelo, Isabel; Noakes, Catherine; Camargo-Valero, Miller Alonso; Sleigh, Andrew; Escobar-Rivera, Juan-Carlos; Torres-Lozada, Patricia
2018-03-01
Operation and maintenance (O&M) of drinking water distribution networks (DWDNs) in tropical countries simultaneously face the control of acute and chronic risks due to the presence of microorganisms and disinfection by-products, respectively. In this study, results from a detailed field characterization of microbiological, chemical and infrastructural parameters of a tropical-climate DWDN are presented. Water physicochemical parameters and the characteristics of the network were assessed to evaluate the relationship between abiotic and microbiological factors and their association with the presence of total trihalomethanes (TTHMs). Illumina sequencing of the bacterial 16s rRNA gene revealed significant differences in the composition of biofilm and planktonic communities. The highly diverse biofilm communities showed the presence of methylotrophic bacteria, which suggest the presence of methyl radicals such as THMs within this habitat. Microbiological parameters correlated with water age, pH, temperature and free residual chlorine. The results from this study are necessary to increase the awareness of O&M practices in DWDNs required to reduce biofilm formation and maintain appropriate microbiological and chemical water quality, in relation to biofilm detachment and DBP formation. Copyright © 2017 Elsevier B.V. All rights reserved.
National scale assessment of total trihalomethanes in Irish drinking water.
O'Driscoll, Connie; Sheahan, Jerome; Renou-Wilson, Florence; Croot, Peter; Pilla, Francesco; Misstear, Bruce; Xiao, Liwen
2018-04-15
Ireland reported the highest non-compliance with respect to total trihalomethanes (TTHMs) in drinking water across the 27 European Union Member States for the year 2010. We carried out a GIS-based investigation of the links between geographical parameters and catchment land-uses with TTHMs concentrations in Irish drinking water. A high risk catchment map was created using peat presence, rainfall (>1400 mm) and slope (<5%) and overlain with a map comprising the national dataset of routinely monitored TTHM concentrations. It appeared evident from the map that the presence of peat, rainfall and slope could be used to identify catchments at high risk to TTHM exceedances. Furthermore, statistical analyses highlighted that the presence of peat soil with agricultural land was a significant driver of TTHM exceedances for all treatment types. PARAFAC analysis from three case studies identified a fluorophore indicative of reprocessed humic natural organic matter as the dominant component following treatment at the three sites. Case studies also indicated that (1) chloroform contributed to the majority of the TTHMs in the drinking water supplies and (2) the supply networks contributed to about 30 μg L -1 of TTHMs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Sanly; Lim, May; Fabris, Rolando; Chow, Christopher; Chiang, Ken; Drikas, Mary; Amal, Rose
2008-05-01
The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV(254) absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV(254) absorbance. The THMFPs of samples were decreased to below 20 microg l(-1) after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.
Thomas, J.M.; McKay, W.A.; Colec, E.; Landmeyer, J.E.; Bradley, P.M.
2000-01-01
The fate of disinfection byproducts during aquifer storage and recovery (ASR) is evaluated for aquifers in Southern Nevada. Rapid declines of haloacetic acid (HAA) concentrations during ASR, with associated little change in Cl concentration, indicate that HAAs decline primarily by in situ microbial oxidation. Dilution is only a minor contributor to HAA concentration declines during ASR. Trihalomethane (THM) concentrations generally increased during storage of artificial recharge (AR) water and then declined during recovery. The decline of THM concentrations during recovery was primarily from dilution of current season AR water with residual AR water remaining in the aquifer from previous ASR seasons and native ground water. In more recent ASR seasons, for wells with the longest history of ASR, brominated THMs declined during storage and recovery by processes in addition to dilution. These conclusions about THMs are indicated by THM/Cl values and supported by a comparison of measured and model predicted THM concentrations. Geochemical mixing models were constructed using major-ion chemistry of the three end-member waters to calculate predicted THM concentrations. The decline in brominated THM concentrations in addition to that from dilution may result from biotransformation processes.
Pomes, M.L.; Larive, C.K.; Thurman, E.M.; Green, W.R.; Orem, W.H.; Rostad, C.E.; Coplen, T.B.; Cutak, B.J.; Dixon, A.M.
2000-01-01
Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) in drinking water. AHS from the Wakarusa River and Clinton Lake originated from riparian forest vegetation, reflected respective effects of soil organic matter and aquatic algal/bacterial sources, and bore evidence of biological degradation and photodegradation. AHS from the Wakarusa River showed the effect of terrestrial sources, whereas Clinton Lake humicacid also reflected aquatic algal/bacterial sources. Greater amounts of carbon attributable to tannin-derived chemical structures may correspond with higher HAA5 and THM4 yields for Clinton Lake fulvic acid. Prior to appreciable leaf-fall from deciduous trees, the combined (humic and fulvic acid) THM4 formation potentials for the Wakarusa River approached the proposed EPA THM4 Stage I MCL of 80 ??g/L, and the combined THM4 formation potential for Clinton Lake slightly exceeded the proposed THM4 Stage II MCL of 40 ??g/L. Finally, AHS from Clinton Lake could account for most (>70%) of the THM4 concentrations in finished water from the Clinton Lake Water Treatment Plant based on September 23, 1996, THM4 results.Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) in drinking water. AHS from the Wakarusa River and Clinton Lake originated from riparian forest vegetation, reflected respective effects of soil organic matter and aquatic algal/bacterial sources, and bore evidence of biological degradation and photodegradation. AHS from the Wakarusa River showed the effect of terrestrial sources, whereas Clinton Lake humic acid also reflected aquatic algal/bacterial sources. Greater amounts of carbon attributable to tannin-derived chemical structures may correspond with higher HAA5 and THM4 yields for Clinton Lake fulvic acid. Prior to appreciable leaf-fall from deciduous trees, the combined (humic and fulvic acid) THM4 formation potentials for the Wakarusa River approached the proposed EPA THM4 Stage I MCL of 80 ??g/L, and the combined THM4 formation potential for Clinton Lake slightly exceeded the proposed THM4 Stage II MCL of 40 ??g/L. Finally, AHS from Clinton Lake could account for most (>70%) of the THM4 concentrations in finished water from the Clinton Lake Water Treatment Plant based on September 23, 1996, THM4 results.Gram quantities of aquatic humic substances were extracted from the Wakarusa River-Clinton Lake Reservoir system near Lawrence, KS, and concentrations of dissolved organic carbon (DOC) and the proportions of DOC accountable as aquatic humic substances were determined. In addition, the sources of the aquatic humic substances were defined, and the haloacetic acids/trihalomethanes formation potentials were assessed. The samples were collected over the period September 10-October 10, before any appreciable leaf-fall occurred from deciduous trees. Results showed that the humic substances produced considerable yields of haloacetic acids and trihalomethanes, with higher yields noted for fulvic acid from Clinton Lake. The aquatic humic substances were derived from sources outside and within the Wakarusa River and Clinton Lake and could yield sufficient trih
Sakai, Hiroshi; Tokuhara, Shunsuke; Murakami, Michio; Kosaka, Koji; Oguma, Kumiko; Takizawa, Satoshi
2016-01-01
Due to decreasing water demands in Japan, hydraulic retention times of water in piped supply systems has been extended, resulting in a longer contact time with disinfectants. However, the effects of extended contact time on the formation of various disinfection byproducts (DBPs), including carbonaceous DBPs such as trihalomethane (THM) and haloacetic acid (HAA), and nitrogenous DBPs such as nitrosodimethylamine (NDMA) and nitrosomorpholine (NMor), have not yet been investigated in detail. Herein, we compared the formation of these DBPs by chlorination and chloramination for five water samples collected from rivers and a dam in Japan, all of which represent municipal water supply sources. Water samples were treated by either filtration or a combination of coagulation and filtration. Treated samples were subjected to a DBP formation potential test by either chlorine or chloramine for contact times of 1 day or 4 days. Four THM species, nine HAA species, NDMA, and NMor were measured by GC-ECD or UPLC-MS/MS. Lifetime cancer risk was calculated based on the Integrated Risk Information System unit risk information. The experiment and analysis focused on (i) prolonged contact time from 1 day to 4 days, (ii) reduction efficiency by conventional treatment, (iii) correlations between DBP formation potentials and water quality parameters, and (iv) the contribution of each species to total risk. With an increased contact time from 1 day to 4 days, THM formation increased to 420% by chloramination. Coagulation-filtration treatment showed that brominated species in THMs are less likely to be reduced. With the highest unit risk among THM species, dibromochloromethane (DBCM) showed a high correlation with bromine, but not with organic matter parameters. NDMA contributed to lifetime cancer risk. The THM formation pathway should be revisited in terms of chloramination and bromine incorporation. It is also recommended to investigate nitrosamine formation potential by chloramination. Copyright © 2015 Elsevier Ltd. All rights reserved.
US Army Medical Bioengineering Research and Development Laboratory Annual Progress Report for FY 82.
1982-10-01
DISTRIBUTION UNLIMITED. US ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick Frederick, MD 21701 r-. , -. , 4 .. %! NOTICE Disclaimer The findings...CMPLTINGORM .REPORT 4UER 2. P3. RECIPIENT’S CATALOG NUMBER MEDDH-28 (RI) _____________ 4 . TITLE (mnd ,bu .*o) S. TYPE OF REPORT A PERIOD COVERED US Army Medical...21 Trihalomethane (THM) Degradation ......................... 23 Silver Chloride Photovoltaic Cell
Regression equations for disinfection by-products for the Mississippi, Ohio and Missouri rivers
Rathbun, R.E.
1996-01-01
Trihalomethane and nonpurgeable total organic-halide formation potentials were determined for the chlorination of water samples from the Mississippi, Ohio and Missouri Rivers. Samples were collected during the summer and fall of 1991 and the spring of 1992 at twelve locations on the Mississippi from New Orleans to Minneapolis, and on the Ohio and Missouri 1.6 km upstream from their confluences with the Mississippi. Formation potentials were determined as a function of pH, initial free-chlorine concentration, and reaction time. Multiple linear regression analysis of the data indicated that pH, reaction time, and the dissolved organic carbon concentration and/or the ultraviolet absorbance of the water were the most significant variables. The initial free-chlorine concentration had less significance and bromide concentration had little or no significance. Analysis of combinations of the dissolved organic carbon concentration and the ultraviolet absorbance indicated that use of the ultraviolet absorbance alone provided the best prediction of the experimental data. Regression coefficients for the variables were generally comparable to coefficients previously presented in the literature for waters from other parts of the United States.
Helms, C M; Massanari, R M; Wenzel, R P; Pfaller, M A; Moyer, N P; Hall, N
In 1981, sixteen cases of nosocomial legionellosis occurred among 456 patients admitted to a new hematology-oncology unit (35 per 1000 admissions). Monoclonal antibody typing and restriction endonuclease plasmid analysis identified a unique strain (09,04) of Legionella pneumophila serogroup 1 isolated from both patients and water outlets. Continuous hyperchlorination of the hot and cold water began in January 1982, and chlorine levels of 3 to 5 mg/L have been maintained most recently. Water samples have been consistently negative for Legionella for more than five years. Four sporadic cases of nosocomial legionellosis have occurred in the hematology-oncology unit during the same period (one per 1000 admissions) associated with a different strain of L pneumophila serogroup 1 (09,00). The environmental reservoir(s) of L pneumophila serogroup 1 in these cases has not been identified. Levels of trihalomethanes (potential carcinogens) were high (greater than 100 micrograms/L) when chlorine levels of hot water exceeded 4 mg/L. Some corrosion damage to the water distribution system has occurred: the average number of leaks per month increased steadily from zero in 1982 to 5.2 in 1986. The chlorinator installation costs were +75,800, and annual operation expenses were +12,500. Continuous hyperchlorination is a promising but still experimental technique for control of nosocomial legionellosis. In our experience, epidemic disease has been controlled, but sporadic cases have continued to occur.
Özdemır, Kadir
2014-01-01
This study investigates the fractions of natural organic matter (NOM) and trihalomethane (THM) formation after chlorination in samples of raw water and the outputs from ozonation, coagulation-flocculation, and conventional filtration treatment units. All the water samples are passed through various ultrafiltration (UF) membranes. UF membranes with different molecular size ranges based on apparent molecular weight (AMW), such as 1000, 3000, 10,000, and 30,000 Daltons (Da), are commonly used. The NOM fraction with AMW < 1000 Da (1 K) is the dominant fraction within all the fractionated water samples. Its maximum percentage is 85.86% after the filtration process and the minimum percentage is 65.01% in raw water samples. The total THM (TTHM) yield coefficients range from 22.5 to 42 μg-TTHM/mg-DOC in all fractionated samples, which is related to their specific ultraviolet Absorbance (SUVA) levels. As the molecular weight of the fractions decreased, the TTHM yield coefficients increased. The NOM fractions with AMW values less than 1 K had lower SUVA values (<3 L/mg·m) for all treatment stages and also they had higher yield of TTHM per unit of DOC. The NOM fraction with AMW < 1 K for chlorinated raw water samples has the highest yield coefficient (42 μg-TTHM/mg-DOC). PMID:24558323
Malcolm, R.L.; Wershaw, R. L.; Thurman, E.M.; Aiken, G.R.; Pinckney, D.J.; Kaakinen, J.
1981-01-01
Smectite clay minerals were found to be the principal compound on the surface of the cellulose-acetate, reverse-osmosis membranes at the Yuma Desalting Test Facility. These clay minerals were not present in the pumped ground water, but were blown into the conveyance canal from adjacent soils. Humic substances from the water and suspended sediments were associated with the clay films on the membrane, but no definitive results concerning their role in fouling were achieved. Microbial fouling is believed to be only a minor aspect of membrane fouling. Chemical and physical changes in humic substances were extensively studied at four points in the water-treatment process. Humic substances accounted for the largest component (over 25 percent) of organic constituents. Humic substances in the canal source water were similar to other aquatic humic substances present in natural waters. During the treatment process, these substances are brominated and decolorized. The effect of these halogenated humic substances on membrane fouling is unclear, but their presence in the reverse-osmosis product water and reverse-osmosis reject brine, along with volatile trihalomethanes, has led to environmental concerns. (USGS)
Mechanisms and kinetics study on the trihalomethanes formation with carbon nanoparticle precursors.
Du, Tingting; Wang, Yingying; Yang, Xin; Wang, Wei; Guo, Haonan; Xiong, Xinyu; Gao, Rui; Wuli, Xiati; Adeleye, Adeyemi S; Li, Yao
2016-07-01
With lots of carbon nanoparticles (CNPs) applied in the industry, the possibilities of their environmental release have received much attention. As the CNPs may enter drinking water systems, and persist in water and wastewater treatment systems, their possible reaction with disinfectants should be studied. In this study, the formation of trihalomethanes (THMs) with 5 types of carbon nanotubes (CNTs), graphene oxide (GO) and reduced graphene oxide (rGO) was investigated. All CNPs could act as precursors of THMs in aqueous phase. Total concentrations of THMs formed with CNPs varied from 0.24 to 0.95 μM, much lower than that formed from chlorinated Suwannee River Natural Organic Matter (SRNOM) (approximately 9 μM). The kinetics of THMs formation with GO was 0.0814 M(-1) s(-1), which is higher than most of the chlorinated humic acid obtained from different natural waters. The study indicates that during chlorination, C-Cl bond could be formed on the surface of CNPs. However, carbon atoms at the middle of two meta-positioned OH groups on the benzene ring are more active and may prefer to form THMs with chlorine oxidation. The influences of pH and reactant doses on the formation of THMs were also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors
Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; ...
2015-03-07
We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs,more » we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.« less
Canosa, Joel
2018-01-01
The aim of this study is the application of a software tool to the design of stripping columns to calculate the removal of trihalomethanes (THMs) from drinking water. The tool also allows calculating the rough capital cost of the column and the decrease in carcinogenic risk indeces associated with the elimination of THMs and, thus, the investment to save a human life. The design of stripping columns includes the determination, among other factors, of the height (HOG), the theoretical number of plates (NOG), and the section (S) of the columns based on the study of pressure drop. These results have been compared with THM stripping literature values, showing that simulation is sufficiently conservative. Three case studies were chosen to apply the developed software. The first case study was representative of small-scale application to a community in Córdoba (Spain) where chloroform is predominant and has a low concentration. The second case study was of an intermediate scale in a region in Venezuela, and the third case study was representative of large-scale treatment of water in the Barcelona metropolitan region (Spain). Results showed that case studies with larger scale and higher initial risk offer the best capital investment to decrease the risk. PMID:29562670
Xue, Chonghua; Wang, Qi; Chu, Wenhai; Templeton, Michael R
2014-12-01
This study examined the formation of disinfection by-products (DBPs), including nitrogenous DBPs, haloacetonitriles (HANs), and carbonaceous DBPs, trihalomethanes (THMs), upon chlorination of water samples collected from a conventional Chinese surface water treatment plant (i.e. applying coagulation, sedimentation, and filtration). Reductions in the average concentrations (and range, shown in brackets) of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) from 4.8 (3.0-7.3) μg/L and 0.52 (0.20-0.81) μg/L in 2010 to 2.4 (1.4-3.7) μg/L and 0.17 (0.11-0.31) μg/L in 2012, respectively, led to a decrease in HANs and THMs from 5.3 and 28.5 μg/L initially to 0.85 and 8.2 μg/L, as average concentrations, respectively. The bromide concentration in the source water also decreased from 2010 to 2012, but the bromine incorporation factor (BIF) for the THMs did not change significantly; however, for HAN the BIFs increased because the reduction in DON was higher than that of bromide. There was good linear relationship between DOC and THM concentrations, but not between DON and HANs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Valdivia-Garcia, Maria; Weir, Paul; Frogbrook, Zoe; Graham, David W; Werner, David
2016-10-20
Trihalomethanes (THMs) are conditionally carcinogenic compounds formed during chlorine disinfection in water treatment processes around the world. THMs occur especially when source waters are subject to marine influences, high and-or regular precipitation, and elevated levels of organic matter. THMs formation is then rooted in geographic, operational and climatic factors, the relative importance of which can only be derived from large datasets and may change in the future. Ninety three full-scale Scottish water treatment plants (WTPs) were assessed from Jan 2011 to Jan 2013 to identify factors that promote THMs formation. Correlation analysis showed that ambient temperature was the primary THMs formation predictor in potable water (r 2 = 0.66, p < 0.05) and water distribution systems (r 2 = 0.43, p = 0.04), while dissolved organic carbon (r 2 = 0.55, p < 0.001) and chloride (indicating marine influence; r 2 = 0.41, p < 0.001) also affected THMs formation. GIS mapping of median THMs levels indicated brominated THMs were most prevalent in coastal areas and on islands. This real-world dataset confirms both geographic and climatic factors are key to THMs formation. If ambient temperatures increase, THMs control will become more challenging, substantiating concerns about the impact of global warming on water quality.
Occurrence of regulated and emerging iodinated DBPs in the Shanghai drinking water.
Wei, Xiao; Chen, Xin; Wang, Xia; Zheng, Weiwei; Zhang, Dong; Tian, Dajun; Jiang, Songhui; Ong, Choon Nam; He, Gengsheng; Qu, Weidong
2013-01-01
Drinking water chlorination plays a pivotal role in preventing pathogen contamination against water-borne disease. However, chemical disinfection leads to the formation of halogenated disinfection by products (DBPs). Many DBPs are highly toxic and are of health concern. In this study, we conducted a comprehensive measurements of DBPs, including iodoacetic acid (IAA), iodoform (IF), nine haloacetic acids and four trihalomethanes in drinking waters from 13 water plants in Shanghai, China. The results suggested that IAA and IF were found in all the water treatment plants, with maximum levels of 1.66 µg/L and 1.25 µg/L for IAA and IF, respectively. Owing to deterioration of water quality, the Huangpu River has higher IAA and IF than the Yangtze River. Our results also demonstrated that low pH, high natural organic matter, ammonia nitrogen, and iodide in source waters increased IAA and IF formation. Compared to chlorine, chloramines resulted in higher concentration of iodinated DBP, but reduced the levels of trihalomethanes. This is the first study to reveal the widespread occurrence of IAA and IF in drinking water in China. The data provide a better understanding on the formation of iodinated disinfection byproducts and the findings should be useful for treatment process improvement and disinfection byproducts controls.
Gang, Dianchen; Clevenger, Thomas E; Banerji, Shankha K
2005-01-01
The impacts of alum coagulation on the distribution of disinfection by-products (DBPs), trihalomethanes (THMs), and haloacetic acids (HAAs) were evaluated under controlled chlorination conditions using four surface waters. Among the nine HAAs found in waters, dihaloacetic acids (X2AAs) have been found to be the dominant species in all of the raw and alum treated waters. Alum coagulation tends to remove more monohaloacetic acids (XAAs) and trihaloacetic acids (X3AAs) precursors than that of dihaloacetic acids (X2AAs). Alum coagulation treated water had a lower HAA9/TTHM ratio compared with that of the raw water. The increase of THM bromine incorporation factors (BIFalpha) value of alum treated water was statistically significant in comparison with the raw water. On average, BIFalpha increased by 54% after the alum coagulation process in these four different waters. This indicated that THM speciations shifted in favor of the more brominated compounds. However, alum coagulation treatment process had less effect on HAA bromi ne incorporation factors (BIFbeta)than it did on BIFalpha. Bromine incorporation factor (BIF) values decreased with time in the THM and HAA formation processes, especially within the first 10 h of the reaction time. This suggested that brominated THMs or HAAs formed faster than the chlorinated species in the initial period.
Occurrence of Regulated and Emerging Iodinated DBPs in the Shanghai Drinking Water
Wei, Xiao; Chen, Xin; Wang, Xia; Zheng, Weiwei; Zhang, Dong; Tian, Dajun; Jiang, Songhui; Ong, Choon Nam; He, Gengsheng; Qu, Weidong
2013-01-01
Drinking water chlorination plays a pivotal role in preventing pathogen contamination against water-borne disease. However, chemical disinfection leads to the formation of halogenated disinfection by products (DBPs). Many DBPs are highly toxic and are of health concern. In this study, we conducted a comprehensive measurements of DBPs, including iodoacetic acid (IAA), iodoform (IF), nine haloacetic acids and four trihalomethanes in drinking waters from 13 water plants in Shanghai, China. The results suggested that IAA and IF were found in all the water treatment plants, with maximum levels of 1.66 µg/L and 1.25 µg/L for IAA and IF, respectively. Owing to deterioration of water quality, the Huangpu River has higher IAA and IF than the Yangtze River. Our results also demonstrated that low pH, high natural organic matter, ammonia nitrogen, and iodide in source waters increased IAA and IF formation. Compared to chlorine, chloramines resulted in higher concentration of iodinated DBP, but reduced the levels of trihalomethanes. This is the first study to reveal the widespread occurrence of IAA and IF in drinking water in China. The data provide a better understanding on the formation of iodinated disinfection byproducts and the findings should be useful for treatment process improvement and disinfection byproducts controls. PMID:23555742
Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H
2015-04-15
Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Backer, Lorraine C; Coss, Angela M; Wolkin, Amy F; Flanders, W Dana; Reif, John S
2008-06-01
To assess the risk of bladder cancer in dogs from exposure to drinking water disinfection by-products and determine whether dogs could serve as sentinels for human bladder cancer associated with such exposures. Case-control study. 100 dogs with cancer of the urinary bladder and 100 control dogs. Case and control dogs were frequency-matched by age (within 2 years) and sex. Owners of dogs enrolled provided verbal informed consent and were interviewed by telephone. The telephone questionnaire included a complete residence history for each dog. Each dog's total exposure history to trihalomethanes was reconstructed from its residence history and corresponding drinking water utility company data. No association was detected between increasing years of exposure to chlorinated drinking water and risk of bladder cancer. Dogs with bladder cancer were exposed to higher total trihalomethanes concentrations than control dogs; however, the difference was not significant. Although humans and their dogs live in the same household, the activity patterns of dogs may lead to lower exposures to household tap water. Thus, although exposure to disinfection by-products in tap water may be a risk factor for human bladder cancer, this may not be true for canine bladder cancer at the concentrations at which dogs are exposed.
Impacts of Typhoon Soudelor (2015) on the water quality of Taipei, Taiwan
Fakour, Hoda; Lo, Shang-Lien; Lin, Tsair-Fuh
2016-01-01
Typhoon Soudelor was one of the strongest storms in the world in 2015. The category 5 hurricane made landfall in Taiwan on August 8, causing extensive damage and severe impacts on the environment. This paper describes the changes of trihalomethane (THM) concentrations in tap and drinking fountain water in selected typhoon-affected areas in Taipei before and after the typhoon. Samples were taken from water transmission mains at various distances from the local water treatment plant. The results showed that organic matter increased between pre- and post-typhoon periods with a greater proportion of aromatic compounds. Although drinking fountains showed moderately less total trihalomethane (TTHM) levels than that of tap water, the intake of high turbidity water considerably diminished the efficiency of their purification systems after the typhoon. The percentage distribution of THM species increased throughout the distribution network, probably due to a longer contact time between chlorine and the organic matter in the pipelines. After 2 to 5 min of boiling, THM reduction was considerable in all cases with the greater extent in post-typhoon samples. It is evident that extreme weather conditions may have a severe impact on water quality, and thus more cautious strategies should be adopted in such cases. PMID:27125312
NASA Astrophysics Data System (ADS)
Valdivia-Garcia, Maria; Weir, Paul; Frogbrook, Zoe; Graham, David W.; Werner, David
2016-10-01
Trihalomethanes (THMs) are conditionally carcinogenic compounds formed during chlorine disinfection in water treatment processes around the world. THMs occur especially when source waters are subject to marine influences, high and-or regular precipitation, and elevated levels of organic matter. THMs formation is then rooted in geographic, operational and climatic factors, the relative importance of which can only be derived from large datasets and may change in the future. Ninety three full-scale Scottish water treatment plants (WTPs) were assessed from Jan 2011 to Jan 2013 to identify factors that promote THMs formation. Correlation analysis showed that ambient temperature was the primary THMs formation predictor in potable water (r2 = 0.66, p < 0.05) and water distribution systems (r2 = 0.43, p = 0.04), while dissolved organic carbon (r2 = 0.55, p < 0.001) and chloride (indicating marine influence; r2 = 0.41, p < 0.001) also affected THMs formation. GIS mapping of median THMs levels indicated brominated THMs were most prevalent in coastal areas and on islands. This real-world dataset confirms both geographic and climatic factors are key to THMs formation. If ambient temperatures increase, THMs control will become more challenging, substantiating concerns about the impact of global warming on water quality.
Yang, Liyang; Kim, Daekyun; Uzun, Habibullah; Karanfil, Tanju; Hur, Jin
2015-02-01
The formation of disinfection byproducts (DBPs) is a major challenge in drinking water treatments. This study explored the applicability of fluorescence excitation-emission matrices and parallel factor analysis (EEM-PARAFAC) for assessing the formation potentials (FPs) of trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA), and the treatability of THM and NDMA precursors in nine drinking water treatment plants. Two humic-like and one tryptophan-like components were identified for the samples using PARAFAC. The total THM FP (TTHM FP) correlated strongly with humic-like component C2 (r=0.874), while NDMA FP showed a moderate and significant correlation with the tryptophan-like component C3 (r=0.628). The reduction by conventional treatment was more effective for C2 than C3, and for TTHM FP than NDMA FP. The treatability of DOM and TTHM FP correlated negatively with the absorption spectral slope (S275-295) and biological index (BIX) of the raw water, but it correlated positively with humification index (HIX). Our results demonstrated that PARAFAC components were valuable for assessing DBPs FP in drinking water treatments, and also that the raw water quality could affect the treatment efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Knight, Nicole; Watson, Kalinda; Farré, Maria José; Shaw, Glen
2012-07-01
This study assesses the prevalence of disinfection by-product (DBP) precursors in some Southeast Queensland drinking water sources by conducting formation potential experiments for the four regulated trihalomethanes (THMs), and the potent carcinogen, N-nitrosodimethylamine (NDMA). NDMA formation potentials were consistently low (<5-21 ng/L), and total THM (tTHM) formation potentials were consistently below the Australian Drinking Water Guideline (250 μg/L). NDMA concentration of finished drinking waters was also monitored and found to be <5 ng/L in all cases. The effect of coagulation and advanced oxidation on the formation of NDMA and THMs is also reported. UV/H(2)O(2) pre-treatment was effective in producing water with very low THMs concentrations, and UV irradiation was an effective method for NDMA degradation. H(2)O(2) was not required for the observed NDMA degradation to occur. Coagulation using alum, ferric chloride or poly(diallyldimethylammonium chloride) (polyDADMAC) was ineffective in removing DBPs precursors from the source water studied, irrespective of the low dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) attained. Rather, coagulation with polyDADMAC caused an increase in NDMA formation potential upon chloramination, and all coagulants led to an increased tTHM formation potential upon chlorination due to the high bromide concentration of the source water studied.
Biological Treatment of Water Disinfection Byproducts using ...
Major disinfection by-products (DBPs) from the chlorination process of drinking water include trihalomethanes (THMs) and haloacetic acides (HAA5). THMs mainly consist of chloroform, and other harsh chemicals. Prolonged consumptions of drinking water containing high levels of THMs has been linked with diseases of the liver, kidneys, bladder, or central nervous system and may increase likelihood of cancer. A risk also exists for THMs exposure via inhalation while showering, bathing or washing clothes and dishes. Due to these risks, the U.S. EPA regulate THMs content in drinking water. This research investigates biological degradation of THM using chloroform as a model compound. The study aims to decrease possible risks of THMs through filtration. Throughout this year’s presentations, there is a common theme of health and safety concerns. UC researchers are working hard to clean water ways of naturally occurring contaminates as well as man-made toxins found in our waterways. The significance of these presentations translates into the promise of safer environments, and more importantly saved lives, as UC’s faculty continues to produce real-world solutions to problems threatening the world around us. A biotech process has been developed and demonstrated that effectively remove and treat volatile disinfection by-products from drinking water. The process strips low concentration disinfection by-products, such as trihalomethanes, that are formed during the chlori
Lin, Jiajia; Chen, Xi; Ansheng, Zhu; Hong, Huachang; Liang, Yan; Sun, Hongjie; Lin, Hongjun; Chen, Jianrong
2018-09-30
Present study aimed to generate multiple regression models to estimate the formation of trihalomethanes (THMs), haloacetonitriles (HANs) and haloacetic acids (HAAs) during chloramination of source water obtained from Yangtze River Delta Region, China. The results showed that the regression models for trichloromethane (TCM), dichloroacetonitrile (DCAN), dichloroacetic acid (DCAA), dihaloacetic acids (DHAAs), 5 HAAs species regulated by U.S. EPA (HAA 5 ) and total haloacetic acids (HAA 9 ) have good evaluation ability (prediction accuracy reached 81-94%), while the models for total haloacetonitriles (HAN 4 ), trichloroacetic acid (TCAA), trihaloacetic acids (THAAs) and total trihalomethanes (THM 4 ), they appeared relative low prediction accuracy (58-72%). For THMs, dissolved organic nitrogen (DON) was their key organic precursor, yet for HAN, DHAAs and THAAs, UVA 254 played the dominant role. The other key factors influencing DBP formation included the bromide (THM 4 , DHAAs and HAA 9 ), reaction time (DCAN, HAN 4 ), chloramine dose (TCM, DCAA, TCAA, HAA 5 and THAAs). These results provided important information for water works to optimize the water treatment process to control DBPs, and give an evaluating method for DBPs levels when estimating the health risks related with DBP exposure during chloramination. Copyright © 2018 Elsevier Inc. All rights reserved.
Pacheco-Fernández, Idaira; Herrera-Fuentes, Ariadna; Delgado, Bárbara; Pino, Verónica; Ayala, Juan H; Afonso, Ana M
2017-03-01
The environmental monitoring of trihalomethanes (THMs) has been performed by setting up a dispersive liquid-liquid microextraction method in combination with gas chromatography (GC)-mass spectrometry (MS). The optimized method only requires ∼26 µL of decanol as extractant solvent, dissolved in ∼1 mL of acetone (dispersive solvent) for 5 mL of the environmental water containing THMs. The mixture is then subjected to vortex for 1 min and then centrifuged for 2 min at 3500 rpm. The microdroplet containing the extracted THMs is then sampled with a micro-syringe, and injected (1 µL) in the GC-MS. The method is characterized for being fast (3 min for the entire sample preparation step) and environmentally friendly (low amounts of solvents required, being all non-chlorinated), and also for getting average relative recoveries of 90.2-106% in tap waters; relative standard deviation values always lower than 11%; average enrichment factors of 48-49; and detection limits down to 0.7 µg·L-1. Several waters: tap waters, pool waters, and wastewaters were successfully analyzed with the method proposed. Furthermore, the method was used to monitor the formation of THMs in wastewaters when different chlorination parameters, namely temperature and pH, were varied.
Water disinfection agents and disinfection by-products
NASA Astrophysics Data System (ADS)
Ilavský, J.; Barloková, D.; Kapusta, O.; Kunštek, M.
2017-10-01
The aim of this work is to describe factors of water quality change in the distribution network and legislative requirements in Slovakia for disinfectants and disinfection byproducts (DBPs). In the experimental part, the time dependence of the application of the chlorine dioxide and sodium hypochlorite on the formation of some by-products of disinfection for drinking water from WTP Hriňová is studied. We monitored trihalomethanes, free chlorine, chlorine dioxide and chlorites.
Makris, Konstantinos C; Andrianou, Xanthi D; Charisiadis, Pantelis; Burch, James B; Seth, Ratanesh K; Ioannou, Androniki; Picolos, Michael; Christophi, Costas A; Chatterjee, Saurabh
2016-01-01
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder in the Western world, commonly diagnosed in the majority of obese patients with type 2 diabetes mellitus (T2DM). Metabolic disrupting chemicals with short half-lives, such as those of halogenated structure (trihalomethanes, THM) have been linked with hepatic insulin resistance phenomena in animal studies. However, human studies evaluating the role of THM exposure on liver pathogenesis and T2DM disease process are scarce. The objectives of this study were to: i) determine the association of urinary brominated THM (BrTHM) levels and T2DM disease status, and ii) investigate the association between urinary BrTHM levels and serum alanine aminotransferase (ALT) concentrations, often used as surrogate markers of NAFLD. A pilot case-control study was conducted in Nicosia, Cyprus (n=95). Cases were physician-diagnosed T2DM patients and controls were healthy individuals. Liver enzymes, leptin and TNF-α were measured in sera, while urinary THM levels were measured using tandem mass spectrometry. Diabetics had higher levels of serum leptin, body mass index and ALT than the controls. Among all study participants those with serum ALT levels above the median (17IU/L) had higher mean tribromomethane (TBM) concentrations compared to those with serum ALT below 17IU/L. A significant increase in the odds of having above the median serum ALT levels [OR 6.38, 95% CI: 1.11, 42.84 (p=0.044)] was observed for each unit increase in creatinine-unadjusted urinary TBM levels, along with BMI and past smoking, after adjusting for possible confounders, such as urinary creatinine, age, sex, and leptin; no other THM compound showed a significant association with serum ALT. Logistic regression models for T2DM using the urinary BrTHM as exposure variables did not reach the predetermined level of significance. The interplay between exposures to BrTHM and the initiation of key pathophysiological events relating to hepatic injury (ALT) and inflammation (leptin) was recognized via the use of selected biomarkers of effect. Our evidence that THM could act as hepatic toxins with a further initiation of diabetogenic effects call for additional studies to help us better understand the disease process of the two co-morbidities (NAFLD and T2DM). Copyright © 2016 Elsevier Ltd. All rights reserved.
Smith, Rachel B.; Edwards, Susan C.; Best, Nicky; Wright, John; Nieuwenhuijsen, Mark J.; Toledano, Mireille B.
2015-01-01
Background: Evidence for a relationship between trihalomethane (THM) or haloacetic acid (HAA) exposure and adverse fetal growth is inconsistent. Disinfection by-products exist as complex mixtures in water supplies, but THMs and HAAs have typically been examined separately. Objectives: We investigated joint exposure at the individual level to THMs and HAAs in relation to birth weight in the multi-ethnic Born in Bradford birth cohort. Methods: Pregnant women reported their water consumption and activities via questionnaire. These data were combined with area-level THM and HAA concentrations to estimate integrated uptake of THMs into blood and HAA ingestion, accounting for boiling/filtering. We examined the relationship between THM and HAA exposures and birth weight of up to 7,438 singleton term babies using multiple linear regression, stratified by ethnicity. Results: Among Pakistani-origin infants, mean birth weight was significantly lower in association with the highest versus lowest tertiles of integrated THM uptake (e.g., –53.7 g; 95% CI: –89.9, –17.5 for ≥ 1.82 vs. < 1.05 μg/day of total THM) and there were significant trends (p < 0.01) across increasing tertiles, but there were no associations among white British infants. Neither ingestion of HAAs alone or jointly with THMs was associated with birth weight. Estimated THM uptake via showering, bathing, and swimming was significantly associated with lower birth weight in Pakistani-origin infants, when adjusting for THM and HAA ingestion via water consumption. Conclusions: To our knowledge, this is the largest DBP and fetal growth study to date with individual water use data, and the first to examine individual-level estimates of joint THM–HAA exposure. Our findings demonstrate associations between THM, but not HAA, exposure during pregnancy and reduced birth weight, but suggest this differs by ethnicity. This study suggests that THMs are not acting as a proxy for HAAs, or vice-versa. Citation: Smith RB, Edwards SC, Best N, Wright J, Nieuwenhuijsen MJ, Toledano MB. 2016. Birth weight, ethnicity, and exposure to trihalomethanes and haloacetic acids in drinking water during pregnancy in the Born in Bradford cohort. Environ Health Perspect 124:681–689; http://dx.doi.org/10.1289/ehp.1409480 PMID:26340797
Leavey-Roback, Shannon L; Sugar, Catherine A; Krasner, Stuart W; Suffet, Irwin H Mel
2016-05-15
The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept. This type of analysis has not been used previously with trihalomethane (THM) models due to the fact that those studies did not sample such a large number and range of plants as was done in this NDMA study. Ultraviolet absorbance at 254 nm (UV254) in the plant influent and pre-chlorination time used at the plant were highly correlated in all models with NDMA concentration in finished water as well as the percentage change between NDMA formation potential in the plant influent and actual formation in the finished water. Specifically, an increase in UV254 absorbance in a model was associated with an increase in NDMA and an increase in pre-chlorination time in a model was associated with a decrease in NDMA. Other water quality parameters including sucralose concentration in the plant influent, polyDADMAC polymer dose, pH, and chlorine-to-ammonia weight ratio used in the plant were also correlated with NDMA concentration in the distribution system. Lastly, NDMA precursor loading was correlated with the use of polyDADMAC (where precursors were added) and the use of ozone and granular activated carbon (GAC) treatment (where precursors were removed). Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Ting; Xu, Yongpeng; Liu, Zhiquan; Zhu, Shijun; Shi, Wenxin; Cui, Fuyi
2016-04-01
Based on the fact that recycling of combined filter backwash water (CFBW) directly to drinking water treatment plants (WTP) is considered to be a feasible method to enhance pollutant removal efficiency, we were motivated to evaluate the genotoxicity of water samples from two pilot-scale drinking water treatment systems, one with recycling of combined backwash water, the other one with a conventional process. An integrated approach of the comet and micronucleus (MN) assays was used with zebrafish (Danio rerio) to investigate the water genotoxicity in this study. The total organic carbon (TOC), dissolved organic carbon (DOC), and trihalomethane formation potential (THMFP), of the recycling process were lower than that of the conventional process. All the results showed that there was no statistically significant difference (P>0.05) between the conventional and recycling processes, and indicated that the genotoxicity of water samples from the recycling process did not accumulate in 15 day continuous recycling trial. It was worth noting that there was correlation between the concentrations of TOC, DOC, UV254, and THMFPs in water and the DNA damage score, with corresponding R(2) values of 0.68, 0.63, 0.28, and 0.64. Nevertheless, both DNA strand breaks and MN frequency of all water samples after disinfection were higher than that of water samples from the two treatment units, which meant that the disinfection by-products (DBPs) formed by disinfection could increase the DNA damage. Both the comet and MN tests suggest that the recycling process did not increase the genotoxicity risk, compared to the traditional process. Copyright © 2015. Published by Elsevier B.V.
The occurrence of volatile organic compounds in aquifers of the United States
Lapham, Wayne W.; Carter, Janet M.; Zogorski, John S.; Valder, Joshua F.
2006-01-01
The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program recently completed a national assessment of volatile organic compounds (VOCs) in ground water (Zogorski and others, 2006). As part of this assessment, samples of ambient ground water collected from 3,498 wells during 1985-2002 were selected for characterizing the occurrence of 55 VOCs in 98 aquifer studies. The 55 VOCs were assigned to the following groups on the basis of their primary usage (or origin): (1) fumigants, (2) gasoline hydrocarbons, (3) gasoline oxygenates, (4) organic synthesis compounds, (5) refrigerants, (6) solvents, and (7) trihalo-methanes (chlorination by-products). The samples were collected throughout the conterminous United States as well as Alaska and Hawaii. The sampled wells had a variety of uses including domestic supply (61 percent), public supply (15 percent), monitoring (10 percent), other (13 percent), and unknown (1 percent). NAWQA aquifer studies are large-scale resource assessments of ground water that provide a general characterization of water-quality conditions in locally and regionally important aquifers or portions thereof. In general, the aquifers (or portions thereof) selected for study were some of the most intensively used aquifers for drinking water in greaterHawaiiOahuAlaskathe Nation. The 98 aquifer studies collectively provide an important national perspective on the current (1985-2002) extent of VOC contamination and regional patterns of VOC occurrence in ground water. More information about this national assessment of VOCs is available at a supporting Web site (http://water.usgs.gov/nawqa/vocs/national_assessment).
Wei, Qunshan; Wang, Dongsheng; Wei, Qia; Qiao, Chunguang; Shi, Baoyou; Tang, Hongxiao
2008-06-01
Dissolved organic matter (DOM) and its potential to form disinfection by-products (DBPs) during drinking water treatment raise challenges to water quality control. Understanding both chemical and physical characteristics of DOM in source waters is key to better water treatment. In this study, the DOM from four typical source waters in China was fractionated by XAD resin adsorption (RA) and ultrafiltration (UF) techniques. The trihalomethane formation potential (THMFP) of all fractions in the DOM were investigated to reveal the major THM precursors. The fraction distributions of DOM could be related to their geographical origins in a certain extent. The dominant chemical fraction as THM precursors in the DOM from south waters (East-Lake reservoir in Shenzhen and Peal rivers in Guangzhou) was hydrophobic acid (HoA). The size fraction with molecular weight (MW) <1 kDa in both south waters had the highest THMFP. The results of cluster analysis showed that the parameters of fractions including DOC percentage (DOC%), UV254%, SUVA254 (specific UV254 absorbance) and THMFP were better for representing the differences of DOM from the studied waters than specific THMFP (STHMFP). The weak correlation between SUVA254 and STHMFP for either size or XAD fractions suggests that whether SUVA254 can be used as an indicator for the reactivity of THM formation is highly dependent on the nature of organic matter.
Han, Qi; Yan, Han; Zhang, Feng; Xue, Nan; Wang, Yan; Chu, Yongbao; Gao, Baoyu
2015-10-30
Due to concerns over health risk of disinfection byproducts (DBPs), removal of trihalomethanes (THMs) precursor from bio-treated wastewater by coagulation and adsorption was investigated in this study. Ultrafiltration (UF) membranes and nonionic resins were applied to fractionate THMs precursor into various molecular weight (MW) fractions and hydrophobic/hydrophilic fractions. Characteristics of coagulated water and adsorbed water were evaluated by the three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy. Results showed that coagulation and adsorption were suitable for removing different hydrophobic/hydrophilic and fluorescent fractions. Coagulation decreased THMs concentration in hydrophobic acids (HoA) fraction from 59 μg/L to 39 μg/L, while the lowest THMs concentration (9 μg/L) in hydrophilic substances (HiS) fraction was obtained in adsorbed water. However, both coagulation and adsorption were ineffective for removing fractions with MW<5 kDa. Although coagulation and adsorption processes could reduce THMs formation, some specific THMs formation potential (STHMFP) in residual dissolved organic matter (DOM) fractions increased in this study. Hydrophobic acid and hydrophilic fractions increased after coagulation treatment, and low MW and hydrophobic fractions increased after adsorption treatment. In addition, active carbon adsorbed more organic matter than coagulant, but brominated disinfection byproducts (Br-DBPs) in adsorbed water turned to the major THMs species after chlorination. Copyright © 2015 Elsevier B.V. All rights reserved.
Detection and quantification of trihalomethanes in drinking water from Alexandria, Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, A.A.M.; Benfenati, E.; Fanelli, R.
1996-03-01
Trihalomethanes (THMs) are one group of harmful chlorinated compounds which are known to contaminate drinking water. The total concentration of the four THMs in drinking water may vary up to 1000 {mu}g/l but it should not exceed 100 {mu}g/l. Toxicological studies suggest that chloroform and other THMs may have detrimental effect on human health. Chloroform was reported to cause cancer in experimental animals. Other THMs, based on the structural similarity to chloroform, may be also classified as health hazard compounds. Accordingly, THMs in water supplies should be monitored closely so that measures may be taken to minimize or eliminate theirmore » presence whenever the concentration approach levels of concern. Little is known about the levels of THMs in drinking water of Egypt compared to other countries. Few studies have been reported from Cairo. To our knowledge, no studies concerning the THMs levels in drinking water have been reported from Alexandria. Therefore, the aim of this study is to detect and quantitate the levels of THMs in drinking water from some main districts in Alexandria, Solid Phase Micro Extraction (SPME) is a fast, sensitive, inexpensive, portable and solvent-free method for extracting organic compounds from aqueous samples. It is amenable to automation and can be used with any gas chromatograph (or mass spectrometer). The technique meets detection limits specified by EPA methods and was therefore used in this work.« less
Brooks, Emma; Freeman, Christopher; Gough, Rachel; Holliman, Peter J
2015-12-15
Rising dissolved organic carbon (DOC) concentrations in many upland UK catchments represents a challenge for drinking water companies, in particular due to the role of DOC as a precursor in the formation of trihalomethanes (THMs). Whereas traditionally, the response of drinking water companies has been focussed on treatment processes, increasingly, efforts have been made to better understanding the role of land use and catchment processes in affecting drinking water quality. In this study, water quality, including DOC and THM formation potential (THMFP) was assessed between the water source and finished drinking water at an upland and a lowland catchment. Surprisingly, the lowland catchment showed much higher reservoir DOC concentrations apparently due to the influence of a fen within the catchment from where a major reservoir inflow stream originated. Seasonal variations in water quality were observed, driving changes in THMFP. However, the reservoirs in both catchments appeared to dampen these temporal fluctuations. Treatment process applied in the 2 catchments were adapted to reservoir water quality with much higher DOC and THMFP removal rates observed at the lowland water treatment works where coagulation-flocculation was applied. However, selectivity during this DOC removal stage also appeared to increase the proportion of brominated THMs produced. Copyright © 2015. Published by Elsevier B.V.
Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.
Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung
2013-05-15
Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P < 0.05) chloral hydrate, highlighting the bacterial phenotype's impact on the bacteria-derived DBPFP. Pipe material appeared to affect the DBPFP of bacteria, with 4-28% lower bromine incorporation factor for biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.
Formation of iodinated trihalomethanes during UV/chloramination with iodate as the iodine source.
Zhang, Tian-Yang; Lin, Yi-Li; Wang, An-Qi; Tian, Fu-Xiang; Xu, Bin; Xia, Sheng-Ji; Gao, Nai-Yun
2016-07-01
Iodinated trihalomethanes (I-THMs) are a group of emerging disinfection by-products with high toxicity, and iodide (I(-)) as well as iodinated organic compounds are expected to be their iodine sources. Nevertheless, in this study, iodate (IO3(-)) was proven to be a new iodine source of I-THM formation during UV/chloramination. In the iodate-containing waters (without any other iodine sources), I-THM formation increased with the increase of UV dose, IO3(-) and NH2Cl concentrations. With the increase of Br(-)/IO3(-) molar ratio, I-THM formation (especially for the brominated species) increased. Besides, NOM species could affect I-THM formation from IO3(-) during UV/chloramination. Fulvic acid could promote IO3(-) phototransformation to I(-) but humic acid impeded the production of I(-) during UV irradiation. Under realistic drinking water treatment conditions (DOC = 5.0 mg-C/L, IO3(-) = 12.7 μg-I/L, UV dose = 50 mJ/cm(2), NH2Cl = 5 mg-Cl2/L), CHCl2I was detected as 0.17 μg/L using solid-phase microextraction method, and the production rate of I-THMs from IO3(-) was about 7% of that from I(-). Copyright © 2016 Elsevier Ltd. All rights reserved.
Description of trihalomethane levels in three UK water suppliers.
Whitaker, Heather; Nieuwenhuijsen, Mark J; Best, Nicola; Fawell, John; Gowers, Alison; Elliot, Paul
2003-01-01
Samples of drinking water are routinely analysed for four trihalomethanes (THMs), which are indicators of by-products of disinfection with chlorine, by UK water suppliers to demonstrate compliance with regulations. The THM data for 1992-1993 to 1997-1998 for three water suppliers in the north and midlands of England were made available for a UK epidemiological study of the association between disinfection by-products and adverse birth outcomes. This paper describes the THM levels in these three supply regions and discusses possible sources of variation. THM levels varied between different suppliers' water, and average THM levels were within the regulatory limits. Chloroform was the predominant THM in all water types apart from the ground water of one supplier. The supplier that distributed more ground and lowland surface water had higher dibromochloromethane (DBCM) and bromoform levels and lower chloroform levels than the other two suppliers. In the water of two suppliers, seasonal fluctuations in bromodichloromethane (BDCM) and DBCM levels were found with levels peaking in the summer and autumn. In the other water supplier, chloroform levels followed a similar seasonal trend whereas BDCM and DBCM levels did not. For all three water suppliers, chloroform levels declined throughout 1995 when there was a drought period. There was a moderate positive correlation between the THMs most similar in their structure (chloroform and BDCM, BDCM and DBCM, and DBCM and bromoform) and a slight negative correlation between chloroform and bromoform levels.
Abouleish, Mohamed Y Z; Wells, Martha J M
2015-07-15
Humic substances (HSs) are precursors for the formation of hazardous disinfection by-products (DBPs) during chlorination of water. Various surrogate parameters have been used to investigate the generation of DBPs by HS precursors and the removal of these precursors by activated carbon treatment. Dissolved organic carbon (DOC)- and ultraviolet absorbance (UVA254)-based isotherms are commonly reported and presumed to be good predictors of the trihalomethane formation potential (THMFP). However, THMFP-based isotherms are rarely published such that the three types of parameters have not been compared directly. Batch equilibrium experiments on activated carbon were used to generate constant-initial-concentration sorption isotherms for well-characterized samples obtained from the International Humic Substances Society (IHSS). HSs representing type (fulvic acid [FA], humic acid [HA]), origin (aquatic, terrestrial), and geographical source (Nordic, Suwannee, Peat, Soil) were examined at pH6 and pH9. THMFP-based isotherms were generated and compared to determine if DOC- and UVA254-based isotherms were good predictors of the THMFP. The sorption process depended on the composition of the HSs and the chemical nature of the activated carbon, both of which were influenced by pH. Activated carbon removal of THM-precursors was pH- and HS-dependent. In some instances, the THMFP existed after UVA254 was depleted. Copyright © 2015 Elsevier B.V. All rights reserved.
Valdivia-Garcia, Maria; Weir, Paul; Frogbrook, Zoe; Graham, David W.; Werner, David
2016-01-01
Trihalomethanes (THMs) are conditionally carcinogenic compounds formed during chlorine disinfection in water treatment processes around the world. THMs occur especially when source waters are subject to marine influences, high and-or regular precipitation, and elevated levels of organic matter. THMs formation is then rooted in geographic, operational and climatic factors, the relative importance of which can only be derived from large datasets and may change in the future. Ninety three full-scale Scottish water treatment plants (WTPs) were assessed from Jan 2011 to Jan 2013 to identify factors that promote THMs formation. Correlation analysis showed that ambient temperature was the primary THMs formation predictor in potable water (r2 = 0.66, p < 0.05) and water distribution systems (r2 = 0.43, p = 0.04), while dissolved organic carbon (r2 = 0.55, p < 0.001) and chloride (indicating marine influence; r2 = 0.41, p < 0.001) also affected THMs formation. GIS mapping of median THMs levels indicated brominated THMs were most prevalent in coastal areas and on islands. This real-world dataset confirms both geographic and climatic factors are key to THMs formation. If ambient temperatures increase, THMs control will become more challenging, substantiating concerns about the impact of global warming on water quality. PMID:27762332
Catto, Cyril; Charest-Tardif, Ginette; Rodriguez, Manuel; Tardif, Robert
2013-01-01
The variability of trihalomethane (THM) levels in drinking water raises the question of whether or not short-term variations (within-day) should be accounted for when assessing exposure to contaminants suspected of being carcinogenic and reprotoxic agents. The purpose of this study was to determine the magnitude of the impact on predicted biological levels of THMs (internal doses) exerted by within-day variations of THMs in drinking water. A database extracted from a campaign in the Québec City distribution system served to produce 81, 79 and 64 concentration profiles for the three most abundant THMs, namely chloroform (TCM), dichlorobromomethane (DCBM) and chlorodibromomethane (CDBM), respectively. Using a physiologically based toxicokinetic modeling approach, we simulated exposures (1.5 l water per day and a 10-min shower) based on each of these profiles and predicted, for 2000 individuals (Monte-Carlo simulations), maximum blood concentrations (Cmax), areas under the time versus blood concentrations curve (24 h-AUCcv) and total absorbed doses (ADs). Three different hypotheses were tested: [A] assuming a constant THM concentration in water (e.g., mean value of a day); [B] accounting for within-day variations in THM levels; and [C] a worst-case scenario assuming within-day variations and showering while THM levels were maximal. For each exposure profile, exposure indicator and individual, we calculated the ratios of values obtained according to each hypothesis (e.g., CmaxB/CmaxA and CmaxC/CmaxA) and the values corresponding to the 5th and 95th percentiles of these ratios. The closer these percentiles are to the value of 1, the smaller the error associated with assuming constant THM concentrations rather than their actual variability. Results showed that the minimal gap between these percentiles was TCM-AD(B)/TCM-AD(A) (5th=0.91; 95th=1.09), whereas the maximal gap was CDBM-Cmax(C)/CDBM-Cmax(A) (5th=0.50; 95th=3.40). Overall, TCM and ADs were the less affected (TCM
Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece
2007-01-01
Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted to a pH of 7, dosed with sodium hypochlorite, and incubated for 168 hours (seven days) at 25 ?C to form disinfection by-products (DBPs). Concentrations of the DBPs-trihalomethanes, haloacetic acids, haloacetonitriles, and chlorate-were measured. Concentrations of these compounds, with few exceptions, were higher in water from Coastal Plain wells than from wells in glacial and bedrock aquifers. The organic-carbon fractions were dosed with sodium hypochlorite, incubated for 168 hours at 25 ?C, and analyzed for trihalomethanes, haloacetic acids, haloacetonitriles, and chlorate. Concentrations of trihalomethanes and haloacetic acids were higher in most of the hydrophobic organic-acid fractions than in the hydrophilic fractions, with the highest concentrations in samples from Coastal Plain aquifers. Traces of haloacetonitriles were measured, mostly in the hydrophilic fraction. The aromaticity of the precursor DOC, as estimated by measurements of the absorbance of ultraviolet light at 254 nanometers, apparently is a factor in the DBP formation potentials determined, as aromaticity was greater in the samples that developed high concentrations of DBPs. VOCs may have contributed to the organic carbon present in some of the samples, but much of the DOC present in water from the 20 wells appeared to be natural in origin. The sediments of the Coastal Plain aquifers, in particular, contain substantial amounts of organic matter, which contribute ammonia, organic nitrogen, and aromatic DOC compounds to the ground water. Thus, the geologic characteristics of the aquifers appear to be a major factor in the potential for ground water to form DBPs when chlorinated.
Volatile halogenated hydrocarbons in foods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyahara, Makoto; Toyoda, Masatake; Saito, Yukio
1995-02-01
Volatile halogenated organic compounds were determined in foods. Statistical treatment of the data for 13 sampled from 20 families living in suburban Tokyo (Saitama prefecture) indicated that the foods were contaminated by water pollution and/or substances introduced by the process of food production. Butter and margarine were contaminated by chlorinated ethylene, ethane, and related compounds released by dry cleaning and other operations. Soybean sprouts and tofu (soybean curd) contained chloroform and related trihalomethanes absorbed during the production process. 27 refs., 6 figs., 5 tabs.
Photolytic removal of DBPs by medium pressure UV in swimming pool water.
Hansen, Kamilla M S; Zortea, Raissa; Piketty, Aurelia; Vega, Sergio Rodriguez; Andersen, Henrik Rasmus
2013-01-15
Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min(-1) for chloroform to 0.523 min(-1) for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m(-3) d(-1) and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m(-3) d(-1), while 2.6 kWh m(-3) d(-1) was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m(-3) d(-1). It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes. Copyright © 2012 Elsevier B.V. All rights reserved.
Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J
2015-12-01
The regional variability of the probability of occurrence of high total trihalomethane (TTHM) levels was assessed using multilevel logistic regression models that incorporate environmental and infrastructure characteristics. The models were structured in a three-level hierarchical configuration: samples (first level), drinking water utilities (DWUs, second level) and natural regions, an ecological hierarchical division from the Quebec ecological framework of reference (third level). They considered six independent variables: precipitation, temperature, source type, seasons, treatment type and pH. The average probability of TTHM concentrations exceeding the targeted threshold was 18.1%. The probability was influenced by seasons, treatment type, precipitations and temperature. The variance at all levels was significant, showing that the probability of TTHM concentrations exceeding the threshold is most likely to be similar if located within the same DWU and within the same natural region. However, most of the variance initially attributed to natural regions was explained by treatment types and clarified by spatial aggregation on treatment types. Nevertheless, even after controlling for treatment type, there was still significant regional variability of the probability of TTHM concentrations exceeding the threshold. Regional variability was particularly important for DWUs using chlorination alone since they lack the appropriate treatment required to reduce the amount of natural organic matter (NOM) in source water prior to disinfection. Results presented herein could be of interest to authorities in identifying regions with specific needs regarding drinking water quality and for epidemiological studies identifying geographical variations in population exposure to disinfection by-products (DBPs).
Lin, Jr-Lin; Hua, Lap-Cuong; Hung, Shih Kai; Huang, Chihpin
2018-01-01
The cyanobacteria-bloom in raw waters frequently causes an unpredictable chemical dosing of preoxidation and coagulation for an effective removal of algal cells in water treatment plants. This study investigated the effects of preoxidation with NaOCl and ClO 2 on the coagulation-flotation effectiveness in the removal of two commonly blooming cyanobacteria species, Microcystis aeruginosa (MA) and Cylindrospermopsis raciborskii (CR), and their corresponding trihalomethane (THM) formation potential. The results showed that dual dosing with NaOCl plus ClO 2 was more effective in enhancing the deformation of cyanobacterial cells compared to single dosing with NaOCl, especially for CR-rich water. Both preoxidation approaches for CR-rich water effectively reduced the CR cell count with less remained dissolved organic carbon (DOC), which benefited subsequent coagulation-flotation. However, preoxidation led to an adverse release of algogenic organic matter (AOM) in the case of MA-rich water. The release of AOM resulted in a poor removal in MA cells and a large amount of THM formation after oxidation-assisted coagulation-flotation process. The reduction in THM formation potential of CR-rich waters is responsible for effective algae and DOC removal by alum coagulation. It is concluded that the species-specific characteristic of cyanobacteria and their AOM released during chlorination significantly influences the performance of coagulation-flotation for AOM removal and corresponding THM formation. Copyright © 2017. Published by Elsevier B.V.
Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture.
Zhao, Siyan; Rogers, Matthew J; He, Jianzhong
2017-07-01
Trihalomethanes such as chloroform and bromoform, although well-known as a prominent class of disinfection by-products, are ubiquitously distributed in the environment due to widespread industrial usage in the past decades. Chloroform and bromoform are particularly concerning, of high concentrations detected and with long half-lives up to several hundred days in soils and groundwater. In this study, we report a Dehalobacter- and Desulfovibrio-containing co-culture that exhibits dehalogenation of chloroform (~0.61 mM) to dichloromethane and bromoform (~0.67 mM) to dibromomethane within 10-15 days. This co-culture was further found to dechlorinate 1,1,1-trichloroethane (1,1,1-TCA) (~0.65 mM) to 1,1-dichloroethane within 12 days. The Dehalobacter species present in this co-culture, designated Dehalobacter sp. THM1, was found to couple growth with dehalogenation of chloroform, bromoform, and 1,1,1-TCA. Strain THM1 harbors a newly identified reductive dehalogenase (RDase), ThmA, which catalyzes chloroform, bromoform, and 1,1,1-TCA dehalogenation. Additionally, based on the sequences of thmA and other identified chloroform RDase genes, ctrA, cfrA, and tmrA, a pair of chloroform RDase gene-specific primers were designed and successfully applied to investigate the chloroform dechlorinating potential of microbial communities. The comparative analysis of chloroform RDases with tetrachloroethene RDases suggests a possible approach in predicting the substrate specificity of uncharacterized RDases in the future.
Ozone regeneration of granular activated carbon for trihalomethane control.
He, Xuexiang; Elkouz, Mark; Inyang, Mandu; Dickenson, Eric; Wert, Eric C
2017-03-15
Spatial and temporal variations of trihalomethanes (THMs) in distribution systems have challenged water treatment facilities to comply with disinfection byproduct rules. In this study, granular activated carbon (GAC) and modified GAC (i.e., Ag-GAC and TiO 2 -GAC) were used to treat chlorinated tap water containing CHCl 3 (15-21μg/L), CHBrCl 2 (13-16μg/L), CHBr 2 Cl (13-14μg/L), and CHBr 3 (3μg/L). Following breakthrough of dissolved organic carbon (DOC), GAC were regenerated using conventional and novel methods. GAC regeneration efficiency was assessed by measuring adsorptive (DOC, UV absorbance at 254nm, and THMs) and physical (surface area and pore volume) properties. Thermal regeneration resulted in a brief period of additional DOC adsorption (bed volume, BV, ∼6000), while ozone regeneration was ineffective regardless of the GAC type. THM adsorption was restored by either method (e.g., BV for ≥80% breakthrough, CHBr 3 ∼44,000>CHBr 2 Cl ∼35,000>CHBrCl 2 ∼31,000>CHCl 3 ∼7000). Cellular and attached adenosine triphosphate measurements illustrated the antimicrobial effects of Ag-GAC, which may have allowed for the extended THM adsorption compared to the other GAC types. The results illustrate that ozone regeneration may be a viable in-situ alternative for the adsorption of THMs during localized treatment in drinking water distribution systems. Published by Elsevier B.V.
Production of volatile organic compounds in the culture of marine α-proteobacteria
NASA Astrophysics Data System (ADS)
Hirata, M.; Abe, M.; Hashimoto, S.
2014-12-01
Volatile organic compounds (VOCs) release halogens in the troposphere and in the stratosphere by photolysis and released halogens catalyze ozone depletion . In the ocean, macroalgae, phytoplankton, and bacteria are considered to be the main producers of VOCs. Recent investigations have shown that marine bacteria produce halomethanes such as chloromethane, bromomethane, and iodomethane. However, knowledge of aquatic VOC production, particularly through bacteria, is lacking. We studied the production of VOCs, including halomethanes, through the bacterium HKF-1. HKF-1 was isolated from brackish water in Sanaru Lake, Shizuoka prefecture, Japan. The bacterium belongs to the α-proteobacteria. Bacteria were incubated in marine broth 2216 (Difco) added with KI and KIO3 (each at 0.02 μmol/L) at 25°C. VOCs in the gas phase above the cultured samples was determined using a dynamic headspace (GESTEL DHS)—gas chromatograph (Agilent 6890N)—mass spectrometer (Agilent 5975C) at 0, 4, 7, 10 and 12 incubation days. In addition, the optical density at 600 nm (OD600) was measured during the culture period. Measurement of VOCs showed that chloromethane, bromomethane, iodomethane, isoprene, methanethiol, dimethyl sulfide, and dimethyl disulfide were produced in the culture of HKF-1. Dihalomethanes and trihalomethanes, such as dibromomethane, chloroiodomethane, bromoiodomethane, and tribromomethane, were not detected. Given that monohalomethanes and sulfur-containing VOCs were abundant in the culture, HKF-1 is one of the possible candidates as a producer of monohalomethane and sulfur-containing VOCs in marine environment, but not of di- or trihalomethanes.
Silva, Zelinda Isabel; Rebelo, Maria Helena; Silva, Manuela Manso; Alves, Ana Martins; Cabral, Maria da Conceição; Almeida, Ana Cristina; Aguiar, Fátima Rôxo; de Oliveira, Anabela Lopes; Nogueira, Ana Cruz; Pinhal, Hermínia Rodrigues; Aguiar, Pedro Manuel; Cardoso, Ana Sofia
2012-01-01
Characterization of water quality from indoor swimming pools, using chorine-based disinfection techniques, was performed during a 6-mo period to study the occurrence, distribution, and concentration factors of trihalomethanes (THM). Several parameters such as levels of water THM, water and air chloroform, water bromodichloromethane (BDCM), water dibromochloromethane (DBCM), water bromoform (BF), free residual chlorine (FrCl), pH, water and air temperature, and permanganate water oxidizability (PWO) were determined in each pool during that period. Chloroform (CF(W)) was the THM detected at higher concentrations in all pools, followed by BDCM, DBCM, and BF detected at 99, 34, and 6% of the samples, respectively. Water THM concentrations ranged from 10.1 to 155 μg/L, with 6.5% of the samples presenting values above 100 μg/L (parametric value established in Portuguese law DL 306/2007). In this study, air chloroform (CF(Air)) concentrations ranged from 45 to 373 μg/m³ with 24% of the samples presenting values above 136 μg/m³ (considered high exposure value). Several significant correlations were observed between total THM and other parameters, namely, CF(W), CF(Air), FrCl, water temperature (T(W)), and PWO. These correlations indicate that FrCl, T(W) and PWO are parameters that influence THM formation. The exposure criterion established for water THM enabled the inclusion of 67% of Lisbon pools in the high exposure group, which reinforces the need for an improvement in pool water quality.
Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide.
Guo, Wanhong; Shan, Yingchun; Yang, Xin
2014-01-15
Effects of water characteristics, reaction time, temperature, bromide and iodide ion concentrations, oxidant doses, and pH on formation of iodinated trihalomethanes (I-THM) during oxidation of iodide-containing water with chlorine dioxide (ClO2) were investigated. Among the water samples collected from ten water sources, iodoform (CHI3) was the predominant I-THM and trace amount of chlorodiiodomethane (CHClI2) was occasionally found. CHI3 yields correlated moderately with specific UV absorbance (SUVA) (R(2)=0.79), indicating that hydrophobic aromatic content were important precursors. Longer reaction time led to continued formation of CHI3. I-THM containing bromide was also found in waters containing both bromide and iodide, but CHI3 was dominant. The formation of CHI3 was higher at 25°C than 5°C and 35°C. CHI3 formation showed an increase followed by a decrease trend with increasing ClO2 doses and iodide concentrations and the highest yields occurred at iodide to ClO2 molar ratios of 1-2. pH 8 resulted in the highest CHI3 formation. It should be noted that a high iodide concentration was spiked to waters before adding ClO2 and the results may not reflect the formation yields of iodinated THMs in real conditions, but they provide information about formation trend of I-THM during oxidation of ClO2. Copyright © 2013 Elsevier B.V. All rights reserved.
Can CabECO® technology be used for the disinfection of highly faecal-polluted surface water?
Isidro, Julia; Llanos, Javier; Sáez, Cristina; Brackemeyer, Dirk; Cañizares, Pablo; Matthee, Thorsten; Rodrigo, Manuel A
2018-06-18
In this work, the disinfection of highly faecal-polluted surface water was studied using a new electrochemical cell (CabECO ® cell, manufactured by CONDIAS) specifically designed to produce ozone in water with very low conductivity. The disinfection tests were carried out in a discontinuous mode to evaluate the influence of the electrode current charge passed. The effect of the current density was also studied in order to optimize the disinfection conditions and to simultaneously prevent the formation of undesirable by-products (chlorates and perchlorates) during the electrolysis. The results demonstrate that this technology is robust and efficient, and it can suitably disinfect water. During electrolysis, the chloride contained in the water was oxidized to hypochlorite, and this compound was combined with ammonia to form chloramines. Both hypochlorite and chloramines (formed by the well-known break point reaction) promoted persistent disinfection and seemed to be mainly responsible for the disinfection attained during the electrochemical process. Chlorate and perchlorate could also be produced, although the low concentrations of chloride in the tested water made them irrelevant. The removal of the total organic carbon under the applied operating conditions was not very efficient (although it reached 50% in 2 h) and the production of trihalomethanes was very low, below 100 ppb for all tests. Copyright © 2018 Elsevier Ltd. All rights reserved.
Coliphages as indicators of enteroviruses.
Stetler, R E
1984-01-01
Coliphages were monitored in conjunction with indicator bacteria and enteroviruses in a drinking-water plant modified to reduce trihalomethane production. Coliphages could be detected in the source water by direct inoculation, and sufficient coliphages were detected in enterovirus concentrates to permit following the coliphage levels through different water treatment processes. The recovery efficiency by different filter types ranged from 1 to 53%. Statistical analysis of the data indicated that enterovirus isolates were better correlated with coliphages than with total coliforms, fecal coliforms, fecal streptococci, or standard plate count organisms. Coliphages were not detected in finished water. PMID:6093694
The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter.
Alvarez-Uriarte, Jon I; Iriarte-Velasco, Unai; Chimeno-Alanís, Noemí; González-Velasco, Juan R
2010-09-15
Present paper studies the influence of electrochemically generated mixed oxidants on the physicochemical properties of natural organic matter, and especially from the disinfection by-products formation point of view. The study was carried out in a full scale water treatment plant. Results indicate that mixed oxidants favor humic to non-humic conversion of natural organic matter. Primary treatment preferentially removes the more hydrophobic fraction. This converted the non-humic fraction in an important source of disinfection by-products with a 20% contribution to the final trihalomethane formation potential (THMFP(F)) of the finished water. Enhanced coagulation at 40 mg l(-1) of polyaluminium chloride with a moderate mixing intensity (80 rpm) and pH of 6.0 units doubled the removal efficiency of THMFP(F) achieved at full scale plant. However, gel permeation chromatography data revealed that low molecular weight fractions were still hardly removed. Addition of small amounts of powdered activated carbon, 50 mg l(-1), allowed reduction of coagulant dose by 50% whereas removal of THMFP(F) was maintained or even increased. In systems where mixed oxidants are used addition of powdered activated carbon allows complementary benefits by a further reduction in the THMFP(F) compared to the conventional only coagulation-flocculation-settling process. Copyright 2010 Elsevier B.V. All rights reserved.
Influence of physical activity in the intake of trihalomethanes in indoor swimming pools.
Marco, Esther; Lourencetti, Carolina; Grimalt, Joan O; Gari, Mercè; Fernández, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis
2015-07-01
This study describes the relationship between physical activity and intake of trihalomethanes (THMs), namely chloroform (CHCl3), bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2) and bromoform (CHBr3), in individuals exposed in two indoor swimming pools which used different disinfection agents, chlorine (Cl-SP) and bromine (Br-SP). CHCl3 and CHBr3 were the dominant compounds in air and water of the Cl-SP and Br-SP, respectively. Physical exercise was assessed from distance swum and energy expenditure. The changes in exhaled breath concentrations of these compounds were measured from the differences after and before physical activity. A clear dependence between distance swum or energy expenditure and exhaled breath THM concentrations was observed. The statistically significant relationships involved higher THM concentrations at higher distances swum. However, air concentration was the major factor determining the CHCl3 and CHCl2Br intake in swimmers whereas distance swum was the main factor for CHBr3 intake. These two causes of THM incorporation into swimmers concurrently intensify the concentrations of these compounds into exhaled breath and pointed to inhalation as primary mechanism for THM uptake. Furthermore, the rates of THM incorporation were proportionally higher as higher was the degree of bromination of the THM species. This trend suggested that air-water partition mechanisms in the pulmonary system determined higher retention of the THM compounds with lower Henry's Law volatility constants than those of higher constant values. Inhalation is therefore the primary mechanisms for THM exposure of swimmers in indoor buildings. Copyright © 2015 Elsevier Inc. All rights reserved.
Han, Jiarui; Zhang, Xiangru; Liu, Jiaqi; Zhu, Xiaohu; Gong, Tingting
2017-08-01
Chlorine dioxide (ClO 2 ) is a widely used alternative disinfectant due to its high biocidal efficiency and low-level formation of trihalomethanes and haloacetic acids. A major portion of total organic halogen (TOX), a collective parameter for all halogenated DBPs, formed in ClO 2 -treated drinking water is still unknown. A commonly used pretreatment method for analyzing halogenated DBPs in drinking water is one-time liquid-liquid extraction (LLE), which may lead to a substantial loss of DBPs prior to analysis. In this study, characterization and identification of polar halogenated DBPs in a ClO 2 -treated drinking water sample were conducted by pretreating the sample with multiple extractions. Compared to one-time LLE, the combined four-time LLEs improved the recovery of TOX by 2.3 times. The developmental toxicity of the drinking water sample pretreated with the combined four-time LLEs was 1.67 times higher than that pretreated with one-time LLE. With the aid of ultra-performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, a new group of polar halogenated DBPs, trihalomethanols, were detected in the drinking water sample pretreated with multiple extractions; two of them, trichloromethanol and bromodichloromethanol, were identified with synthesized standard compounds. Moreover, these trihalomethanols were found to be the transformation products of trihalomethanes formed during ClO 2 disinfection. The results indicate that multiple LLEs can significantly improve extraction efficiencies of polar halogenated DBPs and is a better pretreatment method for characterizing and identifying new polar halogenated DBPs in drinking water. Copyright © 2017. Published by Elsevier B.V.
Removal of micropollutants from Sakarya River water by ozone and membrane processes.
Yaman, Fatma Büşra; Çakmakcı, Mehmet; Yüksel, Ebubekir; Özen, İsmail; Gengeç, Erhan
2017-09-01
The removal of some pollutants in the Sakarya River was investigated in this study. Sakarya River located in Turkey flows from the northeast of Afyonkarahisar City to the Black Sea. Nineteen different micropollutants including trihalomethanes (THMs), haloacetic acids (HAAs), endocrine disrupting compound (EDC) and pharmaceuticals personal care product (PPCP) groups, and water quality parameters such as dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm wavelength (UV 254 ), hardness, and conductivity values were examined. To remove the micropollutants and improve the water quality, the treatment was performed with ozone, microfiltration (MF), and ultra-filtration (UF) membranes. The highest treatment efficiency was obtained with 1 mg/L ozone dosage and UP005 UF membrane. The trihalomethan formation potential (THMFP) and haloacetic acid formation potential (HAAFP) decreased with ozone + membrane at a concentration of 79 and 75%, respectively. After the treatment with ozone + membrane, the concentration of the micropollutants in the EDC and PPCP group remained below the detection limit. It was found that by using only membrane and only ozone, the maximum DOC removal efficiency achieved was 46 and 18%, respectively; and with ozone + membrane, this efficiency increased up to 82%. The results from the High-Pressure Size Exclusion Chromatography (HPSEC) analyses pointed that the substances with high molecular weight were converted into substances with low molecular weight after the treatment. The Fourier Transform Infrared (FTIR) analysis results showed that the aromatic and aliphatic functional groups in water changed after the treatment with ozone and that the peak values decreased more after the ozone + membrane treatment.
Mao, Yu-Qin; Wang, Xiao-Mao; Guo, Xian-Fen; Yang, Hong-Wei; Xie, Yuefeng F
2016-09-01
Haloacetaldehydes (HAs) are the third prevalent group of disinfection by-products (DBPs) of great health concern. In this study, their formation and speciation during chlorination were investigated for raw and process waters collected at three O3-biological activated carbon (BAC) advanced drinking water treatment plants. The results showed that all HA formation potentials (HAFPs) were highly enhanced whenever ozone was applied before or after conventional treatment. Sand filtration and BAC filtration could substantially reduce HAFPs. Trihalomethanes (THMs) were also measured to better understand the role of HAs in DBPs. Very different from HAFPs, THMFPs kept decreasing with the progress of treatment steps, which was mainly attributed to the different precursors for HAs and THMs. Brominated HAs were detected in bromide-containing waters. Chloral hydrate (CH) contributed from 25% to 48% to the total HAs formed in waters containing 100-150 μg L(-1) bromide, indicating the wide existence of other HAs after chlorination besides CH production. In addition, bromide incorporation factor (BIF) in HAs and THMs increased with the progress of treatment steps and the BIF values of THMs were generally higher than those of HAs. The BAC filtration following ozonation could significantly reduce HA precursors produced from ozonation but without complete removal. The brominated HAFPs in the outflow of BAC were still higher than their levels in the raw water. As a result, O3-BAC combined treatment was effective at controlling the total HAs, whereas it should be cautious for waters with high bromide levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exogenous and Endogenous Determinants of Blood Trihalomethane Levels after Showering
Backer, Lorraine C.; Lan, Qing; Blount, Benjamin C.; Nuckols, J.R.; Branch, Robert; Lyu, Christopher W.; Kieszak, Stephanie M.; Brinkman, Marielle C.; Gordon, Sydney M.; Flanders, W. Dana; Romkes, Marjorie; Cantor, Kenneth P.
2008-01-01
Background We previously conducted a study to assess whether household exposures to tap water increased an individual’s internal dose of trihalomethanes (THMs). Increases in blood THM levels among subjects who showered or bathed were variable, with increased levels tending to cluster in two groups. Objectives Our goal was to assess the importance of personal characteristics, previous exposures, genetic polymorphisms, and environmental exposures in determining THM concentrations in blood after showering. Methods One hundred study participants completed a health symptom questionnaire, a 48-hr food and water consumption diary, and took a 10-min shower in a controlled setting. We examined THM levels in blood samples collected at baseline and 10 and 30 min after the shower. We assessed the significance of personal characteristics, previous exposures to THMs, and specific gene polymorphisms in predicting postshower blood THM concentrations. Results We did not observe the clustering of blood THM concentrations observed in our earlier study. We found that environmental THM concentrations were important predictors of blood THM concentrations immediately after showering. For example, the chloroform concentration in the shower stall air was the most important predictor of blood chloroform levels 10 min after the shower (p < 0.001). Personal characteristics, previous exposures to THMs, and specific polymorphisms in CYP2D6 and GSTT1 genes were significant predictors of both baseline and postshowering blood THM concentrations as well as of changes in THM concentrations associated with showering. Conclusion The inclusion of information about individual physiologic characteristics and environmental measurements would be valuable in future studies to assess human health effects from exposures to THMs in tap water. PMID:18197300
Photodegradation of iodinated trihalomethanes in aqueous solution by UV 254 irradiation.
Xiao, Yongjun; Fan, Rongli; Zhang, Lifeng; Yue, Junqi; Webster, Richard D; Lim, Teik-Thye
2014-02-01
Photodegradation of 6 iodinated trihalomethanes (ITHMs) under UV irradiation at 254 nm was investigated in this study. ITHMs underwent a rapid photodegradation process through cleavage of carbon-halogen bond with first-order rate constants in the range of 0.1-0.6 min(-1). The effects of matrix species including nitrate, humic acid (HA), bicarbonate, sulfate, and chloride were evaluated. The degradation rate increased slightly in the presence of nitrate possibly due to generation of HO at a low quantum yield via direct photolysis of nitrate, while HA lowered the photodegradation rate of ITHMs due to its competitive UV absorption. Moreover, bicarbonate, sulfate, and chloride had no significant effect on photodegradation kinetics, as there is no UV absorption for these 3 species. In the study using surface water, treated water, and secondary effluent from a wastewater treatment plant, high turbidity and natural organic matters present in the water inhibited the photodegradation of ITHMs. The degradation rates of 6 ITHMs in UV/H2O2 system were rather comparable and significantly higher than those achieved in the UV system without H2O2. To develop a quantitative structure-reactivity relationship (QSAR) model, the logarithm of measured first-order rate constants was correlated with a number of molecular descriptors. The best correlation was obtained with a combination of 3 molecular descriptors, namely the bond strength of carbon-halogen to be broken in the rate-determining step, steric and electronic effects of all substituents to the carbon center. Copyright © 2013 Elsevier Ltd. All rights reserved.
Niu, Zhiguang; Li, Xiaonan; Zhang, Ying
2017-04-15
To characterize the spatiotemporal distribution and potential ecological risk for trihalomethanes (THMs) in the surface water of a river estuary, surface water samples were collected over five consecutive months (from March to July 2016) from four sites in the Haihe River estuary of Bohai Bay. The potential ecological risks of THMs were evaluated quantitatively based on a species sensitivity distribution (SSD) model. The results demonstrate that trichloromethane (TCM) was the predominant THM in surface water of the Haihe River estuary (2.93±1.98μg/L) followed by tribromomethane (TBM) (0.42±0.33μg/L), bromodichloromethane (BDCM) (0.14±0.06μg/L) and dibromochloromethane (DBCM) (0.09±0.10μg/L). The concentration of TCM was higher in summer than that in spring, while TBM displayed the opposite trend. The TCM concentration decreased from the estuary to the adjacent sea. However, the levels of TBM and DBCM in the adjacent sea were higher than those in the estuary. The ecological risks of THMs in surface water of Haihe River were notably low, and the ecological risks of THMs in freshwater were generally higher than those in seawater. Compared with other contaminants in water and surface sediment from rivers and coastal areas, the ecological risk levels of THMs in surface water can be considered low. This study is a contribution to the progress of ecological risk assessment of THMs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Beita-Sandí, Wilson; Karanfil, Tanju
2017-11-01
Drinking water utilities are relying more than ever on water sources impacted by wastewater effluents. Disinfection/oxidation of these waters during water treatment may lead to the formation of several disinfection by-products, including the probable human carcinogen N-nitrosodimethylamine (NDMA) and the regulated trihalomethanes (THMs). In this study, the potential of ion exchange resins to control both NDMA and THMs precursors in a single treatment is presented. Two ion exchange resins were examined, a cation exchange resin (Plus) to target NDMA precursors and an anion exchange resin (MIEX) for THMs precursors control. We applied the resins, individually and combined, in the treatment of surface and wastewater effluent samples. The treatment with both resins removed simultaneously NDMA (43-85%) and THMs (39-65%) precursors. However, no removal of NDMA precursors was observed in the surface water with low initial NDMA FP (14 ng/L). The removals of NDMA FP and THMs FP with Plus and MIEX resins applied alone were (49-90%) and (41-69%), respectively. These results suggest no interaction between the resins, and thus the feasibility of effectively controlling NDMA and THMs precursors concomitantly. Additionally, the effects of the wastewater impact and the natural attenuation of precursors were studied. The results showed that neither the wastewater content nor the attenuation of the precursor affected the removals of NDMA and THMs precursors. Finally, experiments using a wastewater effluent sample showed that an increase in the calcium concentration resulted in a reduction in the removal of NDMA precursors of about 50%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Technical Report for Water Circulation Pumping System for Trihalomethanes (THMs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellah, W.
2015-06-08
The TSWWS was added as an active source of supply to the permit (No. 03-10-13P-003) in 2010, but has never been used due to the potential for formation of trihalomethanes (THMs) in the distribution system. THMs are formed as a by-product when chlorine is used to disinfect water for drinking. THMs are a group of chemicals generally referred to as disinfection by-products (DBPs). THMs result from the reaction of chlorine with organic matter that is present in the water. Some of the THMs are volatile and may easily vaporize into the air. This fact forms the basis of the designmore » of the system discussed in this technical report. In addition, the design is based on the results of a study that has shown success using aeration as a means to reduce TTHMs to within allowable concentration levels with turn-over times as long as ten days. The Primary Drinking Water Standards of Regulated Contaminants Maximum Contaminant Level (MCL) for TTHMs is 80 parts per billion (ppb). No other changes to the existing drinking water distribution system and chlorination operations are anticipated before switching to the TSWWS as the primary drinking water source. The two groundwater wells (Wells 20 and 18) which are currently the primary and backup water sources for the system would be maintained for use as backup supply. In the future, one of the wells may be removed from the system. A permit amendment would be filed at that time if this modification was deemed appropriate.« less
Exposure assessment for trihalomethanes in municipal drinking water and risk reduction strategy.
Chowdhury, Shakhawat
2013-10-01
Lifetime exposure to disinfection byproducts (DBPs) in municipal water may pose risks to human health. Current approaches of exposure assessments use DBPs in cold water during showering, while warming of chlorinated water during showering may increase trihalomethane (THM) formation in the presence of free residual chlorine. Further, DBP exposure through dermal contact during showering is estimated using steady-state condition between the DBPs in shower water impacting on human skin and skin exposed to shower water. The lag times to achieve steady-state condition between DBPs in shower water and human skin can vary in the range of 9.8-391.2 min, while shower duration is often less than the lag times. Assessment of exposure without incorporating these factors might have misinterpreted DBP exposure in some previous studies. In this study, exposure to THMs through ingestion was estimated using cold water THMs, while THM exposure through inhalation and dermal contact during showering was estimated using THMs in warm water. Inhalation of THMs was estimated using THM partition into the shower air, while dermal uptake was estimated by incorporating lag times (e.g., unsteady and steady-state phases of exposure) during showering. Probabilistic approach was followed to incorporate uncertainty in the assessment. Inhalation and dermal contact during showering contributed 25-60% of total exposure. Exposure to THMs during showering can be controlled by varying shower stall volume, shower duration and air exchange rate following power law equations. The findings might be useful in understanding exposure to THMs, which can be extended to other volatile compounds in municipal water. © 2013 Elsevier B.V. All rights reserved.
Villanueva, Cristina M; Gracia-Lavedán, Esther; Ibarluzea, Jesús; Santa Marina, Loreto; Ballester, Ferran; Llop, Sabrina; Tardón, Adonina; Fernández, Mariana F; Freire, Carmen; Goñi, Fernando; Basagaña, Xavier; Kogevinas, Manolis; Grimalt, Joan O; Sunyer, Jordi
2011-12-01
Evidence associating exposure to water disinfection by-products with reduced birth weight and altered duration of gestation remains inconclusive. We assessed exposure to trihalomethanes (THMs) during pregnancy through different water uses and evaluated the association with birth weight, small for gestational age (SGA), low birth weight (LBW), and preterm delivery. Mother-child cohorts set up in five Spanish areas during the years 2000-2008 contributed data on water ingestion, showering, bathing, and swimming in pools. We ascertained residential THM levels during pregnancy periods through ad hoc sampling campaigns (828 measurements) and regulatory data (264 measurements), which were modeled and combined with personal water use and uptake factors to estimate personal uptake. We defined outcomes following standard definitions and included 2,158 newborns in the analysis. Median residential THM ranged from 5.9 μg/L (Valencia) to 114.7 μg/L (Sabadell), and speciation differed across areas. We estimated that 89% of residential chloroform and 96% of brominated THM uptakes were from showering/bathing. The estimated change of birth weight for a 10% increase in residential uptake was -0.45 g (95% confidence interval: -1.36, 0.45 g) for chloroform and 0.16 g (-1.38, 1.70 g) for brominated THMs. Overall, THMs were not associated with SGA, LBW, or preterm delivery. Despite the high THM levels in some areas and the extensive exposure assessment, results suggest that residential THM exposure during pregnancy driven by inhalation and dermal contact routes is not associated with birth weight, SGA, LBW, or preterm delivery in Spain.
Trihalomethanes in public water supplies and risk of stillbirth.
Dodds, Linda; King, Will; Allen, Alexander C; Armson, B Anthony; Fell, Deshayne B; Nimrod, Carl
2004-03-01
The chlorine used to disinfect public drinking water supplies reacts with naturally occurring organic matter to form a number of chemical byproducts. Recent studies have implicated exposure to chlorination byproducts in drinking water, trihalomethanes (THMs), in particular, with intrauterine death. We conducted a population-based case-control study in Nova Scotia and Eastern Ontario, Canada, to examine the effect of exposure to THMs on stillbirth risk. Cases were women who had a stillborn infant, and controls were a random sample of women with live births. Subjects were interviewed, and women with a public water source provided a residential water sample. Risks were examined according to residential THM level in tap water and to a total exposure metric incorporating tap water ingestion, showering, and bathing. We enrolled 112 stillbirth cases and 398 live birth controls. Women with a residential total THM level of 80 or more microg/L had twice the risk of a stillbirth compared with women with no exposure to THMs (adjusted odds ratio [OR] = 2.2; 95% confidence interval [CI] = 1.1-4.4). The highest quintile of total THM exposure using the total exposure metric was associated with an adjusted odds ratio of 2.4 (95% CI = 1.2-4.6) compared with women not exposed to THMs. Similar results were seen for specific THM compounds. A monotonic dose-response relationship was not seen. Our results provide evidence for an increased risk of stillbirth associated with exposure to chlorination byproducts through ingestion and showering and bathing, although there was not a clear dose-response relationship.
Ruecker, A; Uzun, H; Karanfil, T; Tsui, M T K; Chow, A T
2017-12-01
Coastal blackwater rivers, characterized by high concentrations of natural organic matter, are source water for millions of people in the southeastern US. In October 2015, large areas of coastal South Carolina were flooded by Hurricane Joaquin. This so-called "thousand-year" rainfall mobilized and flushed large amounts of terrestrial organic matter and associated pollutants (e.g. mercury) into source water, affecting water quality and safety of municipal water supply. To understand the dynamics of water quality and water treatability during this extreme flood, water samples were collected from Waccamaw River (a typical blackwater river in the southeastern US) during rising limb, peak discharge, falling limb, and base flow. Despite decreasing water flow after peak discharge, dissolved organic carbon (DOC) levels (increased by up to 125%), and formation potentials of trihalomethanes and haloacetic acids (increased by up to 150%) remained high for an extended period of time (>eight weeks after peak discharge), while variation in the N-nitrosodimethylamine (NDMA) FP was negligible. Coagulation with alum and ferric at optimal dosage significantly reduced concentrations of DOC by 51-76%, but up to 10 mg/L of DOC still remained in treated waters. For an extended period of time, elevated levels of THMs (71-448 μg/L) and HAAs (88-406 μg/L) were quantified in laboratory chlorination experiments under uniform formation conditions (UFC), exceeding the United States Environmental Protection Agency's (USEPA) maximum contaminant level of 80 and 60 μg/L, respectively. Results demonstrated that populations in coastal cities are at high risk with disinfection by-products (DBPs) under the changing climate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Villanueva, Cristina M; Gracia-Lavedan, Esther; Bosetti, Cristina; Righi, Elena; Molina, Antonio José; Martín, Vicente; Boldo, Elena; Aragonés, Nuria; Perez-Gomez, Beatriz; Pollan, Marina; Acebo, Ines Gomez; Altzibar, Jone M; Zabala, Ana Jiménez; Ardanaz, Eva; Peiró, Rosana; Tardón, Adonina; Chirlaque, Maria Dolores; Tavani, Alessandra; Polesel, Jerry; Serraino, Diego; Pisa, Federica; Castaño-Vinyals, Gemma; Espinosa, Ana; Espejo-Herrera, Nadia; Palau, Margarita; Moreno, Victor; La Vecchia, Carlo; Aggazzotti, Gabriella; Nieuwenhuijsen, Mark J; Kogevinas, Manolis
2017-01-01
Evidence on the association between colorectal cancer and exposure to disinfection by-products in drinking water is inconsistent. We assessed long-term exposure to trihalomethanes (THMs), the most prevalent group of chlorination by-products, to evaluate the association with colorectal cancer. A multicenter case-control study was conducted in Spain and Italy in 2008-2013. Hospital-based incident cases and population-based (Spain) and hospital-based (Italy) controls were interviewed to ascertain residential histories, type of water consumed in each residence, frequency and duration of showering/bathing, and major recognized risk factors for colorectal cancer. We estimated adjusted odds ratios (OR) for colorectal cancer in association with quartiles of estimated average lifetime THM concentrations in each participant's residential tap water (micrograms/liter; from age 18 to 2 years before the interview) and estimated average lifetime THM ingestion from drinking residential tap water (micrograms/day). We analyzed 2,047 cases and 3,718 controls. Median values (ranges) for average lifetime residential tap water concentrations of total THMs, chloroform, and brominated THMs were 30 (0-174), 17 (0-63), and 9 (0-145) μg/L, respectively. Total THM concentration in residential tap water was not associated with colorectal cancer (OR = 0.92, 95% CI: 0.66, 1.28 for highest vs. lowest quartile), but chloroform concentrations were inversely associated (OR = 0.31, 95% CI: 0.24, 0.41 for highest vs. lowest quartile). Brominated THM concentrations showed a positive association among men in the highest versus the lowest quartile (OR = 1.43, 95% CI: 0.83, 2.46). Patterns of association were similar for estimated average THM ingestion through residential water consumption. We did not find clear evidence of an association between detailed estimates of lifetime total THM exposure and colorectal cancer in our large case-control study population. Negative associations with chloroform concentrations and ingestion suggest differences among specific THMs, but these findings should be confirmed in other study populations. Citation: Villanueva CM, Gracia-Lavedan E, Bosetti C, Righi E, Molina AJ, Martín V, Boldo E, Aragonés N, Perez-Gomez B, Pollan M, Gomez Acebo I, Altzibar JM, Jiménez Zabala A, Ardanaz E, Peiró R, Tardón A, Chirlaque MD, Tavani A, Polesel J, Serraino D, Pisa F, Castaño-Vinyals G, Espinosa A, Espejo-Herrera N, Palau M, Moreno V, La Vecchia C, Aggazzotti G, Nieuwenhuijsen MJ, Kogevinas M. 2017. Colorectal cancer and long-term exposure to trihalomethanes in drinking water: a multicenter case---control study in Spain and Italy. Environ Health Perspect 125:56-65; http://dx.doi.org/10.1289/EHP155.
Use of routinely collected data on trihalomethane in drinking water for epidemiological purposes
Keegan, T; Whitaker, H; Nieuwenhuijsen, M; Toledano, M; Elliott, P; Fawell, J; Wilkinson, M; Best, N
2001-01-01
OBJECTIVES—To explore the use of routinely collected trihalomethane (THM) measurements for epidemiological studies. Recently there has been interest in the relation between byproducts of disinfection of public drinking water and certain adverse reproductive outcomes, including stillbirth, congenital malformations, and low birth weight. METHOD—Five years of THM readings (1992-6), collected for compliance with statutory limits, were analysed. One water company in the north west of England, divided into 288 water zones, provided 15 984 observations for statistical analysis. On average each zone was sampled 11.1 times a year. Five year, annual, monthly, and seasonal variation in THMs were examined as well as the variability within and between zones. RESULTS—Between 1992 and 1996 the total THM (TTHM) annual zone means were less than half the statutory concentration, at approximately 46 µg/l. Differences in annual water zone means were within 7%. Over the study period, the maximum water zone mean fell from 142.2 to 88.1 µg/l. Mean annual concentrations for individual THMs (µg/l) were 36.6, 8.0, and 2.8 for chloroform, bromodichloromethane (BDCM), and dibromochloromethane (DBCM) respectively. Bromoform data were not analysed, because a high proportion of the data were below the detection limit. The correlation between chloroform and TTHM was 0.98, between BDCM and TTHM 0.62, and between DBCM and TTHM −0.09. Between zone variation was larger than within zone variation for chloroform and BDCM, but not for DBCM. There was only little seasonal variation (<3%). Monthly variation was found although there were no consistent trends within years. CONCLUSION—In an area where the TTHM concentrations were less than half the statutory limit (48 µg/l) chloroform formed a high proportion of TTHM. The results of the correlation analysis suggest that TTHM concentrations provided a good indication of chloroform concentrations, a reasonable indication of BDCM concentrations, but no indication of DBCM. Zone means were similar over the years, but the maximum concentrations reduced considerably, which suggests that successful improvements in treatment have been made to reduce high TTHM concentrations in the area. For chloroform and BDCM, the main THMs, the component between water zones was greater than variation within water zones and explained most of the overall exposure variation. Variation between months and seasons was low and showed no clear trends within years. The results indicate that routinely collected data can be used to obtain exposure estimates for epidemiological studies at a small area level. Keywords: chlorination byproducts; exposure; birth outcomes; routine data; trihalomethanes PMID:11404449
Villanueva, Cristina M.; Gracia-Lavedan, Esther; Bosetti, Cristina; Righi, Elena; Molina, Antonio José; Martín, Vicente; Boldo, Elena; Aragonés, Nuria; Perez-Gomez, Beatriz; Pollan, Marina; Acebo, Ines Gomez; Altzibar, Jone M.; Zabala, Ana Jiménez; Ardanaz, Eva; Peiró, Rosana; Tardón, Adonina; Chirlaque, Maria Dolores; Tavani, Alessandra; Polesel, Jerry; Serraino, Diego; Pisa, Federica; Castaño-Vinyals, Gemma; Espinosa, Ana; Espejo-Herrera, Nadia; Palau, Margarita; Moreno, Victor; La Vecchia, Carlo; Aggazzotti, Gabriella; Nieuwenhuijsen, Mark J; Kogevinas, Manolis
2016-01-01
Background: Evidence on the association between colorectal cancer and exposure to disinfection by-products in drinking water is inconsistent. Objectives: We assessed long-term exposure to trihalomethanes (THMs), the most prevalent group of chlorination by-products, to evaluate the association with colorectal cancer. Methods: A multicenter case–control study was conducted in Spain and Italy in 2008–2013. Hospital-based incident cases and population-based (Spain) and hospital-based (Italy) controls were interviewed to ascertain residential histories, type of water consumed in each residence, frequency and duration of showering/bathing, and major recognized risk factors for colorectal cancer. We estimated adjusted odds ratios (OR) for colorectal cancer in association with quartiles of estimated average lifetime THM concentrations in each participant’s residential tap water (micrograms/liter; from age 18 to 2 years before the interview) and estimated average lifetime THM ingestion from drinking residential tap water (micrograms/day). Results: We analyzed 2,047 cases and 3,718 controls. Median values (ranges) for average lifetime residential tap water concentrations of total THMs, chloroform, and brominated THMs were 30 (0–174), 17 (0–63), and 9 (0–145) μg/L, respectively. Total THM concentration in residential tap water was not associated with colorectal cancer (OR = 0.92, 95% CI: 0.66, 1.28 for highest vs. lowest quartile), but chloroform concentrations were inversely associated (OR = 0.31, 95% CI: 0.24, 0.41 for highest vs. lowest quartile). Brominated THM concentrations showed a positive association among men in the highest versus the lowest quartile (OR = 1.43, 95% CI: 0.83, 2.46). Patterns of association were similar for estimated average THM ingestion through residential water consumption. Conclusions: We did not find clear evidence of an association between detailed estimates of lifetime total THM exposure and colorectal cancer in our large case–control study population. Negative associations with chloroform concentrations and ingestion suggest differences among specific THMs, but these findings should be confirmed in other study populations. Citation: Villanueva CM, Gracia-Lavedan E, Bosetti C, Righi E, Molina AJ, Martín V, Boldo E, Aragonés N, Perez-Gomez B, Pollan M, Gomez Acebo I, Altzibar JM, Jiménez Zabala A, Ardanaz E, Peiró R, Tardón A, Chirlaque MD, Tavani A, Polesel J, Serraino D, Pisa F, Castaño-Vinyals G, Espinosa A, Espejo-Herrera N, Palau M, Moreno V, La Vecchia C, Aggazzotti G, Nieuwenhuijsen MJ, Kogevinas M. 2017. Colorectal cancer and long-term exposure to trihalomethanes in drinking water: a multicenter case–––control study in Spain and Italy. Environ Health Perspect 125:56–65; http://dx.doi.org/10.1289/EHP155 PMID:27383820
Domínguez-Tello, A; Arias-Borrego, A; García-Barrera, Tamara; Gómez-Ariza, J L
2015-11-01
This paper comparatively shows the influence of four water treatment processes on the formation of trihalomethanes (THMs) in a water distribution system. The study was performed from February 2005 to January 2012 with analytical data of 600 samples taken in Aljaraque water treatment plant (WTP) and 16 locations along the water distribution system (WDS) in the region of Andévalo and the coast of Huelva (southwest Spain), a region with significant seasonal and population changes. The comparison of results in the four different processes studied indicated a clear link of the treatment process with the formation of THM along the WDS. The most effective treatment process is preozonation and activated carbon filtration (P3), which is also the most stable under summer temperatures. Experiments also show low levels of THMs with the conventional process of preoxidation with potassium permanganate (P4), delaying the chlorination to the end of the WTP; however, this simple and economical treatment process is less effective and less stable than P3. In this study, strong seasonal variations were obtained (increase of THM from winter to summer of 1.17 to 1.85 times) and a strong spatial variation (1.1 to 1.7 times from WTP to end points of WDS) which largely depends on the treatment process applied. There was also a strong correlation between THM levels and water temperature, contact time and pH. On the other hand, it was found that THM formation is not proportional to the applied chlorine dose in the treatment process, but there is a direct relationship with the accumulated dose of chlorine. Finally, predictive models based on multiple linear regressions are proposed for each treatment process.
Hinckley, A; Bachand, A; Nuckols, J; Reif, J
2005-01-01
Background and Aims: Epidemiological studies of disinfection by-products (DBPs) and reproductive outcomes have been hampered by misclassification of exposure. In most epidemiological studies conducted to date, all persons living within the boundaries of a water distribution system have been assigned a common exposure value based on facility-wide averages of trihalomethane (THM) concentrations. Since THMs do not develop uniformly throughout a distribution system, assignment of facility-wide averages may be inappropriate. One approach to mitigate this potential for misclassification is to select communities for epidemiological investigations that are served by distribution systems with consistently low spatial variability of THMs. Methods and Results: A feasibility study was conducted to develop methods for community selection using the Information Collection Rule (ICR) database, assembled by the US Environmental Protection Agency. The ICR database contains quarterly DBP concentrations collected between 1997 and 1998 from the distribution systems of 198 public water facilities with minimum service populations of 100 000 persons. Facilities with low spatial variation of THMs were identified using two methods; 33 facilities were found with low spatial variability based on one or both methods. Because brominated THMs may be important predictors of risk for adverse reproductive outcomes, sites were categorised into three exposure profiles according to proportion of brominated THM species and average TTHM concentration. The correlation between THMs and haloacetic acids (HAAs) in these facilities was evaluated to see whether selection by total trihalomethanes (TTHMs) corresponds to low spatial variability for HAAs. TTHMs were only moderately correlated with HAAs (r = 0.623). Conclusions: Results provide a simple method for a priori selection of sites with low spatial variability from state or national public water facility datasets as a means to reduce exposure misclassification in epidemiological studies of DBPs. PMID:15961627
Jiang, Songhui; Templeton, Michael R.; He, Gengsheng; Qu, Weidong
2013-01-01
An optimized method is presented using liquid-liquid extraction and derivatization for the extraction of iodoacetic acid (IAA) and other haloacetic acids (HAA9) and direct extraction of iodoform (IF) and other trihalomethanes (THM4) from drinking water, followed by detection by gas chromatography with electron capture detection (GC-ECD). A Doehlert experimental design was performed to determine the optimum conditions for the five most significant factors in the derivatization step: namely, the volume and concentration of acidic methanol (optimized values = 15%, 1 mL), the volume and concentration of Na2SO4 solution (129 g/L, 8.5 mL), and the volume of saturated NaHCO3 solution (1 mL). Also, derivatization time and temperature were optimized by a two-variable Doehlert design, resulting in the following optimized parameters: an extraction time of 11 minutes for IF and THM4 and 14 minutes for IAA and HAA9; mass of anhydrous Na2SO4 of 4 g for IF and THM4 and 16 g for IAA and HAA9; derivatization time of 160 min and temperature at 40°C. Under optimal conditions, the optimized procedure achieves excellent linearity (R2 ranges 0.9990–0.9998), low detection limits (0.0008–0.2 µg/L), low quantification limits (0.008–0.4 µg/L), and good recovery (86.6%–106.3%). Intra- and inter-day precision were less than 8.9% and 8.8%, respectively. The method was validated by applying it to the analysis of raw, flocculated, settled, and finished waters collected from a water treatment plant in China. PMID:23613747
Domínguez-Tello, Antonio; Arias-Borrego, Ana; García-Barrera, Tamara; Gómez-Ariza, José Luis
2017-10-01
The trihalomethanes (TTHMs) and others disinfection by-products (DBPs) are formed in drinking water by the reaction of chlorine with organic precursors contained in the source water, in two consecutive and linked stages, that starts at the treatment plant and continues in second stage along the distribution system (DS) by reaction of residual chlorine with organic precursors not removed. Following this approach, this study aimed at developing a two-stage empirical model for predicting the formation of TTHMs in the water treatment plant and subsequently their evolution along the water distribution system (WDS). The aim of the two-stage model was to improve the predictive capability for a wide range of scenarios of water treatments and distribution systems. The two-stage model was developed using multiple regression analysis from a database (January 2007 to July 2012) using three different treatment processes (conventional and advanced) in the water supply system of Aljaraque area (southwest of Spain). Then, the new model was validated using a recent database from the same water supply system (January 2011 to May 2015). The validation results indicated no significant difference in the predictive and observed values of TTHM (R 2 0.874, analytical variance <17%). The new model was applied to three different supply systems with different treatment processes and different characteristics. Acceptable predictions were obtained in the three distribution systems studied, proving the adaptability of the new model to the boundary conditions. Finally the predictive capability of the new model was compared with 17 other models selected from the literature, showing satisfactory results prediction and excellent adaptability to treatment processes.
Predictors of blood trihalomethane concentrations in NHANES 1999-2006.
Riederer, Anne M; Dhingra, Radhika; Blount, Benjamin C; Steenland, Kyle
2014-07-01
Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999-2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%-76% in blood and 38%-52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002-2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study.
Salas, Lucas A; Bustamante, Mariona; Gonzalez, Juan R; Gracia-Lavedan, Esther; Moreno, Victor; Kogevinas, Manolis; Villanueva, Cristina M
2015-01-01
Trihalomethanes (THM) are undesired disinfection byproducts (DBPs) formed during water treatment. Mice exposed to DBPs showed global DNA hypomethylation and c-myc and c-jun gene-specific hypomethylation, while evidence of epigenetic effects in humans is scarce. We explored the association between lifetime THM exposure and DNA methylation through an epigenome-wide association study. We selected 138 population-based controls from a case-control study of colorectal cancer conducted in Barcelona, Spain, exposed to average lifetime THM levels ≤85 μg/L vs. >85 μg/L (N = 68 and N = 70, respectively). Mean age of participants was 70 years, and 54% were male. Average lifetime THM level in the exposure groups was 64 and 130 µg/L, respectively. DNA was extracted from whole blood and was bisulphite converted to measure DNA methylation levels using the Illumina HumanMethylation450 BeadChip. Data preprocessing was performed using RnBeads. Methylation was compared between exposure groups using empirical Bayes moderated linear regression for CpG sites and Gaussian kernel for CpG regions. ConsensusPathDB was used for gene set enrichment. Statistically significant differences in methylation between exposure groups was found in 140 CpG sites and 30 gene-related regions, after false discovery rate <0.05 and adjustment for age, sex, methylation first principal component, and blood cell proportion. The annotated genes were localized to several cancer pathways. Among them, 29 CpGs had methylation levels associated with THM levels (|Δβ|≥0.05) located in 11 genes associated with cancer in other studies. Our results suggest that THM exposure may affect DNA methylation in genes related to tumors, including colorectal and bladder cancers. Future confirmation studies are required. PMID:26039576
2014-01-01
Background There is evidence, although inconsistent, that long term exposure to disinfection by products (DBPs) increases the risk of bowel cancer. No study has been conducted in Australia to examine this association and due to difference in the methods of disinfection the risk can vary across geographical regions and. This study was conducted to analyse the association of trihalomethanes (THMs) in water with colon and rectal cancer in NSW Australia. Methods Average yearly concentrations of total and individual species of THMs were obtained for 50 local government areas (LGAs). Indirectly-standardized incidence rates of colon and rectal cancers in LGAs for the period 1995 to 2001 were regressed against mean THM concentrations lagged five years, adjusting for socioeconomic status, high risk drinking, smoking status, usual source of water and year of diagnosis, including local and global random effects within a Bayesian framework. The incidence rate ratios (IRRs) for an interquartile range (IQR) increase in THMs were estimated. Results Using five year lag of exposure there was a positive association between bromoform concentration and CRC in men (IRR = 1.025, 95% CI 1.010, 1.040) but not in women (IRR = 1.003, 95% CI 0.987, 1.018). The association in men was mainly found in colon cancer with bromoform (IRR = 1.035, 95% CI 1.017, 1.053). There was no appreciable association of colorectal cancer with other species of THMs. Sensitivity analyses did not materially change the associations observed. Conclusion A positive association was observed between colon cancer and water bromoform concentrations in men. Given the potential population impact of such an association, further research into the relationship between THMs, particularly brominated species, and colorectal cancer is warranted. PMID:24938491
Size and XAD fractionations of trihalomethane precursors from soils.
Chow, Alex T; Guo, Fengmao; Gao, Suduan; Breuer, Richard S
2006-03-01
Soil organic matter is an important source of allochthonous dissolved organic matter inputs to the Sacramento-San Joaquin Delta waterways, which is a drinking water source for 22 million people in California, USA. Knowledge of trihalomethane (THM) formation potential of soil-derived organic carbon is important for developing effective strategies for organic carbon removal in drinking water treatment. In this study, soil organic carbon was extracted with electrolytes (deionized H2O and Na- or Ca-based electrolytes) of electrical conductivity bracketing those found in Delta leaching and runoff conditions. The extracts were physically and chemically separated into different fractions: colloidal organic carbon (0.45-0.1 microm), fine colloidal organic carbon (0.1-0.025 microm), and dissolved organic carbon (DOC) (<0.025 microm); hydrophobic acid (HPOA), transphilic acid, and hydrophilic acid. Two representative Delta soils, Rindge Muck (a peat soil) and Scribner Clay Loam (a mineral soil) were examined. Results showed that less than 2% of soil organic carbon was electrolyte-extractable and heterogeneous organic fractions with distinct THM reactivity existed. Regardless of soil and electrolytes, DOC and HPOA fractions were dominant in terms of total concentration and THMFP. The amounts of extractable organic carbon and THMFP were dependent on the cation and to a lesser extent on electrical conductivity of electrolytes. Along with our previous study on temperature and moisture effects on DOC production, we propose a conceptual model to describe the impacts of agricultural practices on DOC production in the Delta. DOC is mainly produced in the surface peat soils during the summer and is immobilized by accumulated salt in the soils. DOC is leached from soils to drainage ditches and finally to the Delta channels during winter salt leaching practices.
Trihalomethanes in marine mammal aquaria: occurrences, sources, and health risks.
Wang, Jun-Jian; Chow, Alex T; Sweeney, Joelle M; Mazet, Jonna A K
2014-08-01
Disinfecting water containing the high levels of dissolved organic carbon (DOC) commonly generated during pinniped husbandry may cause the formation of carcinogenic disinfection byproducts (DBPs). Little information is available on DBP levels, sources, and health risks in marine mammal aquaria. Using the commonly observed trihalomethanes (THMs) as a DBP indicator, we monitored concentrations for seven months at The Marine Mammal Center in Sausalito, California, one of the largest pinniped rehabilitation facilities in the world. Concentrations of THMs ranged 1.1-144.2 μg/L in pool waters and generally increased with number of animals housed (P < 0.05). To identify the sources of THM precursors in marine mammal aquaria, we intensively monitored the mass flows of potential THM precursors (i.e. food and wastes) in an isolated system with nine individual California sea lions to evaluate the sources and reactivity of dissolved organic carbon (DOC) for 2-5 weeks. The common frozen foods used in feeding pinnipeds, including herring, sardine, and squid, produced an average of 22-34 mg-DOC/g-food in water and 836-1066 μg-THM/g-food after chlorination, whereas the fecal materials, including fresh scat, decomposed scat, and urine, produced 2-16 mg-DOC/g-waste and 116-768 μg-THM/g-waste. Food not eaten by animals could cause a sharp increase of DOC and DBP production and therefore should be removed rapidly from pools. Marine mammal husbandry staff and trainers are at risk (5.16 × 10(-4) to 1.30 × 10(-3)) through exposure of THMs, exceeding the negligible risk level (10(-6)) defined by the US Environmental Protection Agency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S; Makris, Konstantinos C
2016-02-01
Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n=37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L(-1), respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L(-1). The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 - 0.848 μg L(-1)). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L(-1) and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. Copyright © 2015 Elsevier B.V. All rights reserved.
Wei, Yuanyuan; Liu, Yan; Ma, Luming; Wang, Hongwu; Fan, Jinhong; Liu, Xiang; Dai, Rui-Hua
2013-09-01
Water sources are micro-polluted by the increasing range of anthropogenic activities around them. Disinfection byproduct (DBP) precursors in water have gradually expanded from humic acid (HA) and fulvic acid to other important sources of potential organic matter. This study aimed to provide further insights into the effects of microbially derived organic matter as precursors on iodinated trihalomethane (I-THM) speciation and formation during the biological treatment of micro-polluted source water. The occurrence of I-THMs in drinking water treated by biological processes was investigated. The results showed for the first time that CHCl2I and CHBrClI are emerging DBPs in China. Biological pre-treatment and biological activated carbon can increase levels of microbes, which could serve as DBP precursors. Chlorination experiments with bovine serum albumin (BSA), starch, HA, deoxyribonucleic acid (DNA), and fish oil, confirmed the close correlation between the I-THM species identified during the treatment processes and those predicted from the model compounds. The effects of iodide and bromide on the I-THM speciation and formation were related to the biochemical composition of microbially derived organic precursors. Lipids produced up to 16.98μgL(-1) of CHCl2I at an initial iodide concentration of 2mgL(-1). HA and starch produced less CHCl2I at 3.88 and 3.54μgL(-1), respectively, followed by BSA (1.50μgL(-1)) and DNA (1.35μgL(-1)). Only fish oil produced I-THMs when iodide and bromide were both present in solution; the four other model compounds formed brominated species. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pan, Yang; Zhang, Xiangru
2013-02-05
Bromide is naturally present in source waters worldwide. Chlorination of drinking water can generate a variety of chlorinated and brominated disinfection byproducts (DBPs). Although substantial efforts have been made to examine the effect of bromide concentration on the formation and speciation of halogenated DBPs, almost all previous studies have focused on trihalomethanes and haloacetic acids. Given that about 50% of total organic halogen formed in chlorination remains unknown, it is still unclear how bromide concentration affects the formation and speciation of the new/unknown halogenated DBPs. In this study, chlorinated drinking water samples with different bromide concentrations were prepared, and a novel approach-precursor ion scan using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry-was adopted for the detection and identification of polar halogenated DBPs in these water samples. With this approach, 11 new putative aromatic halogenated DBPs were identified, and they were classified into four groups: dihalo-4-hydroxybenzaldehydes, dihalo-4-hydroxybenzoic acids, dihalo-salicylic acids, and trihalo-phenols. A mechanism for the formation of the four groups of new aromatic halogenated DBPs was proposed. It was found that increasing the bromide concentration shifted the entire polar halogenated DBPs as well as the four groups of new DBPs from being less brominated to being more brominated; these new aromatic halogenated DBPs might be important intermediate DBPs formed in drinking water chlorination. Moreover, the speciation of the four groups of new DBPs was modeled: the speciation patterns of the four groups of new DBPs well matched those determined from the model equations, and the reactivity differences between HOBr and HOCl in reactions forming the four groups of new DBPs were larger than those in reactions forming trihalomethanes and haloacetic acids.
Xue, Runmiao; Shi, Honglan; Ma, Yinfa; Yang, John; Hua, Bin; Inniss, Enos C; Adams, Craig D; Eichholz, Todd
2017-12-01
Free chlorine is a commonly used disinfectant in drinking water treatment. However, disinfection by-products (DBPs) are formed during water disinfection. Haloacetic acids (HAAs) and trihalomethanes (THMs) are two major groups of DBPs. Iodo-HAAs and iodo-THMs (I-HAAs and I-THMs) are formed during the disinfection of the water containing high levels of iodide and are much more toxic than their chlorinated and brominated analogs. Peracetic acid (PAA) is a strong antimicrobial disinfectant that is expected to reduce the formation of HAAs and THMs during disinfection. In this study, the formations of thirteen HAAs and ten THMs, including the iodinated forms, have been investigated during PAA disinfection and chlorination as the comparison. The DBP formations under different iodide concentrations, pHs, and contact times were systematically investigated. Two types of commercial PAAs containing different concentrations of PAA and hydrogen peroxide (H 2 O 2 ) were studied. A solid-phase microextraction gas chromatography-mass spectrometry method was upgraded for THM analysis including I-THMs. HAAs were analyzed by following a recently developed high performance ion chromatography-tandem mass spectrometry method. Results show that the ratio of PAA and H 2 O 2 concentration significantly affect the formation of I-THMs and I-HAAs. During PAA disinfection with lower PAA than H 2 O 2 , no detectable levels of THMs and HAAs were observed. During PAA disinfection with higher PAA than H 2 O 2 , low levels of monoiodoacetic acid, diiodoacetic acid, and iodoform were formed, and these levels were enhanced with the increase of iodide concentration. No significant quantities of chloro- or bromo-THMs and HAAs were formed during PAA disinfection treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Al-Otoum, Fatima; Al-Ghouti, Mohammad A; Ahmed, Talaat A; Abu-Dieyeh, Mohammed; Ali, Mohammed
2016-12-01
The occurrence of chlorine dioxide (ClO 2 ) disinfection by-products (DBPs) in drinking water, namely, chlorite, chlorate, and trihalomethanes (THMs), was investigated. Two-hundred-ninety-four drinking water samples were collected from seven desalination plants (DPs), four reservoirs (R), and eight mosques (M) distributed within various locations in southern and northern Qatar. The ClO 2 concentration levels ranged from 0.38 to <0.02 mg L -1 , with mean values of 0.17, 0.12, and 0.04 mg L -1 for the DPs, Rs, and Ms, respectively. The chlorite levels varied from 13 μg L -1 to 440 μg L -1 , with median values varying from 13 to 230 μg L -1 , 77-320 μg L -1 , and 85-440 μg L -1 for the DPs, Rs, and Ms, respectively. The chlorate levels varied from 11 μg L -1 to 280 μg L -1 , with mean values varying from 36 to 280 μg L -1 , 11-200 μg L -1 , and 11-150 μg L -1 in the DPs, Rs, and Ms, respectively. The average concentration of THMs was 5 μg L -1 , and the maximum value reached 77 μg L -1 However, all of the DBP concentrations fell within the range of the regulatory limits set by GSO 149/2009, the World Health Organization (WHO), and Kahramaa (KM). Copyright © 2016 Elsevier Ltd. All rights reserved.
Trihalomethane hydrolysis in drinking water at elevated temperatures.
Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F
2015-07-01
Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Grazuleviciene, Regina; Kapustinskiene, Violeta; Vencloviene, Jone; Buinauskiene, Jurate; Nieuwenhuijsen, Mark J
2013-01-01
Objectives Congenital anomalies have been inconsistently associated with maternal crude estimated exposure to drinking water trihalomethane (THM). We investigated the relationship between individual THM uptake during the first trimester of pregnancy and congenital anomalies. Methods We estimated maternal THM uptake for 3074 live births using residential tap water concentrations, drinking water ingestion, showering and bathing, and uptake factors of THM in the blood. Multiple logistic regression was used to investigate the association of THM exposure with congenital anomalies. Results We observed no statistically significant relationships between congenital anomalies and the total THM internal dose. We found little indication of a dose-response relationship for brominated THM and congenital heart anomalies. The relationship was statistically significant for bromodichloromethane (BDCM) (OR=2.16, 95% CI 1.05 to 4.46, highest vs lowest tertile) during the first month of pregnancy. During the first trimester of pregnancy, the probability of developing heart anomalies increased for every 0.1 μg/d increase in the BDCM and for every 0.01 μg/d increase in the internal dibromochloromethane (DBCM) dose (OR 1.70, 95% CI 1.09 to 2.66, and OR 1.25, 95% CI 1.01 to 1.54, respectively). A dose-response relationship was evident for musculoskeletal anomalies and DBCM exposure during the first and second months of pregnancy, while BDCM exposure tended to increase the risk of urogenital anomalies. Conclusions This study shows some evidence for an association between the internal dose of THM and the risk of congenital anomalies. In particular, increased prenatal exposure to brominated THM might increase the risk of congenital heart and musculoskeletal anomalies. PMID:23404756
Xu, Zhifa; Li, Xia; Hu, Xialin; Yin, Daqiang
2017-10-01
Distribution and relevance of iodinated X-ray contrast media (ICM) and iodinated disinfection byproducts (I-DBPs) in a real aquatic environment have been rarely documented. In this paper, some ICM were proven to be strongly correlated with I-DBPs through investigation of five ICM and five iodinated trihalomethanes (I-THMs) in surface water and two drinking water treatment plants (DWTPs) of the Yangtze River Delta, China. The total ICM concentrations in Taihu Lake and the Huangpu River ranged from 88.7 to 131 ng L -1 and 102-252 ng L -1 , respectively. While the total I-THM concentrations ranged from 128 to 967 ng L -1 in Taihu Lake and 267-680 ng L -1 in the Huangpu River. Iohexol, the dominant ICM, showed significant positive correlation (p < 0.01) with CHClI 2 in Taihu Lake. Iopamidol and iomeprol correlated positively (p < 0.01) with some I-THMs in the Huangpu River. The observed pronounced correlations between ICM and I-THMs indicated that ICM play an important role in the formation of I-THMs in a real aquatic environment. Characteristics of the I-THM species distributions indicated that I-THMs may be transformed by natural conditions. Both DWTPs showed negligible removal efficiencies for total ICM (<20%). Strikingly high concentrations of total I-THMs were observed in the finished water (2848 ng L -1 in conventional DWTP and 356 ng L -1 in advanced DWTP). Obvious transformation of ICM to I-THMs was observed during the chlorination and ozonization processes in DWTPs. We suggest that ICM is an important source for I-DBP formation in the real aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping.
Luo, Qian; Chen, Xichao; Wei, Zi; Xu, Xiong; Wang, Donghong; Wang, Zijian
2014-10-24
When iodide and natural organic matter are present in raw water, the formation of iodo-trihalomethanes (Iodo-THMs), haloacetonitriles (HANs), and halonitromethanes (HNMs) pose a potential health risk because they have been reported to be more toxic than their brominated or chlorinated analogs. In the work, simultaneous analysis of Iodo-THMs, HANs, and HNMs in drinking water samples in a single cleanup and chromatographic analysis was proposed. The DVB/CAR/PDMS fiber was found to be the most suitable for all target compounds, although 75μm CAR/PDMS was better for chlorinated HANs and 65μm PDMS/DVB for brominated HNMs. After optimization of the SPME parameters (DVB/CAR/PDMS fiber, extraction time of 30min at 40°C, addition of 40% w/v of salt, (NH4)2SO4 as a quenching agent, and desorption time of 3min at 170°C), detection limits ranged from 1 to 50ng/L for different analogs, with a linear range of at least two orders of magnitude. Good recoveries (78.6-104.7%) were obtained for spiked samples of a wide range of treated drinking waters, demonstrating that the method is applicable for analysis of real drinking water samples. Matrix effects were negligible for the treated water samples with total organic carbon concentration of less than 2.9mg/L. An effective survey conducted by two drinking water treatment plants showed the highest proportion of Iodo-THMs, HANs, and HNMs occurred in treated water, and concentrations of 13 detected compounds ranged between the ng/L and the μg/L levels. Copyright © 2014 Elsevier B.V. All rights reserved.
Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim
2016-11-01
Biofilms are ubiquitous in the pipes of drinking water distribution systems (DWDSs), and recent experimental studies revealed that the chlorination of the microbial carbon associated with the biofilm contributes to the total disinfection by-products (DBPs) formation with distinct mechanisms from those formed from precursors derived from natural organic matter (NOM). A multiple species reactive-transport model was developed to explain the role of biofilms in DBPs formation by accounting for the simultaneous transport and interactions of disinfectants, organic compounds, and biomass. Using parameter values from experimental studies in the literature, the model equations were solved to predict chlorine decay and microbial regrowth dynamics in an actual DWDS, and trihalomethanes (THMs) formation in a pilot-scale distribution system simulator. The model's capability of reproducing the measured concentrations of free chlorine, suspended biomass, and THMs under different hydrodynamic and temperature conditions was demonstrated. The contribution of bacteria-derived precursors to the total THMs production was found to have a significant dependence on the system's hydraulics, seasonal variables, and the quality of the treated drinking water. Under system conditions that promoted fast bacterial re-growth, the transformation of non-microbial into microbial carbon DBP precursors by the biofilms showed a noticeable effect on the kinetics of THMs formation, especially when a high initial chlorine dose was applied. These conditions included elevated water temperature and high concentrations of nutrients in the influent water. The fraction of THMs formed from microbial sources was found to reach a peak of 12% of the total produced THMs under the investigated scenarios. The results demonstrated the importance of integrating bacterial regrowth dynamics in predictive DBPs formation models. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liao, Yen-Hsiung; Chen, Chih-Cheng; Chang, Chih-Ching; Peng, Chiung-Yu; Chiu, Hui-Fen; Wu, Trong-Neng; Yang, Chun-Yuh
2012-01-01
The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of development of kidney cancer and (2) determine whether hardness levels in drinking water modify the effects of TTHM on risk of kidney cancer induction. A matched case-control study was used to investigate the relationship between the risk of death attributed to kidney cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All kidney cancer deaths in the 53 municipalities from 1998 through 2007 were obtained. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels and levels of hardness in drinking water were also collected. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM and hardness exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for kidney cancer was 0.98 (0.77-1.25) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. However, evidence of an interaction was noted between the use of soft water and drinking water TTHM concentrations. Increased knowledge of the interaction between hardness and TTHM levels in reducing risk of kidney cancer development will aid in public policy decision and establishing standards to prevent disease occurrence.
Rakruam, Pharkphum; Wattanachira, Suraphong
2014-03-01
This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Garcia-Villanova, Rafael J; Raposo Funcia, César; Oliveira Dantas Leite, M Vilani; Toruño Fonseca, Ivania M; Espinosa Nieto, Miguel; Espuelas India, Javier
2014-09-01
Most methods for the analysis of haloacetic acids published in recent years are based on ion chromatography with direct injection, employing a gradient elution with potassium hydroxide (KOH). This work reports the exploration of an alternative eluent, a buffer of sodium carbonate/sodium hydrogen carbonate, aimed at the simultaneous analysis of nine haloacetic acids along with bromate, chlorite and chlorate. The alternative of both a less alkaline eluent and a lower temperature of operation may prevent the partial decomposition of some of the haloacetic acids during the analytical process, especially the more vulnerable brominated ones. Gradient elution at temperature of 7 °C yielded the best results, with an acceptable separation of 17 analytes (which includes the major natural inorganic anions) and a good linearity. Precision ranges from 0.3 to 23.4 (% V.C.), and detection limits are within units of μg L⁻¹, except for tribromoacetic acid - somewhat high in comparison with those of the official methods. Nonetheless, with the basic instrumentation setup herein described, this method may be suitable for monitoring when the drinking water treatments are to be optimized. This is especially interesting for small communities or for developing/developed countries in which regulations on disinfection by-products others than trihalomethanes are being addressed.
Ivahnenko, Tamara; Zogorski, J.S.
2006-01-01
Chloroform and three other trihalomethanes (THMs)--bromodichloromethane, dibromochloromethane, and bromoform--are disinfection by-products commonly produced during the chlorination of water and wastewater. Samples of untreated ground water from drinking-water supply wells (1,096 public and 2,400 domestic wells) were analyzed for THMs and other volatile organic compounds (VOCs) during 1986-2001, or compiled, as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This report provides a summary of potential sources of THMs and of the occurrence and geographical distribution of THMs in samples from public and domestic wells. Evidence for an anthropogenic source of THMs and implications for future research also are presented. Potential sources of THMs to both public and domestic wells include the discharge of chlorinated drinking water and wastewater that may be intentional or inadvertent. Intentional discharge includes the use of municipally supplied chlorinated water to irrigate lawns, golf courses, parks, gardens, and other areas; the use of septic systems; or the regulated discharge of chlorinated wastewater to surface waters or ground-water recharge facilities. Inadvertent discharge includes leakage of chlorinated water from swimming pools, spas, or distribution systems for drinking water or wastewater sewers. Statistical analyses indicate that population density, the percentage of urban land, and the number of Resource Conservation and Recovery Act hazardous-waste facilities near sampled wells are significantly associated with the probability of detection of chloroform, especially for public wells. Domestic wells may have several other sources of THMs, including the practice of well disinfection through shock chlorination, laundry wastewater containing bleach, and septic system effluent. Chloroform was the most frequently detected VOC in samples from drinking-water supply wells (public and domestic wells) in the United States. Although chloroform was detected frequently in samples from public and domestic wells and the other THMs were detected in some samples, no concentrations in samples from either well type exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level of 80 micrograms per liter for total THMs. Chloroform was detected in public well samples almost twice as frequently (11 percent) as in domestic well samples (5 percent). The other three THMs also were detected more frequently in public well samples than in domestic well samples. This detection pattern may be attributed to public wells having a higher pumping capacity than domestic wells. The higher capacity wells create a larger capture zone that potentially intercepts more urban and other land uses and associated point and nonpoint sources of contamination than the smaller capacity domestic wells. THM detection frequencies in domestic well samples show a pattern of decreasing frequency with increasing bromide content, that is in the order: chloroform > bromodichloromethane >= dibromochloromethane >= bromoform. This same pattern has been documented in studies of water chlorination, indicating that an important source of chloroform and other THMs in drinking-water supply wells may be the recycling of chlorinated water and wastewater. Mixtures of THMs commonly occur in public well samples, and the most frequently occurring are combinations of the brominated THMs. These THMs have limited industrial production, few natural sources, and small or no reported direct releases to the environment. Therefore, industrial, commercial, or natural sources are not likely sources of the brominated THMs in public and domestic well samples. The THM detection frequency pattern, the co-occurrence of brominated THMs, and other lines of evidence indicate that the recycling of water with a history of chlorination is an important source of these compounds in samples from drinking-water supply wells.
Deuterium enrichment by selective photoinduced dissociation of a multihalogenated organic compound
Marling, John B.; Herman, Irving P.
1981-01-01
A method for deuterium enrichment by photoinduced dissociation which uses as the deuterium source a multihalogenated organic compound selected from the group consisting of a dihalomethane, a trihalomethane, a 1,2-dihaloethene, a trihaloethene, a tetrahaloethane and a pentahaloethane. The multihalogenated organic compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of substantially only those molecules containing deuterium to provide a deuterium enriched dissociation product. The deuterium enriched product may be combusted with oxygen to provide deuterium enriched water. The deuterium depleted undissociated molecules may be redeuterated by treatment with a deuterium source such as water.
Formation of disinfection byproducts in typical Chinese drinking water.
Liu, Wenbo; Zhao, Yanmei; Chow, Christopher W K; Wang, Dongsheng
2011-01-01
Eight typical drinking water supplies in China were selected in this study. Both source and tap water were used to investigate the occurrence of chlorinated disinfection byproducts (DBPs), and seasonal variation in the concentrations of trihalomethanes (THMs) of seven water sources was compared. The results showed that the pollution level for source water in China, as shown by DBP formation potential, was low. The most encountered DBPs were chloroform, dichloroacetic acid, trichloroacetic acid, and chlorodibromoacetic acid. The concentration of every THMs and haloacetic acid (HAA) compound was under the limit of standards for drinking water quality. The highest total THMs concentrations were detected in spring.
Effect of increasing bromide concentration on toxicity in treated drinking water.
Sawade, Emma; Fabris, Rolando; Humpage, Andrew; Drikas, Mary
2016-04-01
Research is increasingly indicating the potential chronic health effects of brominated disinfection by-products (DBPs). This is likely to increase with elevated bromide concentrations resulting from the impacts of climate change, projected to include extended periods of drought and the sudden onset of water quality changes. This will demand more rigorous monitoring throughout distribution systems and improved water quality management at water treatment plants (WTPs). In this work the impact of increased bromide concentration on formation of DBPs following conventional treatment and chlorination was assessed for two water sources. Bioanalytical tests were utilised to determine cytotoxicity of the water post disinfection. Coagulation was shown to significantly reduce the cytotoxicity of the water, indicating that removal of natural organic matter DBP precursors continues to be an important factor in drinking water treatment. Most toxic species appear to form within the first half hour following disinfectant addition. Increasing bromide concentration across the two waters was shown to increase the formation of trihalomethanes and shifted the haloacetic acid species distribution from chlorinated to those with greater bromine substitution. This correlated with increasing cytotoxicity. This work demonstrates the challenges faced by WTPs and the possible effects increasing levels of bromide in source waters could have on public health.
Catto, Cyril; Sabrina, Simard; Ginette, Charest-Tardif; Manuel, Rodriguez; Robert, Tardif
2012-01-01
In order to improve disinfection by-product (DBP) exposure assessment, this study was designed to document both water and air levels of these chemical contaminants in two indoor swimming pools and to analyze their within-day and day-to-day variations in both of them. Intensive sampling was carried out during two one-week campaigns to measure trihalomethanes (THMs) and chloramines (CAMs) in water and air, and haloacetic acids (HAAs) in water several times daily. Water samples were systematically collected at three locations in each pool and air samples were collected at various heights around the pool and in other rooms (e.g., changing room) in the buildings. In addition, the ability of various models to predict air concentrations from water was tested using this database. No clear trends, but actual variations of contamination levels, appeared for both water and air according to the sampling locations and times. Likewise, the available models resulted in realistic but imprecise estimates of air contamination levels from water. This study supports the recommendation that suitable minimal air and water sampling should be carried out in swimming pools to assess exposure to DBPs. PMID:23066383
Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S
2012-10-01
Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but remained below the World Health Organization guideline value of 70 μg/L in all cases. MP UV and high LP UV doses (1000 mJ/cm²) increased chloral hydrate formation after subsequent chlorination (20-40% increase for 40 mJ/cm² MP UV). These results indicate the importance of bench-testing DBP implications of UV applications in combination with post-disinfectants as part of the engineering assessment of a UV-chlorine/chloramine multi-barrier disinfection design for drinking water treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andra, Syam S.; Harvard-Cyprus Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA; Charisiadis, Pantelis
Domestic cleaning has been proposed as a determinant of trihalomethanes (THMs) exposure in adult females. We hypothesized that parental housekeeping activities could influence children's passive exposures to THMs from their mere physical presence during domestic cleaning. In a recent cross-sectional study (n=382) in Cyprus [41 children (<18y) and 341 adults (≥18y)], we identified 29 children who met the study's inclusion criteria. Linear regression models were applied to understand the association between children sociodemographic variables, their individual practices influencing ingestion and noningestion exposures to ΣTHMs, and their urinary THMs levels. Among the children-specific variables, age alone showed a statistically significant inversemore » association with their creatinine-adjusted urinary ΣTHMs (r{sub S}=−0.59, p<0.001). A positive correlation was observed between urinary ΣTHMs (ng g{sup −1}) of children and matched-mothers (r{sub S}=0.52, p=0.014), but this was not the case for their matched-fathers (r{sub S}=0.39, p=0.112). Time spent daily by the matched-mothers for domestic mopping, toilet and other cleaning activities using chlorine-based cleaning products was associated with their children's urinary THMs levels (r{sub S}=0.56, p=0.007). This trend was not observed between children and their matched-fathers urinary ΣTHMs levels, because of minimum amount of time spent by the latter in performing domestic cleaning. The proportion of variance of creatinine-unadjusted and adjusted urinary ΣTHMs levels in children that was explained by the matched-mothers covariates was 76% and 74% (p<0.001), respectively. A physiologically-based pharmacokinetic model adequately predicted urinary chloroform excretion estimates, being consistent with the corresponding measured levels. Our findings highlighted the influence of mothers' domestic cleaning activities towards enhancing passive THMs exposures of their children. The duration of such activities could be further tested as a valid indicator of children's THMs body burden. - Highlights: • First report on THMs exposure assessment in matched parents and children. • Duration of domestic cleaning by mothers influenced passive exposure to THMs in children. • Matched-fathers did little cleaning and thereby no contribution to passive exposure to THMs in children. • Reverse dosimetry showed a good agreement between predicted and observed urinary chloroform. • Passive exposures to THMs require new attention in survey questionnaires and epidemiology.« less
Bergamaschi, B.A.; Fram, M.S.; Kendall, C.; Silva, S.R.; Aiken, G.R.; Fujii, R.
1999-01-01
The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn, Zea maize L) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 1-6.8??? difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic difference between the whole plant materials. Both maize and Scirpus formed THM 12??? lower in 13C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THM-forming DOC, representing different biochemical types or chemical structures, and possessing different environmental reactivity Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The difference between the ??13C values of the whole isolate and that of the THM it yielded was 3 9???, however, suggesting diagenesis plays a role in determining the ??13C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources.The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn; Zea maize L.) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 16.8qq difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic difference between the whole plant materials. Both maize and Scirpus formed THM 12qq lower in 13C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THM-forming DOC, representing different biochemical types or chemical structures, and possessing different environmental reactivity. Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The difference between the ??13C values of the whole isolate and that of the THM it yielded was 3.9qq, however, suggesting diagenesis plays a role in determining the ??13C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources.
EXPOSURES AND INTERNAL DOSES OF ...
The National Center for Environmental Assessment (NCEA) has released a final report that presents and applies a method to estimate distributions of internal concentrations of trihalomethanes (THMs) in humans resulting from a residential drinking water exposure. The report presents simulations of oral, dermal and inhalation exposures and demonstrates the feasibility of linking the US EPA’s information Collection Rule database with other databases on external exposure factors and physiologically based pharmacokinetic modeling to refine population-based estimates of exposure. Review Draft - by 2010, develop scientifically sound data and approaches to assess and manage risks to human health posed by exposure to specific regulated waterborne pathogens and chemicals, including those addressed by the Arsenic, M/DBP and Six-Year Review Rules.
Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds
NASA Technical Reports Server (NTRS)
Smith, G. B.
1996-01-01
The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.
Binkley, Teresa L; Thiex, Natalie W; Specker, Bonny L
2015-05-01
The objective of this study was to provide evidence to evaluate the proposed National Children's Study (NCS) protocol for household water sampling in rural study areas. Day-to-day variability in total trihalomethane (TTHM) concentrations in community water supplies (CWS) in rural areas was determined, and the correlation between TTHM concentrations from household taps and CWS monitoring reports was evaluated. Daily water samples were collected from 7 households serviced by 7 different CWS for 15 days. Coefficients of variation for TTHM concentration over 15 days ranged from 8% to 20% depending on the household. Correlations were tested between TTHM household concentrations and the closest date- and location-matched CWS monitoring reports for the 15-day mean (R=0.85, P<0.01). To simulate the NCS-proposed protocol, correlations were tested for 30 additional NCS household samples (polynomial fit: R=0.74, P=0.04). CWS reported TTHM concentrations >50 μg/l corresponded to measured NCS household concentrations ranging from 2 to 60 μg/l. TTHM concentrations were higher in CWS than NCS samples (11.2±3.2 μg/l, mean difference±SE, P<0.01). These results show that in rural areas there is high variability within households and poor correlation at higher concentrations, suggesting that TTHM concentrations from CWS monitoring reports are not an accurate measure of exposure in the household.
Platikanov, Stefan; Tauler, Roma; Rodrigues, Pedro M S M; Antunes, Maria Cristina G; Pereira, Dilson; Esteves da Silva, Joaquim C G
2010-09-01
This study focuses on the factors that affect trihalomethane (THMs) formation when dissolved organic matter (DOM) fractions (colloidal, hydrophobic, and transphilic fractions) in aqueous solutions were disinfected with chlorine. DOM fractions were isolated and fractionated from filtered lake water and were characterized by elemental analysis. The investigation involved a screening Placket-Burman factorial analysis design of five factors (DOM concentration, chlorine dose, temperature, pH, and bromide concentration) and a Box-Behnken design for a detailed assessment of the three most important factor effects (DOM concentration, chlorine dose, and temperature). The results showed that colloidal fraction has a relatively low contribution to THM formation; transphilic fraction was responsible for about 50% of the chloroform generation, and the hydrophobic fraction was the most important to the brominated THM formation. When colloidal and hydrophobic fraction solutions were disinfected, the most significant factors were the following: higher DOM fraction concentration led to higher THM concentration, an increase of pH corresponded to higher concentration levels of chloroform and reduced bromoform, higher levels of chlorine dose and temperature produced a rise in the total THM formation, especially of the chlorinated THMs; higher bromide concentration generates higher concentrations of brominated THMs. Moreover, linear models were implemented and response surface plots were obtained for the four THM concentrations and their total sum in the disinfection solution as a function of the DOM concentration, chlorine dose, and temperature. Overall, results indicated that THM formation models were very complex due to individual factor effects and significant interactions among the factors. In order to reduce the concentration of THMs in drinking water, DOM concentrations must be reduced in the water prior to the disinfection. Fractionation of DOM, together with an elemental analysis of the fractions, is important issue in the revealing of the quality and quantity characteristics of DOM. Systematic study composed from DOM fraction investigation and factorial analysis of the responsible parameters in the THM formation reaction can, after an evaluation of the adjustment of the models with the reality, serves well for the evaluation of the spatial and temporal variability in the THM formation in dependence of DOM. However, taking into consideration the natural complexity of DOM, different operations and a strict control of them (like coagulation/flocculation and filtration) has to be used to quantitatively remove DOM from the raw water. Assuming that this study represents a local case study, similar experiments can be easily applied and will supply with relevant information every local water treatment plant meeting problems with THM formation. The coagulation/flocculation and the filtration stages are the main mechanisms to remove DOM, particularly the colloidal DOM fraction. With the objective to minimize THMs generation, different unit operation designed to quantitatively remove DOM from water must be optimized.
Nuckols, John R; Ashley, David L; Lyu, Christopher; Gordon, Sydney M; Hinckley, Alison F; Singer, Philip
2005-07-01
Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre-water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and post-activity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities.
Nuckols, John R.; Ashley, David L.; Lyu, Christopher; Gordon, Sydney M.; Hinckley, Alison F.; Singer, Philip
2005-01-01
Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre–water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and postactivity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities. PMID:16002374
Changes in Breath Trihalomethane Levels Resulting from Household Water-Use Activities
Gordon, Sydney M.; Brinkman, Marielle C.; Ashley, David L.; Blount, Benjamin C.; Lyu, Christopher; Masters, John; Singer, Philip C.
2006-01-01
Common household water-use activities such as showering, bathing, drinking, and washing clothes or dishes are potentially important contributors to individual exposure to trihalomethanes (THMs), the major class of disinfection by-products of water treated with chlorine. Previous studies have focused on showering or bathing activities. In this study, we selected 12 common water-use activities and determined which may lead to the greatest THM exposures and result in the greatest increase in the internal dose. Seven subjects performed the various water-use activities in two residences served by water utilities with relatively high and moderate total THM levels. To maintain a consistent exposure environment, the activities, exposure times, air exchange rates, water flows, water temperatures, and extraneous THM emissions to the indoor air were carefully controlled. Water, indoor air, blood, and exhaled-breath samples were collected during each exposure session for each activity, in accordance with a strict, well-defined protocol. Although showering (for 10 min) and bathing (for 14 min), as well as machine washing of clothes and opening mechanical dishwashers at the end of the cycle, resulted in substantial increases in indoor air chloroform concentrations, only showering and bathing caused significant increases in the breath chloroform levels. In the case of bromodichloromethane (BDCM), only bathing yielded a significantly higher air level in relation to the preexposure concentration. For chloroform from showering, strong correlations were observed for indoor air and exhaled breath, blood and exhaled breath, indoor air and blood, and tap water and blood. Only water and breath, and blood and breath were significantly associated for chloroform from bathing. For BDCM, significant correlations were obtained for blood and air, and blood and water from showering. Neither dibromochloromethane nor bromoform gave measurable breath concentrations for any of the activities investigated because of their much lower tap-water concentrations. Future studies will address the effects that changes in these common water-use activities may have on exposure. PMID:16581538
Parker, Kimberly M; Zeng, Teng; Harkness, Jennifer; Vengosh, Avner; Mitch, William A
2014-10-07
The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination, and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation toward formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01-0.03% contribution of Marcellus HFW (a range of 70-200 μg/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however, iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering disinfection strategies. The potential formation of multiple DBPs in drinking water utilities in areas of shale gas development requires comprehensive monitoring plans beyond the common regulated DBPs.
Grazuleviciene, Regina; Nieuwenhuijsen, Mark J; Vencloviene, Jone; Kostopoulou-Karadanelli, Maria; Krasner, Stuart W; Danileviciute, Asta; Balcius, Gediminas; Kapustinskiene, Violeta
2011-04-19
Evidence for an association between exposure during pregnancy to trihalomethanes (THMs) in drinking water and impaired fetal growth is still inconsistent and inconclusive, in particular, for various exposure routes. We examined the relationship of individual exposures to THMs in drinking water on low birth weight (LBW), small for gestational age (SGA), and birth weight (BW) in singleton births. We conducted a cohort study of 4,161 pregnant women in Kaunas (Lithuania), using individual information on drinking water, ingestion, showering and bathing, and uptake factors of THMs in blood, to estimate an internal dose of THM. We used regression analysis to evaluate the relationship between internal THM dose and birth outcomes, adjusting for family status, education, smoking, alcohol consumption, body mass index, blood pressure, ethnic group, previous preterm, infant gender, and birth year. The estimated internal dose of THMs ranged from 0.0025 to 2.40 mg/d. We found dose-response relationships for the entire pregnancy and trimester-specific THM and chloroform internal dose and risk for LBW and a reduction in BW. The adjusted odds ratio for third tertile vs. first tertile chloroform internal dose of entire pregnancy was 2.17, 95% CI 1.19-3.98 for LBW; the OR per every 0.1 μg/d increase in chloroform internal dose was 1.10, 95% CI 1.01-1.19. Chloroform internal dose was associated with a slightly increased risk of SGA (OR 1.19, 95% CI 0.87-1.63 and OR 1.22, 95% CI 0.89-1.68, respectively, for second and third tertile of third trimester); the risk increased by 4% per every 0.1 μg/d increase in chloroform internal dose (OR 1.04, 95% CI 1.00-1.09). THM internal dose in pregnancy varies substantially across individuals, and depends on both water THM levels and water use habits. Increased internal dose may affect fetal growth.
Rostad, C.E.; Martin, B.S.; Barber, L.B.; Leenheer, J.A.; Daniel, S.R.
2000-01-01
The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (TH M), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.The fate of halogenated disinfection byproducts (DBPs) in treatment wetlands and the changes in the DBP formation potential as wastewater treatment plant (WWTP)-derived water moves through the wetlands were investigated. Wetland inlet and outlet samples were analyzed for total organic halide (TOX), trihalomethanes (THM), haloacetic acids (HAA), dissolved organic carbon (DOC), and UV absorbance. Removal of DBPs by the wetland ranged from 13 to 55% for TOX, from 78 to 97% for THM, and from 67 to 96% for HAA. The 24-h and 7-day nonpurgeable total organic halide (NPTOX), THM, and HAA formation potential yields were determined at the inlet and outlet of these wetlands. The effect of wetlands on the production of DBP precursors and their DBP-formation potential yield from wastewater was dramatic. The wetlands increased DBP yield up to a factor of almost 30. Specific changes in the DOC precursors were identified using 13C NMR spectroscopy.
Zhang, Jie; Liu, Jing; He, Chuan-Shu; Qian, Chen; Mu, Yang
2018-06-04
Ultraviolet/hydrogen peroxide (UV/H 2 O 2 ) pre-oxidation has the potential to induce reactions with dissolved organic matter (DOM) and alter the generation of disinfection byproducts (DBPs). This study evaluated the influence of UV/H 2 O 2 pretreatment on the formation of iodo-trihalomethanes (I-THMs) during disinfection with chlorine or chloramine. The changes of precursors, I - and Br - , after UV/H 2 O 2 pretreatment were investigated, and then, the formation and speciation of I-THMs during chlorination or chloramination after pre-oxidation were explored. Additionally, the effects of UV doses and H 2 O 2 concentrations on the formation and speciation of I-THMs were studied. It was found that UV/H 2 O 2 pretreatment could change larger molecular weight (MW) DOM to smaller MW species, which had less aromatic organic compounds and fluorescence substances. Additionally, insignificant transformations of I - and Br - were observed after UV/H 2 O 2 treatment. Compared to direct disinfection, UV/H 2 O 2 pretreatment resulted in 23.0 ± 3.5% reduction in I-THMs formation during post-chlorination while an enhancement was observed during post-chloramination at a UV dose of 460 mJ/cm 2 and 20 mg/L H 2 O 2 . Moreover, total I-THM concentration increased from 43.7 ± 2.4 to 97.6 ± 14.9 nM with the increase of UV doses from 0 to 1400 mJ/cm 2 during the post-chlorination process, while reduced when the UV fluence was >460 mJ/cm 2 during the post-chloramination. Additionally, the generation of I-THMs during both post-chlorination and post-chloramination was positively related to the H 2 O 2 levels from 0 to 20 mg/L in the UV/H 2 O 2 pretreatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Solà-Vázquez, Auristela; Lara-Gonzalo, Azucena; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo
2010-05-01
A tuneable microsecond pulsed direct current glow discharge (GD)-time-of-flight mass spectrometer MS(TOF) developed in our laboratory was coupled to a gas chromatograph (GC) to obtain sequential collection of the mass spectra, at different temporal regimes occurring in the GD pulses, during elution of the analytes. The capabilities of this set-up were explored using a mixture of volatile organic compounds of environmental concern: BrClCH, Cl(3)CH, Cl(4)C, BrCl(2)CH, Br(2)ClCH, Br(3)CH. The experimental parameters of the GC-pulsed GD-MS(TOF) prototype were optimized in order to separate appropriately and analyze the six selected organic compounds, and two GC carrier gases, helium and nitrogen, were evaluated. Mass spectra for all analytes were obtained in the prepeak, plateau and afterpeak temporal regimes of the pulsed GD. Results showed that helium offered the best elemental sensitivity, while nitrogen provided higher signal intensities for fragments and molecular peaks. The analytical performance characteristics were also worked out for each analyte. Absolute detection limits obtained were in the order of ng. In a second step, headspace solid phase microextraction (HS SPME), as sample preparation and preconcentration technique, was evaluated for the quantification of the compounds under study, in order to achieve the required analytical sensitivity for trihalomethanes European Union (EU) environmental legislation. The analytical figures of merit obtained using the proposed methodology showed rather good detection limits (between 2 and 13 microg L(-1) depending on the analyte). In fact, the developed methodology met the EU legislation requirements (the maximum level permitted in tap water for the "total trihalomethanes" is set at 100 microg L(-1)). Real analysis of drinking water and river water were successfully carried out. To our knowledge this is the first application of GC-pulsed GD-MS(TOF) for the analysis of real samples. Its ability to provide elemental, fragments and molecular information of the organic compounds is demonstrated.
Fram, Miranda S; Belitz, Kenneth
2011-08-15
Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells=61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity>0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping. Published by Elsevier B.V.
Landis, Matthew S; Kamal, Ali S; Kovalcik, Kasey D; Croghan, Carry; Norris, Gary A; Bergdale, Amy
2016-01-15
In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters limited the interpretation of historical trends. Published by Elsevier B.V.
2011-01-01
Background Evidence for an association between exposure during pregnancy to trihalomethanes (THMs) in drinking water and impaired fetal growth is still inconsistent and inconclusive, in particular, for various exposure routes. We examined the relationship of individual exposures to THMs in drinking water on low birth weight (LBW), small for gestational age (SGA), and birth weight (BW) in singleton births. Methods We conducted a cohort study of 4,161 pregnant women in Kaunas (Lithuania), using individual information on drinking water, ingestion, showering and bathing, and uptake factors of THMs in blood, to estimate an internal dose of THM. We used regression analysis to evaluate the relationship between internal THM dose and birth outcomes, adjusting for family status, education, smoking, alcohol consumption, body mass index, blood pressure, ethnic group, previous preterm, infant gender, and birth year. Results The estimated internal dose of THMs ranged from 0.0025 to 2.40 mg/d. We found dose-response relationships for the entire pregnancy and trimester-specific THM and chloroform internal dose and risk for LBW and a reduction in BW. The adjusted odds ratio for third tertile vs. first tertile chloroform internal dose of entire pregnancy was 2.17, 95% CI 1.19-3.98 for LBW; the OR per every 0.1 μg/d increase in chloroform internal dose was 1.10, 95% CI 1.01-1.19. Chloroform internal dose was associated with a slightly increased risk of SGA (OR 1.19, 95% CI 0.87-1.63 and OR 1.22, 95% CI 0.89-1.68, respectively, for second and third tertile of third trimester); the risk increased by 4% per every 0.1 μg/d increase in chloroform internal dose (OR 1.04, 95% CI 1.00-1.09). Conclusions THM internal dose in pregnancy varies substantially across individuals, and depends on both water THM levels and water use habits. Increased internal dose may affect fetal growth. PMID:21501533
Andersson, Anna; Ashiq, Muhammad Jamshaid; Shoeb, Mohammad; Karlsson, Susanne; Bastviken, David; Kylin, Henrik
2018-02-28
The occurrence of disinfection by-products (DBPs) in drinking water has become an issue of concern during the past decades. The DBPs pose health risks and are suspected to cause various cancer forms, be genotoxic, and have negative developmental effects. The vast chemical diversity of DBPs makes comprehensive monitoring challenging. Only few of the DBPs are regulated and included in analytical protocols. In this study, a method for simultaneous measurement of 20 DBPs from five different structural classes (both regulated and non-regulated) was investigated and further developed for 11 DBPs using solid-phase extraction and gas chromatography coupled with a halogen-specific detector (XSD). The XSD was highly selective towards halogenated DBPs, providing chromatograms with little noise. The method allowed detection down to 0.05 μg L -1 and showed promising results for the simultaneous determination of a range of neutral DBP classes. Compounds from two classes of emerging DBPs, more cytotoxic than the "traditional" regulated DBPs, were successfully determined using this method. However, haloacetic acids (HAAs) should be analyzed separately as some HAA methyl esters may degrade giving false positives of trihalomethanes (THMs). The method was tested on real water samples from two municipal waterworks where the target DBP concentrations were found below the regulatory limits of Sweden.
Chang, Shu-Yu; Huang, Winn-Jung; Lu, Ben-Ren; Fang, Guor-Cheng; Chen, Yeah; Chen, Hsiu-Lin; Chang, Ming-Chin; Hsu, Cheng-Feng
2015-01-01
Cyanobacteria were inactivated under sunlight using mixed phase silver (Ag) and deposited titanium dioxide (TiO2) coated on the surface of diatomite (DM) as a hybrid photocatalyst (Ag-TiO2/DM). The endpoints of dose-response experiments were chlorophyll a, photosynthetic efficiency, and flow cytometry measurements. In vitro experiments revealed that axenic cultures of planktonic cyanobacteria lost their photosynthetic activity following photocatalyzed exposure to sunlight for more than 24 h. Nearly 92% of Microcystis aeruginosa cells lost their photosynthetic activity, and their cell morphology was severely damaged within 24 h of the reaction. Preliminary carbon-14 (14CO3−2) results suggest that the complete inactivation of cyanobacteria arises from damage to cell wall components (peroxidation). A small concomitant increase in cell wall disorder and a consequent decrease in cell wall functional groups increase the cell wall fluidity prior to cell lysis. A high dosage of Ag-TiO2/DM during photocatalysis increased the concentration of extracellular polymeric substances (EPSs) in the Microcystis aeruginosa suspension by up to approximately 260%. However, photocatalytic treatment had a small effect on the disinfection by-product (DBP) precursor, as revealed by only a slight increase in the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). PMID:26690465
Disinfection Pilot Trial for Little Miami WWTP | Science ...
There is a serious interest growing nationally towards the use of PAA at various stages of public waste water treatment facilities; one of such use is secondary waste water treatment. MSDGC is currently interested in improving efficiency and economic aspects of waste water treatment. MSDGC requested for ORD’s support to evaluate alternative cost-effective disinfectants. This report herein is based on the data generated from the field pilot test conducted at the Little Miami Wastewater Treatment Plant. Chlorine assisted disinfection of wastewaters created the concern regarding the formation of high levels of toxic halogenated disinfection byproducts (DBPs) detrimental to aquatic life and public health. Peracetic acid is emerging as a green alternative to chlorine and claimed to have economic and social benefits. In addition, it is a relatively simple retrofit to the existing chlorine treated wastewater treatment facilities. PAA is appealed to possess a much lower aquatic toxicity profile than chlorine and decays rapidly in the environment, even if overdosed. As a result, PAA generally does not need a quenching step, such as dechlorination, reducing process complexity, sodium pollution and cost. PAA treatment does not result in the formation of chlorinated disinfection by-products such as trihalomethanes (THMs), haloacetic acids and other byproducts such as cyanide and n-Nitrosodimethylamine (NDMA).
Efficacy of hybrid adsorption/membrane pretreatment for low pressure membrane.
Malczewska, B; Benjamin, M M
2016-08-01
Fouling by natural organic matter (NOM) is a major obstacle when water from natural sources is treated using low-pressure membranes. Prior research by our group has demonstrated that passing natural water through a thin, pre-deposited layer of heated aluminum oxide particles (HAOPs) can remove substantial amounts of NOM from the feed and thereby reduce the fouling rate of downstream membranes. The work reported here explored the technical efficacy of such a pretreatment process under more challenging (and therefore realistic) conditions than reported earlier. Several analytical techniques were applied to the feed and permeate in an attempt to identify the key fouling components. The results demonstrate that a HAOPs layer can be pre-deposited on a stainless steel mesh and then be readily washed off at the end of a filtration cycle with very little irreversible fouling due to residual NOM or HAOPs left on the mesh. In addition, the pretreatment step removes enough foulant to allow a downstream UF membrane to operate at significantly higher fluxes than when conventional pretreatment is applied. HAOPs pretreatment also reduced the formation of chlorinated and brominated trihalomethanes (THM4) by more than 67% and of haloacetic acids (HAA9) by 64%-88% in simulated distribution system (SDS) tests. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study of natural organic matter fractions in water sources of Tehran.
Zazouli, M A; Nasseri, S; Mahvi, A H; Mesdaghinia, A R; Gholami, M
2007-05-15
Natural Organic Matters (NOMs) are abundant in natural water resources and in many ways may affect the unit operations in water treatment. Although, NOMs are considered harmless but they have been recognized disinfection by-products precursors (DBP(s)) during the chlorination process. Formation of DBP(s) highly depends on the composition and concentration of NOM, which can be broadly divided into two fractions of hydrophobic (humic) and hydrophilic (non-humic) substances. The objective of this study was to determine Natural organic matter and its fractions concentration in the surface water sources of Tehran. Water sampling was conducted monthly between May to July 2006 in three rivers Lar, Jajrood and Karaj as the main drinking water supplying sources in Tehran. Quantitative parameters of pH, EC, UV254 and DOC were studied based on to standard methods. The XAD-7 resin method was used for fractionation of NOM. Results showed that NOM concentrations in Lar, Jajrood and Karaj rivers were 8.53, 12.9 and 11.3 mg L(-1), respectively. The HPO (hydrophobic) fraction was predominant compared to the HPI (hydrophilic) fraction in the all of water samples. The mean of total percent of HPO and HPI fractions were about 57 and 43%, respectively. Since the hydrophobic NOM fraction exhibits higher trihalomethane formation potential (THMFP) than hydrophilic NOM, Tehran water chlorination exhibits higher THMFP than haloacetic acid formation potential (HAAFP). The information obtained from this study may be further employed in the design of the control technique and management strategies for the water treatment plant, especially for DBP(s) reduction.
Disinfection by-products in drinking water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craun, G.F.
Many organic contaminants have been identified in drinking water, some of which are introduced during treatment. Whereas chlorination of drinking water prevents the transmission of infectious diseases, free chlorine can react with precursors in water, such as humic and fulvic acids, to produce halogenated and oxidized by-products. Many disinfection by-products have been detected, including haloketones, haloaldehydes, haloacids, haloacetonitrile, cyanogen chloride, chlorophenols, chloropicrin, and chlorinated hydroxyfuranones (i.e., MX and E-MX). A survey of 35 water facilities showed that trihalomethanes were the largest class of by-products (median 39 {mu}g/{ell}) and haloacetic acids the next most significant (median 19 {mu}g/{ell}). Cyanogen chloride wasmore » preferentially produced in chloraminated water supplies, and formaldehyde and acetaldehyde were identified as by-products of ozonation.« less
Bromide's effect on DBP formation, speciation, and control; Part 1: Ozonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukairy, H.M.; Summers, R.S.; Miltner, R.J.
1994-06-01
The effect of variable ozone dosage and bromide concentration on the formation of organic disinfection by-products (DBPs) and bromate were evaluated. Low ozone dosages resulted in oxidation of organic precursors, yielding decreases in the formation potential for total trihalomethanes (THMs), six haloacetic acids (HAAs), and total organic halide (TOX). Increasing the ozone dosage oxidized bromide to bromate, decreasing the bromide for incorporation into DBPs. Bromate concentrations were linearly correlated with ozone residuals. Changes in the bromine incorporation factors n and n[prime] reflected differences in the resulting speciation of THMs and HAAs, respectively. Because TOX measurements based on chloride equivalence maymore » underestimate the halogenated DBP yield for high-bromide waters, a procedure is described whereby bromide and bromate concentrations were used to correct the TOX measurement.« less
NASA Astrophysics Data System (ADS)
Takehisa, M.; Arai, H.; Arai, M.; Miyata, T.; Sakumoto, A.; Hashimoto, S.; Nishimura, K.; Watanabe, H.; Kawakami, W.; Kuriyama, I.
Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down of a fermentor of composting plant and the process reduces a health risk from the workers as well as final users.
NASA Astrophysics Data System (ADS)
Hidayah, E. N.; Yeh, H. H.
2018-01-01
Laboratory scale experiments was conducted to examine effect of permanganate (KMnO4) peroxidation in characterizing and to remove natural organic matter (NOM) in source water. The experimental results shows that increasing permanganate dosage could decreased aromatic matter, as indicated by decreasing UV254 and SUVA value about 23% and 28%, respectively. It seems that permanganate preoxidation caused the breakdown of high molecular weight (MW) organics into low MW ones, as represented by increasing NPDOC about 10%. Further, disinfection by-products formation potential (DBPFP) in terms of trihalomethanes formation potential (THMFP) and haloacetic acid formation potential (HAAP) decreased about 15% and 23%, respectively. HAAFP removal is higher than THMFP removal and that DPBFP removal is consistent with UV254 and NPDOC removal.
Recycling and reuse: Are they the answer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-11-01
At a time when reuse is widely recognized as a partial solution to the US mounting waste problem, it comes as no surprise that drinking water suppliers are giving thought to reclaiming residuals. This reuse may occur within the treatment plant, for example, by recovering alum from sludge or recycling waste streams, or outside the plant, where endeavors such as controlled land application return components of sludge to the soil. By nature, sludges and other residuals likely contain contaminants that have been removed from the water--e.g., Giardia and Cryptosporidium, trihalomethane precursors, and heavy metals. Recycling waste flows has the potentialmore » to disturb the treatment process or to affect the quality of finished water. Proper treatment and monitoring of waste streams can render them acceptable for recycling.« less
Detection of ultra-low levels of DNA changes by drinking water: epidemiologically important finding.
Kumari, Parmila; Kamiseki, Meiko; Biyani, Manish; Suzuki, Miho; Nemoto, Naoto; Aita, Takuyo; Nishigaki, Koichi
2015-02-01
The safety of drinking water is essential to our health. In this context, the mutagenicity of water needs to be checked strictly. However, from the methodological limit, the lower concentration (less than parts per million) of mutagenicity could not be detected, though there have been of interest in the effect of less concentration mutagens. Here, we describe a highly sensitive mutation assay that detects mutagens at the ppb level, termed genome profiling-based mutation assay (GPMA). This consists of two steps; (i) Escherichia coli culture in the medium with/without mutagens and (ii) Genome profiling (GP) method (an integrated method of random PCR, temperature gradient gel electrophoresis and computer-aided normalization). Owing to high sensitivity of this method, very low concentration of mutagens in tap water could be directly detected without introducing burdensome concentration processes, enabling rapid measurement of low concentration samples. Less expectedly, all of the tap waters tested (22 samples) were shown to be significantly mutagenic while mineral waters were not. Resultantly, this article informs two facts that the GPMA method is competent to measure the mutagenicity of waters directly and the experimental results supported the former reports that the city tap waters contain very low level of mutagenicity reagent trihalomethanes. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Zhong, Hui-zhou; Wei, Chao-hai
2015-04-01
In order to investigate the risk of trihalomethane formation potential (THMFP) in finished waters as drinking water sources, 70 samples, 114 samples, and 70 samples were collected in November 2013, April 2014 and July 2014, respectively from different locations in the Beijiang River and the Pearl River. After filtration by 0.45 μm filter membrane, a total of 254 samples were chlorinated using Uniform Formation Condition (UFC) method for determining their THM Formation Potential (THMFP). The cancer risk and non-cancer risk of THMs were estimated using USEPA risk assessment model while dominant factors for total risk potential were estimated using sensitivity analysis. Among four THM species, chloroform( CF) was the highest ranging from 101.92-2 590.85 μg x L(-1), followed by bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform (BF). Chloroform, the major THMs speciation, accounted for 96.17% of total THMs. Non-cancer and cancer risk from ingesting THMs was estimated. The result indicated that non-cancer risk of THMs level ranged from 2.03 x 10(-7) to 1.00 x 10(-5) and was not more than 1.0 x 10(-5), the minimum or negligible non-cancer risk level defined by the USEPA. The average cancer risk of THMs was 2.91 x 10(-4) for male and 3.30 x 10(-4) for female in the two rivers, respectively, exceeding the minimum or negligible risk level defined by the USEPA (1. 0 x 10 ~6). The difference of cancer risk between the two rivers was that BDCM ranging from 2.50 x 10(-5) to 6.37 x 10(-4) was approximately twice that of CF in Beijing River. BDCM played an important role in the total risk in the Beijiang River while CF played an important role in the total risk in the Pearl River, Guangzhou. Sensitivity analysis showed that CF played an important role in the estimation of total risk potential, and that the direct utilization of water sources from Beijiang River and the Pearl River Guangzhou is dangerous, thus pretreatment is necessary before chlorination.
Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh
2010-07-01
The objective of this study was to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of pancreatic cancer and to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop pancreatic cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to pancreatic cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All pancreatic cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level < 4.9ppb, the adjusted OR (95% CI) for pancreatic cancer was 1.01 (0.85-1.21) for individuals who resided in municipalities served by drinking water with a TTHM exposure > 4.9ppb. There was no evidence of an interaction of drinking water TTHM levels with low Ca intake via drinking water. However, we observed evidence of an interaction between drinking water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of pancreatic cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing pancreatic cancer risk will aid in public policy making and standard setting. 2010 Elsevier Inc. All rights reserved.
Tsai, Shang-Shyue; Chiu, Hui-Fen; Yang, Chun-Yuh
2013-01-01
The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of esophageal cancer occurrence and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop esophageal cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to esophageal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All esophageal cancer deaths in the 53 municipalities from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level <4.9 ppb, the adjusted odds ratio (OR) with 95% confidence interval (CI) for esophageal cancer was 1.02 (0.84-1.23) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. There was evidence of an interaction between drinking-water TTHM levels and low Ca and Mg intake. Our findings showed that the correlation between TTHM exposure and risk of esophageal cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effect modification by Ca and Mg intake from drinking water on the correlation between TTHM exposure and risk of esophageal cancer occurrence. Increased knowledge of the interaction between Ca, Mg, and TTHM in reducing risk of esophageal cancer development will aid in public policymaking and standard setting for drinking water.
Kuo, Hsin-Wei; Chen, Pei-Shih; Ho, Shu-Chen; Wang, Li-Yu; Yang, Chun-Yuh
2010-01-01
The objectives of this study were (1) to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of rectal cancer development and (2) to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of TTHM on risk of developing rectal cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to rectal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All rectal cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from the Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for rectal cancer occurrence was 1.04 (0.88-1.22) for individuals who resided in municipalities served by drinking water with a TTHM exposure >or=4.9 ppb. There was no evidence of an interaction of drinking-water TTHM levels with low Ca intake via drinking water. However, evidence of an interaction was noted between drinking-water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of rectal cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing rectal cancer risk will aid in public policymaking and standard setting.
Geophysical and hydrologic analysis of an earthen dam site in southern Westchester County, New York
Chu, Anthony; Stumm, Frederick; Joesten, Peter K.; Noll, Michael L.
2013-01-01
Ninety percent of the drinking water for New York City passes through the Hillview Reservoir facility in the City of Yonkers, Westchester County, New York. In the past, several seeps located downslope from the reservoir have flowed out from the side of the steepest slope at the southern end of the earthen embankment. One seep that has been flowing continuously was discovered during an inspection of the embankment in 1999. Efforts were made in 2001 to locate the potential sources of the continuous flowing seep. In 2005, the U.S. Geological Survey, in cooperation with the New York City Department of Environmental Protection, began a cooperative study to investigate the relevant hydrogeologic framework to characterize the local groundwater-flow system and to determine possible sources of the seeps. The two agencies used hydrologic and surface geophysical techniques to assess the earthen embankment of the Hillview Reservoir. Between April 1, 2005 and March 1, 2008, water levels were measured manually each month at 46 wells surrounding the reservoir, and flow was measured monthly at three of the five seeps on the embankment. Water levels were measured hourly in the East Basin of the reservoir, at 24 of 46 wells, and discharge was measured hourly at two of the five seeps. Slug tests were performed at 16 wells to determine the hydraulic conductivity of the geologic material surrounding the screened zone. Estimated hydraulic conductivities for 25 wells on the southern embankment ranged from 0.0063 to 1.2 feet per day and averaged 0.17 foot per day. The two-dimensional resistivity surveys indicate a subsurface mound of electrically conductive material (low-resistivity zone) beneath the terrace area (top of dam) surrounding the reservoir with a distinct elevation increase closer to the crest. Two-dimensional shear wave velocity surveys indicate a similar structure of the high shear wave velocity materials (high-velocity zone), increasing in elevation toward the crest and decreasing toward the reservoir and toward the northern part of the study area. Water-quality samples collected from 12 wells, downtake chamber 1 of the reservoir, and two seeps detected the presence of arsenic, toluene, and two trihalomethanes. Water-quality samples collected at the two seeps detected fluoride, indicating a connection with reservoir water. Shallow wells on the southern embankment exhibited the largest seasonal water-level fluctuations ranging between 6 feet and 12 feet. The embankment is constructed from reworked low-permeability glacial deposits at the site. Water-level responses in observation wells within the embankment indicate that there is a shallow (approximately the upper 45 feet of the embankment) and a deep water-bearing unit within the embankment with a large downward vertical gradient between the shallow and deep water-bearing units. Precipitation strongly affected water levels in shallow wells, whereas the basin appears to be the main control on water levels in the deep wells. Seeps on the embankment slope appear to be caused by above-average precipitation that increases water levels in the shallow water-bearing unit, but does not easily recharge the deep water-bearing unit. Based on the data that have been analyzed, source water to the seeps appears to be primarily groundwater and, to a lesser extent, water from the East Basin of the reservoir.
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The three study units are located in the Sierra Nevada region of California in parts of Nevada, Placer, El Dorado, Madera, Tulare, and Kern Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board, in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems used for drinking water. The primary aquifer systems (hereinafter, primary aquifers) for each study unit are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Tahoe-Martis, Central Sierra, and Southern Sierra study units were based on water-quality and ancillary data collected by the USGS from 132 wells in the three study units during 2006 and 2007 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration (RC) greater than (>) 1.0 indicates a concentration above a benchmark. RCs for organic constituents (volatile organic compounds and pesticides) and special-interest constituents were classified as "high" (RC > 1.0), "moderate" (1.0 ≥ RC > 0.1), or "low" (RC ≤ 0.1). For inorganic constituents (major ions, trace elements, nutrients, and radioactive constituents), the boundary between low and moderate RCs was set at 0.5. A new metric, aquifer-scale proportion, was used in the status assessment as the primary metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifers with RC > 1.0 for a particular constituent or class of constituents; moderate and low aquifer-scale proportions are defined as the percentages of the area of the primary aquifer with moderate and low RCs, respectively. Percentages are based on an areal rather than a volumetric basis. Two statistical approaches—grid-based, which used one value per grid cell, and spatially weighted, which used multiple values per grid cell—were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. The spatially weighted estimates of high aquifer-scale proportions were within the 90-percent (%) confidence intervals of the grid-based estimates in all cases. The status assessment showed that inorganic constituents had greater high and moderate aquifer-scale proportions than did organic constituents in all three study units. In the Tahoe-Martis study unit, RCs for inorganic constituents with health-based benchmarks (primarily arsenic) were high in 20% of the primary aquifer, moderate in 13%, and low in 67%. In the Central Sierra study unit, aquifer-scale proportions for inorganic constituents with health-based benchmarks (primarily arsenic, uranium, fluoride, and molybdenum) were 41% high, 36% moderate, and 23% low. In the Southern Sierra study unit, 32, 34, and 34% of the primary aquifer had high, moderate, and low RCs of inorganic constituents with health-based benchmarks (primarily arsenic, uranium, fluoride, boron, and nitrate). The high aquifer-scale proportions for inorganic constituents with non-health-based benchmarks were 14, 34, and 24% for the Tahoe-Martis, Central Sierra, and Southern Sierra study units, respectively, and the primary constituent was manganese for all three study units. Organic constituents with health-based benchmarks were not present at high RCs in the primary aquifers of the Central Sierra and Southern Sierra study units, and were present at high RCs in only 1% of the Tahoe-Martis study unit. Moderate aquifer-scale proportions for organic constituents were 10%: the trihalomethane chloroform in the Tahoe-Martis study unit; chloroform and the herbicide simazine in the Central Sierra study unit; and chloroform, simazine, the herbicide atrazine, and the solvent perchloroethene in the Southern Sierra study unit. The second component of this study, the understanding assessment, identified the natural and human factors that may have affected groundwater quality in the three study units by evaluating statistical correlations between water-quality constituents and potential explanatory factors. The potential explanatory factors evaluated were land use, septic tank density, climate, relative position in the regional flow system, aquifer lithology, geographic location, well depth and depth to the top of the screened or open interval in the well, groundwater age distribution, pH, and dissolved oxygen concentration. Results of the statistical evaluations were used to explain the occurrence and distribution of constituents in the study units. Aquifer lithology (granitic, metamorphic, sedimentary, or volcanic rocks), groundwater age distribution [modern (recharged since 1952), pre-modern (recharged before 1952), or mixed (containing both modern and pre-modern recharge)], geographic location, pH, and dissolved oxygen were the most significant factors explaining the occurrence patterns of most inorganic constituents. High and moderate RCs of arsenic were associated with pre-modern and mixed-age groundwater and two distinct sets of geochemical conditions: (1) oxic, high-pH conditions, particularly in volcanic rocks, and (2) low-oxygen to anoxic conditions and low- to neutral-pH conditions, particularly in granitic rocks. In granitic and metamorphic rocks, high and moderate RCs of uranium were associated with pre-modern and mixed-age groundwater, low-oxygen to anoxic conditions, and location within parts of the Central Sierra and Southern Sierra study units known to have rocks with anomalously high uranium content compared to other parts of the Sierra Nevada. High and moderate RCs of uranium in sedimentary rocks were associated with pre-modern-age groundwater, oxic and high-pH conditions, and location in the Tahoe Valley South subbasin within the Tahoe-Martis study unit. Land use within 500 meters of the well and groundwater age were the most significant factors explaining occurrence patterns of organic constituents. Herbicide detections were most strongly associated with modern- and mixed-age groundwater from wells with agricultural land use. Trihalomethane detections were most strongly associated with modern- and mixed-age groundwater from wells with > 10% urban land use and (or) septic tank density > 7 tanks per square kilometer. Solvent detections were not significantly related to groundwater age. Eighty-three percent of the wells with modern- or mixed-age groundwater, and 86% of wells with detections of herbicides and (or) THMs had depths to the top of the screened or open interval of 5% agricultural land use and detection of a herbicide or solvent had the highest nitrate concentrations. Comparison between observed and predicted detection frequencies of perchlorate suggests that the perchlorate detected at concentrations < 1 microgram per liter likely reflects the distribution of perchlorate under natural conditions, and that the perchlorate detected at higher concentrations may reflect redistribution of originally natural perchlorate salts by irrigation in the agricultural areas of the Southern Sierra study unit.
Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products.
Stalter, Daniel; O'Malley, Elissa; von Gunten, Urs; Escher, Beate I
2016-03-15
A set of nine in vitro cellular bioassays indicative of different stages of the cellular toxicity pathway was applied to 50 disinfection by-products (DBPs) to obtain a better understanding of the commonalities and differences in the molecular mechanisms of reactive toxicity of DBPs. An Eschericia coli test battery revealed reactivity towards proteins/peptides for 64% of the compounds. 98% activated the NRf2-mediated oxidative stress response and 68% induced an adaptive stress response to genotoxic effects as indicated by the activation of the tumor suppressor protein p53. All DBPs reactive towards DNA in the E. coli assay and activating p53 also induced oxidative stress, confirming earlier studies that the latter could trigger DBP's carcinogenicity. The energy of the lowest unoccupied molecular orbital ELUMO as reactivity descriptor was linearly correlated with oxidative stress induction for trihalomethanes (r(2)=0.98) and haloacetamides (r(2)=0.58), indicating that potency of these DBPs is connected to electrophilicity. However, the descriptive power was poor for haloacetic acids (HAAs) and haloacetonitriles (r(2) (<) 0.06). For HAAs, we additionally accounted for speciation by including the acidity constant with ELUMO in a two-parameter multiple linear regression model. This increased r(2) to >0.80, indicating that HAAs' potency is connected to both, electrophilicity and speciation. Based on the activation of oxidative stress response and the soft electrophilic character of most tested DBPs we hypothesize that indirect genotoxicity-e.g., through oxidative stress induction and/or enzyme inhibition-is more plausible than direct DNA damage for most investigated DBPs. The results provide not only a mechanistic understanding of the cellular effects of DBPs but the effect concentrations may also serve to evaluate mixture effects of DBPs in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of methods for determination of volatile organic compounds in drinking water.
Golfinopoulos, S K; Lekkas, T D; Nikolaou, A D
2001-10-01
Comparison of four methods including liquid-liquid extraction (LLE), direct aqueous injection (DAI), purge and trap (PAT) and head space (HS) were carried out in this work for determination of volatile organic compounds (VOCs) including trihalomethanes (THMs) in drinking water. This comparison is made especially to show the advantages and disadvantages and specifically the different detection limits (DL) that can be obtained for a given type of analysis. LLE is applicable only for determination of the THMs concentrations, while DAI, PAT, HS methods with different DL each of them are applicable for all VOCs, with PAT to be the most sensitive. Sampling apparatus and procedure for all these methods except of PAT are very simple and easy, but possible disadvantages for LLE and DAI are the low sensitivity and especially the detection only of THMs with LLE.
Xie, Shu-Guang; Wen, Dong-Hui; Shi, Dong-Wen; Tang, Xiao-Yan
2006-10-01
To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofilm reactor (FBBR). Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254), trihalomethane (THM) formation potential (THMFP), haloacetic acid (HAA) formation potential (HAAFP), and ammonia in FBBR were evaluated in detail. Results The reduction of TOC or UV254 was low, on average 12.6% and 4.7%, respectively, while the reduction of THMFP and HAAFP was significant. The reduction of ammonia was 30%-40% even below 3 degrees C, however, it could quickly rise to over 50% above 3degrees C. Conclusions The FBBR effectively reduces CBPs and ammonia in drinking water even at low temperature and seems to be a very promising and competitive drinking water reactor for polluted surface source waters, especially in China.
Chlorination by-products in drinking water and menstrual cycle function.
Windham, Gayle C; Waller, Kirsten; Anderson, Meredith; Fenster, Laura; Mendola, Pauline; Swan, Shanna
2003-06-01
We analyzed data from a prospective study of menstrual cycle function and early pregnancy loss to explore further the effects of trihalomethanes (THM) on reproductive end points. Premenopausal women ((italic)n(/italic) = 403) collected urine samples daily during an average of 5.6 cycles for measurement of steroid metabolites that were used to define menstrual parameters such as cycle and phase length. Women were asked about consumption of various types of water as well as other habits and demographics. A THM level was estimated for each cycle based on residence and quarterly measurements made by water utilities during a 90-day period beginning 60 days before the cycle start date. We found a monotonic decrease in mean cycle length with increasing total THM (TTHM) level; at > 60 microg/L, the adjusted decrement was 1.1 days [95% confidence interval (CI), -1.8 to -0.40], compared with less than or equal to 40 microg/L. This finding was also reflected as a reduced follicular phase length (difference -0.94 day; 95% CI, -1.6 to -0.24). A decrement in cycle and follicular phase length of 0.18 days (95% CI, -0.29 to -0.07) per 10 microg/L unit increase in TTHM concentration was found. There was little association with luteal phase length, menses length, or cycle variability. Examining the individual THMs by quartile, we found the greatest association with chlorodibromomethane or the sum of the brominated compounds. Incorporating tap water consumption showed a similar pattern of reduced cycle length with increasing TTHM exposure. These findings suggest that THM exposure may affect ovarian function and should be confirmed in other studies.
Zha, Xiao-Song; Ma, Lu-Ming; Wu, Jin; Liu, Yan
2016-08-01
The removal efficiency of organic matter, the formation potential of trihalomethanes (THMFP), and the formation potential of haloacetic acids (HAAFP) in each unit of three advanced treatment processes were investigated in this paper. The molecular weight distribution and the components of organic matter in water samples were also determined to study the transformation of organic matter during these advanced treatments. Low-molecular-weight matter was the predominant fraction in raw water, and it could not be removed effectively by ultrafiltration and biofiltration. The dominant species of disinfection by-product formation potential (DBPFP) in raw water were chloroform and monochloroacetic acid (MCAA), with average concentrations of 107.3 and 125.9 μg/L, respectively. However, the formation potential of chloroform and MCAA decreased to 36.2 and 11.5 μg/L after ultrafiltration. Similarly, biological pretreatment obtained high removal efficiency for DBPFP. The total THMFP decreased from 173.8 to 81.8 μg/L, and the total HAAFP decreased from 211.9 to 84.2 μg/L. Separate ozonation had an adverse effect on DBPFP, especially for chlorinated HAAFP. Numerous low-molecular-weight compounds such as aldehydes, ketones, and alcohols were generated during the ozonation, which have been proven to be important precursors of HAAs. However, the ozonation/biological activated carbon (BAC) combined process had a better removal efficiency for DBPFP. The total DBPFP decreased remarkably from 338.7 to 113.3 μg/L after the O3/BAC process, far below the separated BAC of process B (189.1 μg/L).
NASA Astrophysics Data System (ADS)
Boyer, E. W.; Smith, R. A.; Alexander, R. B.; Schwarz, G. E.
2004-12-01
Organic carbon (OC) is a critical water quality characteristic in riverine systems that is an important component of the aquatic carbon cycle and energy balance. Examples of processes controlled by OC interactions are complexation of trace metals; enhancement of the solubility of hydrophobic organic contaminants; formation of trihalomethanes in drinking water; and absorption of visible and UV radiation. Organic carbon also can have indirect effects on water quality by influencing internal processes of aquatic ecosystems (e.g. photosynthesis and autotrophic and heterotrophic activity). The importance of organic matter dynamics on water quality has been recognized, but challenges remain in quantitatively addressing OC processes over broad spatial scales in a hydrological context. In this study, we apply spatially referenced watershed models (SPARROW) to statistically estimate long-term mean-annual rates of dissolved- and total- organic carbon export in streams and reservoirs across the conterminous United States. We make use of a GIS framework for the analysis, describing sources, transport, and transformations of organic matter from spatial databases providing characterizations of climate, land use, primary productivity, topography, soils, and geology. This approach is useful because it illustrates spatial patterns of organic carbon fluxes in streamflow, highlighting hot spots (e.g., organic-rich environments in the southeastern coastal plain). Further, our simulations provide estimates of the relative contributions to streams from allochthonous and autochthonous sources. We quantify surface water fluxes of OC with estimates of uncertainty in relation to the overall US carbon budget; our simulations highlight that aquatic sources and sinks of OC may be a more significant component of regional carbon cycling than was previously thought. Further, we are using our simulations to explore the potential role of climate and other changes in the terrestrial environment on OC fluxes in aquatic systems.
Mutagenicity and genotoxicity of drinking water in Guelma region, Algeria.
Abda, Ahlem; Benouareth, Djamel E; Tabet, Mouna; Liman, Recep; Konuk, Muhsin; Khallef, Messaouda; Taher, Ali
2015-02-01
In this study, a battery of genotoxicity assays for monitoring drinking water was performed to assess the quality of the water resulting from the treatment plants. Five different types of samples were collected: raw water (P1), treated after pre-chlorination (P2), treated after decantation (P3), treated post-chlorination (P4), and consumers' taps (P5-P12). This study aims to evaluate the formation/occurrence of mutagenic and/or genotoxic compounds in surface drinking waters treated with chlorine disinfectant, during four seasonal experiments: summer, autumn, winter, and spring between 2012 and 2013 by bacterial reverse mutation assay in both Salmonella typhimurium TA98 and TA100 strains with or without metabolic activation system (S9 mix) and Allium cepa root meristematic cells, respectively. All of water samples, except at P1, P2, and P5 in summer; P1 in autumn; and P1 and P3-P12 in spring without S9 mix, and at P1 and P2 in summer and P6 and P8-P12 in spring with S9 mix, were found to be mutagenic in S. typhimurium TA98. However, only P11 and P12 in winter were found to be mutagenic for TA100 without S9 mix. The tested preparations in Allium anaphase-telophase test revealed a significant decrease in mitotic index (MI) and a simultaneous increase in chromosome aberrations (CAs) compared to the control. The bridge, stickiness, vagrant chromosomes, and disturbed chromosome aberrations were observed in anaphase-telophase cells. Physicochemical analysis, trihalomethanes (THMs), romoform (CHBr3), chloroform (CHCl3), bromodichloromethane (CHBrCl2), and dibromochloromethane (CHBr2Cl) levels in water samples were also determined. The results show also that this short-term battery tests are applicable in the routine monitoring of drinking water quality before and after distribution.
Woo, Yin-Tak; Lai, David; McLain, Jennifer L; Manibusan, Mary Ko; Dellarco, Vicki
2002-01-01
Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, chloramine, and ozone react with organic and inorganic matter in water. The observations that some DBPs such as trihalomethanes (THMs), di-/trichloroacetic acids, and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) are carcinogenic in animal studies have raised public concern over the possible adverse health effects of DBPs. To date, several hundred DBPs have been identified. To prioritize research efforts, an in-depth, mechanism-based structure-activity relationship analysis, supplemented by extensive literature search for genotoxicity and other data, was conducted for ranking the carcinogenic potential of DBPs that met the following criteria: a) detected in actual drinking water samples, b) have insufficient cancer bioassay data for risk assessment, and c) have structural features/alerts or short-term predictive assays indicative of carcinogenic potential. A semiquantitative concern rating scale of low, marginal, low-moderate, moderate, high-moderate, and high was used along with delineation of scientific rationale. Of the 209 DBPs analyzed, 20 were of priority concern with a moderate or high-moderate rating. Of these, four were structural analogs of MX and five were haloalkanes that presumably will be controlled by existing and future THM regulations. The other eleven DBPs, which included halonitriles (6), haloketones (2), haloaldehyde (1), halonitroalkane (1), and dialdehyde (1), are suitable priority candidates for future carcinogenicity testing and/or mechanistic studies. PMID:11834465
Hansen, Angela M; Kraus, Tamara E C; Bachand, Sandra M; Horwath, William R; Bachand, Philip A M
2018-05-01
Constructed wetlands are used worldwide to improve water quality while also providing critical wetland habitat. However, wetlands have the potential to negatively impact drinking water quality by exporting dissolved organic carbon (DOC) that upon disinfection can form disinfection byproducts (DBPs) like trihalomethanes (THMs) and haloacetic acids (HAAs). We used a replicated field-scale study located on organic rich soils in California's Sacramento-San Joaquin Delta to test whether constructed flow-through wetlands which receive water high in DOC that is treated with either iron- or aluminum-based coagulants can improve water quality with respect to DBP formation. Coagulation alone removed DOC (66-77%) and THM (67-70%) precursors, and was even more effective at removing HAA precursors (77-90%). Passage of water through the wetlands increased DOC concentrations (1.5-7.5mgL -1 ), particularly during the warmer summer months, thereby reversing some of the benefits from coagulant addition. Despite this addition, water exiting the wetlands treated with coagulants had lower DOC and DBP precursor concentrations relative to untreated source water. Benefits of the coagulation-wetland systems were greatest during the winter months (approx. 50-70% reduction in DOC and DBP precursor concentrations) when inflow water DOC concentrations were higher and wetland DOC production was lower. Optical properties suggest DOC in this system is predominantly comprised of high molecular weight, aromatic compounds, likely derived from degraded peat soils. Published by Elsevier B.V.
Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment.
Pérez, G; Fernández-Alba, A R; Urtiaga, A M; Ortiz, I
2010-05-01
This work investigates the application of the electro-oxidation technology provided with boron doped diamond (BDD), an electrode material which has shown outstanding properties in oxidation of organic and inorganic compounds, for the treatment of reverse osmosis (RO) concentrates generated in tertiary wastewater treatment plants (WWTP). Chemical oxygen demand (COD), ammonium and several anions were measured during the electro-oxidation process, and the influence of the applied current density (20-200A/m(2)) was analysed on process kinetics. Analytical assessment showed that several emerging pollutants (pharmaceuticals, personal care products, stimulants, etc.) were presented both in the effluent of the secondary WWTP as well as in the RO concentrate. For this reason, a group of 10 emerging pollutants, those found with higher concentrations, was selected in order to test whether electro-oxidation can be also applied for their mitigation. In the removal of emerging pollutants the electrical current density in the range 20-100A/m(2) did not show influence likely due to the mass transfer resistance developed in the process when the oxidized solutes are present in such low concentrations. Their removal rates were fitted to first order expressions, and the apparent kinetic constants for the anodic oxidation of each compound were calculated. Finally, the formation of trihalomethanes (THMs) has been checked; concluding that after selecting the appropriate operational conditions the attained concentration is lower than the standards for drinking water established in European and EPA regulations. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Rodríguez, Eva; Onstad, Gretchen D; Kull, Tomas P J; Metcalf, James S; Acero, Juan L; von Gunten, Urs
2007-08-01
As the World Health Organization (WHO) progresses with provisional Drinking Water Guidelines of 1 microg/L for microcystin-LR and a proposed Guideline of 1 microg/L for cylindrospermopsin, efficient treatment strategies are needed to prevent cyanotoxins such as these from reaching consumers. A kinetic database has been compiled for the oxidative treatment of three cyanotoxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ANTX) with ozone, chlorine, chlorine dioxide and permanganate. This kinetic database contains rate constants not previously reported and determined in the present work (e.g. for permanganate oxidation of ANTX and chlorine dioxide oxidation of CYN and ANTX), together with previously published rate constants for the remaining oxidation processes. Second-order rate constants measured in pure aqueous solutions of these toxins could be used in a kinetic model to predict the toxin oxidation efficiency of ozone, chlorine, chlorine dioxide and permanganate when applied to natural waters. Oxidants were applied to water from a eutrophic Swiss lake (Lake Greifensee) in static-dose testing and dynamic time-resolved experiments to confirm predictions from the kinetic database, and to investigate the effects of a natural matrix on toxin oxidation and by-product formation. Overall, permanganate can effectively oxidize ANTX and MC-LR, while chlorine will oxidize CYN and MC-LR and ozone is capable of oxidizing all three toxins with the highest rate. The formation of trihalomethanes (THMs) in the treated water may be a restriction to the application of sufficiently high-chlorine doses.
Application of Highly Purified Electrolyzed Chlorine Dioxide for Tilapia Fillet Disinfection
Yu, Chen-Hsing; Huang, Tzou-Chi; Chung, Chao-Chin; Huang, Hao-Hsun
2014-01-01
This research aimed to develop an electrolysis method to generate high-concentration chlorine dioxide (ClO2) for tilapia fillet disinfection. The designed generator produced up to 3500 ppm of ClO2 at up to 99% purity. Tilapia fillets were soaked in a 400 ppm ClO2 solution for 5, 10, and 25 min. Results show that total plate counts of tilapia, respectively, decreased by 5.72 to 3.23, 2.10, and 1.09 log CFU/g. In addition, a 200 ppm ClO2 solution eliminated coliform bacteria and Escherichia coli in 5 min with shaking treatment. Furthermore, ClO2 and trihalomethanes (THMs) residuals on tilapia fillets were analyzed by GC/MS and were nondetectable (GC-MS detection limit was 0.12 ppb). The results conform to Taiwan's environmental protection regulations and act governing food sanitation. PMID:24696651
Rostad, C.E.; Leenheer, J.A.; Katz, B.; Martin, B.S.; Noyes, T.I.
2000-01-01
Streamwaters in northern Florida have large concentrations of natural organic matter (NOM), and commonly flow directly into the ground water system through karst features, such as sinkholes. In this study NOM from northern Florida stream and ground waters was fractionated, the fractions characterized by infrared (IR) and nuclear magnetic resonance (NMR), and then chlorinated to investigate their disinfection by-product (DBP) formation potential (FP). As the NOM character changed (as quantified by changes in NOM distribution in various fractions, such as hydrophilic acids or hydrophobic neutrals) due to migration through the aquifer, the total organic halide (TOX)-FP and trihalomethane (THM)-FP yield of each of these fractions varied also. In surface waters, the greatest DBP yields were produced by the colloid fraction. In ground waters, DBP yield of the hydrophobic acid fraction (the greatest in terms of mass) decreased during infiltration.
Control of disinfection by-products in canned vegetables caused by water used in their processing.
Cardador, Maria Jose; Gallego, Mercedes
2017-01-01
Canned vegetables come into contact with sanitizers and/or treated water in industry during several steps (namely washing, sanitising, blanching and filling with sauces or brine solutions) and therefore they can contain disinfection by-products - DBPs). This study focused on the occurrence of trihalomethanes (THMs) and haloacetic acids (HAAs) in a wide variety of canned vegetables (75 samples). For each vegetable, the edible solid and liquid phases of the package were separated and analysed individually. DBPs can be present in both solid (up to eight species) and liquid (up to 11 species) phases, their levels being higher in liquid ones. Volatile THMs predominate in the edible solid phase (up to four species), while HAAs do so in the liquid phase (up to five species) according to their ionic and non-volatile nature. The lowest concentrations of DBPs were found in tomatoes because they were often preserved in their own juice, without water.
Levels of exposure from drinking water.
van Dijk-Looijaard, A M; van Genderen, J
2000-01-01
The relative exposure from drinking water is generally small, although there is a lack of information on total daily intake of individual organic micropollutants. There are, however, a few exceptions. Materials used in domestic distribution systems (lead, copper and plastics) may cause a deterioration of the water quality, especially in stagnant water. The relative exposure to the related compounds may increase considerably. Monitoring data from the tap (with defined sampling techniques) are needed. Also, disinfection/oxidation by-products (bromate, trihalomethanes) can be present in drinking water in considerable amounts and the relative exposure from drinking water may even approach 100%. Especially for volatile organic micropollutants, exposure routes from drinking water other than ingestion must be taken into account (inhalation, percutaneous uptake). When there is a need for detection of substances at very low levels it is important that the measurements are reliable. International interlaboratory comparisons for organic micropollutants are lacking at the moment.
Benefits of carbon dioxide as pH reducer in chlorinated indoor swimming pools.
Gomà, Anton; Guisasola, Albert; Tayà, Carlota; Baeza, Juan A; Baeza, Mireia; Bartrolí, Albert; Lafuente, Javier; Bartrolí, Jordi
2010-06-01
Carbon dioxide is seldom used as pH reducer in swimming pools. Nevertheless it offers two interesting advantages. First, its use instead of the usual hydrochloric acid avoids the characteristic and serious accident of mixing the disinfectant with that strong acid, which forms a dangerous chlorine gas cloud and, second, it allows the facility to become slightly a depository of that greenhouse gas. This work introduces the experience of using CO(2) as pH reducer in real working swimming pools, showing three more advantages: lower chlorine consumption, lower presence of oxidants in the air above the swimming pool and a diminished formation of trihalomethanes in the swimming pool water. Experiments lasted 4years and they were run in three swimming pools in the Barcelona area, where the conventional system based upon HCl and a system based upon CO(2) were consecutively exchanged.
Associations Between Disinfection By-Product Exposures and Craniofacial Birth Defects.
Kaufman, John A; Wright, J Michael; Evans, Amanda; Rivera-Núñez, Zorimar; Meyer, Amy; Narotsky, Michael G
2018-02-01
The aim of this study was to examine associations between craniofacial birth defects (CFDs) and disinfection by-product (DBP) exposures, including the sum of four trihalomethanes (THM4) and five haloacetic acids (HAA5) (ie, DBP9). We calculated first trimester adjusted odds ratios (aORs) for different DBPs in a matched case-control study of 366 CFD cases in Massachusetts towns with complete 1999 to 2004 THM and HAA data. We detected elevated aORs for cleft palate with DBP9 (highest quintile aOR = 3.52; 95% CI: 1.07, 11.60), HAA5, trichloroacetic acid (TCAA), and dichloroacetic acid. We detected elevated aORs for eye defects with TCAA and chloroform. This is the first epidemiological study of DBPs to examine eye and ear defects, as well as HAAs and CFDs. The associations for cleft palate and eye defects highlight the importance of examining specific defects and DBPs beyond THM4.
NASA Astrophysics Data System (ADS)
Hidayah, Euis Nurul; Chou, Yung-Chen; Yeh, Hsuan-Hsien
2018-03-01
Characterization and removal of natural organic matter, which is contained in the effluent of slow sand filters, was observed by alum coagulation under various dosages. In addition to non-purgedable dissolved organic carbon (NPDOC), trihalomethanes formation potential (THMFP) and haloacetic acid formation potential (HAAFP) measurement, high-performance size-exclusion chromatography (HPSEC) with ultraviolet/visible and dissolved organic carbon (DOC) detectors was used to characterize the various organic fractions contained in the water before and after coagulation. The results show that alum coagulation could effectively remove hydrophobic aromatic, which forms mainly humic substances. The reduction in THMFP was found to be higher than that of NPDOC and HAAFP under specific alum dosage, and the former was also found to be proportional to the corresponding reduction in the area of hydrophobic aromatic fraction, mostly humic subtances, as obtained from HPSEC chromatogram with peak-fitting.
DBP formation of aquatic humic substances
Pomes, M.L.; Green, W.R.; Thurman, E.M.; Orem, W.H.; Lerch, H.E.
1999-01-01
Aquatic humic substances (AHSs) in water generate potentially harmful disinfection by-products (DBPs) such as haloacetic acids (HAAs) and trihalomethanes (THMs) during chlorination. AHSs from two Arkansas reservoirs were characterized to define source, identify meta-dihydroxybenzene (m-DHB) structures as probable DBP precursors, and evaluate predicted HAA and THM formation potentials. Elemental nitrogen content 0.5 ??eq/mg, ??13C values of -27???, and low yields of syringyl phenols found by cupric oxide (CuO) oxidation suggest a pine tree source for the AHSs found in the Maumelle and Winona reservoirs in Little Rock, Ark. CuO oxidation yielded fewer m-DHB structures in Maumelle AHSs than in Winona AHSs. A higher 3,5-dihydroxybenzoic acid (3,5-DHBA) content correlated with increased HAA and THM formation potential. The 3,5-DHBA concentration in Winona AHSs was similar to the range found in AHSs extracted from deciduous leaf litter, twigs, and grass leachates.
**1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.
Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.
1986-01-01
Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.
NASA Astrophysics Data System (ADS)
Marais, Savia S.; Ncube, Esper J.; Haarhoff, Johannes; Msagati, Titus AM; Mamba, Bhekie B.; Nkambule, Thabo I.
2016-04-01
Certain disinfection by-products (DBPs) are likely human carcinogens or present mutagenic effects while many DBPs are unidentified. Considering the possibility of DBPs being harmful to human health and the fact that trihalomethanes (THMs) are the only regulated DBP in the South African National Standard (SANS:241) for drinking water, special interest in the precursors to these DBPs' formation is created. It is essential to understand the reactivity and character of the precursors responsible for the formation of DBPs in order to enhance precursor removal strategies during the treatment of drinking water. In this study the character of NOM within surface water and the subsequent distribution of THMs formed in the drinking water from Rand Waters' full scale treatment plant were investigated. Molecular size distribution (MSD) of NOM within the surface water was determined by high performance size exclusion chromatography (HPSEC). Specific ultraviolet absorbance (SUVA) and UV254 measurements formed part of the NOM character study as they provide an indication of the aromaticity of organic matter. The four THMs; bromoform, chloroform, dibromochloromethane (DBCM) and bromodichloromethane (BDCM)were measured by gas chromatography. The sum of these four THMs was expressed as total trihalomethane (TTHM). On average the chloroform constituted 76.2% of the total TTHM, BDCM 22.5% while DBCM and bromoform measured below the detection limit. THM speciation after chlorination and chloramination concentrations increased in the sequence bromoform < DBCM < BDCM < chloroform. Results of the MSD showed a significant correlation between NOM of high molecular size (peak I) and TTHM formation specifically during the summer months (R2= 0.971, p < 0.05). High molecular weight (HMW) NOM also related well to chloroform formation (R2 = 0.963, p < 0.05) however, the formation of BDCM was not due to HWM fraction as indicated by weak regression coefficient. A positive correlation existed between SUVA and UV254 removal percentage (R2 = 0.937, p < 0.05). Seasonal variability in NOM character was evident in the source water in summer when high temperatures and rainfall occurred. The results displayed are an indication that aromatic NOM were the main precursor to TTHM formation, more prominently during summer. Keywords: disinfection by-products, molecular size distribution, natural organic matter, UV254
Schaap, Bryan D.; Zogorski, John S.
2006-01-01
This report describes the occurrence of trihalomethanes (THMs) in the Nation's ground water and drinking-water supply wells based on analysis of 5,642 samples of untreated ground water and source water collected or compiled during 1985-2002 by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. THMs are a group of volatile organic compounds (VOCs) with natural and anthropogenic sources that are of interest because they are associated with acute and chronic health problems in humans. THMs occur in water primarily from chlorination and are classified as disinfection by-products. In this report, the four THMs are discussed in the order of chloroform, bromodichloromethane, dibromochloromethane, and then bromoform; this sequence corresponds to largest to smallest chlorine content and smallest to largest bromine content. Four trihalomethanes were detected in less than 20 percent of samples from studies of (1) aquifers, (2) shallow ground water in agricultural areas, (3) shallow ground water in urban areas, (4) domestic wells, and (5) public wells. Detection frequencies for individual THMs in the five studies ranged from zero for shallow ground water in agricultural areas to 19.5 percent for shallow ground water in urban areas. None of the samples from aquifer studies, domestic wells, or public wells had total THM concentrations (the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform) greater than or equal to the U.S. Environmental Protection Agency Maximum Contaminant Level of 80 micrograms per liter (?g/L). Comparisons of results among studies of aquifers, shallow ground water in agricultural areas, and shallow ground water in urban areas were used to describe the occurrence of the four THMs in ground water for three different land-use settings-mixed, agricultural, and urban, respectively. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 7.9 percent of the samples from aquifer studies, 2.2 percent of the samples from shallow ground water in agricultural areas, and 19.5 percent of the samples from shallow ground water in urban areas. In general, detection frequencies and concentrations of the four THMs were greater in shallow ground water in urban areas compared to aquifer studies and to shallow ground water in agricultural areas. For all three of these studies, the most common two-THM mixture at the 0.2-?g/L assessment level was chloroform-bromodichloromethane, and this was the only two-THM mixture found in samples of shallow ground water in agricultural areas. Comparisons of results between studies of domestic wells and public wells were used to describe the occurrence of the four THMs in two different supplies of ground water used for drinking water. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 5.2 percent of the domestic well samples and in 14.7 percent of the public well samples. In general, detection frequencies and THM concentrations were greater in samples from public wells than from domestic wells. At the 0.2-?g/L assessment level, the six possible two-THM mixtures occurred about six times more frequently in samples from public wells than from domestic wells. One of the most common two-THM mixtures in samples from domestic and public wells was bromodichloromethane-dibromochloromethane. Detection frequency is associated with the chlorine content of the THM compound. In general, for each of the five studies, as the chlorine content of the THM compound decreased, the detection frequency at the 0.2-?g/L assessment level also decreased. The exception was the study of public wells in which the detection frequency of the THMs decreased in the following order: chloroform, bromoform, dibromochloromethane, and bromodichloromethane. At the 0.2-?g/L assessment level, the median concentration for one or more of the four THMs ranged from 0.3 ?g/L (shallow ground water in agricultural a
Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.
Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang
2008-01-01
Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.
Heim, Timothy H; Dietrich, Andrea M
2007-02-01
Pipes constructed with high-density polyethylene (HDPE) or chlorinated polyvinyl chloride (cPVC) are commonly used in drinking water distribution systems and premise plumbing. In this comprehensive investigation, the effects on odor, organic chemical release, trihalomethane (THM) formation, free chlorine demand and monochloramine demand were determined for water exposed to HDPE and cPVC pipes. The study was conducted in accordance with the Utility Quick Test (UQT), a migration/leaching protocol for analysis of materials in contact with drinking water. The sensory panel consistently attributed a weak to moderate intensity of a "waxy/plastic/citrus" odor to the water from the HDPE pipes but not the cPVC-contacted water samples. The odor intensity generated by the HDPE pipe remained relatively constant for multiple water flushes, and the odor descriptors were affected by disinfectant type. Water samples stored in both types of pipe showed a significant increase in the leaching of organic compounds when compared to glass controls, with HDPE producing 0.14 microgTOC/cm(2) pipe surface, which was significantly greater than the TOC release from cPVC. Water stored in both types of pipe showed disinfectant demands of 0.1-0.9 microg disinfectant/cm(2) pipe surface, with HDPE exerting more demand than cPVC. No THMs were detected in chlorinated water exposed to the pipes. The results demonstrate the impact that synthetic plumbing materials can have on sensory and chemical water quality, as well as the significant variations in drinking water quality generated from different materials.
Disinfection by-products in ballast water treatment: an evaluation of regulatory data.
Werschkun, Barbara; Sommer, Yasmin; Banerji, Sangeeta
2012-10-15
To reduce the global spread of invasive aquatic species, international regulations will soon require reductions of the number of organisms in ballast water discharged by ships. For this purpose, ballast water treatment systems were developed and approved by an international procedure. These systems rely on established water treatment principles which, to different degrees, have been proven to generate disinfection by-products with hazardous properties but have only scarcely been investigated in marine environments. Our study evaluates the publicly available documentation about approved ballast water treatment systems with regard to by-product formation. The most commonly employed methods are chlorination, ozonation, and ultraviolet (UV) irradiation. Chlorination systems generate trihalomethanes, halogenated acetic acids, and bromate in substantially larger quantities than reported for other areas of application. Levels are highest in brackish water, and brominated species predominate, in particular bromoform and dibromoacetic acid. Ozonation, which is less frequently utilized, produces bromoform in lower concentrations but forms higher levels of bromate, both of which were effectively reduced by active carbon treatment. In systems based on UV radiation, medium pressure lamps are employed as well as UV-induced advanced oxidation. For all UV systems, by-product formation is reported only occasionally. The most notable observations were small increases in nitrite, hydrogen peroxide, halogenated methanes and acetic acids. The assessment of by-product formation during ballast water treatment is limited by the lacking completeness and quality of available information. This concerns the extent and statistical characterisation of chemical analysis as well as the documentation of the test water parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bull, R J; Robinson, M; Meier, J R; Stober, J
1982-01-01
Other workers have clearly shown that most, if not all, drinking water in the U.S. contains chemicals that possess mutagenic and/or carcinogenic activity by using bacterial and in vitro methods. In the present work, increased numbers of tumors were observed with samples of organic material isolated from 5 U.S. cities administered as tumor initiators in mouse skin initiation/promotion studies. Only in one case was the result significantly different from control. In studies designed to test whether disinfection practice contributes significantly to the tumor initiating activity found in drinking water mixed results have been obtained. In one experiment, water disinfected by chlorination, ozonation or combined chlorine resulted in a significantly greater number of papillomas when compared to nondisinfected water. In two subsequent experiments, where water was obtained from the Ohio River at different times of the year, no evidence of increased initiating activity was observed with any disinfectant. Analysis of water obtained at the comparable times of the year for total organic halogen, and trihalomethane formation revealed a substantial variation in the formation of these products. Considering the problems such variability poses for estimating risks associated with disinfection by-products, a model system which makes use of commercially obtained humic acid as a substrate for chlorination was investigated using the Ames test. Humic and fulvic acids obtained from two surface waters as well as the commercially obtained humic acid were without activity in TA 1535, TA 1537, TA 1538, TA 98 or TA 100 strains of S. typhimurium. Following treatment with a 0.8 molar ratio of chlorine (based on carbon) significant mutagenic activity was observed with all humic and fulvic acid samples. Comparisons of the specific mutagenic activity of the chlorinated products suggests that the commercial material might provide a useful model for studying health hazards associated with disinfection reactions by-products. PMID:7151763
De Vera, Glen Andrew; Stalter, Daniel; Gernjak, Wolfgang; Weinberg, Howard S; Keller, Jurg; Farré, Maria José
2015-12-15
When ozonation is employed in advanced water treatment plants to produce drinking water, dissolved organic matter reacts with ozone (O3) and/or hydroxyl radicals (OH) affecting disinfection byproduct (DBP) formation with subsequently used chlorine-based disinfectants. This study presents the effects of varying exposures of O3 and •OH on DBP concentrations and their associated toxicity generated after subsequent chlorination. DBP formation potential tests and in vitro bioassays were conducted after batch ozonation experiments of coagulated surface water with and without addition of tertiary butanol (t-BuOH, 10 mM) and hydrogen peroxide (H2O2, 1 mg/mg O3), and at different pH (6-8) and transferred ozone doses (0-1 mg/mg TOC). Although ozonation led to a 24-37% decrease in formation of total trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetamides, an increase in formation of total trihalonitromethanes, chloral hydrate, and haloketones was observed. This effect however was less pronounced for samples ozonated at conditions favoring molecular ozone (e.g., pH 6 and in the presence of t-BuOH) over •OH reactions (e.g., pH 8 and in the presence of H2O2). Compared to ozonation only, addition of H2O2 consistently enhanced formation of all DBP groups (20-61%) except trihalonitromethanes. This proves that •OH-transformed organic matter is more susceptible to halogen incorporation. Analogously, adsorbable organic halogen (AOX) concentrations increased under conditions that favor •OH reactions. The ratio of unknown to known AOX, however, was greater at conditions that promote direct O3 reactions. Although significant correlation was found between AOX and genotoxicity with the p53 bioassay, toxicity tests using 4 in vitro bioassays showed relatively low absolute differences between various ozonation conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hua, Lap-Cuong; Lin, Jr-Lin; Syue, Ming-Yang; Huang, Chihpin; Chen, Pei-Chung
2018-04-15
Algogenic organic matter (AOM) in eutrophic waters is a well-known precursor to disinfection by-product (DBP) formation in drinking water. This purpose of this study is (i) to characterize the optical properties of AOM origins, including intra- (IOM) and extra-cellular organic matter (EOM), derived from Chlorella sp. growth as precursors to two major carbonaceous DBPs (C-DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs) and (ii) to correlate these optical properties with THM and HAA formation potential (FP) in order to predict DBP formation. The results show that both EOM and IOM had low UV 254 and UV 280 absorbance during their entire growth phase. While IOM chiefly comprised of aromatic proteins and soluble microbial products-like substances (80% of average fluorescent intensity-AFI), EOM spectra were rich in humic- and fulvic-like substances (60% AFI). However, its chemical nature likely differed from terrestrial humics. In DBPFP tests, IOM was a higher-yielding precursor of THMs and HAAs compared to EOM, regardless its growth status. Consequently, C-DBPFP of IOM was always higher than EOM during four growth phases. Results from DBP tests also showed insignificant variation of EOM-derived THMFP and HAAFP during the algal growth phase, while the algal growth status strongly influenced the yields of IOM-derived THMFP and HAAFP. From correlation analysis, our results showed no correlation between UV absorbance with THMFP and HAAFP. Conversely, the regional AFI showed a good correlation with HAAFP and C-DBPFP. Predicting models based on AFI for the formation of HAAs and C-DBPs consequently yielded great predictability for laboratory AOM-containing water samples, with a coefficient of determination R 2 =0.879, p<0.01 and R 2 =0.846, p<0.01. This study indicates a promising application of fluorescent spectra for predicting DBPs derived from algae-rich water sources. Copyright © 2017 Elsevier B.V. All rights reserved.
Rice, Glenn E; Teuschler, Linda K; Bull, Richard J; Simmons, Jane E; Feder, Paul I
2009-01-01
Humans are exposed daily to complex mixtures of environmental chemical contaminants, which arise as releases from sources such as engineering procedures, degradation processes, and emissions from mobile or stationary sources. When dose-response data are available for the actual environmental mixture to which individuals are exposed (i.e., the mixture of concern), these data provide the best information for dose-response assessment of the mixture. When suitable data on the mixture itself are not available, surrogate data might be used from a sufficiently similar mixture or a group of similar mixtures. Consequently, the determination of whether the mixture of concern is "sufficiently similar" to a tested mixture or a group of tested mixtures is central to the use of whole mixture methods. This article provides an overview for a series of companion articles whose purpose is to develop a set of biostatistical, chemical, and toxicological criteria and approaches for evaluating the similarity of drinking-water disinfection by-product (DBPs) complex mixtures. Together, the five articles in this series serve as a case study whose techniques will be relevant to assessing similarity for other classes of complex mixtures of environmental chemicals. Schenck et al. (2009) describe the chemistry and mutagenicity of a set of DBP mixtures concentrated from five different drinking-water treatment plants. Bull et al. (2009a, 2009b) describe how the variables that impact the formation of DBP affect the chemical composition and, subsequently, the expected toxicity of the mixture. Feder et al. (2009a, 2009b) evaluate the similarity of DBP mixture concentrates by applying two biostatistical approaches, principal components analysis, and a nonparametric "bootstrap" analysis. Important factors for determining sufficient similarity of DBP mixtures found in this research include disinfectant used; source water characteristics, including the concentrations of bromide and total organic carbon; concentrations and proportions of individual DBPs with known toxicity data on the same endpoint; magnitude of the unidentified fraction of total organic halides; similar toxicity outcomes for whole mixture testing (e.g., mutagenicity); and summary chemical measures such as total trihalomethanes, total haloacetic acids, total haloacetonitriles, and the levels of bromide incorporation in the DBP classes.
System Testing of Ground Cooling System Components
NASA Technical Reports Server (NTRS)
Ensey, Tyler Steven
2014-01-01
This internship focused primarily upon software unit testing of Ground Cooling System (GCS) components, one of the three types of tests (unit, integrated, and COTS/regression) utilized in software verification. Unit tests are used to test the software of necessary components before it is implemented into the hardware. A unit test determines that the control data, usage procedures, and operating procedures of a particular component are tested to determine if the program is fit for use. Three different files are used to make and complete an efficient unit test. These files include the following: Model Test file (.mdl), Simulink SystemTest (.test), and autotest (.m). The Model Test file includes the component that is being tested with the appropriate Discrete Physical Interface (DPI) for testing. The Simulink SystemTest is a program used to test all of the requirements of the component. The autotest tests that the component passes Model Advisor and System Testing, and puts the results into proper files. Once unit testing is completed on the GCS components they can then be implemented into the GCS Schematic and the software of the GCS model as a whole can be tested using integrated testing. Unit testing is a critical part of software verification; it allows for the testing of more basic components before a model of higher fidelity is tested, making the process of testing flow in an orderly manner.
Fram, Miranda S.; Bergamaschi, Brian A.; Goodwin, Kelly D.; Fujii, Roger; Clark, Jordan F.
2003-01-01
The formation and fate of trihalomethanes (THM) during the third injection, storage, and recovery test at Lancaster, Antelope Valley, California, were investigated as part of a program to assess the long-term feasibility of using injection, storage, and recovery as a water-supply method and as a way to reduce water-level declines and land-subsidence in the Antelope Valley. The program was conducted by the U.S. Geological Survey in cooperation with the Los Angeles County Department of Public Works and the Antelope Valley-East Kern Water Agency. The water used for injection, storage, and recovery must be disinfected before injection and thus contains THMs and other disinfection by-products. THMs (chloroform, CHCl3, bromodichloromethane, CHCl2Br, dibromochloromethane, CHClBr2, and bromoform, CHBr3) are formed by reaction between natural dissolved organic carbon that is present in water and chlorine that is added during the disinfection step of the drinking water treatment process. THMs are carcinogenic compounds, and their concentrations in drinking water are regulated by the U.S. Environmental Protection Agency. During previous cycles of the Lancaster program, extracted water still contained measurable concentrations of THMs long after continuous pumping had extracted a greater volume of water than had been injected. This raised concerns about the potential long-term effect of injection, storage, and recovery cycles on ground-water quality in Antelope Valley aquifers. The primary objectives of this investigation were to determine (1) what controlled continued THM formation in the aquifer after injection, (2) what caused of the persistence of THMs in the extracted water, even after long periods of pumping, (3) what controlled the decrease of THM concentrations during the extraction period, and (4) the potential for natural attenuation of THMs in the aquifer. Laboratory experiments on biodegradation of THMs in microcosms of aquifer materials indicate that aquifer bacteria did not degrade CHCl3 or CHBr3 under aerobic conditions, but did degrade CHBr3 under anaerobic conditions. However, the aquifer is naturally aerobic and CHCl3 is the dominant THM species; therefore, biodegradation is not considered an important attenuation mechanism for THMs in this aquifer. The alluvial-fan sediments comprising the aquifer have very low contents of organic matter; therefore, sorption is not considered to be an important attenuation mechanism for THMs in this aquifer. Laboratory experiments on formation of THMs in the injection water indicate that continued THM formation in the injection water after injection into the aquifer was limited by the amount of residual chlorine in the injection water at the time of injection. After accounting for THMs formed by reaction of this residual chlorine, THMs behaved as conservative constituents in the aquifer, and the only process affecting the concentration of THMs was mixing of the injection water and the ground water. The mixing process was quantified using mass balances of injected constituents, the sulfur hexafluoride (SF6) tracer that was added to the injected water, and a simple descriptive mathematical mixing model. Mass balance calculations show that only 67 percent of the injected THMs and chloride were recovered by the time that a volume of water equivalent to 132 percent of the injection water volume was extracted. Pumping 250 percent of the injection water volume only increased recovery of injected THMs to 80 percent. THM and SF6 concentrations in the extracted water decreased concomitantly during the extraction period, and THM concentrations predicted from SF6 concentrations closely matched the measured THM concentrations. Because SF6 is a conservative tracer that was initially only present in the injection water, parallel decreases in SF6 and THM concentrations in the extracted water must be due to dilution of injection water with ground water. The simple descriptive mixing mode
Li, Xing-Fang; Mitch, William A
2018-02-20
While drinking water disinfection has effectively prevented waterborne diseases, an unintended consequence is the generation of disinfection byproducts (DBPs). Epidemiological studies have consistently observed an association between consumption of chlorinated drinking water with an increased risk of bladder cancer. Out of the >600 DBPs identified, regulations focus on a few classes, such as trihalomethanes (THMs), whose concentrations were hypothesized to correlate with the DBPs driving the toxicity of disinfected waters. However, the DBPs responsible for the bladder cancer association remain unclear. Utilities are switching away from a reliance on chlorination of pristine drinking water supplies to the application of new disinfectant combinations to waters impaired by wastewater effluents and algal blooms. In light of these changes in disinfection practice, this article discusses new approaches being taken by analytical chemists, engineers, toxicologists and epidemiologists to characterize the DBP classes driving disinfected water toxicity, and suggests that DBP exposure should be measured using other DBP classes in addition to THMs.
Wang, Feng; Gao, Baoyu; Yue, Qinyan; Bu, Fan; Shen, Xue
2017-07-01
Effects of ozonation and powdered activated carbon on removal of dissolved organic matter (DOM) and disinfection by-product (DBP) in reservoir water were intensively investigated in this study. Both the formation of carbonaceous DBP (C-DBP) and nitrogenous DBP (N-DBP) as well as their speciation were analyzed. Results exhibited that the addition of powdered activated carbon (PAC) greatly improved the removal of aromatic protein. Trihalomethanes (THMs) and haloacetonitriles (HANs) were the dominant species in C-DBP and N-DBP. The integrated coagulation and PAC processes could remove more than 70% of THMs and 93% of HANs precursors, while only 10.5 and 45% of capture were achieved by the single coagulation. The added ozone lowered the yields of HANs but synchronously increased the more toxic bromine-containing THMs from 78.5 to 128.1 μg/L. Kinetics parameters for THM formation indicated that the precursor creating the THMs fast could be easily removed by both the coagulation and PAC adsorption.
Wu, Jie; Ye, Jian; Peng, Huanlong; Wu, Meirou; Shi, Weiwei; Liang, Yongmei; Liu, Wei
2018-06-01
In the Pearl River Delta area, the upstream municipal wastewater is commonly discharged into rivers which are a pivotal source of downstream drinking water. Solar irradiation transforms some of the dissolved organic matter discharged from the wastewater, also affecting the formation of disinfection by-products in subsequent drinking water treatment plants. The effect of simulated solar radiation on soluble microbial products extracted from activated sludge was documented in laboratory experiments. Irradiation was found to degrade macromolecules in the effluent, yielding smaller, more reactive intermediate species which reacted with chlorine or chloramine to form higher levels of noxious disinfection by-products. The soluble microbial products were found to be more active in formation of disinfection by-products regard than naturally-occurring organic matter. The results show that solar irradiation induced the formation of more trihalomethane (THMs), chloral hydrate (CH) and trichloronitromethane (TCNM), causing greater health risks for downstream drinking water. Copyright © 2018 Elsevier Ltd. All rights reserved.
Disinfection by-product formation from the chlorination and chloramination of amines.
Bond, Tom; Mokhtar Kamal, Nurul Hana; Bonnisseau, Thomas; Templeton, Michael R
2014-08-15
This study investigated the relative effect of chlorination and chloramination on DBP formation from seven model amine precursor compounds, representative of those commonly found in natural waters, at pH 6, 7 and 8. The quantified DBPs included chloroform, dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN) and chloropicrin (trichloronitromethane). The aggregate formation (i.e. the mass sum of the formation from the individual precursors) of chloroform, DCAN and TCAN from all precursors was reduced by respectively 75-87%, 66-90% and 89-93% when considering pre-formed monochloramine compared to chlorine. The formation of both haloacetonitriles decreased with increasing pH following chlorination, but formation after chloramination was relatively insensitive to pH change. The highest formation of chloropicrin was from chloramination at pH 7. These results indicate that, while chloramination is effective at reducing the concentrations of trihalomethanes and haloacetonitriles in drinking water compared with chlorination, the opposite is true for the halonitromethanes. Copyright © 2014 Elsevier B.V. All rights reserved.
A commercialized, continuous flow fiber optic sensor for trichloroethylene and haloforms
NASA Technical Reports Server (NTRS)
Wells, James C.; Johnson, Mark D.
1994-01-01
Purus, Inc. has commercialized a fiber optic chemical sensor using technology developed by Lawrence Livermore National Laboratory and licensed from The University of California. The basis for the sensor is the development of color within a reagent when exposed to an analyte. The sensor consists of an optrode, reagent delivery and recover system, fiber optic transmitter-receiver, controller, and display. Reagent is pumped through the optrode. Analyte diffuses across a gas permeable membrane and reacts with the reagent to form a colored product. The colored product is detected by measuring the absorbance of light from a 568 nm diode. Reagents are currently available for TCE and trihalomethanes. Initial reagent chemistry is based on the Fujiwara alkaline pyridine reaction. The optrode contacts only gas streams, but the volatility of the current analytes also allows measurements of aqueous streams, without being affected by aqueous interferents that are non-volatile. Sensitivity of the sensor has been demonstrated to 5 ppb aqueous solutions and 0.1 ppmv in flowing gas streams.
Effect of Pre-ozonation on Haloacetic Acids Formation in Ganga River Water at Kanpur, India
NASA Astrophysics Data System (ADS)
Naladala, Nagasrinivasa Rao; Singh, Rambabu; Katiyar, Kumud Lata Devi; Bose, Purnendu; Dutta, Venkatesh
2017-11-01
Almost all natural water bodies which are considered to be sustainable sources of drinking water contain organic matter in dissolved form and pathogens. This dissolved organic matter and pathogens cannot be removed effectively through traditional filtering processes in drinking water treatment plants. Chlorination of such water for disinfection results in large amounts of disinfection by-products (DBPs), mainly trihalomethanes and haloacetic acids (HAAs), which showed many health effects like cancer and reproductive problems in lab animals and in human beings as well. Complete removal of dissolved organic carbon (DOC), which is a precursor compound for HAAs formation, is impossible from a practical point of view; hence, it will be better if DOC activity towards DBPs formation can be reduced via some process. The present article describes the process of pre-ozonating post-coagulated Ganga River water at Kanpur in a continuous flow mode and its effect on HAAs formation. Nearly 58% reduction in HAAs formation was observed during this study at higher doses of ozone.
Drinking water treatment and risk of cancer death in Wisconsin.
Kanarek, M S; Young, T B
1982-01-01
A case control study of drinking water treatment practices and female cancer mortality was conducted in Wisconsin. Cancer deaths for 1972-1977 from 28 Wisconsin counties and noncancer deaths matched to cancer deaths on age, year of death and county of residence, were compared for characteristics of drinking water supplied to their places of residence. Using logistic regression, estimates of relative risk associated with chlorinated water were examined allowing for the influence of indicators of water organics and the potential confounders of occupation, marital status and urbanicity. Only colon cancer appeared to be related significantly to chlorination in all models explored. A dose-response relationship was found between crude indicators of trihalomethane level (chlorination X organic contamination) and colon cancer death. The odds ratio for chlorinated surface water for colon cancer was 2.81 (p less than 0.01); approximately half this risk was found for chlorinated ground water. Consequently, a case control study of colon cancer and drinking water quality utilizing newly diagnosed patients is being conducted in Wisconsin. PMID:7151760
Formation of unprecedented actinidecarbon triple bonds in uranium methylidyne molecules
Lyon, Jonathan T.; Hu, Han-Shi; Andrews, Lester; Li, Jun
2007-01-01
Chemistry of the actinide elements represents a challenging yet vital scientific frontier. Development of actinide chemistry requires fundamental understanding of the relative roles of actinide valence-region orbitals and the nature of their chemical bonding. We report here an experimental and theoretical investigation of the uranium methylidyne molecules X3UCH (X = F, Cl, Br), F2ClUCH, and F3UCF formed through reactions of laser-ablated uranium atoms and trihalomethanes or carbon tetrafluoride in excess argon. By using matrix infrared spectroscopy and relativistic quantum chemistry calculations, we have shown that these actinide complexes possess relatively strong UC triple bonds between the U 6d-5f hybrid orbitals and carbon 2s-2p orbitals. Electron-withdrawing ligands are critical in stabilizing the U(VI) oxidation state and sustaining the formation of uranium multiple bonds. These unique UC-bearing molecules are examples of the long-sought actinide-alkylidynes. This discovery opens the door to the rational synthesis of triple-bonded actinidecarbon compounds. PMID:18024591
Pavelic, Paul; Nicholson, Brenton C; Dillon, Peter J; Barry, Karen E
2005-05-01
Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.
Pavelic, Paul; Nicholson, Brenton C; Dillon, Peter J; Barry, Karen E
2005-03-01
Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.
Architecture-Based Unit Testing of the Flight Software Product Line
NASA Technical Reports Server (NTRS)
Ganesan, Dharmalingam; Lindvall, Mikael; McComas, David; Bartholomew, Maureen; Slegel, Steve; Medina, Barbara
2010-01-01
This paper presents an analysis of the unit testing approach developed and used by the Core Flight Software (CFS) product line team at the NASA GSFC. The goal of the analysis is to understand, review, and reconunend strategies for improving the existing unit testing infrastructure as well as to capture lessons learned and best practices that can be used by other product line teams for their unit testing. The CFS unit testing framework is designed and implemented as a set of variation points, and thus testing support is built into the product line architecture. The analysis found that the CFS unit testing approach has many practical and good solutions that are worth considering when deciding how to design the testing architecture for a product line, which are documented in this paper along with some suggested innprovennents.
29 CFR 1919.71 - Unit proof test and examination of cranes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Unit proof test and examination of cranes. 1919.71 Section... § 1919.71 Unit proof test and examination of cranes. (a) Unit proof tests of cranes shall be carried out at the following times: (1) In the cases of new cranes, before initial use and every 4 years...
29 CFR 1919.71 - Unit proof test and examination of cranes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Unit proof test and examination of cranes. 1919.71 Section... § 1919.71 Unit proof test and examination of cranes. (a) Unit proof tests of cranes shall be carried out at the following times: (1) In the cases of new cranes, before initial use and every 4 years...
Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.
2013-01-01
Groundwater quality in the approximately 860-square-mile Madera and Chowchilla Subbasins (Madera-Chowchilla study unit) of the San Joaquin Valley Basin was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in California's Central Valley region in parts of Madera, Merced, and Fresno Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The Project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in California. The primary aquifer system within each study unit is defined by the depth of the perforated or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Madera-Chowchilla study unit were based on water-quality and ancillary data collected by the USGS from 35 wells during April-May 2008 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of natural factors and human activities affecting groundwater quality. The primary aquifer system is represented by the grid wells, of which 90 percent (%) had depths that ranged from about 200 to 800 feet (ft) below land surface and had depths to the top of perforations that ranged from about 140 to 400 ft below land surface. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration (RC) greater than 1.0 indicates a concentration above a benchmark. RCs for organic constituents (volatile organic compounds and pesticides) and special-interest constituents (perchlorate) were classified as "high" (RC is greater than 1.0), "moderate" (RC is less than or equal to 1.0 and greater than 0.1), or "low" (RC is less than or equal to 0.1). For inorganic constituents (major and minor ions, trace elements, nutrients, and radioactive constituents), the boundary between low and moderate RCs was set at 0.5. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors; drinking-water benchmarks, and thus relative-concentrations, are used to provide context for the concentrations of constituents measured in groundwater. Aquifer-scale proportion was used in the status assessment as the primary metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifer system with RCs greater than 1.0 for a particular constituent or class of constituents; moderate and low aquifer-scale proportions are defined as the percentages of the area of the primary aquifer system with moderate and low RCs, respectively. Percentages are based on an areal, rather than a volumetric basis. Two statistical approaches--grid-based, which used one value per grid cell, and spatially weighted, which used multiple values per grid cell--were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. The spatially weighted estimates of high aquifer-scale proportions were within the 90% confidence intervals of the grid-based estimates for all constituents except iron. The status assessment showed that inorganic constituents had greater high and moderate aquifer-scale proportions in the Madera-Chowchilla study unit than did organic constituents. RCs for inorganic constituents with health-based benchmarks were high in 37% of the primary aquifer system, moderate in 30%, and low in 33%. The inorganic constituents contributing most to the high aquifer-scale proportion were arsenic (13%), uranium (17%), gross alpha particle activity (20%), nitrate (6.7%), and vanadium (3.3%). RCs for inorganic constituents with non-health-based benchmarks were high in 6.7% of the primary aquifer system, and the constituent contributing most to the high aquifer-scale proportion was total dissolved solids (TDS). RCs for organic constituents with health-based benchmarks were high in 10% of the primary aquifer system, moderate in 3.3%, and low in 40%; organic constituents were not detected in 47% of the primary aquifer system. The fumigant 1,2-dibromo-3-chloropropane (DBCP) was the only organic constituent detected at high RCs. Seven organic constituents were detected in 10% or more of the primary aquifer system: DBCP; the fumigant additive 1,2,3-trichloropropane; the herbicides simazine, atrazine, and diuron; the trihalomethane chloroform; and the solvent tetrachloroethene (PCE). RCs for the special-interest constituent perchlorate were moderate in 20% of the primary aquifer system. The second component of this study, the understanding assessment, identified the natural and human factors that may affect groundwater quality by evaluating statistical correlations between water-quality constituents and potential explanatory factors, such as land use, position relative to important geologic features, groundwater age, well depth, and geochemical conditions in the aquifer. Results of the statistical evaluations were used to explain the distribution of constituents in the study unit. Depth to the top of perforations in the well and groundwater age were the most important explanatory factors for many constituents. High and moderate RCs of nitrate, uranium, and TDS and the presence of herbicides, trihalomethanes, and solvents were all associated with depths to the top of perforations less than 235 ft and modern- and mixed-age groundwater. Positive correlations between uranium, bicarbonate, TDS, and the proportion of calcium and magnesium in the total cations suggest that downward movement of recharge from irrigation water contributed to the elevated concentrations of these constituents in the primary aquifer system. High and moderate RCs of arsenic were associated with depths to the top of perforations greater than 235 ft, mixed- and pre-modern-age groundwater, and location in sediments from the Chowchilla River alluvial fan, suggesting that increased residence time and appropriate aquifer materials were needed for arsenic to accumulate in the groundwater. High and moderate RCs of fumigants were associated with depths to the top of perforations of less than 235 ft and location south of the city of Madera; low RCs of fumigants were detected in wells dispersed across the study unit with a range of depths to top of perforations.
Short-term changes in respiratory biomarkers after swimming in a chlorinated pool.
Font-Ribera, Laia; Kogevinas, Manolis; Zock, Jan-Paul; Gómez, Federico P; Barreiro, Esther; Nieuwenhuijsen, Mark J; Fernandez, Pilar; Lourencetti, Carolina; Pérez-Olabarría, Maitane; Bustamante, Mariona; Marcos, Ricard; Grimalt, Joan O; Villanueva, Cristina M
2010-11-01
Swimming in chlorinated pools involves exposure to disinfection by-products (DBPs) and has been associated with impaired respiratory health. We evaluated short-term changes in several respiratory biomarkers to explore mechanisms of potential lung damage related to swimming pool exposure. We measured lung function and biomarkers of airway inflammation [fractional exhaled nitric oxide (FeNO), eight cytokines, and vascular endothelial growth factor (VEGF) in exhaled breath condensate], oxidative stress (8-isoprostane in exhaled breath condensate), and lung permeability [surfactant protein D (SP-D) and the Clara cell secretory protein (CC16) in serum] in 48 healthy nonsmoking adults before and after they swam for 40 min in a chlorinated indoor swimming pool. We measured trihalomethanes in exhaled breath as a marker of individual exposure to DBPs. Energy expenditure during swimming, atopy, and CC16 genotype (rs3741240) were also determined. Median serum CC16 levels increased from 6.01 to 6.21 microg/L (average increase, 3.3%; paired Wilcoxon test p = 0.03), regardless of atopic status and CC16 genotype. This increase was explained both by energy expenditure and different markers of DBP exposure in multivariate models. FeNO was unchanged overall but tended to decrease among atopics. We found no significant changes in lung function, SP-D, 8-isoprostane, eight cytokines, or VEGF. We detected a slight increase in serum CC16, a marker of lung epithelium permeability, in healthy adults after they swam in an indoor chlorinated pool. Exercise and DBP exposure explained this association, without involving inflammatory mechanisms. Further research is needed to confirm the results, establish the clinical relevance of short-term serum CC16 changes, and evaluate the long-term health impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland
New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) frommore » raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.« less
Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa
Inoue-Choi, Maki; Jones, Rena R.; Anderson, Kristin E.; Cantor, Kenneth P.; Cerhan, James R.; Krasner, Stuart; Robien, Kim; Weyer, Peter J.; Ward, Mary H.
2014-01-01
Nitrate and nitrite are precursors in the endogenous formation of N-nitroso compounds (NOC), potential human carcinogens. We evaluated the association of nitrate and nitrite ingestion with postmenopausal ovarian cancer risk in the Iowa Women’s Health Study. Among 28,555 postmenopausal women, we identified 315 incident epithelial ovarian cancers from 1986 to 2010. Dietary nitrate and nitrite intakes were assessed at baseline using food frequency questionnaire data. Drinking water source at home was obtained in a 1989 follow-up survey. Nitrate-nitrogen (NO3-N) and total trihalomethane (TTHM) levels for Iowa public water utilities were linked to residences and average levels were computed based on each woman’s duration at the residence. We computed multivariable-adjusted hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards regression. We tested interactions of nitrate with TTHMs and dietary factors known to influence NOC formation. Ovarian cancer risk was 2.03 times higher (CI=1.22–3.38, ptrend=0.003) in the highest quartile (≥2.98 mg/L) compared with the lowest quartile (≤0.47 mg/L; reference) of NO3-N in public water, regardless of TTHM levels. Risk among private well users was also elevated (HR=1.53, CI=0.93–2.54) compared with the same reference group. Associations were stronger when vitamin C intake was
Setty, Karen E; Kayser, Georgia L; Bowling, Michael; Enault, Jerome; Loret, Jean-Francois; Serra, Claudia Puigdomenech; Alonso, Jordi Martin; Mateu, Arnau Pla; Bartram, Jamie
2017-05-01
Water Safety Plans (WSPs), recommended by the World Health Organization since 2004, seek to proactively identify potential risks to drinking water supplies and implement preventive barriers that improve safety. To evaluate the outcomes of WSP application in large drinking water systems in France and Spain, we undertook analysis of water quality and compliance indicators between 2003 and 2015, in conjunction with an observational retrospective cohort study of acute gastroenteritis incidence, before and after WSPs were implemented at five locations. Measured water quality indicators included bacteria (E. coli, fecal streptococci, total coliform, heterotrophic plate count), disinfectants (residual free and total chlorine), disinfection by-products (trihalomethanes, bromate), aluminum, pH, turbidity, and total organic carbon, comprising about 240K manual samples and 1.2M automated sensor readings. We used multiple, Poisson, or Tobit regression models to evaluate water quality before and after the WSP intervention. The compliance assessment analyzed exceedances of regulated, recommended, or operational water quality thresholds using chi-squared or Fisher's exact tests. Poisson regression was used to examine acute gastroenteritis incidence rates in WSP-affected drinking water service areas relative to a comparison area. Implementation of a WSP generally resulted in unchanged or improved water quality, while compliance improved at most locations. Evidence for reduced acute gastroenteritis incidence following WSP implementation was found at only one of the three locations examined. Outcomes of WSPs should be expected to vary across large water utilities in developed nations, as the intervention itself is adapted to the needs of each location. The approach may translate to diverse water quality, compliance, and health outcomes. Copyright © 2017 Elsevier GmbH. All rights reserved.
Problems of drinking water treatment along Ismailia Canal Province, Egypt.
Geriesh, Mohamed H; Balke, Klaus-Dieter; El-Rayes, Ahmed E
2008-03-01
The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06x10(6) m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6x10(6) m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application.
Problems of drinking water treatment along Ismailia Canal Province, Egypt*
Geriesh, Mohamed H.; Balke, Klaus-Dieter; El-Rayes, Ahmed E.
2008-01-01
The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06×106 m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6×106 m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application. PMID:18357626
Levallois, Patrick; Giguère, Yves; Nguile-Makao, Molière; Rodriguez, Manuel; Campagna, Céline; Tardif, Robert; Bureau, Alexandre
2016-01-01
Exposure to disinfection by-products (DBPs) during pregnancy was associated with reduced foetal growth. Genetic susceptibility might play a role, especially for genes encoding for the Cytochrome P450 (CYP2E1) and Glutathione S-Transferase (GST) enzymes, involved in metabolism and activation of DBPs. Few epidemiological studies evaluated these gene-environment interactions and their results were never replicated. This study aims to examine interactions between trihalomethanes (THM) or haloacetic acids (HAA) exposure and genetic polymorphisms on small for gestational age (SGA) neonates by investigating single nucleotide polymorphisms (SNPs) in CYP2E1 gene and GSTM1 and GSTT1 deletions in mothers-children pairs. A population-based case-control study of 1549 mothers and 1455 children was conducted on SGA and THM/HAA exposure. DNA was extracted from blood or saliva cells. Targeted SNPs and deletions were genotyped. Statistical interaction between SNPs/deletions and THMs or HAAs in utero exposure with regard to SGA occurrence was evaluated by unconditional logistic regression with control of potential confounders. Previously reported positive modification of the effect of THM uterine exposure by mothers or newborns CYP2E1 rs3813867 C allele or GSTM1 deletion was not replicated. However interactions with CYP2E1 rs117618383 and rs2515641 were observed but were not statistically significant after correction for multiple testing. Previous positive interactions between THMs exposure and CYP2E1 and GSTM1 were not replicated but interactions with other CYP2E1 polymorphisms are reported. Copyright © 2016 Elsevier Ltd. All rights reserved.
Levallois, Patrick; Giguère, Yves; Nguile-Makao, Molière; Rodriguez, Manuel; Campagna, Céline; Tardif, Robert; Bureau, Alexandre
2016-01-01
Background Exposure to disinfection by-products (DBPs) during pregnancy was associated with reduced fetal growth. Genetic susceptibility might play a role, especially for genes encoding for the Cytochrome P450 (CYP2E1) and Glutathione S-Transferase (GST) enzymes, involved in metabolism and activation of DBPs. Few epidemiological studies evaluated these gene-environment interactions and their results were never replicated. Objective This study aims to examine interactions between trihalomethanes (THM) or haloacetic acids (HAA) exposure and genetic polymorphisms on small for gestational age (SGA) neonates by investigating single nucleotide polymorphisms (SNPs) in CYP2E1 gene and GSTM1 and GSTT1 deletions in mothers-children pairs. Methods A population-based case-control study of 1549 mothers and 1455 children was conducted on SGA and THM/HAA exposure. DNA was extracted from blood or saliva cells. Targeted SNPs and deletions were genotyped. Statistical interaction between SNPs/deletions and THMs or HAAs in utero exposure with regard to SGA occurrence was evaluated by unconditional logistic regression with control of potential confounders. Results Previously reported positive modification of the effect of THM uterine exposure by mothers or newborns CYP2E1 rs3813867 C allele or GSTM1 deletion was not replicated. However interactions with CYP2E1 rs117618383 and rs2515641 were observed but were not statistically significant after correction for multiple testing. Conclusions Previous positive interactions between THMs exposure and CYP2E1 and GSTM1 were not replicated but interactions with other CYP2E1 polymorphisms are reported. PMID:27107227
Watson, Kalinda; Farré, Maria José; Leusch, Frederic D L; Knight, Nicole
2018-05-28
Parallel factor (PARAFAC) analysis of fluorescence excitation-emission matrices (EEMs) was used to investigate the organic matter and DBP formation characteristics of untreated, primary treated (enhanced coagulation; EC) and secondary treated synthetic waters prepared using a Suwannee River natural organic matter (SR-NOM) isolate. The organic matter was characterised by four different fluorescence components; two humic acid-like (C1 and C2) and two protein-like (C3 and C4). Secondary treatment methods tested, following EC treatment, were; powdered activated carbon (PAC), granular activated carbon (GAC), 0.1% silver-impregnated activated carbon (SIAC), and MIEX® resin. Secondary treatments were more effective at removing natural organic matter (NOM) and fluorescent DBP-precursor components than EC alone. The formation of a suite of 17 DBPs including chlorinated, brominated and iodinated trihalomethanes (THMs), dihaloacetonitriles (DHANs), chloropropanones (CPs), chloral hydrate (CH) and trichloronitromethane (TCNM) was determined after chlorinating water sampled before and after each treatment step. Regression analysis was used to investigate the relationship between peak component fluorescence intensity (F MAX ), DBP concentration and speciation, and more commonly used aggregate parameters such as DOC, UV 254 and SUVA 254 . PARAFAC component 1 (C1) was in general a better predictor of DBP formation than other aggregate parameters, and was well correlated (R ≥ 0.80) with all detected DBPs except dibromochloromethane (DBCM) and dibromoacetonitrile (DBAN). These results indicate that the fluorescence-PARAFAC approach could provide a robust analytical tool for predicting DBP formation, and for evaluating the removal of NOM fractions relevant to DBP formation during water treatment. Copyright © 2018. Published by Elsevier B.V.
Zanacic, Enisa; Stavrinides, John; McMartin, Dena W
2016-11-01
Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Unit Testing for Command and Control Systems
NASA Technical Reports Server (NTRS)
Alexander, Joshua
2018-01-01
Unit tests were created to evaluate the functionality of a Data Generation and Publication tool for a command and control system. These unit tests are developed to constantly evaluate the tool and ensure it functions properly as the command and control system grows in size and scope. Unit tests are a crucial part of testing any software project and are especially instrumental in the development of a command and control system. They save resources, time and costs associated with testing, and catch issues before they become increasingly difficult and costly. The unit tests produced for the Data Generation and Publication tool to be used in a command and control system assure the users and stakeholders of its functionality and offer assurances which are vital in the launching of spacecraft safely.
ACER Physics Unit Tests: Unit Tests, Diagnostic Aids, [and] Teachers Handbook.
ERIC Educational Resources Information Center
Australian Council for Educational Research, Hawthorn.
The Physics Unit Tests are designed to assist in the diagnostic evaluation of students' progress in the study of physics during the last two years of secondary schooling. They consist of a collection of 21 separate tests, each related to a different topic, and 21 diagnostic aids corresponding to the tests. The topics covered are: physical…
42 CFR 84.310 - Post-approval testing.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Respirators § 84.310 Post-approval testing. (a) NIOSH will periodically test the capacity and performance of units of approved CCERs. (b) NIOSH may test units that are new and/or units that have been deployed in... 42 Public Health 1 2014-10-01 2014-10-01 false Post-approval testing. 84.310 Section 84.310 Public...
42 CFR 84.310 - Post-approval testing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Respirators § 84.310 Post-approval testing. (a) NIOSH will periodically test the capacity and performance of units of approved CCERs. (b) NIOSH may test units that are new and/or units that have been deployed in... 42 Public Health 1 2013-10-01 2013-10-01 false Post-approval testing. 84.310 Section 84.310 Public...
42 CFR 84.310 - Post-approval testing.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Respirators § 84.310 Post-approval testing. (a) NIOSH will periodically test the capacity and performance of units of approved CCERs. (b) NIOSH may test units that are new and/or units that have been deployed in... 42 Public Health 1 2012-10-01 2012-10-01 false Post-approval testing. 84.310 Section 84.310 Public...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The most common method of measuring air leakage is to perform single (or solo) blower door pressurization and/or depressurization test. In detached housing, the single blower door test measures leakage to the outside. In attached housing, however, this "solo" test method measures both air leakage to the outside and air leakage between adjacent units through common surfaces. Although minimizing leakage to neighboring units is highly recommended to avoid indoor air quality issues between units, reduce pressure differentials between units, and control stack effect, the energy benefits of air sealing can be significantly overpredicted if the solo air leakage number ismore » used in the energy analysis. Guarded blower door testing is more appropriate for isolating and measuring leakage to the outside in attached housing. This method uses multiple blower doors to depressurize adjacent spaces to the same level as the unit being tested. Maintaining a neutral pressure across common walls, ceilings, and floors acts as a "guard" against air leakage between units. The resulting measured air leakage in the test unit is only air leakage to the outside. Although preferred for assessing energy impacts, the challenges of performing guarded testing can be daunting.« less
NASA Technical Reports Server (NTRS)
Platt, R.
1999-01-01
This is the Performance Verification Report, Initial Comprehensive Performance Test Report, P/N 1331200-2-IT, S/N 105/A2, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). The specification establishes the requirements for the Comprehensive Performance Test (CPT) and Limited Performance Test (LPT) of the Advanced Microwave Sounding, Unit-A2 (AMSU-A2), referred to herein as the unit. The unit is defined on Drawing 1331200. 1.2 Test procedure sequence. The sequence in which the several phases of this test procedure shall take place is shown in Figure 1, but the sequence can be in any order.
ARI Environmental, Inc. (ARI) was retained by Houston Refining LP (HRO) to conduct an emission test program at their refinery located in Houston, Texas. The testing was conducted on on the 736 Delayed Coking Unit (DCU) in response to EPA's ICR.
Test Report of Special Form Qualification Testing for the ORNL U ZipCan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Oscar A.
This test report describes the special form testing activities performed on the two ZiPCans. One prototype test unit was subjected to the tests stipulated by 10 CFR 71.75 (d)(1)(i), ISO 2919:1999(E) Class 4 impact test, along with the leak rate test specified in 49 CFR 173.469(a)(4)(i). The other test unit was subjected to a leak rate test as specified in 173.469(a)(4)(i) and a heat test as specified in 49 CFR 173.469 (b)(4). Each test unit was leak tested before and after these respective tests. The leak rate tests performed were helium back-pressure tests and bubble tests, as specified in ANSImore » N14.5-2014.The measured leak rates were converted to standard condition leak rates as specified in ASTM E 493. The determined standardized leak rates from the test and calculation for both test units met the requirements for special form certification.« less
NASA Technical Reports Server (NTRS)
Zachary, A. T.; Csomor, A.; Tignac, L. L.
1973-01-01
Small, high-performance LO2 and LH2 turbopump assembly configurations were selected, detail designs were prepared and two of each unit were fabricated with each unit consisting of pump, turbine gas generator, and appropriate controls. Following fabrication, development testing was conducted on each type to demonstrate performance, durability, transient characteristics, and heat transfer under simulated altitude conditions. Following successful completion of development effort, the two LO2 turbopump units and one LH2 turbopump unit were acceptance tested as specified. Inspection of the units following development testing revealed no deleterious effects of testing. The test results of LO2 turbopump assembly testing correlated well with predicted performance while the LH2 turbopump test results, though generally consistent with predicted values, did show lower than anticipated developed head at the design point and in the high flow range of operation.
Cost implications of implementation of pathogen-inactivated platelets
McCullough, Jeffrey; Goldfinger, Dennis; Gorlin, Jed; Riley, William J; Sandhu, Harpreet; Stowell, Christopher; Ward, Dawn; Clay, Mary; Pulkrabek, Shelley; Chrebtow, Vera; Stassinopoulos, Adonis
2015-01-01
BACKGROUND Pathogen inactivation (PI) is a new approach to blood safety that may introduce additional costs. This study identifies costs that could be eliminated, thereby mitigating the financial impact. STUDY DESIGN AND METHODS Cost information was obtained from five institutions on tests and procedures (e.g., irradiation) currently performed, that could be eliminated. The impact of increased platelet (PLT) availability due to fewer testing losses, earlier entry into inventory, and fewer outdates with a 7-day shelf life were also estimated. Additional estimates include costs associated with managing 1) special requests and 2) test results, 3) quality control and proficiency testing, 4) equipment acquisition and maintenance, 5) replacement of units lost to positive tests, 6) seasonal or geographic testing, and 7) health department interactions. RESULTS All costs are mean values per apheresis PLT unit in USD ($/unit). The estimated test costs that could be eliminated are $71.76/unit and a decrease in transfusion reactions corresponds to $2.70/unit. Avoiding new tests (e.g., Babesia and dengue) amounts to $41.80/unit. Elimination of irradiation saves $8.50/unit, while decreased outdating with 7-day storage can be amortized to $16.89/unit. Total potential costs saved with PI is $141.65/unit. Costs are influenced by a variety of factors specific to institutions such as testing practices and the location in which such costs are incurred and careful analysis should be performed. Additional benefits, not quantified, include retention of some currently deferred donors and scheduling flexibility due to 7-day storage. CONCLUSIONS While PI implementation will result in additional costs, there are also potential offsetting cost reductions, especially after 7-day storage licensing. PMID:25989465
Cost implications of implementation of pathogen-inactivated platelets.
McCullough, Jeffrey; Goldfinger, Dennis; Gorlin, Jed; Riley, William J; Sandhu, Harpreet; Stowell, Christopher; Ward, Dawn; Clay, Mary; Pulkrabek, Shelley; Chrebtow, Vera; Stassinopoulos, Adonis
2015-10-01
Pathogen inactivation (PI) is a new approach to blood safety that may introduce additional costs. This study identifies costs that could be eliminated, thereby mitigating the financial impact. Cost information was obtained from five institutions on tests and procedures (e.g., irradiation) currently performed, that could be eliminated. The impact of increased platelet (PLT) availability due to fewer testing losses, earlier entry into inventory, and fewer outdates with a 7-day shelf life were also estimated. Additional estimates include costs associated with managing (1) special requests and (2) test results, (3) quality control and proficiency testing, (4) equipment acquisition and maintenance, (5) replacement of units lost to positive tests, (6) seasonal or geographic testing, and (7) health department interactions. All costs are mean values per apheresis PLT unit in USD ($/unit). The estimated test costs that could be eliminated are $71.76/unit and a decrease in transfusion reactions corresponds to $2.70/unit. Avoiding new tests (e.g., Babesia and dengue) amounts to $41.80/unit. Elimination of irradiation saves $8.50/unit, while decreased outdating with 7-day storage can be amortized to $16.89/unit. Total potential costs saved with PI is $141.65/unit. Costs are influenced by a variety of factors specific to institutions such as testing practices and the location in which such costs are incurred and careful analysis should be performed. Additional benefits, not quantified, include retention of some currently deferred donors and scheduling flexibility due to 7-day storage. While PI implementation will result in additional costs, there are also potential offsetting cost reductions, especially after 7-day storage licensing. © 2015 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.
Formation of halogenated organics during waste-water disinfection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, P.C.; Brown, R.A.; Wiseman, J.F.
The research examined the formation of trihalomethanes (THMs) and total organic halides (TOX) during wastewater chlorination at three wastewater treatment plants in the central Piedmont of North Carolina. Secondary effluent samples were collected before and after the addition of chlorine at each of the three treatment facilities; chlorinated samples were taken from various locations within the chlorine contact chambers and at the plant discharge. Water samples were also collected upstream and downstream from two of the plant outfalls to determine the increase and persistence of THMs and TOX below each plant. TOX and THM formation was evaluated in terms ofmore » effluent wastewater quality (e.g., residual chemical oxygen demand, total organic carbon and ammonia concentration), chlorine dose, chlorine contacting system, methods of chlorine addition, and chlorine-to-ammonia ratio. The results showed that TOX was present in the unchlorinated wastewater and that additional TOX was formed immediately after chlorine addition. Small to insignificant amounts of THMS were detected. TOX formation did not increase with increasing contact time, due to the rapid depletion of free chlorine and the formation of combined chlorine in the chlorine contact chamber.« less
Sichel, C; Garcia, C; Andre, K
2011-12-01
UV/chlorine (UV/HOCl and UV/ClO(2)) Advanced Oxidation Processes (AOPs) were assessed with varying process layout and compared to the state of the art UV/H(2)O(2) AOP. The process comparison focused on the economical and energy saving potential of the UV/chlorine AOP. Therefore the experiments were performed at technical scale (250 L/h continuous flow reactor) and at process energies, oxidant and model contaminant concentrations expected in full scale reference plants. As model compounds the emerging contaminants (ECs): desethylatrazine, sulfamethoxazole, carbamazepine, diclofenac, benzotriazole, tolyltriazole, iopamidole and 17α-ethinylestradiol (EE2) were degraded at initial compound concentrations of 1 μg/L in tap water and matrixes with increased organic load (46 mg/L DOC). UV/chlorine AOP organic by-product forming potential was assessed for trihalomethanes (THMs) and N-Nitrosodimethylamine (NDMA). A process design was evaluated which can considerably reduce process costs, energy consumption and by-product generation from UV/HOCl AOPs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ali, Asgar; Yeoh, Wei Keat; Forney, Charles; Siddiqui, Mohammed Wasim
2017-10-26
Minimally processed fresh produce is one of the fastest growing segments of the food industry due to consumer demand for fresh, healthy, and convenient foods. However, mechanical operations of cutting and peeling induce the liberation of cellular contents at the site of wounding that can promote the growth of pathogenic and spoilage microorganisms. In addition, rates of tissue senescence can be enhanced resulting in reduced storage life of fresh-cut fruits and vegetables. Chlorine has been widely adopted in the disinfection and washing procedures of fresh-cut produce due to its low cost and efficacy against a broad spectrum of microorganisms. Continuous replenishment of chlorine in high organic wash water can promote the formation of carcinogenic compounds such as trihalomethanes, which threaten human and environmental health. Alternative green and innovative chemical and physical postharvest treatments such as ozone, electrolyzed water, hydrogen peroxide, ultraviolet radiation, high pressure processing, and ultrasound can achieve similar reduction of microorganisms as chlorine without the production of harmful compounds or compromising the quality of fresh-cut produce.
Determination of several common disinfection by-products in frozen foods.
Cardador, Maria Jose; Gallego, Mercedes
2018-01-01
Disinfected water and/or disinfectants are commonly used by the freezing industry in such processes as sanitising, washing, blanching, cooling and transporting the final product. For this reason, disinfection by-products (DBPs) can be expected in frozen foods. This study focused on the presence of DBPs in a wide variety of frozen vegetables, meats and fish. For this purpose, the 14 halogenated DBPs more prevalent in disinfected water were selected (four trihalomethanes, seven haloacetic acids, two haloacetonitriles and trichloronitromethane). Up to seven DBPs were found in vegetables, whereas only four DBPs were present in meats and fish, and at lower concentrations, since their contact with disinfected water is lower than in frozen vegetables. It is important to emphasise that trichloronitromethane (the most abundant nitrogenous DBP in disinfected water) was found for the first time in foods. Finally, it was concluded that the freezing process can keep the compounds stable longer than other preservation processes (viz. sanitising, canning) and, therefore, frozen foods present higher DBP concentrations than other food categories (minimally processed vegetables, or canned vegetables and meats).
Investigating social inequalities in exposure to drinking water contaminants in rural areas.
Delpla, Ianis; Benmarhnia, Tarik; Lebel, Alexandre; Levallois, Patrick; Rodriguez, Manuel J
2015-12-01
Few studies have assessed social inequalities in exposure to drinking water contaminants. This study explores this issue in 593 rural municipalities of Québec, Canada. Quartiles of an ecological composite deprivation index were used as a proxy of socioeconomic status. Total trihalomethanes (TTHMs) and lead were chosen as proxies of chemical drinking water quality. The results show that the majority of deprived rural municipalities apply no treatment to their water (26%) or use a basic treatment (51%), whereas a relative majority of the wealthiest municipalities (40%) use advanced treatment. The proportion of municipalities having important lead (>5 μg/L) levels is highest in most deprived municipalities. Moreover, most deprived municipalities have a higher risk of high tap lead levels (RR = 1.33; 95%CI: 1.30, 1.36). Conversely, most deprived municipalities have a lower risk of high TTHMs levels (RR = 0.78; 95%CI: 0.69, 0.86). These findings suggest an environmental inequality in drinking water contaminants distribution in rural municipalities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Haloactamides versus halomethanes formation and toxicity in chloraminated drinking water.
Yang, Fan; Zhang, Jing; Chu, Wenhai; Yin, Daqiang; Templeton, Michael R
2014-06-15
In this study we quantified the concentrations of nine haloacetamides (HAcAms) and nine halomethanes (HMs) in the final waters of five drinking water treatment plants (DWTPs) that use either chlorination or chloramination for disinfection and evaluated the toxicity of dichloroacetamide (DCAcAm) and dichloromethane (DCM) in normal rat kidney (NRK) cells using four in vitro toxicity assays. All the DWTPs final waters contained primarily di-HAcAms, followed by tri- and mono-HAcAms, and DCAcAm was the most abundant species of the 9 HAcAms, regardless of chlorination or chloramination being applied. In the final waters of DWTPs using chlorination, tri-HMs (trihalomethanes, THMs) accounted for the majority of HMs, whereas chloramination resulted in more di-HMs (especially DCM) than THMs. All four in vitro toxicity assays indicated that the NRK cell chronic cytotoxicity and acute genotoxicity of DCAcAm were substantially higher than that of DCM. In view of observed occurrence concentrations and quantified toxicity levels, the findings of this study suggest that DCAcAm represents a higher toxicity risk than DCM in chloraminated drinking waters. Copyright © 2014 Elsevier B.V. All rights reserved.
Sun, F; Chen, J; Tong, Q; Zeng, S
2007-01-01
Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.
NASA Astrophysics Data System (ADS)
Kondo, K.; Jin, T.; Miura, O.
2010-11-01
Less biodegradable dissolved organic matters in water as typified by humic substances are known as precursors of carcinogenic trihalomethanes, and are removed about 60% by current advanced water treatments. However, further increase of the removal ratio is demand. In this study, magnetic mesoporous carbon (MMPC), which can adsorb the substances physically and be efficiently collected by using superconducting high gradient magnetic separation (HGMS), has been synthesized with coconut-shell-based activated carbon and ferric nitrate solution by the gas activation method. The MMPC has the maximum magnetization value of 30.7 emu/g and an adsorption ability of 87% to 10 mg/L humic acid in a short time. The standard MMPC having a magnetization of 6.43 emu/g was able to be separated at magnetic field of 2 T. Used MMPC regained the adsorption ability to 93.1% by N2 reactivation heat treatment. These results show promise for application of current water treatments by superconducting HGMS, which is suitable for high-speed water treatment without secondary wastes.
Killing rate of colony count by hydrodynamic cavitation due to square multi-orifice plates
NASA Astrophysics Data System (ADS)
Dong, Zhiyong; Zhao, Wenqian
2018-02-01
Currently,in water supply engineering, the conventional technique of disinfection by chlorination is employed to kill pathogenic microorganisms in raw water. However, chlorine reacts with organic compounds in water and generates disinfection byproducts (DBPs), such as trihalomethanes (THMs), haloacetic acids (HAAs) etc. These byproducts are of carcinogenic, teratogenic and mutagenic effects, which seriously threaten human health. Hydrodynamic cavitation is a novel technique of drinking water disinfection without DBPs. Effects of orifice size, orifice number and orifice layout of multi-orifice plate, cavitation number, cavitation time and orifice velocity on killing pathogenic microorganisms by cavitation were investigated experimentally in a self-developed square multi-orifice plate-type hydrodynamic cavitation device. The experimental results showed that cavitation effects increased with decrease in orifice size and increase in orifice number, cavitation time and orifice velocity. Along with lowering in cavitation number, there was an increase in Reynolds shear stress,thus enhancing the killing rate of pathogenic microorganism in raw water. In addition, the killing rate by staggered orifice layout was greater than that by checkerboard-type orifice layout.
Hong, Huachang; Yan, Xiaoqing; Song, Xuhui; Qin, Yanyan; Sun, Hongjie; Lin, Hongjun; Chen, Jianrong; Liang, Yan
2017-07-15
The main objective of this study was to assess the effects of disinfection conditions on bromine incorporation into disinfection by-products (DBPs) during chlorination of water with low specific UV absorbance (SUVA). Five classes of DBPs were included: trihalomethanes (THMs), dihaloacetic acids (di-HAAs), trihaloacetic acids (tri-HAAs), dihaloacetonitriles (DHANs) and trihalonitromethanes (THNMs). Results showed that the bromine utilization in DBPs formation was positive related with reaction time, pH and temperature. On the other hand, the bromine substitution factors (BSFs) of DBPs were generally increased with pH (except tri-HAAs) and bromide concentration, but decreased with the reaction time, temperature and chlorine dose. Moreover, the BSFs values varied with DBP classes with the ranking being as following: THNMs≫DHANs≫tri-HAAs>THM≈di-HAAs. These results were mostly similar with the references, yet the pH effect on BSFs as well as the rank of BSFs for different DBP classes may differ with the specific UV absorbance of organic matter. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Guang-Feng; Feng, Li-Juan; Yang, Qi; Zhu, Liang; Xu, Jian; Xu, Xiang-Yang
2014-11-01
The quality of raw water is getting worse in developing countries because of the inadequate treatment of municipal sewage, industrial wastewater and agricultural runoff. Aiming at the biofilm enrichment and pollutant removal, two pilot-scale biofilm reactors were built with different biological carriers. Results showed that compared with the blank carrier, the biofilm was easily enriched on the biofilm precoated carrier and less nitrite accumulation occurred. The removal efficiencies of NH4(+)-N, DOC and UV254 increased under the aeration condition, and a optimum DO level for the adequate nitrification was 1.0-2.6mgL(-1) with the suitable temperature range of 21-22°C. Study on the trihalomethane prediction model indicated that the presentence of algae increased the risk of disinfection by-products production, which could be effectively controlled via manual algae removing and light shading. In this study, the performance of biofilm pretreatment process could be enhanced under the optimized condition of DO level and biofilm carrier. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metcalfe, David; Rockey, Chris; Jefferson, Bruce; Judd, Simon; Jarvis, Peter
2015-12-15
This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment. Copyright © 2015. Published by Elsevier Ltd.
Chlorine dioxide as a post-disinfectant for Dutch drinking water.
Wondergem, E; van Dijk-Looijaard, A M
1991-02-01
Chlorine dioxide has some important advantages over chlorine with respect to water quality (no formation of trihalomethanes, no impairment of taste and no odor) and stability when used for oxidation/disinfection of drinking water. In this paper, results are presented of experiments into the consumption and reaction kinetics of chlorine dioxide in a number of (drinking) waters in The Netherlands. It was found that chlorine dioxide consumption is related to the dissolved oxygen content (DOC) of the water and the reaction time. Water samples from a plant that applied ozonation and activated carbon filtration had a very low chlorine dioxide consumption. Other water quality parameters, including pH and CO3(2-), did not have any influence on consumption. The temporary advised Dutch guidelines of 0.2 mg l-1 (dosage) is sufficient for activated carbon treated water. For other Dutch drinking waters, however, none of the 0.2 mg l-1 chlorine dioxide remained after a reaction time of 10 min, as was also found for the water of Dutch pumping stations where chlorine dioxide is at present used for disinfection.
Haloacetic acids in drinking water and risk for stillbirth.
King, W D; Dodds, L; Allen, A C; Armson, B A; Fell, D; Nimrod, C
2005-02-01
Trihalomethanes (THMs) occurring in public drinking water sources have been investigated in several epidemiological studies of fetal death and results support a modest association. Other classes of disinfection by-products found in drinking water have not been investigated. To investigate the effects of haloacetic acid (HAA) compounds in drinking water on stillbirth risk. A population based case-control study was conducted in Nova Scotia and Eastern Ontario, Canada. Estimates of daily exposure to total and specific HAAs were based on household water samples and questionnaire information on water consumption at home and work. The analysis included 112 stillbirth cases and 398 live birth controls. In analysis without adjustment for total THM exposure, a relative risk greater than 2 was observed for an intermediate exposure category for total HAA and dichloroacetic acid measures. After adjustment for total THM exposure, the risk estimates for intermediate exposure categories were diminished, the relative risk associated with the highest category was in the direction of a protective effect, and all confidence intervals included the null value. No association was observed between HAA exposures and stillbirth risk after controlling for THM exposures.
NASA Technical Reports Server (NTRS)
Platt, R.
1998-01-01
This is the Performance Verification Report. the process specification establishes the requirements for the comprehensive performance test (CPT) and limited performance test (LPT) of the earth observing system advanced microwave sounding unit-A2 (EOS/AMSU-A2), referred to as the unit. The unit is defined on drawing 1356006.
Improvement for enhancing effectiveness of universal power system (UPS) continuous testing process
NASA Astrophysics Data System (ADS)
Sriratana, Lerdlekha
2018-01-01
This experiment aims to enhance the effectiveness of the Universal Power System (UPS) continuous testing process of the Electrical and Electronic Institute by applying work scheduling and time study methods. Initially, the standard time of testing process has not been considered that results of unaccurate testing target and also time wasting has been observed. As monitoring and reducing waste time for improving the efficiency of testing process, Yamazumi chart and job scheduling theory (North West Corner Rule) were applied to develop new work process. After the improvements, the overall efficiency of the process possibly increased from 52.8% to 65.6% or 12.7%. Moreover, the waste time could reduce from 828.3 minutes to 653.6 minutes or 21%, while testing units per batch could increase from 3 to 4 units. Therefore, the number of testing units would increase from 12 units up to 20 units per month that also contribute to increase of net income of UPS testing process by 72%.
Hunter, Oluwatobi O; George, Elisabeth L; Ren, Dianxu; Morgan, Douglas; Rosenzweig, Margaret; Klinefelter Tuite, Patricia
2017-06-01
To increase adherence with intensive care unit mobility by developing and implementing a mobility training program that addresses nursing barriers to early mobilisation. An intensive care unit mobility training program was developed, implemented and evaluated with a pre-test, immediate post-test and eight-week post-test. Patient mobility was tracked before and after training. A ten bed cardiac intensive care unit. The training program's efficacy was measured by comparing pre-test, immediate post-test and 8-week post-test scores. Patient mobilisation rates before and after training were compared. Protocol compliance was measured in the post training group. Nursing knowledge increased from pre-test to immediate post-test (p<0.0001) and pre-test to 8-week post-test (p<0.0001). Mean test scores decreased by seven points from immediate post-test (80±12) to 8-week post-test (73±14). Fear significantly decreased from pre-test to immediate post-test (p=0.03), but not from pre-test to 8-week post-test (p=0.06) or immediate post-test to 8-week post-test (p=0.46). Post training patient mobility rates increased although not significantly (p=0.07). Post training protocol compliance was 78%. The project successfully increased adherence with intensive care unit mobility and indicates that a training program could improve adoption of early mobility. Copyright © 2016 Elsevier Ltd. All rights reserved.
2010-10-27
John C. Stennis Space Center employees complete installation of a chemical steam generator (CSG) unit at the site's E-2 Test Stand. On Oct. 24, 2010. The unit will undergo verification and validation testing on the E-2 stand before it is moved to the A-3 Test Stand under construction at Stennis. Each CSG unit includes three modules. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
Development of action levels for MED/MPD skin-testing units in ultraviolet phototherapy
NASA Astrophysics Data System (ADS)
O'Connor, Una M.; O'Hare, Neil J.
2003-03-01
Ultraviolet (UV) Phototherapy is commonly used for treatment of skin diseases such as psoriasis and eczema. Treatment is carried out using UV phototherapy units, exposing all or part of the body for a certain exposure time. Prior to exposure in treatment units, an unaffected area of skin may be tested using UV skin-testing units in order to determine a suitable treatment regime. The exposure time at which barely perceptible erythema has developed is known as the Minimal Erythemal Dose (MED) for UVB therapy and Minimal Phototoxic Dose (MPD) for UVA therapy. This is used to determine the starting dose in the treatment regime. The presence of 'hotspots' and 'coldspots' in UV skin-testing units can result in inaccurate determination of MED/MPD. This could give rise to severe burns during treatment, or in a sub-optimal dose regime being used. Quality assurance protocols for UV phototherapy equipment have recently been developed and these protocols have highlighted the need for action levels for skin-testing units. An action level is a reference value, which is used to determine whether the difference in irradiance output level across a UV unit is acceptable. Current methodologies for skin-testing in Ireland have been characterised and errors introduced during testing have been estimated. Action levels have been developed based on analysis of errors and requirements of skin-testing.
Swanson, William H.; Horner, Douglas G.; Dul, Mitchell W.; Malinovsky, Victor E.
2014-01-01
Purpose To develop guidelines for engineering perimetric stimuli to reduce test-retest variability in glaucomatous defects. Methods Perimetric testing was performed on one eye for 62 patients with glaucoma and 41 age-similar controls on size III and frequency-doubling perimetry and three custom tests with Gaussian blob and Gabor sinusoid stimuli. Stimulus range was controlled by values for ceiling (maximum sensitivity) and floor (minimum sensitivity). Bland-Altman analysis was used to derive 95% limits of agreement on test and retest, and bootstrap analysis was used to test the hypotheses about peak variability. Results Limits of agreement for the three custom stimuli were similar in width (0.72 to 0.79 log units) and peak variability (0.22 to 0.29 log units) for a stimulus range of 1.7 log units. The width of the limits of agreement for size III decreased from 1.78 to 1.37 to 0.99 log units for stimulus ranges of 3.9, 2.7, and 1.7 log units, respectively (F = 3.23, P < 0.001); peak variability was 0.99, 0.54, and 0.34 log units, respectively (P < 0.01). For a stimulus range of 1.3 log units, limits of agreement were narrowest with Gabor and widest with size III stimuli, and peak variability was lower (P < 0.01) with Gabor (0.18 log units) and frequency-doubling perimetry (0.24 log units) than with size III stimuli (0.38 log units). Conclusions Test-retest variability in glaucomatous visual field defects was substantially reduced by engineering the stimuli. Translational Relevance The guidelines should allow developers to choose from a wide range of stimuli. PMID:25371855
Swanson, William H; Horner, Douglas G; Dul, Mitchell W; Malinovsky, Victor E
2014-09-01
To develop guidelines for engineering perimetric stimuli to reduce test-retest variability in glaucomatous defects. Perimetric testing was performed on one eye for 62 patients with glaucoma and 41 age-similar controls on size III and frequency-doubling perimetry and three custom tests with Gaussian blob and Gabor sinusoid stimuli. Stimulus range was controlled by values for ceiling (maximum sensitivity) and floor (minimum sensitivity). Bland-Altman analysis was used to derive 95% limits of agreement on test and retest, and bootstrap analysis was used to test the hypotheses about peak variability. Limits of agreement for the three custom stimuli were similar in width (0.72 to 0.79 log units) and peak variability (0.22 to 0.29 log units) for a stimulus range of 1.7 log units. The width of the limits of agreement for size III decreased from 1.78 to 1.37 to 0.99 log units for stimulus ranges of 3.9, 2.7, and 1.7 log units, respectively ( F = 3.23, P < 0.001); peak variability was 0.99, 0.54, and 0.34 log units, respectively ( P < 0.01). For a stimulus range of 1.3 log units, limits of agreement were narrowest with Gabor and widest with size III stimuli, and peak variability was lower ( P < 0.01) with Gabor (0.18 log units) and frequency-doubling perimetry (0.24 log units) than with size III stimuli (0.38 log units). Test-retest variability in glaucomatous visual field defects was substantially reduced by engineering the stimuli. The guidelines should allow developers to choose from a wide range of stimuli.
Test report: Electron-proton spectrometer qualification test unit, qualification test
NASA Technical Reports Server (NTRS)
Vincent, D. L.
1972-01-01
Qualification tests of the electron-proton spectrometer test unit are presented. The tests conducted were: (1) functional, (2) thermal/vacuum, (3) electromagnetic interference, (4) acoustic, (5) shock, (6) vibration, and (7) humidity. Results of each type of test are presented in the form of data sheets.
NASA Astrophysics Data System (ADS)
Abdullah, Md. Pauzi; Yee, Lim Fang; Ata, Sadia; Abdullah, Abass; Ishak, Basar; Abidin, Khairul Nidzham Zainal
Disinfection is the most crucial process in the treatment of drinking water supply and is the final barrier against bacteriological impurities in drinking water. Chlorine is the primary disinfectant used in the drinking water treatment process throughout Malaysia. However, the occurrence of various disinfection by-products such as trihalomethanes (THM) and haloacetic acids created a major issue on the potential health hazards which may pose adverse health effects in both human and animals. To simulate real water treatment conditions and to represent the conditions inherent in a tropical country, this study was performed at an urbanized water treatment plant with a daily production of about 549,000 m 3 of treated water. The purpose of this work is to examine the relationship between the water quality parameters in the raw water with chlorine demand and the formation of disinfection by-products. This study also investigated the possibility of the statistical model applications for the prediction of chlorine demand and the THM formation. Two models were developed to estimate the chlorine demand and the THM formation. For the statistical evaluation, correlation and simple linear regression analysis were conducted using SPSS. The results of Kolmogorov-Smirnov test for the estimation of goodness-of-fit of the dependent variables of the models to the normal distribution showed that all the dependent variables followed the normal distribution at significance level of 0.05. Good linear correlations were observed between the independent parameters and formation of THM and the chlorine demand. This study also revealed that ammonia and the specific ultraviolet absorbent (SUVA) were the function of chlorine consumption in the treatment process. Chlorine dosage and SUVA increase the yield of THM. Chlorine demand and THM formation was moderately sensitive, but significant to the pH. The level of significance ( α) for the statistical tests and the inclusion of a variable in the model was 0.05. A better understanding of these relationships will help the water utilities or plant operators to minimize the THM formation, providing a healthier and better drinking water quality as well as optimizing the chlorine dosage in the disinfection process.
Disparity in disinfection byproducts concentration between hot and cold tap water.
Liu, Boning; Reckhow, David A
2015-03-01
The quality of water entering a distribution system may differ substantially from the quality at the point of exposure to the consumer. This study investigated temporal variations in the levels of regulated and non-regulated disinfection byproducts (DBPs) in cold and hot tap water in a home on a medium-sized municipal water system. In addition, samples were collected directly from the water plant with some being held in accordance with a simulated distribution system (SDS) test protocol. The location for this work was a system in western Massachusetts, USA that uses free chlorine as a final disinfectant. Very little short term variability of DBPs at the point of entry (POE) was observed. The concentration of DBPs in the time-variable SDS test was similar to concentrations in the cold water tap. For most DBPs, the concentrations continued to increase as the cold water tap sample was held for the time-variable SDS incubation period. However, the impact of heating on DBP levels was compound specific. For example, the concentrations of trihalomethanes (THMs), dichloroacetic acid (DCAA) and chloropicrin (CP) were substantially higher in the hot water tap than in the cold water time-variable SDS samples. In contrast, the concentration of trichloroacetic acid (TCAA) was lower in the heated hot tap water, but about equal to that observed in the cold tap water. The situation was more pronounced for dichloroacetonitrile (DCAN), bromodichloroacetic acid (BDCAA), bromochloroacetic acid (BCAA) and 1,1,1-trichloropropanone (TCP), which all showed lower concentrations in the hot water then in either of the cold water samples (instantaneous or time-variable SDS). The latter was viewed as a clear indication of thermally-induced decomposition. The ratio of unknown total organic halide (UTOX) to TOX was substantially lower in the hot tap water as the THM to TOX ratio became correspondingly larger. The results of this study show that DBP exposure in the home is not well represented by concentrations measured in cold water taps where most compliance monitoring is done. Copyright © 2014 Elsevier Ltd. All rights reserved.
Saeedi, Reza; Naddafi, Kazem; Nabizadeh, Ramin; Mesdaghinia, Alireza; Nasseri, Simin; Alimohammadi, Mahmood; Nazmara, Shahrokh
2012-01-01
Abstract Simultaneous removal of nitrate (\\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes {10} {9} {7} {6}\\begin{document} $${\\rm NO}_3^{-}$$ \\end{document}) and natural organic matter (NOM) from drinking water using a hybrid heterotrophic/autotrophic/BAC bioreactor (HHABB) was studied in continuous mode. The HHABB consisted of three compartments: ethanol heterotrophic part, sulfur autotrophic part, and biological activated carbon (BAC)-part (including anoxic and aerobic sections). Experiments were performed with \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes {10} {9} {7} {6}\\begin{document} $${\\rm NO}_3^{-}$$ \\end{document} concentration 30 mg N/L, \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes {10} {9} {7} {6}\\begin{document} $${\\rm NO}_3^{-}$$ \\end{document} loading rate 0.72 kg N/m3/d, C : N ratio 0.53, and three concentrations of NOM (0.6, 2.6, and 5.7 mg C/L). Overall denitrification rate and efficiency of the HHABB were not affected by NOM concentration and were in the suitable ranges of 0.69–0.70 kg N/m3/d and 96.0%–97.7%, respectively. NOM removal at concentration 0.6 mg C/L was not efficient because of organic carbon replacement as soluble microbial products. At higher NOM concentrations, total NOM removal efficiencies were 55%–65%, 55%–70%, and 55%–65% for dissolved organic carbon, trihalomethane formation potential, and UV absorbance at 254 nm (UV254), respectively. The more efficient compartments of the HHABB for the removal of NOM were the ethanol heterotrophic phase and aerobic BAC-phase. The efficiency of the HHABB in the removal of NOM was considerable, and the effluent dissolved organic carbon and trihalomethane formation potential concentrations were relatively low. This study indicated that the HHABB without the anoxic BAC-phase could be a feasible alternative for simultaneous removal of \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes {10} {9} {7} {6}\\begin{document} $${\\rm NO}_3^{-}$$ \\end{document} and NOM from drinking water at full scale. PMID:22479146
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for importers who import gasoline into the United States by truck. 80.1349 Section 80.1349... FUELS AND FUEL ADDITIVES Gasoline Benzene Sampling, Testing and Retention Requirements § 80.1349 Alternative sampling and testing requirements for importers who import gasoline into the United States by...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Unit Testing for Digital Computer Software...) is issuing for public comment draft regulatory guide (DG), DG-1208, ``Software Unit Testing for Digital Computer Software used in Safety Systems of Nuclear Power Plants.'' The DG-1208 is proposed...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Unit Testing for Digital Computer Software... revised regulatory guide (RG), revision 1 of RG 1.171, ``Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This RG endorses American National Standards...
Principles of Technology. Units 1-10 Pilot Test Findings.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This document provides the findings of pilot tests of 10 units for an applied science course for high school vocational students. Each of the reports on the pilot tests of the Principles of Technology units contains information on procedures, methodology limitations, sample, the pretest/posttest instrument and results, student attitude results,…
29 CFR 1919.28 - Unit proof tests-cranes and gear accessory thereto.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Unit proof tests-cranes and gear accessory thereto. 1919.28... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.28 Unit proof tests—cranes and gear accessory thereto...
10 CFR 431.135 - Units to be tested.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EQUIPMENT Automatic Commercial Ice Makers Test Procedures § 431.135 Units to be tested. For each basic model of automatic commercial ice maker selected for testing, a sample of sufficient size shall be selected...
NASA Astrophysics Data System (ADS)
Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika S.; Rohde, Magnus M.; Kerrn-Jespersen, Henriette; Bjerg, Poul L.; Binning, Philip J.; Broholm, Mette M.
2018-06-01
Limestone aquifers are of great interest as a drinking water resource in many countries. They often have a complex crushed and fractured geology, which makes the analysis and description of flow and transport processes in such aquifers a challenging task. In this study, the solute transport behavior including fracture-matrix interaction in hydrogeological units of a limestone aquifer in eastern Denmark was characterized by designing, conducting and interpreting six depth-specific tracer tests involving natural- and forced-gradient conditions with multiple tracers representing different diffusion properties. To determine flow parameters, the tracer tests were complemented by a comprehensive set of depth-specific borehole and hydraulic tests. Based on the tests, a new and stronger conceptual understanding was developed for the different aquifer units. The investigated limestone aquifer is composed of a glacially crushed unit and two fractured units, with calcarenitic and bryozoan limestone of similar hydraulic properties. Hydraulic tests revealed that the crushed unit has a lower hydraulic conductivity than the fractured limestone units, likely due to the crushed conditions with small limestone clusters and small-aperture fractures potentially filled with fine material. In the fractured limestone units, a distinct preferential flow and primary transport along major horizontal fractures was inferred from the tracer tests under forced-gradient conditions. The dominant horizontal fractures were identified on impeller flow logs and appear connected between wells, having an extent of up to several hundred meters. Connectivity between the aquifer units was investigated with a long-term pumping test and tracer tests, revealing restricted vertical flow and transport. A very pronounced hydraulic conductivity contrast between major fractures and matrix could also be inferred from the borehole and hydraulic tests, which is consistent with the findings from the tracer tests. The difference in the matrix diffusion behavior of the simultaneously injected tracers and a long tailing in the breakthrough curves revealed that matrix diffusion has a strong influence on the solute transport in the fractured limestone.
HEMP (high-altitude electromagnetic pulse) test and analysis of selected recloser-control units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T.K.; Sands, S.H.; Tesche, F.M.
A simulated HEMP test was performed on power line recloser-control units in the ARES facility during the month of October 1988. Two types of recloser-control units were tested: an electronic control unit presently in wide use in electric power distribution systems and a new microprocessor based unit presently being introduced to electric utilities. It was found that the ARES fields did not cause reproducible disruptive failure of the equipment. Minor upsets, which were considered to be non-disruptive to the recloser operation, were observed. The test results were compared to the results of an analysis from a previous study and itmore » is concluded that the probability of disruptive failure of field operating recloser-control units subjected to a nominal unclassified HEMP environment is small. 3 refs., 30 figs., 1 tab.« less
First results from quality assurance testing of MaPMTs for the LHCb RICH upgrade
NASA Astrophysics Data System (ADS)
Gambetta, S.; LHCb RICH Collaboration
2017-12-01
In 2019 the LHCb RICH detector will be upgraded to increase the read out rate from 1 MHz to 40 MHz. As a consequence, the current Hybrid Photon Detectors will have to be replaced. Multi-anode Photomultiplier Tubes (MaPMTs) from Hamamatsu with 64-channels will be used: the 1-in. R13742 and the 2-in. R13743 MaPMTs (custom modifications of the MaPMTs R11625 and R12699). Quality assurance testing of these MaPMTs using custom-developed readout electronics has started. We present the design and realisation of the test facilities to ensure consistency in testing and validation. A total of 3100 units of the R13742 and 450 units of the R13743 will be tested requiring high efficiency and reliability from the test stations. We report on the test programme and protocols, characterising the units and assuring compliance with specifications. First results of testing and detector characterisation will be presented, based on the pre-series production, comprising 54 units of R13742 and 20 units of R13743.
NASA Technical Reports Server (NTRS)
Hruby, R. J.; Bjorkman, W. S.
1977-01-01
Flight test results of the strapdown inertial reference unit (SIRU) navigation system are presented. The fault-tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance.
Lucey, C
2006-11-01
This article briefly recounts the 21st July 2005, Blood Products Advisory Committee (BPAC) meeting concerning recommendations for management of donors and units testing positive for hepatitis B virus (HBV) DNA. The author attended the meeting. The United States Food and Drug Administration (FDA) web site was used for meeting materials, and handouts were collected at the meeting to provide narrative information. Two European experts assisted with HBV subject matter. The proceedings of the advisory committee, the issue briefing materials, and testing algorithms are presented. BPAC voted concurrence with the FDA algorithm for Management of Donors and Units Testing Positive for Hepatitis B Virus DNA.
Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina
2010-01-01
The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. An engineering unit, the ASRG engineering unit (EU), was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently under extended operation test at the NASA Glenn Research Center (GRC) to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for the ASRG EU. This paper summarizes details of the test facility design, including the mechanical mounting, heat-rejection system, argon system, control systems, and maintenance. The effort proceeded from requirements definition through design, analysis, build, and test. Initial testing and facility performance results are discussed.
Charge-Control Unit for Testing Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Mazo, Michelle A.; Button, Robert M.
2008-01-01
A charge-control unit was developed as part of a program to validate Li-ion cells packaged together in batteries for aerospace use. The lithium-ion cell charge-control unit will be useful to anyone who performs testing of battery cells for aerospace and non-aerospace uses and to anyone who manufacturers battery test equipment. This technology reduces the quantity of costly power supplies and independent channels that are needed for test programs in which multiple cells are tested. Battery test equipment manufacturers can integrate the technology into their battery test equipment as a method to manage charging of multiple cells in series. The unit manages a complex scheme that is required for charging Li-ion cells electrically connected in series. The unit makes it possible to evaluate cells together as a pack using a single primary test channel, while also making it possible to charge each cell individually. Hence, inherent cell-to-cell variations in a series string of cells can be addressed, and yet the cost of testing is reduced substantially below the cost of testing each cell as a separate entity. The unit consists of electronic circuits and thermal-management devices housed in a common package. It also includes isolated annunciators to signal when the cells are being actively bypassed. These annunciators can be used by external charge managers or can be connected in series to signal that all cells have reached maximum charge. The charge-control circuitry for each cell amounts to regulator circuitry and is powered by that cell, eliminating the need for an external power source or controller. A 110-VAC source of electricity is required to power the thermal-management portion of the unit. A small direct-current source can be used to supply power for an annunciator signal, if desired.
Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test report
NASA Technical Reports Server (NTRS)
Hruby, R. J.; Bjorkman, W. S.
1977-01-01
Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance. Performance shortcomings are analyzed.
Unit Testing for the Application Control Language (ACL) Software
NASA Technical Reports Server (NTRS)
Heinich, Christina Marie
2014-01-01
In the software development process, code needs to be tested before it can be packaged for release in order to make sure the program actually does what it says is supposed to happen as well as to check how the program deals with errors and edge cases (such as negative or very large numbers). One of the major parts of the testing process is unit testing, where you test specific units of the code to make sure each individual part of the code works. This project is about unit testing many different components of the ACL software and fixing any errors encountered. To do this, mocks of other objects need to be created and every line of code needs to be exercised to make sure every case is accounted for. Mocks are important to make because it gives direct control of the environment the unit lives in instead of attempting to work with the entire program. This makes it easier to achieve the second goal of exercising every line of code.
NASA Astrophysics Data System (ADS)
Latimer, T. W.; Rinehart, G. H.
1992-05-01
This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTG's) and MC3599 heat sources (4.5 W) for MC3500 RTG's. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTG's). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.
30 CFR 7.67 - Construction test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Construction test. 7.67 Section 7.67 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.67 Construction test. The constuction test is to be performed on the blasting unit subsequent to the output energy test of...
30 CFR 7.67 - Construction test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Construction test. 7.67 Section 7.67 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.67 Construction test. The constuction test is to be performed on the blasting unit subsequent to the output energy test of...
30 CFR 7.67 - Construction test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Construction test. 7.67 Section 7.67 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.67 Construction test. The constuction test is to be performed on the blasting unit subsequent to the output energy test of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newcomer, Darrell R.
2007-09-30
Slug-test results obtained from single and multiple, stress-level slug tests conducted during drilling and borehole advancement provide detailed hydraulic conductivity information at two Hanford Site Operable Unit (OU) ZP-1 test well locations. The individual test/depth intervals were generally sited to provide hydraulic-property information within the upper ~10 m of the unconfined aquifer (i.e., Ringold Formation, Unit 5). These characterization results complement previous and ongoing drill-and-test characterization programs at surrounding 200-West and -East Area locations (see Figure S.1).
Land management impacts on dairy-derived dissolved organic carbon in ground water
Chomycia, J.C.; Hernes, P.J.; Harter, T.; Bergamaschi, B.A.
2008-01-01
Dairy operations have the potential to elevate dissolved organic carbon (DOC) levels in ground water, where it may interact with organic and inorganic contaminants, fuel denitrification, and may present problems for drinking water treatment. Total and percent bioavailable DOC and total and carbon-specific trihalomethane (THM) formation potential (TTHMFP and STHMFP, respectively) were determined for shallow ground water samples from beneath a dairy farm in the San Joaquin Valley, California. Sixteen wells influenced by specific land management areas were sampled over 3 yr. Measured DOC concentrations were significantly elevated over the background as measured at an upgradient monitoring well, ranging from 13 to 55 mg L-1 in wells downgradient from wastewater ponds, 8 to 30 mg L-1 in corral wells, 5 to 12 mg L-1 in tile drains, and 4 to 15 mg L-1 in wells associated with manured fields. These DOC concentrations were at the upper range or greatly exceeded concentrations in most surface water bodies used as drinking water sources in California. DOC concentrations in individual wells varied by up to a factor of two over the duration of this study, indicating a dynamic system of sources and degradation. DOC bioavailability over 21 d ranged from 3 to 10%, comparable to surface water systems and demonstrating the potential for dairy-derived DOC to influence dissolved oxygen concentrations (nearly all wells were hypoxic to anoxic) and denitrification. TTHMFP measurements across all management units ranged from 141 to 1731 ??g L-1, well in excess of the maximum contaminant level of 80 ??g L-1 established by the Environmental Protection Agency. STHMFP measurements demonstrated over twofold variation (???4 to ???8 mmol total THM/mol DOC) across the management areas, indicating the dependence of reactivity on DOC composition. The results indicate that land management strongly controls the quantity and quality of DOC to reach shallow ground water and hence should be considered when managing ground water resources and in any efforts to mitigate contamination of ground water with carbon-based contaminants, such as pesticides and pharmaceuticals. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Aviation System Analysis Capability (ASAC) Quick Response System (QRS) Test Report
NASA Technical Reports Server (NTRS)
Roberts, Eileen; Villani, James A.; Ritter, Paul
1997-01-01
This document is the Aviation System Analysis Capability (ASAC) Quick Response System (QRS) Test Report. The purpose of this document is to present the results of the QRS unit and system tests in support of the ASAC QRS development effort. This document contains an overview of the project background and scope, defines the QRS system and presents the additions made to the QRS this year, explains the assumptions, constraints, and approach used to conduct QRS Unit and System Testing, and presents the schedule used to perform QRS Testing. The document also presents an overview of the Logistics Management Institute (LMI) Test Facility and testing environment and summarizes the QRS Unit and System Test effort and results.
10 CFR 431.295 - Units to be tested.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EQUIPMENT Refrigerated Bottled or Canned Beverage Vending Machines Test Procedures § 431.295 Units to be tested. For each basic model of refrigerated bottled or canned beverage vending machine selected for...
Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor
NASA Technical Reports Server (NTRS)
Soulas, George C.
1994-01-01
A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.
Test report: Shock test of the electron/proton spectrometer structural test unit
NASA Technical Reports Server (NTRS)
Vincent, D. L.
1972-01-01
A shock test of the electron-proton spectrometer structural test unit was conducted. The purpose of the shock test was to verify the structural integrity of the electron-spectrometer design and to obtain data on the shock response of the electronics and electronic housing. The test equipment is described and typical shock response data are provided.
14 CFR 120.123 - Drug testing outside the territory of the United States.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Drug testing outside the territory of the... OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.123 Drug testing outside the territory of the United States. (a) No part of the testing process (including specimen collection...
14 CFR 120.123 - Drug testing outside the territory of the United States.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Drug testing outside the territory of the... OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.123 Drug testing outside the territory of the United States. (a) No part of the testing process (including specimen collection...
14 CFR 120.123 - Drug testing outside the territory of the United States.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Drug testing outside the territory of the... OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.123 Drug testing outside the territory of the United States. (a) No part of the testing process (including specimen collection...
14 CFR 120.123 - Drug testing outside the territory of the United States.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Drug testing outside the territory of the... OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.123 Drug testing outside the territory of the United States. (a) No part of the testing process (including specimen collection...
14 CFR 120.123 - Drug testing outside the territory of the United States.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Drug testing outside the territory of the... OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.123 Drug testing outside the territory of the United States. (a) No part of the testing process (including specimen collection...
Tensile testing of thin-film microstructures
NASA Astrophysics Data System (ADS)
Greek, Staffan; Johansson, Stefan A. I.
1997-09-01
The mechanical properties of thin film microstructures depend on size and shape and on the film manufacturing process. Hence, the test structures that are used to measure mechanical properties should have dimensions of the same order of magnitude as an application structure. The microstructures are easily monitored in a scanning electron microscope (SEM), but to be handled and tested in situ a micromanipulator was developed. The parts of the micromanipulator essential to the tests are two independently moveable tables driven by electric motors. The test structures and a testing unit are mounted on the tables. A testing unit was designed to measure force and displacement with high resolution. The testing unit consists of an arm actuated by a piezoelectric element and equipped with a probe. An optical encoder measures the movement of the arm, while strain gauges measure the force in the arm. Test structures consist typically of a released beam fixed at one end with a ring at the other. The micromanipulator is used to position the probe of the testing unit in the ring. The testing unit then executed a tensile test of the beam. Test structures of polysilicon films produced under various process conditions were used to verify the possibility of measuring Young's modulus with an accuracy of +/- 5 percent, as well as fracture strength.Young's modulus is calculated using the difference in elongation for different beam lengths. The fracture strength of the beams was evaluated with Weibull statistics.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... Plant, Unit 4; Inspections, Tests, Analyses, and Acceptance Criteria AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria completion. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) staff has determined that the inspections, tests...
NASA Technical Reports Server (NTRS)
Platt, R.
1999-01-01
This is the Performance Verification Report, Final Comprehensive Performance Test (CPT) Report, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). This specification establishes the requirements for the CPT and Limited Performance Test (LPT) of the AMSU-1A, referred to here in as the unit. The sequence in which the several phases of this test procedure shall take place is shown.
Code of Federal Regulations, 2011 CFR
2011-04-01
... activity outside the United States; 45 hour and 7-day work test. 404.417 Section 404.417 Employees... activity outside the United States; 45 hour and 7-day work test. (a) Deductions because of individual's... on. Effective May 1983, a 45-hour work test applies before a benefit deduction is made for the non...
Code of Federal Regulations, 2010 CFR
2010-04-01
... activity outside the United States; 45 hour and 7-day work test. 404.417 Section 404.417 Employees... activity outside the United States; 45 hour and 7-day work test. (a) Deductions because of individual's... on. Effective May 1983, a 45-hour work test applies before a benefit deduction is made for the non...
Criterion Referenced Tests to Accompany "Artes Latinae," Level 1, Book 1. Tentative Edition.
ERIC Educational Resources Information Center
Masciantonio, Rudolph
These tests are designed to measure the achievement of each pupil at the approximate midpoint of each unit in "Artes Latinae," Level 1, Book 1. They were produced in response to the need expressed by many teachers to provide a means of more frequent evaluation of pupil progress. Tests for 13 units are provided. They supplement the unit tests…
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Requirements for Performance Tests for Organic HAP Emissions From Catalytic Reforming Units 18 Table 18 to Subpart UUU of Part 63 Protection of... Units Pt. 63, Subpt. UUU, Table 18 Table 18 to Subpart UUU of Part 63—Requirements for Performance Tests...
Testing for unit root bilinearity in the Brazilian stock market
NASA Astrophysics Data System (ADS)
Tabak, Benjamin M.
2007-11-01
In this paper a simple test for detecting bilinearity in a stochastic unit root process is used to test for the presence of nonlinear unit roots in Brazilian equity shares. The empirical evidence for a set of 53 individual stocks, after adjusting for GARCH effects, suggests that for more than 66%, the hypothesis of unit root bilinearity is accepted. Therefore, the dynamics of Brazilian share prices is in conformity with this type of nonlinearity. These nonlinearities in spot prices may emerge due to the sophistication of the derivatives market.
Pre-production Test Report for Transformer Abort Sensing and Control Unit.
The purpose of the report is to describe the test equipment and procedure required for the pre-production testing of a transformer, pressure switch excitation, abort sensing and control unit. (Author)
Needleman, Jack; Pearson, Marjorie L; Upenieks, Valda V; Yee, Tracy; Wolstein, Joelle; Parkerton, Melissa
2016-02-01
Process improvement stresses the importance of engaging frontline staff in implementing new processes and methods. Yet questions remain on how to incorporate these activities into the workday of hospital staff or how to create and maintain its commitment. In a 15-month American Organization of Nurse Executives collaborative involving frontline medical/surgical staff from 67 hospitals, Transforming Care at the Bedside (TCAB) was evaluated to assess whether participating units successfully implemented recommended change processes, engaged staff, implemented innovations, and generated support from hospital leadership and staff. In a mixed-methods analysis, multiple data sources, including leader surveys, unit staff surveys, administrative data, time study data, and collaborative documents were used. All units reported establishing unit-based teams, of which >90% succeeded in conducting tests of change, with unit staff selecting topics and making decisions on adoption. Fifty-five percent of unit staff reported participating in unit meetings, and 64%, in tests of change. Unit managers reported substantial increase in staff support for the initiative. An average 36 tests of change were conducted per unit, with 46% of tested innovations sustained, and 20% spread to other units. Some 95% of managers and 97% of chief nursing officers believed that the program had made unit staff more likely to initiate change. Among staff, 83% would encourage adoption of the initiative. Given the strong positive assessment of TCAB, evidence of substantial engagement of staff in the work, and the high volume of innovations tested, implemented, and sustained, TCAB appears to be a productive model for organizing and implementing a program of frontline-led improvement.
Environmental Test Screening Procedure
NASA Technical Reports Server (NTRS)
Zeidler, Janet
2000-01-01
This procedure describes the methods to be used for environmental stress screening (ESS) of the Lightning Mapper Sensor (LMS) lens assembly. Unless otherwise specified, the procedures shall be completed in the order listed, prior to performance of the Acceptance Test Procedure (ATP). The first unit, S/N 001, will be subjected to the Qualification Vibration Levels, while the remainder will be tested at the Operational Level. Prior to ESS, all units will undergo Pre-ESS Functional Testing that includes measuring the on-axis and plus or minus 0.95 full field Modulation Transfer Function and Back Focal Length. Next, all units will undergo ESS testing, and then Acceptance testing per PR 460.
Chemical analysis kit for the presence of explosives
Eckels, Joel Del [Livermore, CA; Nunes,; Peter, J [Danville, CA; Alcaraz, Armando [Livermore, CA; Whipple, Richard E [Livermore, CA
2011-05-10
A tester for testing for explosives associated with a test location comprising a first explosives detecting reagent; a first reagent holder, the first reagent holder containing the first explosives detecting reagent; a second explosives detecting reagent; a second reagent holder, the second reagent holder containing the second explosives detecting reagent; a sample collection unit for exposure to the test location, exposure to the first explosives detecting reagent, and exposure to the second explosives detecting reagent; and a body unit containing a heater for heating the sample collection unit for testing the test location for the explosives.
Practical Business: Instructor/Student Guide.
ERIC Educational Resources Information Center
Napier, Deedee Stocker
Ten units on practical business are presented in this instructor and student guide. Each instructional unit contains objectives, suggested activities, information sheets, assignment sheets, transparency master, a test, and test answers. Unit topics are (1) before you buy (comparative shopping and wise purchasing techniques); (2) when things go…
Identification of the Parameters of Menétrey -Willam Failure Surface of Calcium Silicate Units
NASA Astrophysics Data System (ADS)
Radosław, Jasiński
2017-10-01
The identification of parameters of Menétrey-Willamsurface made of concrete, masonry or autoclaved aerated concrete is not complicated. It is much more difficult to identify failure parameters of masonry units with cavities. This paper describes the concept of identifying the parameters of Menétrey-Willam failure surface (M-W-3) with reference to masonry units with vertical cavities. The M-W-3 surface is defined by uniaxial compressive strength fc, uniaxial tensile strength ft and eccentricity of elliptical function e. A test stand was built to identify surface parameters. It was used to test behaviour of masonry units under triaxial stress and conduct tests on whole masonry units in the uniaxial state. Results from tests on tens of silicate masonry units are presented in the Haigh-Westergaard (H-W) space. Statistical analyses were used to identify the shape of surface meridian, and then to determine eccentricity of the elliptical function.
Auxiliary propulsion system flight package
NASA Technical Reports Server (NTRS)
Collett, C. R.
1987-01-01
Hughes Aircraft Company developed qualified and integrated flight, a flight test Ion Auxiliary Propulsion System (IAPS), on an Air Force technology satellite. The IAPS Flight Package consists of two identical Thruster Subsystems and a Diagnostic Subsystem. Each thruster subsystem (TSS) is comprised of an 8-cm ion Thruster-Gimbal-Beam Shield Unit (TGBSU); Power Electronics Unit; Digital Controller and Interface Unit (DCIU); and Propellant Tank, Valve and Feed Unit (PTVFU) plus the requisite cables. The Diagnostic Subsystem (DSS) includes four types of sensors for measuring the effect of the ion thrusters on the spacecraft and the surrounding plasma. Flight qualifications of IAPS, prior to installation on the spacecraft, consisted of performance, vibration and thermal-vacuum testing at the unit level, and thermal-vacuum testing at the subsystem level. Mutual compatibility between IAPS and the host spacecraft was demonstrated during a series of performance and environmental tests after the IAPS Flight Package was installed on the spacecraft. After a spacecraft acoustic test, performance of the ion thrusters was reverified by removing the TGBSUs for a thorough performance test at Hughes Research Laboratories (HRL). The TGBSUs were then reinstalled on the spacecraft. The IAPS Flight Package is ready for flight testing when Shuttle flights are resumed.
Testing the system detection unit for measuring solid minerals bulk density
NASA Astrophysics Data System (ADS)
Voytyuk, I. N.; Kopteva, A. V.
2017-10-01
The paper provides a brief description of the system for measuring flux per volume of solid minerals via example of mineral coal. The paper discloses the operational principle of the detection unit. The paper provides full description of testing methodology, as well as practical implementation of the detection unit testing. This paper describes the removal of two data arrays via the channel of scattered anddirect radiation for the detection units of two generations. This paper describes Matlab software to determine the statistical characteristics of the studied objects. The mean value of pulses per cycles, and pulse counting inaccuracy relatively the mean value were determined for the calculation of the stability account of the detection units.
Whole blood coagulation analyzers.
1997-08-01
Whole blood Coagulation analyzers (WBCAs) are widely used point-of-care (POC) testing devices found primarily in cardiothoracic surgical suites and cardia catheterization laboratories. Most of these devices can perform a number of coagulation tests that provide information about a patient's blood clotting status. Clinicians use the results of the WBCA tests, which are available minutes after applying a blood sample, primarily to monitor the effectiveness of heparin therapy--an anticoagulation therapy used during cardiopulmonary bypass (CPB) surgery, angioplasty, hemodialysis, and other clinical procedures. In this study we evaluated five WBCAs from four suppliers. Our testing focused on the applications for which WBCAs are primarily used: Monitoring moderate to high heparin levels, as would be required, for example, during CPB are angioplasty. For this function, WCBAs are typically used to perform an activated clotting time (ACT) test or, as one supplier refers to its test, a heparin management test (HMT). All models included in this study offered an ACT test or an HMT. Monitoring low heparin levels, as would be required, for example,during hemodialysis. For this function, WBCAs would normally be used to perform either a low-range ACT (LACT) test or a whole blood activated partial thromboplastin time (WBAPTT) test. Most of the evaluated units could perform at least one of these tests; one unit did not offer either test and was therefore not rated for this application. We rated and ranked each evaluated model separately for each of these two applications. In addition, we provided a combined rating and ranking that considers the units' appropriateness for performing both application. We based our conclusions on a unit's performance and humans factor design, as determined by our testing, and on its five-year life-cycle cost, as determined by our net present value (NPV) analysis. While we rated all evaluated units acceptable for each appropriate category, we did identify some significant differences that enabled us to rank the units in order of preference. We have included a Selection, Purchasing, and use guide at the end of this study to help facilities identify the unit that will best meet their needs.
Development of a new photocatalytic oxidation air filter for aircraft cabin.
Ginestet, A; Pugnet, D; Rowley, J; Bull, K; Yeomans, H
2005-10-01
A new photocatalytic oxidation air filter (PCO unit) has been designed for aircraft cabin applications. The PCO unit is designed as a regenerable VOC removal system in order to improve the quality of the recirculated air entering the aircraft cabin. The PCO was designed to be a modular unit, with four UV lamps sandwiched between two interchangeable titanium dioxide coated panels. Performances of the PCO unit has been measured in a single pass mode test rig in order to show the ability of the unit to decrease the amount of VOCs (toluene, ethanol, and acetone) entering it (VOCs are fed separately), and in a multipass mode test rig in order to measure the ability of the unit to clean the air of an experimental room polluted with the same VOCs (fed separately). Triangular cell panels have been chosen instead of the wire mesh panels because they have higher efficiency. The efficiency of the PCO unit depends on the type of VOCs that challenges it, toluene being the most difficult one to oxidise. The efficiency of the PCO unit decreases when the air flow rate increases. The multipass mode test results show that the VOCs are oxidized but additional testing time would be necessary in order to show if they can be fully oxidized. The intermediate reaction products are mainly acetaldehyde and formaldehyde whose amount depends on the challenge VOC. The intermediate reaction products are also oxidized and additional testing time would be necessary in order to show if they can be fully oxidized. The development of this new photocatalytic air filter is still going on. The VOC/odor removing adsorbers are available for only a small proportion of aircraft currently in service. The photocatalytic oxidation (PCO) technique has appeared to be a promising solution to odors problems met in aircraft. This article reports the test results of a new photocatalytic oxidation air filter (PCO unit) designed for aircraft cabin applications. The overall efficiency of the PCO unit is function of the compound (toluene, ethanol, and acetone) that challenges the unit and toluene appears to be the most difficult compound to oxidize. Test results have shown the influence of the design of the PCO unit, the air flow rate and the type of UV on the efficiency of the PCO unit. The results obtained in this study represent a first attempt on the way to design a filter for VOC removal in cabin aircraft applications. The PCO technique used by the tested prototype unit is able to partially oxidized the challenge VOCs but one has to be aware that some harmful intermediate reaction products (mainly formaldehyde and acetaldehyde) are produced during the oxidation process before being partially oxidized too.
General test plan redundant sensor strapdown IMU evaluation program
NASA Technical Reports Server (NTRS)
Hartwell, T.; Irwin, H. A.; Miyatake, Y.; Wedekind, D. E.
1971-01-01
The general test plan for a redundant sensor strapdown inertial measuring unit evaluation program is presented. The inertial unit contains six gyros and three orthogonal accelerometers. The software incorporates failure detection and correction logic and a land vehicle navigation program. The principal objective of the test is a demonstration of the practicability, reliability, and performance of the inertial measuring unit with failure detection and correction in operational environments.
Light-emitting device test systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCord, Mark; Brodie, Alan; George, James
Light-emitting devices, such as LEDs, are tested using a photometric unit. The photometric unit, which may be an integrating sphere, can measure flux, color, or other properties of the devices. The photometric unit may have a single port or both an inlet and outlet. Light loss through the port, inlet, or outlet can be reduced or calibrated for. These testing systems can provide increased reliability, improved throughput, and/or improved measurement accuracy.
Particulate Matter Stack Emission Compliance Test Procedure for Fuel Burning Units.
ERIC Educational Resources Information Center
West Virginia Air Pollution Control Commission, Charleston.
This publication details the particulate matter emissions test procedure that is applicable for conducting compliance tests for fuel burning units required to be tested under Sub-section 7 of Regulation II (1972) as established by the state of West Virginia Air Pollution Control Commission. The testing procedure is divided into five parts:…
Collaborative Test Reviews: Student Performance
ERIC Educational Resources Information Center
Bhatia, Anuradha; Makela, Carole J.
2010-01-01
A group study method proved helpful in improving senior-level students' performance on unit tests through collaborative learning. Students of a History of Textiles course voluntarily attended study sessions to review course content and prepare for unit tests. The students who attended the group reviews scored better on tests than those who did…
10 CFR 429.11 - General sampling requirements for selecting units to be tested.
Code of Federal Regulations, 2012 CFR
2012-01-01
... tested. 429.11 Section 429.11 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.11 General sampling requirements for selecting units to be tested. (a) When testing of covered products or...
Design assessment of a 150 kWt CFBC Test Unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batu, A.; Selcuk, N.; Kulah, G.
2010-04-15
For clean and efficient energy generation from coal, the most suitable technology known to date is 'Fluidized Bed Combustion' technology. Applications of circulating fluidized bed (CFB) combustion technology have been steadily increasing in both capacity and number over the past decade. Designs of these units have been based on the combustion tests carried out in pilot scale facilities to determine the combustion and desulfurization characteristics of coal and limestone reserves in CFB conditions. Similarly, utilization of Turkish lignites in CFB boilers necessitates adaptation of CFB combustion technology to these resources. However, the design of these test units are not basedmore » on firing coals with high ash, volatile matter and sulfur contents like Turkish lignites. For this purpose, a 150 kWt CFB combustor test unit is designed and constructed in Chemical Engineering Department of Middle East Technical University, based on the extensive experience acquired at the existing 0.3 MWt Bubbling Atmospheric Fluidized Bed Combustor (AFBC) Test Rig. Following the commissioning tests, a combustion test is carried out for investigation of combustion characteristics of Can lignite in CFB conditions and for assessment of the design of test unit. Comparison of the design outputs with experimental results reveals that most of the predictions and assumptions have acceptable agreement with the operating conditions. In conclusion, the performance of 150 kWt CFBC Test Unit is found to be satisfactory to be utilized for the long term research studies on combustion and desulfurization characteristics of indigenous lignite reserves in circulating fluidized bed combustors. (author)« less
2012-11-06
NASA engineers test a chemical steam generator (CSG) unit on the E-2 Test Stand at John C. Stennis Space Center on Nov. 6. The test was one of 27 conducted in Stennis' E Test Complex the week of Nov. 5. Twenty-seven CSG units will be used on the new A-3 Test Stand at Stennis to produce a vacuum that allows testing of engines at simulated altitudes up to 100,000 feet.
NASA Technical Reports Server (NTRS)
Van Dyke, Michael B.
2013-01-01
Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From Sulfur...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic HAP Emissions...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic HAP Emissions...
Spacelab interface development test, volume 1, sections 1-6
NASA Technical Reports Server (NTRS)
Harris, L. H.
1979-01-01
Data recorded during the following tests is presented: pulse coded modulator master unit to Spacelab (S/L) interface, master timing unit to S/L interface, multiplexer-demultiplexer/serial input-output to S/L interface, and special tests.
Mashau, Funanani; Ncube, Esper Jacobeth; Voyi, Kuku
2018-04-01
Epidemiological studies have found that maternal exposure to disinfection by-products (DBPs) may lead to adverse pregnancy outcomes although the findings tend to be inconsistent. The objective of this study was to systematically review the evidence in associated with drinking water DBP exposure in relation to adverse pregnancy outcomes. Peer-reviewed articles were identified using electronic databases searched for studies published in the English language. Studies selected for review were evaluated for exposure assessment, confounders, and analyses risks of bias in the selection, outcomes assessment, and attrition. A comprehensive search and screening yielded a total of 32 studies, of which 12 (38%) reported a statistical association between maternal exposure to DBPs and adverse pregnancy outcomes. A maternal exposure to trihalomethanes (THMs) shows an increased risk of small for gestational age (SGA) and slightly increased risk of pregnancy loss. Risks of bias were low among the studies included in the review. Evidence on association relating to adverse pregnancy outcomes to DBP exposure is still less significant. There is a need for future robust research in this field, with the use of urinary trichloroacetic acid (TCAA) biomarkers as a direct exposure assessment method for this field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colman, Joan; Rice, Glenn E., E-mail: rice.glenn@epa.gov; Wright, J. Michael
Reactions between chemicals used to disinfect drinking water and compounds present in source waters produce chemical mixtures containing hundreds of disinfection byproducts (DBPs). Although the results have been somewhat inconsistent, some epidemiological studies suggest associations may exist between DBP exposures and adverse developmental outcomes. The potencies of individual DBPs in rodent and rabbit developmental bioassays suggest that no individual DBP can account for the relative risk estimates reported in the positive epidemiologic studies, leading to the hypothesis that these outcomes could result from the toxicity of DBP mixtures. As a first step in a mixtures risk assessment for DBP developmentalmore » effects, this paper identifies developmentally toxic DBPs and examines data relevant to the mode of action (MOA) for DBP developmental toxicity. We identified 24 developmentally toxic DBPs and four adverse developmental outcomes associated with human DBP exposures: spontaneous abortion, cardiovascular defects, neural tube defects, and low birth weight infancy. A plausible MOA, involving hormonal disruption of pregnancy, is delineated for spontaneous abortion, which some epidemiologic studies associate with total trihalomethane and bromodichloromethane exposures. The DBP data for the other three outcomes were inadequate to define key MOA steps.« less
The halosol process for water disinfection and dehalogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acra, A.; Jurdi, M.; Mu'allem, H.
Substitution of chlorine and its derivatives as agents to disinfect water and wastewater effluents because of concern for the formation of the mutagenic and carcinogenic trihalomethanes (THM) may be a protracted endeavor. Excess chlorine residuals need to be controlled by dechlorinated agents, e.g., SO{sub 2}, to avoid esthetic objections voiced by consumers and the risk to aquatic environments. We focused on the phenomenon of photodecomposition and aqueons halogen solutions by sunlight. The halosol process, a batch system for solar dehalogenation, was developed into a flow-through system for the halosol disinfection of water. A prototype facility incorporated a solar reactor, throughmore » which chlorinated water flowed, made of borosilicate glass tube with a serpentine shape supported by a frame. Disinfection is induced by two cooperative biocidal agents (a halogen and sunlight) with sequential solar dehalogenation. An overall mean photodechlorination rate, K, of 0.238 m{sup 2}/W-h was obtained. The calculated solar UV-A fluence required to reduce the initial chlorine residuals by 90% and 99% was 9.65 and 19.30 W-h/m{sup 2}. The most effective photodechlorination components of sunlight were in the UV-A region of the spectrum: effectiveness decreased exponentially with wavelength.« less
Wang, Jianbing; Zhou, Yunrui; Zhu, Wanpeng; He, Xuwen
2009-07-15
Catalytic ozonation of dimethyl phthalate (DMP) in aqueous solution (5mg/L) under various reactions was performed to examine the effect of catalyst dosage, catalyst particle size, ozone dosage, and gas flow rate on the mineralization of DMP. The mineralization of DMP can be achieved via ozonation and the presence of Ru/AC could greatly accelerate the mineralization rate of DMP in ozonation process. In the continuous experiment of the Ru/AC catalyzed ozonation of DMP, total organic carbon (TOC) removals were kept stable around 75% during 42 h reaction. No leaching of ruthenium was observed in the treated water samples. The treatment of natural water using Ru/AC+O(3), Ru/AC+O(2) and ozonation alone was studied. In the Ru/AC+O(3) process, TOC removals, the reductions of the haloacetic acid formation potentials (HAAFPs), and the reductions of the trihalomethane formation potentials (THMFPs) of 11 water samples were 22-44%, 39-61% and 50-65%, respectively. Ru/AC+O(3) process was much more effective than ozonation alone for TOC removal and the reduction of disinfection by-product formation potential (DBPFP) in the treatment of natural water. It is a promising water treatment technology.
Zhang, Xiangru; Minear, Roger A
2006-03-01
High-molecular weight (MW) halogenated disinfection byproducts (DBPs) may cause adverse health effects. In this work several issues related to the better separation and characterization of the high MW halogenated DBPs (MW>500Da) were studied. Ultra-filtration (UF) coupled with a nominal 500-Da membrane was employed to flush out low MW DBPs and inorganic ions. Two procedures, intermittent UF and continuous UF, were used and compared. The results demonstrate that haloacetic acids, chloride and sodium ions could be effectively flushed out, and most of phosphate ions could be flushed out for a given dilution number or sufficient Milli-Q water. The size exclusion chromatograms indicate that haloacetic acids and trihalomethanes were not bound to Suwannee River fulvic acid (SRFA); 2,4,6-trichlorophenol might form some binding with SRFA, but it appeared to be very weak and readily broken up when passing along the size exclusion column. The octanol-water partition coefficients of low MW DBPs and the properties of humic substances seem to play key roles in determining the formation of possible bindings between low MW DBPs and humic substances.
Nanodetection of the disinfection by-products on GC-MS techniques
NASA Astrophysics Data System (ADS)
Ristoiu, Dumitru; Haydee, Melinda; Ristoiu, Tania
2009-01-01
Exposures to disinfection by-products (DBPs) in residential drinking water occur through multiple routes and vary across the population because of differences in the amount and ways people use water. Municipal water in the Romania is disinfected, with chlorine being the most common disinfectant agent. Disinfection of water, in additional to having the benefit of destroying microbes that can transmit diseases, has the drawback of producing a series of compounds known as disinfection by-products (DBPs). Chlorination produces many compounds containing chlorine and/or bromine, some of which have been shown to be carcinogenic, mutagenic, and/or teratogenic in animal studies. The most abundant class of DBPs that result from chlorination of drinking water are trihalomethanes (THMs) - chloroform (CHCl3), dichlorobromomethane (CHCl2Br), dibromochloromethane (CHBr2Cl) and bromoform (CHBr3). The most predominant THM species was CHCl3 and it highest concentration was 85•106 ng/m3. The others THMs compounds concentration were lower, between 65•104 ng/m3 and 12•106 ng/m3. THMs compounds were analyzed on gas chromatography coupled with mass spectrometer detector (GC-MS) and head space technique (HS) was used for all analysis.
Drinking water treatment is not associated with an observed increase in neural tube defects in mice
Melin, Vanessa E.; Johnstone, David W.; Etzkorn, Felicia A.
2018-01-01
Disinfection by-products (DBPs) arise when natural organic matter in source water reacts with disinfectants used in the water treatment process. Studies have suggested an association between DBPs and birth defects. Neural tube defects (NTDs) in embryos of untreated control mice were first observed in-house in May 2006 and have continued to date. The source of the NTD-inducing agent was previously determined to be a component of drinking water. Tap water samples from a variety of sources were analyzed for trihalomethanes (THMs) to determine if they were causing the malformations. NTDs were observed in CD-1 mice provided with treated and untreated surface water. Occurrence of NTDs varied by water source and treatment regimens. THMs were detected in tap water derived from surface water but not detected in tap water derived from a groundwater source. THMs were absent in untreated river water and laboratory purified waters, yet the percentage of NTDs in untreated river water were similar to the treated water counterpart. These findings indicate that THMs were not the primary cause of NTDs in the mice since the occurrence of NTDs was unrelated to drinking water disinfection. PMID:24497082
Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.
Papageorgiou, A; Papadakis, N; Voutsa, D
2016-01-01
The aim of this study was to investigate the fate of natural organic matter (NOM) and subsequent changes during the various treatment processes at a full-scale Drinking Water Treatment Plant (DWTP). Monthly sampling campaigns were conducted for 1 year at six sites along DWTP of Thessaloniki, Northern Greece including raw water from the Aliakmonas River that supplies DWTP and samples from various treatment processes (pre-ozonation, coagulation, sand filtration, ozonation, and granular activated carbon (GAC) filtration). The concentration of NOM and its characteristics as well as the removal efficiency of various treatment processes on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, fluorescence intensity, hydrophobicity, biodegradable dissolved organic carbon, and formation potential of chlorination by-products trihalomethanes (THMs) and haloacetic acids (HAAs) were studied. The concentration of dissolved organic carbon (DOC) in reservoir of the Aliakmonas River ranged from 1.46 to 1.84 mg/L, exhibiting variations regarding UV, fluorescence, and hydrophobic character through the year. Along DWTP, a significant reduction of aromatic, fluorophoric, and hydrophobic character of NOM was observed resulting in significant elimination of THM (63%) and HAAs (75%) precursors.
Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment.
Chu, Huaqiang; Cao, Dawen; Dong, Bingzhi; Qiang, Zhimin
2010-03-01
This work investigated the feasibility of treating micro-polluted surface water for drinking water production with a bio-diatomite dynamic membrane reactor (BDDMR) at lab-scale in continuous-flow mode. Results indicate that the BDDMR was effective in removing COD(Mn), DOC, UV(254), NH(3)-N and trihalomethanes' formation potential (THMFP) at a hydraulic retention time (HRT) of 3.5h due to its high concentrations of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS). The removal of pollutants was mainly ascribed to microbial degradation in BDDMR because the dynamic membrane alone was much less effective in pollutant removal. Though the diatomite particles (5-20microm) were much smaller in size than the aperture of the stainless steel support mesh (74microm), microorganisms and their extracellular polymer substances could bind these particles tightly to form bio-diatomite particles which were completely retained by the support mesh. The analysis of molecular weight (MW) distribution by gel permeation chromatography (GPC) shows that the BDDMR could effectively remove the hydrophilic fraction of dissolved organic materials present in the raw water. Copyright 2009 Elsevier Ltd. All rights reserved.
Synergistic integration of sonochemical and electrochemical disinfection with DSA anodes.
Cotillas, Salvador; Llanos, Javier; Castro-Ríos, Katherin; Taborda-Ocampo, Gonzalo; Rodrigo, Manuel A; Cañizares, Pablo
2016-11-01
This work focuses on the disinfection actual urban wastewater by the combination of ultrasound (US) irradiation and electrodisinfection with Dimensionally Stable Anodes (DSA). First, the inactivation of Escherichia coli (E. coli) during the sonochemical disinfection was studied at increasing ultrasound power. Results showed that it was not possible to achieve a complete disinfection, even at the highest US power (200 W) dosed by the experimental device used. Next, the electrodisinfection with DSA anodes at different current densities was studied, finding that it was necessary a minimum current density of 11.46 A m(-2) to reach the complete disinfection. Finally, an integrated sonoelectrodisinfection process was studied. Results showed a synergistic effect when coupling US irradiation with DSA electrodisinfection, with a synergy coefficient higher than 200% of the disinfection rate attained for the highest US power applied. In this process, hypochlorite and chloramines were identified as the main reagents for the disinfection process (neither chlorate nor perchlorate were detected), and the presence of trihalomethanes was far below acceptable values. Confirming this synergistic effect with DSA anodes opens the door to novel efficient disinfection processes, limiting the occurrence of hazardous disinfection by-products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mayer, Brooke K; Daugherty, Erin; Abbaszadegan, Morteza
2015-02-01
Advanced oxidation processes (AOPs) are gaining traction as they offer mineralization potential rather than transferring contaminants between media. However, AOPs operated with limited energy and/or chemical inputs can exacerbate disinfection byproduct (DBP) formation, even as precursors such as dissolved organic carbon, UV254, and specific UV absorbance (SUVA) decrease. This study examined the relationship between DBP precursors and formation using TiO2 photocatalysis experiments, external AOP and non-AOP data, and predictive DBP models. The top-performing indicator, SUVA, generally correlated positively with trihalomethanes and haloacetic acids, but limited-energy photocatalysis yielded contrasting negative correlations. The accuracy of predicted DBP values from models based on bulk parameters was generally poor, regardless of use and extent of AOP treatment and type of source water. Though performance improved for scenarios bounded by conditions used in model development, only 0.5% of the model/dataset pairings satisfied all measured parameter boundary conditions, thereby introducing skepticism toward model usefulness. Study findings suggest that caution should be employed when using bulk indicators and/or models as a metric for AOP mitigation of DBP formation potential, particularly for limited-energy/chemical inputs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Krasner, Stuart W; Lee, Tiffany Chih Fen; Westerhoff, Paul; Fischer, Natalia; Hanigan, David; Karanfil, Tanju; Beita-Sandí, Wilson; Taylor-Edmonds, Liz; Andrews, Robert C
2016-09-06
Certain unregulated disinfection byproducts (DBPs) are more of a health concern than regulated DBPs. Brominated species are typically more cytotoxic and genotoxic than their chlorinated analogs. The impact of granular activated carbon (GAC) on controlling the formation of regulated and selected unregulated DBPs following chlorine disinfection was evaluated. The predicted cyto- and genotoxicity of DBPs was calculated using published potencies based on the comet assay for Chinese hamster ovary cells (assesses the level of DNA strand breaks). Additionally, genotoxicity was measured using the SOS-Chromotest (detects DNA-damaging agents). The class sum concentrations of trihalomethanes, haloacetic acids, and unregulated DBPs, and the SOS genotoxicity followed the breakthrough of dissolved organic carbon (DOC), however the formation of brominated species did not. The bromide/DOC ratio was higher than the influent through much of the breakthrough curve (GAC does not remove bromide), which resulted in elevated brominated DBP concentrations in the effluent. Based on the potency of the haloacetonitriles and halonitromethanes, these nitrogen-containing DBPs were the driving agents of the predicted genotoxicity. GAC treatment of drinking or reclaimed waters with appreciable levels of bromide and dissolved organic nitrogen may not control the formation of unregulated DBPs with higher genotoxicity potencies.
NASA Technical Reports Server (NTRS)
Pines, D.
1998-01-01
Two Flight Model AMSU-A Phase Locked Oscillators (P/N 1348360-1, S/Ns F03 and F04) have been tested per AES Test Procedure AE-26758. The tests included vibration testing, thermal cycle testing, AM/FM Noise testing, and full functional testing. EMI/REO 2 Testing was not performed. (See test data for S/N F01). Both AMSU-A Phase Locked Oscillators satisfactorily passed all performance requirements of the AE-26633 Product specification. During thermal cycling of PLO serial number F03, the oven and data logger momentarily lost power, including a loss of data. The unit did not experience any thermal stress. TAR 003134 describes the corrective action. Prior to testing PLO serial number FO4, power was applied to the unit. (+15v,-15v) the unit did not display the proper phase lock. Upon test equipment check out a connector was found to be defective. TAR 003133 describes the corrective action. After completion of testing of PLO serial number F04 was installed into Receiver Assembly F02. Upon testing F02 Receiver Assembly the unit was found not to phase lock at ambient temperature. Removal of PLO Assembly F04 was required. R2 was the real issue. Solithane was secondary. Troubleshooting revealed excessive solithane on inner PLL Assembly cover inhibiting optimum grounding. Also, R2 was reselected which increased the lock range from -30 C to +60 C. TAR 002737 describes the corrective action.
NASA Technical Reports Server (NTRS)
Balch, D. T.; Saccullo, A.; Sheehy, T. W.
1983-01-01
To assist in identifying and quantifying the relevant parameters associated with the complex topic of main rotor/fuselage/tail rotor interference, a model scale hover test was conducted in the Model Rotor Hover Facility. The test was conducted using the basic model test rig, fuselage skins to represent a UH-60A BLACK HAWK helicopter, 4 sets of rotor blades of varying geometry (i.e., twist, airfoils and solidity) and a model tail rotor that could be relocated to give changes in rotor clearance (axially, laterally, and vertically), can't angle and operating model (pusher or tractor). The description of the models and the tests, data analysis and summary (including plots) are included. The customary system of units gas used for principal measurements and calculations. Expressions in both SI units and customary units are used with the SI units stated first and the customary units afterwords, in parenthesis.
Summary of Aquifer Test Data for Arkansas - 1940-2006
Pugh, Aaron L.
2008-01-01
As demands on Arkansas's ground water continue to increase, decision-makers need all available information to ensure the sustainability of this important natural resource. From 1940 through 2006, the U.S. Geological Survey has conducted over 300 aquifer tests in Arkansas. Much of these data never have been published. This report presents the results from 206 of these aquifer tests from 21 different hydrogeologic units spread across 51 Arkansas counties. Ten of the hydrogeologic units are within the Atlantic Plain of Arkansas and consist mostly of unconsolidated and semi-consolidated deposits. The remaining 11 units are within the Interior Highlands consisting mainly of consolidated rock. Descriptive statistics are reported for each hydrologic unit with two or more tests, including the mean, minimum, median, maximum and standard deviation values for specific capacity, transmissivity, hydraulic conductivity, and storage coefficient. Hydraulic conductivity values for the major water-bearing hydrogeologic units are estimated because few conductivity values are recorded in the original records. Nearly all estimated hydraulic conductivity values agree with published hydraulic conductivity values based on the hydrogeologic unit material types. Similarly, because few specific capacity values were available in the original aquifer test records, specific capacity values are estimated for individual wells.
Dapia, Irene; Tong, Hoi Y.; Arias, Pedro; Muñoz, Mario; Tenorio, Jair; Hernández, Rafael; García García, Irene; Gordo, Gema; Ramírez, Elena; Frías, Jesús; Lapunzina, Pablo; Carcas, Antonio J.
2017-01-01
Abstract In 2014, we established a pharmacogenetics unit with the intention of facilitating the integration of pharmacogenetic testing into clinical practice. This unit was centered around two main ideas: i) individualization of clinical recommendations, and ii) preemptive genotyping in risk populations. Our unit is based on the design and validation of a single nucleotide polymorphism (SNP) microarray, which has allowed testing of 180 SNPs associated with drug response (PharmArray), and clinical consultation regarding the results. Herein, we report our experience in integrating pharmacogenetic testing into our hospital and we present the results of the 2,539 pharmacogenetic consultation requests received over the past 3 years in our unit. The results demonstrate the feasibility of implementing pharmacogenetic testing in clinical practice within a national health system. PMID:29193749
Indigenous unit for bending and twisting tests of ultra-thin films on a flexible substrate
NASA Astrophysics Data System (ADS)
D'souza, Slavia Deeksha; Hazarika, Pratim; Prakasarao, Ch Surya; Kovendhan, M.; Kumar, R. Arockia; Joseph, D. Paul
2018-04-01
An indigenous unit is designed to test the stability of thin films deposited on to a flexible substrate by inducing a required number of bending and twisting under specific conditions. The unit is designed using aluminum and automated by sending pulse width modulated signals to servo motors using ATmega328 microcontroller. We have tested the unit by imparting stress on to a commercial ITO film deposited on a PET substrate. After a definite number of bending and twisting cycles, the electrical and surface properties are studied and the results are discussed.
2010-10-27
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand is prepared for installation Oct. 24, 2010, at John C. Stennis Space Center. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
2010-10-22
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand arrived at John. C. Stennis Space Center on Oct. 22, 2010. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
Course in Carpentry: Interior Finish. Workbook and Tests.
ERIC Educational Resources Information Center
Strazicich, Mirko, Ed.
Designed for use in carpentry apprenticeship classes, this workbook contains nine units on carpentry skills in the area of interior finish, lists of recommended and required instructional materials, and nine unit tests. Each instructional unit includes a listing of performance statements and text covering skills addressed in individual performance…
49 CFR 234.253 - Flashing light units and lamp voltage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Flashing light units and lamp voltage. 234.253... Maintenance, Inspection, and Testing Inspections and Tests § 234.253 Flashing light units and lamp voltage. (a... proper alignment and frequency of flashes in accordance with installation specifications. (b) Lamp...
49 CFR 234.253 - Flashing light units and lamp voltage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Flashing light units and lamp voltage. 234.253... Maintenance, Inspection, and Testing Inspections and Tests § 234.253 Flashing light units and lamp voltage. (a... proper alignment and frequency of flashes in accordance with installation specifications. (b) Lamp...
NASA Technical Reports Server (NTRS)
Mason, M. G.
1975-01-01
A simulator is described, which was designed for testing and evaluating inertial measuring units, and flight platforms. Mechanical and electrical specifications for the outer, middle, and inner axis are presented. Test results are included.
Stability tests at Browns Ferry Unit 1 under single-loop operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, J.; Wood, R.T.; Otaduy, P.J.
1986-07-01
The results of neutronic stability tests performed on February 9, 1985, at the Browns Ferry Nuclear Power Plant Unit 1 under single-loop operation (SLO) conditions are documented. The main conclusions of the tests are presented.
Apollo telescope mount thermal systems unit thermal vacuum test
NASA Technical Reports Server (NTRS)
Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.
1971-01-01
The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.
Agriculture Library of Test Items.
ERIC Educational Resources Information Center
Sutherland, Duncan, Ed.
As one in a series of test item collections developed by the Assessment and Evaluation Unit of the Directorate of Studies, items of value from past tests are made available to teachers for the construction of unit tests, term examinations or as a basis for class discussion. Each collection is reviewed for content validity and reliability. The test…
10 CFR 431.325 - Units to be tested.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Test Procedures § 431.325 Units to be tested. For each basic model of metal halide lamp ballast selected for testing, a sample of sufficient size, no less than... energy efficiency calculated as the measured output power to the lamp divided by the measured input power...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
.... (Mitsubishi) for a similar line of commercial multi-split air-conditioning systems: Testing laboratories...-conditioning systems: (1) Testing laboratories cannot test products with so many indoor units; (2) there are too many possible combinations of indoor and outdoor unit to test. The Daikin VRV-WIII systems have...
Successful completion of a cyclic ground test of a mercury ion auxiliary propulsion system
NASA Technical Reports Server (NTRS)
Francisco, David R.; Low, Charles A., Jr.; Power, John L.
1988-01-01
An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.
Successful completion of a cyclic ground test of a mercury Ion Auxiliary Propulsion System
NASA Technical Reports Server (NTRS)
Francisco, David R.; Low, Charles A., Jr.; Power, John L.
1988-01-01
An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.
Martin, Edward J [Virginia Beach, VA
2008-01-15
A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.
Dynamic of small photovoltaic systems
NASA Astrophysics Data System (ADS)
Mehrmann, A.; Kleinkauf, W.; Pigorsch, W.; Steeb, H.
The results of 1.5 yr of field-testing of two photovoltaic (PV) power plants, one equipped with an electrolyzer and H2 storage, are reported. Both systems were interconnected with the grid and featured the PV module, a power conditioning unit, ac and dc load connections, and control units. The rated power of both units was 100 Wp. The system with electrolysis was governed by control laws which maximized the electrolyzer current. The tests underscored the preference for a power conditioning unit, rather than direct output to load connections. A 1 kWp system was developed in a follow-up program and will be tested in concert with electrolysis and interconnection with several grid customers. The program is geared to eventual development of larger units for utility-size applications.
XM587E2/XM724 Electronic Time Fuzes: Developmental Test/Operational Test (DT/OT) II Test Phase
1979-11-01
unit - da.- aged setbac* spring Sunit - damAged setback pia 140 .4 C) Twenty-five units were subjected to variable testing "to determine tho G level...SAXIP ACCEPT REJECT NO. Ttf7l KSCRIFTI( AG sin4 go flj-. cEI~ *S-FOOTMOP TEsT o 0 (DROPPED IN FIVE DIFFRNT csIllvrATIaNS -- 1 PER OCRIMP... ascue bya i i*ctet FAILURE AND ACTION REPORT 71134 Jj 7113 .I ,...,-... 7 wow o ft.-I I The unIt will not tht. bte the the scalet inpf t to the.uner h
González, Rocio; Echevarria, José Manuel; Avellón, Ana; Barea, Luisa; Castro, Emma
2006-07-01
Mathematical models predict that, in Spain, a significant number of blood units will be obtained during the window period of the hepatitis B virus (HBV) infection. Routine nucleic acid testing (NAT) on individual blood units may provide experimental data to evaluate such a theoretical risk. Between February and July 2005, a total of 34,631 individual units were screened for HBV DNA by a multiplex transcription-mediated amplification (TMA) test. Units that repeatedly reacted in the test, but did not react for HBV surface antigen (HBsAg), were submitted to additional testing by both molecular and conventional assays, and the donors were recalled for follow-up studies and the collection of clinical and epidemiologic data. Confirmatory testing and follow-up studies identified 2 blood units donated during the HBV infection window period (1/17,316 units studied). Sequencing of amplification products obtained by nested polymerase chain reaction (n-PCR) revealed two HBV strains from genotypes D/ayw3 and F/adw4q-, but did not identify HBsAg mutants. The HBV DNA concentration in the index donations was estimated to be below the n-PCR detection level (180 IU/mL), in both cases. One donor developed acute hepatitis 2 months after donating blood, but the other remained asymptomatic and displayed normal alanine aminotransferase levels at follow-up. The HBV infection window period is a real issue in the setting of Spanish blood transfusions. NAT of individual units by TMA would make a significant contribution to improving the safety of the blood supply in Spain. Additional studies involving a larger number of units and longer periods of time are required, however, to ascertain the true incidence of the problem in this country.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickes, R.W. Jr.; Wackerbarth, D.E.; Mohler, J.H.
1996-12-31
The authors report on recent studies comparing the ignition threshold of temperature cycled, SCB thermite devices with units that were not submitted to temperature cycling. Aluminum/copper-oxide thermite was pressed into units at two densities, 45% of theoretical maximum density (TMD) or 47% of TMD. Half of each of the density sets underwent three thermal cycles; each cycle consisted of 2 hours at 74 C and 2 hours at {minus}54 C, with a 5 minute maximum transfer time between temperatures. The temperature cycled units were brought to ambient temperature before the threshold testing. Both the density and the thermal cycling affectedmore » the all-fire voltage. Using a 5.34 {micro}F CDU (capacitor discharge unit) firing set, the all-fire voltage for the units that were not temperature cycled increased with density from 32.99 V (45% TMD) to 39.32 V (47% TMD). The all-fire voltages for the thermally cycled units were 34.42 V (45% TMD) and 58.1 V (47% TMD). They also report on no-fire levels at ambient temperature for two component designs; the 5 minute no-fire levels were greater than 1.2 A. Units were also subjected to tests in which 1 W of RF power was injected into the bridges at 10 MHz for 5 minutes. The units survived and fired normally afterwards. Finally, units were subjected to pin-to-pin electrostatic discharge (ESD) tests. None of the units fired upon application of the ESD pulse, and all of the tested units fired normally afterwards.« less
Bottom-up or top-down: unit cost estimation of tuberculosis diagnostic tests in India.
Rupert, S; Vassall, A; Raizada, N; Khaparde, S D; Boehme, C; Salhotra, V S; Sachdeva, K S; Nair, S A; Hoog, A H Van't
2017-04-01
Of 18 sites that participated in an implementation study of the Xpert® MTB/RIF assay in India, we selected five microscopy centres and two reference laboratories. To obtain unit costs of diagnostic tests for tuberculosis (TB) and drug-resistant TB. Laboratories were purposely selected to capture regional variations and different laboratory types. Both bottom-up and the top-down methods were used to estimate unit costs. At the microscopy centres, mean bottom-up unit costs were respectively US$0.83 (range US$0.60-US$1.10) and US$12.29 (US$11.61-US$12.89) for sputum smear microscopy and Xpert. At the reference laboratories, mean unit costs were US$1.69 for the decontamination procedure, US$9.83 for a solid culture, US$11.06 for a liquid culture, US$29.88 for a drug susceptibility test, and US$18.18 for a line-probe assay. Top-down mean unit cost estimates were higher for all tests, and for sputum smear microscopy and Xpert these increased to respectively US$1.51 and US$13.58. The difference between bottom-up and top-down estimates was greatest for tests performed at the reference laboratories. These unit costs for TB diagnostics can be used to estimate resource requirements and cost-effectiveness in India, taking into account geographical location, laboratory type and capacity utilisation.
Cox, Louis Anthony; Popken, Douglas A; VanSickle, John J; Sahu, Ranajit
2005-08-01
The U.S. Department of Agriculture (USDA) tests a subset of cattle slaughtered in the United States for bovine spongiform encephalitis (BSE). Knowing the origin of cattle (U.S. vs. Canadian) at testing could enable new testing or surveillance policies based on the origin of cattle testing positive. For example, if a Canadian cow tests positive for BSE, while no U.S. origin cattle do, the United States could subject Canadian cattle to more stringent testing. This article illustrates the application of a value-of-information (VOI) framework to quantify and compare potential economic costs to the United States of implementing tracking cattle origins to the costs of not doing so. The potential economic value of information from a tracking program is estimated to exceed its costs by more than five-fold if such information can reduce future losses in export and domestic markets and reduce future testing costs required to reassure or win back customers. Sensitivity analyses indicate that this conclusion is somewhat robust to many technical, scientific, and market uncertainties, including the current prevalence of BSE in the United States and/or Canada and the likely reactions of consumers to possible future discoveries of BSE in the United States and/or Canada. Indeed, the potential value of tracking information is great enough to justify locating and tracking Canadian cattle already in the United States when this can be done for a reasonable cost. If aggressive tracking and testing can win back lost exports, then the VOI of a tracking program may increase to over half a billion dollars per year.
Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa.
Inoue-Choi, Maki; Jones, Rena R; Anderson, Kristin E; Cantor, Kenneth P; Cerhan, James R; Krasner, Stuart; Robien, Kim; Weyer, Peter J; Ward, Mary H
2015-07-01
Nitrate and nitrite are precursors in the endogenous formation of N-nitroso compounds (NOC), potential human carcinogens. We evaluated the association of nitrate and nitrite ingestion with postmenopausal ovarian cancer risk in the Iowa Women's Health Study. Among 28,555 postmenopausal women, we identified 315 incident epithelial ovarian cancers from 1986 to 2010. Dietary nitrate and nitrite intakes were assessed at baseline using food frequency questionnaire data. Drinking water source at home was obtained in a 1989 follow-up survey. Nitrate-nitrogen (NO3 -N) and total trihalomethane (TTHM) levels for Iowa public water utilities were linked to residences and average levels were computed based on each woman's duration at the residence. We computed multivariable-adjusted hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards regression. We tested interactions of nitrate with TTHMs and dietary factors known to influence NOC formation. Ovarian cancer risk was 2.03 times higher (CI = 1.22-3.38, ptrend = 0.003) in the highest quartile (≥2.98 mg/L) compared with the lowest quartile (≤0.47 mg/L; reference) of NO3 -N in public water, regardless of TTHM levels. Risk among private well users was also elevated (HR = 1.53, CI = 0.93-2.54) compared with the same reference group. Associations were stronger when vitamin C intake was
Assessment of potable water quality including organic, inorganic, and trace metal concentrations.
Nahar, Mst Shamsun; Zhang, Jing
2012-02-01
The quality of drinking water (tap, ground, and spring) in Toyama Prefecture, Japan was assessed by studying quality indicators including major ions, total carbon, and trace metal levels. The physicochemical properties of the water tested were different depending on the water source. Major ion concentrations (Ca(2+), K(+), Si(4+), Mg(2+), Na(+), SO(4)(2-), HCO(3)(-), NO(3)(-), and Cl(-)) were determined by ion chromatography, and the results were used to generate Stiff diagrams in order to visually identify different water masses. Major ion concentrations were higher in ground water than in spring and tap water. The relationship between alkaline metals (Na(+) and K(+)), alkaline-earth metals (Ca(2+) and Mg(2+)), and HCO(3)(-) showed little difference between deep and shallow ground water. Toyama ground, spring, and tap water were all the same type of water mass, called Ca-HCO(3). The calculated total dissolved solid values were below 300 mg/L for all water sources and met World Health Organization (WHO) water quality guidelines. Trace levels of As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, V, Zn, Sr, and Hg were detected in ground, spring, and tap water sources using inductively coupled plasma atomic emission spectrometry, and their levels were below WHO and Japanese water quality standard limits. Volatile organic carbon compounds were quantified by headspace gas chromatography-mass spectrometry, and the measured concentrations met WHO and Japanese water quality guidelines. Total trihalomethanes (THMs) were the major contaminant detected in all natural drinking water sources, but the concentration was highest in tap water (37.27 ± 0.05 μg/L). Notably, THMs concentrations reached up to 1.1 ± 0.05 μg/L in deep ground water. The proposed model gives an accurate description of the organic, inorganic, and trace heavy metal indicators studied here and may be used in natural clean water quality management. © Springer Science+Business Media B.V. 2011
Water Ingestion into Axial Flow Compressors. Part III. Experimental Results and Discussion
1981-10-01
total pressure, static pressure, and temperature at both compressor inlet and outlet. A United Sensor model PDC-12-G-l0-KL pitot-static pressure probe...Test Compressor inlet and outlet temperatures during water injection tests: United Sensor and Control Corp. type TK-8-CiA-36’-F Aspirate...ured utilizing standard aspirated thermocouples, namely an United Sensor and Control Corp. type TK-8-C/A-36-F. The Test Compressor out- let
Water absorption characteristic of interlocking compressed earth brick units
NASA Astrophysics Data System (ADS)
Bakar, B. H. Abu; Saari, S.; Surip, N. A.
2017-10-01
This study aims to investigate the water absorption characteristic of interlocking compressed earth brick (ICEB) units. Apart from compressive strength, water absorption is an important property in masonry. This property can affect the quality of the brick itself and the bond strength between the brick and mortar in masonry structures and can result in reducing its strength properties. The units were tested for 24 h water absorption and 5 h boiling water absorption. A total of 170 ICEB units from four ICEB types underwent both tests. For the 24 h water absorption, the ICEB units were dried in the oven for 24 h and then cooled before being weighed. Thereafter, each brick was immersed in water for 24 h and weighed. The same specimens used for the 24 h water absorption test were re-used for the 5 h boiling water absorption test. After completing the 24 h water absorption test, the brick was boiled for 5-hours and weighed. The highest water absorption for the ICEBs in the 24-hour water absorption and 5 h boiling water absorption tests are 15.09% and 17.18%, respectively. The half brick has the highest water absorption (15.87%), whereas the beam brick has the lowest (13.20%). The water absorption of an ICEB unit is higher than that of normal bricks, although the water absorption of the former remains below the maximum rate of the brick water absorption (21%).