Curry, J J; Estupiñán, E G; Henins, A; Lapatovich, W P; Shastri, S D; Hardis, J E
2013-09-28
The vapors in equilibrium with condensates of DyI3, DyI3/InI, TmI3, and TmI3/TlI were observed over the temperature range from 900 K to 1400 K using x-ray induced fluorescence. The total densities of each element (Dy, Tm, In, Tl, and I) in the vapor, summed over all atomic and molecular species, were determined. Dramatic enhancements in the total vapor densities of Dy and Tm were observed in the vapors over DyI3/InI and TmI3/TlI as compared to the vapors over pure DyI3 and pure TmI3, respectively. An enhancement factor exceeding 10 was observed for Dy at T ≈ 1020 K, decreasing to 0 at T ≈ 1250 K. An enhancement factor exceeding 20 was observed for Tm at T ≈ 1040 K, decreasing to 0 at T ≈ 1300 K. Such enhancements are expected from the formation of the vapor-phase hetero-complexes DyInI4 and TmTlI4. Numerical simulations of the thermo-chemical equilibrium suggest the importance of additional complexes in liquid phases. A description of the measurement technique is given. Improvements in the absolute calibration lead to an approximately 40% correction to previously reported preliminary results [J. J. Curry et al., Chem. Phys. Lett. 507, 52 (2011); Appl. Phys. Lett. 100, 083505 (2012)].
NASA Astrophysics Data System (ADS)
Liu, Jie; Shi, Mengchao; Mo, Pinghui; Lu, Jiwu
2018-05-01
Using fully first-principles non-collinear self-consistent field density functional theory (DFT) calculations with relativistic spin-orbital coupling effects, we show that, by applying an out-of-plane electrical field on a free-standing two-dimensional chromium tri-iodide (CrI3) ferromagnetic monolayer, the Néel-type magnetic Skyrmion spin configurations become more energetically-favorable than the ferromagnetic spin configurations. It is revealed that the topologically-protected Skyrmion ground state is caused by the breaking of inversion symmetry, which induces the non-trivial Dzyaloshinskii-Moriya interaction (DMI) and the energetically-favorable spin-canting configuration. Combining the ferromagnetic and the magnetic Skyrmion ground states, it is shown that 4-level data can be stored in a single monolayer-based spintronic device, which is of practical interests to realize the next-generation energy-efficient quaternary logic devices and multilevel memory devices.
Kalmár, József; Dóka, Éva; Lente, Gábor; Fábián, István
2014-03-28
The aqueous photoreactions of three halide ions (chloride, bromide and iodide) were studied using a diode array spectrophotometer to drive and detect the process at the same time. The concentration and pH dependences of the halogen formation rates were studied in detail. The experimental data were interpreted by improving earlier models where the cage complex of a halogen atom and an electron has a central role. The triiodide ion was shown to exert a strong inhibiting effect on the reaction sequence leading to its own formation. An assumed chemical reaction between the triiodide ion and the cage complex interpreted the strong autoinhibition effect. It is shown that there is a real danger of unwanted interference from the photoreactions of halide ions when halide salts are used as supporting electrolytes in spectrophotometric experiments using a relatively high intensity UV light source.
Photo-induced halide redistribution in organic–inorganic perovskite films
deQuilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.; ...
2016-05-24
Organic-inorganic perovskites such as CH 3NH 3PbI 3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH 3NH 3PbI 3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction inmore » trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. In conclusion, our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartashevich, E. V.; Batalov, V. I.; Yushina, I. D.
2016-03-23
Two kinds of iodine–iodine halogen bonds are the focus of our attention in the crystal structure of the title salt, C 12H 8ClINO +·I 3 -, described by X-ray diffraction. The first kind is a halogen bond, reinforced by charges, between the I atom of the heterocyclic cation and the triiodide anion. The second kind is the rare case of a halogen bond between the terminal atoms of neighbouring triiodide anions. The influence of relatively weakly bound iodine inside an asymmetric triiodide anion on the thermal and Raman spectroscopic properties has been demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartashevich, E. V.; Batalov, V. I.; Yushina, I. D.
2016-04-29
Two kinds of iodine–iodine halogen bonds are the focus of our attention in the crystal structure of the title salt, C 12H 8ClINO +·I 3 -, described by X-ray diffraction. The first kind is a halogen bond, reinforced by charges, between the I atom of the heterocyclic cation and the triiodide anion. The second kind is the rare case of a halogen bond between the terminal atoms of neighbouring triiodide anions. Lastly, the influence of relatively weakly bound iodine inside an asymmetric triiodide anion on the thermal and Raman spectroscopic properties has been demonstrated.
NASA Technical Reports Server (NTRS)
Lipert, Robert J.; Porter, Marc D.; Siperko, Lorraine M.; Gazda, Daniel B.; Rutz, Jeff A.; Schultz, John R.; Carrizales, Stephanie M.; McCoy, J. Torin
2009-01-01
An experimental drinking water monitoring kit for the measurement of iodine and silver(I) was recently delivered to the International Space Station (ISS). The kit is based on Colorimetric Solid Phase Extraction (CSPE) technology, which measures the change in diffuse reflectance of indicator disks following exposure to a water sample. To satisfy additional spacecraft water monitoring requirements, CSPE has now been extended to encompass the measurement of total I (iodine, iodide, and triiodide) through the introduction of an oxidizing agent, which converts iodide and triiodide to iodine, for measurement using the same indicator disks currently being tested on ISS. These disks detect iodine, but are insensitive to iodide and triiodide. We report here the operational considerations, design, and ground-based performance of the CSPE method for total I. The results demonstrate that CSPE technology is poised to meet NASA's total I monitoring requirements.
Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells
Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; ...
2015-06-05
In this study, long range electromigration of methylammonium ions (MA +) in methyl ammonium lead tri-iodide (MAPbI 3) film is observed directly using the photothermal induced resonance technique. The electromigration of MA + leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI 3 perovskite devices.
Spectrophotometric determination of substrate-borne polyacrylamide.
Lu, Jianhang; Wu, Laosheng
2002-08-28
Polyacrylamides (PAMs) have wide application in many industries and in agriculture. Scientific research and industrial applications manifested a need for a method that can quantify substrate-borne PAM. The N-bromination method (a PAM analytical technique based on N-bromination of amide groups and spectrophotometric determination of the formed starch-triiodide complex), which was originally developed for determining PAM in aqueous solutions, was modified to quantify substrate-borne PAM. In the modified method, the quantity of substrate-borne PAM was converted to a concentration of starch-triiodide complex in aqueous solution that was then measured by spectrophotometry. The method sensitivity varied with substrates due to sorption of reagents and reaction intermediates on the substrates. Therefore, separate calibration for each substrate was required. Results from PAM samples in sand, cellulose, organic matter burnt soils, and clay minerals showed that this method had good accuracy and reproducibility. The PAM recoveries ranged from 95.8% to 103.7%, and the relative standard deviations (n = 4) were <7.5% in all cases. The optimum range of PAM in each sample is 10-80 microg. The technique can serve as an effective tool in improving PAM application and facilitating PAM-related research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ting; Mukherjee, Rupam; Ovchinnikova, Olga S.
Hybrid perovskites, as emerging multifunctional semiconductors, have demonstrated dual electronic/ionic conduction properties. Here, we report a metal/ion interaction induced p-i-n junction across slightly n-type doped MAPbI 3 single crystals with Au/MAPbI 3/Ag configuration based on interface dependent Seebeck effect, Hall effect and time-of-flight secondary ion mass spectrometry analysis. The organic cations (MA +) interact with Au atoms, forming positively charged coordination complexes at Au/MAPbI 3 interface, whereas iodine anions (I –) can react with Ag contacts, leading to interfacial ionic polarization. Such metal/ion interactions establish a p-doped region near the Au/MAPbI 3 interface due to the formation of MA +more » vacancies, and an n-doped region near the Ag/MAPbI 3 interface due to formation of I – vacancies, consequently forming a p-i-n junction across the crystal in Au/MAPbI 3/Ag configuration. Therefore, the metal/ion interaction plays a role in determining the surface electronic structure and semiconducting properties of hybrid perovskites.« less
Wu, Ting; Mukherjee, Rupam; Ovchinnikova, Olga S.; ...
2017-11-17
Hybrid perovskites, as emerging multifunctional semiconductors, have demonstrated dual electronic/ionic conduction properties. Here, we report a metal/ion interaction induced p-i-n junction across slightly n-type doped MAPbI 3 single crystals with Au/MAPbI 3/Ag configuration based on interface dependent Seebeck effect, Hall effect and time-of-flight secondary ion mass spectrometry analysis. The organic cations (MA +) interact with Au atoms, forming positively charged coordination complexes at Au/MAPbI 3 interface, whereas iodine anions (I –) can react with Ag contacts, leading to interfacial ionic polarization. Such metal/ion interactions establish a p-doped region near the Au/MAPbI 3 interface due to the formation of MA +more » vacancies, and an n-doped region near the Ag/MAPbI 3 interface due to formation of I – vacancies, consequently forming a p-i-n junction across the crystal in Au/MAPbI 3/Ag configuration. Therefore, the metal/ion interaction plays a role in determining the surface electronic structure and semiconducting properties of hybrid perovskites.« less
Al-Hashimi, Nessreen A; Hussein, Yasser H A
2010-01-01
The charge transfer (CT) interaction between iodine and 2,3-diaminopyridine (DAPY) has been thoroughly investigated via theoretical calculations. A Hartree-Fock, 3-21G level of theory was used to optimize and calculate the Mullican charge distribution scheme as well as the vibrational frequencies of DAPY alone and both its CT complexes with one and two iodine molecules. A very good agreement was found between experiment and theory. New illustrations were concluded with a deep analysis and description for the vibrational frequencies of the formed CT complexes. The two-step CT complex formation mechanism published earlier was supported. Copyright 2009 Elsevier B.V. All rights reserved.
Liu, Yun-Kui; Zheng, Hui; Xu, Dan-Qian; Xu, Zhen-Yuan; Zhang, Yong-Min
2006-01-01
Stereoselective transformation of Baylis-Hillman acetates 1 into corresponding (Z)-allyl iodides 2 has been achieved by treatment of 1 with samarium triiodide in THF. Remarkable rate acceleration of samarium triiodide-mediated iodination of 1 was found when ionic liquid 1-n-butyl-3-methyl-imidazolium tetrafluroborate ([bmim]BF4) was used as reaction media in stead of THF. This novel approach proceeds readily at 50 °C within a few minutes to afford (Z)-allyl iodides 2 in excellent yields. A mechanism involving stereoselective iodination of the acetates of Baylis-Hillman adducts by samarium triiodide is described, in which a six-membered ring transition state played a key role in the stereoselective formation of 2. PMID:16502505
ERIC Educational Resources Information Center
Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna
2016-01-01
A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…
Elucidation of chemical reactions by two-dimensional resonance Raman spectroscopy
NASA Astrophysics Data System (ADS)
Molesky, Brian Paul
It has been shown for many systems, including photosynthetic complexes, molecule-semiconductor interfaces, and bulk heterojunctions, that interaction between electronic and nuclear dynamics may heavily influence chemical mechanisms. Four-wave-mixing spectroscopies (i.e. transient absorption, two-dimensional spectroscopy) provide some insight into such non-equilibrium processes but are limited by the single "population time" available in these types of experiments. In this dissertation, two-dimensional resonance Raman spectroscopy (2DRR) is developed to obtain new information regarding chemical reactions that possess time coincident electronic and nuclear evolution. These new insights can only be acquired through higher-order techniques possessing two "population times". Specifically, the coherent reaction mechanism in triiodide photodissociation and structural heterogeneity in myoglobin are investigated. All multidimensional spectroscopies have roots in the off-resonant multidimensional Raman techniques developed from the late 1980's to the early 2000's. Throughout their development these experiments were plagued with technical challenges that eventually halted further use. In this dissertation it is shown through rigorous experimental tests that the technical challenges of the past are obviated for 2DRR, which is done under electronically resonant conditions. The key is that under electronic resonance the harmonic character of vibrational modes contributes to the signal. Under off-resonant conditions signal generation depends on much weaker effects. Upon absorption of light ranging from 250 to 500 nm triiodide photodissociates into diiodide and radical iodine on the same time scale as the period of triiodide's symmetric stretch, impulsively initiating coherence in the stretching coordinate of diiodide. In this dissertation, the sensitivity of 2DRR to coherent reaction mechanisms is shown by directly measuring, for the first time, how the nonequilibrium geometry of triiodide at the moment of photodissociation determines the stretching frequency of diiodide. The functions of heme proteins involve ligand binding and dissociation events, which are facilitated by the fast exchange of energy between the heme and aqueous solvent. It is known that the heme's propionic acid side chains act as an effective "gateway" for this fast energy exchange. In this dissertation it is shown that the propionic chains within myoglobin posses significant structural heterogeneity, suggesting that this may be an important factor in facilitating the functions of heme proteins.
Liu, Na; Yam, ChiYung
2018-03-07
As an alternative to methylammonium lead triiodide (MAPbI 3 ), formamidinium lead triiodide (FAPbI 3 ) perovskites have recently attracted significant attention because of their higher stability and smaller band gaps. Here, based on first-principles calculations, we investigate systematically the intrinsic defects in FAPbI 3 . While methylammonium (MA)-related defects MA I and I MA in MAPbI 3 have high formation energies, we found that formamidinium (FA)-related defects V FA , FA I and I FA in FAPbI 3 have much lower formation energies. Antisites FA I and I FA create deep levels in the band gap, and they can act as recombination centers and result in reduced carrier lifetimes and low open circuit voltages in FAPbI 3 -based photovoltaic devices. We further demonstrate that through cation mixing of MA and FA in perovskites the formation of these defects can be substantially suppressed.
NASA Astrophysics Data System (ADS)
Chernov'yants, Margarita S.; Burykin, Igor V.; Starikova, Zoya A.; Tereznikov, Alexander Yu.; Kolesnikova, Tatiana S.
2013-09-01
Synthesis, spectroscopic and structural characterization of novel interaction product of pyrrolidine-2-thione with molecular iodine is reported. The ability of pyrrolidine-2-thione to form the outer-sphere charge-transfer complex C4H7NS·I2 with iodine molecule in dilute chloroform solution has been studied by UV/vis spectroscopy. Oxidative desulfurization promotes ring fusion of two pyrrolidine-2-thione molecules. The product of iodine induced oxidative desulfurization has been studied by X-ray diffraction method. The crystal structure of the reaction product is formed by 5-(2-thioxopyrrolidine-1-yl)-3,4-dihydro-2H-pyrrolium (C8H13N2S+) cations and pentaiodide anions I5-, which are linked by the intermolecular I⋯Hsbnd C and I⋯C close contacts. The angular pentaiodide anions can be considered as structures formed by coordination of two iodine molecules to the iodide ion (type 1) or by the coordination of iodine molecule to the triiodide ion (type 2).
Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.
Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G
2017-06-26
Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.
Heimbuch, B K; Harnish, D A; Balzli, C; Lumley, A; Kinney, K; Wander, J D
2015-06-01
To avoid interference by water-iodine disinfection chemistry and measure directly the effect of iodine, captured from a triiodide complex bound to a filter medium, on viability of penetrating viral particles. Aerosols of MS2 coli phage were passed through control P100 or iodinated High-Efficiency Particulate Air media, collected in plastic bags, incubated for 0-10 min, collected in an impinger containing thiosulphate to consume all unreacted iodine, plated and enumerated. Comparison of viable counts demonstrated antimicrobial activity with an apparent half-life for devitalization in tens of seconds; rate of kill decreased at low humidity and free iodine was captured by the bags. The results support the mechanism of near-contact capture earlier proposed; however, the disinfection chemistry in the aerosol phase is very slow on the time scale of inhalation. This study shows that disinfection by filter-bound iodine in the aerosol phase is too slow to be clinically significant in individual respiratory protection, but that it might be of benefit to limit airborne transmission of infections in enclosed areas. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Liao, Weiqiang; Zhao, Dewei; Yu, Yue; ...
2016-08-29
Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI 3) perovskite solar cells (PVSCs) are demonstrated. Our FASnI 3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. Here, the PVSCs exhibit small photocurrent–voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s.
Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong
2016-02-02
The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere.
Polymorphism and Superconductivity in Bilayer Molecular Metals (CNB-EDT-TTF)4I3.
Rabaça, Sandra; Oliveira, Sandrina; Santos, Isabel C; Gama, Vasco; Belo, Dulce; Lopes, Elsa B; Canadell, Enric; Almeida, Manuel
2016-10-17
Electrocrystallization from solutions of the dissymmetrical ET derivative cyanobenzene-ethylenedithio-tetrathiafulvalene (CNB-EDT-TTF) in the presence of triiodide I 3 - affords two different polymorphs (β″ and κ) with the composition (CNB-EDT-TTF) 4 I 3 , both with a bilayer structure of the donors. These polymorphs differ in the packing patterns (β″- and κ-type) of the donor molecules in each layer, in both cases with bifurcated C-N···H interactions effectively coupling head-to-head donor molecules between layer pairs. Two β″ polymorphs can be obtained with different degrees of anionic ordering. In one disordered phase, β″ d , with a smaller unit cell, the triiodide anions are disordered over two possible positions in a channel between the donor bilayers, while in the ordered phase, β″ o , the triiodide anions occupy only one of those positions in this channel, leading to the doubling of the unit cell in the layer plane. These results for β″ phases contrast with the κ polymorph previously reported, for which weaker disorder of the triiodide anions, over two possible orientations with 94 and 6% occupation factors, was observed. While the β″ polymorphs remains metallic down to 1.5 K with a ρ 300K /ρ 4K resistivity ratio of 250, the κ polymorph presents a much smaller resistivity ratio in the range of 4-10 and superconductivity with an onset temperature of 3.5 K.
Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R; Wang, Changlei; Cimaroli, Alexander J; Schulz, Philip; Meng, Weiwei; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa
2016-11-01
Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI 3 ) perovskite solar cells (PVSCs) are demonstrated. Our FASnI 3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boschloo, Gerrit; Häggman, Leif; Hagfeldt, Anders
2006-07-06
Addition of 4-tert-butylpyridine (4TBP) to redox electrolytes used in dye-sensitized TiO2 solar cells has a large effect on their performance. In an electrolyte containing 0.7 M LiI and 0.05 M I2 in 3-methoxypropionitrile, addition of 0.5 M 4TBP gave an increase of the open-circuit potential of 260 mV. Using charge extraction and electron lifetime measurements, this increases could be attributed to a shift of the TiO2 band edge toward negative potentials (responsible for 60% of the voltage increase) and to an increase of the electron lifetime (40%). At a lower 4TBP concentration the shift of the band edge was similar, but the effect on the electron lifetime was less pronounced. The working mechanism of 4TBP can be summarized as follows: (1) 4TBP affects the surface charge of TiO2 by decreasing the amount of adsorbed protons and/or Li+ ions. (2) It decreases the recombination of electrons in TiO2 with triiodide in the electrolyte by preventing triiodide access to the TiO2 surface and/or by complexation with iodine in the electrolyte.
Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
Boschloo, Gerrit; Hagfeldt, Anders
2009-11-17
Dye-sensitized solar cells (DSCs) have gained widespread interest because of their potential for low-cost solar energy conversion. Currently, the certified record efficiency of these solar cells is 11.1%, and measurements of their durability and stability suggest lifetimes exceeding 10 years under operational conditions. The DSC is a photoelectrochemical system: a monolayer of sensitizing dye is adsorbed onto a mesoporous TiO(2) electrode, and the electrode is sandwiched together with a counter electrode. An electrolyte containing a redox couple fills the gap between the electrodes. The redox couple is a key component of the DSC. The reduced part of the couple regenerates the photo-oxidized dye. The formed oxidized species diffuses to the counter electrode, where it is reduced. The photovoltage of the device depends on the redox couple because it sets the electrochemical potential at the counter electrode. The redox couple also affects the electrochemical potential of the TiO(2) electrode through the recombination kinetics between electrons in TiO(2) and oxidized redox species. This Account focuses on the special properties of the iodide/triiodide (I(-)/I(3)(-)) redox couple in dye-sensitized solar cells. It has been the preferred redox couple since the beginning of DSC development and still yields the most stable and efficient DSCs. Overall, the iodide/triiodide couple has good solubility, does not absorb too much light, has a suitable redox potential, and provides rapid dye regeneration. But what distinguishes I(-)/I(3)(-) from most redox mediators is the very slow recombination kinetics between electrons in TiO(2) and the oxidized part of the redox couple, triiodide. Certain dyes adsorbed at TiO(2) catalyze this recombination reaction, presumably by binding iodine or triiodide. The standard potential of the iodide/triiodide redox couple is 0.35 V (versus the normal hydrogen electrode, NHE), and the oxidation potential of the standard DSC-sensitizer (Ru(dcbpy)(2)(NCS)(2)) is 1.1 V. The driving force for reduction of oxidized dye is therefore as large as 0.75 V. This process leads to the largest internal potential loss in DSC devices. We expect that overall efficiencies above 15% might be achieved if half of this internal potential loss could be gained. The regeneration of oxidized dye with iodide leads to the formation of the diiodide radical (I(2)(-*)). The redox potential of the I(2)(-*)/I(-) couple must therefore be considered when determining the actual driving force for dye regeneration. The formed I(2)(-*) disproportionates to I(3)(-) and I(-), which leads to a large loss in potential energy.
Dye-sensitized solar cells and complexes between pyridines and iodines. A NMR, IR and DFT study.
Hansen, Poul Erik; Nguyen, Phuong Tuyet; Krake, Jacob; Spanget-Larsen, Jens; Lund, Torben
2012-12-01
Interactions between triiodide (I(3)(-)) and 4-tert-butylpyridine (4TBP) as postulated in dye-sensitized solar cells (DSC) are investigated by means of (13)C NMR and IR spectroscopy supported by DFT calculations. The charge transfer (CT) complex 4TBP·I(2) and potential salts such as (4TBP)(2)I(+), I(3)(-) were synthesized and characterized by IR and (13)C NMR spectroscopy. However, mixing (butyl)(4)N(+), I(3)(-) and 4TBP at concentrations comparable to those of the DSC solar cell did not lead to any reaction. Neither CT complexes nor cationic species like (4TBP)(2)I(+) were observed, judging from the (13)C NMR spectroscopic evidence. This questions the previously proposed formation of (4TBP)(2)I(+) in DSC cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Mingkui; Anghel, Alina M; Marsan, Benoît; Cevey Ha, Ngoc-Le; Pootrakulchote, Nuttapol; Zakeeruddin, Shaik M; Grätzel, Michael
2009-11-11
We report an efficient nonplatinized flexible counter electrode for dye-sensitized solar cells. In combination with a solvent-free ionic liquid electrolyte, we have demonstrated a approximately 6.5% cell with an amphiphilic ruthenium polypyridyl photosensitizer showing excellent stability measured under prolonged light soaking at 60 degrees C. Compared to the Pt deposited PEN film, the CoS deposited PEN film shows higher electrocatalytic activity for the reduction of triiodide. This is expected to have an important practical consequence on the production of flexible low-cost and lightweight thin film DSC devices based on the plastic matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.
2016-06-15
Ternary metal selenides of (Ni{sub 1−x}Co{sub x})Se{sub 2} with 0≤x≤1 were synthesized by using one-step hydrothermal reduction route. The synthesized metal selenides were utilized as an efficient, low-cost platinum free counter electrode for dye-sensitized solar cells. The cyclic voltammetry and electrochemical impedance spectroscopy studies revealed that the Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode exhibited higher electrocatalytic activity and lower charge transfer resistance at the counter electrode/electrolyte interface than the other compositions for reduction of triiodide to iodide. Ternary selenides of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} offer a synergistic effect to the electrocatalytic activity for the reduction of triiodide that might bemore » due to an increase in active catalytic sites and small charge transfer resistance. The DSSC with Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode achieved a high power conversion efficiency of 6.02%, which is comparable with that of conventional platinum counter electrode (6.11%). This present investigation demonstrates the potential application of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} as counter electrode in dye-sensitized solar cells.« less
Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xiaojia; Wu, Congcong; Jha, Shikhar K.
2016-10-18
Though formamidinium lead triiodide (FAPbI 3) possesses a suitable band gap and good thermal stability, the phase transition from the pure black perovskite phase (α-phase) to the undesirable yellow nonperovskite polymorph (δ-phase) at room temperature, especially under humid air, hinders its practical application. Here, we investigate the intrinsic instability mechanism of the α-phase at ambient temperature and demonstrate the existence of an anisotropic strained lattice in the (111) plane that drives phase transformation into the δ-phase. Methylammonium bromide (MABr) alloying (or FAPbI 3-MABr) was found to cause lattice contraction, thereby balancing the lattice strain. This led to dramatic improvement inmore » the stability of α-FAPbI 3. As a result, solar cells fabricated using FAPbI 3-MABr demonstrated significantly enhanced stability under the humid air.« less
Fang, Hong-Hua; Adjokatse, Sampson; Shao, Shuyan; Even, Jacky; Loi, Maria Antonietta
2018-01-16
A long-lived hot carrier population is critical in order to develop working hot carrier photovoltaic devices with efficiencies exceeding the Shockley-Queisser limit. Here, we report photoluminescence from hot-carriers with unexpectedly long lifetime (a few ns) in formamidinium tin triiodide. An unusual large blue shift of the time-integrated photoluminescence with increasing excitation power (150 meV at 24 K and 75 meV at 293 K) is displayed. On the basis of the analysis of energy-resolved and time-resolved photoluminescence, we posit that these phenomena are associated with slow hot carrier relaxation and state-filling of band edge states. These observations are both important for our understanding of lead-free hybrid perovskites and for an eventual future development of efficient lead-free perovskite photovoltaics.
Iodine addition using triiodide solutions
NASA Technical Reports Server (NTRS)
Rutz, Jeffrey A.; Muckle, Susan V.; Sauer, Richard L.
1992-01-01
The study develops: a triiodide solution for use in preparing ground service equipment (GSE) water for Shuttle support, an iodine dissolution method that is reliable and requires minimal time and effort to prepare, and an iodine dissolution agent with a minimal concentration of sodium salt. Sodium iodide and hydriodic acid were both found to dissolve iodine to attain the desired GSE iodine concentrations of 7.5 +/- 2.5 mg/L and 25 +/- 5 mg/L. The 1.75:1 and 2:1 sodium iodide solutions produced higher iodine recoveries than the 1.2:1 hydriodic acid solution. A two-hour preparation time is required for the three sodium iodide solutions. The 1.2:1 hydriodic acid solution can be prepared in less than 5 min. Two sodium iodide stock solutions (2.5:1 and 2:1) were found to dissolve iodine without undergoing precipitation.
Realizing Full Coverage of Stable Perovskite Film by Modified Anti-Solvent Process
NASA Astrophysics Data System (ADS)
Ji, Long; Zhang, Ting; Wang, Yafei; Zhang, Peng; Liu, Detao; Chen, Zhi; Li, Shibin
2017-05-01
Lead-free solution-processed solid-state photovoltaic devices based on formamidinium tin triiodide (FASnI3) and cesium tin triiodide (CsSnI3) perovskite semiconductor as the light harvester are reported. In this letter, we used solvent engineering and anti-solvent dripping method to fabricate perovskite films. SnCl2 was used as an inhibitor of Sn4+ in FASnI3 precursor solution. We obtained the best films under the function of toluene or chlorobenzene in anti-solvent dripping method and monitored the oxidation of FASnI3 films in air. We chose SnF2 as an additive of CsSnI3 precursor solution to prevent the oxidation of the Sn2+, improving the stability of CsSnI3. The experimental results we obtained can pave the way for lead-free tin-based perovskite solar cells (PSCs).
Piatkowski, Piotr; Cohen, Boiko; Ponseca, Carlito S; Salado, Manuel; Kazim, Samrana; Ahmad, Shahzada; Sundström, Villy; Douhal, Abderrazzak
2016-01-07
We report on studies of the formamidinium lead triiodide (FAPbI3) perovskite film using time-resolved terahertz (THz) spectroscopy (TRTS) and flash photolysis to explore charge carriers generation, migration, and recombination. The TRTS results show that upon femtosecond excitation above the absorption edge, the initial high photoconductivity (∼75 cm(2) V(-1) s(-1)) remains constant at least up to 8 ns, which corresponds to a diffusion length of 25 μm. Pumping below the absorption edge results in a mobility of 40 cm(2) V(-1) s(-1) suggesting lower mobility of charge carriers located at the bottom of the conduction band or shallow sub-bandgap states. Furthermore, analysis of the THz kinetics reveals rising components of <1 and 20 ps, reflecting dissociation of excitons having different binding energies. Flash photolysis experiments indicate that trapped charge carriers persist for milliseconds.
Reduction of biselenites into polyselenides in interlayer space of layered double hydroxides
NASA Astrophysics Data System (ADS)
Kim, Myeong Shin; Lee, Yongju; Park, Yong-Min; Cha, Ji-Hyun; Jung, Duk-Young
2018-06-01
A selenous acid (H2SeO3) precursor was intercalated as biselenite (HSeO3-) ions into the interlayer gallery of carbonated magnesium aluminum layered double hydroxide (MgAl-LDH) in aqueous solution. Reduction reaction of selenous ions by aqueous hydrazine solution produced polyselenide intercalated LDHs which were consecutively exchanged with iodide through redox reaction under iodine vapor. The polyselenide containing LDHs adsorbed iodine vapor spontaneously and triiodide was incorporated in the interlayer space followed by formation of selenium polycrystalline phase. Two dimensional framework of MgAl-LDH is strong enough to resist against the reducing power of hydrazine as well as oxidation condition of iodine. The SEM data demonstrated that the shapes of LDH polycrystalline have little changed after the above redox reactions. The polyselenide and iodide LDH products were analyzed by XRD, Infrared and Raman spectra which strongly suggested the horizontal arrangement of polyselenide and triiodide in gallery space of LDHs.
Information Management Systems in the Undergraduate Instrumental Analysis Laboratory.
ERIC Educational Resources Information Center
Merrer, Robert J.
1985-01-01
Discusses two applications of Laboratory Information Management Systems (LIMS) in the undergraduate laboratory. They are the coulometric titration of thiosulfate with electrogenerated triiodide ion and the atomic absorption determination of calcium using both analytical calibration curve and standard addition methods. (JN)
Equations of state of anhydrous AlF3 and AlI3: Modeling of extreme condition halide chemistry
NASA Astrophysics Data System (ADS)
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; Crowhurst, Jonathan C.; Goncharov, Alexander F.; Radousky, Harry B.; Armstrong, Michael R.; Roberts, Sarah K.; Plaue, Jonathan W.
2015-06-01
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF3) and separately, aluminum triiodide (AlI3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF3 and AlI3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: applied stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.
Synthesis of GaN by high-pressure ammonolysis of gallium triiodide
NASA Astrophysics Data System (ADS)
Purdy, Andrew P.; Case, Sean; Muratore, Nicole
2003-05-01
The ammonothermal conversion of GaI 3 to both cubic (zinc-blende) and hexagonal GaN was explored in detail. Gallium triiodide, anhydrous NH 3, and in some cases CuI or LiI co-mineralizers, were sealed in quartz tubes and heated in a pressurized autoclave from 300°C to 515°C. At hot-zone temperatures above 430°C, a deposit of mostly c-GaN collects in the upper portion of the tube, and deposits of phase-pure c-GaN were reliably produced on a 50-60 mg scale when CuI co-mineralizer was added. Crystal morphologies of these microcrystalline c-GaN products are highly dependent on growth conditions and range from triangular prisms to triangular plates, dendritic crystals, and irregular particles. Hexagonal GaN products were either in the form of microrods or micron sized prisms. Nanorods, of presumably h-GaN, also formed in some reactions in low yields, intermixed with microcrystalline c-GaN products.
Yu, Mingzhe; Ren, Xiaodi; Ma, Lu; Wu, Yiying
2014-10-03
With a high theoretical specific energy, the non-aqueous rechargeable lithium-oxygen battery is a promising next-generation energy storage technique. However, the large charging overpotential remains a challenge due to the difficulty in electrochemically oxidizing the insulating lithium peroxide. Recently, a redox shuttle has been introduced into the electrolyte to chemically oxidize lithium peroxide. Here, we report the use of a triiodide/iodide redox shuttle to couple a built-in dye-sensitized titanium dioxide photoelectrode with the oxygen electrode for the photoassisted charging of a lithium-oxygen battery. On charging under illumination, triiodide ions are generated on the photoelectrode, and subsequently oxidize lithium peroxide. Due to the contribution of the photovoltage, the charging overpotential is greatly reduced. The use of a redox shuttle to couple a photoelectrode and an oxygen electrode offers a unique strategy to address the overpotential issue of non-aqueous lithium-oxygen batteries and also a distinct approach for integrating solar cells and batteries.
NASA Astrophysics Data System (ADS)
Li, Zhao; Yang, Wang; Xu, Xiuwen; Tang, Yushu; Zeng, Ziwei; Yang, Fan; Zhang, Liqiang; Ning, Guoqing; Xu, Chunming; Li, Yongfeng
2016-09-01
Exploiting cost-effective and efficient counter electrodes (CEs) for the reduction of triiodide (I3-) has been a persistent objective for the development of dye-sensitized solar cells (DSSCs). Here, we propose a strategy for the synthesis of nitrogen and sulfur dual-doped porous carbon (N/S-PC) via a thermal annealing approach by using melamine as N source, and basic magnesium sulfate (BMS) whiskers as S source and templates. Benefiting from the high surface area, unique interconnected structural feature and synergistic effects of N/S dual-doping, the N/S-PC shows excellent electrocatalytic activity toward I3- reduction, which has simultaneously been confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The DSSC devices with N/S-PC CEs exhibit a PCE up to 7.41%, which is higher than that of DSSC devices with single heteroatom (N or S) doped CEs and even Pt CEs (7.14%).
Spectroscopic analysis of the powdery complex chitosan-iodine
NASA Astrophysics Data System (ADS)
Gegel, Natalia O.; Babicheva, Tatyana S.; Belyakova, Olga A.; Lugovitskaya, Tatyana N.; Shipovskaya, Anna B.
2018-04-01
A chitosan-iodine complex was obtained by modification of polymer powder in the vapor of an iodine-containing sorbate and studied by electron and IR spectroscopy, optical rotation dispersion. It was found that the electronic spectra of an aqueous solution of the modified chitosan (the source one and that stored for a year) showed intense absorption bands of triiodide and iodate ions, and also polyiodide ions, bound to the macromolecule by exciton bonding with charge transfer. Analysis of the IR spectra shows destruction of the network of intramolecular and intermolecular hydrogen bonds in the iodinated chitosan powder in comparison with the source polymer and the formation of a new chemical substance. E.g., the absorption band of deformation vibrations of the hydroxyl group disappears in the modified sample, and that of the protonated amino group shifts toward shorter wavelengths. The intensity of the stretching vibration band of the glucopyranose ring atoms significantly reduces. Heating of the modified sample at a temperature below the thermal degradation point of the polymer leads to stabilization of the chitosan-iodine complex. Based on our studies, the hydroxyl and amino groups of the aminopolysaccharide have been recognized as the centers of retention of polyiodide chains in the chitosan matrix.
Szafrański, Marek; Katrusiak, Andrzej
2016-09-01
Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids.
NASA Astrophysics Data System (ADS)
Nan, Hui; Han, Jianhua; Luo, Qiang; Yin, Xuewen; Zhou, Yu; Yao, Zhibo; Zhao, Xiaochong; Li, Xin; Lin, Hong
2018-04-01
Exploiting efficient Pt-free counter-electrode materials with low cost and highly catalytic property is a hot topic in the field of Dye-sensitized solar cells (DSCs). Here, NiCo2S4/reduced graphene oxide (RGO) was prepared via an economical synthesis route, and the as-prepared composite exhibited comparable electrocatalytic property with the conventional Pt electrode as the counter-electrode. Notably, the introduction of RGO into the NiCo2S4 counter-electrode induces a significantly promoted electrocatalytic rate towards the triiodide reduction than that of pristine NiCo2S4 by increasing surface area in the composite electrode, as revealed by electrochemical impedance spectroscopic measurement and Tafel polarization measurement. The easy synthesis, low cost and excellent electrochemical performance of the NiCo2S4/RGO composites enable themselves to serve as promising counter-electrode candidates for efficient DSCs.
Kinetic Spectrophotometric Determination of Biotin in Pharmaceutical Preparations
Walash, M. I.; Rizk, M.; Sheribah, Z. A.; Salim, M. M.
2008-01-01
A simple accurate kinetic spectrophotometric method was developed for the determination of biotin in pure form and pharmaceutical preparations. The proposed method is based on a catalytic acceleration of biotin on the reaction between sodium azide and tri-iodide in an aqueous solution. Concentration range of 4-16 μg/mL for biotin was determined by measuring the decrease in the absorbance of tri-iodide at 348 nm by a fixed time method. The decrease in absorbance after 14 min from the initiation of the reaction was markedly correlated to the concentration with correlation coefficient of 0.9999. The detection limit (LOD) of biotin was 0.18 μg/mL while quantitation limit (LOQ) was 0.54 μg/mL. The percentage recovery of the spiked samples was 100.08 ± 0.761. The proposed procedure was successfully applied for the determination of biotin in its pharmaceutical preparations with mean recoveries of 101.17 ± 2.05 and 97.87 ± 1.50 for biotin ampoules and capsules, respectively. The results obtained were in good agreement with those obtained using official method. PMID:23675096
Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrou, Elissaios, E-mail: stavrou1@llnl.gov; Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, P.O. Box 808 L-350, Livermore, California 94550; Zaug, Joseph M., E-mail: zaug1@llnl.gov
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF{sub 3}) and separately, aluminum triiodide (AlI{sub 3}) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF{sub 3} and AlI{sub 3} were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less
Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...
2015-06-04
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less
Yu, Yue; Zhao, Dewei; Grice, Corey R.; ...
2016-09-16
Here, we report on the synthesis of methylammonium tin triiodide (MASnI 3) thin films at room temperature by a hybrid thermal evaporation method and their application in fabricating lead (Pb)-free perovskite solar cells. The as-deposited MASnI 3 thin films exhibit smooth surfaces, uniform coverage across the entire substrate, and strong crystallographic preferred orientation along the < 100 > direction. By incorporating this film with an inverted planar device architecture, our Pb-free perovskite solar cells are able to achieve an open-circuit voltage ( V oc) up to 494 mV. The relatively high V oc is mainly ascribed to the excellent surfacemore » coverage, the compact morphology, the good stoichiometry control of the MASnI 3 thin films, and the effective passivation of the electron-blocking and hole-blocking layers. Finally, our results demonstrate the potential capability of the hybrid evaporation method to prepare high-quality Pb-free MASnI 3 perovskite thin films which can be used to fabricate efficient Pb-free perovskite solar cells.« less
on the formation of higher efficiency formamidinium lead triiodide-based solar cells," Chem -0003-2019-4298 Dr. Mengjin Yang received his Ph.D. in Materials Science from the University of Pittsburgh, where he investigated nanomaterials for solar energy conversion under the supervision of Prof
ERIC Educational Resources Information Center
Short, Duncan
2017-01-01
Activation energies form an energy barrier to a chemical reaction taking place. Simple collision theory, i.e. that particles need to collide to react, would suggest that activation energy is the energy needed to overcome a coulombic barrier provided by the negatively charged electrons contained within energy shells surrounding an atomic nucleus.…
Vapor Pressure of Antimony Triiodide
2017-12-07
function of inverse temperature ........................................................................................... 4 Fig. 3 Effective ∆Hvapor of...pressure on inverse -temperature with the slope of (∆Hvapor/R). One method of experimentally determining ∆Hvapor, therefore, is to measure the...equilibrium vapor pressure of any material as a function of inverse -temperature where the slope of the data can be used to directly determine ∆Hvapor
NASA Astrophysics Data System (ADS)
Pandeeswaran, M.; Elango, K. P.
2010-05-01
Spectroscopic studies revealed that the interaction of cimetidine drug with electron acceptors iodine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) resulted through the initial formation of ionic intermediate to charge transfer (CT) complex. The CT-complexes of the interactions have been characterized using UV-vis, 1H NMR, FT-IR and GC-MS techniques. The formation of triiodide ion, I 3-, is further confirmed by the observation of the characteristic bands in the far IR spectrum for non-linear I 3- ion with C s symmetry at 156 and 131 cm -1 assigned to νas(I-I) and νs(I-I) of the I-I bond and at 73 cm -1 due to bending δ(I 3-). The rate of formation of the CT-complexes has been measured and discussed as a function of relative permittivity of solvent and temperature. The influence of relative permittivity of the medium on the rate indicated that the intermediate is more polar than the reactants and this observation was further supported by spectral studies. Based on the spectroscopic results plausible mechanisms for the interaction of the drug with the chosen acceptors were proposed and discussed and the point of attachment of the multifunctional cimetidine drug with these acceptors during the formation of CT-complex has been established.
Perspective: Two-dimensional resonance Raman spectroscopy
NASA Astrophysics Data System (ADS)
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Horstkotte, Burkhard; Alonso, Juan Carlos; Miró, Manuel; Cerdà, Víctor
2010-01-15
An integrated analyzer based on the multisyringe flow injection analysis approach is proposed for the automated determination of dissolved oxygen in seawater. The entire Winkler method including precipitation of manganese(II) hydroxide, fixation of dissolved oxygen, dissolution of the oxidized manganese hydroxide precipitate, and generation of iodine and tri-iodide ion are in-line effected within the flow network. Spectrophotometric quantification of iodine and tri-iodide at the isosbestic wavelength of 466nm renders enhanced method reliability. The calibration function is linear up to 19mgL(-1) dissolved oxygen and an injection frequency of 17 per hour is achieved. The multisyringe system features a highly satisfying signal stability with repeatabilities of 2.2% RSD that make it suitable for continuous determination of dissolved oxygen in seawater. Compared to the manual starch-end-point titrimetric Winkler method and early reported automated systems, concentrations and consumption of reagents and sample are reduced up to hundredfold. The versatility of the multisyringe assembly was exploited in the implementation of an ancillary automatic batch-wise Winkler titrator using a single syringe of the module for accurate titration of the released iodine/tri-iodide with thiosulfate.
Stappert, Kathrin; Unal, Derya; Spielberg, Eike T.; ...
2014-11-25
The influence of the counteranion on the ability of the mesogenic cation 1-methyl-3-dodecyl-triazolium to form mesophases is explored. To that avail, salts of the cation with anions of different size, shape, and hydrogen bonding capability such as Cl –, Br –, I –, I 3 –, PF 6 –, and Tf 2N – [bis(trifluorosulfonyl)amide] were synthesized and characterized. The crystal structures of the bromide, the iodide, and the triiodide reveal that the cations form bilayers with cations oriented in opposite directions featuring interdigitated alkyl tails. Within the layers, the cations are separated by anions. The rod-shaped triiodide anion forces themore » triazolium cation to align with it in this crystal structure but due to its space requirement reduces the alkyl chain interdigitation which prevents the formation of a mesophase. Rather the compound transforms directly from a crystalline solid to an (ionic) liquid like the analogous bis(trifluorosulfonyl)amide. In contrast, the simple halides and the hexafluorophosphate form liquid crystalline phases. As a result, their clearing points shift with increasing anion radius to lower temperatures.« less
NASA Astrophysics Data System (ADS)
Yamanaka, Soichiro; Hayakawa, Kei; Cojocaru, Ludmila; Tsuruta, Ryohei; Sato, Tomoya; Mase, Kazuhiko; Uchida, Satoshi; Nakayama, Yasuo
2018-04-01
Methylammonium lead triiodide (CH3NH3PbI3) is the fundamental material used in perovskite solar cells, and its electronic properties have, therefore, attracted a great deal of attention as a potential key to highly efficient solar cell performance. However, the deterioration of perovskite solar cells when exposed to high temperature and humidity remains a serious obstacle to the material's use, and the clarification of the degradation mechanisms has been keenly anticipated. In this study, the valence electronic structures and depth-dependence of the chemical states of CH3NH3PbI3 thin films are investigated using ultraviolet photoelectron spectroscopy and excitation energy dependent X-ray photoelectron spectroscopy. Additionally, the effects of high temperature and a moisture rich atmosphere on the CH3NH3PbI3 thin films are examined. It is confirmed that the high temperature and moist atmosphere facilitate the oxidation of CH3NH3PbI3, whereas the Pb:I stoichiometry of the CH3NH3PbI3 thin films is found to be preserved at its original ratio (1:3) after thermal annealing and exposure to a moist atmosphere.
NASA Astrophysics Data System (ADS)
Khan, Muhammad Wasim; Yao, Jixin; Zhang, Kang; Zuo, Xueqin; Yang, Qun; Tang, Huaibao; Ur Rehman, Khalid Mehmood; Li, Guang; Wu, Mingzai; Zhu, Kerong; Zhang, Haijun
2018-06-01
In this research, SnO2@SWCNTs@Reduced Graphene Oxide based nanocomposite was synthesized by a one step hydrothermal method and reported new cost effective platinum-free counter-electrodes (CEs) in dye-sensitized solar cells (DSSCs). The CEs were formed by using the nanocomposites with the help of a pipette using a doctor-blade technique. The efficiency of this nanocomposite revealed significant elctrocatalytic properties upon falling the triiodide, possessing to synergistic effect of SnO2 nano particles and improved conductivity when SWCNTs dispersed on graphene sheet. Therefore, the power conversion efficiency (PCE) of prepared SnO2@SWCNTs@RGO nanocomposite CE attained of (6.1%) in DSSCs which is equivalent to the value (6.2%) which attained to the value (6.2%) with pure Pt CE as a reference. SnO2@SWCNTs@RGO nanocomposite CEs give more stable catalytic activities for triiodide reduction than SnO2 and SWCNTs CEs in the cyclic voltammetry (CV) analysis. Furthermore, to the subsistence of graphene oxide, the nanocomposite acquired both higher stability and efficiency in the nanocomposite.
NASA Astrophysics Data System (ADS)
Shrivatsav, Roshan; Mahalingam, Vignesh; Lakshmi Narayanan, E. R.; Naveen Balaji, N.; Balu, Murali; Krishna Prasad, R.; Kumaresan, Duraisamy
2018-04-01
Quasi-solid state iodide/triiodide redox electrolyte containing reduced graphene oxide and poly (methyl methaacrylate) (RGO-PMMA) composites for the fabrication of more durable, high performance dye sensitized solar cells are prepared. The morphological analysis of prepared RGO-PMMA composites showed formation of spherical like morphologies of RGO dispersed PMMA particles with their macroscopic inter-particle networks having voids. The x ray diffraction and electrical conductivity studies showed the addition of 1 wt% of filler RGO into amorphous PMMA matrix increased the electrical conductivity of the polymer composite about three orders of magnitude from 10‑7 and 10‑4 S cm‑1. Further, the photovoltaic current-voltage analysis of DSSCs with different RGO-PMMA composite based iodide/triiodide redox electrolytes showed the highest power conversion efficiency of 5.38% and the fill factor 0.63 for 2% RGO-PMMA electrolyte. The EIS analysis showed an increased recombination resistance (Rct2) at TiO2 electrode/dye/electrolyte interface due to the better electrical conductivity of RGO with good ionic conductivity in 2% RGO-PMMA composite based redox electrolyte boosted the generation of a high current density and fill factor in their DSSCs.
Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery
Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei
2015-01-01
Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from −20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083
Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.
Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei
2015-02-24
Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.
2009-12-01
common laboratory mouse, Mus musculus , and treated and mechanically equivalent untreated filter media to measure infection rates as a function of...to determine viable counts. Data noise in the control experiment prevented drawing a firm conclusion but loss of viability in the aerosol phase ...protection, Triosyn U U U UU 35 Joseph Wander Reset iii TABLE OF CONTENTS Section Page 1.0 Overview
NASA Astrophysics Data System (ADS)
Barraza, E. Tomas; Dunlap-Shohl, Wiley A.; Mitzi, David B.; Stiff-Roberts, Adrienne D.
2018-02-01
Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit the metal-halide perovskite (MHP) CH3NH3PbI3 (methylammonium lead triiodide, or MAPbI), creating phase-pure films. Given the moisture sensitivity of these crystalline, multi-component organic-inorganic hybrid materials, deposition of MAPbI by RIR-MAPLE required a departure from the use of water-based emulsions as deposition targets. Different chemistries were explored to create targets that properly dissolved MAPbI components, were stable under vacuum conditions, and enabled resonant laser energy absorption. Secondary phases and solvent contamination in the resulting films were studied through Fourier transform infrared (FTIR) absorbance and x-ray diffraction (XRD) measurements, suggesting that lingering excess methylammonium iodide (MAI) and low-vapor pressure solvents can distort the microstructure, creating crystalline and amorphous non-perovskite phases. Thermal annealing of films deposited by RIR-MAPLE allowed for excess solvent to be evaporated from films without degrading the MAPbI structure. Further, it was demonstrated that RIR-MAPLE does not require excess MAI to create stoichiometric films with optoelectronic properties, crystal structure, and film morphology comparable to films created using more established spin-coating methods for processing MHPs. This work marks the first time a MAPLE-related technique was used to deposit MHPs.
2013-02-01
analysis for total virus count . To examine the effects of bioaerosol on the release of iodine from the triiodide resin medium, MS2 aerosol was treated with...airborne pathogens. 2.2.2. Viral Aerosols Bioaerosols are airborne particles with biological origins, such as nonviable pollen , and viable fungi...performed: collection efficiency of BioSampler, virus PSD by SMPS, plaque assay for virus infectivity, and PCR analysis for total virus count . PSL
Norman, Mya A; Evans, Christine E; Fuoco, Anthony R; Noble, Richard D; Koval, Carl A
2005-10-01
Electrokinetic flow provides a mechanism for a variety of fluid pumping schemes. The design and characterization of an electrochemically driven pump that utilizes porous carbon electrodes, iodide/triiodide redox electrolytes, and Nafion membranes is described. Fluid pumping by the cell is reversible and controlled by the cell current. Chronopotentiometry experiments indicate that the total available fluid that can be pumped in a single electrolysis without gas evolution is determined solely by the initial concentration of electrolyte and the applied current. The magnitude of the fluid flow at a given current is determined by the nature of the cation in the electrolyte and by the water absorption properties of the Nafion membrane. For 1 M aqueous electrolytes, pumping rates ranging from 1 to 14 microL/min were obtained for current densities of 10-30 mA/cm2 of membrane area. Molar volume changes for the I3-/I- redox couple and for the alkali cation migration contribute little to the observed volumetric flow rates; the magnitude of the flow is dominated by the migration-induced flow of water.
Some, Surajit; Sohn, Ji Soo; Kim, Junmoo; Lee, Su-Hyun; Lee, Su Chan; Lee, Jungpyo; Shackery, Iman; Kim, Sang Kyum; Kim, So Hyun; Choi, Nakwon; Cho, Il-Joo; Jung, Hyo-Il; Kang, Shinill; Jun, Seong Chan
2016-01-01
Graphene-composites, capable of inhibiting bacterial growth which is also bio-compatible with human cells have been highly sought after. Here we report for the first time the preparation of new graphene-iodine nano-composites via electrostatic interactions between positively charged graphene derivatives and triiodide anions. The resulting composites were characterized by X-ray photoemission spectroscopy, UV-spectroscopy, Raman spectroscopy and Scanning electron microscopy. The antibacterial potential of these graphene-iodine composites against Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus mirobilis, Staphylococcus aureus, and E. coli was investigated. In addition, the cytotoxicity of the nanocomposite with human cells [human white blood cells (WBC), HeLa, MDA-MB-231, Fibroblast (primary human keratinocyte) and Keratinocyte (immortalized fibroblast)], was assessed. DGO (Double-oxidizes graphene oxide) was prepared by the additional oxidation of GO (graphene oxide). This generates more oxygen containing functional groups that can readily trap more H+, thus generating a positively charged surface area under highly acidic conditions. This step allowed bonding with a greater number of anionic triiodides and generated the most potent antibacterial agent among graphene-iodine and as-made povidone-iodine (PVP-I) composites also exhibited nontoxic to human cells culture. Thus, these nano-composites can be used to inhibit the growth of various bacterial species. Importantly, they are also very low-cytotoxic to human cells culture. PMID:26843066
Hussain, Sajjad; Shaikh, Shoyebmohamad F; Vikraman, Dhanasekaran; Mane, Rajaram S; Joo, Oh-Shim; Naushad, Mu; Jung, Jongwan
2015-12-21
By using a radio-frequency sputtering method, we synthesized large-area, uniform, and transparent molybdenum disulfide film electrodes (1, 3, 5, and 7 min) on transparent and conducting fluorine-doped tin oxide (FTO), as ecofriendly, cost-effective counter electrodes (CE) for dye-sensitized solar cells (DSSCs). These CEs were used in place of the routinely used expensive platinum CEs for the catalytic reduction of a triiodide electrolyte. The structure and morphology of the MoS2 was analyzed by using Raman spectroscopy, X-ray diffraction, and X-ray photoemission spectroscopy measurements and the DSSC characteristics were investigated. An unbroken film of MoS2 was identified on the FTO crystallites from field-emission scanning electron microscopy. Cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curve measurements reveal the promise of MoS2 as a CE with a low charge-transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide. Finally, an optimized transparent MoS2 CE, obtained after 5 min synthesis time, showed a high power-conversion efficiency of 6.0 %, which comparable to the performance obtained with a Pt CE (6.6 %) when used in TiO2 -based DSCCs, thus signifying the importance of sputtering time on DSSC performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jafari, Fatemeh; Behjat, Abbas; Khoshroo, Ali R.; Ghoshani, Maral
2015-02-01
Poly(3, 4-ethylendioxythiophene)-poly(styrene sulfonate) mixed with TiO2 nanoparticles (PEDOT:PSS/TiO2) was used as a catalyst for tri-iodide reduction in dye-sensitized solar cells based on natural photosensitizers. A PEDOT:PSS/TiO2 film was coated on a conductive glass substrate by the spin coating method. The solar cells were fabricated, having the PEDOT:PSS/TiO2 film as a counter electrode and Pomegranate juice dye-sensitized TiO2 as an anode. The morphology of PEDOT:PSS/TiO2 films was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. Cyclic voltammetry (CV) was employed to characterize the catalytic activity of the PEDOT:PSS/TiO2 film. Based on the analysis of CV, the enhancements for the electrochemical and photochemical performance of the PEDOT:PSS/TiO2 electrode are attributed to the fact that the dispersed TiO2 nanoparticles in the PEDOT:PSS matrix provide an improved catalytic activity and a facilitated diffusion for tri-iodide ions. The energy conversion efficiency is significantly improved after TiO2 nanoparticle incorporation. This improvement might be attributed to an increase in the counter electrode catalytic activity. The highest efficiency of 0.73% was obtained by using 100 nm TiO2 nanoparticles in the counter electrode.
Morison, K R; Hutchinson, C A
2009-01-01
The Weissler reaction in which iodide is oxidised to a tri-iodide complex (I(3)(-)) has been widely used for measurement of the intensity of ultrasonic and hydrodynamic cavitation. It was used in this work to compare ultrasonic cavitation at 24 kHz with hydrodynamic cavitation using two different devices, one a venturi and the other a sudden expansion, operated up to 8.7 bar. Hydrodynamic cavitation had a maximum efficiency of about 5 x 10(-11) moles of I(3)(-) per joule of energy compared with the maximum of almost 8 x 10(-11) mol J(-1) for ultrasonic cavitation. Hydrodynamic cavitation was found to be most effective at 10 degrees C compared with 20 degrees C and 30 degrees C and at higher upstream pressures. However, it was found that in hydrodynamic conditions, even without cavitation, I(3)(-) was consumed at a rapid rate leading to an equilibrium concentration. It was concluded that the Weissler reaction was not a good model reaction for the assessment of the effectiveness of hydrodynamic cavitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyler, Kyle L.; Zhong, Ding; Klein, Dahlia R.
Bulk chromium tri-iodide (CrI 3) has long been known as a layered van der Waals ferromagnet. However, its monolayer form was only recently isolated and confirmed to be a truly two-dimensional (2D) ferromagnet, providing a new platform for investigating light–matter interactions and magneto-optical phenomena in the atomically thin limit. Here in this paper, we report spontaneous circularly polarized photoluminescence in monolayer CrI 3 under linearly polarized excitation, with helicity determined by the monolayer magnetization direction. In contrast, the bilayer CrI 3 photoluminescence exhibits vanishing circular polarization, supporting the recently uncovered anomalous antiferromagnetic interlayer coupling in CrI 3 bilayers. Distinct frommore » the Wannier–Mott excitons that dominate the optical response in well-known 2D van der Waals semiconductors, our absorption and layer-dependent photoluminescence measurements reveal the importance of ligand-field and charge-transfer transitions to the optoelectronic response of atomically thin CrI 3. We attribute the photoluminescence to a parity-forbidden d–d transition characteristic of Cr 3+ complexes, which displays broad linewidth due to strong vibronic coupling and thickness-independent peak energy due to its localized molecular orbital nature.« less
High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes.
Daeneke, Torben; Kwon, Tae-Hyuk; Holmes, Andrew B; Duffy, Noel W; Bach, Udo; Spiccia, Leone
2011-03-01
Dye-sensitized solar cells based on iodide/triiodide (I(-)/I(3)(-)) electrolytes are viable low-cost alternatives to conventional silicon solar cells. However, as well as providing record efficiencies of up to 12.0%, the use of I(-)/I(3)(-) in such solar cells also brings about certain limitations that stem from its corrosive nature and complex two-electron redox chemistry. Alternative redox mediators have been investigated, but these generally fall well short of matching the performance of conventional I(-)/I(3)(-) electrolytes. Here, we report energy conversion efficiencies of 7.5% (simulated sunlight, AM1.5, 1,000 W m(-2)) for dye-sensitized solar cells combining the archetypal ferrocene/ferrocenium (Fc/Fc(+)) single-electron redox couple with a novel metal-free organic donor-acceptor sensitizer (Carbz-PAHTDTT). These Fc/Fc(+)-based devices exceed the efficiency achieved for devices prepared using I(-)/I(3)(-) electrolytes under comparable conditions, revealing the great potential of ferrocene-based electrolytes in future dye-sensitized solar cells applications. This improvement results from a more favourable matching of the redox potential of the ferrocene couple with that of the new donor-acceptor sensitizer.
Oxidation of thymidylate synthase by inorganic compounds.
Aull, J L; Ivery, T C; Daron, H H
1984-10-01
Thymidylate synthase from methotrexate-resistant Lactobacillus casei was rapidly and completely inactivated by low concentrations of permanganate, periodate, or potassium triiodide at 0 degree C. The enzyme was not inactivated to any appreciable extent by iodate, iodide, ferricyanate, iodosobenzoate, or hydrogen peroxide. The inactivation by permanganate was retarded by the substrate 2'-deoxyuridylate and, to a lesser extent, by phosphate. Titration of enzyme activity with permanganate showed that two moles of permanganate were required to completely inactivate one mole of thymidylate synthase.
1981-04-15
products (4-bromo-l,2,3,4-tetraphenylbutadienyl)tin tribromide o (4-iodo-l,2,3,4-tetraphenylbutadienyl)tin triiodide. Even gentle chlorination of...hexaphenyistannole by elemental chlorine cleaves the ring tin-carbon bonds to form cis-cis-l ,4-dichloro-l ,2 ,3 ,4-tetraphenylbutadiene-l, 3 and diphenyltin... chlorination of hexaphenylstannole by elemental chlorine cleaves the ring tin-carbon bonds to form cis- cis-l,4-dichloro-l,2,3,4-tetraphenylbutadiene-1,3
Chang, H C; Bumpus, J A
2001-04-01
Ethylenediaminetetraacetic acid (EDTA) is an inhibitor of iodide (I-) oxidation that is catalyzed by horseradish peroxidase (HRP). HRP-mediated iodine (I2) reduction and triiodide (I3+) disappearance occur in the presence of this inhibitor. It is interesting that in the presence of EDTA, HRP produces superoxide radical, a reactive oxygen species that is required for iodine reduction. Substitution of potassium superoxide (KO2) or a biochemical superoxide generating system (xanthine/xanthine oxidase) for HRP and H2O2 in the reaction mixture also can reduce iodine to iodide. Thus, iodine reduction mediated by HRP occurs because HRP is able to mediate the formation of superoxide in the presence of EDTA and H2O2. Although superoxide is able to mediate iodine reduction directly, other competing reactions appear to be more important. For example, high concentrations (mM range) of EDTA are required for efficient iodine reduction in this system. Under such conditions, the concentration (microM range) of contaminating EDTA-Fe(III) becomes catalytically important. In the presence of superoxide, EDTA-Fe(III) is reduced to EDTA-Fe(II), which is able to reduce iodine and form triiodide rapidly. Also of importance is the fact that EDTA-Fe(II) reacts with hydrogen peroxide to form hydroxyl radical. Hydroxyl radical involvement is supported by the fact that a wide variety of hydroxyl radical (OH) scavengers can inhibit HRP dependent iodine reduction in the presence of EDTA and hydrogen peroxide.
Kulkarni, Ashish; Singh, Trilok; Jena, Ajay K; Pinpithak, Peerathat; Ikegami, Masashi; Miyasaka, Tsutomu
2018-03-21
Low stability of organic-inorganic lead halide perovskite and toxicity of lead (Pb) still remain a concern. Therefore, there is a constant quest for alternative nontoxic and stable light-absorbing materials with promising optoelectronic properties. Herein, we report about nontoxic bismuth triiodide (BiI 3 ) photovoltaic device prepared using TiO 2 mesoporous film and spiro-OMeTAD as electron- and hole-transporting materials, respectively. Effect of annealing methods (e.g., thermal annealing (TA), solvent vapor annealing (SVA), and Petri dish covered recycled vapor annealing (PR-VA)) and different annealing temperatures (90, 120, 150, and 180 °C for PR-VA) on BiI 3 film morphology have been investigated. As found in the study, grain size increased and film uniformity improved as temperature was raised from 90 to 150 °C. The photovoltaic devices based on BiI 3 films processed at 150 °C with PR-VA treatment showed power conversion efficiency (PCE) of 0.5% with high reproducibility, which is, so far, the best PCE reported for BiI 3 photovoltaic device employing organic hole-transporting material (HTM), owing to the increase in grain size and uniform morphology of BiI 3 film. These devices showed stable performance even after 30 days of exposure to 50% relative humidity, and after 100 °C heat stress and 20 min light soaking test. More importantly, the study reveals many challenges and room (discussed in the details) for further development of the BiI 3 photovoltaic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.
Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapormore » results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 degrees C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 degrees C in +/-25 degrees C steps (150-200 degrees C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.
Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapormore » results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 °C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 °C in ±25 °C steps (150-200 °C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.« less
Engineered porous silicon counter electrodes for high efficiency dye-sensitized solar cells.
Erwin, William R; Oakes, Landon; Chatterjee, Shahana; Zarick, Holly F; Pint, Cary L; Bardhan, Rizia
2014-06-25
In this work, we demonstrate for the first time, the use of porous silicon (P-Si) as counter electrodes in dye-sensitized solar cells (DSSCs) with efficiencies (5.38%) comparable to that achieved with platinum counter electrodes (5.80%). To activate the P-Si for triiodide reduction, few layer carbon passivation is utilized to enable electrochemical stability of the silicon surface. Our results suggest porous silicon as a promising sustainable and manufacturable alternative to rare metals for electrochemical solar cells, following appropriate surface modification.
2015-01-01
conductive tubing direc ted the aerosol into a heat sealed plastic bag (Food Saver; Jarden Consumer Solutions, Rye, NY), measuring 589 cm 9 254...a self sealing injection port attached to each bag with an adhesive. Approximately 100 mg of iodine crystals were stored at 35°C in an Erlenmeyer...was collected in a bag, 075 ml was drawn from the headspace into a 1 ml syringe and needle and immediately injected through the port into the sample
Ligand-field helical luminescence in a 2D ferromagnetic insulator
Seyler, Kyle L.; Zhong, Ding; Klein, Dahlia R.; ...
2017-12-04
Bulk chromium tri-iodide (CrI 3) has long been known as a layered van der Waals ferromagnet. However, its monolayer form was only recently isolated and confirmed to be a truly two-dimensional (2D) ferromagnet, providing a new platform for investigating light–matter interactions and magneto-optical phenomena in the atomically thin limit. Here in this paper, we report spontaneous circularly polarized photoluminescence in monolayer CrI 3 under linearly polarized excitation, with helicity determined by the monolayer magnetization direction. In contrast, the bilayer CrI 3 photoluminescence exhibits vanishing circular polarization, supporting the recently uncovered anomalous antiferromagnetic interlayer coupling in CrI 3 bilayers. Distinct frommore » the Wannier–Mott excitons that dominate the optical response in well-known 2D van der Waals semiconductors, our absorption and layer-dependent photoluminescence measurements reveal the importance of ligand-field and charge-transfer transitions to the optoelectronic response of atomically thin CrI 3. We attribute the photoluminescence to a parity-forbidden d–d transition characteristic of Cr 3+ complexes, which displays broad linewidth due to strong vibronic coupling and thickness-independent peak energy due to its localized molecular orbital nature.« less
Apostolopoulou, Andigoni; Vlasiou, Manolis; Tziouris, Petros A; Tsiafoulis, Constantinos; Tsipis, Athanassios C; Rehder, Dieter; Kabanos, Themistoklis A; Keramidas, Anastasios D; Stathatos, Elias
2015-04-20
Corrosiveness is one of the main drawbacks of using the iodide/triiodide redox couple in dye-sensitized solar cells (DSSCs). Alternative redox couples including transition metal complexes have been investigated where surprisingly high efficiencies for the conversion of solar to electrical energy have been achieved. In this paper, we examined the development of a DSSC using an electrolyte based on square pyramidal oxidovanadium(IV/V) complexes. The oxidovanadium(IV) complex (Ph4P)2[V(IV)O(hybeb)] was combined with its oxidized analogue (Ph4P)[V(V)O(hybeb)] {where hybeb(4-) is the tetradentate diamidodiphenolate ligand [1-(2-hydroxybenzamido)-2-(2-pyridinecarboxamido)benzenato}and applied as a redox couple in the electrolyte of DSSCs. The complexes exhibit large electron exchange and transfer rates, which are evident from electron paramagnetic resonance spectroscopy and electrochemistry, rendering the oxidovanadium(IV/V) compounds suitable for redox mediators in DSSCs. The very large self-exchange rate constant offered an insight into the mechanism of the exchange reaction most likely mediated through an outer-sphere exchange mechanism. The [V(IV)O(hybeb)](2-)/[V(V)O(hybeb)](-) redox potential and the energy of highest occupied molecular orbital (HOMO) of the sensitizing dye N719 and the HOMO of [V(IV)O(hybeb)](2-) were calculated by means of density functional theory electronic structure calculation methods. The complexes were applied as a new redox mediator in DSSCs, while the cell performance was studied in terms of the concentration of the reduced and oxidized form of the complexes. These studies were performed with the commercial Ru-based sensitizer N719 absorbed on a TiO2 semiconducting film in the DSSC. Maximum energy conversion efficiencies of 2% at simulated solar light (AM 1.5; 1000 W m(-2)) with an open circuit voltage of 660 mV, a short-circuit current of 5.2 mA cm(-2), and a fill factor of 0.58 were recorded without the presence of any additives in the electrolyte.
High Performance of Supercapacitor from PEDOT:PSS Electrode and Redox Iodide Ion Electrolyte
Gao, Xing; Zu, Lei; Cai, Xiaomin; Li, Ce; Lian, Huiqin; Liu, Yang; Wang, Xiaodong; Cui, Xiuguo
2018-01-01
Insufficient energy density and poor cyclic stability is still challenge for conductive polymer-based supercapacitor. Herein, high performance electrochemical system has been assembled by combining poly (3,4-ethylenedioxythiophene) (PEDOT):poly (styrene sulfonate) (PSS) redox electrode and potassium iodide redox electrolyte, which provide the maximum specific capacity of 51.3 mAh/g and the retention of specific capacity of 87.6% after 3000 cycles due to the synergic effect through a simultaneous redox reaction both in electrode and electrolyte, as well as the catalytic activity for reduction of triiodide of the PEDOT:PSS. PMID:29772662
Lin, Kuen-Feng; Chiang, Chien-Hung; Wu, Chun-Guey
2014-01-01
The refractive index and extinction coefficient of a triiodide perovskite absorber (TPA) were obtained by fitting the transmittance spectra of TPA/PEDOT:PSS/ITO/glass using the transfer matrix method. Cu nanoplasmonic structures were designed to enhance the exciton generation in the TPA and to simultaneously reduce the film thickness of the TPA. Excitons were effectively generated at the interface between TPA and Cu nanoparticles, as observed through the 3D finite-difference time-domain method. The exciton distribution is advantageous for the exciton dissociation and carrier transport. PMID:25295290
NASA Astrophysics Data System (ADS)
Aguiar, Ivana; Olivera, Alvaro; Mombrú, Maia; Bentos Pereira, Heinkel; Fornaro, Laura
2017-01-01
Bismuth tri-iodide is a layered compound semiconductor which has suitable properties as material for ionizing radiation detection devices. Monocrystals and polycrystalline thin films have been studied for this application, but only recently, the development of nanostructures of this compound has emerged as an interesting alternative for using such nanostructures in new types of radiation detectors or for including them in other applications. Considering this, we present in this work BiI3 nanoparticles successfully synthesized by the hydrothermal method, using a Teflon-lined stainless steel autoclave, at a temperature of 180 °C during 8-20 h, with BiCl3 and NaI as source materials. We characterized the nanoparticles by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron dispersive spectroscopy (EDS). We obtained small rounded or hexagonal particles (10-20 nm in size) and larger structures. The maximum orientation of the nanostructures is along the (0 0 l) family planes and occurs after 16 h of synthesis, which arises as the best condition for obtaining BiI3 oriented nanostructures. When a 100 kV TEM electron beam was converged on the larger structures, we obtained highly oriented BiI3 hexagonal and rod shaped nanostructures. We found that particles' shape does not depend on the synthesis time. In addition, results were compared with the ones obtained for nanoparticles synthesized from solution. The present work is an advance in the synthesis of BiI3 nanostructures by the hydrothermal method, and is also the first step on seeking the amenable control of morphology and size of such structures using electron beam irradiation. This last process may be particularly appropriate for producing nanostructures for future applications in new devices.
Aguiar, Jeffery A.; Wozny, Sarah; Holesinger, Terry George; ...
2016-05-23
Organic–inorganic perovskites have emerged as an important class of next generation solar cells due to their remarkably low cost, band gap, and sub-900 nm absorption onset. Here, we show a series of in situ observations inside electron microscopes and X-ray diffractometers under device-relevant synthesis conditions focused on revealing the crystallization process of the formamidinium lead-triiodide perovskite at the optimum temperature of 175 °C. Direct in situ observations of the structure and chemistry over relevant spatial, temporal, and temperature scales enabled identification of key perovskite formation and degradation mechanisms related to grain evolution and interface chemistry. The lead composition was observedmore » to fluctuate at grain boundaries, indicating a mobile lead-containing species, a process found to be partially reversible at a key temperature of 175 °C. Using low energy electron microscopy and valence electron energy loss spectroscopy, lead is found to be bonded in the grain interior with iodine in a tetrahedral configuration. At the grain boundaries, the binding energy associated with lead is consequently shifted by nearly 2 eV and a doublet peak is resolved due presumably to a greater degree of hybridization and the potential for several different bonding configurations. At the grain boundaries there is adsorption of hydrogen and OH¯ ions as a result of residual water vapor trapped as a non-crystalline material during formation. Lastly, insights into the relevant formation and decomposition reactions of formamidinium lead iodide at low to high temperatures, observed metastabilities, and relationship with the photovoltaic performance were obtained and used to optimize device processing resulting in conversion efficiencies of up to 17.09% within the stability period of the devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Wozny, Sarah; Holesinger, Terry G.
2016-01-01
Organic-inorganic perovskites have emerged as an important class of next generation solar cells due to their remarkably low cost, band gap, and sub-900 nm absorption onset. Here, we show a series of in situ observations inside electron microscopes and X-ray diffractometers under device-relevant synthesis conditions focused on revealing the crystallization process of the formamidinium lead-triiodide perovskite at the optimum temperature of 175 degrees C. Direct in situ observations of the structure and chemistry over relevant spatial, temporal, and temperature scales enabled identification of key perovskite formation and degradation mechanisms related to grain evolution and interface chemistry. The lead composition wasmore » observed to fluctuate at grain boundaries, indicating a mobile lead-containing species, a process found to be partially reversible at a key temperature of 175 degrees C. Using low energy electron microscopy and valence electron energy loss spectroscopy, lead is found to be bonded in the grain interior with iodine in a tetrahedral configuration. At the grain boundaries, the binding energy associated with lead is consequently shifted by nearly 2 eV and a doublet peak is resolved due presumably to a greater degree of hybridization and the potential for several different bonding configurations. At the grain boundaries there is adsorption of hydrogen and OH- ions as a result of residual water vapor trapped as a non-crystalline material during formation. Insights into the relevant formation and decomposition reactions of formamidinium lead iodide at low to high temperatures, observed metastabilities, and relationship with the photovoltaic performance were obtained and used to optimize device processing resulting in conversion efficiencies of up to 17.09% within the stability period of the devices.« less
Tan, Chaoliang; Zhao, Wei; Chaturvedi, Apoorva; ...
2016-02-24
The high-yield and scalable production of single-layer ternary transition metal dichalcogenide nanosheets with ≈66% of metallic 1T phase, including MoS 2xSe 2(1-x) and Mo xW 1-xS 2 is here achieved via electrochemical Li-intercalation and the exfoliation method. Thin film MoS 2xSe 2(1-x) nanosheets drop-cast on a fluorine-doped tin oxide substrate are used as an efficient electrocatalyst on the counter electrode for the tri-iodide reduction in a dye-sensitized solar cell.
An Iodine Fluorescence Quenching Clock Reaction
NASA Astrophysics Data System (ADS)
Weinberg, Richard B.
2007-05-01
A fluorescent clock reaction is described that is based on the principles of the Landolt iodine reaction but uses the potent fluorescence quenching properties of triiodide to abruptly extinguish the ultraviolet fluorescence of optical brighteners present in liquid laundry detergents. The reaction uses easily obtained household products. One variation illustrates the sequential steps and mechanisms of the reaction; other variations maximize the dramatic impact of the demonstration; and a variation that uses liquid detergent in the Briggs Rauscher reaction yields a striking oscillating luminescence. The iodine fluorescence quenching clock reaction can be used in the classroom to explore not only the principles of redox chemistry and reaction kinetics, but also the photophysics of fluorescent pH probes and optical quenching.
Optically transparent FTO-free cathode for dye-sensitized solar cells.
Kavan, Ladislav; Liska, Paul; Zakeeruddin, Shaik M; Grätzel, Michael
2014-12-24
The woven fabric containing electrochemically platinized tungsten wire is an affordable flexible cathode for liquid-junction dye-sensitized solar cells with the I3(-)/I(-) redox mediator and electrolyte solution consisting of ionic liquids and propionitrile. The fabric-based electrode outperforms the thermally platinized FTO in serial ohmic resistance and charge-transfer resistance for triiodide reduction, and it offers comparable or better optical transparency in the visible and particularly in the near-IR spectral region. The electrode exhibits good stability during electrochemical loading and storage at open circuit. The dye-sensitized solar cells with a C101-sensitized titania photoanode and either Pt-W/PEN or Pt-FTO cathodes show a comparable performance.
Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells
Ren, Zhiwei; Ng, Annie; Shen, Qian; Gokkaya, Huseyin Cem; Wang, Jingchuan; Yang, Lijun; Yiu, Wai-Kin; Bai, Gongxun; Djurišić, Aleksandra B.; Leung, Wallace Woon-fong; Hao, Jianhua; Chan, Wai Kin; Surya, Charles
2014-01-01
We report investigations on the influences of post-deposition treatments on the performance of solution-processed methylammonium lead triiodide (CH3NH3PbI3)-based planar solar cells. The prepared films were stored in pure N2 at room temperature or annealed in pure O2 at room temperature, 45°C, 65°C and 85°C for 12 hours prior to the deposition of the metal electrodes. It is found that annealing in O2 leads to substantial increase in the power conversion efficiencies (PCEs) of the devices. Furthermore, strong dependence on the annealing temperature for the PCEs of the devices suggests that a thermally activated process may underlie the observed phenomenon. It is believed that the annealing process may facilitate the diffusion of O2 into the spiro-MeOTAD for inducing p-doping of the hole transport material. Furthermore, the process can result in lowering the localized state density at the grain boundaries as well as the bulk of perovskite. Utilizing thermal assisted O2 annealing, high efficiency devices with good reproducibility were attained. A PCE of 15.4% with an open circuit voltage (VOC) 1.04 V, short circuit current density (JSC) 23 mA/cm2, and fill factor 0.64 had been achieved for our champion device. PMID:25341527
NASA Astrophysics Data System (ADS)
Zhu, Leize; Yuh, Brian; Schoen, Stefan; Li, Xinpei; Aldighaithir, Mohammed; Richardson, Beau J.; Alamer, Ahmed; Yu, Qiuming
2016-03-01
Binary lead and tin perovskites offer the benefits of narrower band gaps for broader adsorption of solar spectrum and better charge transport for higher photocurrent density. Here, we report the growth of large, smooth crystalline grains of bianry lead and tin triiodide perovskite films via a two-step solution process with thermal plus solvent vapor-assisted thermal annealing. The crystalline SnxPb1-xI2 films formed in the first step served as the templates for the formation of crystalline CH3NH3SnxPb1-xI3 films during the second step interdiffusion of methylammonium iodide (MAI). Followed by dimethylsulfoxide (DMSO) vapor-assisted thermal annealing, small, faceted perovskite grains grew into large, smooth grains via the possible mechanism involving bond breaking and reforming mediated by DMSO solvent molecules. The absorption onset was extended to 950 and 1010 nm for the CH3NH3SnxPb1-xI3 perovskites with x = 0.1 and 0.25, respectively. The highest PCE of 10.25% was achieved from the planar perovskite solar cell with the CH3NH3Sn0.1Pb0.9I3 layer prepared via the thermal plus DMSO vapor-assisted thermal annealing. This research provides a way to control and manipulate film morphology, grain size, and especially the distribution of metal cations in binary metal perovskite layers, which opens an avenue to grow perovskite materials with desired properties to enhance device performance.Binary lead and tin perovskites offer the benefits of narrower band gaps for broader adsorption of solar spectrum and better charge transport for higher photocurrent density. Here, we report the growth of large, smooth crystalline grains of bianry lead and tin triiodide perovskite films via a two-step solution process with thermal plus solvent vapor-assisted thermal annealing. The crystalline SnxPb1-xI2 films formed in the first step served as the templates for the formation of crystalline CH3NH3SnxPb1-xI3 films during the second step interdiffusion of methylammonium iodide (MAI). Followed by dimethylsulfoxide (DMSO) vapor-assisted thermal annealing, small, faceted perovskite grains grew into large, smooth grains via the possible mechanism involving bond breaking and reforming mediated by DMSO solvent molecules. The absorption onset was extended to 950 and 1010 nm for the CH3NH3SnxPb1-xI3 perovskites with x = 0.1 and 0.25, respectively. The highest PCE of 10.25% was achieved from the planar perovskite solar cell with the CH3NH3Sn0.1Pb0.9I3 layer prepared via the thermal plus DMSO vapor-assisted thermal annealing. This research provides a way to control and manipulate film morphology, grain size, and especially the distribution of metal cations in binary metal perovskite layers, which opens an avenue to grow perovskite materials with desired properties to enhance device performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00301j
All silicon electrode photocapacitor for integrated energy storage and conversion.
Cohn, Adam P; Erwin, William R; Share, Keith; Oakes, Landon; Westover, Andrew S; Carter, Rachel E; Bardhan, Rizia; Pint, Cary L
2015-04-08
We demonstrate a simple wafer-scale process by which an individual silicon wafer can be processed into a multifunctional platform where one side is adapted to replace platinum and enable triiodide reduction in a dye-sensitized solar cell and the other side provides on-board charge storage as an electrochemical supercapacitor. This builds upon electrochemical fabrication of dual-sided porous silicon and subsequent carbon surface passivation for silicon electrochemical stability. The utilization of this silicon multifunctional platform as a combined energy storage and conversion system yields a total device efficiency of 2.1%, where the high frequency discharge capability of the integrated supercapacitor gives promise for dynamic load-leveling operations to overcome current and voltage fluctuations during solar energy harvesting.
Li, Xiaowan; Liu, Xitao; Lin, Chunye; Qi, Chengdu; Zhang, Huijuan; Ma, Jun
2017-08-01
In this study, iodine-doped granular activated carbon (I-GAC) was prepared and subsequently applied to activate periodate (IO 4 - ) to degrade organic contaminants at ambient temperature. The physicochemical properties of GAC and I-GAC were examined using scanning electron microscopy, N 2 adsorption/desorption, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. No significant difference was observed between the two except for the existence of triiodide (I 3 - ) and pentaiodide (I 5 - ) on I-GAC. The catalytic activity of I-GAC towards IO 4 - was evaluated by the degradation of acid orange 7 (AO7), and superior catalytic performance was achieved compared with GAC. The effects of some influential parameters (preparation conditions, initial solution pH, and coexisting anions) on the catalytic ability were also investigated. Based on radical scavenging experiments, it appeared that IO 3 was the predominant reactive species in the I-GAC/IO 4 - system. The mechanism underlying the enhanced catalytic performance of I-GAC could be explained by the introduction of negatively charged I 3 - and I 5 - into I-GAC, which induced positive charge density on the surface of I-GAC. This accelerated the interaction between I-GAC and IO 4 - , and subsequently mediated the increasing generation of iodyl radicals (IO 3 ). Furthermore, a possible degradation pathway of AO7 was proposed according to the intermediate products identified by gas chromatography-mass spectrometry. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Won, Lee Ji; Kim, Jae Hong; Thogiti, Suresh
2018-05-01
A novel polymer blend electrolyte for dye-sensitized solar cells (DSSCs) was synthesized by quasi-solidifying a liquid-based electrolyte containing an iodide/triiodide redox couple and supporting salts with a mixture of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and indigenous hydroxypropyl methyl cellulose (HPMC). A high ionic conductivity of 8.8 × 10-4 S cm-1 was achieved after introducing 5 wt% of HPMC with respect to the weight of PVDH-HFP. DSSCs were fabricated using gel polymer blend electrolytes, and the J-V characteristics of the fabricated devices were analyzed. Under optimal conditions, the photovoltaic conversion efficiency of cells with the novel HPMC-blended gel electrolyte (5.34%) was significantly greater than that of cells without HPMC (3.97%).
Champion, Martin J D; Farina, Paolo; Levason, William; Reid, Gillian
2013-09-28
Complexes of the oxa-thia macrocycles [18]aneO4S2, [15]aneO3S2 and the oxa-selena macrocycle [18]aneO4Se2 (L) of types [MCl2(L)]FeCl4 (M = Sc or Y) were prepared from [ScCl3(thf)3] or [YCl2(THF)5][YCl4(THF)2] and the ligand in anhydrous MeCN, using FeCl3 as a chloride abstractor. The [MI2(L)]I, [LaI3(L)] and [LuI2(L)]I have been prepared from the ligands and the appropriate anhydrous metal triiodide in MeCN. Complexes of type [LaI3(crown)] and [LuI2(crown)]I (crown = 18-crown-6, 15-crown-5) were made for comparison. Use of the metal iodide results in complexes with high solubility compared to the corresponding chlorides, although also with increased sensitivity to moisture. All complexes were characterised by microanalysis, IR, (1)H, (45)Sc and (77)Se NMR spectroscopy as appropriate. X-ray crystal structures are reported for [ScCl2([18]aneO4S2)][FeCl4], [ScI2([18]aneO4S2)]I, [YCl2(18-crown-6)]3[Y2Cl9], [YCl2([18]aneO4S2)][FeCl4], [LaI3(15-crown-5)], [LaI2(18-crown-6)(MeCN)]I, [LuI(18-crown-6)(MeCN)2]I2, [Lu(15-crown-5)(MeCN)2(OH2)]I3, [LaI3([18]aneO4S2)], [LaI([18]aneO4S2)(OH2)]I2, [LaI3([18]aneO4Se2)] and [LuI2([18]aneO4Se2)]I. In each complex all the neutral donor atoms of the macrocycles are coordinated to the metal centre, showing very rare examples of these oxophilic metal centres coordinated to thioether groups, and the first examples of coordinated selenoether donors. In some cases MeCN or adventitious water displaces halide ligands, but not the S/Se donors from La or Lu complexes. A complex of the oxa-tellura macrocycle [18]aneO4Te2, [ScCl2([18]aneO4Te2)][FeCl4] was isolated, but is unstable in MeCN solution, depositing elemental Te. YCl3 and 18-crown-6 produced [YCl2(18-crown-6)]3[Y2Cl9], the asymmetric unit of which contains two cations with a trans-YCl2 arrangement and a third with a cis-YCl2 group.
Plundrich, Gudrun T; Wadepohl, Hubert; Clot, Eric; Gade, Lutz H
2016-06-27
The cyclometalated monobenzyl complexes [(Cbzdiphos(R) -CH)ZrBnX] 1 (iPr) Cl and 1 (Ph) I reacted with dihydrogen (10 bar) to yield the η(6) -toluene complexes [(Cbzdiphos(R) )Zr(η(6) -tol)X] 2 (iPr) Cl and 2 (Ph) I (cbzdiphos=1,8-bis(phosphino)-3,6-di-tert-butyl-9H-carbazole). The arene complexes were also found to be directly accessible from the triiodide [(Cbzdiphos(Ph) )ZrI3 ] through an in situ reaction with a dibenzylmagnesium reagent and subsequent hydrogenolysis, as exemplified for the η(6) -mesitylene complex [(Cbzdiphos(Ph) )Zr(η(6) -mes)I] (3 (Ph) I). The tolyl-ring in 2 (iPr) Cl adopts a puckered arrangement (fold angle 23.3°) indicating significant arene-1,4-diido character. Deuterium labeling experiments were consistent with an intramolecular reaction sequence after the initial hydrogenolysis of a Zr-C bond by a σ-bond metathesis. A DFT study of the reaction sequence indicates that hydrogenolysis by σ-bond metathesis first occurs at the cyclometalated ancillary ligand giving a hydrido-benzyl intermediate, which subsequently reductively eliminates toluene that then coordinates to the Zr atom as the reduced arene ligand. Complex 2 (Ph) I was reacted with 2,6-diisopropylphenyl isocyanide giving the deep blue, diamagnetic Zr(II) -diisocyanide complex [(Cbzdiphos(Ph) )Zr(CNDipp)2 I] (4 (Ph) I). DFT modeling of 4 (Ph) I demonstrated that the HOMO of the complex is primarily located as a "lone pair on zirconium", with some degree of back-bonding into the C≡N π* bond, and the complex is thus most appropriately described as a zirconium(II) species. Reaction of 2 (Ph) I with trimethylsilylazide (N3 TMS) and 2 (iPr) Cl with 1-azidoadamantane (N3 Ad) resulted in the formation of the imido complexes [(Cbzdiphos(R) )Zr=NR'(X)] 5 (iPr) Cl-NAd and 5 (Ph) I-NTMS, respectively. Reaction of 2 (iPr) Cl with azobenzene led to N-N bond scission giving 6 (iPr) Cl, in which one of the NPh-fragments is coupled with the carbazole nitrogen to form a central η(2) -bonded hydrazide(-1), whereas the other NPh-fragment binds to zirconium acting as an imido-ligand. Finally, addition of pyridine to 2 (iPr) Cl yielded the dark purple complex [(Cbzdiphos(iPr) )Zr(bpy)Cl] (7 (iPr) Cl) through a combination of CH-activation and C-C-coupling. The structural data and UV/Vis spectroscopic properties of 7 (iPr) Cl indicate that the bpy (bipyridine) may be regarded as a (dianionic) diamido-type ligand. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanical response of CH3NH3PbI3 nanowires
NASA Astrophysics Data System (ADS)
Ćirić, L.; Ashby, K.; Abadie, T.; Spina, M.; Duchamp, M.; Náfrádi, B.; Kollár, M.; Forró, L.; Horváth, E.
2018-03-01
We report a systematic study of the mechanical response of methylammonium lead triiodide CH3NH3PbI3 nanowires by employing bending measurements using atomic force microscope on suspended wires over photo-lithographically patterned channels. Force-deflection curves measured at room temperature give a Young's modulus between 2 and 14 GPa. This broad range of values is attributed to the variations in the microcrystalline texture of halide perovskite nanowires. The mechanical response of a highly crystalline nanowire is linear with force and has a brittle character. The braking modulus of 48 ± 20 MPa corresponds to 100 μm of radius of curvature of the nanowires, rendering them much better structures for flexible devices than spin coated films. The measured moduli decrease rapidly if the NW is exposed to water vapor.
The single-crystal structure of the organic superconductor betaCO-(BEDT-TTF)2I3 from a powder grain.
Madsen; Burghammer; Fiedler; Müller
1999-08-01
Synchrotron radiation diffraction data have been collected at 200 K on a microscopic single crystal (dimensions 12 x 10 x 2 µm) of the title compound, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene, C(10)H(8)S(8). The quality of the diffraction data allowed a full structure refinement and enabled the determination of structural details such as the conformations of the ethylene groups as well as the occupancy of the triiodide sites. The compound was found to be slightly iodine-deficient and better described as beta(CO)-(BEDT-TTF)(2)I(3-x) [x = 0.014 (3)]. One of the ethylene groups of the BEDT-TTF cation is disordered at this temperature and exists in two distinct conformations with occupancies which are identical within the standard uncertainty.
NASA Astrophysics Data System (ADS)
Liu, Jie; Shi, Mengchao; Lu, Jiwu; Anantram, M. P.
2018-02-01
We analyze the impacts of the electric field on the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, and intrinsic ferromagnetism of the recently discovered two-dimensional ferromagnetic chromium tri-iodide (Cr I3 ) monolayer, by combining density functional theory and Monte Carlo simulations. By taking advantage of the counterbalancing effects of anisotropic symmetric exchange energy and antisymmetric exchange energy, it is shown that the intrinsic ferromagnetism can be manipulated by externally applied off-plane electric fields. The results quantitatively reveal the impacts of off-plane electric field on the lattice structure, magnetic anisotropy energy, symmetric and antisymmetric exchange energies, Curie temperature, magnetic hysteresis, and coercive field. The physical mechanism of all-electrical control of magnetism proposed here is useful for creating next-generation magnetic device technologies based on the recently discovered two-dimensional ferromagnetic crystals.
NASA Astrophysics Data System (ADS)
Patni, Neha; Sharma, Pranjal; Pillai, Shibu G.
2018-04-01
This work demonstrates the PV study of dye sensitised solar cells by fabricating the (PV) cell using the ITO, FTO and AZO glass substrate. Dyes used for the fabrication were extracted from beetroot and spinach and a cocktail dye by mixing both of the dyes was also prepared. Similarly the three dufferent electrolytes used were iodide-triiodide couple, polyaniline and mixture of polyaniline and iodide couple. Mixed dye and mixed electrolyte has emerged as the highest efficient cell. The electrical characterisation shows that the highest power conversion efficiency of 1.86% was achieved by FTO substrate, followed by efficiency of 1.83% by AZO substrate and efficiency of 1.63% with ITO substrate using mixed dye and mixed electrolyte approach. This justifies that FTO and AZO shows better efficiency and hence proposed to be used as an alternative to indium free system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Zhaodong; Yang, Mengjin; Schulz, Philip
Organic-inorganic perovskite solar cells have attracted tremendous attention because of their remarkably high power conversion efficiencies. To further improve device performance, it is imperative to obtain fundamental understandings on the photo-response and long-term stability down to the microscopic level. Here, we report the quantitative nanoscale photoconductivity imaging on two methylammonium lead triiodide thin films with different efficiencies by light-stimulated microwave impedance microscopy. The microwave signals are largely uniform across grains and grain boundaries, suggesting that microstructures do not lead to strong spatial variations of the intrinsic photo-response. In contrast, the measured photoconductivity and lifetime are strongly affected by bulk propertiesmore » such as the sample crystallinity. As visualized by the spatial evolution of local photoconductivity, the degradation process begins with the disintegration of grains rather than nucleation and propagation from visible boundaries between grains. In conclusion, our findings provide insights to improve the electro-optical properties of perovskite thin films towards large-scale commercialization.« less
Spatial variation of a short-lived intermediate chemical species in a Couette reactor
NASA Astrophysics Data System (ADS)
Vigil, R. Dennis; Ouyang, Q.; Swinney, Harry L.
1992-04-01
We have conducted experiments and simulations of the spatial variation of a short-lived intermediate species (triiodide) in the autocatalytic oxidation of arsenite by iodate in a reactor that is essentially one dimensional—the Couette reactor. (This reactor consists of two concentric cylinders with the inner one rotating and the outer one at rest; reagents are continuously fed and removed at each end in such a way that there is no net axial flux and there are opposing arsenite and iodate gradients.) The predictions of a one-dimensional reaction-diffusion model, which has no adjustable parameters, are in good qualitative (and, in some cases, quantitative) agreement with experiments. Thus, the Couette reactor, which is used to deliberately create spatial inhomogeneities, can be exploited to enhance the recovery of short-lived intermediate species relative to that which can be obtained with either a batch or continuous-flow stirred-tank reactor.
2010-01-01
We reported a composite electrolyte prepared by incorporating layered α-titanium phosphate (α-TiP) into an iodide-based electrolyte using 1-ethyl-3-methylimidazolium tetrafluoroborate(EmimBF4) ionic liquid as solvent. The obtained composite electrolyte exhibited excellent electrochemical and photovoltaic properties compared to pure ionic liquid electrolyte. Both the diffusion coefficient of triiodide (I3−) in the electrolyte and the charge-transfer reaction at the electrode/electrolyte interface were improved markedly. The mechanism for the enhanced electrochemical properties of the composite electrolyte was discussed. The highest conversion efficiency of dye-sensitized solar cell (DSSC) was obtained for the composite electrolyte containing 1wt% α-TiP, with an improvement of 58% in the conversion efficiency than the blank one, which offered a broad prospect for the fabrication of stable DSSCs with a high conversion efficiency. PMID:20676195
Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries.
Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing
2017-02-06
Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium-oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium-oxygen batteries and help to tackle the critical issues confronted.
Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries
Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing
2017-01-01
Water contamination is generally considered to be detrimental to the performance of aprotic lithium–air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium–oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium–oxygen batteries and help to tackle the critical issues confronted. PMID:28165008
Effect of iodine disinfectant source and water quality parameters on soluble iodine speciation
NASA Technical Reports Server (NTRS)
Silverstein, Joann; Hurst, Charles; Barkley, Robert; Dunham, Andrew
1993-01-01
Investigations of iodine species distribution of various aqueous solutions of iodine disinfectants and water from equilibrated suspensions of triodide and pentaiodide resins were done at the University of Colorado for the Center for Space Environmental Health during 1992 and 1993. Direct measurements of three individual iodine species: I(-), I2 and I3(-), were made. In addition three measures of total titratable iodine species were used. It has been found that I2 and I3(-) solutions produce a significant fraction of the non-disinfecting species iodine I(-), ranging from 50 to 80% of added iodine, respectively, at pH values of approximately 5. Correspondingly, I2 solutions produce more than twice the concentration of disinfecting iodine species per mass iodine dose than I3(-) solutions. Both I(-) and I2 species were found in aqeuous extracts of pentaiodide resin, although no soluble species were detected with triiodide resin.
Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan; ...
2018-05-03
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less
Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less
Metal halide arc discharge lamp having short arc length
NASA Technical Reports Server (NTRS)
Muzeroll, Martin E. (Inventor)
1994-01-01
A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane
Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less
Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites
Chu, Zhaodong; Yang, Mengjin; Schulz, Philip; ...
2017-12-20
Organic-inorganic perovskite solar cells have attracted tremendous attention because of their remarkably high power conversion efficiencies. To further improve device performance, it is imperative to obtain fundamental understandings on the photo-response and long-term stability down to the microscopic level. Here, we report the quantitative nanoscale photoconductivity imaging on two methylammonium lead triiodide thin films with different efficiencies by light-stimulated microwave impedance microscopy. The microwave signals are largely uniform across grains and grain boundaries, suggesting that microstructures do not lead to strong spatial variations of the intrinsic photo-response. In contrast, the measured photoconductivity and lifetime are strongly affected by bulk propertiesmore » such as the sample crystallinity. As visualized by the spatial evolution of local photoconductivity, the degradation process begins with the disintegration of grains rather than nucleation and propagation from visible boundaries between grains. In conclusion, our findings provide insights to improve the electro-optical properties of perovskite thin films towards large-scale commercialization.« less
Layered transition metal thiophosphates /MPX3/ as photoelectrodes in photoelectrochemical cells
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Smith, B. T.; Reichman, B.
1982-01-01
Layered crystals of the transition metal thiophosphates were synthesized and characterized for use as photoelectrodes in photoelectrochemical cells. Crystals incorporating tin and manganese show n-type response while those with iron and nickel show p-type response. These materials have a measured indirect bandgap of about 2.1 eV. They show ability to photoelectrolyze water in acid solutions with onset potentials which change in a Nernstian way as the PH of the solution changes. The onset potential is near zero volts versus a saturated calomel electrode at pH 2. At n-type crystals, oxygen could be evolved upon irradiation at underpotentials of 850 mV and at p-type crystals, hydrogen could be evolved at underpotentials of 400 mV, indicating a net gain in energy conversion. All crystals were unstable in basic solution. Liquid junction photovoltaic cells in iodide-triiodide acid solution using these layered materials were also constructed and found to have low efficiences.
Low cost iodine intercalated graphene for fuel cells electrodes
NASA Astrophysics Data System (ADS)
Marinoiu, Adriana; Raceanu, Mircea; Carcadea, Elena; Varlam, Mihai; Stefanescu, Ioan
2017-12-01
On the theoretical predictions, we report the synthesis of iodine intercalated graphene for proton exchange membrane fuel cells (PEMFCs) applications. The structure and morphology of the samples were characterized by X-ray photoelectron spectroscopy (XPS) analysis, specific surface area by BET method, Raman investigations. The presence of elemental iodine in the form of triiodide and pentaiodide was validated, suggesting that iodine was trapped between graphene layers, leading to interactions with C atoms. The electrochemical performances of iodinated graphenes were tested and compared with a typical PEMFC configuration, containing different Pt/C loading (0.4 and 0.2 mg cm-2). If iodinated graphene is included as microporous layer, the electrochemical performances of the fuel cell are higher in terms of power density than the typical fuel cell. Iodine-doped graphenes have been successfully obtained by simple and cost effective synthetic strategy and demonstrated new insights for designing of a high performance metal-free ORR catalyst by a scalable technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuanyuan; Yang, Mengjin; Pang, Shuping
Here we demonstrate a radically different chemical route for the creation of HC(NH2)2PbI3 (FAPbI3) perovskite thin films. This approach entails a simple exposure of as-synthesized CH3NH3PbI3 (MAPbI3) perovskite thin films to HC(=NH)NH2 (formamidine or FA) gas at 150 degrees C, which leads to rapid displacement of the MA+ cations by FA+ cations in the perovskite structure. The resultant FAPbI3 perovskite thin films preserve the microstructural morphology of the original MAPbI3 thin films exceptionally well. Importantly, the myriad processing innovations that have led to the creation of high-quality MAPbI3 perovskite thin films are directly adaptable to FAPbI3 through this simple, rapidmore » chemical-conversion route. Accordingly, we show that efficiencies of perovskite solar cells fabricated with FAPbI3 thin films created using this route can reach -18%.« less
Spatial localization of excitons and charge carriers in hybrid perovskite thin films
Simpson, Mary Jane; Doughty, Benjamin; Yang, Bin; ...
2015-07-21
The fundamental photophysics underlying the remarkably high power conversion efficiency of organic-inorganic hybrid perovskite-based solar cells has been increasingly studied using complementary spectroscopic techniques. The spatially heterogeneous polycrystalline morphology of the photoactive layers owing to the presence of distinct crystalline grains has been generally neglected in optical measurements and therefore the reported results are typically averaged over hundreds or even thousands of such grains. Here, we apply femtosecond transient absorption microscopy to spatially and temporally probe ultrafast electronic excited-state dynamics in pristine methylammonium lead tri-iodide (CH 3NH 3PbI 3) thin films and composite structures. We found that the electronic excited-statemore » relaxation kinetics are extremely sensitive to the sample location probed, which was manifested by position-dependent decay timescales and transient signals. As a result, analysis of transient absorption kinetics acquired at distinct spatial positions enabled us to identify contributions of excitons and free charge carriers.« less
NASA Astrophysics Data System (ADS)
Ganesh, K.; Elango, K. P.
Raman, UV-vis, FT-IR, and fluorescence spectral techniques were employed to investigate the mechanism of interaction of albendazole (ALB) and trimethoprim (TMP) drugs with iodine. Interactions of ALB and TMP with iodine yields triiodide ion and its formation was confirmed by electronic and Raman spectra. The peaks appeared in Raman spectra of the isolated products are at around 145, 113 and 82 cm-1 are assigned to νas(I-I), νs(I-I) and δ(I3-) respectively, confirmed the presence of I3- ion. Formation constant (K), molar extinction coefficient (ɛ) and thermodynamic properties ΔH#, ΔS# and ΔG# were determined and discussed. Fluorescence quenching studies indicated that the interaction between the ALB, TMP with iodine are spontaneous and the TMP-iodine interaction is found to be stronger than that the other system. Solvent variation studies indicated that the binding constant increased with an increase in polarity of the medium.
Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell.
Bergmann, Victor W; Weber, Stefan A L; Javier Ramos, F; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Li, Dan; Domanski, Anna L; Lieberwirth, Ingo; Ahmad, Shahzada; Berger, Rüdiger
2014-09-22
Perovskite-sensitized solar cells have reached power conversion efficiencies comparable to commercially available solar cells used for example in solar farms. In contrast to silicon solar cells, perovskite-sensitized solar cells can be made by solution processes from inexpensive materials. The power conversion efficiency of these cells depends substantially on the charge transfer at interfaces. Here we use Kelvin probe force microscopy to study the real-space cross-sectional distribution of the internal potential within high efficiency mesoscopic methylammonium lead tri-iodide solar cells. We show that the electric field is homogeneous through these devices, similar to that of a p-i-n type junction. On illumination under short-circuit conditions, holes accumulate in front of the hole-transport layer as a consequence of unbalanced charge transport in the device. After light illumination, we find that trapped charges remain inside the active device layers. Removing these traps and the unbalanced charge injection could enable further improvements in performance of perovskite-sensitized solar cells.
Liang, Jia; Li, Jia; Zhu, Hongfei; Han, Yuxiang; Wang, Yanrong; Wang, Caixing; Jin, Zhong; Zhang, Gengmin; Liu, Jie
2016-09-21
Here we report a facile one-step solution-phase process to directly grow ultrathin MoS2 nanofilms on a transparent conductive glass as a novel high-performance counter electrode for dye-sensitized solar cells. After an appropriate reaction time, the entire surface of the conductive glass substrate was uniformly covered by ultrathin MoS2 nanofilms with a thickness of only several stacked layers. Electrochemical impedance spectroscopy and cyclic voltammetry reveal that the MoS2 nanofilms possess excellent catalytic activity towards tri-iodide reduction. When used in dye-sensitized solar cells, the MoS2 nanofilms show an impressive energy conversion efficiency of 8.3%, which is higher than that of a Pt-based electrode and very promising to be a desirable alternative counter electrode. Considering their ultrathin thickness, superior catalytic activity, simple preparation process and low cost, the as-prepared MoS2 nanofilms with high photovoltaic performance are expected to be widely employed in dye-sensitized solar cells.
Ma, He-Wei; Cheng, Ya
2010-12-10
An analytical approach was developed to determine nonylphenol (NP), octylphenol (OP), nonylphenol ethoxylates (NPEO(n)) and octylphenol ethoxylates (OPEO(n)) in leather samples involving the conversion of NPEO(n) and OPEO(n) into the corresponding NP and OP. The four targets were extracted from samples using ultrasonic-assisted acetonitrile extraction. NP and OP in the extracts were directly isolated with hexane and quantitatively determined with 4-n-nonylphenol as internal standard by gas chromatography-mass spectrometry (GC-MS). For NPEO(n) and OPEO(n) in the extracts, they were first converted into NP and OP with aluminum triiodide as cleavage agent, and the yielded NP and OP were determined by GC-MS. The contents of NPEO(n) and OPEO(n) were calculated by normalizing to NPEO(9) and OPEO(9), respectively. This method was properly validated and the real sample tests revealed the pollution significance of leather by NPEO(n) and OPEO(n). Copyright © 2010 Elsevier B.V. All rights reserved.
Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...
2016-04-22
Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less
deQuilettes, Dane W.; Koch, Susanne; Burke, Sven; ...
2016-07-26
We study the effects of a series of post-deposition ligand treatments on the photoluminescence (PL) of polycrystalline methylammonium lead triiodide perovskite thin films. We show that a variety of Lewis bases can improve the bulk PL quantum efficiency (PLQE) and extend the average PL lifetime, , with large enhancements concentrated at grain boundaries. Notably, we demonstrate thin-film PLQE as high as 35 ± 1% and as long as 8.82 ± 0.03 μs at solar equivalent carrier densities using tri-n-octylphosphine oxide-treated films. Using glow discharge optical emission spectroscopy and nuclear magnetic resonance spectroscopy, we show that the ligands are incorporated primarilymore » at the film surface and are acting as electron donors. These results indicate it is possible to obtain thin-film PL lifetime and PLQE values that are comparable to those from single crystals by control over surface chemistry.« less
NASA Astrophysics Data System (ADS)
Song, Dandan; Cui, Peng; Zhao, Xing; Li, Meicheng; Chu, Lihua; Wang, Tianyue; Jiang, Bing
2015-03-01
A tungsten trioxide (WO3) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO3 composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO3 CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO3 CE. Moreover, the use of Pt/WO3 CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ~2 μg cm-2, while maintaining a much better performance. The excellent performance of Pt/WO3 CE is attributed to the efficient electron injection and transport via WO3 supporters, as well as the nanostructure array morphology of WO3 for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO3 nanoplate arrays for other applications.A tungsten trioxide (WO3) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO3 composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO3 CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO3 CE. Moreover, the use of Pt/WO3 CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ~2 μg cm-2, while maintaining a much better performance. The excellent performance of Pt/WO3 CE is attributed to the efficient electron injection and transport via WO3 supporters, as well as the nanostructure array morphology of WO3 for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO3 nanoplate arrays for other applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06787h
Zeichhardt, H; Habermehl, K O; Wetz, K
1983-04-01
The preexistence of a cytoplasmic membrane complex in HEp-2 cells, induced by poliovirus when inhibited in its reproduction by guanidine, was a prerequisite for accelerated reproduction of superinfecting Mouse Elberfeld (ME) virus. Guanidine-inhibited poliovirus induced a membrane complex of 470S that was successively modified into a faster sedimenting membrane complex (up to 700S) by superinfecting ME virus and exploited for ME virus reproduction. The modified membrane complex was the site for ME virus-specific RNA polymerization characterized by the existence of in vivo and in vitro activity of ME virus RNA polymerase associated with the modified membrane complex. Proof of membrane-bound RNA polymerase and newly synthesized ME virus RNA including replicative intermediate led to the conclusion that superinfecting ME virus exploits the 'poliovirus/guanidine'-induced complex as the site of action of its replication complex.
Suppressed neural complexity during ketamine- and propofol-induced unconsciousness.
Wang, Jisung; Noh, Gyu-Jeong; Choi, Byung-Moon; Ku, Seung-Woo; Joo, Pangyu; Jung, Woo-Sung; Kim, Seunghwan; Lee, Heonsoo
2017-07-13
Ketamine and propofol have distinctively different molecular mechanisms of action and neurophysiological features, although both induce loss of consciousness. Therefore, identifying a common feature of ketamine- and propofol-induced unconsciousness would provide insight into the underlying mechanism of losing consciousness. In this study we search for a common feature by applying the concept of type-II complexity, and argue that neural complexity is essential for a brain to maintain consciousness. To test this hypothesis, we show that complexity is suppressed during loss of consciousness induced by ketamine or propofol. We analyzed the randomness (type-I complexity) and complexity (type-II complexity) of electroencephalogram (EEG) signals before and after bolus injection of ketamine or propofol. For the analysis, we use Mean Information Gain (MIG) and Fluctuation Complexity (FC), which are information-theory-based measures that quantify disorder and complexity of dynamics respectively. Both ketamine and propofol reduced the complexity of the EEG signal, but ketamine increased the randomness of the signal and propofol decreased it. The finding supports our claim and suggests EEG complexity as a candidate for a consciousness indicator. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanism of neem limonoids-induced cell death in cancer: role of oxidative phosphorylation
Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph; O’Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay; Yadava, Nagendra; Chandra, Dhyan
2016-01-01
We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. PMID:26627937
Mechanism of neem limonoids-induced cell death in cancer: Role of oxidative phosphorylation.
Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph R; O'Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay K; Yadava, Nagendra; Chandra, Dhyan
2016-01-01
We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jacobs, Daniel Louis
Hybrid organic-inorganic halide perovskites, particularly methylammonium lead triiodide (MAPbI3), have emerged within the past decade as an exciting class of photovoltaic materials. In less than ten years, MAPbI3-based photovoltaic devices have seen unprecedented performance growth, with photoconversion efficiency increasing from 3% to over 22%, making it competitive with traditional high-efficiency solar cells. Furthermore, the fabrication of MAPbI3 devices utilize low-temperature solution processing, which could facilitate ultra low cost manufacturing. However, MAPbI3 suffers from significant instabilities under working conditions that have limited their applications outside of the laboratory. The instability of the MAPbI3 material can be generalized as a complex, slow transient optoelectronic response (STOR). The mechanism of the generalized STOR is dependent on the native defects of MAPbI3, but detailed understanding of the material defect properties is complicated by the complex ionic bonding of MAPbI3. Furthermore, characterization of the intrinsic material's response is complicated by the diverse approach to material processing and device architecture across laboratories around the world. In order to understand and mitigate the significant problems of MAPbI3 devices, a new approach focused on the material response, rather than the full device response, must be pursued. This dissertation highlights the work to analyze and mitigate the STOR intrinsic to MAPbI3. An experimental platform was developed based on lateral interdigitated electrode (IDE) arrays capable of monitoring the current and photoluminescence response simultaneously. By correlating the dynamics of the current and photoluminescence (PL) responses, both charge trapping and ion migration mechanisms were identified to contribute to the STOR. Next, a novel fabrication technique is introduced that is capable of reliably depositing MAPbI3 thin films with grain sizes at least an order of magnitude larger than most common techniques. These films were studied with confocal microscopy to give insight into the intra-grain PL dynamics of MAPbI3. Finally, the lateral IDE device platform was used to study the composition and morphology dependent STOR and revealed important correlations between defect formation and the STOR. These results represent an important step toward realizing a deeper understanding of the intrinsic limitations of MAPbI3 needed to progress the technology outside of the laboratory.
Kwon, Jeong; Ganapathy, Veerappan; Kim, Young Hun; Song, Kyung-Deok; Park, Hong-Gyu; Jun, Yongseok; Yoo, Pil J; Park, Jong Hyeok
2013-09-07
A low-cost nanopatterned highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin film was fabricated on a flexible plastic substrate via a chemical polymerization method combined with a nanoimprinting technique and used as a platinum (Pt), TCO-free counter electrode for dye-sensitized solar cells (DSSCs). The catalytic properties of the nanopatterned PEDOT as the counter electrode in DSSCs were studied using cyclic voltammetry, J-V measurements, impedance spectroscopy, and finite-difference time-domain (FDTD) simulations. The nanopatterned PEDOT counter electrodes exhibit better functionality as a counter electrode for tri-iodide reduction when compared to non-patterned PEDOT-based counter electrodes. The Pt and TCO-free DSSCs with a nanopatterned PEDOT-based counter electrode exhibited a power conversion efficiency of 7.1% under one sunlight illumination (100 mW cm(-2)), which is comparable to that of conventional DSSCs with standard platinum Pt/FTO paired counter electrodes. The ability to modulate catalytic functionality with changes in nanoscale morphology represents a promising route for developing new counter electrodes of Pt and TCO-free DSSCs.
Song, Dandan; Li, Meicheng; Li, Yingfeng; Zhao, Xing; Jiang, Bing; Jiang, Yongjian
2014-05-28
A highly transparent and efficient counter electrode was facilely fabricated using SiO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) inorganic/organic composite and used in bifacial dye-sensitized solar cells (DSCs). The optical properties of SiO2/PEDOT-PSS electrode can be tailored by the blending amount of SiO2 and film thickness, and the incorporation of SiO2 in PEDOT-PSS provides better transmission in the long wavelength range. Meanwhile, the SiO2/PEDOT-PSS counter electrode shows a better electrochemical catalytic activity than PEDOT-PSS electrode for triiodide reduction, and the role of SiO2 in the catalytic process is investigated. The bifacial DSC with SiO2/PEDOT-PSS counter electrode achieves a high power conversion efficiency (PCE) of 4.61% under rear-side irradiation, which is about 83% of that obtained under front-side irradiation. Furthermore, the PCE of bifacial DSC can be significantly increased by adding a reflector to achieve bifacial irradiation, which is 39% higher than that under conventional front-side irradiation.
Development of Titanium-Sputtered Anodized Aluminum Substrates for Dye-Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Côté, Marie-Pier; Parsi Benehkohal, Nima; Alpay, Neslihan; Demopoulos, George P.; Brochu, Mathieu
2014-12-01
In this study, anodized aluminum coupons are sputtered with titanium and successfully demonstrated as dye-sensitized solar cell (DSC) electrode substrates in both anode [back-illumination (BI)] and cathode [front-illumination (FI)] configurations. The FI DSCs were found to be significantly more efficient than the BI devices registering an average efficiency of 5.7 vs 2.6 pct. By comparison, the efficiency of benchmark cells built with fluorine-tin oxide-glass was 6.7 and 4.6 pct, respectively. The thickness of the titanium-sputtered film was varied from 0.85 to 1.1 μm with the latter providing a better average efficiency when used as a counter electrode. According to preliminary stability testing, the Ti-sputtered anodized aluminum-based DSC devices exhibited a significant reduction of their efficiency over a period of 10 days that was partly attributed to triiodide redox electrolyte reaction with the aluminum substrate. This points to the need for optimization of the sputtered-titanium coating microstructure in order to completely isolate the aluminum substrate from the liquid electrolyte.
Hoffeditz, William L; Katz, Michael J; Deria, Pravas; Martinson, Alex B F; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T
2014-06-11
Dye-sensitized solar cell (DSC) redox shuttles other than triiodide/iodide have exhibited significantly higher charge transfer resistances at the dark electrode. This often results in poor fill factor, a severe detriment to device performance. Rather than moving to dark electrodes of untested materials that may have higher catalytic activity for specific shuttles, the surface area of platinum dark electrodes could be increased, improving the catalytic activity by simply presenting more catalyst to the shuttle solution. A new copper-based redox shuttle that experiences extremely high charge-transfer resistance at conventional Pt dark electrodes yields cells having fill-factors of less than 0.3. By replacing the standard Pt dark electrode with an inverse opal Pt electrode fabricated via atomic layer deposition, the dark electrode surface area is boosted by ca. 50-fold. The resulting increase in interfacial electron transfer rate (decrease in charge-transfer resistance) nearly doubles the fill factor and therefore the overall energy conversion efficiency, illustrating the utility of this high-area electrode for DSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Gang; Kong, Lingping; Gong, Jue
Bond length and bond angle exhibited by valence electrons is essential to the core of chemistry. Using lead-based organic–inorganic perovskite compounds as an exploratory platform, it is demonstrated that the modulation of valence electrons by compression can lead to discovery of new properties of known compounds. Yet, despite its unprecedented progress, further efficiency boost of lead-based organic–inorganic perovskite solar cells is hampered by their wider bandgap than the optimum value according to the Shockley–Queisser limit. By modulating the valence electron wavefunction with modest hydraulic pressure up to 2.1 GPa, the optimized bandgap for single-junction solar cells in lead-based perovskites, formore » the first time, is achieved by narrowing the bandgap of formamidinium lead triiodide (HC(NH 2) 2PbI 3) from 1.489 to 1.337 eV. Strikingly, such bandgap narrowing is partially retained after the release of pressure to ambient, and the bandgap narrowing is also accompanied with double-prolonged carrier lifetime. With First-principles simulation, this work opens a new dimension in basic chemical understanding of structural photonics and electronics and paves an alternative pathway toward better photovoltaic materials-by-design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Gang; Kong, Lingping; Gong, Jue
Bond length and bond angle exhibited by valence electrons is essential to the core of chemistry. Using lead-based organic–inorganic perovskite compounds as an exploratory platform, it is demonstrated that the modulation of valence electrons by compression can lead to discovery of new properties of known compounds. Yet, despite its unprecedented progress, further efficiency boost of lead-based organic–inorganic perovskite solar cells is hampered by their wider bandgap than the optimum value according to the Shockley–Queisser limit. By modulating the valence electron wavefunction with modest hydraulic pressure up to 2.1 GPa, the optimized bandgap for single-junction solar cells in lead-based perovskites, formore » the first time, is achieved by narrowing the bandgap of formamidinium lead triiodide (HC(NH2)2PbI3) from 1.489 to 1.337 eV. Strikingly, such bandgap narrowing is partially retained after the release of pressure to ambient, and the bandgap narrowing is also accompanied with double-prolonged carrier lifetime. With First-principles simulation, this work opens a new dimension in basic chemical understanding of structural photonics and electronics and paves an alternative pathway toward better photovoltaic materials-by-design.« less
Zhao, Yu; Hong, Misun; Bonnet Mercier, Nadège; Yu, Guihua; Choi, Hee Cheul; Byon, Hye Ryung
2014-02-12
A lithium-iodine (Li-I2) cell using the triiodide/iodide (I3(-)/I(-)) redox couple in an aqueous cathode has superior gravimetric and volumetric energy densities (∼ 330 W h kg(-1) and ∼ 650 W h L(-1), respectively, from saturated I2 in an aqueous cathode) to the reported aqueous Li-ion batteries and aqueous cathode-type batteries, which provides an opportunity to construct cost-effective and high-performance energy storage. To apply this I3(-)/I(-) aqueous cathode for a portable and compact 3.5 V battery, unlike for grid-scale storage as general target of redox flow batteries, we use a three-dimensional and millimeter thick carbon nanotube current collector for the I3(-)/I(-) redox reaction, which can shorten the diffusion length of the redox couple and provide rapid electron transport. These endeavors allow the Li-I2 battery to enlarge its specific capacity, cycling retention, and maintain a stable potential, thereby demonstrating a promising candidate for an environmentally benign and reusable portable battery.
Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.
Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M
2017-11-02
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.
NASA Astrophysics Data System (ADS)
Wei, Liguo; Wang, Ping; Yang, Yulin; Luo, Ruidong; Li, Jinqi; Gu, Xiaohu; Zhan, Zhaoshun; Dong, Yongli; Song, Weina; Fan, Ruiqing
2018-04-01
A nitrogen-doped reduced graphene oxide (N-RGO) nanosheet was synthesized by a simple hydrothermal method and characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electrode microscopy. After being deposited as counter electrode film for dye-sensitized solar cells (DSSCs), it is found that the synthesized N-RGO nanosheet has smaller charge-transfer resistance and better electrocatalytic activity towards reduction of triiodide than the reduced graphene oxide (RGO) nanosheet. Consequently, the DSSCs based on the N-RGO counter electrode achieve an energy conversion efficiency of 4.26%, which is higher than that of the RGO counter electrode (2.85%) prepared under the same conditions, and comparable to the value (5.21%) obtained with the Pt counter electrode as a reference. This N-RGO counter electrode offers the advantages of not only saving the cost of Pt itself but also simplifying the process of counter electrode preparation. Therefore, an inexpensive N-RGO nanosheet is a promising counter electrode material to replace noble metal Pt. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Manthina, Venkata; Agrios, Alexander G.
2017-04-01
Heterostructures consisting of Co-doped ZnO nanorod cores encased in an undoped ZnO shell were successfully synthesized to serve as photoanodes for dye-sensitized solar cells (DSSCs) by a two-step chemical bath deposition (CBD) technique. This yields a highly favorable structure in which electrons injected from the dye into the ZnO then step down in energy into the Co-doped core, where the electron is transported to the collector while the ZnO shell acts as a barrier to recombination with the electrolyte. Incorporation of the core/shell structures into DSSCs resulted in large improvements in photocurrent and photovoltage in comparison to pure ZnO nanorod-based DSSCs. SEM and XRD characterization indicate incorporation of the Co2+ into the ZnO matrix, without separation of the Co into other phases, providing no energy barriers. In addition, the ability of these heterostructures to reduce recombination rates in redox couples with fast recombination rates was probed by comparing DSSC device performance in both iodide/triiodide-based and ferrocene/ferrocenium-based electrolytes.
B-Site Metal Cation Exchange in Halide Perovskites
Eperon, Giles E.; Ginger, David S.
2017-05-02
Here, we demonstrate exchange of the B-site metal cation in hybrid organic-inorganic halide perovskite thin films. We exchange tin in formamidinium tin triiodide (NH 2) 2SnI 3' or FASnI 3) with lead at controllable levels, forming (CH- (NH 2) 2SnI xPB 1-xI 3 alloys with partial substitution and fully converting the film to CH(NH 2) 2PbI 3 with a large excess of Pb 2+. We observe no evidence for phase segregation or bilayered films, indicating that conversion is uniform throughout the film. This facile technique provides a new way to control composition independently from the crystallization processes, allowing formation ofmore » the black phase of CH(NH 2) 2PbI 3 at much lower temperatures than those previously reported while also opening the door to new morphology-composition combinations. The surprising observation that the B-site metal cations are mobile may also provide insight into the nature of transient processes in these materials, suggesting that they may be involved in ionic conduction, and will be a critical consideration for long-term stability.« less
B-Site Metal Cation Exchange in Halide Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eperon, Giles E.; Ginger, David S.
Here, we demonstrate exchange of the B-site metal cation in hybrid organic-inorganic halide perovskite thin films. We exchange tin in formamidinium tin triiodide (NH 2) 2SnI 3' or FASnI 3) with lead at controllable levels, forming (CH- (NH 2) 2SnI xPB 1-xI 3 alloys with partial substitution and fully converting the film to CH(NH 2) 2PbI 3 with a large excess of Pb 2+. We observe no evidence for phase segregation or bilayered films, indicating that conversion is uniform throughout the film. This facile technique provides a new way to control composition independently from the crystallization processes, allowing formation ofmore » the black phase of CH(NH 2) 2PbI 3 at much lower temperatures than those previously reported while also opening the door to new morphology-composition combinations. The surprising observation that the B-site metal cations are mobile may also provide insight into the nature of transient processes in these materials, suggesting that they may be involved in ionic conduction, and will be a critical consideration for long-term stability.« less
Ming, Wenmei; Chen, Shiyou; East China Normal Univ.; ...
2016-10-13
Methylammonium (MA) lead triiodide (MAPbI 3) has recently emerged as a promising solar cell material. But, MAPbI3 is known to have chemical instability, i.e., MAPbI3 is prone to decomposition into MAI and PbI 2 even at moderate temperatures (e.g. 330 K). Here, we show that the chemical instability, as reflected by the calculated negligible enthalpy of formation of MAPbI 3 (with respect to MAI and PbI 2), has an unusual and important consequence for defect properties, i.e., defect formation energies in low-carrier-density MAPbI 3 are nearly independent of the chemical potentials of constituent elements and thus can be uniquely determined. This allows straightforward calculations of defect concentrations and the activation energy of ionic conductivity (the sum of the formation energy and the diffusion barrier of the charged mobile defect) in MAPbI 3. Furthermore, the calculated activation energy for ionic conductivity due to Vmore » $$+\\atop{1}$$ diffusion is in excellent agreement with the experimental values, which demonstrates unambiguously that V$$+\\atop{1}$$ is the dominant diffusing defect and is responsible for the observed ion migration and device polarization in MAPbI3 solar cells. The calculated low formation energy of a Frenkel pair (V$$+\\atop{1}$$ -I$$-\\atop{i}$$ and low diffusion barriers of V$$+\\atop{1}$$ and Image I$$-\\atop{i}$$ suggest that the iodine ion migration and the resulting device polarization may occur even in single-crystal devices and grain-boundary-passivated polycrystalline thin film devices (which were previously suggested to be free from ion-migration-induced device polarization), leading to device degradation. Moreover, the device polarization due to the Frenkel pair (which has a relatively low concentration) may take a long time to develop and thus may avoid the appearance of the current–voltage hysteresis at typical scan rates.« less
Kumar, S; Dhar, A
2016-07-20
Organometal halide perovskite materials are presently some of the pacesetters for light harvesting in hybrid photovoltaic devices because of their excellent inherent electrical and optical properties. However, long-term durability of such perovskite materials remains a major bottleneck for their commercialization especially in countries with hot and humid climatic conditions, thus violating the international standards for photovoltaic technology. Albeit, TiO2 as an electron-transport layer has been well investigated for perovskite solar cells; the high-temperature processing makes it unsuitable for low-cost and large-scale roll-to-roll production of flexible photovoltaic devices. Herein, we have chosen low-temperature (<150 °C)-processable nanostructured ZnO as the electron-selective layer and used a two-step method for sensitizing ZnO nanorods with methylammonium lead iodide (MAPbI3) perovskite, which is viable for flexible photovoltaic devices. We have also elaborately addressed the effect of the annealing duration on the conversion of a precursor solution into the required perovskite phase on ZnO nanostructures. The investigations show that the presence of ZnO nanostructures accelerates the rate of degradation of MAPbI3 films under ambient annealing and thus requires proper optimization. The role of ZnO in enhancing the degradation kinetics of the perovskite layer has been investigated by X-ray photoelectron spectroscopy and a buffer layer passivation technique. The effect of the annealing duration of the MAPbI3 perovskite on the optical, morphological, and compositional behavior has been closely studied and correlated with the photovoltaic efficiency. The study captures the degradation behavior of the commercially interesting MAPbI3 perovskite on a ZnO electron-transport layer and thus can provide insight for developing alternative families of perovskite material with better thermal and environmental stability for application in low-cost flexible photovoltaic technology.
Shibata, Yuri; Tokunaga, Fuminori; Goto, Eiji; Komatsu, Ginga; Gohda, Jin; Saeki, Yasushi; Tanaka, Keiji; Takahashi, Hirotaka; Sawasaki, Tatsuya; Inoue, Satoshi; Oshiumi, Hiroyuki; Seya, Tsukasa; Nakano, Hiroyasu; Tanaka, Yuetsu; Iwai, Kazuhiro; Inoue, Jun-Ichiro
2017-01-01
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation.
Tokunaga, Fuminori; Goto, Eiji; Komatsu, Ginga; Saeki, Yasushi; Tanaka, Keiji; Takahashi, Hirotaka; Sawasaki, Tatsuya; Inoue, Satoshi; Oshiumi, Hiroyuki; Seya, Tsukasa; Nakano, Hiroyasu; Tanaka, Yuetsu; Iwai, Kazuhiro
2017-01-01
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation. PMID:28103322
Photoactive platinum diimine complexes showing induced cancer cell death by apoptosis.
Zhang, Zhigang; Dai, Ruihui
2017-02-01
Photoinduced cytotoxicity mediated by a triphenylenamine-modified platinum diimine complex in human breast adenocarcinoma cells has been studied by cell viability assay. The triphenylenamine-modified platinum diimine complex showed more potent cytotoxicity in light than its carboxylate-modified analogue. To gain insights into the mechanism of photodynamic activity of this class of platinum diimine complexes, flow cytometric analyses were performed. The results suggest that upon irradiation the two platinum diimine complexes studied could induce cell cycle arrest in G 2 /M or S phase, and both of them could induce cancer cell death by apoptosis.
A role for the RNA pol II–associated PAF complex in AID-induced immune diversification
Willmann, Katharina L.; Milosevic, Sara; Pauklin, Siim; Schmitz, Kerstin-Maike; Rangam, Gopinath; Simon, Maria T.; Maslen, Sarah; Skehel, Mark; Robert, Isabelle; Heyer, Vincent; Schiavo, Ebe; Reina-San-Martin, Bernardo
2012-01-01
Antibody diversification requires the DNA deaminase AID to induce DNA instability at immunoglobulin (Ig) loci upon B cell stimulation. For efficient cytosine deamination, AID requires single-stranded DNA and needs to gain access to Ig loci, with RNA pol II transcription possibly providing both aspects. To understand these mechanisms, we isolated and characterized endogenous AID-containing protein complexes from the chromatin of diversifying B cells. The majority of proteins associated with AID belonged to RNA polymerase II elongation and chromatin modification complexes. Besides the two core polymerase subunits, members of the PAF complex, SUPT5H, SUPT6H, and FACT complex associated with AID. We show that AID associates with RNA polymerase-associated factor 1 (PAF1) through its N-terminal domain, that depletion of PAF complex members inhibits AID-induced immune diversification, and that the PAF complex can serve as a binding platform for AID on chromatin. A model is emerging of how RNA polymerase II elongation and pausing induce and resolve AID lesions. PMID:23008333
Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping
2013-01-01
Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397
Fišar, Z; Hroudová, J; Singh, N; Kopřivová, A; Macečková, D
2016-01-01
Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).
Immunodetection of human topoisomerase I-DNA covalent complexes
Patel, Anand G.; Flatten, Karen S.; Peterson, Kevin L.; Beito, Thomas G.; Schneider, Paula A.; Perkins, Angela L.; Harki, Daniel A.; Kaufmann, Scott H.
2016-01-01
A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15–30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo. PMID:26917015
Rhenals, Maricela Viola; Strasberg-Rieber, Mary; Rieber, Manuel
2010-02-25
In contrast to other metal-dithiocarbamate [DEDTC] complexes, the copper-DEDTC complex is highly cytotoxic, inducing oxidative stress, preferentially in tumor cells. Because nitric oxide (NO) forms adducts with Cu[DEDTC](2), we investigated whether NO donors like S-nitroso-N-acetyl penicillamine (SNAP) or sodium nitroprusside (SNP), and nitrite, a NO decomposition product, modulate Cu[DEDTC](2) cytotoxicity against human tumor cells. We show that apoptosis-associated PARP cleavage and inducible nitric oxide synthase (iNOS) down-regulation induced by nanomolar Cu[DEDTC](2), are counteracted by 50 muM SNAP, SNP, or CoCl(2), an inducer of hypoxia and NO signaling. Nitrite was stochiometrically effective in antagonizing Cu[DEDTC](2) cytotoxicity and inducing shifts in the absorption spectrum of the binary complex in the 280 and 450 nm regions. Subtoxic concentrations of Cu[DEDTC](2) became lethal when tumor cells were pretreated with c-PTIO, a membrane-impermeable scavenger for extracellular NO. Our results suggest that: (a) reactive oxygen species induced by Cu[DEDTC](2) are scavenged by nitrite released from NO, (b) the extent of lethality of Cu[DEDTC](2) is dependent on the reciprocal formation of an inactive ternary Cu[DEDTC](2)NO copper-nitrosyl complex.
TRPC3-Nox2 complex mediates doxorubicin-induced myocardial atrophy
Shimauchi, Tsukasa; Numaga-Tomita, Takuro; Ito, Tomoya; Nishimura, Akiyuki; Matsukane, Ryosuke; Oda, Sayaka; Hoka, Sumio; Ide, Tomomi; Koitabashi, Norimichi; Uchida, Koji; Sumimoto, Hideki; Mori, Yasuo
2017-01-01
Myocardial atrophy is a wasting of cardiac muscle due to hemodynamic unloading. Doxorubicin is a highly effective anticancer agent but also induces myocardial atrophy through a largely unknown mechanism. Here, we demonstrate that inhibiting transient receptor potential canonical 3 (TRPC3) channels abolishes doxorubicin-induced myocardial atrophy in mice. Doxorubicin increased production of ROS in rodent cardiomyocytes through hypoxic stress–mediated upregulation of NADPH oxidase 2 (Nox2), which formed a stable complex with TRPC3. Cardiomyocyte-specific expression of TRPC3 C-terminal minipeptide inhibited TRPC3-Nox2 coupling and suppressed doxorubicin-induced reduction of myocardial cell size and left ventricular (LV) dysfunction, along with its upregulation of Nox2 and oxidative stress, without reducing hypoxic stress. Voluntary exercise, an effective treatment to prevent doxorubicin-induced cardiotoxicity, also downregulated the TRPC3-Nox2 complex and promoted volume load–induced LV compliance, as demonstrated in TRPC3-deficient hearts. These results illustrate the impact of TRPC3 on LV compliance and flexibility and, focusing on the TRPC3-Nox2 complex, provide a strategy for prevention of doxorubicin-induced cardiomyopathy. PMID:28768915
Jeong, Jong Cheol; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Ryu, Ji Won; Kim, Dong Ki; Joo, Kwon Wook; Kim, Hyun Kyung
2016-01-01
Neutrophils can release the DNA-histone complex into circulation following exposure to inflammatory stimuli. This prospective study investigated whether the DNA-histone complex and other biomarkers could predict major cardiovascular adverse events (MACEs) in hemodialysis (HD) patients. The levels of circulating DNA-histone complexes, cell-free DNA, interleukin (IL)-6, and neutrophil elastase were measured in 60 HD patients and 28 healthy controls. MACE was assessed at 24 months. Uremic toxin-induced neutrophil released contents were measured in vitro. Compared with controls, HD patients showed higher levels of DNA-histone complexes and IL-6. The DNA-histone complex level was inversely associated with the Kt/V. In a multivariable Cox analysis, the high level of DNA-histone complexes was a significant independent predictor of MACE. The uremic toxins induced DNA-histone complex formation in normal neutrophils in vitro. The DNA-histone complex is a potentially useful marker to predict MACE in HD patients. Uremic toxins induced DNA-histone complex formation in vitro. © 2015 S. Karger AG, Basel.
Influence of metal ions on flavonoid protection against asbestos-induced cell injury.
Kostyuk, V A; Potapovich, A I; Vladykovskaya, E N; Korkina, L G; Afanas'ev, I B
2001-01-01
Influence of metal ions (Fe2+, Fe3+, Cu2+, Zn2+) on the protective effect of rutin, dihydroquercetin, and green tea epicatechins against in vitro asbestos-induced cell injury was studied. Metals have been found to increase the capacity of rutin and dihydroquercetin to protect peritoneal macrophages against chrysotile asbestos-induced injury. The data presented here show that this effect is due to the formation of flavonoid metal complexes, which turned out to be more effective radical scavengers than uncomplexed flavonoids. At the same time epicatechins and their metal complexes have similar antiradical properties and protective capacities against the asbestos induced injury of macrophages. Metal complexes of all flavonoids were found to be considerably more potent than parent flavonoids in protecting red blood cells against asbestos-induced injury. It was also found that the metal complexes of all flavonoids were absorbed by chrysotile asbestos fibers considerably better than uncomplexed compounds and probably for this reason flavonoid metal complexes have better protective properties against asbestos induced hemolysis. Thus, the results of the present study show that flavonoid metal complexes may be effective therapy for the inflammatory response associated with the inhalation of asbestos fiber. The advantage of their application could be the strong increase in ROS scavenging by flavonoids and finally a better cell protection under the conditions of cellular oxidative stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yong; Fang, Shi-ji; Zhu, Li-juan
Highlights: • LDI increases ALP activity, promotes type I collagen (Col I)/Runx2 mRNA expression. • LDI induces DNA–PKcs activation, which is required for osteoblast differentiation. • Akt activation mediates LDI-induced ALP activity and Col I/Runx2 mRNA increase. • DNA–PKcs–SIN1 complexation mediates LDI-induced Akt Ser-473 phosphorylation. • DNA–PKcs–SIN1 complexation is important for osteoblast differentiation. - Abstract: Low-dose irradiation (LDI) induces osteoblast differentiation, however the underlying mechanisms are not fully understood. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA–PKcs)–Akt signaling in LDI-induced osteoblast differentiation. We confirmed that LDI promoted mouse calvarial osteoblast differentiation, which wasmore » detected by increased alkaline phosphatase (ALP) activity as well as mRNA expression of type I collagen (Col I) and runt-related transcription factor 2 (Runx2). In mouse osteoblasts, LDI (1 Gy) induced phosphorylation of DNA–PKcs and Akt (mainly at Ser-473). The kinase inhibitors against DNA–PKcs (NU-7026 and NU-7441) or Akt (LY294002, perifosine and MK-2206), as well as partial depletion of DNA–PKcs or Akt1 by targeted-shRNA, dramatically inhibited LDI-induced Akt activation and mouse osteoblast differentiation. Further, siRNA-knockdown of SIN1, a key component of mTOR complex 2 (mTORC2), also inhibited LDI-induced Akt Ser-473 phosphorylation as well as ALP activity increase and Col I/Runx2 expression in mouse osteoblasts. Co-immunoprecipitation (Co-IP) assay results demonstrated that LDI-induced DNA–PKcs–SIN1 complexation, which was inhibited by NU-7441 or SIN1 siRNA-knockdown in mouse osteoblasts. In summary, our data suggest that DNA–PKcs–SIN1 complexation-mediated Akt activation (Ser-473 phosphorylation) is required for mouse osteoblast differentiation.« less
Lopes, Rosana; Solter, Philip F; Sisson, D David; Oyama, Mark A; Prosek, Robert
2006-06-01
To identify qualitative and quantitative differences in cardiac mitochondrial protein expression in complexes I to V between healthy dogs and dogs with natural or induced dilated cardiomyopathy (DCM). Left ventricle samples were obtained from 7 healthy dogs, 7 Doberman Pinschers with naturally occurring DCM, and 7 dogs with DCM induced by rapid right ventricular pacing. Fresh and frozen mitochondrial fractions were isolated from the left ventricular free wall and analyzed by 2-dimensional electrophoresis. Protein spots that increased or decreased in density by 2-fold or greater between groups were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometry. A total of 22 altered mitochondrial proteins were identified in complexes I to V. Ten and 12 were found in complex I and complexes II to V, respectively. Five were mitochondrial encoded, and 17 were nuclear encoded. Most altered mitochondrial proteins in tissue specimens from dogs with naturally occurring DCM were associated with complexes I and V, whereas in tissue specimens from dogs subjected to rapid ventricular pacing, complexes I and IV were more affected. In the experimentally induced form of DCM, only nuclear-encoded subunits were changed in complex I. In both disease groups, the 22-kd subunit was downregulated. Natural and induced forms of DCM resulted in altered mitochondrial protein expression in complexes I to V. However, subcellular differences between the experimental and naturally occurring forms of DCM may exist.
Yoo, Hyun Ju; Kim, Ji-Eun; Gu, Ja Yoon; Lee, Sae Bom; Lee, Hyun Joo; Hwang, Ho Young; Hwang, Yoohwa; Kim, Young Tae; Kim, Hyun Kyung
2016-11-01
Neutrophils play a role in xenograft rejection. When neutrophils are stimulated, they eject the DNA-histone complex into the extracellular space, called neutrophil extracellular traps (NET). We investigated whether NET formation actively occurs in the xenograft and contributes to coagulation and endothelial activation. Human whole blood was incubated with porcine aortic endothelial cells (pEC) from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. In the supernatant plasma from human blood, the level of the DNA-histone complex was measured by ELISA, and thrombin generation was measured using a calibrated automated thrombogram. Histone-induced tissue factor and adhesion molecule expression were measured by flow cytometry. pEC from both wild-type and GTKO pigs significantly induced DNA-histone complex formation in human whole blood. The DNA-histone complex produced shortened the thrombin generation time and clotting time. Histone alone dose-dependently induced tissue factor and adhesion molecule expression in pEC. Aurintricarboxylic acid pretreatment partially inhibited pEC-induced DNA-histone complex formation. DNA-histone complex actively generated upon xenotransplantation is a novel target to inhibit coagulation and endothelial activation. To prevent tissue factor and adhesion molecule expression, a strategy to block soluble histone may be required in xenotransplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Joseph, Anna-Maria; Hood, David A
2012-03-01
We investigated the assembly of the TOM complex within skeletal muscle under conditions of chronic contractile activity-induced mitochondrial biogenesis. Tom40 import into mitochondria was increased by chronic contractile activity, as was its time-dependent assembly into the TOM complex. These changes coincided with contractile activity-induced augmentations in the expression of key protein import machinery components Tim17, Tim23, and Tom22, as well as the cytosolic chaperone Hsp90. These data indicate the adaptability of the TOM protein import complex and suggest a regulatory role for the assembly of this complex in exercise-induced mitochondrial biogenesis. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.
Adnan, Humaira; Antenos, Monica; Kirby, Gordon M
2012-10-02
Glutathione S-transferases (GSTs) act as modulators of mitogen-activated protein kinase signal transduction pathways via a mechanism involving protein-protein interactions. We have demonstrated that GSTA1 forms complexes with JNK and modifies JNK activation during cellular stress, but the factors that influence complex association and dissociation are unknown. We hypothesized that menadione causes dissociation of GSTA1-JNK complexes, activates JNK, and the consequences of menadione exposure depend on GSTA1 expression. We demonstrate that menadione causes GSTA1-JNK dissociation and JNK activation in preconfluent Caco-2 cells, whereas postconfluent cells are resistant to this effect. Moreover, preconfluent cells are more sensitive than postconfluent cells to menadione-induced cytotoxicity. Activation of JNK is transient since removal of menadione causes GSTA1 to re-associate with JNK reducing cytotoxicity. Over-expression and knockdown of GSTA1 did not alter JNK activation by menadione or sensitivity to menadione-induced cytotoxicity. These results indicate that GSTA1-JNK complex integrity does not affect the ability of menadione to activate JNK. N-acetyl cysteine prevents GSH depletion and blocks menadione-induced complex dissociation, JNK activation and inhibits menadione-induced cytotoxicity. JNK activation and inhibits menadione-induced cytotoxicity. The data suggest that the mechanism of menadione-induced JNK activation involves the production of reactive oxygen species, likely superoxide anion, and intracellular GSH levels play an important role in preventing GSTA1-JNK complex dissociation, subsequent JNK activation and induction of cytotoxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Application of Δ- and λ-isomerism of octahedral metal complexes for inducing chiral nematic phases.
Sato, Hisako; Yamagishi, Akihiko
2009-11-20
The Delta- and Lambda-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(beta-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C(2) symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described.
Application of Δ- and Λ-Isomerism of Octahedral Metal Complexes for Inducing Chiral Nematic Phases
Sato, Hisako; Yamagishi, Akihiko
2009-01-01
The Δ- and Λ-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(β-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C2 symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described. PMID:20057959
NASA Astrophysics Data System (ADS)
Kamiya, Mamoru
1988-02-01
The fundamental features of the optical activity induced in dye-DNA intercalation complexes are studied by application of the trap potential model which is useful to evaluate the induced rotational strength without reference to detailed geometrical information about the intercalation complexes. The specific effect of the potential depth upon the induced optical activity is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving on a restricted helical segment just like an exciton trapped around the dye intercalation site. The parallel and perpendicular components of the induced rotational strength well reflect basic properties of the helicity effects about the longitudinal and tangential axes of the DNA helical cylinder. The trap potential model is applied to optimize the potential parameters so as to reproduce the ionic strength effect upon the optical activity induced to proflavine-DNA intercalation complexes. From relationships between the optimized potential parameters and ionic strengths, it is inferred that increase in the ionic strength contributes to the optical activity induced by the nearest-neighbour interaction between intercalated proflavine and DNA base pairs.
NASA Astrophysics Data System (ADS)
Pitigala, Duleepa; Desilva, L. A. A.; Perera, A. G. U.
2012-03-01
The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Research on development of artificial dyes for broadening the response is important in finding a solution. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2were observed under a simulated lamp equivalent to 1 sun illumination. The broad spectral response from 400 nm to 750 nm was also observed for the Mondo Grass dye compared to other natural dyes consists of anthocyanins or tannins.
Electrochemical removal of biofilms from titanium dental implant surfaces.
Schneider, Sebastian; Rudolph, Michael; Bause, Vanessa; Terfort, Andreas
2018-06-01
The infection of dental implants may cause severe inflammation of tissue and even bone degradation if not treated. For titanium implants, a new, minimally invasive approach is the electrochemical removal of the biofilms including the disinfection of the metal surface. In this project, several parameters, such as electrode potentials and electrolyte compositions, were varied to understand the underlying mechanisms. Optimal electrolytes contained iodide as well as lactic acid. Electrochemical experiments, such as cyclic voltammetry or measurements of open circuit potentials, were performed in different cell set-ups to distinguish between different possible reactions. At the applied potentials of E < -1.4 V, the hydrogen evolution reaction dominated at the implant surface, effectively lifting off the bacterial films. In addition, several disinfecting species are formed at the anode, such as triiodide and hydrogen peroxide. Ex situ tests with model biofilms of E. coli clearly demonstrated the effectiveness of the respective anolytes in killing the bacteria, as determined by the LIVE/DEAD™ assay. Using optimized electrolysis parameters of 30 s at 7.0 V and 300 mA, a 14-day old wildtype biofilm could be completely removed from dental implants in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.
Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites
NASA Astrophysics Data System (ADS)
Kang, Gyeongho; Choi, Jongmin; Park, Taiho
2016-03-01
Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3-/I-) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization.
Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; ...
2015-07-09
Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH 3NH 3PbI 3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH 3NH 3PbI 3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded averagemore » PCE of 16.3 ± 0.9%, which are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH 3NH 3PbI 3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.« less
Song, Dandan; Cui, Peng; Zhao, Xing; Li, Meicheng; Chu, Lihua; Wang, Tianyue; Jiang, Bing
2015-03-19
A tungsten trioxide (WO₃) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO₃ composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO₃ CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO₃ CE. Moreover, the use of Pt/WO₃ CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ∼2 μg cm(-2), while maintaining a much better performance. The excellent performance of Pt/WO₃ CE is attributed to the efficient electron injection and transport via WO₃ supporters, as well as the nanostructure array morphology of WO₃ for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO₃ nanoplate arrays for other applications.
Bella, Federico; Popovic, Jelena; Lamberti, Andrea; Tresso, Elena; Gerbaldi, Claudio; Maier, Joachim
2017-11-01
With the purpose of achieving stable dye-sensitized solar cells (DSSCs) with high efficiency, a new type of soft matter electrolyte is tested in which specific amounts of nanosized silica particles are finely dispersed in short-chained polyethylene glycol dimethylether encompassing an iodide/triiodide redox mediator. This results in a solid-liquid composite having synergistic electrical and favorable mechanical properties. The combination of interfacial effects and particle network formation promotes enhanced ion transport, which directly impacts the short-circuit photocurrent density. Thorough analysis reveals that this newly elaborated class of electrolytes is able to improve, at the same time, the thermal and long-term stability of DSSCs, as well as power conversion efficiency under standard and lower irradiation intensities. Lab-scale devices with champion efficiency exceeding 11% under attenuated sunlight (20 mW cm -2 , with a compact TiO 2 blocking layer) are obtained, along with impressively stable performance under both thermal stress and light soaking in an indoor environment (>96% performance retention after 2500 h of accelerated aging under full sun alternated with thermal ramps), matching the durability criteria applied to silicon solar cells for outdoor applications. The new findings might foster widespread practical application of DSSCs.
Enhanced gamma ray sensitivity in bismuth triiodide sensors through volumetric defect control
Johns, Paul M.; Baciak, James E.; Nino, Juan C.
2016-09-02
In some of the more attractive semiconducting compounds for ambient temperature radiation detector applications are impacted by low charge collection efficiency due to the presence of point and volumetric defects. This has been particularly true in the case of BiI 3, which features very attractive properties (density, atomic number, band gap, etc.) to serve as a gamma ray detector, but has yet to demonstrate its full potential. Here, we show that by applying growth techniques tailored to reduce defects, the spectral performance of this promising semiconductor can be realized. Gamma ray spectra from >100 keV source emissions are now obtainedmore » from high quality Sb:BiI 3 bulk crystals with limited concentrations of defects (point and extended). The spectra acquired in these high quality crystals feature photopeaks with resolution of 2.2% at 662 keV. Infrared microscopy is used to compare the local microstructure between radiation sensitive and non-responsive crystals. Our work demonstrates that BiI 3 can be prepared in melt-grown detector-grade samples with superior quality and can acquire the spectra from a variety of gamma ray sources.« less
NASA Astrophysics Data System (ADS)
Winter, H.; Christopher-Allison, E.; Brown, A. L.; Goforth, A. M.
2018-04-01
Herein, we report an aerobic synthesis method to produce bismuth nanoparticles (Bi NPs) with average diameters in the range 40-80 nm using commercially available bismuth triiodide (BiI3) as the starting material; the method uses only readily available chemicals and conventional laboratory equipment. Furthermore, size data from replicates of the synthesis under standard reaction conditions indicate that this method is highly reproducible in achieving Bi NP populations with low standard deviations in the mean diameters. We also investigated the mechanism of the reaction, which we determined results from the reduction of a soluble alkylammonium iodobismuthate precursor species formed in situ. Under appropriate concentration conditions of iodobismuthate anion, we demonstrate that burst nucleation of Bi NPs results from reduction of Bi3+ by the coordinated, redox non-innocent iodide ligands when a threshold temperature is exceeded. Finally, we demonstrate phase transfer and silica coating of the Bi NPs, which results in stable aqueous colloids with retention of size, morphology, and colloidal stability. The resultant, high atomic number, hydrophilic Bi NPs prepared using this synthesis method have potential for application in emerging x-ray contrast and x-ray therapeutic applications.
NASA Astrophysics Data System (ADS)
Pavithra, Nagaraj; Velayutham, David; Sorrentino, Andrea; Anandan, Sambandam
2017-06-01
A new series of transparent gel polymer electrolytes are prepared by adding various weight percent of thiourea coupled with poly(ethylene oxide) for the application of dye-sensitized solar cells. Coupling of thiourea in the presence of iodine undergoes dimerization reaction to produce formamidine disulfide. Fourier Transform Infrared spectroscopy shows that the interactions of thiourea and formamidine disulfide with electronegative ether linkage of poly(ethylene oxide) results in conformational changes of gel polymer electrolytes. Electrochemical impedance spectroscopy and linear sweep voltammetry experiments reveal an increment in ionic conductivity and tri-iodide diffusion coefficient, for thiourea modified gel polymer electrolytes. Finally, the prepared electrolytes are used as a redox mediator in dye-sensitized solar cells and the photovoltaic properties were studied. Apart from transparency, the gel polymer electrolytes with thiorurea show higher photovoltaic properties compared to bare gel polymer electrolyte and a maximum photocurrent efficiency of 7.17% is achieved for gel polymer electrolyte containing 1 wt% of thiourea with a short circuit current of 11.79 mA cm-2 and open circuit voltage of 834 mV. Finally, under rear illumination, almost 90% efficiency is retained upon compared to front illumination.
Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Nozohor, Mahnaz
2013-12-01
A novel dispersive liquid-liquid microextraction-solidified floating organic drop (DLLME-SFOD) method combined with fiber optic-linear array detection spectrophotometry has been developed for the indirect determination of selenium. The method is based on the oxidation of the I(-) to iodine by inorganic Se(IV). The produced I2 reacts with the excess of I(-) ions in acidic media to give triiodide ions. The I3(-) is then extracted into 1-undecanol by DLLME-SFOD upon the formation of an ion pair with cetyltrimethylammonium cation. The extracted ion pair is determined by measuring its absorption at 360 nm. The absorbance signal is proportional to the selenium concentration in the aqueous phase. Under optimum conditions, the method provided an enrichment factor of 250 with a detection limit of 16.0 μg L(-1) and a linear dynamic range of 40.0-1000.0 μg L(-1). The relative standard deviation was found to be 2.1% (n=7) at 100.0 μg L(-1) concentration level. The method was successfully applied to th e determination of selenium in water samples and selenium plus tablet. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chu, Zhaodong; Yang, Mengjin; Schulz, Philip; Wu, Di; Zhu, Kai; Li, Xiaoqin; Lai, Keji
The remarkable performance of organic-inorganic perovskite solar cells (PSCs) is challenging the dogma that solution-processed thin films are inevitably associated with inferior energy conversion efficiencies. The surprisingly low impact of polycrystallinity on the film quality highlights the unusual photo-response of intrinsic defects and grain boundaries in these materials. Here, we report the first quantitative nanoscale photoconductivity imaging on methylammonium lead triiodide (MAPbI3) thin films by microwave impedance microscopy with light stimulation. The local photoconductivity as a function of the above-gap laser power is consistent with the high carrier mobility and long lifetime of MAPbI3. The photo-response is largely uniform across grains and grain boundaries, which is direct evidence on the inherently benign nature of microstructures in the perovskite thin films. For encapsulated MAPbI3 films, the observed long-term degradation in photoconductivity begins with the disintegration of large grains due to the diffusion of water molecules through the capping layer. Our work suggests that the striking PSC performance is deeply rooted in the nanoscale optoelectronic properties of MAPbI3. We gratefully acknowledge financial support from NSF EFMA-1542747.
RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma.
Das, Arabinda; McDonald, Daniel G; Dixon-Mah, Yaenette N; Jacqmin, Dustin J; Samant, Vikram N; Vandergrift, William A; Lindhorst, Scott M; Cachia, David; Varma, Abhay K; Vanek, Kenneth N; Banik, Naren L; Jenrette, Joseph M; Raizer, Jeffery J; Giglio, Pierre; Patel, Sunil J
2016-06-01
Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.
Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
Inobe, Tomonao; Nukina, Nobuyuki
2016-07-01
Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Arikawa, Yasuhiro; Hiura, Junko; Tsuchii, Chika; Kodama, Mika; Matsumoto, Naoki; Umakoshi, Keisuke
2018-05-17
A synthetic NO reduction cycle (2NO + 2H+ + 2e- → N2O + H2O) on a dinuclear platform {(TpRu)2(μ-pz)2} (Tp = HB(pyrazol-1-yl)3) was achieved, where an unusual N-N coupling complex was included. Moreover, an interesting photo-induced conversion of the N-N coupling complex to an oxido-bridged complex was revealed.
Chen, Wanmin; Tang, Xiaoliang; Dou, Wei; Ju, Zhenghua; Xu, Benhua; Xu, Wenxuan; Liu, Weisheng
2016-04-14
A semi-rigid ligand could capture effectively Yb(3+) ions to form a stable Yb(3+) complex and provide a potential cavity to accommodate alkali metal ions. Only K(+) ions could induce the Yb(3+) complex to form a 1D coordination polymer and promote the in situ formation of an NIR membrane coated with bigger Yb(3+) complex crystallites under mild conditions.
Laskin, Julia [Richland, WA; Futrell, Jean H [Richland, WA
2008-04-29
The invention relates to a method and apparatus for enhanced sequencing of complex molecules using surface-induced dissociation (SID) in conjunction with mass spectrometric analysis. Results demonstrate formation of a wide distribution of structure-specific fragments having wide sequence coverage useful for sequencing and identifying the complex molecules.
Sleep self-intoxication and sleep driving as rare zolpidem-induced complex behaviour.
Paulke, Alexander; Wunder, Cora; Toennes, Stefan W
2015-01-01
The GABA(A) receptor agonist zolpidem has been used for treatment of insomnia since years, but special side effects have been reported. These side effects were called zolpidem-induced sleep-related complex behaviour. Such complex behaviour is associated with somnambulism and includes sleepwalking, sleep eating, sleep conversation and sleep driving. Two cases of zolpidem-induced sleep-related complex behaviour following self-intoxication, sleep driving and amnesia are presented. In both cases, the subjects reported the voluntary intake of only one zolpidem tablet of 10 mg and amnesia for the time afterwards. Shortly after the onset of the drug's action, both individuals drifted into a somnambulism-like state and toxicological blood analysis suggested the intake of the remaining zolpidem tablets which might be called "sleep intoxication". Later, the subjects were arrested by police after driving under drug influence and not realizing the situation. Retrospectively, both subjects suffered from psychiatric disorders and in case 2, the subject was treated for depression with doxepin. Consequently, these co-factors may have increased the risk for the occurrence of the sleep-related complex behaviour. Involuntary self-intoxication should be taken into account in addition to the known pattern of zolpidem-induced complex behaviour. In legal cases, the forensic expert has to assess the blood concentration of zolpidem in evaluating this strange behaviour. Amnesia and incoherence of speech, disorganization of behaviour, inability to realize the situation and mood changes may indicate a zolpidem-induced somnambulism-like state with sleep-related complex behaviour.
Choi, Won-Seok; Kruse, Shane E.; Palmiter, Richard D.; Xia, Zhengui
2008-01-01
Inhibition of mitochondrial complex I is one of the leading hypotheses for dopaminergic neuron death associated with Parkinson's disease (PD). To test this hypothesis genetically, we used a mouse strain lacking functional Ndufs4, a gene encoding a subunit required for complete assembly and function of complex I. Deletion of the Ndufs4 gene abolished complex I activity in midbrain mesencephalic neurons cultured from embryonic day (E) 14 mice, but did not affect the survival of dopaminergic neurons in culture. Although dopaminergic neurons were more sensitive than other neurons in these cultures to cell death induced by rotenone, MPP+, or paraquat treatments, the absence of complex I activity did not protect the dopaminergic neurons, as would be expected if these compounds act by inhibiting complex 1. In fact, the dopaminergic neurons were more sensitive to rotenone. These data suggest that dopaminergic neuron death induced by treatment with rotenone, MPP+, or paraquat is independent of complex I inhibition. PMID:18812510
Glover, Sam L.; Jonas, William; McEachron, Troy; Pawlinski, Rafal; Arepally, Gowthami M.; Key, Nigel S.; Mackman, Nigel
2012-01-01
Heparin-induced thrombocytopenia (HIT) is a potentially devastating form of drug-induced thrombocytopenia that occurs in patients receiving heparin for prevention or treatment of thrombosis. Patients with HIT develop autoantibodies to the platelet factor 4 (PF4)/heparin complex, which is termed the HIT Ab complex. Despite a decrease in the platelet count, the most feared complication of HIT is thrombosis. The mechanism of thrombosis in HIT remains poorly understood. We investigated the effects of the HIT Ab complex on tissue factor (TF) expression and release of TF-positive microparticles in peripheral blood mononuclear cells and monocytes. To model these effects ex vivo, we used a murine mAb specific for the PF4/heparin complex (KKO), as well as plasma from patients with HIT. We found that the HIT Ab complex induced TF expression in monocytes and the release of TF-positive microparticles. Further, we found that induction of TF is mediated via engagement of the FcγRI receptor and activation of the MEK1-ERK1/2 signaling pathway. Our data suggest that monocyte TF may contribute to the development of thrombosis in patients with HIT. PMID:22394597
Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H–SiC
NASA Astrophysics Data System (ADS)
Igumbor, E.; Olaniyan, O.; Mapasha, R. E.; Danga, H. T.; Omotoso, E.; Meyer, W. E.
2018-05-01
Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H–SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H–SiC are presented. We explore complexes where substitutional N/N or B/B sits near a Si (V) or C (V) vacancy to form vacancy-complexes (NV, NV, NV, NV, BV, BV, BV and BV). The energies of formation of the N related vacancy-complexes showed the NV to be energetically stable close to the valence band maximum in its double positive charge state. The NV is more energetically stable in the double negative charge state close to the conduction band minimum. The NV on the other hand, induced double donor level and the NV induced a double acceptor level. For B related complexes, the BV and BV were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the BV become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.
Norovirus P particle efficiently elicits innate, humoral and cellular immunity.
Fang, Hao; Tan, Ming; Xia, Ming; Wang, Leyi; Jiang, Xi
2013-01-01
Norovirus (NoV) P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP) of a GII.4 NoV (VA387) in mice. The P domain complexes induced significant central memory CD4(+) T cell phenotypes (CD4(+) CD44(+) CD62L(+) CCR7(+)) and activated polyclonal CD4(+) T cells as shown by production of Interleukin (IL)-2, Interferon (IFN)-γ, and Tumor Necrosis Factor (TNF)-α. Most importantly, VA387-specific CD4(+) T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4(+) T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC) maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs) elicited proliferation of specific CD4(+) T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli), it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.
Rotational strength of dye-helix complexes as studied by a potential model theory
NASA Astrophysics Data System (ADS)
Kamiya, Mamoru
1988-03-01
The fundamental features of the induced optical activity in dye-helix complexes are clarified by the trap potential model. The effect of the potential depth on the induced rotational strength is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving along a restricted helix segment just like an exciton trapped around a dye intercalation site. The potential parameters have been optimized so as to reproduce the ionic strength effect upon the rotational strengths induced in proflavine-DNA intercalation complexes.
NASA Astrophysics Data System (ADS)
Harlow, Lisa Jean
The use of energy is going to continue to increase rapidly due to population and economic advances occurring throughout the world. The most widely used energies produce carbon dioxide during their combustion and have finite limits on how much of these resources are available. A strong push to utilizing renewable energy is necessary to keep up with the demand. The only renewable energy that has unlimited supply is solar. Our goal is to find cost-effective alternatives to historically the most extensively used materials in dye-sensitized solar cells. In order to rely on efficiency changes coinciding with the introduction of a new component, a standard baseline of performance is necessary to establish. A reproducible fabrication procedure composed of standard materials was instituted; the efficiency parameters exhibited a less than 10% standard deviation for any set of solar cells. Any modifications to the cell components would be apparent in the change in efficiency. Our cell modifications focused on economical alternatives to the electrolyte, the counter electrode and the chromophore. Solution-based electrolytes were replaced with a non-volatile ionic liquid, 1-methyl-3-propylimidazolium iodide, and then a poly(imidazole-functionalized) silica nanoparticle. Solid-state electrolytes reduce or prevent leakage and could ease manufacturing in large-scale devices. Platinum has been the counter electrode catalyst primarily used with the iodide/triiodide redox couple, but is a rare metal making it rather costly. We reduce platinum loading by introducing a novel counter electrode that employs platinum nanoparticles embedded on a graphene nanoplatelet paper. The highly conductive carbon base also negates the use of the expensive conductive substrate necessary for the platinum catalyst, further reducing cost. We also study the differences in transitioning from ruthenium polypyridyls to iron-based chromophores in dye-sensitized solar cells. Iron introduces low-lying ligand field states which the charge-transfer transitions necessary for electron injection deactivate to. We study a series of molecules that converts from a historically well-known ruthenium dye stepwise to an iron-based chromophore that has exhibited photocurrent previously. Converting to iron proves to be complicated and we aim to continue our investigation in order to gain a better understanding of the complexity.
Atomic description of the immune complex involved in heparin-induced thrombocytopenia
Cai, Zheng; Yarovoi, Serge V.; Zhu, Zhiqiang; ...
2015-09-22
Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by immune complexes containing platelet factor 4 (PF4), antibodies to PF4 and heparin or cellular glycosaminoglycans (GAGs). Here we solve the crystal structures of the: (1) PF4 tetramer/fondaparinux complex, (2) PF4 tetramer/KKO-Fab complex (a murine monoclonal HIT-like antibody) and (3) PF4 monomer/RTO-Fab complex (a non-HIT anti-PF4 monoclonal antibody). Fondaparinux binds to the ‘closed’ end of the PF4 tetramer and stabilizes its conformation. This interaction in turn stabilizes the epitope for KKO on the ‘open’ end of the tetramer. Fondaparinux and KKO thereby collaborate to ‘stabilize’ the ternary pathogenic immune complex. Bindingmore » of RTO to PF4 monomers prevents PF4 tetramerization and inhibits KKO and human HIT IgG-induced platelet activation and platelet aggregation in vitro, and thrombus progression in vivo. Lastly, the atomic structures provide a basis to develop new diagnostics and non-anticoagulant therapeutics for HIT.« less
Structural basis of Arp2/3 complex inhibition by GMF, Coronin, and Arpin
Sokolova, Olga S.; Chemeris, Angelina; Guo, Siyang; Alioto, Salvatore L.; Gandhi, Meghal; Padrick, Shae; Pechnikova, Evgeniya; David, Violaine; Gautreau, Alexis; Goode, Bruce L.
2017-01-01
The evolutionarily conserved Arp2/3 complex plays a central role in nucleating the branched actin filament arrays that drive cell migration, endocytosis, and other processes. To better understand Arp2/3 complex regulation, we used single particle electron microscopy to compare the structures of Arp2/3 complex bound to three different inhibitory ligands: GMF, Coronin, and Arpin. Although the three inhibitors have distinct binding sites on Arp2/3 complex, they each induced an ‘open’ nucleation-inactive conformation. Coronin promoted a standard (previously described) open conformation of Arp2/3 complex, with the N-terminal β-propeller domain of Coronin positioned near the p35/ARPC2 subunit of Arp2/3 complex. GMF induced two distinct open conformations of Arp2/3 complex, which correlated with two suggested binding sites for GMF. Further, GMF synergized with Coronin in inhibiting actin nucleation by Arp2/3 complex. Arpin, which uses VCA-related acidic (A) motifs to interact with the Arp2/3 complex, induced the standard open conformation, and two new masses appeared at positions near Arp2 and Arp3. Further, Arpin showed additive inhibitory effects on Arp2/3 complex with Coronin and GMF. Together, these data suggest that Arp2/3 complex conformation is highly polymorphic and that its activities can be controlled combinatorially by different inhibitory ligands. PMID:27939292
Bacsi, Attila; Woodberry, Mitchell; Widger, William; Papaconstantinou, John; Mitra, Sankar; Peterson, Johnny W.; Boldogh, Istvan
2011-01-01
3-Nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase (SDH) at complex II of the mitochondrial electron transport chain induces cellular energy deficit and oxidative stress-related neurotoxicity. In the present study, we identified the site of reactive oxygen species production in mitochondria. 3-NPA increased O2•− generation in mitochondria respiring on the complex I substrates pyruvate + malate, an effect fully inhibited by rotenone. Antimycin A increased O2•− production in the presence of complex I and/or II substrates. Addition of 3-NPA markedly increased antimycin A-induced O2•− production by mitochondria incubated with complex I substrates, but 3-NPA inhibited O2•− formation driven with the complex II substrate succinate. At 0.6 μM, myxothiazol inhibits complex III, but only partially decreases complex I activity, and allowed 3-NPA-induced O2•− formation; however, at 40 μM myxothiazol (which completely inhibits both complexes I and III) eliminated O2•− production from mitochondria respiring via complex I substrates. These results indicate that in the presence of 3-NPA, mitochondria generate O2•− from a site between the ubiquinol pool and the 3-NPA block in the respiratory complex II. PMID:17011837
Zhao, Xin; Chen, Yun-Xia; Li, Chun-Sheng
2015-04-01
To investigate changes in circulating complement component C3, membrane attack complex (MAC), and mannose-binding lectin (MBL) in patients with sepsis-induced disseminated intravascular coagulation (DIC). Adult septic patients admitted to the emergency department (ED) of Beijing Chao-Yang Hospital were enrolled. A DIC score of 5 or higher was considered sepsis-induced DIC. Circulating C3, MAC, and MBL levels were detected on ED arrival and compared between patients with and without DIC. The predictive value of C3, MAC, and MBL for sepsis-induced DIC at ED arrival and development of DIC after admission were assessed by receiver operating characteristic curve and logistic regression. We enrolled 267 septic patients between February and December 2013. Complement 3, MAC, and MBL were higher in the DIC group (P < .01). Membrane attack complex was the independent predictor of sepsis-induced DIC. The area under the curve of MAC in predicting sepsis-induced DIC was 0.793. During hospitalization, 25 patients without DIC at enrollment developed DIC. Membrane attack complex and Sequential Organ Failure Assessment independently predicted progress to DIC. The area under the curve of MAC was 0.741. Complement 3, MAC, and MBL were significantly increased in septic patients with DIC. Membrane attack complex independently predicted sepsis-induced DIC and development of DIC after ED admission. Copyright © 2014 Elsevier Inc. All rights reserved.
Shin, Seulmee; Kim, Seulah; Oh, Hee-Eun; Kong, Hyunseok; Shin, Eunju; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil; Kim, Kyungjae
2012-06-01
Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing PPARγ/LXRα but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.
Shin, Seulmee; Kim, Seulah; Oh, Hee-Eun; Kong, Hyunseok; Shin, Eunju; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil
2012-01-01
Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing PPARγ/LXRα but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D. PMID:22916045
Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.
Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh
2016-02-01
Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant. © 2016 Institute of Food Technologists®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, M.; Harty, K.M.
1993-04-01
The Farmington Siding landslide complex covers an area of 19.5 km[sup 2] in central Davis County. First identified and mapped in the 1970s, the feature was classified by previous researchers as a liquefaction-induced lateral spread based on surface geomorphology and exposures on the landslide complex. This was the first landslide in Utah to be attributed to earthquake-induced liquefaction. Geomorphic and geologic evidence indicate that the Farmington Sliding landslide complex likely consists of liquefaction-induced landslides that failed by means of both flow failure and lateral spreading. The landslide complex is located in an area underlain primarily by fine-grained deposits of Pleistocenemore » Lake Bonneville and Holocene Great Salt Lake. Geomorphic features of the landslide complex include main and minor scarps, hummocks, closed depressions, and transverse lineaments. The main scarp consists mostly of a series of arcuate scallops near the left flank of the landslide, but it is a relatively linear, single scarp near the right flank of the landslide. Hummocks and closed depressions are most common near the head region of the landslide complex. Failure of the Farmington Sliding landslide complex has occurred at least twice. The older, distal portion of the landslide complex is cut by the Gilbert shoreline of the Bonneville lake cycle, indicating that landsliding occurred more than 10,000 years ago. In the younger portion of the landslide complex, landsliding has disrupted the Gilbert shoreline. Radiocarbon age estimates from trenches on a hummock near the main scarp of the younger landslide indicate that slope failure occurred sometime between about 2,730 [+-] 370 cal. yr B.P. and 4,530 [+-] 300 cal. yr B.P., possibly during the penultimate or antepenultimate surface-faulting earthquake on the Weber segment of the Wasatch fault zone.« less
Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu
2015-01-01
We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts. PMID:25595445
Butyrate induces apoptosis by activating PDC and inhibiting complex I through SIRT3 inactivation.
Xu, Sha; Liu, Cai-Xia; Xu, Wei; Huang, Lei; Zhao, Jian-Yuan; Zhao, Shi-Min
2017-01-01
The underlying anticancer effects of butyrate, an end-product of the intestinal microbial fermentation of dietary fiber, remain elusive. Here, we report that butyrate promotes cancer cell apoptosis by acting as a SIRT3 inhibitor. Butyrate inhibits SIRT3 both in cultured cells and in vitro . Butyrate-induced PDHA1 hyperacetylation relieves the inhibitory phosphorylation of PDHA1 at serine 293, thereby activating an influx of glycolytic intermediates into the tricarboxylic acid (TCA) cycle and reversing the Warburg effect. Meanwhile, butyrate-induced hyperacetylation inactivates complex I of the electron transfer chain and prevents the utilization of TCA cycle intermediates. These metabolic stresses promote apoptosis in hyperglycolytic cancer cells, such as HCT116 p53 -/- cells. SIRT3 deacetylates both PDHA1 and complex I. Genetic ablation of Sirt3 in mouse hepatocytes abrogated the ability of butyrate to induce apoptosis. Our results identify a butyrate-mediated anti-tumor mechanism and indicate that the combined activation of PDC and inhibition of complex I is a novel tumor treatment strategy.
Induction of DNA-protein cross-links by platinum compounds.
Woźniak, K; Walter, Z
2000-01-01
The differences between cis- and trans-diamminedichloroplatinum II (DDP) in forming DNA-protein cross-links in isolated human lymphocytes were investigated. Both cis- and trans-DDP can induce DNA-protein cross-links. We show that cis-DDP forms complexes between DNA and proteins faster than trans-DDP. This results from an increase in the quantity of DNA and platinum together with an increase in drug concentration. Under the same conditions trans-DDP causes a decrease in DNA-forming complexes with proteins. After a 12 h incubation of lymphocytes we observe a similar level of DNA in DNA-protein cross-links induced by DDP isomers, but more platinum appears in complexes induced by trans-DDP. The results obtained demonstrate that the antitumor drug - cis-DDP and the clinically ineffective trans-DDP induce links between DNA and proteins in a different manner. We suggest that the therapeutic activity of cis-DDP can in part arise from rapidly forming DNA-protein complexes which can destroy the most important cellular processes, such as replication and transcription.
Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk
2016-07-25
The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yu, Zhanyang; Zhang, Yu; Liu, Ning; Yuan, Jing; Lin, Li; Zhuge, Qichuan; Xiao, Jian; Wang, Xiaoying
2016-07-01
Neuroglobin (Ngb) is a tissue globin specifically expressed in brain neurons. Recent studies by our laboratory and others have demonstrated that Ngb is protective against stroke and related neurological disorders, but the mechanisms remain poorly understood. We previously identified cytochrome c1 (Cyc1) as an Ngb-interacting molecule by yeast two-hybrid screening. Cyc1 is a subunit of mitochondria complex III, which is a component of mitochondrial respiratory chain and a major source of reactive oxygen species (ROS) production under both physiological and pathological conditions. In this study, we for the first time defined Ngb-Cyc1 binding, and investigated its roles in oxygen-glucose deprivation (OGD)/reoxygenation-induced neurotoxicity and ROS production in primary neurons. Immunocytochemistry and co-immunoprecipitation validated Ngb-Cyc1 binding, which was significantly increased by OGD and Ngb overexpression. We found 4 h OGD with/without 4 h reoxygenation significantly increased complex III activity, but this activity elevation was significantly attenuated in three groups of neurons: Ngb overexpression, specific complex III inhibitor stigmatellin, or stigmatellin plus Ngb overexpression, whereas there was no significant differences between these three groups, suggesting Ngb-Cyc1 binding may function in suppressing OGD-mediated complex III activity elevation. Importantly, these three groups of neurons also showed significant decreases in OGD-induced superoxide anion generation and neurotoxicity. These results suggest that Ngb can bind to mitochondrial complex III subunit Cyc1, leading to suppression of OGD-mediated complex III activity and subsequent ROS production elevation, and eventually reduction of OGD-induced neurotoxicity. This molecular signaling cascade may be at least part of the mechanisms of Ngb neuroprotection against OGD-induced neurotoxicity.
cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Rajesh; Xiang, Wenpei; Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
2012-06-22
Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1more » (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.« less
The Chameleonic Nature of Platinum(II) Imidazopyridine Complexes.
Pinter, Piermaria; Pittkowski, Rebecca; Soellner, Johannes; Strassner, Thomas
2017-10-12
The synthesis and characterization of cyclometalated C^C* platinum(II) complexes with unique photophysical properties, aggregation induced enhancement of the quantum yields with a simultaneous decrease of phosphorescence lifetimes, is reported. Additionally, a change of emission color is induced by variation of the excitation wavelength. The aggregation behavior of these complexes is controlled by the steric demand of the substituents. The photophysical properties of these complexes are investigated through emission-excitation matrix analysis (EEM). The monomeric complexes are excellent room temperature phosphorescent blue emitters with emission maxima below 470 nm and quantum yields of up to 93 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The pressure tunning Raman and IR spectral studies on the multinuclear metal carbyne complexes
NASA Astrophysics Data System (ADS)
Xu, Zhenhua; Butler, Ian S.; Mayr, Andreas
2005-03-01
The Raman and infrared (IR) spectra of four tungsten metal carbyne complexes I, II, IV and V [Cl(CO) 2(L)W tbnd CC 6H 4sbnd (C tbnd CC 6H 4) nsbnd N tbnd C sbnd ] 2M (L = TMEDA, n = 0, M = PdI 2 or ReCl(CO) 3; L = DPPE, n = 1, M = PdI 2 or ReCl(CO) 3) were studied at high external pressure. Their pressure-induced phase transitions were observed near 20 kbar (complexes I), 15 kbar (complexes II), 25 kbar (complex IV) and 30 kbar (complex V). The pressure-induced phase transition likely is first order in complex I and the pressure-induced phase transitions of complexes II, IV and V are mostly second order. The pressure sensitivities d ν/d p of ν(W tbnd C) are high in the low-pressure phase area and very low in the high-pressure phase area due to the pressure strengthening π back-bonding from metal W to π * orbital of C tbnd O in fragment Cl(CO) 2(L)W tbnd C. The pressure strengthening metal π back-bonding from metal Re or Pd to π * orbital of C tbnd O or C tbnd N also happened to both of central metal centers of NCPd(I 2)CN in complex I and NCReCl(CO) 3CN in complex II.
Electrical control of 2D magnetism in bilayer CrI 3
Huang, Bevin; Clark, Genevieve; Klein, Dahlia R.; ...
2018-04-23
Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction. Owing to their unique magnetic properties, the recently reported two-dimensional magnets provide a new system for studying these features. For instance, a bilayer of chromium triiodide (CrI 3) behaves as a layered antiferromagnet with a magnetic field-driven metamagneticmore » transition. Here, we demonstrate electrostatic gate control of magnetism in CrI 3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Here, our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.« less
NASA Astrophysics Data System (ADS)
Tahir, Dahlang; Satriani, Wilda; Gareso, P. L.; Abdullah, B.
2018-03-01
DSSC (Dye-Sensitized Solar Cell) prototype has been investigated using Jatropha leaves and purple Chrysanthemum flowers as natural dyes. DSSC consists of working electrode and counter electrode. A working electrode composed of semiconductor nanoparticles TiO2 that has been coated with dye molecules. Dye molecules serve as light photon catchers, while semiconductor nanoparticles TiO2 function to absorb and forward photons into electrons. In the electrode counter given catalyst carbon, serves to accelerate the reaction kinetics of triiodide reduction process on transparent conductive oxide (TCO). DSSC using TiO2 as a semiconductor material and natural dyes as sensitizer from Jatropha leaves and purple Chrysanthemum flowers are successful produced. The physical properties of the working electrode have been determined by using XRD and the chemical properties of the TiO2 powder and dye powder using FTIR and dye solution using UV-Vis. The resulted fabrications are also examined its I-V characteristics. The best performance is generated by mixed dye 1.91 x 10-3 % compared than those DSSC for dye extracted from Jatropha leaves or purple Chrysanthemum. The characterization results show that the higher of the absorption wavelength of the DSSC efficiency is high.
NASA Astrophysics Data System (ADS)
Sasikumar, Ragu; Chen, Tse-Wei; Chen, Shen-Ming; Rwei, Syang-Peng; Ramaraj, Sayee Kannan
2018-05-01
Tin(IV) oxide nanoparticles (SnO2 NPs) doped on the surface of graphene oxide (GO) sheets for application in Dye-Sensitized Solar Cells (DSSCs). The effective incorporation of SnO2 on the surface of GO sheets were confirmed by powder X-ray diffraction (PXRD), Fourier transform infra-red spectroscopy (FT-IR), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and Raman spectroscopy. The morphology of the GO/SnO2 hybrid nanocomposite was confirmed by field emission scanning electron microscopy (FE-SEM) analysis. This current study involvement with the effect of different photo-anodes such as GO, SnO2, and GO/SnO2 hybrid nanocomposite on the power conversion efficiency (PCE) of the triiodide electrolyte based DSSCs. Remarkably, GO/SnO2 hybrid nanocomposite based photo-anode for DSSC observed PCE of 8.3% and it is about 12% higher than that of un-doped TiO2 photo-anode. The equivalent short-circuit photocurrent density (Jsc) of 16.67 mA cm-2, open circuit voltage (Voc) of 0.77 V, and fill factor (FF) of 0.65 respectively. The achieved results propose that the hybrid nanocomposite is an appropriate photo-anodic material for DSSCs applications.
A self-cleaning Li-S battery enabled by a bifunctional redox mediator
NASA Astrophysics Data System (ADS)
Ren, Y. X.; Zhao, T. S.; Liu, M.; Zeng, Y. K.; Jiang, H. R.
2017-09-01
The polysulfide shuttle effect and lithium dendrite growth in lithium-sulfur (Li-S) batteries can repeatedly breach the anodic solid electrolyte interphase (SEI) over cycling. As a result, irreversible short-chain sulfide side products (Li2Sx, x = 1, 2) keep depositing on the Li anode, leading to the active material loss, increasing the Li+ transport resistance, and thereby reducing the cycle life. In this work, indium iodide (InI3) is investigated as a bifunctional electrolyte additive for Li-S batteries to protect the Li anode and decompose the side products spontaneously. On the one hand, Indium (In) is electrodeposited onto the Li anode prior to Li plating during the initial charging process, forming a chemically and mechanically stable SEI to prevent the Li anode from reacting with soluble polysulfide species to form Li2Sx (x = 1, 2) side products. On the other hand, by adequately overcharging the battery, the triiodide/iodide redox mediator is capable of chemically transforming side products deposited on the Li anode and separator into soluble polysulfides, which can be recycled by the cathode. It is shown that the battery with the InI3 additive exhibits a prolonged cycle life, and is capable of retrieving its capacity by a facile overcharging process.
Electrical control of 2D magnetism in bilayer CrI 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bevin; Clark, Genevieve; Klein, Dahlia R.
Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction. Owing to their unique magnetic properties, the recently reported two-dimensional magnets provide a new system for studying these features. For instance, a bilayer of chromium triiodide (CrI 3) behaves as a layered antiferromagnet with a magnetic field-driven metamagneticmore » transition. Here, we demonstrate electrostatic gate control of magnetism in CrI 3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Here, our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.« less
Park, Byung-wook; Jain, Sagar M; Zhang, Xiaoliang; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas
2015-02-24
Organo-metal halide perovskites (OMHPs) are materials with attractive properties for optoelectronics. They made a recent introduction in the photovoltaics world by methylammonium (MA) lead triiodide and show remarkably improved charge separation capabilities when chloride and bromide are added. Here we show how halide substitution in OMHPs with the nominal composition CH3NH3PbI2X, where X is I, Br, or Cl, influences the morphology, charge quantum yield, and local interaction with the organic MA cation. X-ray diffraction and photoluminescence data demonstrate that halide substitution affects the local structure in the OMHPs with separate MAPbI3 and MAPbCl3 phases. Raman spectroscopies as well as theoretical vibration calculations reveal that this at the same time delocalizes the charge to the MA cation, which can liberate the vibrational movement of the MA cation, leading to a more adaptive organic phase. The resonance Raman effect together with quantum chemical calculations is utilized to analyze the change in charge transfer mechanism upon electronic excitation and gives important clues for the mechanism of the much improved photovoltage and photocurrent also seen in the solar cell performance for the materials when chloride compounds are included in the preparation.
Additives and salts for dye-sensitized solar cells electrolytes: what is the best choice?
NASA Astrophysics Data System (ADS)
Bella, Federico; Sacco, Adriano; Pugliese, Diego; Laurenti, Marco; Bianco, Stefano
2014-10-01
A multivariate chemometric approach is proposed for the first time for performance optimization of I-/I3- liquid electrolytes for dye-sensitized solar cells (DSSCs). Over the years the system composed by iodide/triiodide redox shuttle dissolved in organic solvent has been enriched with the addition of different specific cations and chemical compounds to improve the photoelectrochemical behavior of the cell. However, usually such additives act favorably with respect to some of the cell parameters and negatively to others. Moreover, the combined action of different compounds often yields contradictory results, and from the literature it is not possible to identify an optimal recipe. We report here a systematic work, based on a multivariate experimental design, to statistically and quantitatively evaluate the effect of different additives on the photovoltaic performances of the device. The effect of cation size in iodine salts, the iodine/iodide ratio in the electrolyte and the effect of type and concentration of additives are mutually evaluated by means of a Design of Experiment (DoE) approach. Through this statistical method, the optimization of the overall parameters is demonstrated with a limited number of experimental trials. A 25% improvement on the photovoltaic conversion efficiency compared with that obtained with a commercial electrolyte is demonstrated.
A novel stopped flow injection-amperometric procedure for the determination of chlorate.
Tue-Ngeun, Orawan; Jakmunee, Jaroon; Grudpan, Kate
2005-12-15
A novel stopped flow injection-amperometric (sFI-Amp) procedure for determination of chlorate has been developed. The reaction of chlorate with excess potassium iodide and hydrochloric acid, forming iodine/triiodide that is further electrochemically reduced at a glassy carbon electrode at +200mV versus Ag/AgCl electrode is employed. In order to increase sensitivity without using of too high acid concentration, promoting of the reaction by increasing reaction time and temperature can be carried out. This can be done without increase of dispersion of the product zone by stopping the flow while the injected zone is being in a mixing coil which is immersed in a water bath of 55+/-0.5 degrees C. In a closed system of FIA, a side reaction of oxygen with iodide is also minimized. Under a set of conditions, linear calibration graphs were in the ranges of 1.2x10(-6)-6.0x10(-5)moll(-1)and 6.0x10(-5)-6.0x10(-4)moll(-1). A sample throughput of 25h(-1) was accomplished. Relative standard deviation was 2% (n=21, 1.2x10(-4)moll(-1) chlorate). The proposed sFI-Amp procedure was successfully applied to the determination of chlorate in soil samples from longan plantation area.
van Westrenen, J; Sherry, A D
1992-01-01
The sulfomethylation of piperazine and the polyazamacrocycles, [9]aneN3, [12]aneN3, [12]aneN4, and [18]aneN6 with formaldehyde bisulfite in aqueous medium at various pH values is described. The number of methanesulfonate groups introduced into these structures was found to be largely determined by pH. At neutral pH, disubstituted products of [9]aneN3, [12]aneN3, [12]aneN4 are formed and, in the latter case, the trans-1,7-bis(methanesulfonate) isomer was predominant. Similarly, a single, symmetrical trisubstituted product was formed with [18]aneN6 at neutral pH. Monomethanesulfonated products of these same polyaza compounds were formed at more acidic pH's. These sulfomethylated products were used as an entry into a series of mono- and diacetate, phosphonate, and phosphinate derivatives of [9]aneN3, [12]aneN3, and [12]aneN4. The sulfonate groups may be converted to acetates without isolation of intermediates by using cyanide to displace the sulfonate(s) followed by acidic hydrolysis. The aminomethanesulfonates may also be oxidatively hydrolyzed by using aqueous triiodide as a prelude to the preparation of aminomethanephosphonates or aminomethanephosphinates.
D'Sousa Costa, Cinara O; Araujo Neto, João H; Baliza, Ingrid R S; Dias, Rosane B; Valverde, Ludmila de F; Vidal, Manuela T A; Sales, Caroline B S; Rocha, Clarissa A G; Moreira, Diogo R M; Soares, Milena B P; Batista, Alzir A; Bezerra, Daniel P
2017-11-28
Piplartine (piperlongumine) is a plant-derived molecule that has been receiving intense interest due to its anticancer characteristics that target the oxidative stress. In the present paper, two novel piplartine-containing ruthenium complexes [Ru(piplartine)(dppf)(bipy)](PF 6 ) 2 (1) and [Ru(piplartine)(dppb)(bipy)](PF 6 ) 2 (2) were synthesized and investigated for their cellular and molecular responses on cancer cell lines. We found that both complexes are more potent than metal-free piplartine in a panel of cancer cell lines on monolayer cultures, as well in 3D model of cancer multicellular spheroids formed from human colon carcinoma HCT116 cells. Mechanistic studies uncovered that the complexes reduced the cell growth and caused phosphatidylserine externalization, internucleosomal DNA fragmentation, caspase-3 activation and loss of the mitochondrial transmembrane potential on HCT116 cells. Moreover, the pre-treatment with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, reduced the complexes-induced apoptosis, indicating cell death by apoptosis through caspase-dependent and mitochondrial intrinsic pathways. Treatment with the complexes also caused a marked increase in the production of reactive oxygen species (ROS), including hydrogen peroxide, superoxide anion and nitric oxide, and decreased reduced glutathione levels. Application of N-acetyl-cysteine, an antioxidant, reduced the ROS levels and apoptosis induced by the complexes, indicating activation of ROS-mediated apoptosis pathway. RNA transcripts of several genes, including gene related to the cell cycle, apoptosis and oxidative stress, were regulated under treatment. However, the complexes failed to induce DNA intercalation. In conclusion, the complexes are more potent than piplartine against different cancer cell lines and are able to induce caspase-dependent and mitochondrial intrinsic apoptosis on HCT116 cells by ROS-mediated pathway.
Pires, Wanessa Carvalho; Lima, Benedicto Augusto Vieira; de Castro Pereira, Flávia; Lima, Aliny Pereira; Mello-Andrade, Francyelli; Silva, Hugo Delleon; da Silva, Monize Martins; Colina-Vegas, Legna; Ellena, Javier; Batista, Alzir A; de Paul Silveira-Lacerda, Elisângela
2018-01-01
The aim of this work was the synthesis, characterization, and cytotoxicity evaluation of three new Ru(II) complexes with a general formula [Ru(Spy)(bipy)(P-P)]PF 6 [Spy = pyridine-6-thiolate; bipy = 2,2'-bipyridine; P-P = 1,2-bis(diphenylphosphine)ethane (1); 1,3-bis(diphenylphosphine) propane (2); and 1,1'-bis(diphenylphosphino)ferrocene] (4). Complex (3) with the 1,4-bis(diphenylphosphine)butane ligand, already known from the literature, was also synthesized, to be better studied here. The cytotoxicities of the complexes toward two kinds of cancerous cells (K562 and S-180 cells) were evaluated and compared to normal cells (L-929 and PBMC) by MTT assay. The complex [Ru(Spy)(bipy)(dppb)]PF 6 (3) was selected to study both the cellular and molecular mechanisms underlying its promising anticancer action in S-180 cells. The results obtained from this study indicated that complex (3) induces cell cycle arrest in the G0/G1 phase in S-180 cells associated with a decrease in the number of cells in S phase. After 24 and 48 h of exposure to complex (3), the cell viability decreased when compared to the negative control. Complex (3) does not appear to be involved in the DNA damage, but induced changes in the mitochondrial membrane potential in S-180 cells. Furthermore, there was also an increase in the gene expression of Bax, Caspase 9, and Tp53. According to our results, complex (3) induces cell apoptosis through p53/Bax-dependent intrinsic pathway and suppresses the expression of active antiapoptotic Bcl-2 protein.
Miller, Barbara; Madilao, Lufiani L.; Ralph, Steven; Bohlmann, Jörg
2005-01-01
Stem-boring insects and methyl jasmonate (MeJA) are thought to induce similar complex chemical and anatomical defenses in conifers. To compare insect- and MeJA-induced terpenoid responses, we analyzed traumatic oleoresin mixtures, emissions of terpenoid volatiles, and expression of terpenoid synthase (TPS) genes in Sitka spruce (Picea sitchensis) following attack by white pine weevils (Pissodes strobi) or application of MeJA. Both insects and MeJA caused traumatic resin accumulation in stems, with more accumulation induced by the weevils. Weevil-induced terpenoid emission profiles were also more complex than emissions induced by MeJA. Weevil feeding caused a rapid release of a blend of monoterpene olefins, presumably by passive evaporation of resin compounds from stem feeding sites. These compounds were not found in MeJA-induced emissions. Both weevils and MeJA caused delayed, diurnal emissions of (−)-linalool, indicating induced de novo biosynthesis of this compound. TPS transcripts strongly increased in stems upon insect attack or MeJA treatment. Time courses and intensity of induced TPS transcripts were different for monoterpene synthases, sesquiterpene synthases, and diterpene synthases. Increased levels of weevil- and MeJA-induced TPS transcripts accompanied major changes in terpenoid accumulation in stems. Induced TPS expression profiles in needles were less complex than those in stems and matched induced de novo emissions of (−)-linalool. Overall, weevils and MeJA induced similar, but not identical, terpenoid defense responses in Sitka spruce. Findings of insect- and MeJA-induced accumulation of allene oxide synthase-like and allene oxide cyclase-like transcripts are discussed in the context of traumatic resinosis and induced volatile emissions in this gymnosperm system. PMID:15618433
PF4-HIT antibody (KKO) complexes activate broad innate immune and inflammatory responses.
Haile, Lydia A; Rao, Roshni; Polumuri, Swamy K; Arepally, Gowthami M; Keire, David A; Verthelyi, Daniela; Sommers, Cynthia D
2017-11-01
Heparin-induced thrombocytopenia (HIT) is an immune-mediated complication of heparin anticoagulation therapy resulting in thrombocytopenia frequently accompanied by thrombosis. Current evidence suggests that HIT is associated with antibodies developed in response to multi-molecular complexes formed by platelet factor 4 (PF4) bound to heparin or cell surface glycosaminoglycans. These antibody complexes activate platelets and monocytes typically through FcγRIIA receptors increasing the production of PF4, inflammatory mediators, tissue factor and thrombin. The influence of underlying events in HIT including complex-induced pro-inflammatory cell activation and structural determinants leading to local inflammatory responses are not fully understood. The stoichiometry and complex component requirements were determined by incubating fresh peripheral blood mononuclear cells (PBMC) with different concentrations of unfractionated heparin (H), low molecular weight heparin (LMWH), PF4- and anti-PF4-H complex antibodies (KKO). Cytokine mRNA or protein were measured by qRT-PCR or Meso Scale Discovery technology, respectively. Gene expression profile analysis for 594 genes was performed using Nanostring technology and analyzed using Ingenuity Pathway Analysis software. The data show that antibodies magnify immune responses induced in PBMCs by PF4 alone or in complex with heparin or LMWH. We propose that following induction of HIT antibodies by heparin-PF4 complexes, binding of the antibodies to PF4 is sufficient to induce a local pro-inflammatory response which may play a role in the progression of HIT. In vitro assays using PBMCs may be useful in characterizing local inflammatory and innate immune responses induced by HIT antibodies in the presence of PF4 and different sources of heparins. The findings and conclusions in this article are solely the responsibility of the authors and are not being formally disseminated by the Food and Drug Administration. Thus, they should not be construed to represent any Agency determination or policy. Published by Elsevier Ltd.
Choi, Ucheor B; Zhao, Minglei; Zhang, Yunxiang; Lai, Ying; Brunger, Axel T
2016-01-01
Complexin regulates spontaneous and activates Ca2+-triggered neurotransmitter release, yet the molecular mechanisms are still unclear. Here we performed single molecule fluorescence resonance energy transfer experiments and uncovered two conformations of complexin-1 bound to the ternary SNARE complex. In the cis conformation, complexin-1 induces a conformational change at the membrane-proximal C-terminal end of the ternary SNARE complex that specifically depends on the N-terminal, accessory, and central domains of complexin-1. The complexin-1 induced conformation of the ternary SNARE complex may be related to a conformation that is juxtaposing the synaptic vesicle and plasma membranes. In the trans conformation, complexin-1 can simultaneously interact with a ternary SNARE complex via the central domain and a binary SNARE complex consisting of syntaxin-1A and SNAP-25A via the accessory domain. The cis conformation may be involved in activation of synchronous neurotransmitter release, whereas both conformations may be involved in regulating spontaneous release. DOI: http://dx.doi.org/10.7554/eLife.16886.001 PMID:27253060
RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA
Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo
2015-01-01
MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex. PMID:26674414
Evaluation of cytotoxicity of new trans-palladium(II) complex in human cells in vitro.
Kontek, Renata; Matławska-Wasowska, Ksenia; Kalinowska-Lis, Urszula; Kontek, Bogdan; Ochocki, Justyn
2011-01-01
Studies of cytotoxicity allow to elucidate the mechanisms by which chemical compounds influence cells and tissues. On the basis of the structural analogy between platinum(II) and palladium(II) complexes, a variety of studies on palladium(II) compounds as potential anticancer drugs have been carried out (1, 2). The cytotoxicity was evaluated by MTT assay. Abilities of trans-palladium(II) complex containing diethyl (pyridin-2-ylmethyl)phosphates as non-leaving ligands (trans-[PdCl2(2-pmOpe 2)]) to induce apoptosis and necrosis in normal lymphocytes, A549 cells and HT29 cell lines were performed by use of fluorochrome staining. The obtained results revealed, that the new trans-palladium(II) complex was more cytotoxic against A549 and HT29 tumor cells than on the normal lymphocytes in vitro. The novel complex induces apoptosis in all tested cells, but in lymphocytes to a lesser degree. The compound tested also induced significant amounts of necrotic cells, which exceeded the level of apoptotic cell fractions. The results demonstrate that the trans-Pd(II) complex showed substantial cytotoxic activity against A549 and HT29 tumor cells and indicate that the new trans-palladium(II) complex effectively inhibited cancer cells growth.
Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk
2015-08-01
The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Daohong; Chen, Xi; Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003
Highlights: ► CCCP-induced LC3 lipidation can be independent of initiation/nucleation molecules. ► Atg9-mediated trafficking is critically required for CCCP-induced LC3 lipidation. ► CCCP-induced mitophagy may thus be more dependent on Atg9-positive vesicles. -- Abstract: Treatment of cells with carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial proton gradient uncoupler, can result in mitochondrial damage and autophagy activation, which in turn eliminates the injured mitochondria in a Parkin-dependent way. How CCCP mobilizes the autophagy machinery is not fully understood. By analyzing a key autophagy step, LC3 lipidation, we examined the roles of two kinase complexes typically involved in the initiation and nucleation phasesmore » of autophagy, namely the ULK kinase complex (UKC) and the Beclin 1/Atg14 complex. We found that CCCP-induced LC3 lipidation could be independent of Beclin 1 and Atg14. In addition, deletion or knockdown of the UKC component FIP200 or Atg13 only led to a partial reduction in LC3 lipidation, indicating that UKC could be also dispensable for this step during CCCP treatment. In contrast, Atg9, which is important for transporting vesicles to early autophagosomal structure, was required for CCCP-induced LC3 lipidation. Taken together, these data suggest that CCCP-induced autophagy and mitophagy depends more critically on Atg9 vesicles than on UKC and Beclin 1/Atg14 complex.« less
Wu, Yan; Zheng, Xin; Xu, Xue-Gang; Li, Yuan-Hong; Wang, Bin; Gao, Xing-Hua; Chen, Hong-Duo; Yatskayer, Margarita; Oresajo, Christian
2013-04-01
The objective of the study was to investigate whether a topical antioxidant complex containing vitamins C and E and ferulic acid can protect solar-simulated ultraviolet irradiation (ssUVR)-induced acute photodamage in human skin. Twelve healthy female Chinese subjects were enrolled in this study. Four unexposed sites on dorsal skin were marked for the experiment. The products containing antioxidant complex and vehicle were applied onto 2 sites, respectively, for 4 consecutive days. On day 4, the antioxidant complex-treated site, the vehicle-treated site, and the untreated site (positive control) received ssUVR (5 times the minimal erythema dose). The fourth site (negative control) received neither ssUVR nor treatment. Digital photographs were taken, and skin color was measured pre- and postirradiation. Skin biopsies were obtained 24 hours after exposure to ssUVR, for hematoxylin and eosin and immunohistochemical staining. A single, 5 times the minimal erythema dose of ssUVR substantially induced large amounts of sunburn cell formation, thymine dimer formation, overexpression of p53 protein, and depletion of CD1a+ Langerhans cells. The antioxidant complex containing vitamins C and E and ferulic acid conferred significant protection against biological events compared with other irradiated sites. A topical antioxidant complex containing vitamins C and E and ferulic acid has potential photoprotective effects against ssUVR-induced acute photodamage in human skin.
NASA Astrophysics Data System (ADS)
Geraldes, Carlos F. G. C.; Sherry, A. Dean; Kiefer, Garry E.
Complexes between the trivalent lanthanide ions and the macrocyclic chelate 1,4,7,10-tetraazacyclododecane- N,N',N″,N‴-tetra(methylene phosphonate) (DOTP) have been examined by high-resolution NMR spectroscopy. The proton spectra of the diamagnetic La(DOTP) 5- and Lu(DOTP) 5- complexes provide evidence for very rigid chelate structures with the ethylenediamine-containing chelate rings essentially locked into a single conformation at room temperature. The activation energy for ethylenediamine chelate ring interconversions in these complexes is approximately 100 kJ mol -1, considerably higher than that reported previously for the corresponding Ln(DOTA) - complexes (DOTA is the tetraacetate analog of DOTP). Lanthanide-induced shifts are reported for all 1H, 13C, and 31P nuclei in 11 Ln(DOTP) 5- complexes. The proton spectra of these complexes display unusually large lanthanide-induced shifts, one showing a spectrum in which the 1H resonances span 900 ppm. The contact and pseudocontact contributions to these shifts were separated using Reilley's temperature-independent method and the resulting pseudocontact lanthanide-induced NMR shifts were in excellent agreement with those calculated for a structure derived using MMX molecular modeling methods. The pseudocontact shifts provide evidence for Ln (DOTP) 5- chelates which have virtually identical structures along the lanthanide series, with the possible exception of Tm(DOTP) 5-.
Liu, Jun-Liang; Yuan, Kang; Leng, Ji-Dong; Ungur, Liviu; Wernsdorfer, Wolfgang; Guo, Fu-Sheng; Chibotaru, Liviu F; Tong, Ming-Liang
2012-08-06
The field-induced blockage of magnetization behavior was first observed in an Yb(III)-based molecule with a trigonally distorted octahedral coordination environment. Ab initio calculations and micro-SQUID measurements were performed to demonstrate the exhibition of easy-plane anisotropy, suggesting the investigated complex is the first pure lanthanide field-induced single-ion magnet (field-induced SIM) of this type. Furthermore, we found the relaxation time obeys a power law instead of an exponential law, indicating that the relaxation process should be involved a direct process rather than an Orbach process.
Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang
2016-01-01
Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621
Wang, Yan-Yi; Liu, Li-Juan; Zhong, Bo; Liu, Tian-Tian; Li, Ying; Yang, Yan; Ran, Yong; Li, Shu; Tien, Po; Shu, Hong-Bing
2010-01-12
Viral infection causes activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and cellular antiviral response. The mitochondrial outer membrane protein VISA acts as a critical adapter for assembling a virus-induced complex that signals NF-kappaB and IRF3 activation. Using a biochemical purification approach, we identified the WD repeat protein WDR5 as a VISA-associated protein. WDR5 was recruited to VISA in a viral infection dependent manner. Viral infection also caused translocation of WDR5 from the nucleus to mitochondria. Knockdown of WDR5 impaired the formation of virus-induced VISA-associated complex. Consistently, knockdown of WDR5 inhibited virus-triggered activation of IRF3 and NF-kappaB as well as transcription of the IFNB1 gene. These findings suggest that WDR5 is essential in assembling a virus-induced VISA-associated complex and plays an important role in virus-triggered induction of type I IFNs.
Koo, Chi-Kin; Wong, Ka-Leung; Man, Cornelia Wing-Yin; Lam, Yun-Wah; So, Leo King-Yan; Tam, Hoi-Lam; Tsao, Sai-Wah; Cheah, Kok-Wai; Lau, Kai-Chung; Yang, Yang-Yi; Chen, Jin-Can; Lam, Michael Hon-Wah
2009-02-02
The cyclometalated platinum(II) complex [Pt(L)Cl], where HL is a new cyclometalating ligand 2-phenyl-6-(1H-pyrazol-3-yl)pyridine containing C(phenyl), N(pyridyl), and N(pyrazolyl) donor moieties, was found to possess two-photon-induced luminescent properties. The two-photon-absorption cross section of the complex in N,N-dimethylformamide at room temperature was measured to be 20.8 GM. Upon two-photon excitation at 730 nm from a Ti:sapphire laser, bright-green emission was observed. Besides its two-photon-induced luminescent properties, [Pt(L)Cl] was able to be rapidly accumulated in live HeLa and NIH3T3 cells. The two-photon-induced luminescence of the complex was retained after live cell internalization and can be observed by two-photon confocal microscopy. Its bioaccumulation properties enabled time-lapse imaging of the internalization process of the dye into living cells. Cytotoxicity of [Pt(L)Cl] to both tested cell lines was low, according to MTT assays, even at loadings as high as 20 times the dose concentration for imaging for 6 h.
Alteration of complex negative emotions induced by music in euthymic patients with bipolar disorder.
Choppin, Sabine; Trost, Wiebke; Dondaine, Thibaut; Millet, Bruno; Drapier, Dominique; Vérin, Marc; Robert, Gabriel; Grandjean, Didier
2016-02-01
Research has shown bipolar disorder to be characterized by dysregulation of emotion processing, including biases in facial expression recognition that is most prevalent during depressive and manic states. Very few studies have examined induced emotions when patients are in a euthymic phase, and there has been no research on complex emotions. We therefore set out to test emotional hyperreactivity in response to musical excerpts inducing complex emotions in bipolar disorder during euthymia. We recruited 21 patients with bipolar disorder (BD) in a euthymic phase and 21 matched healthy controls. Participants first rated their emotional reactivity on two validated self-report scales (ERS and MAThyS). They then rated their music-induced emotions on nine continuous scales. The targeted emotions were wonder, power, melancholy and tension. We used a specific generalized linear mixed model to analyze the behavioral data. We found that participants in the euthymic bipolar group experienced more intense complex negative emotions than controls when the musical excerpts induced wonder. Moreover, patients exhibited greater emotional reactivity in daily life (ERS). Finally, a greater experience of tension while listening to positive music seemed to be mediated by greater emotional reactivity and a deficit in executive functions. The heterogeneity of the BD group in terms of clinical characteristics may have influenced the results. Euthymic patients with bipolar disorder exhibit more complex negative emotions than controls in response to positive music. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, Yasuhiro; Fukatsu, Akinobu; Wang, Yangyang
2014-01-01
Complex crystal induced gelation of poly(L-lactic acid) (PLLA) solutions was studied for a series of solvents, including N,N-dimethylformamide (DMF). By cooling the solutions prepared at elevated temperatures, PLLA gels were produced in solvents that induced complex crystals ( -crystals) with PLLA. Fibrous structure of PLLA in the gel with DMF was observed by polarizing optical microscopy, field emission electron microscopy, and atomic force microscopy. Upon heating, the crystal form of PLLA in the DMF gel changed from -crystal to a-crystal, the major crystal form in common untreated PLLA films, but the morphology and high elastic modulus of the gel remainedmore » until the a-crystal dissolved at higher temperature. In addition, a solvent exchanging method was developed, which allowed PLLA gels to be prepared in other useful solvents that do not induce -crystals without losing the morphology and mechanical properties.« less
The Platelet Function Defect of Cardiopulmonary Bypass.
1992-11-24
K complex, not to uncomplexed GPIb or GPDC.31 FMC25 (provided by Dr. Berndt) is directed against GPK .32-33 A panel of platelet GPIIb-IIIa-specific...on GPIb (Fig 2, panel B), GPK (Fig 2, panel C), or the GPIb-K complex (Fig 2, panel D). 14 In addition, we examined the ristocetin-induced binding...on GPIb (6D1), the thrombin binding site on GPIb (TM60), GPK (FMC25), and the GPIb-K complex (AK1). Panel E: ristocetin-induced binding of exogenous
Photo-reactive charge trapping memory based on lanthanide complex.
Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V A L
2015-10-09
Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 10(4) s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.
Photo-reactive charge trapping memory based on lanthanide complex
NASA Astrophysics Data System (ADS)
Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.
2015-10-01
Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.
Induction of human immunodeficiency virus neutralizing antibodies using fusion complexes.
Zipeto, Donato; Matucci, Andrea; Ripamonti, Chiara; Scarlatti, Gabriella; Rossolillo, Paola; Turci, Marco; Sartoris, Silvia; Tridente, Giuseppe; Bertazzoni, Umberto
2006-05-01
Human immunodeficiency virus-1 (HIV-1) infects cells by membrane fusion that is mediated by the envelope proteins gp120/gp41 and the cellular receptors CD4 and CCR5. During this process, some conserved viral epitopes are temporarily exposed and may induce a neutralizing antibody response when fixed in the fusogenic conformation. These transient structures are conserved and may be effective antigens for use in an anti-HIV-1 vaccine. In this study we tested different conditions of preparation of fusion complexes inducing neutralizing antibodies against both R5 and X4 tropic HIV-1 strains. Cell lines expressing HIV-1 gp120/gp41 and CD4-CCR5 were prepared and conditions for producing fusion complexes were tested. Complexes produced at different temperature and fixative combinations were used to immunize mice. Results indicated that (a) fusion complexes prepared at either 21 degrees C, 30 degrees C or 37 degrees C were immunogenic and induced neutralizing antibodies against both R5 and X4 HIV-1 heterologous isolates; (b) after extensive purification of antibodies there was no cytotoxic effect; (c) complexes prepared at 37 degrees C were more immunogenic and induced higher titers of neutralizing antibodies than complexes prepared at either 21 degrees C or 30 degrees C; (d) the fixative used did not affect the titer of neutralizing antibodies except for glutaraldehyde which was ineffective; (e) the neutralizing activity was retained after CD4-CCR5 antibody removal. The production of higher titers of neutralizing antibody with fusion complexes prepared at 37 degrees C, as compared to lower temperatures, may be related to the induction of antibodies against many different conformation intermediates that subsequently act synergistically at different steps in the fusion process.
Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D
2015-11-05
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.
Schwartz, B S; Edgington, T S
1981-09-01
It has previously been described that soluble antigen:antibody complexes in antigen excess can induce an increase in the procoagulant activity of human peripheral blood mononuclear cells. It has been proposed that this response may explain the presence of fibrin in immune complex-mediated tissue lesions. In the present study we define cellular participants and their roles in the procoagulant response to soluble immune complexes. Monocytes were shown by cell fractionation and by a direct cytologic assay to be the cell of origin of the procoagulant activity; and virtually all monocytes were able to participate in the response. Monocytes, however, required the presence of lymphocytes to respond. The procoagulant response required cell cooperation, and this collaborative interaction between lymphocytes and monocytes appeared to be unidirectional. Lymphocytes once triggered by immune complexes induced monocytes to synthesize the procoagulant product. Intact viable lymphocytes were required to present instructions to monocytes; no soluble mediator could be found to subserve this function. Indeed, all that appeared necessary to induce monocytes to produce procoagulant activity was an encounter with lymphocytes that had previously been in contact with soluble immune complexes. The optimum cellular ratio for this interaction was four lymphocytes per monocyte, about half the ratio in peripheral blood. The procoagulant response was rapid, reaching a maximum within 6 h after exposure to antigen:antibody complexes. The procoagulant activity was consistent with tissue factor because Factors VII and X and prothrombin were required for clotting of fibrinogen. WE propose that this pathway differs from a number of others involving cells of the immune system. Elucidation of the pathway may clarify the role of this lymphocyte-instructed monocyte response in the Shwartzman phenomenon and other thrombohemorrhagic events associated with immune cell function and the formation of immune complexes.
Singh, Prafull Kumar; Roukounakis, Aristomenis; Frank, Daniel O.; Kirschnek, Susanne; Das, Kushal Kumar; Neumann, Simon; Madl, Josef; Römer, Winfried; Zorzin, Carina; Borner, Christoph; Haimovici, Aladin; Garcia-Saez, Ana; Weber, Arnim; Häcker, Georg
2017-01-01
The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-XL, recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim–Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-XL inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy. PMID:28982759
Reduction of paraquat-induced renal cytotoxicity by manganese and copper complexes of EGTA and EHPG.
Samai, Mohamed; Hague, Theresa; Naughton, Declan P; Gard, Paul R; Chatterjee, Prabal K
2008-02-15
Superoxide anion generation plays an important role in the development of paraquat toxicity. Although superoxide dismutase mimetics (SODm) have provided protection against organ injury involving generation of superoxide anions, they often suffer problems, e.g., regarding their bioavailability or potential pro-oxidant activity. The aim here was to investigate and compare the therapeutic potential of two novel SODm, manganese(II) and copper(II) complexes of the calcium chelator ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and of the contrast agent ethylenebis(hydroxyphenylglycine) (EHPG), against paraquat-induced renal toxicity in vitro. Incubation of renal NRK-52E cells with paraquat (1 mM) for 24 h produced submaximal, yet significant, reduction in cellular viability and cell death and produced significant increases in superoxide anion and hydroxyl radical generation. Manganese and copper complexes of EGTA (10-100 microM) and EHPG (30-100 microM) reduced paraquat-induced renal cell toxicity and reduced superoxide anion and hydroxyl radical generation significantly. Manganese complexes displayed greater efficacy than copper complexes and, at equivalent concentrations, manganese complexed with EHPG provided the greatest protection. Furthermore, these metal complexes did not interfere with the uptake of [methyl-(14)C]paraquat into NRK-52E cells, suggesting that they provided protection against paraquat cytotoxicity via intracellular mechanisms. These complexes did not display cytotoxicity at the concentrations examined. Together, these results suggest that manganese and copper complexes of EGTA and EHPG, and especially the manganese-EHPG complex, could provide benefit against paraquat nephrotoxicity.
Moriwaki, Kenta; Shinzaki, Shinichiro; Miyoshi, Eiji
2011-01-01
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors. PMID:22027835
Sun, Wen; Wu, Xiaxia; Gao, Hongwei; Yu, Jie; Zhao, Wenwen; Lu, Jin-Jian; Wang, Jinhua; Du, Guanhua; Chen, Xiuping
2017-07-01
Necroptosis is a form of programmed necrosis mediated by signaling complexes with receptor-interacting protein 1 (RIP1) and RIP3 kinases as the main mediators. However, the underlying execution pathways of this phenomenon have yet to be elucidated in detail. In this study, a RIP1/RIP3 complex was formed in 2-methoxy-6-acetyl-7-methyljuglone (MAM)-treated HCT116 and HT29 colon cancer cells. With this formation, mitochondrial reactive oxygen species (ROS) levels increased, mitochondrial depolarization occurred, and ATP concentrations decreased. This process was identified as necroptosis. This finding was confirmed by experiments showing that MAM-induced cell death was attenuated by the pharmacological or genetic blockage of necroptosis signaling, including RIP1 inhibitor necrostatin-1s (Nec-1s) and siRNA-mediated gene silencing of RIP1 and RIP3, but was unaffected by caspase inhibitor z-vad-fmk or necrosis inhibitor 2-(1H-Indol-3-yl)-3-pentylamino-maleimide (IM54). Transmission electron microscopy (TEM) analysis further revealed the ultrastructural features of MAM-induced necroptosis. MAM-induced RIP1/RIP3 complex triggered necroptosis through cytosolic calcium (Ca 2+ ) accumulation and sustained c-Jun N-terminal kinase (JNK) activation. Both calcium chelator BAPTA-AM and JNK inhibitor SP600125 could attenuate necroptotic features, including mitochondrial ROS elevation, mitochondrial depolarization, and ATP depletion. 2-thenoyltrifluoroacetone (TTFA), which is a mitochondrial complex II inhibitor, was found to effectively reverse both MAM induced mitochondrial ROS generation and cell death, indicating the complex II was the ROS-producing site. The essential role of mitochondrial ROS was confirmed by the protective effect of overexpression of manganese superoxide dismutase (MnSOD). MAM-induced necroptosis was independent of TNFα, p53, MLKL, and lysosomal membrane permeabilization. In summary, our study demonstrated that RIP1/RIP3 complex-triggered cytosolic calcium accumulation is a critical mediator in MAM-induced necroptosis through sustained JNK activation and mitochondrial ROS production. Our study also provided new insights into the molecular regulation of necroptosis in human colon cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaña, Fabián; Faini, Francesca; Lapier, Michel
Changes in mitochondrial ATP synthesis can affect the function of tumor cells due to the dependence of the first step of glycolysis on mitochondrial ATP. The oxidative phosphorylation (OXPHOS) system is responsible for the synthesis of approximately 90% of the ATP in normal cells and up to 50% in most glycolytic cancers; therefore, inhibition of the electron transport chain (ETC) emerges as an attractive therapeutic target. We studied the effect of a lipophilic isoprenylated catechol, 3-hydroxybakuchiol (3-OHbk), a putative ETC inhibitor isolated from Psoralea glandulosa. 3-OHbk exerted cytotoxic and anti-proliferative effects on the TA3/Ha mouse mammary adenocarcinoma cell line andmore » induced a decrease in the mitochondrial transmembrane potential, the activation of caspase-3, the opening of the mitochondrial permeability transport pore (MPTP) and nuclear DNA fragmentation. Additionally, 3-OHbk inhibited oxygen consumption, an effect that was completely reversed by succinate (an electron donor for Complex II) and duroquinol (electron donor for Complex III), suggesting that 3-OHbk disrupted the electron flow at the level of Complex I. The inhibition of OXPHOS did not increase the level of reactive oxygen species (ROS) but caused a large decrease in the intracellular ATP level. ETC inhibitors have been shown to induce cell death through necrosis and apoptosis by increasing ROS generation. Nevertheless, we demonstrated that 3-OHbk inhibited the ETC and induced apoptosis through an interaction with Complex I. By delivering electrons directly to Complex III with duroquinol, cell death was almost completely abrogated. These results suggest that 3-OHbk has antitumor activity resulting from interactions with the ETC, a system that is already deficient in cancer cells. - Highlights: • We studied the anticancer activity of a natural compound, 3-OHbk, on TA3/Ha cells. • 3-OHbk inhibited mitochondrial electron flow by interacting with Complex I. • Complex I inhibition did not induce ROS generation. • 3-OHbk induced apoptosis in tumor cells with no effect on mammary epithelial cells. • Mitochondrial bioenergetics is implicated in anticancer action of 3-OHbk.« less
The L-Z complexity of exercise-induced muscle fatigue based on acoustic myographye
NASA Astrophysics Data System (ADS)
Yijian, Min; Xinyuan, Liu; Tingting, Wang
2014-01-01
The mechanism of exercise fatigue was investigated during exercise using L-Z complexity of non-linear analysis. Muscle fatigue was induced in the sitting position by lifting the heel under a load. An acoustic myogram of the gastrocnemius was obtained until exhaustion. The different modes of the speed responses were calculated using the L-Z complexity method, which analyzes muscle fibers participation, while the exercise is in progress. The L-Z complexity decreased incrementally with decreases in muscle strength, reaching a minimum value when the muscle was exhausted. Our data indicate that the L-Z complexity method is easy to use and effective at revealing the dynamic characteristics and variations of exercise fatigue. This method could be used to monitor sports training.
Necroptosis-inducing rhenium(V) oxo complexes.
Suntharalingam, Kogularamanan; Awuah, Samuel G; Bruno, Peter M; Johnstone, Timothy C; Wang, Fang; Lin, Wei; Zheng, Yao-Rong; Page, Julia E; Hemann, Michael T; Lippard, Stephen J
2015-03-04
Rhenium(V) oxo complexes of general formula [ReO(OMe)(N^N)Cl2], where N^N = 4,7-diphenyl-1,10-phenanthroline, 1, or 3,4,7,8-tetramethyl-1,10-phenanthroline, 2, effectively kill cancer cells by triggering necroptosis, a non-apoptotic form of cell death. Both complexes evoke necrosome (RIP1-RIP3)-dependent intracellular reactive oxygen species (ROS) production and propidium iodide uptake. The complexes also induce mitochondrial membrane potential depletion, a possible downstream effect of ROS production. Apparently, 1 and 2 are the first rhenium complexes to evoke cellular events consistent with programmed necrosis in cancer cells. Furthermore, 1 and 2 display low acute toxicity in C57BL/6 mice and reasonable stability in fresh human blood.
Necroptosis-Inducing Rhenium(V) Oxo Complexes
Suntharalingam, Kogularamanan; Awuah, Samuel G.; Bruno, Peter M.; Johnstone, Timothy C.; Wang, Fang; Lin, Wei; Zheng, Yao-Rong; Page, Julia E.; Hemann, Michael T.; Lippard, Stephen J.
2015-01-01
Rhenium(V) oxo complexes of general formula [ReO(OMe)(N^N)Cl2], where N^N = 4,7-diphenyl-1,10-phenanthroline, 1, or 3,4,7,8-tetramethyl-1,10-phenanthroline, 2, effectively kill cancer cells by triggering necroptsosis, a non-apoptotic form of cell death. Both complexes evoke necrosome (RIP1-RIP3)-dependent intracellular ROS production and propidium iodide uptake. The complexes also induce mitochondrial membrane potential depletion, a possible downstream effect of ROS production. Apparently, 1 and 2 are the first rhenium complexes to evoke cellular events consistent with programmed necrosis in cancer cells. Furthermore, 1 and 2 display low acute toxicity in C57BL/6 mice and reasonable stability in fresh human blood. PMID:25698398
RNF168 forms a functional complex with RAD6 during the DNA damage response
Liu, Chao; Wang, Degui; Wu, Jiaxue; Keller, Jennifer; Ma, Teng; Yu, Xiaochun
2013-01-01
Summary Protein ubiquitination plays an important role in initiating the DNA damage response. Following DNA damage, E2 ubiquitin conjugating enzymes are crucial for catalyzing substrate ubiquitination that recruits downstream DNA repair factors to DNA lesions. To identify novel E2 conjugating enzymes important for initiating the DNA-damage-induced ubiquitination cascade, we screened most of the known E2 enzymes and found that RAD6A and RAD6B function together with RNF168 in the ionizing radiation (IR)-induced DNA damage response. Similarly to RNF168-deficient cells, RAD6A- or RAD6B-deficient cells exhibit a reduction in DNA-damage-induced protein ubiquitination. Correspondingly, DNA-damage-induced foci formation of DNA damage repair proteins, such as BRCA1 and 53BP1, is impaired in the absence of RAD6A or RAD6B. Moreover, the RNF168–RAD6 complex targeted histone H1.2 for ubiquitination in vitro and regulated DNA-damage-induced histone H1.2 ubiquitination in vivo. Collectively, these data demonstrate that RNF168, in complex with RAD6A or RAD6B, is activated in the DNA-damage-induced protein ubiquitination cascade. PMID:23525009
RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA.
Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo
2015-12-01
MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex. © 2015 The Authors.
Anti-tumor activity and mechanism of apoptosis of A549 induced by ruthenium complex.
Sun, Dongdong; Mou, Zhipeng; Li, Nuan; Zhang, Weiwei; Wang, Yazhe; Yang, Endong; Wang, Weiyun
2016-12-01
Two new ruthenium (II) polypyridyl complexes [Ru(MeIm) 4 (pip)] 2+ (1) and [Ru(MeIm) 4 (4-npip)] 2+ (2) were synthesized under the guidance of computational studies (DFT). Their binding property to human telomeric G-quadruplex studied by UV-Vis absorption spectroscopy, the fluorescent resonance energy transfer (FRET) melting assay and circular dichroism (CD) spectroscopy for validating the theoretical prediction. Both of them were evaluated for their potential anti-proliferative activity against four human tumor cell lines. Complex 2 shows growth inhibition against all the cell lines tested, especially the human lung tumor cell (A549). The RTCA analysis not only validated the inhibition activity but also showed the ability of reducing A549 cells' migration. DNA-flow cytometric analysis, mitochondrial membrane potential (ΔΨm) and the scavenger measurements of reactive oxygen species (ROS) analysis carried out to investigate the mechanism of cell growth inhibition and apoptosis-inducing effect of complex 2. The results demonstrated that complex 2 induces tumor cells apoptosis by acting on both mitochondrial homeostasis destruction and death receptor signaling pathways. And those suggested that complex 2 could be a candidate for further evaluation as a chemotherapeutic agent against human tumor.
Gnat, Rafał; Saulicz, Edward
2008-03-01
This study evaluates the hypothesis that triggering and eliminating induced static pelvic asymmetry (SPA) may be followed by immediate change in functional asymmetry of the lumbo-pelvo-hip complex. Repeated measures experimental design with 2 levels of independent variable, that is, induced SPA triggered and induced SPA eliminated, was implemented. Three series of measurements were performed, that is, baseline, after triggering SPA, and after eliminating SPA. A group of 84 subjects with no initial symptoms of SPA was studied. Different forms of mechanical stimulation were applied aiming to induce SPA, and the 2 manual stretching-manipulating techniques were performed aiming to eliminate it. A hand inclinometer was used to measure SPA in standing posture. Selected ranges of motion of the hip joints and lumbar spine were used to depict functional asymmetry of the lumbo-pelvo-hip complex. The functional asymmetry indices for individual movements were calculated. Repeated measures design of analysis of variance, dependent data Student t test, and linear Pearson's correlation test were used. Assessment of the SPA showed its significant increase between baseline and series 2 measurements, with a subsequent significant decrease between series 2 and series 3 measurements. Values of the functional asymmetry indices changed accordingly, that is, they increased significantly between series 1 and series 2 and had returned to their initial level in series 3 measurements. Induced SPA shows considerable association with functional asymmetry of the lumbo-pelvo-hip complex.
Takahama, Umeo; Hirota, Sachiko
2011-06-08
During the digestion of starch in foods, starch is mixed with bile in the duodenum. Because fatty acids and some kinds of polyphenols could bind to starch, it was postulated that bile salts might also bind to starch. The purpose of this paper is to study the effects of bile and bile salts on starch/iodine complex formation and pancreatin-induced starch digestion. Bile suppressed starch/iodine complex formation and inhibited pancreatin-induced starch digestion slightly in control buckwheat starch, but did so significantly in buckwheat starch from which fatty acids and polyphenols had been extracted. Such significant suppression and inhibition by bile were also observed in a reagent soluble starch. The effects of cholate and taurocholate on the starch/iodine complex formation and the pancreatin-induced starch digestion were essentially the same as those of bile. Bile, cholate, and taurocholate suppressed amylose/iodine complex formation more significantly than amylopectin/iodine complex formation and inhibited pancreatin-induced amylose digestion more effectively than the digestion of amylopectin. It is concluded from the results that bile salts could bind to starch, especially amylose, the helical structures of which were not occupied by other molecules such as fatty acids and polyphenols, and that the binding resulted in the inhibition of starch digestion by pancreatin. The conclusion suggests that the function of bile salts can be discussed from the point of not only lipid digestion but also starch digestion.
Chirality in distorted square planar Pd(O,N)2 compounds.
Brunner, Henri; Bodensteiner, Michael; Tsuno, Takashi
2013-10-01
Salicylidenimine palladium(II) complexes trans-Pd(O,N)2 adopt step and bowl arrangements. A stereochemical analysis subdivides 52 compounds into 41 step and 11 bowl types. Step complexes with chiral N-substituents and all the bowl complexes induce chiral distortions in the square planar system, resulting in Δ/Λ configuration of the Pd(O,N)2 unit. In complexes with enantiomerically pure N-substituents ligand chirality entails a specific square chirality and only one diastereomer assembles in the lattice. Dimeric Pd(O,N)2 complexes with bridging N-substituents in trans-arrangement are inherently chiral. For dimers different chirality patterns for the Pd(O,N)2 square are observed. The crystals contain racemates of enantiomers. In complex two independent molecules form a tight pair. The (RC) configuration of the ligand induces the same Δ chirality in the Pd(O,N)2 units of both molecules with varying square chirality due to the different crystallographic location of the independent molecules. In complexes and atrop isomerism induces specific configurations in the Pd(O,N)2 bowl systems. The square chirality is largest for complex [(Diop)Rh(PPh3 )Cl)], a catalyst for enantioselective hydrogenation. In the lattice of two diastereomers with the same (RC ,RC) configuration in the ligand Diop but opposite Δ and Λ square configurations co-crystallize, a rare phenomenon in stereochemistry. © 2013 Wiley Periodicals, Inc.
A general mechanism for competitor-induced dissociation of molecular complexes
Paramanathan, Thayaparan; Reeves, Daniel; Friedman, Larry J.; Kondev, Jane; Gelles, Jeff
2014-01-01
The kinetic stability of non-covalent macromolecular complexes controls many biological phenomena. Here we find that physical models of complex dissociation predict that competitor molecules will in general accelerate the breakdown of isolated bimolecular complexes by occluding rapid rebinding of the two binding partners. This prediction is largely independent of molecular details. We confirm the prediction with single-molecule fluorescence experiments on a well-characterized DNA strand dissociation reaction. Contrary to common assumptions, competitor–induced acceleration of dissociation can occur in biologically relevant competitor concentration ranges and does not necessarily implyternary association of competitor with the bimolecular complex. Thus, occlusion of complex rebinding may play a significant role in a variety of biomolecular processes. The results also show that single-molecule colocalization experiments can accurately measure dissociation rates despite their limited spatio temporal resolution. PMID:25342513
Das, Narhari; Abdur Rahman, S. M.
2016-01-01
Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand. PMID:27478435
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Sarah M.; Holyoak, Todd
2008-09-17
The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, S.M.; Holyoak, T.
2009-05-26
The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less
Griffiths, Lisa A; Flatters, Sarah J L
2015-10-01
Paclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain. This study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce antinociceptive effects in a preclinical model of paclitaxel-induced pain. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Complexes in the Photocatalytic Reaction of CO2 and H2O: Theoretical Studies
Luo, Dongmei; Zhang, Ning; Hong, Sanguo; Wu, Huanwen; Liu, Zhihua
2010-01-01
Complexes (H2O/CO2, e–(H2O/CO2) and h+–(H2O/CO2)) in the reaction system of CO2 photoreduction with H2O were researched by B3LYP and MP2 methods along with natural bond orbital (NBO) analysis. Geometries of these complexes were optimized and frequencies analysis performed. H2O/CO2 captured photo-induced electron and hole produced e–(H2O/CO2) and h+–(H2O/CO2), respectively. The results revealed that CO2 and H2O molecules could be activated by the photo-induced electrons and holes, and each of these complexes possessed two isomers. Due to the effect of photo-induced electrons, the bond length of C=O and H-O were lengthened, while H-O bonds were shortened, influenced by holes. The infrared (IR) adsorption frequencies of these complexes were different from that of CO2 and H2O, which might be attributed to the synergistic effect and which could not be captured experimentally. PMID:21152274
Mello-Andrade, Francyelli; da Costa, Wanderson Lucas; Pires, Wanessa Carvalho; Pereira, Flávia de Castro; Cardoso, Clever Gomes; Lino-Junior, Ruy de Souza; Irusta, Vicente Raul Chavarria; Carneiro, Cristiene Costa; de Melo-Reis, Paulo Roberto; Castro, Carlos Henrique; Almeida, Marcio Aurélio Pinheiro; Batista, Alzir Azevedo; Silveira-Lacerda, Elisângela de Paula
2017-10-01
Peritoneal carcinomatosis is considered as a potentially lethal clinical condition, and the therapeutic options are limited. The antitumor effectiveness of the [Ru(l-Met)(bipy)(dppb)]PF 6 (1) and the [Ru(l-Trp)(bipy)(dppb)]PF 6 (2) complexes were evaluated in the peritoneal carcinomatosis model, Ehrlich ascites carcinoma-bearing Swiss mice. This is the first study that evaluated the effect of Ru(II)/amino acid complexes for antitumor activity in vivo. Complexes 1 and 2 (2 and 6 mg kg -1 ) showed tumor growth inhibition ranging from moderate to high. The mean survival time of animal groups treated with complexes 1 and 2 was higher than in the negative and vehicle control groups. The induction of Ehrlich ascites carcinoma in mice led to alterations in hematological and biochemical parameters, and not the treatment with complexes 1 and 2. The treatment of Ehrlich ascites carcinoma-bearing mice with complexes 1 and 2 increased the number of Annexin V positive cells and cleaved caspase-3 levels and induced changes in the cell morphology and in the cell cycle phases by induction of sub-G1 and G0/G1 cell cycle arrest. In addition, these complexes reduce angiogenesis induced by Ehrlich ascites carcinoma cells in chick embryo chorioallantoic membrane model. The treatment with the LAT1 inhibitor decreased the sensitivity of the Ehrlich ascites carcinoma cells to complexes 1 and 2 in vitro-which suggests that the LAT1 could be related to the mechanism of action of amino acid/ruthenium(II) complexes, consequently decreasing the glucose uptake. Therefore, these complexes could be used to reduce tumor growth and increase mean survival time with less toxicity than cisplatin. Besides, these complexes induce apoptosis by combination of different mechanism of action.
Tong, Yongpeng; Huang, Chunliu; Zhang, Junfang
2017-01-01
Purpose Although EGFR-TKIs (epidermal growth factor receptor tyrosine kinase inhibitors) induce favorable responses as first-line non-small cell lung cancer treatments, drug resistance remains a serious problem. Meanwhile, thermal therapy also shows promise as a cancer therapy strategy. Here we combine a novel EGFR-TKI treatment with thermal therapy to improve lung cancer treatment outcomes. Results The results suggest that the cAMP-H3BO3 complex effectively inhibits EGFR auto-phosphorylation, while inducing apoptosis and cell cycle arrest in vitro. Compared to the negative control, tumor growth was significantly suppressed in mice treated with oxidative phosphorylation uncoupler thyroxine sodium and either cAMP-H3BO3 complex or cAMP-H3BO3 complex (P < 0.05). Moreover, the body temperature increase induced by treatment with thyroxine sodium inhibited tumor growth. Immunohistochemical analyses showed that A549 cell apoptosis was significantly higher in the cAMP-H3BO3 complex plus thyroxine sodium treatment group than in the other groups. Moreover,Ca2+ content analysis showed that the Ca2+ content of tumor tissue was significantly higher in the cAMP-H3BO3 complex plus thyroxine sodium treatment group than in other groups. Materials and Methods Inhibition of EGFR auto-phosphorylation by cAMP and cAMP-H3BO3 complex was studied using autoradiography and western blot. The antitumor activity of the novel EGFR inhibitor (cAMP-H3BO3 complex) with or without an oxidative phosphorylation uncoupler (thyroxine sodium) was investigated in vitro and in a nude mouse xenograft lung cancer model incorporating human A549 cells. Conclusions cAMP-H3BO3 complex is a novel EGFR-TKI. Combination therapy using cAMP-H3BO3 with thyroxine sodium-induced thermal therapy may improve lung cancer treatment outcomes. PMID:28915593
Singh, Prafull Kumar; Roukounakis, Aristomenis; Frank, Daniel O; Kirschnek, Susanne; Das, Kushal Kumar; Neumann, Simon; Madl, Josef; Römer, Winfried; Zorzin, Carina; Borner, Christoph; Haimovici, Aladin; Garcia-Saez, Ana; Weber, Arnim; Häcker, Georg
2017-09-01
The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-X L , recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim-Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-X L inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy. © 2017 Singh et al.; Published by Cold Spring Harbor Laboratory Press.
ERIC Educational Resources Information Center
Spiro, Rand J.; And Others
This report argues that there exists a pervasive tendency for analogies to contribute to the development of entrenched misconceptions in the form of reducing complex new knowledge to the core of a source analogy. The report presents a taxonomy of ways that simple analogy induces conceptual error and an alternative approach involving integrated…
Ye, Rui-Rong; Tan, Cai-Ping; Lin, Yan-Nan; Ji, Liang-Nian; Mao, Zong-Wan
2015-05-14
In this report, we designed a histone deacetylase-targeted phosphorescent Re(I) complex ReLMito. Colocalization studies suggested that ReLMito could specially localize to mitochondria. We also demonstrated that ReLMito could induce paraptosis in cancer cells. These features endowed the complex with potential to induce and monitor mitochondrial morphological changes during the paraptosis simultaneously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koley, Sandip; Adhya, Samit, E-mail: nilugrandson@gmail.com
Highlights: •A tRNA translocating complex was assembled from purified proteins. •The complex translocates tRNA at a membrane potential of ∼60 mV. •Translocation requires Cys and His residues in the Fe–S center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3.more » Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys{sub 2}–His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.« less
A Ubiquitin-Proteasome Pathway for the Repair of Topoisomerase I-DNA Covalent Complexes*S⃞
Lin, Chao-Po; Ban, Yi; Lyu, Yi Lisa; Desai, Shyamal D.; Liu, Leroy F.
2008-01-01
Reversible topoisomerase I (Top1)-DNA cleavage complexes are the key DNA lesion induced by anticancer camptothecins (e.g. topotecan and irinotecan) as well as structurally perturbed DNAs (e.g. oxidatively damaged DNA, UV-irradiated DNA, alkylated DNA, uracil-substituted DNA, mismatched DNA, gapped and nicked DNA, and DNA with abasic sites). Top1 cleavage complexes arrest transcription and trigger transcription-dependent degradation of Top1, a phenomenon termed Top1 down-regulation. In the current study, we have investigated the role of Top1 down-regulation in the repair of Top1 cleavage complexes. Using quiescent (serum-starved) human WI-38 cells, camptothecin (CPT) was shown to induce Top1 down-regulation, which paralleled the induction of DNA single-strand breaks (SSBs) (assayed by comet assays) and ATM autophosphorylation (at Ser-1981). Interestingly, Top1 down-regulation, induction of DNA SSBs and ATM autophosphorylation were all abolished by the proteasome inhibitor MG132. Furthermore, studies using immunoprecipitation and dominant-negative ubiquitin mutants have suggested a specific requirement for the assembly of Lys-48-linked polyubiquitin chains for CPT-induced Top1 down-regulation. In contrast to the effect of proteasome inhibition, inactivation of PARP1 was shown to increase the amount of CPT-induced SSBs and the level of ATM autophosphorylation. Together, these results support a model in which Top1 cleavage complexes arrest transcription and activate a ubiquitin-proteasome pathway leading to the degradation of Top1 cleavage complexes. Degradation of Top1 cleavage complexes results in the exposure of Top1-concealed SSBs for repair through a PARP1-dependent process. PMID:18515798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Nidhi; Mehta, Ashish; Yadav, Abhishek
Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potentialmore » and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant potential or both.« less
Mosconi, E; Rekima, A; Seitz-Polski, B; Kanda, A; Fleury, S; Tissandie, E; Monteiro, R; Dombrowicz, D D; Julia, V; Glaichenhaus, N; Verhasselt, V
2010-09-01
Allergic asthma is a chronic lung disease resulting from an inappropriate T helper (Th)-2 response to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. Here, we found that breastfeeding by antigen-sensitized mothers exposed to antigen aerosols during lactation induced a robust and long-lasting antigen-specific protection from asthma. Protection was more profound and persistent than the one induced by antigen-exposed non-sensitized mothers. Milk from antigen-exposed sensitized mothers contained antigen-immunoglobulin (Ig) G immune complexes that were transferred to the newborn through the neonatal Fc receptor resulting in the induction of antigen-specific FoxP3(+) CD25(+) regulatory T cells. The induction of oral tolerance by milk immune complexes did not require the presence of transforming growth factor-beta in milk in contrast to tolerance induced by milk-borne free antigen. Furthermore, neither the presence of IgA in milk nor the expression of the inhibitory FcgammaRIIb in the newborn was required for tolerance induction. This study provides new insights on the mechanisms of tolerance induction in neonates and highlights that IgG immune complexes found in breast milk are potent inducers of oral tolerance. These observations may pave the way for the identification of key factors for primary prevention of immune-mediated diseases such as asthma.
Azzouzi, Imane; Moest, Hansjoerg; Wollscheid, Bernd; Schmugge, Markus; Eekels, Julia J M; Speer, Oliver
2015-05-01
During maturation, erythropoietic cells extrude their nuclei but retain their ability to respond to oxidant stress by tightly regulating protein translation. Several studies have reported microRNA-mediated regulation of translation during terminal stages of erythropoiesis, even after enucleation. In the present study, we performed a detailed examination of the endogenous microRNA machinery in human red blood cells using a combination of deep sequencing analysis of microRNAs and proteomic analysis of the microRNA-induced silencing complex. Among the 197 different microRNAs detected, miR-451a was the most abundant, representing more than 60% of all read sequences. In addition, miR-451a and its known target, 14-3-3ζ mRNA, were bound to the microRNA-induced silencing complex, implying their direct interaction in red blood cells. The proteomic characterization of endogenous Argonaute 2-associated microRNA-induced silencing complex revealed 26 cofactor candidates. Among these cofactors, we identified several RNA-binding proteins, as well as motor proteins and vesicular trafficking proteins. Our results demonstrate that red blood cells contain complex microRNA machinery, which might enable immature red blood cells to control protein translation independent of de novo nuclei information. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Blackman, Alison; Boutin, Alyssa; Shimanovsky, Alexei; Baker, William J; Forcello, Nicholas
2018-07-01
Asparaginase is a chemotherapeutic agent that is commonly used in combination with other medications for the treatment of acute lymphoblastic leukemia. An adverse effect of asparaginase includes hepatotoxicity, which can lead to severe liver failure and death. Several reports have documented successful treatment of asparaginase-induced hepatotoxicity using levocarnitine (l-carnitine) and vitamin B complex. Herein, we report a patient with acute lymphoblastic leukemia that experienced acute liver injury following pegaspargase administration. Our patient was successfully treated with l-carnitine and vitamin B complex for 8 days and achieved recovery of hepatic function. Furthermore, we review the current literature and provide a recommendation on a regimen that can be used as an option for the treatment of asparaginase-induced hepatic injury.
Song, Jintong; Wang, Man; Zhou, Xiangge; Xiang, Haifeng
2018-05-17
A series of chiral and helical Pt II -Salen complexes with 1,1'-binaphthyl linkers were synthesized and characterized. Owing to the restriction of intramolecular motions of central 1,1'-binaphthyls, the complexes exhibit unusual near-infrared aggregation-induced phosphorescence (AIP). The (R)/(S) enantiopure complexes were characterized by X-ray diffraction, circular dichroism spectra, time-dependent density functional theory calculations, and circularly polarized luminescence (CPL). The present work explores the use of tetradentate ligands that can be easily prepared from commercially available enantiopure compounds, and the subsequent preparation of stable CPL-active square planar Pt II complexes with AIP effect that may have interest in many applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Han, Ying; Cao, Jing; Li, Peng-Fei; Zong, Qian-Shou; Zhao, Jian-Min; Guo, Jia-Bin; Xiang, Jun-Feng; Chen, Chuan-Feng
2013-04-05
Complexation between a triptycene-derived macrotricyclic polyether containing two dibenzo-[30]-crown-10 cavities and different functionalized paraquat derivatives, diquat, and a 2,7-diazapyrenium salt in both solution and solid state was investigated in detail. It was found that depending on the guests with different terminal functional groups and structures, the macrotricyclic polyether could form 1:1 or 1:2 complexes with the guests in different complexation modes in solution and also in the solid state. Especially, the conformation of the macrotricyclic polyether was efficiently adjusted by the encapsulated guests, which was to some extent similar to substrate-induced fit of enzymes. Moreover, the binding and releasing of the guests in the complexes could be controlled by potassium ions.
Seo, Jung Hee; Mittal, Rajat
2010-01-01
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129
Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy
Oike, Takahiro; Niimi, Atsuko; Okonogi, Noriyuki; Murata, Kazutoshi; Matsumura, Akihiko; Noda, Shin-Ei; Kobayashi, Daijiro; Iwanaga, Mototaro; Tsuchida, Keisuke; Kanai, Tatsuaki; Ohno, Tatsuya; Shibata, Atsushi; Nakano, Takashi
2016-01-01
Carbon ion radiotherapy shows great potential as a cure for X-ray-resistant tumors. Basic research suggests that the strong cell-killing effect induced by carbon ions is based on their ability to cause complex DNA double-strand breaks (DSBs). However, evidence supporting the formation of complex DSBs in actual patients is lacking. Here, we used advanced high-resolution microscopy with deconvolution to show that complex DSBs are formed in a human tumor clinically treated with carbon ion radiotherapy, but not in a tumor treated with X-ray radiotherapy. Furthermore, analysis using a physics model suggested that the complexity of radiotherapy-induced DSBs is related to linear energy transfer, which is much higher for carbon ion beams than for X-rays. Visualization of complex DSBs in clinical specimens will help us to understand the anti-tumor effects of carbon ion radiotherapy. PMID:26925533
Zhong, Wu; Zhu, Haichuan; Sheng, Fugeng; Tian, Yonglu; Zhou, Jun; Chen, Yingyu; Li, Song; Lin, Jian
2014-07-01
Transition metal copper (Cu) can exist in oxidized or reduced states in cells, leading to cytotoxicity in cancer cells through oxidative stress. Recently, copper complexes are emerging as a new class of anticancer compounds. Here, we report that a novel anticancer copper complex (HYF127c/Cu) induces oxidative stress-dependent cell death in cancer cells. Further, transcriptional analysis revealed that oxidative stress elicits broad transcriptional changes of genes, in which autophagy-related genes are significantly changed in HYF127c/Cu-treated cells. Consistently, autophagy was induced in HYF127c/Cu-treated cells and inhibitors of autophagy promoted cell death induced by HYF127c/Cu. Further analysis identified that the MAPK11/12/13/14 (formerly known as p38 MAPK) pathway was also activated in HYF127c/Cu-treated cells. Meanwhile, the MAPK11/12/13/14 inhibitor SB203580 downregulated autophagy by inhibiting the transcription of the autophagy genes MAP1LC3B, BAG3, and HSPA1A, and promoted HYF127c/Cu-induced cell death. These data suggest that copper-induced oxidative stress will induce protective autophagy through transcriptional regulation of autophagy genes by activation of the MAPK11/12/13/14 pathway in HeLa cells.
Sun, Dejuan; Zhu, Lingjuan; Zhao, Yuqian; Jiang, Yingnan; Chen, Lixia; Yu, Yang; Ouyang, Liang
2018-04-01
Triple negative breast cancer (TNBC) is a complex and intrinsically aggressive tumour with poor prognosis, and the discovery of targeted small-molecule drugs for TNBC treatment still remains in its infancy. In this study, we aimed to discover a small-molecule agent for TNBC treatment and illuminate its potential mechanisms. Cell viability was detected by using methylthiazoltetrazolium (MTT) assay. Electron microscopy, GFP-LC3 transfection, monodansylcadaverine staining and apoptosis assay were performed to determine Fluoxetine-induced autophagy and apoptosis. Western blotting and siRNA transfection were carried out to investigate the mechanisms of Fluoxetine-induced autophagy. iTRAQ-based proteomics analysis was used to explore the underlying mechanisms. We have demonstrated that Fluoxetine had remarkable anti-proliferative activities and induced autophagic cell death in MDA-MB-231 and MDA-MB-436 cells. The mechanism for Fluoxetine-induced autophagic cell death was associated with inhibition of eEF2K and activation of AMPK-mTOR-ULK complex axis. Further iTRAQ-based proteomics and network analyses revealed that Fluoxetine-induced mechanism was involved in BIRC6, BNIP1, SNAP29 and Bif-1. These results demonstrate that Fluoxetine induces apoptosis and autophagic cell death in TNBC, which will hold a promise for the future TNBC therapy. © 2017 John Wiley & Sons Ltd.
Golbabapour, Shahram; Gwaram, Nura Suleiman; Hassandarvish, Pouya; Hajrezaie, Maryam; Kamalidehghan, Behnam; Abdulla, Mahmood Ameen; Ali, Hapipah Mohd; Hadi, A Hamid A; Majid, Nazia Abdul
2013-01-01
The study was carried out to assess the gastroprotective effect of the zinc (II) complex against ethanol-induced acute hemorrhagic lesions in rats. The animals received their respective pre-treatments dissolved in tween 20 (5% v/v), orally. Ethanol (95% v/v) was orally administrated to induce superficial hemorrhagic mucosal lesions. Omeprazole (5.790×10(-5) M/kg) was used as a reference medicine. The pre-treatment with the zinc (II) complex (2.181×10(-5) and 4.362×10(-5) M/kg) protected the gastric mucosa similar to the reference control. They significantly increased the activity levels of nitric oxide, catalase, superoxide dismutase, glutathione and prostaglandin E2, and decreased the level of malondialdehyde. The histology assessments confirmed the protection through remarkable reduction of mucosal lesions and increased the production of gastric mucosa. Immunohistochemistry and western blot analysis indicated that the complex might induced Hsp70 up-regulation and Bax down-regulation. The complex moderately increased the gastroprotectiveness in fine fettle. The acute toxicity approved the non-toxic characteristic of the complex (<87.241×10(-5) M/kg). The gastroprotective effect of the zinc (II) complex was mainly through its antioxidant activity, enzymatic stimulation of prostaglandins E2, and up-regulation of Hsp70. The gastric wall mucus was also a remarkable protective mechanism.
Complex chromosomal rearrangements induced in vivo by heavy ions.
Durante, M; Ando, K; Furusawa, Y; Obe, G; George, K; Cucinotta, F A
2004-01-01
It has been suggested that the ratio complex/simple exchanges can be used as a biomarker of exposure to high-LET radiation. We tested this hypothesis in vivo, by considering data from several studies that measured complex exchanges in peripheral blood from humans exposed to mixed fields of low- and high-LET radiation. In particular, we studied data from astronauts involved in long-term missions in low-Earth-orbit, and uterus cancer patients treated with accelerated carbon ions. Data from two studies of chromosomal aberrations in astronauts used blood samples obtained before and after space flight, and a third study used blood samples from patients before and after radiotherapy course. Similar methods were used in each study, where lymphocytes were stimulated to grow in vitro, and collected after incubation in either colcemid or calyculin A. Slides were painted with whole-chromosome DNA fluorescent probes (FISH), and complex and simple chromosome exchanges in the painted genome were classified separately. Complex-type exchanges were observed at low frequencies in control subjects, and in our test subjects before the treatment. No statistically significant increase in the yield of complex-type exchanges was induced by the space flight. Radiation therapy induced a high fraction of complex exchanges, but no significant differences could be detected between patients treated with accelerated carbon ions or X-rays. Complex chromosomal rearrangements do not represent a practical biomarker of radiation quality in our test subjects. Copyright 2003 S. Karger AG, Basel
Complex Chromosomal Rearrangements Induced in Vivo by Heavy Ions
NASA Technical Reports Server (NTRS)
Durante, M.; Ando, K.; Furusawa, G.; Obe, G.; George, K.; Cucinotta, F. A.
2004-01-01
It has been suggested that the ratio complex/simple exchanges can be used as a biomarker of exposure to high-LET radiation. We tested this hypothesis in vivo, by considering data from several studies that measured complex exchanges in peripheral blood from humans exposed to mixed fields of low- and high-LET radiation. In particular, we studied data from astronauts involved in long-term missions in low-Earth-orbit, and uterus cancer patients treated with accelerated carbon ions. Data from two studies of chromosomal aberrations in astronauts used blood samples obtained before and after space flight, and a third study used blood samples from patients before and after radiotherapy course. Similar methods were used in each study, where lymphocytes were stimulated to grow in vitro, and collected after incubation in either colcemid or calyculin A. Slides were painted with whole-chromosome DNA fluorescent probes (FISH), and complex and simple chromosome exchanges in the painted genome were classified separately. Complex-type exchanges were observed at low frequencies in control subjects, and in our test subjects before the treatment. No statistically significant increase in the yield of complex-type exchanges was induced by the space flight. Radiation therapy induced a high fraction of complex exchanges, but no significant differences could be detected between patients treated with accelerated carbon ions or X-rays. Complex chromosomal rearrangements do not represent a practical biomarker of radiation quality in our test subjects. Copyright 2003 S. Karger AG, Basel.
Moquin, David M.; McQuade, Thomas; Chan, Francis Ka-Ming
2013-01-01
Background Necroptosis/programmed necrosis is initiated by a macro-molecular protein complex termed the necrosome. Receptor interacting protein kinase 1 (RIPK1/RIP1) and RIP3 are key components of the necrosome. TNFα is a prototypic inducer of necrosome activation, and it is widely believed that deubiquitination of RIP1 at the TNFR-1 signaling complex precedes transition of RIP1 into the cytosol where it forms the RIP1-RIP3 necrosome. Cylindromatosis (CYLD) is believed to promote programmed necrosis by facilitating RIP1 deubiquitination at this membrane receptor complex. Methodology/Principal Findings We demonstrate that RIP1 is indeed the primary target of CYLD in TNFα-induced programmed necrosis. We observed that CYLD does not regulate RIP1 ubiquitination at the TNF receptor. TNF and zVAD-induced programmed necrosis was highly attenuated in CYLD-/- cells. However, in the presence of cycloheximide or SMAC mimetics, programmed necrosis was only moderately reduced in CYLD-/- cells. Under the latter conditions, RIP1-RIP3 necrosome formation is only delayed, but not abolished in CYLD-/- cells. We further demonstrate that RIP1 within the NP-40 insoluble necrosome is ubiquitinated and that CYLD regulates RIP1 ubiquitination in this compartment. Hence, RIP1 ubiquitination in this late-forming complex is greatly increased in CYLD-/- cells. Increased RIP1 ubiquitination impairs RIP1 and RIP3 phosphorylation, a signature of kinase activation. Conclusions/Significance Our results show that CYLD regulates RIP1 ubiquitination in the TNFα-induced necrosome, but not in the TNFR-1 signaling complex. In cells sensitized to programmed necrosis with SMAC mimetics, CYLD is not essential for necrosome assembly. Since SMAC mimetics induces the loss of the E3 ligases cIAP1 and cIAP2, reduced RIP1 ubiquitination could lead to reduced requirement for CYLD to remove ubiquitin chains from RIP1 in the TNFR-1 complex. As increased RIP1 ubiquitination in the necrosome correlates with impaired RIP1 and RIP3 phosphorylation and function, these results suggest that CYLD controls RIP1 kinase activity during necrosome assembly. PMID:24098568
Complexation of cytochrome P-450 isozymes in hepatic microsomes from SKF 525-A-induced rats.
Murray, M
1988-05-01
Potassium ferricyanide-elicited reactivation of steroid hydroxylase activities, in hepatic microsomes from SKF 525-A-induced male rats, was used as an indicator of complex formation between individual cytochrome P-450 isozymes and the SKF 525-A metabolite. Induction of male rats with SKF 525-A (50 mg/kg for three days) led to apparent increases in androst-4-ene-3,17-dione 16 beta- and 6 beta-hydroxylation to 6.7- and 3-fold of control activities. Steroid 7 alpha-hydroxylase activity was decreased to 0.8-fold of control and 16 alpha-hydroxylation was unchanged. Ferricyanide-elicited dissociation of the SKF 525-A metabolite-P-450 complex revealed an even greater induction of 16 beta- and 6 beta-hydroxylase activities (to 1.8- and 1.6-fold of activities in the absence of ferricyanide). Androst-4-ene-3,17-dione 16 alpha-hydroxylase activity increased 2-fold after ferricyanide but 7 alpha-hydroxylase activity was unaltered. An antibody directed against the male-specific cytochrome P-450 UT-A decreased androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to 13% of control in hepatic microsomes from untreated rats. In contrast, 16 alpha-hydroxylase activity in microsomes from SKF 525-A-induced rats, before and after dissociation with ferricyanide, was reduced by anti UT-A IgG to 32 and 19% of the respective uninhibited controls. Considered together, these observations strongly suggest that the phenobarbital-inducible cytochrome P-450 isozymes PB-B and PCN-E are present in an inactive complexed state in microsomes from SKF 525-A-induced rat liver. Further, the increased susceptibility of androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to inhibition by an antibody to cytochrome P-450 UT-A, following ferricyanide treatment of microsomes, suggests that this male sexually differentiated enzyme is also complexed after in vivo SKF 525-A dosage. In contrast, the constitutive isozyme cytochrome P-450 UT-F, which is active in steroid 7 alpha-hydroxylation, does not appear to be complexed to any extent in microsomes from SKF 525-A-induced rats.
MPP+ analogs acting on mitochondria and inducing neuro-degeneration.
Kotake, Y; Ohta, S
2003-12-01
This review focuses on the mechanisms of action and the injurious effect of complex I inhibitors, of which 1-methyl-4-phenylpyridinium ion (MPP(+)) is a well studied example. These compounds can be divided into two groups, i.e. competitive inhibitors with respect to ubiquinone, such as piericidine A, and non-competitive inhibitors such as rotenone. Complex I inhibitors such as MPP(+) have been reported to induce anatomical, behavioral, and biochemical changes similar to those seen in Parkinson's disease, which is characterized by nigrostriatal dopaminergic neuro-degeneration. Spectroscopic analyses and structure-activity relationship studies have indicated that the V-shaped structure of the rotenone molecule is critical for binding to the rotenone binding site on complex I. Many isoquinoline derivatives, some of them endogenous, are also complex I inhibitors. Many lines of evidence show that complex I inhibitors elicit neuronal cell death. Recently, it was reported that chronic and systemic exposure to low-dose rotenone reproduces the features of Parkinson's disease. This work further focused attention on compounds acting on mitochondria, such as MPP(+). In Guadeloupe, the French West Indies, patients with atypical parkinsonism or progressive supranuclear palsy are frequently encountered. These diseases seem to be associated with ingestion of tropical herbal teas or tropical fruits of the Annonaceae family, which contain complex I inhibitors such as benzylisoquinoline derivatives and acetogenins. Complex I inhibitors may not simply result in reactive oxygen species generation or ATP exhaustion, but may influence complex downstream signal transduction processes. An understanding of these changes would throw light on the ways in which complex I inhibitors induce a wide range of abnormalities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, N.; Kumar, S.; Marlowe, T.
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less
Yadav, N.; Kumar, S.; Marlowe, T.; ...
2015-11-05
Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency whereas a reverse trend was observed with apicidin. Together, these finding provide a new strategy for differential mitochondrial targeting in cancer therapy.« less
Enrique Fernández, M; Jacques Grimonster, L
1989-04-01
The authors analyse the biomechanical bases of the Kratochvil "retentive complex" and show how they have induced the nowadays north-american propositions (RPI & RPA). They compare them to the european ones (Nally-Martinet).
Liu, Li-Juan; Lin, Sheng; Chan, Daniel Shiu-Hin; Vong, Chi Teng; Hoi, Pui Man; Wong, Chun-Yuen; Ma, Dik-Lung; Leung, Chung-Hang
2014-11-01
Metal-containing complexes have arisen as viable alternatives to organic molecules as therapeutic agents. Metal complexes possess a number of advantages compared to conventional carbon-based compounds, such as distinct geometries, interesting electronic properties, variable oxidation states and the ability to arrange different ligands around the metal centre in a precise fashion. Meanwhile, nitric oxide (NO) plays key roles in the regulation of angiogenesis, vascular permeability and inflammation. We herein report a novel cyclometalated rhodium(III) complex as an inhibitor of lipopolysaccharides (LPS)-induced NO production in RAW264.7 macrophages. Experiments suggested that the inhibition of NO production in cells by complex 1 was mediated through the down-regulation of nuclear factor-κB (NF-κB) activity. Furthermore, complex 1 inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs) as revealed by an endothelial tube formation assay. This study demonstrates that kinetically inert rhodium(III) complexes may be potentially developed as effective anti-angiogenic agents. Copyright © 2014 Elsevier Inc. All rights reserved.
Crockett-Torabi, E; Fantone, J C
1990-11-01
Signal transduction initiated by interaction of immune complexes (IC) with Fc gamma RII and Fc gamma RIII receptors on human neutrophils was studied by investigating the capacity of well-defined complexes to stimulate O2- generation in neutrophils. IC consisting of polyclonal rabbit antibody to human albumin were prepared at equivalence (insoluble complexes) and at five times Ag excess (soluble complexes). Stimulation of human neutrophils with soluble and insoluble IC caused a dose-dependent activation of the respiratory burst and O2- generation. Incubation of neutrophils with cytochalasin B significantly enhanced O2- generation in neutrophils stimulated with soluble IC. In contrast, cytochalasin B treatment had a minimal effect on O2- generation in neutrophils stimulated with insoluble IC. Treatment of neutrophils with PGE1 or pertussis toxin (PTx) significantly inhibited O2- generation by soluble IC-stimulated neutrophils. However, neither PGE1 nor PTx treatment significantly altered O2- generation in neutrophils stimulated with insoluble complexes. Although O2- generation induced by soluble IC was significantly inhibited by mAb against both Fc gamma RII and Fc gamma RIII receptor, insoluble IC stimulation of neutrophil O2- generation was significantly diminished only by mAb against Fc gamma RIII receptor. Cross-linking of either Fc gamma RII or Fc gamma RIII receptors on neutrophil surfaces induced O2- generation, and this activation was inhibited by both PGE1 and PTx treatment. These findings indicate that soluble and insoluble ICs induce O2- production in human neutrophils through distinct mechanisms. Soluble IC induce activation of neutrophils through a PTx- and PGE1-sensitive pathway that is dependent upon both Fc gamma RII and Fc gamma RIII receptors. Although insoluble IC induce O2- production through a PTx and PGE1 insensitive pathway mediated primarily through Fc gamma RIII receptor.
Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai
Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood.more » Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.« less
Ishida, Tsukasa; Miki, Ikuya; Tanahashi, Toshihito; Yagi, Saori; Kondo, Yasuyuki; Inoue, Jun; Kawauchi, Shoji; Nishiumi, Sin; Yoshida, Masaru; Maeda, Hideko; Tode, Chisato; Takeuchi, Atsuko; Nakayama, Hirokazu; Azuma, Takeshi; Mizuno, Shigeto
2013-08-15
Non-steroidal anti-inflammatory drugs (NSAIDs)-induced small intestinal injury is a serious clinical event with recent advances of diagnostic technologies, but a successful therapeutic method to treat such injuries is still lacking. Licorice, a traditional herbal medicine, and its derivatives have been widely used for the treatment of a variety of diseases due to their extensive biological actions. However, it is unknown whether these derivatives have an effect on NSAIDs-induced small intestinal damage. Previously, the anti-inflammatory effects of three compounds extracted from the licorice root, glycyrrhizin, 18β-glycyrrhetinic acid, and dipotassium glycyrrhizinate, were compared in vitro cell culture. The most prominent inhibitory effect on the tumor necrosis factor-α (TNF-α) production was observed with the administration of 18β-glycyrrhetinic acid as an active metabolite of glycyrrhizin. In this study, a complex compound of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin was examined to improve the oral bioavailability. After administration of this complex to indomethacin treated mice, a significantly high plasma concentration of 18β-glycyrrhetinic acid was detected using the tandem mass spectrometry coupled with the HPLC. Furthermore, the complex form of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin reduced mRNA expressions of TNF-α, interleukin (IL)-1β, and IL-6, which was histologically confirmed in the improvement of indomethacin-induced small intestinal damage. These results suggest that the complex of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin has the potential therapeutic value for preventing the adverse effects of indomethacin-induced small intestinal injury. Copyright © 2013 Elsevier B.V. All rights reserved.
Mazar, Andrew P.; Koenig, Kathy; Kurdowska, Anna K.; Idell, Steven
2009-01-01
The proenzyme single-chain urokinase plasminogen activator (scuPA) more effectively resolved intrapleural loculations in rabbits with tetracycline (TCN)-induced loculation than a range of clinical doses of two-chain uPA (Abbokinase) and demonstrated a trend toward greater efficacy than single-chain tPA (Activase) (Idell S et al., Exp Lung Res 33: 419, 2007.). scuPA more slowly generates durable intrapleural fibrinolytic activity than Abbokinase or Activase, but the interactions of these agents with inhibitors in pleural fluids (PFs) have been poorly understood. PFs from rabbits with TCN-induced pleural injury treated with intrapleural scuPA, its inactive Ser195Ala mutant, Abbokinase, Activase, or vehicle, were analyzed to define the mechanism by which scuPA induces durable fibrinolysis. uPA activity was elevated in PFs of animals treated with scuPA, correlated with the ability to clear pleural loculations, and resisted (70–80%) inhibition by PAI-1. α-macroglobulin (αM) but not urokinase receptor complexes immunoprecipitated from PFs of scuPA-treated rabbits retained uPA activity that resists PAI-1 and activates plasminogen. Conversely, little plasminogen activating or enzymatic activity resistant to PAI-1 was detectable in PFs of rabbits treated with Abbokinase or Activase. Consistent with these findings, PAI-1 interacts with scuPA much slower than with Activase or Abbokinase in vitro. An equilibrium between active and inactive scuPA (kon = 4.3 h−1) limits the rate of its inactivation by PAI-1, favoring formation of complexes with αM. These observations define a newly recognized mechanism that promotes durable intrapleural fibrinolysis via formation of αM/uPA complexes. These complexes promote uPA-mediated plasminogen activation in scuPA-treated rabbits with TCN-induced pleural injury. PMID:19666776
Liu, Tanghao; Zong, Yingxia; Zhou, Yuanyuan; ...
2017-03-14
The δ → α phase transformation is a crucial step in the solution-growth process of formamidinium-based lead triiodide (FAPbI 3) hybrid organic–inorganic perovskite (HOIP) thin films for perovskite solar cells (PSCs). Because the addition of cesium (Cs) stabilizes the α phase of FAPbI 3-based HOIPs, here our research focuses on FAPbI 3(Cs) thin films. We show that having a large grain size in the δ-FAPbI 3(Cs) non-perovskite intermediate films is essential for the growth of high-quality α-FAPbI 3(Cs) HOIP thin films. Here grain coarsening and phase transformation occur simultaneously during the thermal annealing step. A large starting grain size inmore » the δ-FAPbI 3(Cs) thin films suppresses grain coarsening, precluding the formation of voids at the final α-FAPbI 3(Cs)–substrate interfaces. PSCs based on the interface void-free α-FAPbI 3(Cs) HOIP thin films are much more efficient and stable in the ambient atmosphere. This interesting finding inspired us to develop a simple room-temperature aging method for preparing coarse-grained δ-FAPbI 3(Cs) intermediate films, which are subsequently converted to coarse-grained, high-quality α-FAPbI 3(Cs) HOIP thin films. As a result, this study highlights the importance of microstructure meditation in the processing of formamidinium-based PSCs.« less
Pseudohalide (SCN(-))-Doped MAPbI3 Perovskites: A Few Surprises.
Halder, Ansuman; Chulliyil, Ramya; Subbiah, Anand S; Khan, Tuhin; Chattoraj, Shyamtanu; Chowdhury, Arindam; Sarkar, Shaibal K
2015-09-03
Pseudohalide thiocyanate anion (SCN(-)) has been used as a dopant in a methylammonium lead tri-iodide (MAPbI3) framework, aiming for its use as an absorber layer for photovoltaic applications. The substitution of SCN(-) pseudohalide anion, as verified using Fourier transform infrared (FT-IR) spectroscopy, results in a comprehensive effect on the optical properties of the original material. Photoluminescence measurements at room temperature reveal a significant enhancement in the emission quantum yield of MAPbI3-x(SCN)x as compared to MAPbI3, suggestive of suppression of nonradiative channels. This increased intensity is attributed to a highly edge specific emission from MAPbI3-x(SCN)x microcrystals as revealed by photoluminescence microscopy. Fluoresence lifetime imaging measurements further established contrasting carrier recombination dynamics for grain boundaries and the bulk of the doped material. Spatially resolved emission spectroscopy on individual microcrystals of MAPbI3-x(SCN)x reveals that the optical bandgap and density of states at various (local) nanodomains are also nonuniform. Surprisingly, several (local) emissive regions within MAPbI3-x(SCN)x microcrystals are found to be optically unstable under photoirradiation, and display unambiguous temporal intermittency in emission (blinking), which is extremely unusual and intriguing. We find diverse blinking behaviors for the undoped MAPbI3 crystals as well, which leads us to speculate that blinking may be a common phenomenon for most hybrid perovskite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard
2017-01-01
Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aproticmore » solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.« less
Pothoczki, Szilvia; Temleitner, László; Pusztai, László
2014-02-07
Synchrotron X-ray diffraction measurements have been conducted on liquid phosphorus trichloride, tribromide, and triiodide. Molecular Dynamics simulations for these molecular liquids were performed with a dual purpose: (1) to establish whether existing intermolecular potential functions can provide a picture that is consistent with diffraction data and (2) to generate reliable starting configurations for subsequent Reverse Monte Carlo modelling. Structural models (i.e., sets of coordinates of thousands of atoms) that were fully consistent with experimental diffraction information, within errors, have been prepared by means of the Reverse Monte Carlo method. Comparison with reference systems, generated by hard sphere-like Monte Carlo simulations, was also carried out to demonstrate the extent to which simple space filling effects determine the structure of the liquids (and thus, also estimating the information content of measured data). Total scattering structure factors, partial radial distribution functions and orientational correlations as a function of distances between the molecular centres have been calculated from the models. In general, more or less antiparallel arrangements of the primary molecular axes that are found to be the most favourable orientation of two neighbouring molecules. In liquid PBr3 electrostatic interactions seem to play a more important role in determining intermolecular correlations than in the other two liquids; molecular arrangements in both PCl3 and PI3 are largely driven by steric effects.
Antonelou, Aspasia; Syrrokostas, George; Sygellou, Lamprini; Leftheriotis, George; Dracopoulos, Vassileios; Yannopoulos, Spyros N
2016-01-29
The growth of MoS2 films by sulfurization of Mo foils at atmospheric pressure is reported. The growth procedure provides, in a controlled way, mono- and few-layer thick MoS2 films with substrate-scale uniformity across square-centimeter area on commercial foils without any pre- or post-treatment. The prepared few-layer MoS2 films are investigated as counter electrodes for dye-sensitized solar cells (DSSCs) by assessing their ability to catalyse the reduction of I3(-) to I(-) in triiodide redox shuttles. The dependence of the MoS2 catalytic activity on the number of monolayers is explored down to the bilayer thickness, showing performance similar to that of, and stability against corrosion better than, Pt-based nanostructured film. The DSSC with the MoS2-Mo counter electrode yields a photovoltaic energy conversion efficiency of 8.4%, very close to that of the Pt-FTO-based DSSC, i.e. 8.7%. The current results disclose a facile, cost-effective and green method for the fabrication of mechanically robust and chemically stable, few-layer MoS2 on flexible Mo substrates and further demonstrate that efficient counter electrodes for DSSCs can be prepared at thicknesses down to the 1-2 nm scale.
NASA Astrophysics Data System (ADS)
Venkatesan, Shanmuganathan; Hidayati, Noor; Liu, I.-Ping; Lee, Yuh-Lang
2016-12-01
Propionitrile (PPN) solvent based iodide/triiodide liquid-electrolyte is utilized to prepare highly efficient poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) polymer gel electrolytes (PGEs) of dye-sensitized solar cells, aiming at improving the energy conversion efficiency as well as the stability of gel-state DSSCs. The concentrations effect of the PVdF-HFP on the properties of PGEs and the performance of the corresponding cells are studied. The results show that the in-situ gelation is performed for the PVdF-HFP concentration range of 8-18% at room temperature. However, increasing the concentration of polymer in the PGEs triggers a decrease in the diffusivity and conductivity of the PGEs, but an increase in the phase transition temperature of the PGEs. A high phase transition temperature is obtained for the PGEs with 18 wt% PVdF-HFP, which increase the long-term stability of the gel-state DSSC. By using the 18 wt% PVdF-HFP in the presence of 5 wt% TiO2 nanofillers (NFs), gel-state cells with an efficiency of 8.38% can be obtained, which is higher than that achieved by liquid-state cells (7.55%). After 1000 h test at room temperature (RT) and 50 °C, the cell can retain 96% and 82%, respectively, of its initial efficiency.
Xie, Xueping; Zhao, Ruozhi; Shen, Garry X.
2012-01-01
Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC. PMID:23443099
Xie, Xueping; Zhao, Ruozhi; Shen, Garry X
2012-11-27
Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC.
Maghsoudi, Amirhossein; Fakharzadeh, Saideh; Hafizi, Maryam; Abbasi, Maryam; Kohram, Fatemeh; Sardab, Shima; Tahzibi, Abbas; Kalanaky, Somayeh; Nazaran, Mohammad Hassan
2015-03-01
Parkinson's disease (PD) is the world's second most common dementia, which the drugs available for its treatment have not had effects beyond slowing the disease process. Recently nanotechnology has induced the chance for designing and manufacturing new medicines for neurodegenerative disease. It is demonstrated that by tuning the size of a nanoparticle, the physiological effect of the nanoparticle can be controlled. Using novel nanochelating technology, three nano complexes: Pas (150 nm), Paf (100 nm) and Pac (40 nm) were designed and in the present study their neuroprotective effects were evaluated in PC12 cells treated with 1-methyl-4-phenyl-pyridine ion (MPP (+)). PC12 cells were pre-treated with the Pas, Paf or Pac nano complexes, then they were subjected to 10 μM MPP (+). Subsequently, cell viability, intracellular free Calcium and reactive oxygen species (ROS) levels, mitochondrial membrane potential, catalase (CAT) and superoxide dismutase (SOD) activity, Glutathione (GSH) and malondialdehyde (MDA) levels and Caspase 3 expression were evaluated. All three nano complexes, especially Pac, were able to increase cell viability, SOD and CAT activity, decreased Caspase 3 expression and prevented the generation of ROS and the loss of mitochondrial membrane potential caused by MPP(+). Pre-treatment with Pac and Paf nano complexes lead to a decrease of intracellular free Calcium, but Pas nano complex could not decrease it. Only Pac nano complex decreased MDA levels and other nano complexes could not change this parameter compared to MPP(+) treated cells. Hence according to the results, all nanochelating based nano complexes induced neuroprotective effects in an experimental model of PD, but the smallest nano complex, Pac, showed the best results.
NASA Astrophysics Data System (ADS)
Kang, Sung Hoon; Shan, Sicong; Košmrlj, Andrej; Noorduin, Wim L.; Shian, Samuel; Weaver, James C.; Clarke, David R.; Bertoldi, Katia
2014-03-01
Geometrical frustration arises when a local order cannot propagate throughout the space because of geometrical constraints. This phenomenon plays a major role in many systems leading to disordered ground-state configurations. Here, we report a theoretical and experimental study on the behavior of buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that buckling induces complex ordered patterns which can be tuned by controlling the porosity of the structures. Our analysis reveals that the connected geometry of the cellular structure plays a crucial role in the generation of ordered states in this frustrated system.
Figueredo, Yanier Núñez; García-Pupo, Laura; Cuesta Rubio, Osmany; Delgado Hernández, René; Naal, Zeki; Curti, Carlos; Pardo Andreu, Gilberto L
2011-01-01
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with several reported pharmacological actions. We have assessed the protective action of GA on iron-induced neuronal cell damage by employing the PC12 cell line and primary culture of rat cortical neurons (PCRCN). A strong protection by GA, assessed by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carbox-anilide (XTT) assay, was revealed, with IC(50) values <1 µM. GA also inhibited Fe(3+)-ascorbate reduction, iron-induced oxidative degradation of 2-deoxiribose, and iron-induced lipid peroxidation in rat brain homogenate, as well as stimulated oxygen consumption by Fe(2+) autoxidation. Absorption spectra and cyclic voltammograms of GA-Fe(2+)/Fe(3+) complexes suggest the formation of a transient charge transfer complex between Fe(2+) and GA, accelerating Fe(2+) oxidation. The more stable Fe(3+) complex with GA would be unable to participate in Fenton-Haber Weiss-type reactions and the propagation phase of lipid peroxidation. The results show a potential of GA against neuronal diseases associated with iron-induced oxidative stress.
Sato, Ayami; Ueno, Haruka; Takase, Akari; Ando, Akira; Sekine, Yuko; Yano, Tomohiro
2016-04-01
De novo synthesis of proteins is regulated by cap-dependent protein translation. Aberrant activation of the translation is a hallmark of many cancer types including malignant mesothelioma (MM). We previously reported that a redox-silent analog of α-tocotrienol, 6-O-carboxypropyl-α-tocotrienol (T3E) induces potent cytotoxicity against human MM cells. However, the detailed mechanism of cytotoxicity of T3E remains unclear. In this study, we investigated if T3E induced potent cytotoxicity aganist MM cells. T3E reduced the formation of the cap-dependent translation complex and induced inactivation of oncogene from rat sarcoma virus (RAS). These events were associated with T3E cytotoxicity in MM cells. Furthermore, atorvastatin, an inhibitor of RAS function, had similar effects on MM cells. Moreover, 4EGI-1, a specific inhibitor of the cap-dependent translation complex, induced severe cytotoxicity in MM cells. Overall, T3E had a cytotoxic effect on MM cells via disruption of the activated cap-dependent translation complex through inactivation of RAS. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Wawrzyniak, Piotr K; Alia, A; Schaap, Roland G; Heemskerk, Mattijs M; de Groot, Huub J M; Buda, Francesco
2008-12-14
Bacteriochlorophyll-histidine complexes are ubiquitous in nature and are essential structural motifs supporting the conversion of solar energy into chemically useful compounds in a wide range of photosynthesis processes. A systematic density functional theory study of the NMR chemical shifts for histidine and for bacteriochlorophyll-a-histidine complexes in the light-harvesting complex II (LH2) is performed using the BLYP functional in combination with the 6-311++G(d,p) basis set. The computed chemical shift patterns are consistent with available experimental data for positive and neutral(tau) (N(tau) protonated) crystalline histidines. The results for the bacteriochlorophyll-a-histidine complexes in LH2 provide evidence that the protein environment is stabilizing the histidine close to the Mg ion, thereby inducing a large charge transfer of approximately 0.5 electronic equivalent. Due to this protein-induced geometric constraint, the Mg-coordinated histidine in LH2 appears to be in a frustrated state very different from the formal neutral(pi) (N(pi) protonated) form. This finding could be important for the understanding of basic functional mechanisms involved in tuning the electronic properties and exciton coupling in LH2.
Mullett, Steven J.; Hinkle, David A.
2011-01-01
Parkinson’s disease (PD) brains show evidence of mitochondrial respiratory Complex I deficiency, oxidative stress, and neuronal death. Complex I-inhibiting neurotoxins, such as the pesticide rotenone, cause neuronal death and parkinsonism in animal models. We have previously shown that DJ-1 over-expression in astrocytes augments their capacity to protect neurons against rotenone, that DJ-1 knock-down impairs astrocyte-mediated neuroprotection against rotenone, and that each process involves astrocyte-released factors. To further investigate the mechanism behind these findings, we developed a high-throughput, plate-based bioassay that can be used to assess how genetic manipulations in astrocytes affect their ability to protect co-cultured neurons. We used this bioassay to show that DJ-1 deficiency-induced impairments in astrocyte-mediated neuroprotection occur solely in the presence of pesticides that inhibit Complex I (rotenone, pyridaben, fenazaquin, and fenpyroximate); not with agents that inhibit Complexes II-V, that primarily induce oxidative stress, or that inhibit the proteasome. This is a potentially PD-relevant finding because pesticide exposure is epidemiologically-linked with an increased risk for PD. Further investigations into our model suggested that astrocytic glutathione and heme oxygenase-1 anti-oxidant systems are not central to the neuroprotective mechanism. PMID:21219333
Processing of simple and complex acoustic signals in a tonotopically organized ear
Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela
2014-01-01
Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics. PMID:25339727
Noise induced quantum effects in photosynthetic complexes
NASA Astrophysics Data System (ADS)
Dorfman, Konstantin; Voronine, Dmitri; Mukamel, Shaul; Scully, Marlan
2012-02-01
Recent progress in coherent multidimensional optical spectroscopy revealed effects of quantum coherence coupled to population leading to population oscillations as evidence of quantum transport. Their description requires reevaluation of the currently used methods and approximations. We identify couplings between coherences and populations as the noise-induced cross-terms in the master equation generated via Agarwal-Fano interference that have been shown earlier to enhance the quantum yield in a photocell. We investigated a broad range of typical parameter regimes, which may be applied to a variety of photosynthetic complexes. We demonstrate that quantum coherence may be induced in photosynthetic complexes under natural conditions of incoherent light from the sun. This demonstrates that a photosynthetic reaction center may be viewed as a biological quantum heat engine that transforms high-energy thermal photon radiation into low entropy electron flux.
Molecular Heterogeneity in Primary and Metastatic Prostate Tumor Tissue
2015-06-01
complex disrupts cell-cycle checkpoints, induces chromosomal instability, and contributes to aneuploidy (18). In addi- tion, PSMA is negatively regulated by...promoting complex and induces chromosomal insta- bility. Mol Cancer Ther 2008;7:2142–51. 19. Serda RE, Bisoffi M, Thompson TA, Ji M, Omdahl JL...incidence among men with low antioxidant nutritional intake.23,24 However, there are con- flicting data regarding the association between rs4880 and
Lanthanide-cyclodextrin complexes as probes for elucidating optical purity by NMR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, T.J.; Bogyo, M.S.; Lebeau, E.L.
1994-06-01
A multidentate ligand is bonded to cyclodextrins by the reaction of diethylenetriaminepentaacetic dianhydride with 6-mono- and 2-mono(ethylenediamine) derivatives of cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives enhances the enantiomeric resolution in the [sup 1]H NMR spectra of carbionoxamine maleate, doxylamine succinate, pheniramine maleate, propranolol hydrochloride, and tryptophan. The enhancement is more pronounced with the secondary derivative. The Dy(III)-induced shifts can be used to elucidate the geometry of cyclodextrin-substrate inclusion complexes. Lanthanide-induced shifts are reported for complexes of aspartame, tryptophan, propranolol, and 1-anilino-8-naphthalenesulfonate with cyclodextrins, and the relative magnitudes of the shifts agree with previously reported structures of the complexes. 37more » refs., 9 figs., 5 tabs.« less
Mitani, Takakazu; Minami, Masato; Harada, Naoki; Ashida, Hitoshi; Yamaji, Ryoichi
2015-10-01
Prostate cancer grows under hypoxic conditions. Hypoxia decreases androgen receptor (AR) protein levels. However, the molecular mechanism remains unclear. Here, we report that p62-mediated autophagy degrades AR protein and suppresses apoptosis in prostate cancer LNCaP cells in hypoxia. In LNCaP cells, hypoxia decreased AR at the protein level, but not at the mRNA level. Hypoxia-induced AR degradation was inhibited not only by knockdown of LC3, a key component of the autophagy machinery, but also by knockdown of p62. Depletion of p62 enhanced hypoxia-induced poly(ADP-ribose) polymerase cleavage and caspase-3 cleavage, markers of apoptosis, whereas simultaneous knockdown of p62 and AR suppressed hypoxia-induced apoptosis. Hypoxia increased the formation of a cytosolic p62-AR complex and enhanced sequestration of AR from the nucleus. Formation of this complex was promoted by the increased phosphorylation of serine 403 in the ubiquitin-associated domain of p62 during hypoxia. An antioxidant and an AMP-activated protein kinase (AMPK) inhibitor reduced hypoxia-induced p62 phosphorylation at serine 403 and suppressed hypoxia-induced complex formation between AR and p62. These results demonstrate that hypoxia enhances the complex formation between p62 and AR by promoting phosphorylation of p62 at serine 403, probably through activating AMPK, and that p62-mediated autophagy degrades AR protein for cell survival in hypoxia. Copyright © 2015 Elsevier Inc. All rights reserved.
Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ruochan; Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008; Fu, Sha
High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis andmore » necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.« less
Buschini, Annamaria; Pinelli, Silvana; Pellacani, Claudia; Giordani, Federica; Ferrari, Marisa Belicchi; Bisceglie, Franco; Giannetto, Marco; Pelosi, Giorgio; Tarasconi, Pieralberto
2009-05-01
Thiosemicarbazones are versatile organic compounds that present considerable pharmaceutical interest because of a wide range of properties. In our laboratory we synthesised some new metal-complexes with thiosemicarbazones derived from natural aldehydes which showed peculiar biological activities. In particular, a nickel complex [Ni(S-tcitr)(2)] (S-tcitr=S-citronellalthiosemicarbazonate) was observed to induce an antiproliferative effect on U937, a human histiocytic lymphoma cell line, at low concentrations (IC(50)=14.4microM). Therefore, we decided to study the interactions of this molecule with various cellular components and to characterise the induced apoptotic pathway. Results showed that [Ni(S-tcitr)(2)] causes programmed cell death via down-regulation of Bcl-2, alteration of mitochondrial membrane potential and caspase-3 activity, regardless of p53 function. The metal complex is not active on G(0) cells (i.e. fresh leukocytes) but is able to induce perturbation of the cell cycle on stimulated lymphocytes and U937 cells, in which a G(2)/M block was detected. It reaches the nucleus where it induces, at low concentrations (2.5-5.0microM), DNA damage, which could be partially ascribed to oxidative stress. [Ni(S-tcitr)(2)] is moreover able to strongly reduce the telomerase activity. Although the biological target of this metal complex is still unknown, the reported data suggest that [Ni(S-tcitr)(2)] could be a good model for the synthesis of new metal thiosemicarbazones with specific biological activity.
Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase.
Gandin, Valentina; Fernandes, Aristi Potamitou; Rigobello, Maria Pia; Dani, Barbara; Sorrentino, Francesca; Tisato, Francesco; Björnstedt, Mikael; Bindoli, Alberto; Sturaro, Alberto; Rella, Rocco; Marzano, Cristina
2010-01-15
The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (nicotinamide adenine dinucleotide phosphate), plays a central role in regulating cellular redox homeostasis and signaling pathways. TrxR, overexpressed in many tumor cells and contributing to drug resistance, has emerged as a new target for anticancer drugs. Gold complexes have been validated as potent TrxR inhibitors in vitro in the nanomolar range. In order to obtain potent and selective TrxR inhibitors, we have synthesized a series of linear, 'auranofin-like' gold(I) complexes all containing the [Au(PEt(3))](+) synthon and the ligands: Cl(-), Br(-), cyanate, thiocyanate, ethylxanthate, diethyldithiocarbamate and thiourea. Phosphine gold(I) complexes efficiently inhibited cytosolic and mitochondrial TrxR at concentrations that did not affect the two related oxidoreductases glutathione reductase (GR) and glutathione peroxidase (GPx). The inhibitory effect of the redox proteins was also observed intracellularly in cancer cells pretreated with gold(I) complexes. Gold(I) compounds were found to induce antiproliferative effects towards several human cancer cells some of which endowed with cisplatin or multidrug resistance. In addition, they were able to activate caspase-3 and induce apoptosis observed as nucleosome formation and sub-G1 cell accumulation. The complexes with thiocyanate and xanthate ligands were particularly effective in inhibiting thioredoxin reductase and inducing apoptosis. Pharmacodynamic studies in human ovarian cancer cells allowed for the correlation of intracellular drug accumulation with TrxR inhibition that leads to the induction of apoptosis via the mitochondrial pathway.
Ansari, Suraiya A.; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z.; Rode, Kara A.; Barber, Wesley T.; Ellis, Laura C.; LaPorta, Erika; Orzechowski, Amanda M.; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H.
2014-01-01
Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. PMID:24727477
Inhibition of amyloid peptide fibril formation by gold-sulfur complexes.
Wang, Wenji; Zhao, Cong; Zhu, Dengsen; Gong, Gehui; Du, Weihong
2017-06-01
Amyloid-related diseases are characterized by protein conformational change and amyloid fibril deposition. Metal complexes are potential inhibitors of amyloidosis. Nitrogen-coordinated gold complexes have been used to disaggregate prion neuropeptide (PrP106-126) and human islet amyloid polypeptide (hIAPP). However, the roles of metal complexes in peptide fibril formation and related bioactivity require further exploration. In this work, we investigated the interactions of amyloid peptides PrP106-126 and hIAPP with two tetracoordinated gold-sulfur complexes, namely, dichloro diethyl dithiocarbamate gold complex and dichloro pyrrolidine dithiocarbamate gold complex. We also determined the effects of these complexes on peptide-induced cytotoxicity. Thioflavin T assay, morphological characterization, and particle size analysis indicated that the two gold-sulfur complexes effectively inhibited the fibrillation of the amyloid peptides, which led to the formation of nanoscale particles. The complexes reduced the cytotoxicity induced by the amyloid peptides. Intrinsic fluorescence, nuclear magnetic resonance, and mass spectrometry revealed that the complexes interacted with PrP106-126 and hIAPP via metal coordination and hydrophobic interaction, which improved the inhibition and binding of the two gold-sulfur compounds. Our study provided new insights into the use of tetracoordinated gold-sulfur complexes as drug candidates against protein conformational disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Fujita, Masaaki; Takada, Yoko K.; Takada, Yoshikazu
2013-01-01
Integrin αvβ3 plays a role in insulin-like growth factor 1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk) in non-transformed cells in anchorage-dependent conditions. We reported previously that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation in these conditions. The integrin-binding defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, whereas it still binds to IGF1R. We studied if IGF1 can induce signaling in anchorage-independent conditions in transformed Chinese hamster ovary cells that express αvβ3 (β3-CHO) cells. Here we describe that IGF1 signals were more clearly detectable in anchorage-independent conditions (polyHEMA-coated plates) than in anchorage-dependent conditions. This suggests that IGF signaling is masked by signals from cell-matrix interaction in anchorage-dependent conditions. IGF signaling required αvβ3 expression, and R36E/R37E was defective in inducing signals in polyHEMA-coated plates. These results suggest that αvβ3-IGF1 interaction, not αvβ3-extracellular matrix interaction, is essential for IGF signaling. Inhibitors of IGF1R, Src, AKT, and ERK1/2 did not suppress αvβ3-IGF-IGF1R ternary complex formation, suggesting that activation of these kinases are not required for ternary complex formation. Also, mutations of the β3 cytoplasmic tail (Y747F and Y759F) that block β3 tyrosine phosphorylation did not affect IGF1R phosphorylation or AKT activation. We propose a model in which IGF1 binding to IGF1R induces recruitment of integrin αvβ3 to the IGF-IGF1R complex and then β3 and IGF1R are phosphorylated. It is likely that αvβ3 should be together with the IGF1-IGF1R complex for triggering IGF signaling. PMID:23243309
AIP1 recruits phosphatase PP2A to ASK1 in tumor necrosis factor-induced ASK1-JNK activation.
Min, Wang; Lin, Yan; Tang, Shibo; Yu, Luyang; Zhang, Haifeng; Wan, Ting; Luhn, Tricia; Fu, Haian; Chen, Hong
2008-04-11
Previously we have shown that AIP1 (apoptosis signal-regulating kinase [ASK]1-interacting protein 1), a novel member of the Ras-GAP protein family, facilitates dephosphorylation of ASK1 at pSer967 and subsequently 14-3-3 release from ASK1, leading to enhanced ASK1-JNK signaling. However, the phosphatase(s) responsible for ASK1 dephosphorylation at pSer967 has not been identified. In the present study, we identified protein phosphatase (PP)2A as a potential phosphatase in vascular endothelial cells (ECs). Tumor necrosis factor (TNF)-induced dephosphorylation of ASK1 pSer967 in ECs was blocked by PP2A inhibitor okadaic acid. Overexpression of PP2A catalytic subunit induced dephosphorylation of ASK1 pSer967 and activation of c-Jun N-terminal kinase (JNK). In contrast, a catalytic inactive form of PP2A or PP2A small interfering RNA blunted TNF-induced dephosphorylation of ASK1 pSer967 and activation of JNK without effects on NF-kappaB activation. Whereas AIP1, via its C2 domain, binds to ASK1, PP2A binds to the GAP domain of AIP1. Endogenous AIP1-PP2A complex can be detected in the resting state, and TNF induces a complex formation of AIP1-PP2A with ASK1. Furthermore, TNF-induced association of PP2A with ASK1 was diminished in AIP1-knockdown ECs, suggesting a critical role of AIP1 in recruiting PP2A to ASK1. TNF-signaling molecules TRAF2 and RIP1, known to be in complex with AIP1 and activate AIP1 by phosphorylating AIP1 at Ser604, are critical for TNF-induced ASK1 dephosphorylation. Finally, PP2A and AIP1 cooperatively induce activation of ASK1-JNK signaling and EC apoptosis, as demonstrated by both overexpression and small interfering RNA knockdown approaches. Taken together, our data support a critical role of PP2A-AIP1 complex in TNF-induced activation of ASK1-JNK apoptotic signaling.
The GIT–PIX complexes regulate the chemotactic response of rat basophilic leukaemia cells
Gavina, Manuela; Za, Lorena; Molteni, Raffaella; Pardi, Ruggero; Curtis, Ivan de
2009-01-01
Background information. Cell motility entails the reorganization of the cytoskeleton and membrane trafficking for effective protrusion. The GIT–PIX protein complexes are involved in the regulation of cell motility and adhesion and in the endocytic traffic of members of the family of G-protein-coupled receptors. We have investigated the function of the endogenous GIT complexes in the regulation of cell motility stimulated by fMLP (formyl-Met-Leu-Phe) peptide, in a rat basophilic leukaemia RBL-2H3 cell line stably expressing an HA (haemagglutinin)-tagged receptor for the fMLP peptide. Results. Our analysis shows that RBL cells stably transfected with the chemoattractant receptor expressed both GIT1–PIX and GIT2–PIX endogenous complexes. We have used silencing of the different members of the complex by small interfering RNAs to study the effects on a number of events linked to agonist-induced cell migration. We found that cell adhesion was not affected by depletion of any of the proteins of the GIT complex, whereas agonist-enhanced cell spreading was inhibited. Analysis of agonist-stimulated haptotactic cell migration indicated a specific positive effect of GIT1 depletion on trans-well migration. The internalization of the formyl-peptide receptor was also inhibited by depletion of GIT1 and GIT2. The effects of the GIT complexes on trafficking of the receptors was confirmed by an antibody-enhanced agonist-induced internalization assay, showing that depletion of PIX, GIT1 or GIT2 protein caused decreased perinuclear accumulation of internalized receptors. Conclusions. Our results show that endogenous GIT complexes are involved in the regulation of chemoattractant-induced cell motility and receptor trafficking, and support previous findings indicating an important function of the GIT complexes in the regulation of different G-protein-coupled receptors. Our results also indicate that endogenous GIT1 and GIT2 regulate distinct subsets of agonist-induced responses and suggest a possible functional link between the control of receptor trafficking and the regulation of cell motility by GIT proteins. PMID:19912111
Nagakura, Tadashi; Tabata, Kimiyo; Kira, Kazunobu; Hirota, Shinsuke; Clark, Richard; Matsuura, Fumiyoshi; Hiyoshi, Hironobu
2013-08-01
Many anticoagulant drugs target factors common to both the intrinsic and extrinsic coagulation pathways, which may lead to bleeding complications. Since the tissue factor (TF)/factor VIIa complex is associated with thrombosis onset and specifically activates the extrinsic coagulation pathway, compounds that inhibit this complex may provide therapeutic and/or prophylactic benefits with a decreased risk of bleeding. The in vitro enzyme profile and anticoagulation selectivity of the TF/VIIa complex inhibitor, ER-410660, and its prodrug E5539 were assessed using enzyme inhibitory and plasma clotting assays. In vivo effects of ER-410660 and E5539 were determined using a TF-induced, thrombin generation rhesus monkey model; a stasis-induced, venous thrombosis rat model; a photochemically induced, arterial thrombosis rat model; and a rat tail-cut bleeding model. ER-410660 selectively prolonged prothrombin time, but had a less potent anticoagulant effect on the intrinsic pathway. It also exhibited a dose-dependent inhibitory effect on thrombin generation caused by TF-injection in the rhesus monkey model. ER-410660 also reduced venous thrombus weights in the TF-administered, stasis-induced, venous thrombosis rat model and prolonged the occlusion time induced by arterial thrombus formation after vascular injury. The compound was capable of doubling the total bleeding time in the rat tail-cut model, albeit with a considerably higher dose compared to the effective dose in the venous and arterial thrombosis models. Moreover, E5539, an orally available ER-410660 prodrug, reduced the thrombin-anti-thrombin complex levels, induced by TF-injection, in a dose-dependent manner. Selective TF/VIIa inhibitors have potential as novel anticoagulants with a lower propensity for enhancing bleeding. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pereira, Aline G; Jaramillo, Michael L; Remor, Aline P; Latini, Alexandra; Davico, Carla E; da Silva, Mariana L; Müller, Yara M R; Ammar, Dib; Nazari, Evelise M
2018-06-11
Glyphosate (N-phosphonomethyl-glycine) (GLY) is the active ingredient of the most used herbicides in the world. GLY is applied in formulated products known as glyphosate-based herbicides (GBH), which could induce effects that are not predicted by toxicity assays with pure GLY. This herbicide is classified as organophosphorus compound, which is known to induce neurotoxic effects. Although this compound is classified as non-neurotoxic by regulatory agencies, acute exposure to GBH causes neurological symptoms in humans. However, there is no consensus in relation to neurotoxic effects of GBH. Thus, the aim of this study was to investigate the neurotoxic effects of the GBH in the zebrafish Danio rerio, focusing on acute toxicity, the activity and transcript levels of mitochondrial respiratory chain complexes, mitochondrial membrane potential, reactive species (RS) formation, and behavioral repertoire. Adult zebrafish were exposed in vivo to three concentrations of GBH Scout ® , which contained GLY in formulation (fGLY) (0.065, 1.0 and 10.0 mg L -1 fGLY) for 7 d, and an in vitro assay was performed using also pure GLY. Our results show that GBH induced in zebrafish brain a decrease in cell viability, inhibited mitochondrial complex enzymatic activity, modulated gene expression related to mitochondrial complexes, induced an increase in RS production, promoted hyperpolarization of mitochondrial membrane, and induced behavioral impairments. Together, our data contributes to the knowledge of the neurotoxic effects of GBH. Mitochondrial dysfunction has been recognized as a relevant cellular response that should not be disregarded. Moreover, this study pointed to the mitochondria as an important target of GBH. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ortiz-Avila, Omar; Sámano-García, Carlos Alberto; Calderón-Cortés, Elizabeth; Pérez-Hernández, Ismael H; Mejía-Zepeda, Ricardo; Rodríguez-Orozco, Alain R; Saavedra-Molina, Alfredo; Cortés-Rojo, Christian
2013-06-01
Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c + c1 loss. During Fe(2+)-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe(2+). Avocado oil also decreased ROS generation in Fe(2+)-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.
Music-induced emotions can be predicted from a combination of brain activity and acoustic features.
Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J
2015-12-01
It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,p<0.001. This regression fit suggests that over 20% of the variance of the participant's music induced emotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01). Copyright © 2015 Elsevier Inc. All rights reserved.
A look at the effect of sequence complexity on pressure destabilisation of DNA polymers.
Rayan, Gamal; Macgregor, Robert B
2015-04-01
Our previous studies on the helix-coil transition of double-stranded DNA polymers have demonstrated that molar volume change (ΔV) accompanying the thermally-induced transition can be positive or negative depending on the experimental conditions, that the pressure-induced transition is more cooperative than the heat-induced transition [Rayan and Macgregor, J Phys Chem B2005, 109, 15558-15565], and that the pressure-induced transition does not occur in the absence of water [Rayan and Macgregor, Biophys Chem, 2009, 144, 62-66]. Additionally, we have shown that ΔV values obtained by pressure-dependent techniques differ from those obtained by ambient pressure techniques such as PPC [Rayan et al. J Phys Chem B2009, 113, 1738-1742] thus shedding light on the effects of pressure on DNA polymers. Herein, we examine the effect of sequence complexity, and hence cooperativity on pressure destabilisation of DNA polymers. Working with Clostridium perfringes DNA under conditions such that the estimated ΔV of the helix-coil transition corresponds to -1.78 mL/mol (base pair) at atmospheric pressure, we do not observe the pressure-induced helix-coil transition of this DNA polymer, whereas synthetic copolymers poly[d(A-T)] and poly[d(I-C)] undergo cooperative pressure-induced transitions at similar ΔV values. We hypothesise that the reason for the lack of pressure-induced helix-coil transition of C. perfringens DNA under these experimental conditions lies in its sequence complexity. Copyright © 2015 Elsevier B.V. All rights reserved.
Golbabapour, Shahram; Gwaram, Nura Suleiman; Hassandarvish, Pouya; Hajrezaie, Maryam; Kamalidehghan, Behnam; Abdulla, Mahmood Ameen; Ali, Hapipah Mohd; Hadi, A. Hamid A; Majid, Nazia Abdul
2013-01-01
Background The study was carried out to assess the gastroprotective effect of the zinc (II) complex against ethanol-induced acute hemorrhagic lesions in rats. Methodology/Principal Finding The animals received their respective pre-treatments dissolved in tween 20 (5% v/v), orally. Ethanol (95% v/v) was orally administrated to induce superficial hemorrhagic mucosal lesions. Omeprazole (5.790×10−5 M/kg) was used as a reference medicine. The pre-treatment with the zinc (II) complex (2.181×10−5 and 4.362×10−5 M/kg) protected the gastric mucosa similar to the reference control. They significantly increased the activity levels of nitric oxide, catalase, superoxide dismutase, glutathione and prostaglandin E2, and decreased the level of malondialdehyde. The histology assessments confirmed the protection through remarkable reduction of mucosal lesions and increased the production of gastric mucosa. Immunohistochemistry and western blot analysis indicated that the complex might induced Hsp70 up-regulation and Bax down-regulation. The complex moderately increased the gastroprotectiveness in fine fettle. The acute toxicity approved the non-toxic characteristic of the complex (<87.241×10−5 M/kg). Conclusion/Significance The gastroprotective effect of the zinc (II) complex was mainly through its antioxidant activity, enzymatic stimulation of prostaglandins E2, and up-regulation of Hsp70. The gastric wall mucus was also a remarkable protective mechanism. PMID:24058648
Chaudhry, Kamaljit K.; Shukla, Pradeep K.; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E.; Rao, RadhaKrishna
2015-01-01
Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of glutamine in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed Gln-free diet and absent in mice fed Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579
Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.
Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej
2017-10-01
Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.
Detoxification of Arsenic by Phytochelatins in Plants1
Schmöger, Marcus E.V.; Oven, Matjaz; Grill, Erwin
2000-01-01
As is a ubiquitous element present in the atmosphere as well as in the aquatic and terrestrial environments. Arsenite and arsenate are the major forms of As intoxication, and these anions are readily taken up by plants. Both anions efficiently induce the biosynthesis of phytochelatins (PCs) ([γ-glutamate-cysteine]n-glycine) in vivo and in vitro. The rapid induction of the metal-binding PCs has been observed in cell suspension cultures of Rauvolfia serpentina, in seedlings of Arabidopsis, and in enzyme preparations of Silene vulgaris upon challenge to arsenicals. The rate of PC formation in enzyme preparations was lower compared with Cd-induced biosynthesis, but was accompanied by a prolonged induction phase that resulted finally in higher peptide levels. An approximately 3:1 ratio of the sulfhydryl groups from PCs to As is compatible with reported As-glutathione complexes. The identity of the As-induced PCs and of reconstituted metal-peptide complexes has unequivocally been demonstrated by electrospray ionization mass spectroscopy. Gel filtration experiments and inhibitor studies also indicate a complexation and detoxification of As by the induced PCs. PMID:10712543
Huang, Wenmin; Li, Dunhai; Liu, Yongding
2014-09-01
Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential (ΔΨm). To further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of ΔΨm. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2μmol/L, complex I inhibitor) and antimycin A (0.01μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (5μmol/L, complex II inhibitor). These results suggest that mitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS. Copyright © 2014. Published by Elsevier B.V.
He, Xin; Chen, Xinxin; Zhang, Xue; Duan, Xiaobing; Pan, Ting; Hu, Qifei; Zhang, Yijun; Zhong, Fudi; Liu, Jun; Zhang, Hong; Luo, Juan; Wu, Kang; Peng, Gao; Luo, Haihua; Zhang, Lehong; Li, Xiaoxi; Zhang, Hui
2015-01-01
PIWI-interacting RNA (piRNA) silences the transposons in germlines or induces epigenetic modifications in the invertebrates. However, its function in the mammalian somatic cells remains unknown. Here we demonstrate that a piRNA derived from Growth Arrest Specific 5, a tumor-suppressive long non-coding RNA, potently upregulates the transcription of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a proapoptotic protein, by inducing H3K4 methylation/H3K27 demethylation. Interestingly, the PIWIL1/4 proteins, which bind with this piRNA, directly interact with WDR5, resulting in a site-specific recruitment of the hCOMPASS-like complexes containing at least MLL3 and UTX (KDM6A). We have indicated a novel pathway for piRNAs to specially activate gene expression. Given that MLL3 or UTX are frequently mutated in various tumors, the piRNA/MLL3/UTX complex mediates the induction of TRAIL, and consequently leads to the inhibition of tumor growth. PMID:25779046
HIV-1 Vif promotes the formation of high molecular mass APOBEC3G complexes
Goila-Gaur, Ritu; Khan, Mohammad A.; Miyagi, Eri; Kao, Sandra; Opi, Sandrine; Takeuchi, Hiroaki; Strebel, Klaus
2008-01-01
HIV-1 Vif inhibits the antiviral activity of APOBEC3G (APO3G) by inducing proteasomal degradation. Here, we studied the effects of Vif on APO3G in vitro. In this system, Vif did not cause APO3G degradation. Instead, Vif induced changes in APO3G that affected immunoprecipitation of the native protein. This effect required wt Vif and was reversed by heat-denaturation of APO3G. Sucrose gradient analysis demonstrated that wt Vif induced the gradual transition of APO3G translated in vitro or expressed in HeLa cells from a low molecular mass conformation to puromycin-sensitive high molecular mass (HMM) complexes. In the absence of Vif or the presence of biologically inactive Vif APO3G failed to form HMM complexes. Our results expose a novel function of Vif that promotes the assembly of APO3G into presumably packaging-incompetent HMM complexes and may explain how Vif can overcome the APO3G-imposed block to HIV replication under conditions of no or inefficient APO3G degradation. PMID:18023836
Lazarou, Michael; Jin, Seok Min; Kane, Lesley A; Youle, Richard J
2012-02-14
Mutations in the mitochondrial kinase PINK1 and the cytosolic E3 ligase Parkin can cause Parkinson's disease. Damaged mitochondria accumulate PINK1 on the outer membrane where, dependent on kinase activity, it recruits and activates Parkin to induce mitophagy, potentially maintaining organelle fidelity. How PINK1 recruits Parkin is unknown. We show that endogenous PINK1 forms a 700 kDa complex with the translocase of the outer membrane (TOM) selectively on depolarized mitochondria whereas PINK1 ectopically targeted to the outer membrane retains association with TOM on polarized mitochondria. Inducibly targeting PINK1 to peroxisomes or lysosomes, which lack a TOM complex, recruits Parkin and activates ubiquitin ligase activity on the respective organelles. Once there, Parkin induces organelle selective autophagy of peroxisomes but not lysosomes. We propose that the association of PINK1 with the TOM complex allows rapid reimport of PINK1 to rescue repolarized mitochondria from mitophagy, and discount mitochondrial-specific factors for Parkin translocation and activation. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Grechnikov, A. A.; Georgieva, V. B.; Donkov, N.; Borodkov, A. S.; Pento, A. V.; Raicheva, Z. G.; Yordanov, Tc A.
2016-03-01
Four different substrates, namely, graphite, tungsten, amorphous silicon (α-Si) and titanium dioxide (TiO2) films, were compared in view of the laser-induced electron transfer desorption/ionization (LETDI) of metal coordination complexes. A rhenium complex with 8-mercaptoquinoline, a copper complex with diphenylthiocarbazone and chlorophyll A were studied as the test analytes. The dependencies of the ion yield and the surface temperature on the incident radiation fluence were investigated experimentally and theoretically. The temperature was estimated using the numerical solution of a one-dimensional heat conduction problem with a heat source distributed in time and space. It was found that at the same temperature, the ion yield from the different substrates varies in the range of three orders of magnitude. The direct comparison of all studied substrates revealed that LETDI from the TiO2 and α-Si films offer a better choice for producing molecular ions of metal coordination complexes.
Orekhov, Alexander N.; Bobryshev, Yuri V.; Sobenin, Igor A.; Melnichenko, Alexandra A.; Chistiakov, Dimitry A.
2014-01-01
In atherosclerosis; blood low-density lipoproteins (LDL) are subjected to multiple enzymatic and non-enzymatic modifications that increase their atherogenicity and induce immunogenicity. Modified LDL are capable of inducing vascular inflammation through activation of innate immunity; thus, contributing to the progression of atherogenesis. The immunogenicity of modified LDL results in induction of self-antibodies specific to a certain type of modified LDL. The antibodies react with modified LDL forming circulating immune complexes. Circulating immune complexes exhibit prominent immunomodulatory properties that influence atherosclerotic inflammation. Compared to freely circulating modified LDL; modified LDL associated with the immune complexes have a more robust atherogenic and proinflammatory potential. Various lipid components of the immune complexes may serve not only as diagnostic but also as essential predictive markers of cardiovascular events in atherosclerosis. Accumulating evidence indicates that LDL-containing immune complexes can also serve as biomarker for macrovascular disease in type 1 diabetes. PMID:25050779
Pib2 and the EGO complex are both required for activation of TORC1.
Varlakhanova, Natalia V; Mihalevic, Michael J; Bernstein, Kara A; Ford, Marijn G J
2017-11-15
The TORC1 complex is a key regulator of cell growth and metabolism in Saccharomyces cerevisiae The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity. © 2017. Published by The Company of Biologists Ltd.
MicroRNAs are tightly associated with RNA-induced gene silencing complexes in vivo.
Tang, Fuchou; Hajkova, Petra; O'Carroll, Dónal; Lee, Caroline; Tarakhovsky, Alexander; Lao, Kaiqin; Surani, M Azim
2008-07-18
Previous work has shown that synthesized siRNA/miRNA is tightly associated with RNA-induced Gene Silencing Complexes (RISCs) in vitro. However, it is unknown if the endogenous miRNAs are also stably bound to RISC complexes in vivo in cells under physiological conditions. Here we describe the use of the looped real-time PCR-based method to trace the location of endogenous miRNAs in intact cells. We found that most of the endogenous miRNAs are tightly bound to RISC complexes, and only a very small proportion of them are free in cells. Furthermore, synthesized single-stranded mature miRNA or hairpin miRNA precursor cannot replace endogenous miRNAs already present in RISC complexes. However, we found that modified 2-O-Methyl-ribonucleotides were able to dissociate the target miRNA specifically from the RISC complex. These findings have important implications for understanding the basis for the stability and metabolism of miRNAs in living cells.
"Non-Toxic" Proteins of the Botulinum Toxin Complex Exert In-vivo Toxicity.
Miyashita, Shin-Ichiro; Sagane, Yoshimasa; Suzuki, Tomonori; Matsumoto, Takashi; Niwa, Koichi; Watanabe, Toshihiro
2016-08-10
The botulinum neurotoxin (BoNT) causes muscle paralysis and is the most potent toxin in nature. BoNT is associated with a complex of auxiliary "Non-Toxic" proteins, which constitute a large-sized toxin complex (L-TC). However, here we report that the "Non-Toxic" complex of serotype D botulinum L-TC, when administered to rats, exerts in-vivo toxicity on small-intestinal villi. Moreover, Serotype C and D of the "Non-Toxic" complex, but not BoNT, induced vacuole-formation in a rat intestinal epithelial cell line (IEC-6), resulting in cell death. Our results suggest that the vacuole was formed in a manner distinct from the mechanism by which Helicobacter pylori vacuolating toxin (VacA) and Vibrio cholerae haemolysin induce vacuolation. We therefore hypothesise that the serotype C and D botulinum toxin complex is a functional hybrid of the neurotoxin and vacuolating toxin (VT) which arose from horizontal gene transfer from an ancestral BoNT-producing bacterium to a hypothetical VT-producing bacterium.
Quinonoid metal complexes: toward molecular switches.
Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo
2004-11-01
The peculiar redox-active character of quinonoid metal complexes makes them extremely appealing to design materials of potential technological interest. We show here how the tuning of the properties of these systems can be pursued by using appropriate molecular synthetic techniques. In particular, we focus our attention on metal polyoxolene complexes exhibiting intramolecular electron transfer processes involving either the ligand and the metal ion or the two dioxolene moieties of a properly designed ligand thus inducing electronic bistability. The transition between the two metastable electronic states can be induced by different external stimuli such as temperature, pressure, light, or pH suggesting the use of these systems for molecular switches.
The RNA-induced silencing complex: a versatile gene-silencing machine.
Pratt, Ashley J; MacRae, Ian J
2009-07-03
RNA interference is a powerful mechanism of gene silencing that underlies many aspects of eukaryotic biology. On the molecular level, RNA interference is mediated by a family of ribonucleoprotein complexes called RNA-induced silencing complexes (RISCs), which can be programmed to target virtually any nucleic acid sequence for silencing. The ability of RISC to locate target RNAs has been co-opted by evolution many times to generate a broad spectrum of gene-silencing pathways. Here, we review the fundamental biochemical and biophysical properties of RISC that facilitate gene targeting and describe the various mechanisms of gene silencing known to exploit RISC activity.
Adam-Vizi, Vera
2005-01-01
Overwhelming evidence has accumulated indicating that oxidative stress is a crucial factor in the pathogenesis of neurodegenerative diseases. The major site of production of superoxide, the primary reactive oxygen species (ROS), is considered to be the respiratory chain in the mitochondria, but the exact mechanism and the precise location of the physiologically relevant ROS generation within the respiratory chain have not been disclosed as yet. Studies performed with isolated mitochondria have located ROS generation on complex I and complex III, respectively, depending on the substrates or inhibitors used to fuel or inhibit respiration. A more "physiological" approach is to address ROS generation of in situ mitochondria, which are present in their normal cytosolic environment. Hydrogen peroxide formation in mitochondria in situ in isolated nerve terminals is enhanced when complex I, complex III, or complex IV is inhibited. However, to induce a significant increase in ROS production, complex III and complex IV have to be inhibited by >70%, which raises doubts as to the physiological importance of ROS generation by these complexes. In contrast, complex I inhibition to a small degree is sufficient to enhance ROS generation, indicating that inhibition of complex I by approximately 25-30% observed in postmortem samples of substantia nigra from patients suffering from Parkinson's disease could be important in inducing oxidative stress. Recently, it has been described that a key Krebs cycle enzyme, alpha-ketoglutarate dehydrogenase (alpha-KGDH), is also able to produce ROS. ROS formation by alpha-KGDH is regulated by the NADH/NAD+ ratio, suggesting that this enzyme could substantially contribute to generation of oxidative stress due to inhibition of complex I. As alpha-KGDH is not only a generator but also a target of ROS, it is proposed that alpha-KGDH is a key factor in a vicious cycle by which oxidative stress is induced and promoted in nerve terminals.
Rand, Tim A.; Ginalski, Krzysztof; Grishin, Nick V.; Wang, Xiaodong
2004-01-01
RNA interference is carried out by the small double-stranded RNA-induced silencing complex (RISC). The RISC-bound small RNA guides the RISC complex to identify and cleave mRNAs with complementary sequences. The proteins that make up the RISC complex and cleave mRNA have not been unequivocally defined. Here, we report the biochemical purification of RISC activity to homogeneity from Drosophila Schnieder 2 cell extracts. Argonaute 2 (Ago-2) is the sole protein component present in the purified, functional RISC. By using a bioinformatics method that combines sequence-profile analysis with predicted protein secondary structure, we found homology between the PIWI domain of Ago-2 and endonuclease V and identified potential active-site amino acid residues within the PIWI domain of Ago-2. PMID:15452342
Rand, Tim A; Ginalski, Krzysztof; Grishin, Nick V; Wang, Xiaodong
2004-10-05
RNA interference is carried out by the small double-stranded RNA-induced silencing complex (RISC). The RISC-bound small RNA guides the RISC complex to identify and cleave mRNAs with complementary sequences. The proteins that make up the RISC complex and cleave mRNA have not been unequivocally defined. Here, we report the biochemical purification of RISC activity to homogeneity from Drosophila Schnieder 2 cell extracts. Argonaute 2 (Ago-2) is the sole protein component present in the purified, functional RISC. By using a bioinformatics method that combines sequence-profile analysis with predicted protein secondary structure, we found homology between the PIWI domain of Ago-2 and endonuclease V and identified potential active-site amino acid residues within the PIWI domain of Ago-2.
Atmospheric studies in complex terrain: a planning guide for future studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orgill, M.M.
The objective of this study is to assist the US Department of Energy in Conducting its atmospheric studies in complex terrain (ASCOT0 by defining various complex terrain research systems and relating these options to specific landforms sites. This includes: (1) reviewing past meteorological and diffusion research on complex terrain; (2) relating specific terrain-induced airflow phenomena to specific landforms and time and space scales; (3) evaluating the technical difficulty of modeling and measuring terrain-induced airflow phenomena; and (4) avolving severdal research options and proposing candidate sites for continuing and expanding field and modeling work. To evolve research options using variable candidatemore » sites, four areas were considered: site selection, terrain uniqueness and quantification, definition of research problems and research plans. 36 references, 111 figures, 20 tables.« less
Rasher, Douglas B.; Hay, Mark E.
2014-01-01
Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defence against herbivores. Following 8 days of competition with the coral Porites cylindrica, the chemically rich seaweed Galaxaura filamentosa induced increased allelochemicals and became nearly twice as damaging to the coral. However, it also experienced significantly reduced growth and increased palatability to herbivores (because of reduced chemical defences). Under the same conditions, the seaweed Sargassum polycystum did not induce allelopathy and did not experience a change in growth or palatability. This is the first demonstration of induced allelopathy in a seaweed, or of competitors reducing seaweed chemical defences against herbivores. Our results suggest that the chemical ecology of coral–seaweed–herbivore interactions can be complex and nuanced, highlighting the need to incorporate greater ecological complexity into the study of chemical defence. PMID:24403332
Insensitive dependence of delay-induced oscillation death on complex networks
NASA Astrophysics Data System (ADS)
Zou, Wei; Zheng, Xing; Zhan, Meng
2011-06-01
Oscillation death (also called amplitude death), a phenomenon of coupling induced stabilization of an unstable equilibrium, is studied for an arbitrary symmetric complex network with delay-coupled oscillators, and the critical conditions for its linear stability are explicitly obtained. All cases including one oscillator, a pair of oscillators, regular oscillator networks, and complex oscillator networks with delay feedback coupling, can be treated in a unified form. For an arbitrary symmetric network, we find that the corresponding smallest eigenvalue of the Laplacian λN (0 >λN ≥ -1) completely determines the death island, and as λN is located within the insensitive parameter region for nearly all complex networks, the death island keeps nearly the largest and does not sensitively depend on the complex network structures. This insensitivity effect has been tested for many typical complex networks including Watts-Strogatz (WS) and Newman-Watts (NW) small world networks, general scale-free (SF) networks, Erdos-Renyi (ER) random networks, geographical networks, and networks with community structures and is expected to be helpful for our understanding of dynamics on complex networks.
Plasmonic bio-sensing for the Fenna-Matthews-Olson complex
NASA Astrophysics Data System (ADS)
Chen, Guang-Yin; Lambert, Neill; Shih, Yen-An; Liu, Meng-Han; Chen, Yueh-Nan; Nori, Franco
2017-01-01
We study theoretically the bio-sensing capabilities of metal nanowire surface plasmons. As a specific example, we couple the nanowire to specific sites (bacteriochlorophyll) of the Fenna-Matthews-Olson (FMO) photosynthetic pigment protein complex. In this hybrid system, we find that when certain sites of the FMO complex are subject to either the suppression of inter-site transitions or are entirely disconnected from the complex, the resulting variations in the excitation transfer rates through the complex can be monitored through the corresponding changes in the scattering spectra of the incident nanowire surface plasmons. We also find that these changes can be further enhanced by changing the ratio of plasmon-site couplings. The change of the Fano lineshape in the scattering spectra further reveals that “site 5” in the FMO complex plays a distinct role from other sites. Our results provide a feasible way, using single photons, to detect mutation-induced, or bleaching-induced, local defects or modifications of the FMO complex, and allows access to both the local and global properties of the excitation transfer in such systems.
Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins.
Park, Su-Jung; Ciccone, Samantha L M; Beck, Brian D; Hwang, Byounghoon; Freie, Brian; Clapp, D Wade; Lee, Suk-Hee
2004-07-16
Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.
Andrade, Felipe; Casciola-Rosen, Livia A; Rosen, Antony
2005-04-01
To determine whether ultraviolet B (UVB) irradiation induces novel modifications in autoantigens targeted during experimental photoinduced epidermal damage. To search for novel UVB-induced autoantigen modifications, lysates made from UVB-irradiated human keratinocytes or HeLa cells were immunoblotted using human autoantibodies that recognize ribonucleoprotein autoantigens. Novel autoantigen structures identified were further characterized using nucleases and RNA hybridization. Human sera that recognize U1-70 kd (U1-70K) and La by immunoblotting also recognized multiple novel species when they were used to immunoblot lysates of UVB-irradiated keratinocytes or HeLa cells. These species were not present in control cells and were not observed when apoptosis was induced by Fas ligation or cytotoxic lymphocyte granule contents. Biochemical analysis using multiple assays revealed that these novel UVB-induced molecular species result from the covalent crosslinking between the U1 RNA and the hYRNA molecules with their associated proteins, including U1-70K, La, and likely components of the Sm particle. These data demonstrate that UVB irradiation of live cells can directly induce covalent RNA-protein complexes, which are recognized by human autoantibodies. As previously described for other autoantigens, these covalent complexes of RNA and proteins may have important consequences in terms of antigen capture and processing.
Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather
2014-01-01
The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.
NASA Astrophysics Data System (ADS)
Doan, Thuc N.; Fujihara, Akimasa
2018-03-01
In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two d-glucose units, such as d-maltose or d-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα-Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+( l-Trp)( d-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+( d-Trp)( d-maltose). For d-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links d-glucose residues to the indole moiety of Trp via a C-C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.
Peptide Fragmentation by Corona Discharge Induced Electrochemical Ionization
Lloyd, John R.; Hess, Sonja
2010-01-01
Fundamental studies have greatly improved our understanding of electrospray, including the underlying electrochemical reactions. Generally regarded as disadvantageous, we have recently shown that corona discharge (CD) can be used as an effective method to create a radical cation species [M]+•, thus optimizing the electrochemical reactions that occur on the surface of the stainless steel (SS) electrospray capillary tip. This technique is known as CD initiated electrochemical ionization (CD-ECI). Here, we report on the fundamental studies using CD-ECI to induce analytically useful in-source fragmentation of a range of molecules that complex transition metals. Compounds that have been selectively fragmented using CD-ECI include enolate forming phenylglycine containing peptides, glycopeptides, nucleosides and phosphopeptides. Collision induced dissociation (CID) or other activation techniques were not necessary for CD-ECI fragmentation. A four step mechanism was proposed: 1. Complexation using either Fe in the SS capillary tip material or Cu(II) as an offline complexation reagent; 2. Electrochemical oxidation of the complexed metal and thus formation of a radical cation (e.g.; Fe - e− → Fe +•); 3. Radical fragmentation of the complexed compound. 4. Electrospray ionization of the fragmented neutrals. Fragmentation patterns resembling b- and y-type ions were observed and allowed the localization of the phosphorylation sites. PMID:20869880
Seo, Jinho; Lee, Eun-Woo; Shin, Jihye; Seong, Daehyeon; Nam, Young Woo; Jeong, Manhyung; Lee, Seon-Hyeong; Lee, Cheolju; Song, Jaewhan
2018-05-23
Fas-associated death domain (FADD) is an adaptor protein recruiting complexes of caspase 8 to death ligand receptors to induce extrinsic apoptotic cell death in response to a TNF superfamily member. Although, formation of the complex of FADD and caspase 8 upon death stimuli has been studied in detail, posttranslational modifications fine-tuning these processes have yet to be identified. Here we revealed that K6-linked polyubiquitylation of FADD on lysines 149 and 153 mediated by C terminus HSC70-interacting protein (CHIP) plays an important role in preventing formation of the death inducing signaling complex (DISC), thus leading to the suppression of cell death. Cells depleted of CHIP showed higher sensitivity toward death ligands such as FasL and TRAIL, leading to upregulation of DISC formation composed of a death receptor, FADD, and caspase 8. CHIP was able to bind to FADD, induce K6-linked polyubiquitylation of FADD, and suppress DISC formation. By mass spectrometry, lysines 149 and 153 of FADD were found to be responsible for CHIP-mediated FADD ubiquitylation. FADD mutated at these sites was capable of more potent cell death induction as compared with the wild type and was no longer suppressed by CHIP. On the other hand, CHIP deficient in E3 ligase activity was not capable of suppressing FADD function and of FADD ubiquitylation. CHIP depletion in ME-180 cells induced significant sensitization of these cells toward TRAIL in xenograft analyses. These results imply that K6-linked ubiquitylation of FADD by CHIP is a crucial checkpoint in cytokine-dependent extrinsic apoptosis.
Ansari, Suraiya A; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z; Rode, Kara A; Barber, Wesley T; Ellis, Laura C; LaPorta, Erika; Orzechowski, Amanda M; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H
2014-05-23
Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Takahashi, Kazuhide; Suzuki, Katsuo
2009-05-01
Membrane transport of WAVE2 that leads to lamellipodia formation requires a small GTPase Rac1, the motor protein kinesin, and microtubules. Here we explore the possibility of whether the Rac1-dependent and kinesin-mediated WAVE2 transport along microtubules is regulated by a p21-activated kinase Pak as a downstream effector of Rac1. We find that Pak1 constitutively binds to WAVE2 and is transported with WAVE2 to the leading edge by stimulation with hepatocyte growth factor (HGF). Concomitantly, phosphorylation of tubulin-bound stathmin/Op18 at serine 25 (Ser25) and Ser38, microtubule growth, and stathmin/Op18 binding to kinesin-WAVE2 complex were induced. The HGF-induced WAVE2 transport, lamellipodia formation, stathmin/Op18 phosphorylation at Ser38 and binding to kinesin-WAVE2 complex, but not stathmin/Op18 phosphorylation at Ser25 and microtubule growth, were abrogated by Pak1 inhibitor IPA-3 and Pak1 depletion with small interfering RNA (siRNA). Moreover, stathmin/Op18 depletion with siRNA caused significant inhibition of HGF-induced WAVE2 transport and lamellipodia formation, with HGF-independent promotion of microtubule growth. Collectively, it is suggested that Pak1 plays a critical role in HGF-induced WAVE2 transport and lamellipodia formation by directing Pak1-WAVE2-kinesin complex toward the ends of growing microtubules through phosphorylation and recruitment of tubulin-bound stathmin/Op18 to the complex.
A mouse model of mitochondrial complex III dysfunction induced by myxothiazol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davoudi, Mina; Kallijärvi, Jukka; Marjavaara, Sanna
2014-04-18
Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIIImore » inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.« less
Himmler, Brett T; Mychasiuk, Richelle; Nakahashi, Ayuno; Himmler, Stephanie M; Pellis, Sergio M; Kolb, Bryan
2018-04-01
Juvenile social interactions have been shown to influence the dendritic complexity of neurons in the prefrontal cortex (PFC). In particular, social play induces pruning of the cells in the medial prefrontal cortex (mPFC), whereas interacting with multiple partners, whether those interactions involve play or not, increases the complexity of cells in the orbital frontal cortex (OFC). Previous studies suggest that these changes differ in their stability during adulthood. In the present study, rats were reared in groups of either four (quads) or two (pairs) and the brains of the rats from each rearing condition were then harvested at 60 days (i.e., shortly after sexual maturity) and 100 days (i.e., fully adult). The rats housed with multiple partners had more complex neurons of the OFC at 60 days and this complexity declined to a comparable level to that of pair housed rats by 100 days. In contrast, the play-induced changes of the mPFC remained similar at both ages. These findings suggest that the changes in the PFC induced by different social experiences in the juvenile period differ in how long they are maintained in adulthood. Differences in the functions regulated by the OFC and the mPFC are considered with regard to these differences in the stability of juvenile-induced neural changes. © 2017 Wiley Periodicals, Inc.
Riahi, Reza; Wang, Shue; Long, Min; Li, Na; Chiou, Pei-Yu; Zhang, Donna D; Wong, Pak Kin
2014-04-22
The photothermal effect of plasmonic nanostructures has numerous applications, such as cancer therapy, photonic gene circuit, large cargo delivery, and nanostructure-enhanced laser tweezers. The photothermal operation can also induce unwanted physical and biochemical effects, which potentially alter the cell behaviors. However, there is a lack of techniques for characterizing the dynamic cell responses near the site of photothermal operation with high spatiotemporal resolution. In this work, we show that the incorporation of locked nucleic acid probes with gold nanorods allows photothermal manipulation and real-time monitoring of gene expression near the area of irradiation in living cells and animal tissues. The multimodal gold nanorod serves as an endocytic delivery reagent to transport the probes into the cells, a fluorescence quencher and a binding competitor to detect intracellular mRNA, and a plasmonic photothermal transducer to induce cell ablation. We demonstrate the ability of the gold nanorod-locked nucleic acid complex for detecting the spatiotemporal gene expression in viable cells and tissues and inducing photothermal ablation of single cells. Using the gold nanorod-locked nucleic acid complex, we systematically characterize the dynamic cellular heat shock responses near the site of photothermal operation. The gold nanorod-locked nucleic acid complex enables mapping of intracellular gene expressions and analyzes the photothermal effects of nanostructures toward various biomedical applications.
Oxidative Phosphorylation System in Gastric Carcinomas and Gastritis.
Feichtinger, René G; Neureiter, Daniel; Skaria, Tom; Wessler, Silja; Cover, Timothy L; Mayr, Johannes A; Zimmermann, Franz A; Posselt, Gernot; Sperl, Wolfgang; Kofler, Barbara
2017-01-01
Switching of cellular energy production from oxidative phosphorylation (OXPHOS) by mitochondria to aerobic glycolysis occurs in many types of tumors. However, the significance of this switching for the development of gastric carcinoma and what connection it may have to Helicobacter pylori infection of the gut, a primary cause of gastric cancer, are poorly understood. Therefore, we investigated the expression of OXPHOS complexes in two types of human gastric carcinomas ("intestinal" and "diffuse"), bacterial gastritis with and without metaplasia, and chemically induced gastritis by using immunohistochemistry. Furthermore, we analyzed the effect of HP infection on several key mitochondrial proteins. Complex I expression was significantly reduced in intestinal type (but not diffuse) gastric carcinomas compared to adjacent control tissue, and the reduction was independent of HP infection. Significantly, higher complex I and complex II expression was present in large tumors. Furthermore, higher complex II and complex III protein levels were also obvious in grade 3 versus grade 2. No differences of OXPHOS complexes and markers of mitochondrial biogenesis were found between bacterially caused and chemically induced gastritis. Thus, intestinal gastric carcinomas, but not precancerous stages, are frequently characterized by loss of complex I, and this pathophysiology occurs independently of HP infection.
Oxidative Phosphorylation System in Gastric Carcinomas and Gastritis
Skaria, Tom; Wessler, Silja; Cover, Timothy L.; Posselt, Gernot; Sperl, Wolfgang; Kofler, Barbara
2017-01-01
Switching of cellular energy production from oxidative phosphorylation (OXPHOS) by mitochondria to aerobic glycolysis occurs in many types of tumors. However, the significance of this switching for the development of gastric carcinoma and what connection it may have to Helicobacter pylori infection of the gut, a primary cause of gastric cancer, are poorly understood. Therefore, we investigated the expression of OXPHOS complexes in two types of human gastric carcinomas (“intestinal” and “diffuse”), bacterial gastritis with and without metaplasia, and chemically induced gastritis by using immunohistochemistry. Furthermore, we analyzed the effect of HP infection on several key mitochondrial proteins. Complex I expression was significantly reduced in intestinal type (but not diffuse) gastric carcinomas compared to adjacent control tissue, and the reduction was independent of HP infection. Significantly, higher complex I and complex II expression was present in large tumors. Furthermore, higher complex II and complex III protein levels were also obvious in grade 3 versus grade 2. No differences of OXPHOS complexes and markers of mitochondrial biogenesis were found between bacterially caused and chemically induced gastritis. Thus, intestinal gastric carcinomas, but not precancerous stages, are frequently characterized by loss of complex I, and this pathophysiology occurs independently of HP infection. PMID:28744336
Quan, Juan-Hua; Kang, Byung-Hun; Cha, Guang-Ho; Zhou, Wei; Koh, Young-Bok; Yang, Jung-Bo; Yoo, Heon-Jong; Lee, Min-A; Ryu, Jae-Sook; Noh, Heung-Tae; Kwon, Jaeyul; Lee, Young-Ha
2014-01-01
To elucidate the roles of metalloproteinases and the Bcl-2 family of proteins in Trichovaginalis. vaginalis-induced apoptosis in human cervical cancer cells (SiHa cells) and vaginal epithelial cells (MS74 cells), SiHa cells and MS74 cells were incubated with live T. vaginalis, T. vaginalis excretory and secretory products (ESP), and T. vaginalis lysates, either with or without the specific metalloproteinase inhibitor 1,10-phenanthroline (1,10-PT), and examined apoptotic events and Bcl-2 signaling. The live T. vaginalis and the T. vaginalis ESP induced the release of cytochrome c into the cytosol, the activation of caspase-3 and caspase-9, and the cleavage of PARP. Additionally, the live T. vaginalis, but not the T. vaginalis lysate, induced the cleavage of the proapoptotic Bim protein. The live T. vaginalis and the T. vaginalis ESP, but not the T. vaginalis lysate, induced the dose-dependent cleavage of the antiapoptotic Bcl-xL and Mcl-1 proteins and decreased the association levels of Bcl-xL/Bim and Mcl-1/Bim complexes. We performed gelatin zymography and casein-hydrolysis assays on the live T. vaginalis and the T. vaginalis ESP to identify the apoptosis-inducing factor. Both the live T. vaginalis and the ESP contained high levels of metalloproteinases, of which activities were significantly inhibited by 1,10-PT treatment. Furthermore, the 1,10-PT blocked the cleavage of Bcl-xL, Mcl-1, PARP, caspase-3, and caspase-9, as well as the release of cytochrome c into the cytosol, and it significantly increased the association levels of the Bcl-xL/Bim and Mcl-1/Bim protein complexes, returning them to normal levels. Our results demonstrate that T. vaginalis induces mitochondria-dependent apoptosis in SiHa cells through the dissociation of Bcl-xL/Bim and Mcl-1/Bim complexes and that the apoptosis is blocked by the metalloproteinase inhibitor 1,10-PT. These results expand our understanding of the role of metalloproteinases in T. vaginalis-induced apoptosis and the signaling pathway in trichomoniasis of the cervicovaginal epithelial cells.
Zhou, Wei; Koh, Young-Bok; Yang, Jung-Bo; Yoo, Heon-Jong; Lee, Min-A; Ryu, Jae-Sook; Noh, Heung-Tae; Kwon, Jaeyul; Lee, Young-Ha
2014-01-01
To elucidate the roles of metalloproteinases and the Bcl-2 family of proteins in Trichovaginalis. vaginalis-induced apoptosis in human cervical cancer cells (SiHa cells) and vaginal epithelial cells (MS74 cells), SiHa cells and MS74 cells were incubated with live T. vaginalis, T. vaginalis excretory and secretory products (ESP), and T. vaginalis lysates, either with or without the specific metalloproteinase inhibitor 1,10-phenanthroline (1,10-PT), and examined apoptotic events and Bcl-2 signaling. The live T. vaginalis and the T. vaginalis ESP induced the release of cytochrome c into the cytosol, the activation of caspase-3 and caspase-9, and the cleavage of PARP. Additionally, the live T. vaginalis, but not the T. vaginalis lysate, induced the cleavage of the proapoptotic Bim protein. The live T. vaginalis and the T. vaginalis ESP, but not the T. vaginalis lysate, induced the dose-dependent cleavage of the antiapoptotic Bcl-xL and Mcl-1 proteins and decreased the association levels of Bcl-xL/Bim and Mcl-1/Bim complexes. We performed gelatin zymography and casein-hydrolysis assays on the live T. vaginalis and the T. vaginalis ESP to identify the apoptosis-inducing factor. Both the live T. vaginalis and the ESP contained high levels of metalloproteinases, of which activities were significantly inhibited by 1,10-PT treatment. Furthermore, the 1,10-PT blocked the cleavage of Bcl-xL, Mcl-1, PARP, caspase-3, and caspase-9, as well as the release of cytochrome c into the cytosol, and it significantly increased the association levels of the Bcl-xL/Bim and Mcl-1/Bim protein complexes, returning them to normal levels. Our results demonstrate that T. vaginalis induces mitochondria-dependent apoptosis in SiHa cells through the dissociation of Bcl-xL/Bim and Mcl-1/Bim complexes and that the apoptosis is blocked by the metalloproteinase inhibitor 1,10-PT. These results expand our understanding of the role of metalloproteinases in T. vaginalis-induced apoptosis and the signaling pathway in trichomoniasis of the cervicovaginal epithelial cells. PMID:25343522
Cross-activating c-Met/β1 integrin complex drives metastasis and invasive resistance in cancer
Jahangiri, Arman; Nguyen, Alan; Sidorov, Maxim K.; Yagnik, Garima; Rick, Jonathan; Han, Sung Won; Chen, William; Flanigan, Patrick M.; Schneidman-Duhovny, Dina; Mascharak, Smita; De Lay, Michael; Imber, Brandon; Park, Catherine C.; Matsumoto, Kunio; Lu, Kan; Bergers, Gabriele; Sali, Andrej; Weiss, William A.
2017-01-01
The molecular underpinnings of invasion, a hallmark of cancer, have been defined in terms of individual mediators but crucial interactions between these mediators remain undefined. In xenograft models and patient specimens, we identified a c-Met/β1 integrin complex that formed during significant invasive oncologic processes: breast cancer metastases and glioblastoma invasive resistance to antiangiogenic VEGF neutralizing antibody, bevacizumab. Inducing c-Met/β1 complex formation through an engineered inducible heterodimerization system promoted features crucial to overcoming stressors during metastases or antiangiogenic therapy: migration in the primary site, survival under hypoxia, and extravasation out of circulation. c-Met/β1 complex formation was up-regulated by hypoxia, while VEGF binding VEGFR2 sequestered c-Met and β1 integrin, preventing their binding. Complex formation promoted ligand-independent receptor activation, with integrin-linked kinase phosphorylating c-Met and crystallography revealing the c-Met/β1 complex to maintain the high-affinity β1 integrin conformation. Site-directed mutagenesis verified the necessity for c-Met/β1 binding of amino acids predicted by crystallography to mediate their extracellular interaction. Far-Western blotting and sequential immunoprecipitation revealed that c-Met displaced α5 integrin from β1 integrin, creating a complex with much greater affinity for fibronectin (FN) than α5β1. Thus, tumor cells adapt to microenvironmental stressors induced by metastases or bevacizumab by coopting receptors, which normally promote both cell migration modes: chemotaxis, movement toward concentrations of environmental chemoattractants, and haptotaxis, movement controlled by the relative strengths of peripheral adhesions. Tumor cells then redirect these receptors away from their conventional binding partners, forming a powerful structural c-Met/β1 complex whose ligand-independent cross-activation and robust affinity for FN drive invasive oncologic processes. PMID:28973887
Explicitly solvable complex Chebyshev approximation problems related to sine polynomials
NASA Technical Reports Server (NTRS)
Freund, Roland
1989-01-01
Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.
Ha, Sha; Li, Fengsheng; Troutman, Matthew C.; Freed, Daniel C.; Tang, Aimin; Loughney, John W.; Wang, I-Ming; Vlasak, Josef; Nickle, David C.; Rustandi, Richard R.; Hamm, Melissa; DePhillips, Pete A.; Zhang, Ningyan; McLellan, Jason S.; Zhu, Hua; Adler, Stuart P.; McVoy, Michael A.; An, Zhiqiang
2017-01-01
ABSTRACT Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen—the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains. IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen—the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies. PMID:28077654
Byun, H-O; Jung, H-J; Kim, M-J; Yoon, G
2014-09-01
Transforming growth factor β1 (TGF-β1) induces Mv1Lu cell senescence through inactivating glycogen synthase kinase 3 (GSK3), thereby inactivating complex IV and increasing intracellular ROS. In the present study, we identified protein kinase C delta (PKCδ) as an upstream regulator of GSK3 inactivation in this mechanism of TGF-β1-induced senescence. When Mv1Lu cells were exposed to TGF-β1, PKCδ phosphorylation simultaneously increased with GSK3 phosphorylation, and then AKT and ERK were phosphorylated. AKT phosphorylation and Smad signaling were independent of GSK3 phosphorylation, but ERK phosphorylation was downstream of GSK3 inactivation. TGF-β1-triggered GSK3 phosphorylation was blocked by inhibition of PKCδ, using its pharmacological inhibitor, Rottlerin, or overexpression of a dominant negative PKCδ mutant, but GSK3 inhibition with SB415286 did not alter PKCδ phosphorylation. Activation of PKCδ by PMA delayed cell growth and increased intracellular ROS level, but did not induce senescent phenotypes. In addition, overexpression of wild type or a constitutively active PKCδ mutant was enough to delay cell growth and decrease the mitochondrial oxygen consumption rate and complex IV activity, but weakly induce senescence. However, PMA treatment on Mv1Lu cells, which overexpress wild type and constitutively active PKCδ mutants, effectively induced senescence. These results indicate that PKCδ plays a key role in TGF-β1-induced senescence of Mv1Lu cells through the phosphorylation of GSK3, thereby triggering mitochondrial complex IV dysfunction and intracellular ROS generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, Taichi; Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521; Takahashi, Akihisa
2011-01-07
The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-}more » cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.« less
Waseem, Mohammad; Parvez, Suhel
2016-03-01
Peripheral neurotoxicity is one of the serious dose-limiting side effects of oxaliplatin (Oxa) when used in the treatment of malignant conditions. It is documented that it elicits major side effects specifically neurotoxicity due to oxidative stress forcing the patients to limit its clinical use in long-term treatment. Oxidative stress has been proven to be involved in Oxa-induced toxicity including neurotoxicity. The mitochondria have recently emerged as targets for anticancer drugs in various kinds of toxicity including neurotoxicity that can lead to neoplastic disease. However, there is paucity of literature involving the role of the mitochondria in mediating Oxa-induced neurotoxicity and its underlying mechanism is still debatable. The purpose of this study was to investigate the dose-dependent damage caused by Oxa on isolated brain mitochondria under in vitro conditions. The study was also designed to investigate the neuroprotective effects of nutraceuticals, curcumin (CMN), and quercetin (QR) on Oxa-induced mitochondrial oxidative stress and respiratory chain complexes in the brain of rats. Oxidative stress biomarkers, levels of nonenzymatic antioxidants, activities of enzymatic antioxidants, and mitochondrial complexes were evaluated against the neurotoxicity induced by Oxa. Pretreatment with CMN and QR significantly replenished the mitochondrial lipid peroxidation levels and protein carbonyl content induced by Oxa. CMN and QR ameliorated altered nonenzymatic and enzymatic antioxidants and complex enzymes of mitochondria. We conclude that CMN and QR, by attenuating oxidative stress as evident by mitochondrial dysfunction, hold promise as agents that can potentially reduce Oxa-induced adverse effects in the brain.
NASA Astrophysics Data System (ADS)
Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.
2012-06-01
The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of various types of planets and cool stars, such as late stars, low-mass stars, brown dwarfs, cool white dwarf stars, the ambers of the smaller, burnt out main sequence stars, exoplanets, etc., and therefore of special astronomical interest The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. First results for H_2-He complexes have already been applied to astrophysical models have shown great improvements in these models. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 X. Li, K. L. C. Hunt, F. Wang, M. Abel, and L. Frommhold, Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin, Int. J. of Spect., vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin, J. Phys. Chem. A, 115, 6805-6812, 2011} L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Infrared absorption by collisional H_2-He complexes at temperatures up to 9000 K and frequencies from 0 to 20000 cm-1, J. Chem. Phys., 136, 044319, 2012 D. Saumon, M. S. Marley, M. Abel, L. Frommhold, and R. S. Freedman, New H_2 collision-induced absorption and NH_3 opacity and the spectra of the coolest brown dwarfs, Astrophysical Journal, 2012
Loh, Sheng Wei; Looi, Chung Yeng; Hassandarvish, Pouya; Phan, Alicia Yi Ling; Wong, Won Fen; Wang, Hao; Paterson, Ian C.; Ea, Chee Kwee; Mustafa, Mohd Rais; Maah, Mohd Jamil
2014-01-01
Background The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity. Methodology/Principal Findings Four ligands (1–4) and their respective nickel-containing complexes (5–8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis. Conclusions/Significance Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects. PMID:24977407
Hung, Kuang-Chen; Lin, Meng-Liang; Hsu, Shih-Wei; Lee, Chuan-Chun; Huang, Ren-Yu; Wu, Tian-Shung; Chen, Shih-Shun
2018-06-15
Targeting cell cycle regulators has been a suggested mechanism for therapeutic cancer strategies. We report here that the bichalcone analog TSWU-CD4 induces S phase arrest of human cancer cells by inhibiting the formation of cyclin A-phospho (p)-cyclin-dependent kinase 2 (CDK2, threonine [Thr] 39) complexes, independent of mutant p53 expression. Ectopic expression of CDK2 (T39E), which mimics phosphorylation of the Thr 39 residue of CDK2, partially rescues the cells from TSWU-CD4-induced S phase arrest, whereas phosphorylation-deficient CDK2 (T39A) expression regulates cell growth with significant S phase arrest and enhances TSWU-CD4-triggered S phase arrest. Decreased histone deacetylase 3 (HDAC3) expression after TSWU-CD4 treatment was demonstrated, and TSWU-CD4 induced S phase arrest and inhibitory effects on cyclin A expression and CDK2 Thr 39 phosphorylation, while cyclin A-p-CDK2 (Thr 39) complex formation was suppressed by ectopic wild-type HDAC3 expression. The co-transfection of CDK2 (T39E) along with HDAC3 completely restored cyclin A expression, Thr 39-phosphorylated CDK2, cyclin A-p-CDK2 (Thr 39) complex formation, and the S phase population to normal levels. Protein kinase B (Akt) inactivation was required for TSWU-CD4-induced S phase cell cycle arrest, because constitutively active Akt1 blocks the induction of S phase arrest and the suppression of cyclin A and HDAC3 expression, CDK2 Thr 39 phosphorylation, and cyclin A-p-CDK2 (Thr 39) complex formation by TSWU-CD4. Taken together, our results indicate that TSWU-CD4 induces S phase arrest by inhibiting Akt-mediated HDAC3 expression and CDK2 Thr 39 phosphorylation to suppress the formation of cyclin A-p-CDK2 (Thr 39) complexes. Copyright © 2018 Elsevier B.V. All rights reserved.
Pardo Andreu, Gilberto; Delgado, René; Velho, Jesus; Inada, Natalia M; Curti, Carlos; Vercesi, Anibal E
2005-05-01
The extract of Mangifera indica L. (Vimang) is able to prevent iron mediated mitochondrial damage by means of oxidation of reduced transition metals required for the production of superoxide and hydroxyl radicals and direct free radical scavenging activity. In this study we report for the first time the iron-complexing ability of Vimang as a primary mechanism for protection of rat liver mitochondria against Fe2+ -citrate-induced lipoperoxidation. Thiobarbituric acid reactive substances (TBARS) and antimycin A-insensitive oxygen consumption were used as quantitative measures of lipoperoxidation. Vimang at 10 microM mangiferin concentration equivalent induced near-full protection against 50 microM Fe2+ -citrate-induced mitochondrial swelling and loss of mitochondrial transmembrane potential (DeltaPsi). The IC50 value for Vimang protection against Fe2+ -citrate-induced mitochondrial TBARS formation (7.89+/-1.19 microM) was around 10 times lower than that for tert-butylhydroperoxide mitochondrial induction of TBARS formation. The extract also inhibited the iron citrate induction of mitochondrial antimycin A-insensitive oxygen consumption, stimulated oxygen consumption due to Fe2+ autoxidation and prevented Fe3+ ascorbate reduction. The extracted polyphenolic compound, mainly mangiferin, could form a complex with Fe2+, accelerating Fe2+ oxidation and the formation of more stable Fe3+ -polyphenol complexes, unable to participate in Fenton-type reactions and lipoperoxidation propagation phase. The strong DPPH radical scavenging activity with an apparent IC50 of 2.45+/-0.08 microM suggests that besides its iron-complexing capacity, Vimang could also protect mitochondria from Fe2+ -citrate lipoperoxidation through direct free radical scavenging ability, mainly lipoperoxyl and alcoxyl radicals, acting as both a chain-breaking and iron-complexing antioxidant. These results are of pharmacological relevance since Vimang could be a potential candidate for antioxidant therapy in diseases related to abnormal intracellular iron distribution or iron overload.
Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H-SiC.
Igumbor, E; Olaniyan, O; Mapasha, R E; Danga, H T; Omotoso, E; Meyer, W E
2018-05-10
Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H-SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H-SiC are presented. We explore complexes where substitutional N[Formula: see text]/N[Formula: see text] or B[Formula: see text]/B[Formula: see text] sits near a Si (V[Formula: see text]) or C (V[Formula: see text]) vacancy to form vacancy-complexes (N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text] and B[Formula: see text]V[Formula: see text]). The energies of formation of the N related vacancy-complexes showed the N[Formula: see text]V[Formula: see text] to be energetically stable close to the valence band maximum in its double positive charge state. The N[Formula: see text]V[Formula: see text] is more energetically stable in the double negative charge state close to the conduction band minimum. The N[Formula: see text]V[Formula: see text] on the other hand, induced double donor level and the N[Formula: see text]V[Formula: see text] induced a double acceptor level. For B related complexes, the B[Formula: see text]V[Formula: see text] and B[Formula: see text]V[Formula: see text] were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the B[Formula: see text]V[Formula: see text] become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.
Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex.
Yang, Li; Tan, Jun; Wang, Bo-Chu; Zhu, Lian-Cai
2014-12-01
To synthesize and characterize a novel metal complex of Mn (II) with emodin, and evaluate its anti-cancer activity. The elemental analyses, IR, UV-vis, atomic absorption spectroscopy, TG-DSC, (1)H NMR, and (13)C NMR data were used to characterize the structure of the complex. The cytotoxicity of the complex against the human cancer cell lines HepG2, HeLa, MCF-7, B16, and MDA-MB-231 was tested by the MTT assay and flow cytometry. Emodin was coordinated with Mn(II) through the 9-C=O and 1-OH, and the general formula of the complex was Mn(II) (emodin)2·2H2O. In studies of the cytotoxicity, the complex exhibited significant activity, and the IC50 values of the complex against five cancer cell lines improved approximately three-fold compared with those of emodin. The complex could induce cell morphological changes, decrease the percentage of viability, and induce G0/G1 phase arrest and apoptosis in cancer cells. The coordination of emodin with Mn(II) can improve its anticancer activity, and the complex Mn(II) (emodin)2·2H2O could be studied further as a promising anticancer drug. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Crew Launch Vehicle Mobile Launcher Solid Rocket Motor Plume Induced Environment
NASA Technical Reports Server (NTRS)
Vu, Bruce T.; Sulyma, Peter
2008-01-01
The plume-induced environment created by the Ares 1 first stage, five-segment reusable solid rocket motor (RSRMV) will impose high heating rates and impact pressures on Launch Complex 39. The extremes of these environments pose a potential threat to weaken or even cause structural components to fail if insufficiently designed. Therefore the ability to accurately predict these environments is critical to assist in specifying structural design requirements to insure overall structural integrity and flight safety. This paper presents the predicted thermal and pressure environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. Once the environments are predicted, a follow-on thermal analysis is required to determine the surface temperature response and the degradation rate of the materials. An example of structures responding to the plume-induced environment will be provided.
NASA Astrophysics Data System (ADS)
Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.
2014-03-01
Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.
Optical fabrication of large area photonic microstructures by spliced lens
NASA Astrophysics Data System (ADS)
Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin
2018-05-01
We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.
Ceriello, A; Giugliano, D; Quatraro, A; Marchi, E; Barbanti, M; Lefèbvre, P
1990-03-01
In the presence of increased levels of fibrinopeptide A, decreased antithrombin III biological activity, and thrombin-antithrombin III complex levels are seen in diabetic patients. Induced-hyperglycaemia in diabetic and normal subjects decreased antithrombin III activity and thrombin-antithrombin III levels, and increased fibrinopeptide A plasma levels, while antithrombin III concentration did not change; heparin was shown to reduced these phenomena. In diabetic patients, euglycaemia induced by insulin infusion restored antithrombin III activity, thrombin-antithrombin III complex and fibrinopeptide A concentrations; heparin administration had the same effects. These data stress the role of a hyperglycaemia-dependent decrease of antithrombin III activity in precipitating thrombin hyperactivity in diabetes mellitus.
Antidepressants and seizure-interactions at the GABA-receptor chloride-ionophore complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malatynska, E.; Knapp, R.J.; Ikeda, M.
1988-01-01
Convulsive seizures are a potential side effect of antidepressant drug treatment and can be produced by all classes of antidepressants. It is also know that some convulsant and anticonvulsant drug actions are mediated by the GABA-receptor chloride-ionophore complex. Drugs acting at this complex appear to induce convulsions by inhibiting chloride conductance through the associated chloride channel. Using the method of GABA-stimulated /sup 36/Cl-uptake by rat cerebral cortical vesicles, we show that some antidepressant drugs can inhibit the GABA-receptor chloride uptake, and that the degree of chloride channel inhibition by these drugs correlates with the frequency of convulsive seizures induced bymore » them.« less
Complex chromatid-isochromatid exchanges following irradiation with heavy ions?
Loucas, B D; Eberle, R L; Durante, M; Cornforth, M N
2004-01-01
We describe a peculiar and relatively rare type of chromosomal rearrangement induced in human peripheral lymphocytes that were ostensibly irradiated in G(0) phase of the cell cycle by accelerated heavy ions, and which, to the best of our knowledge, have not been previously described. The novel rearrangements which were detected using mFISH following exposure to 500 MeV/nucleon and 5 GeV/n 56Fe particles, but were not induced by either 137Cs gamma rays or 238Pu alpha particles, can alternatively be described as either complex chromatid-isochromatid or complex chromatid-chromosome exchanges. Different mechanisms potentially responsible for their formation are discussed. Copyright 2003 S. Karger AG, Basel
Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission.
Shu, Tong; Wang, Jianxing; Su, Lei; Zhang, Xueji
2018-07-04
Recent researches in metal nanoclusters (NCs) have prompted their promising practical applications in biomedical fields as novel inorganic luminophores. More recently, to further improve the photoluminescence (PL) performance of NCs, the aggregation-induced emission (AIE) effect has been introduced to develop highly luminescent metal NCs and metal complex materials. In this review, we start our discussion from recent progresses on AIE materials developments. Then, we address our understandings on the PL properties of thiolated metal NCs. Subsequently, we link thiolated metal NCs with AIE effect. We also highlight some recent advances in synthesizing the AIE-type metal complex nanomaterials. We finally discuss visions and directions for future development of AIE-type metal complex nanomaterials.
Cytokine/Antibody complexes: an emerging class of immunostimulants.
Mostböck, Sven
2009-01-01
In recent years, complexes formed from a cytokine and antibodies against that respective cytokine (cytokine/Ab complex) have been shown to induce remarkable powerful changes in the immune system. Strong interest exists especially for complexes formed with Interleukin (IL)-2 and anti-IL-2-antibody (IL-2/Ab complex). IL-2/Ab complex activates maturation and proliferation in CD8(+) T cells and natural killer (NK) cells to a much higher degree than conventional IL-2 therapy. In addition, IL-2/Ab complex does not stimulate regulatory T cells as much as IL-2 alone. This suggests the possibility to replace the conventional IL-2 therapy with a therapy using low-dose IL-2/Ab complex. Further synthetic cytokine/Ab complexes are studied currently, including IL-3/Ab complex for its effects on the mast cell population, and IL-4/Ab complex and IL-7/Ab complex for inducing B and T cell expansion and maturation. Cytokine complexes can also be made from a cytokine and its soluble receptor. Pre-association of IL-15 with soluble IL-15 receptor alpha produces a complex with strong agonistic functions that lead to an expansion of CD8(+) T cells and NK cells. However, cytokine/Ab complexes also occur naturally in humans. A multitude of auto-antibodies to cytokines are found in human sera, and many of these auto-antibodies build cytokine/Ab complexes. This review presents naturally occurring auto-antibodies to cytokines and cytokine/Ab complexes in health and disease. It further summarizes recent research on synthetic cytokine/Ab complexes with a focus on the basic mechanisms behind the function of cytokine/Ab complexes.
Han, Young Soo; Jeong, Hoon Young; Hyun, Sung Pil; Hayes, Kim F; Chon, Chul Min
2018-05-01
During X-ray absorption spectroscopy (XAS) measurements of arsenic (As), beam-induced redox transformation is often observed. In this study, the As species immobilized by poorly crystallized mackinawite (FeS) was assessed for the susceptibility to beam-induced redox reactions as a function of sample properties including the redox state of FeS and the solid-phase As speciation. The beam-induced oxidation of reduced As species was found to be mediated by the atmospheric O 2 and the oxidation products of FeS [e.g. Fe(III) (oxyhydr)oxides and intermediate sulfurs]. Regardless of the redox state of FeS, both arsenic sulfide and surface-complexed As(III) readily underwent the photo-oxidation upon exposure to the atmospheric O 2 during XAS measurements. With strict O 2 exclusion, however, both As(0) and arsenic sulfide were less prone to the photo-oxidation by Fe(III) (oxyhydr)oxides than NaAsO 2 and/or surface-complexed As(III). In case of unaerated As(V)-reacted FeS samples, surface-complexed As(V) was photocatalytically reduced during XAS measurements, but arsenic sulfide did not undergo the photo-reduction.
Bignante, Elena Anahi; Ponce, Nicolás Eric; Heredia, Florencia; Musso, Juliana; Krawczyk, María C; Millán, Julieta; Pigino, Gustavo F; Inestrosa, Nibaldo C; Boccia, Mariano M; Lorenzo, Alfredo
2018-04-01
Deposition of amyloid-β (Aβ), the proteolytic product of the amyloid precursor protein (APP), might cause neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the direct involvement of APP in the mechanism of Aβ-induced degeneration in AD remains on debate. Here, we analyzed the interaction of APP with heterotrimeric Go protein in primary hippocampal cultures and found that Aβ deposition dramatically enhanced APP-Go protein interaction in dystrophic neurites. APP overexpression rendered neurons vulnerable to Aβ toxicity by a mechanism that required Go-Gβγ complex signaling and p38-mitogen-activated protein kinase activation. Gallein, a selective pharmacological inhibitor of Gβγ complex, inhibited Aβ-induced dendritic and axonal dystrophy, abnormal tau phosphorylation, synaptic loss, and neuronal cell death in hippocampal neurons expressing endogenous protein levels. In the 3xTg-AD mice, intrahippocampal application of gallein reversed memory impairment associated with early Aβ pathology. Our data provide further evidence for the involvement of APP/Go protein in Aβ-induced degeneration and reveal that Gβγ complex is a signaling target potentially relevant for developing therapies for halting Aβ degeneration in AD. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie
2016-09-01
Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems. © 2016 Institute of Food Technologists®
Nellore, Jayshree; Pauline, Cynthia; Amarnath, Kanchana
2013-01-01
Current discovery demonstrates the rapid formation of platinum nanoparticles using leaf extract of a neurobeneficial plant, Bacopa monnieri (BmE). The nanoparticles (BmE-PtNPs) were stabilized and then coated with varied phytochemicals present within the leaf extract. These nanoparticles demonstrated the same activity of Complex I, as that of oxidizing NADH to NAD+ using a spectrophotometric method. This suggests that BmE-PtNPs are a potential medicinal substance for oxidative stress mediated disease with suppressed mitochondrial complex I, namely, Parkinson's disease (PD). Hence, the neuroprotective potentials of the phytochemical coated nanoparticle were explored in 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine- (MPTP-)induced experimental Parkinsonism in zebrafish model. BmE-PtNPs pretreatment significantly reversed toxic effects of MPTP by increasing the levels of dopamine, its metabolites, GSH and activities of GPx, catalase, SOD and complex I, and reducing levels of MDA along with enhanced locomotor activity. Taken together, these findings suggest that BmE-PtNPs have protective effect in MPTP-induced neurotoxicity in this model of Parkinson's disease via their dual functions as mitochondrial complex I and antioxidant activity. PMID:26317003
O'Loughlin, Thomas; Masters, Thomas A; Buss, Folma
2018-04-01
The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun
Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complexmore » III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.« less
Chernyshova, Yana; Leshchyns'ka, Iryna; Hsu, Shu-Chan; Schachner, Melitta; Sytnyk, Vladimir
2011-03-09
The exocyst complex is an essential regulator of polarized exocytosis involved in morphogenesis of neurons. We show that this complex binds to the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes FGF receptor-mediated phosphorylation of two tyrosine residues in the sec8 subunit of the exocyst complex and is required for efficient recruitment of the exocyst complex to growth cones. NCAM at the surface of growth cones induces Ca(2+)-dependent vesicle exocytosis, which is blocked by an inhibitor of L-type voltage-dependent Ca(2+) channels and tetanus toxin. Preferential exocytosis in growth cones underlying neurite outgrowth is inhibited in NCAM-deficient neurons as well as in neurons transfected with phosphorylation-deficient sec8 and dominant-negative peptides derived from the intracellular domain of NCAM. Thus, we reveal a novel role for a cell adhesion molecule in that it regulates addition of the new membrane to the cell surface of growth cones in developing neurons.
Ribosome binding induces repositioning of the signal recognition particle receptor on the translocon
Kuhn, Patrick; Draycheva, Albena; Vogt, Andreas; Petriman, Narcis-Adrian; Sturm, Lukas; Drepper, Friedel; Warscheid, Bettina; Wintermeyer, Wolfgang
2015-01-01
Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex. PMID:26459600
Zhang, Liang; Zhang, Song; Maezawa, Izumi; Trushin, Sergey; Minhas, Paras; Pinto, Matthew; Jin, Lee-Way; Prasain, Keshar; Nguyen, Thi D.T.; Yamazaki, Yu; Kanekiyo, Takahisa; Bu, Guojun; Gateno, Benjamin; Chang, Kyeong-Ok; Nath, Karl A.; Nemutlu, Emirhan; Dzeja, Petras; Pang, Yuan-Ping; Hua, Duy H.; Trushina, Eugenia
2015-01-01
Development of therapeutic strategies to prevent Alzheimer's disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3β activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest that metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD. PMID:26086035
Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo; Vaz, Maria G F
2003-03-10
Triply bridged bis-iminodioxolene dinuclear metal complexes of general formula M(2)(diox-diox)(3), with M = Co, Fe, have been synthesized using the bis-bidentate ligand N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,3-phenylenediamine. These complexes were characterized by means of X-ray, HF-EPR, and magnetic measurements. X-ray structures clearly show that both complexes can be described as containing three bis-iminosemiquinonato ligands acting in a bis-bidentate manner toward tripositive metal ions. The magnetic data show that both of these complexes have singlet ground states. The observed experimental behavior indicates the existence of intraligand antiferromagnetic interactions between the three pairs of m-phenylene units linked iminosemiquinonato radicals (J = 21 cm(-)(1) for the cobalt complex and J = 11 cm(-)(1) for the iron one). It is here suggested that the conditions for the ferromagnetic coupling that is expected to characterize the free diradical ligand are no longer satisfied because of the severe torsional distortion induced by the metal coordination.
Ramachandran, Kapil V.; Margolis, Seth S.
2017-01-01
In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It remains unclear how proteasomes can acutely regulate such processes, as this is inconsistent with their canonical role in proteostasis. Here, we made the discovery of a mammalian nervous system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is tightly associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of this membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked extracellular peptide production and attenuated neuronal activity-induced calcium signaling. Moreover, membrane proteasome-derived peptides are sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes primarily function to maintain proteostasis, and highlight a form of neuronal communication through a membrane proteasome complex. PMID:28287632
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Zheng; Yarovoi, Serge V.; Zhu, Zhiqiang
Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by immune complexes containing platelet factor 4 (PF4), antibodies to PF4 and heparin or cellular glycosaminoglycans (GAGs). Here we solve the crystal structures of the: (1) PF4 tetramer/fondaparinux complex, (2) PF4 tetramer/KKO-Fab complex (a murine monoclonal HIT-like antibody) and (3) PF4 monomer/RTO-Fab complex (a non-HIT anti-PF4 monoclonal antibody). Fondaparinux binds to the ‘closed’ end of the PF4 tetramer and stabilizes its conformation. This interaction in turn stabilizes the epitope for KKO on the ‘open’ end of the tetramer. Fondaparinux and KKO thereby collaborate to ‘stabilize’ the ternary pathogenic immune complex. Bindingmore » of RTO to PF4 monomers prevents PF4 tetramerization and inhibits KKO and human HIT IgG-induced platelet activation and platelet aggregation in vitro, and thrombus progression in vivo. Lastly, the atomic structures provide a basis to develop new diagnostics and non-anticoagulant therapeutics for HIT.« less
WAVE2 forms a complex with PKA and is involved in PKA enhancement of membrane protrusions.
Yamashita, Hiroshi; Ueda, Kazumitsu; Kioka, Noriyuki
2011-02-04
PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation.
Xiao, Wusheng; Sarsour, Ehab H; Wagner, Brett A; Doskey, Claire M; Buettner, Garry R; Domann, Frederick E; Goswami, Prabhat C
2016-02-01
Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.
Nanbo, A; Nishimura, H; Muta, T; Nagasawa, S
1999-02-01
Lipopolysaccharide (LPS)-binding protein (LBP), an opsonin for activation of macrophages by bacterial LPS, is synthesized in hepatocytes and is known to be an acute phase protein. Recently, cytokine-induced production of LBP was reported to increase 10-fold in hepatocytes isolated from LPS-treated rats, compared with those from normal rats. However, the mechanism by which the LPS treatment enhances the effect of cytokines remains to be clarified. In the present study, we examined whether LPS alone or an LPS/LBP complex directly stimulates the hepatocytes, leading to acceleration of the cytokine-induced LBP production. HepG2 cells (a human hepatoma cell line) were shown to express CD14, a glycosylphosphatidylinositol-anchored LPS receptor, by both RT/PCR and flow cytometric analyses. An LPS/LBP complex was an effective stimulator for LBP and CD14 production in HepG2 cells, but stimulation of the cells with either LPS or LBP alone did not significantly accelerate the production of these proteins. The findings were confirmed by semiquantitative RT/PCR analysis of mRNA levels of LBP and CD14 in HepG2 cells after stimulation with LPS alone and an LPS/LBP complex. In addition, two monoclonal antibodies (mAbs) to CD14 (3C10 and MEM-18) inhibited LPS/LBP-induced cellular responses of HepG2 cells. Furthermore, prestimulation of HepG2 cells with LPS/LBP augmented cytokine-induced production and gene expression of LBP and CD14. All these findings suggest that an LPS/LBP complex, but not free LPS, stimulates HepG2 cells via CD14 leading to increased basal and cytokine-induced LBP and CD14 production.
Bouchez, Gaëlle; Millan, Mark J; Rivet, Jean-Michel; Billiras, Rodolphe; Boulanger, Raphaël; Gobert, Alain
2012-05-03
Corticosterone influences emotion and cognition via actions in a diversity of corticolimbic structures, including the amygdala. Since extracellular levels of corticosterone in brain have rarely been studied, we characterized a specific and sensitive enzymatic immunoassay for microdialysis quantification of corticosterone in the basolateral amygdaloid complex of freely-moving rats. Corticosterone levels showed marked diurnal variation with an evening (dark phase) peak and stable, low levels during the day (light phase). The "anxiogenic agents", FG7142 (20 mg/kg) and yohimbine (10 mg/kg), and an environmental stressor, 15-min forced-swim, induced marked and sustained (1-3 h) increases in dialysis levels of corticosterone in basolateral amygdaloid complex. They likewise increased dialysis levels of dopamine and noradrenaline, but not serotonin and GABA. As compared to basal corticosterone levels of ~200-300 pg/ml, the elevation provoked by forced-swim was ca. 20-fold and this increase was abolished by adrenalectomy. Interestingly, stress-induced rises of corticosterone levels in basolateral amygdaloid complex were abrogated by combined but not separate administration of the corticotrophin releasing factor(1) (CRF(1)) receptor antagonist, CP154,526, and the vasopressin(1b) (V(1b)) receptor antagonist, SSR149,415. Underpinning their specificity, they did not block forced-swim-induced elevations in dopamine and noradrenaline. In conclusion, extracellular levels of corticosterone in the basolateral amygdaloid complex display marked diurnal variation. Further, they are markedly elevated by acute stressors, the effects of which are mediated (in contrast to concomitant elevations in levels of monoamines) by co-joint recruitment of CRF(1) and V(1b) receptors. Copyright © 2012 Elsevier B.V. All rights reserved.
Abou-Kandil, Ammar; Eisa, Nora; Jabareen, Azhar; Huleihel, Mahmoud
2016-01-01
ABSTRACT The activated estrogen (E2) receptor α (ERα) is a potent transcription factor that is involved in the activation of various genes by 2 different pathways; a classical and non-classical. In classical pathway, ERα binds directly to E2-responsive elements (EREs) located in the appropriate genes promoters and stimulates their transcription. However, in non-classical pathway, the ERα can indirectly bind with promoters and enhance their activity. For instance, ERα activates BRCA1 expression by interacting with jun/fos complex bound to the AP-1 site in BRCA1 promoter. Interference with the expression and/or functions of BRCA1, leads to high risk of breast or/and ovarian cancer. HTLV-1Tax was found to strongly inhibit BRCA1 expression by preventing the binding of E2–ERα complex to BRCA1 promoter. Here we examined Tax effect on ERα induced activation of genes by the classical pathway by testing its influence on E2-induced expression of ERE promoter-driven luciferase reporter (ERE-Luc). Our findings showed that E2 profoundly stimulated this reporter expression and that HTLV-1Tax significantly induced this stimulation. This result is highly interesting because in our previous study Tax was found to strongly block the E2-ERα-mediated activation of BRCA1 expression. ERα was found to produce a big complex by recruiting various cofactors in the nucleus before binding to the ERE region. We also found that only part of the reqruited cofactors are required for the transcriptional activity of ERα complex. Chip assay revealed that the binding of Tax to the ERα complex, did not interfere with its link to ERE region. PMID:27420286
PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.
Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E
2001-10-11
Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.
Neiser, Susann; Koskenkorva, Taija S; Schwarz, Katrin; Wilhelm, Maria; Burckhardt, Susanna
2016-07-21
Intravenous iron preparations are typically classified as non-dextran-based or dextran/dextran-based complexes. The carbohydrate shell for each of these preparations is unique and is key in determining the various physicochemical properties, the metabolic pathway, and the immunogenicity of the iron-carbohydrate complex. As intravenous dextran can cause severe, antibody-mediated dextran-induced anaphylactic reactions (DIAR), the purpose of this study was to explore the potential of various intravenous iron preparations, non-dextran-based or dextran/dextran-based, to induce these reactions. An IgG-isotype mouse monoclonal anti-dextran antibody (5E7H3) and an enzyme-linked immunosorbent assay (ELISA) were developed to investigate the dextran antigenicity of low molecular weight iron dextran, ferumoxytol, iron isomaltoside 1000, ferric gluconate, iron sucrose and ferric carboxymaltose, as well as isomaltoside 1000, the isolated carbohydrate component of iron isomaltoside 1000. Low molecular weight iron dextran, as well as dextran-based ferumoxytol and iron isomaltoside 1000, reacted with 5E7H3, whereas ferric carboxymaltose, iron sucrose, sodium ferric gluconate, and isolated isomaltoside 1000 did not. Consistent results were obtained with reverse single radial immunodiffusion assay. The results strongly support the hypothesis that, while the carbohydrate alone (isomaltoside 1000) does not form immune complexes with anti-dextran antibodies, iron isomaltoside 1000 complex reacts with anti-dextran antibodies by forming multivalent immune complexes. Moreover, non-dextran based preparations, such as iron sucrose and ferric carboxymaltose, do not react with anti-dextran antibodies. This assay allows to assess the theoretical possibility of a substance to induce antibody-mediated DIARs. Nevertheless, as this is only one possible mechanism that may cause a hypersensitivity reaction, a broader set of assays will be required to get an understanding of the mechanisms that may lead to intravenous iron-induced hypersensitivity reactions.
Oleic acid is a key cytotoxic component of HAMLET-like complexes.
Permyakov, Sergei E; Knyazeva, Ekaterina L; Khasanova, Leysan M; Fadeev, Roman S; Zhadan, Andrei P; Roche-Hakansson, Hazeline; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A
2012-01-01
HAMLET is a complex of α-lactalbumin (α-LA) with oleic acid (OA) that selectively kills tumor cells and Streptococcus pneumoniae. To assess the contribution of the proteinaceous component to cytotoxicity of HAMLET, OA complexes with proteins structurally and functionally distinct from α-LA were prepared. Similar to HAMLET, the OA complexes with bovine β-lactoglobulin (bLG) and pike parvalbumin (pPA) (bLG-OA-45 and pPA-OA-45, respectively) induced S. pneumoniae D39 cell death. The activation mechanisms of S. pneumoniae death for these complexes were analogous to those for HAMLET, and the cytotoxicity of the complexes increased with OA content in the preparations. The half-maximal inhibitory concentration for HEp-2 cells linearly decreased with rise in OA content in the preparations, and OA concentration in the preparations causing HEp-2 cell death was close to the cytotoxicity of OA alone. Hence, the cytotoxic action of these complexes against HEp-2 cells is induced mostly by OA. Thermal stabilization of bLG upon association with OA implies that cytotoxicity of bLG-OA-45 complex cannot be ascribed to molten globule-like conformation of the protein component. Overall, the proteinaceous component of HAMLET-like complexes studied is not a prerequisite for their activity; the cytotoxicity of these complexes is mostly due to the action of OA.
Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G
2015-05-18
Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.
NASA Astrophysics Data System (ADS)
Ropartz, David; Li, Pengfei; Fanuel, Mathieu; Giuliani, Alexandre; Rogniaux, Hélène; Jackson, Glen P.
2016-10-01
The structural characterization of oligosaccharides still challenges the field of analytical chemistry. Tandem mass spectrometry offers many advantages toward this aim, although the generic fragmentation method (low-energy collision-induced dissociation) shows clear limitations and is often insufficient to retrieve some essential structural information on these molecules. In this work, we present the first application of helium charge transfer dissociation (He-CTD) to characterize the structure of complex oligosaccharides. We compare this method with low-energy collision-induced dissociation and extreme-ultraviolet dissociative photoionization (XUV-DPI), which was shown previously to ensure the successful characterization of complex glycans. Similarly to what could be obtained by XUV-DPI, He-CTD provides a complete description of the investigated structures by producing many informative cross-ring fragments and no ambiguous fragmentation. Unlike XUV-DPI, which is performed at a synchrotron source, He-CTD has the undeniable advantage of being implementable in a conventional benchtop ion trap in a conventional laboratory setting.
Schartner, Michael; Seth, Anil; Noirhomme, Quentin; Boly, Melanie; Bruno, Marie-Aurelie; Laureys, Steven; Barrett, Adam
2015-01-01
Emerging neural theories of consciousness suggest a correlation between a specific type of neural dynamical complexity and the level of consciousness: When awake and aware, causal interactions between brain regions are both integrated (all regions are to a certain extent connected) and differentiated (there is inhomogeneity and variety in the interactions). In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity correlates strongly with conscious level, when computed on the EEG response to transcranial magnetic stimulation. Here we investigated complexity of spontaneous high-density EEG data during propofol-induced general anaesthesia. We consider three distinct measures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability in the constitution of the set of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the variability in the constitution of the set of synchronous channels. After some simulations on Kuramoto oscillator models which demonstrate that these measures capture distinct ‘flavours’ of complexity, we show that there is a robustly measurable decrease in the complexity of spontaneous EEG during general anaesthesia. PMID:26252378
Suetsugu, Shiro; Kurisu, Shusaku; Oikawa, Tsukasa; Yamazaki, Daisuke; Oda, Atsushi; Takenawa, Tadaomi
2006-05-22
WAVE2 activates the actin-related protein (Arp) 2/3 complex for Rac-induced actin polymerization during lamellipodium formation and exists as a large WAVE2 protein complex with Sra1/PIR121, Nap1, Abi1, and HSPC300. IRSp53 binds to both Rac and Cdc42 and is proposed to link Rac to WAVE2. We found that the knockdown of IRSp53 by RNA interference decreased lamellipodium formation without a decrease in the amount of WAVE2 complex. Localization of WAVE2 at the cell periphery was retained in IRSp53 knockdown cells. Moreover, activated Cdc42 but not Rac weakened the association between WAVE2 and IRSp53. When we measured Arp2/3 activation in vitro, the WAVE2 complex isolated from the membrane fraction of cells was fully active in an IRSp53-dependent manner but WAVE2 isolated from the cytosol was not. Purified WAVE2 and purified WAVE2 complex were activated by IRSp53 in a Rac-dependent manner with PIP(3)-containing liposomes. Therefore, IRSp53 optimizes the activity of the WAVE2 complex in the presence of activated Rac and PIP(3).
Shin, Eunju; Shin, Seulmee; Kong, Hyunseok; Lee, Sungwon; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil; Hwang, In-Kyeong; Kim, Kyungjae
2011-04-01
Metabolic disorders, including type II diabetes and obesity, present major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has become the focus of a great deal of attention as a novel therapeutic target for the treatment of metabolic syndromes. In this study, we evaluated whether dietary aloe could reduce obesity-induced inflammation and adipogenesis. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Aloe QDM complex down-regulated fat size through suppressed expression of scavenger receptors on adipose tissue macrophages (ATMs) compared with HFD. Both white adipose tissue (WATs) and muscle exhibited increased AMPK activation through aloe supplementation, and in particular, the Aloe QDM complex. Obesity-induced inflammatory cytokines (IL-1β and -6) and HIF1α mRNA and protein were decreased markedly, as was macrophage infiltration by the Aloe QDM complex. Further, the Aloe QDM complex decreased the translocation of NF-κB p65 from the cytosol in the WAT. Dietary aloe formula reduced obesity-induced inflammatory responses by activation of AMPK in muscle and suppression of proinflammatory cytokines in the WAT. Additionally, the expression of scavenger receptors in the ATM and activation of AMPK in WAT led to reduction in the percent of body fat. Thus, we suggest that the effect of the Aloe QDM complex in the WAT and muscle are related to activation of AMPK and its use as a nutritional intervention against T2D and obesity-related inflammation.
Shin, Eunju; Shin, Seulmee; Kong, Hyunseok; Lee, Sungwon; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil; Hwang, In-Kyeong
2011-01-01
Background Metabolic disorders, including type II diabetes and obesity, present major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has become the focus of a great deal of attention as a novel therapeutic target for the treatment of metabolic syndromes. In this study, we evaluated whether dietary aloe could reduce obesity-induced inflammation and adipogenesis. Methods Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results Aloe QDM complex down-regulated fat size through suppressed expression of scavenger receptors on adipose tissue macrophages (ATMs) compared with HFD. Both white adipose tissue (WATs) and muscle exhibited increased AMPK activation through aloe supplementation, and in particular, the Aloe QDM complex. Obesity-induced inflammatory cytokines (IL-1β and -6) and HIF1α mRNA and protein were decreased markedly, as was macrophage infiltration by the Aloe QDM complex. Further, the Aloe QDM complex decreased the translocation of NF-κB p65 from the cytosol in the WAT. Conclusion Dietary aloe formula reduced obesity-induced inflammatory responses by activation of AMPK in muscle and suppression of proinflammatory cytokines in the WAT. Additionally, the expression of scavenger receptors in the ATM and activation of AMPK in WAT led to reduction in the percent of body fat. Thus, we suggest that the effect of the Aloe QDM complex in the WAT and muscle are related to activation of AMPK and its use as a nutritional intervention against T2D and obesity-related inflammation. PMID:21637388
Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P
1999-08-01
Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.
Hemsley, Piers A.; Hurst, Charlotte H.; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R.; De Cothi, Elizabeth A.; Steele, John F.; Knight, Heather
2014-01-01
The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation–induced freezing tolerance. In addition, these three subunits are required for low temperature–induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770
Wang, Can; Xu, Bin; Ma, Zhuo; Liu, Chang; Deng, Yu; Liu, Wei; Xu, Zhao-Fa
2017-06-16
Overexposure to manganese (Mn) could disrupt neurotransmitter release via influencing the formation of SNARE complex, but the underlying mechanisms are still unclear. A previous study demonstrated that SNAP-25 is one of substrate of calpains. The current study investigated whether calpains were involved in Mn-induced disorder of SNARE complex. After mice were treated with Mn for 24 days, Mn deposition increased significantly in basal nuclei in Mn-treated and calpeptin pre-treated groups. Behaviorally, less time spent in the center of the area and decreased average velocity significantly in an open field test after 24 days of Mn exposure. With the increase in MnCl 2 dosage, intracellular Ca 2+ increased significantly, but pretreatment with calpeptin caused a dose-dependent decrease in calpains activity. There were fragments of N-terminal of SNAP-25 protein appearance in Mn-treated groups, but it is decreased with pretreatment of calpeptin. FM1-43-labeled synaptic vesicles also provided evidence that the treatment with Mn resulted in increasing first and then decreasing, which was consistent with Glu release and the 80 kDa protein levels of SNARE complexes. In summary, Mn induced the disorder of neurotransmitter release through influencing the formation of SNARE complex via cleaving SNAP-25 by overactivation of calpains in vivo.
Rodrigues, Lindaiane Bezerra; Martins, Anita Oliveira Brito Pereira Bezerra; Ribeiro-Filho, Jaime; Cesário, Francisco Rafael Alves Santana; E Castro, Fyama Ferreira; de Albuquerque, Thaís Rodrigues; Fernandes, Maria Neyze Martins; da Silva, Bruno Anderson Fernandes; Quintans Júnior, Lucindo José; Araújo, Adriano Antunes de Sousa; Menezes, Paula Dos Passos; Nunes, Paula Santos; Matos, Isabella Gonçalves; Coutinho, Henrique Douglas Melo; Goncalves Wanderley, Almir; de Menezes, Irwin Rose Alencar
2017-11-01
Cyclodextrins (CDs) are cyclic oligosaccharides can enhance the bioavailability of drugs. Ocimum basilicum is an aromatic plant found in Brazil used in culinary. The essential oil of this plant presents anti-edematogenic and anti-inflammatory activities in acute and chronic inflammation. The aim of this study was to investigate the anti-inflammatory effects of the essential oil obtained from O. basilicum complexed with β - cyclodextrin (OBEO/β-CD) in mice. The complexation with β-cyclodextrin (β-CD) was performed by different methods and analyzed by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy (SEM). The anti-inflammatory activity was evaluated using mice models of paw edema induced by carrageenan, dextran, histamine and arachidonic acid (AA); vascular permeability and peritonitis induced by carrageenan and granuloma induced by cotton block introduction. The DSC, TG and SEM analysis indicated that the OBEO was successfully complexed with β-CD. The oral administration of OEOB/β-CD prevented paw edema formation by decreasing vascular permeability in vivo, inhibited leukocyte recruitment to the peritoneal cavity, and inhibited granuloma formation in mice. Our results indicate that conjugation with β-CD improves the anti-inflammatory effects of OBEO in mice models of acute and chronic inflammation, indicating that this complex can be used in anti-inflammatory drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nicotine drives neutrophil extracellular traps formation and accelerates collagen-induced arthritis.
Lee, Jaejoon; Luria, Ayala; Rhodes, Christopher; Raghu, Harini; Lingampalli, Nithya; Sharpe, Orr; Rada, Balazs; Sohn, Dong Hyun; Robinson, William H; Sokolove, Jeremy
2017-04-01
The aim was to investigate the effects of nicotine on neutrophil extracellular traps (NETs) formation in current and non-smokers and on a murine model of RA. We compared spontaneous and phorbol 12-myristate 13-acetate-induced NETosis between current and non-smokers by DNA release binding. Nicotine-induced NETosis from non-smokers was assessed by DNA release binding, NET-specific (myeloperoxidase (MPO)-DNA complex) ELISA and real-time fluorescence microscopy. We also used immunofluorescent staining to detect nicotinic acetylcholine receptors (nAChRs) on neutrophils and performed a functional analysis to assess the role of nAChRs in nicotine-induced NETosis. Finally, we investigated the effects of systemic nicotine exposure on arthritis severity and NETosis in the CIA mouse model. Neutrophils derived from current smokers displayed elevated levels of spontaneous and phorbol 12-myristate 13-acetate-induced NETosis. Nicotine induced dose-dependent NETosis in ex vivo neutrophils from healthy non-smokers, and co-incubation with ACPA-immune complexes or TNF-α facilitated a synergistic effect on NETosis. Real-time fluorescence microscopy revealed robust formation of NET-like structures in nicotine-exposed neutrophils. Immunofluorescent staining demonstrated the presence of the α7 subunit of the nAChR on neutrophils. Stimulation of neutrophils with an α7-specific nAChR agonist induced NETosis, whereas pretreatment with an nAChR antagonist attenuated nicotine-induced NETosis. Nicotine administration to mice with CIA exacerbated inflammatory arthritis, with higher plasma levels of NET-associated MPO-DNA complex. We demonstrate that nicotine is a potent inducer of NETosis, which may play an important role in accelerating arthritis in the CIA model. This study generates awareness of and the mechanisms by which nicotine-containing products, including e-cigarettes, may have deleterious effects on patients with RA. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.
Chen, Ping; Xu, Shina; Qu, Jinlong
2018-01-01
Lycopene, one of the most potent anti-oxidants, has been reported to exhibit potent anti-proliferative properties in a wide range of cancer cells through modulation of the cell cycle and apoptosis. Forkhead box O3 (FOXO3a) plays a pivotal role in modulating the expression of genes involved in cell death. Herein, we investigated the role of FOXO3a signaling in the anti-cancer effects of lycopene. Results showed that lycopene pretreatment attenuated UVB-induced cell hyper-proliferation and promoted apoptosis, accompanied by decreased cyclin-dependent kinase 2 (CDK2) and CDK4 complex in both human keratinocytes and SKH-1 hairless mice. FOXO3a is phosphorylated in response to UVB irradiation and sequestered in the cytoplasm, while lycopene pretreatment rescued this sensitization. Gene ablation of FOXO3a attenuated lycopene-induced decrease in cell hyper-proliferation, CDK2, and CDK4 complex, indicating a critical role of FOXO3a in the lycopene-induced anti-proliferative effect of keratinocytes during UVB irradiation. Transfection with FOXO3a siRNA inhibited the lycopene-induced increase in cell apoptosis, BAX and cleaved PARP expression. Moreover, loss of AKT induced further accelerated lycopene-induced FOXO3a dephosphorylation, while loss of mechanistic target of rapamycin complex 2 (mTORC2) by transfection with RICTOR siRNA induced levels of AKT phosphorylation comparable to those obtained with lycopene. In contrast, overexpression of AKT or mTORC2 decreased the effects of lycopene on the expression of FOXO3a as well as AKT phosphorylation, suggesting that lycopene depends on the negative modulation of mTORC2/AKT signaling. Taken together, our findings demonstrate that the mTORC2/AKT/FOXO3a axis plays a critical role in the anti-proliferative and pro-apoptotic effects of lycopene in UVB-induced photocarcinogenesis. J. Cell. Biochem. 119: 366-377, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Iodine-enhanced ultrasound degradation of sulfamethazine in water.
Yang, Xiao-Yu; Wei, Hong; Li, Ke-Bin; He, Qiang; Xie, Jian-Cang; Zhang, Jia-Tong
2018-04-01
This study investigated sulfamethazine (SMT) ultrasound degradation, enhanced by iodine radicals, generated by potassium iodide (KI) and hydrogen peroxide (H 2 O 2 ) in situ. The results showed that the ultrasound/H 2 O 2 /KI (US/H 2 O 2 /KI) combination treatment achieved an 85.10 ± 0.45% SMT removal (%) in 60 min under the following conditions: pH = 3.2, ultrasound power of 195 W, initial SMT concentration of 0.04 mmol·L -1 , H 2 O 2 concentration of 120 mmol·L -1 , and KI concentration of 2.4 mmol·L -1 . UV-Vis spectrophotometric monitoring of molecular iodine (I 2 ) and triiodide (I 3 - ) revealed a correlation between the SMT degradation and the iodine change in the solution. Quenching experiments using methanol, t-butanol and thiamazole as radical scavengers indicated that iodine radicals, such as I and I 2 - , were more important than hydroxyl radicals (HO) for SMT degradation. SMT degradation under the US/H 2 O 2 /KI treatment followed pseudo-first order reaction kinetics. The activation energy (E a ) of SMT degradation was 7.75 ± 0.61 kJ·mol -1 , which suggested the reaction was controlled by the diffusion step. Moreover, TOC removal was monitored, and the obtained results revealed that it was not as effective as SMT degradation under the US/H 2 O 2 /KI system. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jose, R.; Kumar, A.; Thavasi, V.; Ramakrishna, S.
2008-10-01
The electrochemical and optical properties of three indoline dyes, namely C35H28N2O2 (D131), C37H30N2O3S2 (D102), and C42H35N3O4S3 (D149), were studied and compared with that of the N3 dye. D131 has the largest bandgap and lowest unoccupied molecular orbital (LUMO) energies compared to the other dyes. A size-dependent variation in the absorptivity of the indoline dyes was observed—the absorptivity increased with increase in the molecular size. The dyes were anchored onto TiO2 nanorods. The TiO2 nanorods were obtained by electrospinning a polymeric solution containing titanium isopropoxide and polyvinylpyrrolidone and subsequent sintering of the as-spun composite fibers. Absorption spectral measurements of the dye-anchored TiO2 showed blue shifts in the excitonic transition of the indoline dyes, the magnitude of which increased with decrease in the molecular size. Dye-sensitized solar cells (DSSCs) were fabricated using the indoline dyes, TiO2 nanorods, and iodide/triiodide electrolyte. The D131 dye showed comparable energy conversion efficiency (η) to that of the N3 dye. A systematic change in the short circuit current density (JSC) and η of the indoline DSSCs was observed. The observed variation in JC is most likely originated from the difference in the electronic coupling strengths between the dye and the TiO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Wenmei; Yang, Dongwen; Li, Tianshu
Solar cells based on methylammonium lead triiodide (MAPbI 3) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI 3-based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current–voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI 3. In addition to Au, many other metals have been used as electrodes inmore » MAPbI 3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI 3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI 3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI 3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI 3 while having low resistivities and suitable work functions for carrier extraction.« less
Ming, Wenmei; Yang, Dongwen; Li, Tianshu; Zhang, Lijun; Du, Mao-Hua
2018-02-01
Solar cells based on methylammonium lead triiodide (MAPbI 3 ) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI 3 -based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current-voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI 3 . In addition to Au, many other metals have been used as electrodes in MAPbI 3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI 3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI 3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI 3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI 3 while having low resistivities and suitable work functions for carrier extraction.
Ming, Wenmei; Yang, Dongwen; Li, Tianshu; ...
2017-12-27
Solar cells based on methylammonium lead triiodide (MAPbI 3) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI 3-based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current–voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI 3. In addition to Au, many other metals have been used as electrodes inmore » MAPbI 3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI 3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI 3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI 3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI 3 while having low resistivities and suitable work functions for carrier extraction.« less
Beecher, Alexander N.; Semonin, Octavi E.; Skelton, Jonathan M.; ...
2016-09-21
Lead halide perovskites such as methylammonium lead triiodide (CH 3NH 3PbI 3) have outstanding optical and electronic properties for photovoltaic applications, yet a full understanding of how this solution-processable material works so well is currently missing. Previous research has revealed that CH 3NH 3PbI 3 possesses multiple forms of static disorder regardless of preparation method, which is surprising in light of its excellent performance. Using high energy resolution inelastic X-ray (HERIX) scattering, we measure phonon dispersions in CH 3NH 3PbI 3 and find direct evidence for another form of disorder in single crystals: large-amplitude anharmonic zone edge rotational instabilities ofmore » the PbI 6 octahedral that persist to room temperature and above, left over from structural phase transitions that take place tens to hundreds of degrees below. Phonon calculations show that the orientations of the methylammonium (CH 3NH 3 +) couple strongly and cooperatively to these modes. The result is a noncentrosymmetric, instantaneous local structure, which we observe in atomic pair distribution function (PDF) measurements. This local symmetry breaking is unobservable by Bragg diffraction but can explain key material properties such as the structural phase sequence, ultralow thermal transport, and large minority charge carrier lifetimes despite moderate carrier mobility. In conclusion, from the PDF we estimate the size of the fluctuating symmetry broken domains to be between 1 and 3 nm in diameter.« less
Conversion of iodide to hypoiodous acid and iodine in aqueous microdroplets exposed to ozone.
Pillar, Elizabeth A; Guzman, Marcelo I; Rodriguez, Jose M
2013-10-01
Halides are incorporated into aerosol sea spray, where they start the catalytic destruction of ozone (O3) over the oceans and affect the global troposphere. Two intriguing environmental problems undergoing continuous research are (1) to understand how reactive gas phase molecular halogens are directly produced from inorganic halides exposed to O3 and (2) to constrain the environmental factors that control this interfacial process. This paper presents a laboratory study of the reaction of O3 at variable iodide (I(-)) concentration (0.010-100 μM) for solutions aerosolized at 25 °C, which reveal remarkable differences in the reaction intermediates and products expected in sea spray for low tropospheric [O3]. The ultrafast oxidation of I(-) by O3 at the air-water interface of microdroplets is evidenced by the appearance of hypoiodous acid (HIO), iodite (IO2(-)), iodate (IO3(-)), triiodide (I3(-)), and molecular iodine (I2). Mass spectrometry measurements reveal an enhancement (up to 28%) in the dissolution of gaseous O3 at the gas-liquid interface when increasing the concentration of NaI or NaBr from 0.010 to 100 μM. The production of iodine species such as HIO and I2 from NaI aerosolized solutions exposed to 50 ppbv O3 can occur at the air-water interface of sea spray, followed by their transfer to the gas-phase, where they contribute to the loss of tropospheric ozone.
Ming, Wenmei; Yang, Dongwen; Li, Tianshu
2017-01-01
Abstract Solar cells based on methylammonium lead triiodide (MAPbI3) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long‐term stability of MAPbI3‐based solar cells has yet to be achieved. Besides the well‐known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current–voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI3. In addition to Au, many other metals have been used as electrodes in MAPbI3 solar cells. However, how the external metal impurities introduced by electrodes affect the long‐term stability of MAPbI3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI3 based on first‐principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI3 while having low resistivities and suitable work functions for carrier extraction. PMID:29610728
NASA Astrophysics Data System (ADS)
Chen, Hseng Shao; Lue, Shingjiang Jessie; Tung, Yung Liang; Cheng, Kong Wei; Huang, Fu Yuan; Ho, Kuo Chuan
This study investigates the electrochemical properties of electrolyte-impregnated micro-porous ceramic (Al 2O 3) films as framework supports in dye-sensitized solar cells (DSSCs). A field-emission scanning electron microscope (FE-SEM) is used to characterize the morphology on both surfaces of the ceramic membranes, which exhibit high porosity (41-66%) and an open cylindrical pore structure. Electrochemical impedance analysis reveals that the conductivity of the electrolyte-impregnated ceramic membrane is lower (6.24-9.39 mS cm -1) than the conductivity of the liquid electrolyte (25 mS cm -1), with an Archie's relationship by a power of 1.81 to the porosity value. The diffusivity of tri-iodide ions (I3-) is slowed from 1.95 × 10 -5 to 0.68 × 10 -5 cm 2 s -1 in the ceramic-containing cells. The exchange current density at the Pt-electrolyte interface decreases slightly (less than 5%) when the Al 2O 3 membranes were used in the symmetric cells, implies that the contact of the denser ceramic top structure on the Pt electrode does not interfere with the I3- charge transfer. The ceramic films can prevent solvent evaporation and maintain conductivity. The long-term cell efficiencies are evaluated up to 1248 h under alternating light soaking and darkness (3 days/4 days) cycles. The cells containing the ceramic films outperform the control cells.
Njoku, Dolores B; Mellerson, Jenelle L; Talor, Monica V; Kerr, Douglas R; Faraday, Nauder R; Outschoorn, Ingrid; Rose, Noel R
2006-02-01
Idiosyncratic drug-induced hepatitis (IDDIH) is the third most common cause for acute liver failure in the United States. Previous studies have attempted to identify susceptible patients or early stages of disease with various degrees of success. To determine if total serum immunoglobulin subclasses, CYP2E1-specific subclass autoantibodies, complement components, or immune complexes could distinguish persons with IDDIH from others exposed to drugs, we studied persons exposed to halogenated volatile anesthetics, which have been associated with IDDIH and CYP2E1 autoantibodies. We found that patients with anesthetic-induced IDDIH had significantly elevated levels of CYP2E1-specific immunoglobulin G4 (IgG4) autoantibodies, while anesthetic-exposed healthy persons had significantly elevated levels of CYP2E1-specific IgG1 autoantibodies. Anesthetic IDDIH patients had significantly lower levels of C4a, C3a, and C5a compared to anesthetic-exposed healthy persons. C1q- and C3d-containing immune complexes were significantly elevated in anesthetic-exposed persons. In conclusion, our data suggest that anesthetic-exposed persons develop CYP2E1-specific IgG1 autoantibodies which may form detectable circulating immune complexes subsequently cleared by classical pathway activation of the complement system. Persons susceptible to anesthetic-induced IDDIH develop CYP2E1-specific IgG4 autoantibodies which form small, nonprecipitating immune complexes that escape clearance because of their size or by direct inhibition of complement activation.
Tetraspanin-3 is an organizer of the multi-subunit Nogo-A signaling complex.
Thiede-Stan, Nina K; Tews, Björn; Albrecht, David; Ristic, Zorica; Ewers, Helge; Schwab, Martin E
2015-10-01
To ensure precision and specificity of ligand-receptor-induced signaling, co-receptors and modulatory factors play important roles. The membrane-bound ligand Nogo-A (an isoform encoded by RTN4) induces inhibition of neurite outgrowth, cell spreading, adhesion and migration through multi-subunit receptor complexes. Here, we identified the four-transmembrane-spanning protein tetraspanin-3 (TSPAN3) as a new modulatory co-receptor for the Nogo-A inhibitory domain Nogo-A-Δ20. Single-molecule tracking showed that TSPAN3 molecules in the cell membrane reacted to binding of Nogo-A with elevated mobility, which was followed by association with the signal-transducing Nogo-A receptor sphingosine-1-phosphate receptor 2 (S1PR2). Subsequently, TSPAN3 was co-internalized as part of the Nogo-A-ligand-receptor complex into early endosomes, where it subsequently separated from Nogo-A and S1PR2 to be recycled to the cell surface. The functional importance of the Nogo-A-TSPAN3 interaction is shown by the fact that knockdown of TSPAN3 strongly reduced the Nogo-A-induced S1PR2 clustering, RhoA activation, cell spreading and neurite outgrowth inhibition. In addition to the modulatory functions of TSPAN3 on Nogo-A-S1PR2 signaling, these results illustrate the very dynamic spatiotemporal reorganizations of membrane proteins during ligand-induced receptor complex organization. © 2015. Published by The Company of Biologists Ltd.
Medvetz, Doug; Sun, Yang; Li, Chenggang; Khabibullin, Damir; Balan, Murugabaskar; Parkhitko, Andrey; Priolo, Carmen; Asara, John M; Pal, Soumitro; Yu, Jane; Henske, Elizabeth P
2015-01-01
Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome associated with tumors of the brain, heart, kidney, and lung. The TSC protein complex inhibits the mammalian or mechanistic target of rapamycin complex 1 (mTORC1). Inhibitors of mTORC1, including rapamycin, induce a cytostatic response in TSC tumors, resulting in temporary disease stabilization and prompt regrowth when treatment is stopped. The lack of TSC-specific cytotoxic therapies represents an important unmet clinical need. Using a high-throughput chemical screen in TSC2-deficient, patient-derived cells, we identified a series of molecules antagonized by rapamycin and therefore selective for cells with mTORC1 hyperactivity. In particular, the cell-permeable alkaloid chelerythrine induced reactive oxygen species (ROS) and depleted glutathione (GSH) selectively in TSC2-null cells based on metabolic profiling. N-acetylcysteine or GSH cotreatment protected TSC2-null cells from chelerythrine's effects, indicating that chelerythrine-induced cell death is ROS dependent. Induction of heme-oxygenase-1 (HMOX1/HO-1) with hemin also blocked chelerythrine-induced cell death. In vivo, chelerythrine inhibited the growth of TSC2-null xenograft tumors with no evidence of systemic toxicity with daily treatment over an extended period of time. This study reports the results of a bioactive compound screen and the identification of a potential lead candidate that acts via a novel oxidative stress-dependent mechanism to selectively induce necroptosis in TSC2-deficient tumors. This study demonstrates that TSC2-deficient tumor cells are hypersensitive to oxidative stress-dependent cell death, and provide critical proof of concept that TSC2-deficient cells can be therapeutically targeted without the use of a rapalog to induce a cell death response. ©2014 American Association for Cancer Research.
Shechter, Asaf; Aflalo, Eliahu D; Davis, Claytus; Sagi, Amir
2005-07-01
In oviparous females, the synthesis of the yolk precursor vitellogenin is an important step in ovarian maturation and oocyte development. In decapod Crustacea, including the red-claw crayfish (Cherax quadricarinatus), this reproductive process is regulated by inhibitory neurohormones secreted by the endocrine X-organ-sinus gland (XO-SG) complex. In males, the C. quadricarinatus vitellogenin gene (CqVg), although present, is not expressed under normal conditions. We show here that endocrine manipulation by removal of the XO-SG complex from male animals induced CqVg transcription. The CqVg gene was expressed differentially during the molt cycle in these induced males: no expression was seen in the intermolt stages, but expression was occasionally detected in the premolt stages and always detected in the early postmolt stages. Relative quantitation with a real-time reverse transcriptase-polymerase chain reaction showed that expression of CqVg in induced early postmolt males was an order of magnitude lower than that in reproductive females, a finding that was consistent with RNA in situ hybridization results. The SDS-PAGE of high-density lipoproteins from the hemolymph of endocrinologically induced early postmolt males did not show the typical vitellogenin-related polypeptide profile found in reproductive females. On the other hand, removal of the XO-SG complex from intersex individuals, which are chromosomally female but functionally male and possess an arrested female reproductive system, induced the expression, translation, and release of CqVg products into the hemolymph, as was the case for vitellogenic females. The expression of CqVg in endocrinologically manipulated molting males and intersex animals provides an inducible model for the investigation and understanding of the endocrine regulation of CqVg expression and translation in Crustacea as well as the relationship between the endocrine axes regulating molt and reproduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong Eun; Hanyang Biomedical Research Institute, Seoul; Park, Jae Hyeon
2012-09-01
Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity asmore » well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.« less
2008-01-01
atmosphere like ours (mix of nitrogen and oxygen) implies a more complex plasma chemistry . For example, one of these difficulties is the interpretation of...due to LSDW have also been observed. KEYWORDS Polymer ablation, Shadowgraphy, Time-resolved laser induced breakdown spectroscopy, Plasma ... chemistry , Organic materials analysis, Expansion of laser-induced plasma 1 INTRODUCTION Laser-Induced Breakdown Spectroscopy (LIBS) traditionally
Wu, Hongli; Xing, Kuiyi; Lou, Marjorie F
2010-10-01
Glutaredoxin 2 (Grx2) belongs to the oxidoreductase family and is an isozyme of glutaredoxin 1 (Grx1) present in the mitochondria, however its function is not well understood. The purpose of this study is to evaluate the potential anti-apoptotic function of Grx2 by examining its ability to protect complex I in the mitochondrial electron transport system using human lens epithelial cells as a model. We found that cells treated with 200muM hydrogen peroxide (H(2)O(2)) for 24h exhibited decreased viability and became apoptotic with corresponding Bax up-regulation, Bcl-2 down-regulation, caspase 3 activation and mitochondrial cytochrome c leakage. Grx2 over-expression (OE) could protect cells against H(2)O(2)-induced damage while Grx2 knockdown (KD) showed the opposite effect. Under the same conditions, H(2)O(2) treatment caused 50% inactivation of complex I activity in control cells (vector only), 75% in Grx2 KD cells but only 20% in Grx2 OE cells. Furthermore, the inactivated complex I in the H(2)O(2)-treated cells could be protected mostly by importing the purified nascent Grx2 protein, but not the Grx2 protein mutated at the active site with C70S, or C73S, or with C70S plus C73S. Immunoprecipitation study also revealed that Grx2 co-precipitated with complex I, but not complex II, in the mitochondrial lysate. Thus, the mechanism of Grx2 protection against H(2)O(2)-induced apoptosis is likely associated with its ability to preserve complex I. Published by Elsevier B.V.
Direct effect of Taxol on free radical formation and mitochondrial permeability transition.
Varbiro, G; Veres, B; Gallyas, F; Sumegi, B
2001-08-15
To elucidate the potential role of mitochondria in Taxol-induced cytotoxicity, we studied its direct mitochondrial effects. In Percoll-gradient purified liver mitochondria, Taxol induced large amplitude swelling in a concentration-dependent manner in the microM range. Opening of the permeability pore was also confirmed by the access of mitochondrial matrix enzymes for membrane impermeable substrates in Taxol-treated mitochondria. Taxol induced the dissipation of mitochondrial membrane potential (DeltaPsi) determined by Rhodamine123 release and induced the release of cytochrome c from the intermembrane space. All these effects were inhibited by 2.5 microM cyclosporine A. Taxol significantly increased the formation of reactive oxygen species (ROS) in both the aqueous and the lipid phase as determined by dihydrorhodamine123 and resorufin derivative. Cytochrome oxidase inhibitor CN(-), azide, and NO abrogated the Taxol-induced mitochondrial ROS formation while inhibitors of the other respiratory complexes and cyclosporine A had no effect. We confirmed that the Taxol-induced collapse of DeltaPsi and the induction of ROS production occurs in BRL-3A cells. In conclusion, Taxol-induced adenine nucleotide translocase-cyclophilin complex mediated permeability transition, and cytochrome oxidase mediated ROS production. Because both cytochrome c release and mitochondrial ROS production can induce suicide pathways, the direct mitochondrial effects of Taxol may contribute to its cytotoxicity.
Ren, Xiaoxia; Zhao, Wenjing; Du, Yongxing; Zhang, Taiping; You, Lei; Zhao, Yupei
2016-12-01
Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells.
Gannamani, Bharathi; Shin, Joong-Won
2017-02-01
Collision-induced dissociation is carried out for electrosprayed [Fe·GlyGlyHis-H] + , [Ni·GlyGlyHis-H] + , [Cu·GlyGlyHis-H] + , and [Zn·GlyGlyHis-H] + complexes. [Fe·GlyGlyHis-H] + , [Ni·GlyGlyHis-H] + , and [Zn·GlyGlyHis-H] + yield metal-bound peptide sequence ions and dehydrated ions as primary products, whereas [Cu·GlyGlyHis-H] + generates a more extensive series of metal-bound sequence ions and a product arising from the unusual loss of a formaldehyde moiety; dehydration is significantly suppressed for this complex. Density functional theory calculations show that the copper ion-deprotonated peptide binding energy is substantially higher than those in other complexes, suggesting that there is a correlation between ion-ligand binding energy and their fragmentation behavior.
Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation
Zhang, Haoran; Yang, Fengyou; Dong, Jianjie; Du, Lena; Wang, Chuang; Zhang, Jianming; Guo, Chuan Fei; Liu, Qian
2016-01-01
Complex surface structures have stimulated a great deal of interests due to many potential applications in surface devices. However, in the fabrication of complex surface micro-/nanostructures, there are always great challenges in precise design, or good controllability, or low cost, or high throughput. Here, we present a route for the accurate design and highly controllable fabrication of surface quasi-three-dimensional (quasi-3D) structures based on a thermal deformation of simple two-dimensional laser-induced patterns. A complex quasi-3D structure, coaxially nested convex–concave microlens array, as an example, demonstrates our capability of design and fabrication of surface elements with this method. Moreover, by using only one relief mask with the convex–concave microlens structure, we have gotten hundreds of target patterns at different imaging planes, offering a cost-effective solution for mass production in lithography and imprinting, and portending a paradigm in quasi-3D manufacturing. PMID:27910852
Protective effect of hydroxytyrosol in arsenic-induced mitochondrial dysfunction in rat brain.
Soni, Manisha; Prakash, Chandra; Sehwag, Sfurti; Kumar, Vijay
2017-07-01
The present study was planned to investigate the protective effect of hydroxytyrosol (HT) against arsenic (As)-induced mitochondrial dysfunction in rat brain. Rats exposed to sodium arsenite (25 ppm for 8 weeks) showed decreased mitochondrial complexes (I, II, IV) activities, mitochondrial superoxide dismutase (MnSOD), and catalase activities in brain mitochondria. As-treated rats showed reduced mRNA expression of complex I (ND-1, ND-2), IV (COX-1, COX-4) subunits, and uncoupling protein-2 (UCP-2). In addition to this, As exposure downregulated the protein expression of MnSOD. Administration of HT with As restored the enzymatic activities of mitochondrial complexes, MnSOD and catalase, increased the mRNA levels of complexes subunits and UCP-2 as well as proteins level of MnSOD. These results suggest that HT efficiently restores mitochondrial dysfunction in As neurotoxicity and might be used as potential mitoprotective agent in future. © 2017 Wiley Periodicals, Inc.
Lin, Hung-Yun; Hsieh, Meng-Ti; Cheng, Guei-Yun; Lai, Hsuan-Yu; Chin, Yu-Tang; Shih, Ya-Jung; Nana, André Wendindondé; Lin, Shin-Ying; Yang, Yu-Chen S H; Tang, Heng-Yuan; Chiang, I-Jen; Wang, Kuan
2017-09-01
Nonpeptide hormones, such as thyroid hormone, dihydrotestosterone, and estrogen, have been shown to stimulate cancer proliferation via different mechanisms. Aside from their cytosolic or membrane-bound receptors, there are receptors on integrin α v β 3 for nonpeptide hormones. Interaction between hormones and integrin α v β 3 can induce signal transduction and eventually stimulate cancer cell proliferation. Resveratrol induces inducible COX-2-dependent antiproliferation via integrin α v β 3 . Resveratrol and hormone-induced signals are both transduced by activated extracellular-regulated kinases 1 and 2 (ERK1/2); however, hormones promote cell proliferation, while resveratrol induces antiproliferation in cancer cells. Hormones inhibit resveratrol-stimulated phosphorylation of p53 on Ser15, resveratrol-induced nuclear COX-2 accumulation, and formation of p53-COX-2 nuclear complexes. Subsequently, hormones impair resveratrol-induced COX-2-/p53-dependent gene expression. The inhibitory effects of hormones on resveratrol action can be blocked by different antagonists of specific nonpeptide hormone receptors but not integrin α v β 3 blockers. Results suggest that nonpeptide hormones inhibit resveratrol-induced antiproliferation in cancer cells downstream of the interaction between ligand and receptor and ERK1/2 activation to interfere with nuclear COX-2 accumulation. Thus, the surface receptor sites for resveratrol and nonpeptide hormones are distinct and can induce discrete ERK1/2-dependent downstream antiproliferation biological activities. It also indicates the complex pathways by which antiproliferation is induced by resveratrol in various physiological hormonal environments. . © 2017 New York Academy of Sciences.
Complex dynamics and enhanced photosensitivity in a modified Belousov-Zhabotinsky reaction
NASA Astrophysics Data System (ADS)
Li, Nan; Zhao, Jinpei; Wang, Jichang
2008-06-01
This study presents an experimental investigation of nonlinear dynamics in a modified Belousov-Zhabotinsky (BZ) reaction, in which the addition of 1,4-benzoquinone induced various complex behaviors such as mixed-mode oscillations and consecutive period-adding bifurcations. In addition, the presence of 1,4-benzoquinone significantly enhanced the photosensitivity of the ferroin-catalyzed BZ system, in which light-induced transitions between simple and complex oscillations have been achieved. Mechanistic study suggests that the influence of benzoquinone may arise from its interactions with the metal catalyst ferroin/ferriin, where cyclic voltammograms illustrate that the presence of benzoquinone causes an increase in the redox potential of ferroin/ferriin couple, which may consequently alternate the oxidation and reduction paths of the catalyst.
The Differential Effects of Task Complexity on Domain-Specific and Peer Assessment Skills
ERIC Educational Resources Information Center
van Zundert, Marjo J.; Sluijsmans, Dominique M. A.; Konings, Karen D.; van Merrienboer, Jeroen J. G.
2012-01-01
In this study the relationship between domain-specific skills and peer assessment skills as a function of task complexity is investigated. We hypothesised that peer assessment skills were superposed on domain-specific skills and will therefore suffer more when higher cognitive load is induced by increased task complexity. In a mixed factorial…
NASA Astrophysics Data System (ADS)
Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.
2011-06-01
The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, "Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin", International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, "Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin," J. Phys. Chem. A, published online, DOI: 10.1021/jp109441f L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010
Obiorah, I E; Jordan, V C
2014-01-01
Background and Purpose Triphenylethylene (TPE)-like compounds were the first agents to be used in the treatment of metastatic breast cancer in postmenopausal women. Although structurally related to the anti-oestrogen, 4-hydroxytamoxifen, TPEs possess oestrogenic properties in fully oestrogenized breast cancer cells but do not induce apoptosis with short-term treatment in long-term oestrogen-deprived breast cancer cells. This study determined the differential effects of bisphenol, a TPE, on growth and apoptosis based on the modulation of the shape of the ligand–oestrogen receptor complex. Experimental Approach Apoptotic flow cytometric studies were used to evaluate apoptosis over time. Proliferation of the breast cancer cells was assessed using DNA quantification and cell cycle analysis. Real-time PCR was performed to quantify mRNA levels of apoptotic genes. Regulation of cell cycle and apoptotic genes was determined using PCR-based arrays. Key Results Bisphenol induced an up-regulation of cell cycle genes similar to those induced by 17β oestradiol (E2). Unlike the changes induced by E2 that occur after 24 h, the apoptosis evoked by bisphenol occurred after 4 days, with quantifiable apoptotic changes noted at 6 days. A prolonged up-regulation of endoplasmic reticulum stress and inflammatory stress response genes was observed with subsequent activation of apoptosis-related genes in the second week of treatment with bisphenol. Conclusions and Implications The bisphenol: ERα complex induces delayed biological effects on the growth and apoptosis of breast cancer cells. Both the shape of the complex and the duration of treatment control the initiation of apoptosis. PMID:24819221
Interaction between marihuana and altitude on a complex behavioral task in baboons.
DOT National Transportation Integrated Search
1975-01-01
Marihuana, or its principal active ingredient, delta-9-tetrahydrocannabinol (delta9-THC), impairs performance on complex behavioral tasks in animals and man. Although there exists some evidence that altitude-induced hypoxia potentiates the physiologi...
Reorganization of Nuclear Pore Complexes and the Lamina in Late-Stage Parvovirus Infection.
Mäntylä, Elina; Niskanen, Einari A; Ihalainen, Teemu O; Vihinen-Ranta, Maija
2015-11-01
Canine parvovirus (CPV) infection induces reorganization of nuclear structures. Our studies indicated that late-stage infection induces accumulation of nuclear pore complexes (NPCs) and lamin B1 concomitantly with a decrease of lamin A/C levels on the apical side of the nucleus. Newly formed CPV capsids are located in close proximity to NPCs on the apical side. These results suggest that parvoviruses cause apical enrichment of NPCs and reorganization of nuclear lamina, presumably to facilitate the late-stage infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Reidy, G F; Mehta, I; Murray, M
1989-05-01
The anti-parkinsonian agent orphenadrine has been shown to form an in vitro metabolic intermediate (MI) complex in hepatic microsomes isolated from phenobarbital (PB)-treated rats. The present study was undertaken to assess the cytochrome P-450 isozyme specificity of inhibition and MI complexation. Spectral studies with untreated and PB-induced rat hepatic microsomes confirmed earlier reports on the selectivity of P-450 complexation by orphenadrine; MI complex formation was only observed with PB-induced microsomes. Inhibition studies with the P-450 substrates androst-4-ene-3,17-dione (androstenedione) and 7-pentoxyresorufin revealed selective inhibition of P-450 PB-B/D-associated monooxygenase activity. Thus, in microsomes from untreated male rats, orphenadrine failed to significantly inhibit (less than 50% inhibition up to a concentration of 300 microM) any of the major pathways of P-450-associated androstenedione metabolism. Preincubation of these microsomal fractions with orphenadrine and NADPH was not associated with increased inhibition of androstenedione metabolism. However, in PB-induced microsomes, P-450 PB-B/D-specific androstenedione 16 beta-hydroxylase activity was significantly and selectively inhibited (IC50 = 90 microM). Preincubation of orphenadrine with NADPH-supplemented PB-induced microsomes for 2, 4, or 8 min before androstenedione addition resulted in increased inhibition toward 16 beta-hydroxylase activity, lowering the observed IC50 to 6.6, 0.47, and 0.06 microM), respectively. Preincubation did not affect the selectivity of inhibition. In the absence of preincubation, orphenadrine appeared to be a potent mixed (competitive/noncompetitive)-type inhibitor of P-450 PB-B/D-associated pentoxyresorufin O-depentylation (Ki = 3.8 microM). Preincubation of orphenadrine with NADPH-supplemented microsomal fractions for 4 min resulted in a 30-fold lowering of the apparent inhibitor constant (Ki = 0.13 microM) and a change in the apparent inhibition kinetics to noncompetitive. Treatment of rats with orphenadrine (75 mg/kg/day intraperitoneally for 3 days) was associated with a 2-fold induction of total hepatic P-450, a 5- and 2.4-fold induction of androstenedione 16 beta- and 6 beta-hydroxylase activity, respectively, and formation of an orphenadrine-P-450 MI complex. Western blots of orphenadrine-induced microsomes revealed a 20-fold increase in P-450 PB-B/D-immunoreactive protein.(ABSTRACT TRUNCATED AT 400 WORDS)
Kim, Hyung-Wook; Choi, Won-Seok; Sorscher, Noah; Park, Hyung Joon; Tronche, François; Palmiter, Richard D; Xia, Zhengui
2015-09-01
Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron death during aging nor does it contribute to dopamine neuron toxicity in the MPTP model of Parkinson's disease. These findings suggest the existence of alternative mechanisms of dopaminergic neuron death independent of mitochondrial complex I inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.
Chi, Feng; Bo, Tao; Wu, Chun-Hua; Jong, Ambrose; Huang, Sheng-He
2012-01-01
IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities. IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus. These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis.
Kameneva, Svetlana V; Tyurin, Daniil A; Feldman, Vladimir I
2017-09-13
The HCNCO complex and its X-ray induced transformation to HNCCO in solid noble gas (Ng) matrices (Ng = Ne, Ar, Kr, Xe) was first characterized by matrix isolation FTIR spectroscopy at 5 K. The HCNCO complex was obtained by deposition of HCN/CO/Ng gaseous mixtures. The assignment was based on extensive quantum chemical calculations at the CCSD(T) level of theory. The calculations predicted two computationally stable structures for HCNCO and three stable structures for HNCCO. However, only the most energetically favorable linear structures corresponding to the co-ordination between the H atom of HCN (HNC) and the C atom of CO have been found experimentally. The HCNCO complex demonstrates a considerable red shift of the H-C stretching vibrations (-24 to -38 cm -1 , depending on the matrix) and a blue shift of the HCN bending vibrations (+29 to +32 cm -1 ) with respect to that of the HCN monomer, while the C[double bond, length as m-dash]O stretching mode is blue-shifted by 15 to 20 cm -1 as compared to the CO monomer. The HNCCO complex reveals a strong red shift of the H-N bending (-77 to -118 cm -1 ) and a strong blue shift of the HNC bending mode (ca. +100 cm -1 ) as compared to the HNC monomer, whereas the C[double bond, length as m-dash]O stretching is blue-shifted by 24 to 29 cm -1 with respect to that of the CO monomer. The interaction energies were determined to be 1.01 and 1.87 kcal mol -1 for HCNCO and HNCCO, respectively. It was found that the formation of complexes with CO had a remarkable effect on the radiation-induced transformations of HCN. While the dissociation of HCN to H and CN is suppressed in complexes, the isomerization of HCN to HNC is strongly catalyzed by the complexation with CO. The astrochemical implications of the results are discussed.
Kotenko, S V; Izotova, L S; Mirochnitchenko, O V; Esterova, E; Dickensheets, H; Donnelly, R P; Pestka, S
2001-01-26
Interleukin-10 (IL-10)-related T cell-derived inducible factor (IL-TIF; provisionally designated IL-22) is a cytokine with limited homology to IL-10. We report here the identification of a functional IL-TIF receptor complex that consists of two receptor chains, the orphan CRF2-9 and IL-10R2, the second chain of the IL-10 receptor complex. Expression of the CRF2-9 chain in monkey COS cells renders them sensitive to IL-TIF. However, in hamster cells both chains, CRF2-9 and IL-10R2, must be expressed to assemble the functional IL-TIF receptor complex. The CRF2-9 chain (or the IL-TIF-R1 chain) is responsible for Stat recruitment. Substitution of the CRF2-9 intracellular domain with the IFN-gammaR1 intracellular domain changes the pattern of IL-TIF-induced Stat activation. The CRF2-9 gene is expressed in normal liver and kidney, suggesting a possible role for IL-TIF in regulating gene expression in these tissues. Each chain, CRF2-9 and IL-10R2, is capable of binding IL-TIF independently and can be cross-linked to the radiolabeled IL-TIF. However, binding of IL-TIF to the receptor complex is greater than binding to either receptor chain alone. Sharing of the common IL-10R2 chain between the IL-10 and IL-TIF receptor complexes is the first such case for receptor complexes with chains belonging to the class II cytokine receptor family, establishing a novel paradigm for IL-10-related ligands similar to the shared use of the gamma common chain (gamma(c)) by several cytokines, including IL-2, IL-4, IL-7, IL-9, and IL-15.
Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S
2016-01-11
Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Maximov, Philipp Y; Abderrahman, Balkees; Fanning, Sean W; Sengupta, Surojeet; Fan, Ping; Curpan, Ramona F; Quintana Rincon, Daniela Maria; Greenland, Jeffery A; Rajan, Shyamala S; Greene, Geoffrey L; Jordan, V Craig
2018-05-08
Estrogen therapy was used to treat advanced breast cancer in postmenopausal women for decades until the introduction of tamoxifen. Resistance to long-term estrogen deprivation (LTED) with tamoxifen and aromatase inhibitors used as a treatment for breast cancer inevitably occurs, but unexpectedly low dose estrogen can cause regression of breast cancer and increase disease free survival in some patients. This therapeutic effect is attributed to estrogen-induced apoptosis in LTED breast cancer. Here we describe modulation of the estrogen receptor liganded with antiestrogens (endoxifen, 4-hydroxytamoxifen) and an estrogenic triphenylethylene (TPE) EthoxyTPE (EtOXTPE) on estrogen-induced apoptosis in LTED breast cancer cells. Our results show that the angular TPE estrogen (EtOXTPE) is able to induce the ER-mediated apoptosis only at a later time compared to planar estradiol in these cells. Using RT-PCR, ChIP, Western blotting, molecular modelling and X-ray crystallography techniques we report novel conformations of the ER complex with an angular estrogen EtOXTPE and endoxifen. We propose that alteration of the conformation of the ER complexes, with changes in coactivator binding, governs estrogen-induced apoptosis through the PERK sensor system to trigger an Unfolded Protein Response (UPR). The American Society for Pharmacology and Experimental Therapeutics.
Ishii, Shun’ichi; Suzuki, Shino; Tenney, Aaron; Norden-Krichmar, Trina M.; Nealson, Kenneth H.; Bretschger, Orianna
2015-01-01
Microorganisms almost always exist as mixed communities in nature. While the significance of microbial community activities is well appreciated, a thorough understanding about how microbial communities respond to environmental perturbations has not yet been achieved. Here we have used a combination of metagenomic, genome binning, and stimulus-induced metatranscriptomic approaches to estimate the metabolic network and stimuli-induced metabolic switches existing in a complex microbial biofilm that was producing electrical current via extracellular electron transfer (EET) to a solid electrode surface. Two stimuli were employed: to increase EET and to stop EET. An analysis of cell activity marker genes after stimuli exposure revealed that only two strains within eleven binned genomes had strong transcriptional responses to increased EET rates, with one responding positively and the other responding negatively. Potential metabolic switches between eleven dominant members were mainly observed for acetate, hydrogen, and ethanol metabolisms. These results have enabled the estimation of a multi-species metabolic network and the associated short-term responses to EET stimuli that induce changes to metabolic flow and cooperative or competitive microbial interactions. This systematic meta-omics approach represents a next step towards understanding complex microbial roles within a community and how community members respond to specific environmental stimuli. PMID:26443302
Nematov, Sherzod; Casazza, Anna Paola; Remelli, William; Khuvondikov, Vakhobjon; Santabarbara, Stefano
2017-07-01
The spectral dependence of the irreversible non-photochemical fluorescence quenching associated with photoinhibition in vitro has been comparatively investigated in thylakoid membranes, PSII enriched particles and PSII core complexes isolated from spinach. The analysis of the fluorescence emission spectra of dark-adapted and quenched samples as a function of the detection temperature in the 280-80K interval, indicates that Chlorophyll spectral forms having maximal emission in the 700-702nm and 705-710nm ranges gain relative intensity in concomitance with the establishment of irreversible light-induced quenching, acting thereby as spectroscopic markers. The relative enhancement of the 700-702nm and 705-710nm forms emission could be due either to an increase of their stoichiometric abundance or to their intrinsically low fluorescence quantum yields. These two factors, that can also coexist, need to be promoted by light-induced alterations in chromophore-protein as well as chromophore-chromophore interactions. The bands centred at about 701 and 706nm are also observed in the PSII core complex, suggesting their, at least partial, localisation in proximity to the reaction centre, and the occurrence of light-induced conformational changes in the core subunits. Copyright © 2017 Elsevier B.V. All rights reserved.
Oubaha, Malika; Lin, Michelle I.; Margaron, Yoran; Filion, Dominic; Price, Emily N.; Zon, Leonard I.; Côté, Jean-François
2012-01-01
Angiogenic sprouting requires that cell-cell contacts be maintained during migration of endothelial cells. Angiopoietin-1 (Ang-1) and vascular endothelial growth factor act oppositely on endothelial cell junctions. We found that Ang-1 promotes collective and directional migration and, in contrast to VEGF, induces the formation of a complex formed of atypical protein kinase C (PKC)-ζ and β-catenin at cell-cell junctions and at the leading edge of migrating endothelial cells. This complex brings Par3, Par6, and adherens junction proteins at the front of migrating cells to locally activate Rac1 in response to Ang-1. The colocalization of PKCζ and β-catenin at leading edge along with PKCζ-dependent stabilization of cell-cell contacts promotes directed and collective endothelial cell migration. Consistent with these results, down-regulation of PKCζ in endothelial cells alters Ang-1–induced sprouting in vitro and knockdown in developing zebrafish results in intersegmental vessel defects caused by a perturbed directionality of tip cells and by loss of cell contacts between tip and stalk cells. These results reveal that PKCζ and β-catenin function in a complex at adherens junctions and at the leading edge of migrating endothelial cells to modulate collective and directional migration during angiogenesis. PMID:22936663
Das, Biswanath; Orthaber, Andreas; Ott, Sascha; Thapper, Anders
2016-05-23
The development of molecular water oxidation catalysts based on earth-abundant, non-noble metals is essential for artificial photosynthesis research. Iron, which is the most abundant transition metal in the earth's crust, is a prospective candidate for this purpose. Herein, we report two iron complexes based on the polypyridyl ligand Py5OH (Py5OH=pyridine-2,6-diylbis [di(pyridin-2-yl)methanol]) that can catalyse water oxidation to produce O2 in Ru(III) -induced (at pH 8, highest turnover number (TON)=26.5; turnover frequency (TOF)=2.2 s(-1) ), Ce(IV) -induced (at pH≈1.5 highest TON=16; TOF=0.75 s(-1) ) and photo-induced (at pH 8, highest TON=43.5; TOF=0.6 s(-1) ) reactions. A chloride ligand in one of the iron complexes is shown to affect the activity strongly, improve stability and, thereby, the performance at pH 8 but it inhibits oxygen evolution at pH≈1.5. The observations are consistent with a change in mechanism for catalytic water oxidation with the Fe(Py5OH) complexes between acidic (Ce(IV) ) and near-neutral pH (Ru(III) ). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE
Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...
NASA Astrophysics Data System (ADS)
Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang
2018-02-01
People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?
Dundar, Serkan; Eltas, Abubekir; Hakki, Sema S; Malkoc, Sıddık; Uslu, M Ozay; Tuzcu, Mehmet; Komorowski, James; Ozercan, I Hanifi; Akdemir, Fatih; Sahin, Kazim
2016-01-01
The purpose of this study was to induce experimental periodontitis in rats previously fed diets containing arginine silicate inositol (ASI) complex and examine the biochemical, immunological, and radiological effects. Fifty two 8-week-old female Sprague Dawley rats were equally divided into four groups. The control group included those fed a standard rat diet with no operation performed during the experiment. The periodontitis, ASI I, and ASI II groups were subjected to experimental periodontitis induction for 11 days after being fed a standard rat diet alone, a diet containing 1.81 g/kg ASI complex, or a diet containing 3.62 g/kg ASI complex, respectively, for 8 weeks. Throughout the 11-day duration of periodontitis induction, all rats were fed standard feed. The rats were euthanized on the eleventh day, and their tissue and blood samples were collected. In the periodontitis group, elevated tissue destruction parameters and reduced tissue formation parameters were found, as compared to the ASI groups. Levels of enzymes, cytokines, and mediators associated with periodontal tissue destruction were lower in rats fed a diet containing ASI complex after experimental periodontitis. These results indicate that ASI complex could be an alternative agent for host modulation.
NASA Technical Reports Server (NTRS)
George, Kerry; Wu, Honglu; Willingham, Veronica; Cucinotta, Francis A.
2002-01-01
High-LET radiation is more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. To investigate if complex chromosome exchanges are induced by the high-LET component of space radiation exposure, damage was assessed in astronauts' blood lymphocytes before and after long duration missions of 3-4 months. The frequency of simple translocations increased significantly for most of the crewmembers studied. However, there were few complex exchanges detected and only one crewmember had a significant increase after flight. It has been suggested that the yield of complex chromosome damage could be underestimated when analyzing metaphase cells collected at one time point after irradiation, and analysis of chemically-induced PCC may be more accurate since problems with complicated cell-cycle delays are avoided. However, in this case the yields of chromosome damage were similar for metaphase and PCC analysis of astronauts' lymphocytes. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.
NASA Astrophysics Data System (ADS)
Chavan, Vivek; Agarwal, Chhavi; Shinde, Rakesh N.
2018-06-01
In present work, an approach has been used to form a phosphate groups bearing surface barrier on a cation-exchange membrane (CEM). Using optimized conditions, the phosphate bearing monomer bis[2-(methacryloyloxy)ethyl] phosphate has been grafted on the surface of the host poly(ethersulfone) membranes using UV light induced polymerization. The detailed characterizations have shown that less than a micron layer of phosphate barrier is formed without disturbing the original microporous structure of the host membrane. The pores of thus formed membrane have been blocked by cationic-gel formed by in situ UV-initiator induced polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid along with crosslinker ethylene glycol dimethacrylate in the pores of the membrane. UV-initiator is required for pore-filling as UV light would not penetrate the interior matrix of the membrane. The phosphate functionalized barrier membrane has been examined for permselectivity using a mixture of representative complexing Am3+ ions and non-complexing Cs+ ions. This experiment has demonstrated that complex forming Am3+ ions are blocked by phosphate barrier layer while non-complexing Cs+ ions are allowed to pass through the channels formed by the crosslinked cationic gel.
Optimization of WAVE2 complex–induced actin polymerization by membrane-bound IRSp53, PIP3, and Rac
Suetsugu, Shiro; Kurisu, Shusaku; Oikawa, Tsukasa; Yamazaki, Daisuke; Oda, Atsushi; Takenawa, Tadaomi
2006-01-01
WAVE2 activates the actin-related protein (Arp) 2/3 complex for Rac-induced actin polymerization during lamellipodium formation and exists as a large WAVE2 protein complex with Sra1/PIR121, Nap1, Abi1, and HSPC300. IRSp53 binds to both Rac and Cdc42 and is proposed to link Rac to WAVE2. We found that the knockdown of IRSp53 by RNA interference decreased lamellipodium formation without a decrease in the amount of WAVE2 complex. Localization of WAVE2 at the cell periphery was retained in IRSp53 knockdown cells. Moreover, activated Cdc42 but not Rac weakened the association between WAVE2 and IRSp53. When we measured Arp2/3 activation in vitro, the WAVE2 complex isolated from the membrane fraction of cells was fully active in an IRSp53-dependent manner but WAVE2 isolated from the cytosol was not. Purified WAVE2 and purified WAVE2 complex were activated by IRSp53 in a Rac-dependent manner with PIP3-containing liposomes. Therefore, IRSp53 optimizes the activity of the WAVE2 complex in the presence of activated Rac and PIP3. PMID:16702231
Kumar, Hariom; Sharma, Bhupesh
2016-01-01
Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. Copyright © 2015 Elsevier B.V. All rights reserved.
Mei, Xueting; Xu, Donghui; Xu, Sika; Zheng, Yanping; Xu, Shibo
2011-07-01
Curcumin, a yellow pigment found in the rhizome of Curcuma loga, has been used to treat a variety of digestive and neuropsychiatric disorders since ancient times in China. Curcumin can chelate various metal ions to form metallocomplexes of curcumin which show greater effects than curcumin alone. This study investigated the antiulcerogenic and antidepressant effects of a Zn(II)-curcumin complex on cold-restraint stress (CRS)-induced gastric ulcers in rats, and on the forced swimming test (FST), tail suspension test (TST) and 5-hydroxy-l-tryptophan (5-HTP)-induced head twitch test in mice. CRS disrupted the rat mucosal barrier and induced gastric ulcers by decreasing the activities of the antioxidant enzymes, and increasing H(+)-K(+)-ATPase activity and malondialdehyde (MDA) level. Pretreatment with Zn(II)-curcumin (12, 24, and 48mg/kg) dose-dependently reversed these trends, reduced gastric lesions and H(+)-K(+)-ATPase activity, and increased antioxidant activities compared with control groups. Zn(II)-curcumin significantly increased HSP70 mRNA, and attenuated increased iNOS mRNA in the mucosa. Zn(II)-curcumin (17, 34, and 68mg/kg) also significantly decreased immobility time in the FST and TST, and enhanced 5-HTP-induced head twitches in mice. These results demonstrate that the Zn(II)-curcumin complex showed significant gastroprotective and antidepressant effects compared with curcumin alone via a synergistic effect between curcumin and zinc. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Hathaichoti, Sasiphen; Visitnonthachai, Daranee; Ngamsiri, Pronrumpa; Niyomchan, Apichaya; Tsogtbayar, Oyu; Wisessaowapak, Churaibhon; Watcharasit, Piyajit; Satayavivad, Jutamaad
2017-08-01
Paraquat (PQ) is a bipyridyl derivative herbicide known to cause lung toxicity partly through induction of apoptosis. Here we demonstrated that PQ caused apoptosis in A549 cells. PQ increased cleavage of caspase-8 and Bid, indicating caspase-8 activation and truncated Bid, the two key mediators of extrinsic apoptosis. Additionally, PQ treatment caused an increase in DR5 (death receptor-5) and caspase-8 interaction, indicating formation of DISC (death-inducing signaling complex). These results indicate that PQ induces apoptosis through extrinsic pathway in A549 cells. Moreover, PQ drastically increased DR5 expression and membrane localization. Furthermore, PQ caused prominent concentration dependent reductions of DDX3 (the DEAD box protein-3) and GSK3 (glycogen synthase kinase-3) which can associate with DR5 and prevent DISC formation. Additionally, PQ decreased DR5-DDX3 interaction, suggesting a reduction of DDX3/GSK3 anti-apoptotic complex. Inhibition of GSK3, which is known to promote extrinsic apoptosis by its pharmacological inhibitor, BIO accentuated PQ-induced apoptosis. Moreover, GSK3 inhibition caused a further decrease in PQ-reduced DR5-DDX3 interaction. Taken together, these results suggest that PQ may induce extrinsic pathway of apoptosis in A549 cells through upregulation of DR5 and repression of anti-apoptotic proteins, DDX3/GSK3 leading to reduction of anti-apoptotic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.
SIRT3 aggravates metformin-induced energy stress and apoptosis in ovarian cancer cells.
Wu, Yao; Gao, Wei-Nan; Xue, Ya-Nan; Zhang, Li-Chao; Zhang, Juan-Juan; Lu, Sheng-Yao; Yan, Xiao-Yu; Yu, Hui-Mei; Su, Jing; Sun, Lian-Kun
2018-06-15
Increasing evidence suggests that mitochondrial respiratory chain complex I participates in carcinogenesis and cancer progression by providing energy and maintaining mitochondrial function. However, the role of complex I in ovarian cancer is largely unknown. In this study we showed that metformin, considered to be an inhibitor of complex I, simultaneously inhibited cell growth and induced mitochondrial-related apoptosis in human ovarian cancer cells. Metformin interrupted cellular energy metabolism mainly by causing damage to complex I that impacted mitochondrial function. Additionally, treatment with metformin increased the activation of sirtuin 3 (SIRT3), a mitochondrial deacetylase. We demonstrated that SIRT3 overexpression aggravated metformin-induced apoptosis, energy stress and mitochondrial dysfunction. Moreover, treatment with metformin or SIRT3 overexpression increased activation of AMP-activated protein kinase (AMPK), a major sensor of cellular energy status. AMPK compensated for energy loss by increasing glycolysis. The impact of this was assessed by reducing glucose levels in the media or by using inhibitors (2-deoxyglucose, Compound C) of glycolysis and AMPK. The combination of these factors with metformin intensified cytotoxicity through further downregulation of ATP. Our study outlines an important role for SIRT3 in the antitumor effect of mitochondrial complex I inhibitors in human ovarian cancer cells. This effect appears to be mediated by induction of energy stress and apoptosis. Strategies that target the mitochondria could be enhanced by modulating glycolysis to further aggravate energy stress that may increase the antitumor effect. Copyright © 2018 Elsevier Inc. All rights reserved.
Dutta, Kaushik; Varshney, Avanish K.; Franklin, Matthew C.; Goger, Michael; Wang, Xiaobo; Fries, Bettina C.
2015-01-01
Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used to validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Finally structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations. PMID:25572397
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp; Ikeuchi, Masayoshi; Nakayama, Yuji
ATR-dependent DNA damage checkpoint is the major DNA damage checkpoint against UV irradiation and DNA replication stress. The Rad17–RFC and Rad9–Rad1–Hus1 (9–1–1) complexes interact with each other to contribute to ATR signaling, however, the precise regulatory mechanism of the interaction has not been established. Here, we identified a conserved sequence motif, KYxxL, in the AAA+ domain of Rad17 protein, and demonstrated that this motif is essential for the interaction with the 9–1–1 complex. We also show that UV-induced Rad17 phosphorylation is increased in the Rad17 KYxxL mutants. These data indicate that the interaction with the 9–1–1 complex is not required formore » Rad17 protein to be an efficient substrate for the UV-induced phosphorylation. Our data also raise the possibility that the 9–1–1 complex plays a negative regulatory role in the Rad17 phosphorylation. We also show that the nucleotide-binding activity of Rad17 is required for its nuclear localization. - Highlights: • We have identified a conserved KYxxL motif in Rad17 protein. • The KYxxL motif is crucial for the interaction with the 9–1–1 complex. • The KYxxL motif is dispensable or inhibitory for UV-induced Rad17 phosphorylation. • Nucleotide binding of Rad17 is required for its nuclear localization.« less
Dutta, Kaushik; Varshney, Avanish K.; Franklin, Matthew C.; ...
2015-01-08
Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used tomore » validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Lastly structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations.« less
Hande, M Prakash; Azizova, Tamara V; Burak, Ludmilla E; Khokhryakov, Valentin F; Geard, Charles R; Brenner, David J
2005-09-01
Long-lived, sensitive, and specific biomarkers of particular mutagenic agents are much sought after and potentially have broad applications in the fields of cancer biology, epidemiology, and prevention. Many clastogens induce a spectrum of chromosome aberrations, and some of them can be exploited as biomarkers of exposure. Densely ionizing radiation, for example, alpha particle radiation (from radon or plutonium) and neutron radiation, preferentially induces complex chromosome aberrations, which can be detected by the 24-color multifluor fluorescence in situ hybridization (mFISH) technique. We report the detection and quantification of stable complex chromosome aberrations in lymphocytes of healthy former nuclear-weapons workers, who were exposed many years ago to plutonium, gamma rays, or both, at the Mayak weapons complex in Russia. We analyzed peripheral-blood lymphocytes from these individuals for the presence of persistent complex chromosome aberrations. A significantly elevated frequency of complex chromosome translocations was detected in the highly exposed plutonium workers but not in the group exposed only to high doses of gamma radiation. No such differences were found for simple chromosomal aberrations. The results suggest that stable complex chromosomal translocations represent a long-lived, quantitative, low-background biomarker of densely ionizing radiation for human populations exposed many years ago. (c) 2005 Wiley-Liss, Inc.
Dyachok, Julia; Zhu, Ling; Liao, Fuqi; He, Ji; Huq, Enamul; Blancaflor, Elison B.
2011-01-01
The ARP2/3 complex, a highly conserved nucleator of F-actin, and its activator, the SCAR complex, are essential for growth in plants and animals. In this article, we present a pathway through which roots of Arabidopsis thaliana directly perceive light to promote their elongation. The ARP2/3-SCAR complex and the maintenance of longitudinally aligned F-actin arrays are crucial components of this pathway. The involvement of the ARP2/3-SCAR complex in light-regulated root growth is supported by our finding that mutants of the SCAR complex subunit BRK1/HSPC300, or other individual subunits of the ARP2/3-SCAR complex, showed a dramatic inhibition of root elongation in the light, which mirrored reduced growth of wild-type roots in the dark. SCAR1 degradation in dark-grown wild-type roots by constitutive photomorphogenic 1 (COP1) E3 ligase and 26S proteasome accompanied the loss of longitudinal F-actin and reduced root growth. Light perceived by the root photoreceptors, cryptochrome and phytochrome, suppressed COP1-mediated SCAR1 degradation. Taken together, our data provide a biochemical explanation for light-induced promotion of root elongation by the ARP2/3-SCAR complex. PMID:21972261
Yan, Jing; Zhou, Mowei; Gilbert, Joshua D; Wolff, Jeremy J; Somogyi, Árpád; Pedder, Randall E; Quintyn, Royston S; Morrison, Lindsay J; Easterling, Michael L; Paša-Tolić, Ljiljana; Wysocki, Vicki H
2017-01-03
Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yiwei; Gulis, Galina; Buckner, Scott
Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death ofmore » dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.« less
Wang, Feng-Yang; Tang, Xiao-Ming; Wang, Xia; Huang, Ke-Bin; Feng, Hai-Wen; Chen, Zhen-Feng; Liu, You-Nian; Liang, Hong
2018-06-09
Agents with multiple modes of tumor cell death can be effective chemotherapeutic drugs. One example of a bimodal chemotherapeutic approach is an agent that can induce both apoptosis and autophagic death. Thus far, no clinical anticancer drug has been shown to simultaneously induce both these pathways. Mono-functional platinum complexes are potent anticancer drug candidates which act through mechanisms distinct from cisplatin. Here, we describe the synthesis and characterize of two mono-functional platinum complexes containing 8-substituted quinoline derivatives as ligands, [PtL 1 Cl]Cl [L 1 = (Z)-1-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) methanamine] (Mon-Pt-1) and [PtL 2 Cl]Cl [L 2 = (Z)-2-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) ethanamine] (Mon-Pt-2). In comparison to cisplatin, Mon-Pt-2 exhibited a greater in vitro cytotoxicity, was more effective in resistant cells and elicited a better anticancer effect. Mechanistic experiments indicate that Mon-Pt-2 mainly accumulates in mitochondria, and stimulates significant TrxR inhibition ROS release and an ER stress response, mediated by mitochondrial dysfunction, ultimately resulting in a simultaneous induction of apoptosis and autophagy. Importantly, compared to cisplatin, Mon-Pt-2 exhibits lower acute toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Mon-Pt-2 is the first mono-functional platinum complex inducing pro-death autophagy and apoptosis of cancer cells. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Apoptosis of lymphocytes in the presence of Cr(V) complexes: role in Cr(VI)-induced toxicity.
Vasant, C; Balamurugan, K; Rajaram, R; Ramasami, T
2001-08-03
Cr(VI) compounds have been declared as a potent occupational carcinogen by IARC (1990) through epidemiological studies among workers in chrome plating, stainless-steel, and pigment industries. Studies relating to the role of intermediate oxidation states such as Cr(V) and Cr(IV) in Cr(VI)-induced carcinogenicity are gaining importance. In this study, issues relating to toxicity elicited by Cr(V) have been addressed and comparisons made with those relating to Cr(VI) employing human peripheral blood lymphocytes. Lymphocytes have been isolated from heparinized blood by Ficoll-Hypaque density gradient centrifugation and exposed to Cr(V) complexes viz. sodium bis(2-ethyl-2-hydroxybutyrato)oxochromate(V), Na[Cr(V)O(ehba)(2)], 1 and sodium bis(2-hydroxy-2-methylbutyrato)oxochromate(V), Na[Cr(V)O(hmba)(2)], 2 and Cr(VI). The phytohemagglutinin (PHA)-induced proliferation of lymphocytes has been found to be inhibited by the two complexes of Cr(V) and chromate Cr(VI) in a time- and concentration-dependent manner. Viability of cells decreases in the presence of Cr(V). Apoptosis appears to be the mode of cell death in the presence of both Cr(V) and Cr(VI). Pretreatment of cells with antioxidants before exposure to chromium(V) complexes reverse apoptosis partially. Possibility for the formation and implication of reactive oxygen species in Cr(V)-induced apoptosis of human lymphocyte cells has been indicated in this investigation. The intermediates of Cr(V) and radical species in the biotoxic pathways elicited by Cr(VI) seems feasible. Copyright 2001 Academic Press.
Njoku, Dolores B.; Mellerson, Jenelle L.; Talor, Monica V.; Kerr, Douglas R.; Faraday, Nauder R.; Outschoorn, Ingrid; Rose, Noel R.
2006-01-01
Idiosyncratic drug-induced hepatitis (IDDIH) is the third most common cause for acute liver failure in the United States. Previous studies have attempted to identify susceptible patients or early stages of disease with various degrees of success. To determine if total serum immunoglobulin subclasses, CYP2E1-specific subclass autoantibodies, complement components, or immune complexes could distinguish persons with IDDIH from others exposed to drugs, we studied persons exposed to halogenated volatile anesthetics, which have been associated with IDDIH and CYP2E1 autoantibodies. We found that patients with anesthetic-induced IDDIH had significantly elevated levels of CYP2E1-specific immunoglobulin G4 (IgG4) autoantibodies, while anesthetic-exposed healthy persons had significantly elevated levels of CYP2E1-specific IgG1 autoantibodies. Anesthetic IDDIH patients had significantly lower levels of C4a, C3a, and C5a compared to anesthetic-exposed healthy persons. C1q- and C3d-containing immune complexes were significantly elevated in anesthetic-exposed persons. In conclusion, our data suggest that anesthetic-exposed persons develop CYP2E1-specific IgG1 autoantibodies which may form detectable circulating immune complexes subsequently cleared by classical pathway activation of the complement system. Persons susceptible to anesthetic-induced IDDIH develop CYP2E1-specific IgG4 autoantibodies which form small, nonprecipitating immune complexes that escape clearance because of their size or by direct inhibition of complement activation. PMID:16467335
Waseem, Mohammad; Tabassum, Heena; Bhardwaj, Monica; Parvez, Suhel
2017-09-01
The present study aimed to investigate the hepatoprotective effects of the bioflavonoid quercetin (QR) on cisplatin (CP)‑induced mitochondrial oxidative stress in the livers of rats, to elucidate the role of mitochondria in CP‑induced hepatotoxicity, and its underlying mechanism. Isolated liver mitochondria were incubated with 100 µg/ml CP and/or 50 µM QR in vitro. CP treatment triggered a significant increase in membrane lipid peroxidation (LPO) levels, protein carbonyl (PC) contents, and a decrease in reduced glutathione (GSH) and non‑protein thiol (NP‑SH) levels. In addition, CP caused a marked decline in the activities of enzymatic antioxidants and mitochondrial complexes (I, II, III and V) in liver mitochondria. QR pre‑treatment significantly modulated the activities of enzymatic antioxidants and mitochondrial complex enzymes. Furthermore, QR reversed the alterations in LPO and PC levels, and GSH and NP‑SH contents in liver mitochondria. The results of the present study suggested that QR supplementation may suppress CP‑induced mitochondrial toxicity during chemotherapy, and provides a potential prophylactic and defensive candidate for anticancer agent‑induced oxidative stress.
[Glucocorticoids induced neuropsychiatric disorders].
Cornic, Françoise; Rousset, Inqrid
2008-03-15
Glucocorticoids induced psychiatric disorders mostly emerge within the first weeks of corticotherapy. They occur in a variety of qualitatively distinct forms. Manic symptoms are among the most important manifestations of corticosteroids-induced psychiatric toxicity. The incidence of moderate to severe induced reactions is estimated at 5%. Acute cognitive induced disorders are common although moderate. These cognitive alterations specifically affect hippocampal dependant memory process. Chronic cognitive disorders are uncommon, complex, and inconsistent with an isolated alteration of the hippocampal structure. Corticotherapy stop also induced frequent psychiatric withdrawal symptoms, which are mostly depressive symptoms. Occurrence of such symptoms is likely to explain the addictive potentialities of glucocorticoids.
Association of a Platinum Complex to a G-Quadruplex Ligand Enhances Telomere Disruption.
Charif, Razan; Granotier-Beckers, Christine; Bertrand, Hélène Charlotte; Poupon, Joël; Ségal-Bendirdjian, Evelyne; Teulade-Fichou, Marie-Paule; Boussin, François D; Bombard, Sophie
2017-08-21
Telomeres protect the ends of chromosomes against illegitimate recombination and repair. They can be targets for G-quadruplex ligands and platinum complexes due to their repeated G-rich sequences. Protection of telomeres is ensured by a complex of six proteins, including TRF2, which inhibits the DNA damage response pathway. We analyzed telomere modifications induced in cancer cells by the experimental hybrid platinum complex, Pt-MPQ, comprising both an ethylene diamine monofunctional platinum complex and a G-quadruplex recognition moiety (MPQ). Pt-MPQ promotes the displacement of two telomeric proteins (TRF2 and TRF1) from telomeres, as well as the formation of telomere damage and telomere sister losses, whereas the control compound MPQ does not. This suggests that the platinum moiety potentiates the targeting of the G-quadruplex ligand to telomeres, opening a new perspective for telomere biology and anticancer therapy. Interestingly, the chemotherapy drug cisplatin, which has no specific affinity for G-quadruplex structures, partially induces the TRF2 delocalization from telomeres but produces less telomeric DNA damage, suggesting that this TRF2 displacement could be independent of G-quadruplex recognition.
WAVE2 Forms a Complex with PKA and Is Involved in PKA Enhancement of Membrane Protrusions*
Yamashita, Hiroshi; Ueda, Kazumitsu; Kioka, Noriyuki
2011-01-01
PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation. PMID:21119216
NASA Astrophysics Data System (ADS)
Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji
2018-06-01
We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.
Crook, Jeremy Micah; Wallace, Gordon; Tomaskovic-Crook, Eva
2015-03-01
There is an urgent need for new and advanced approaches to modeling the pathological mechanisms of complex human neurological disorders. This is underscored by the decline in pharmaceutical research and development efficiency resulting in a relative decrease in new drug launches in the last several decades. Induced pluripotent stem cells represent a new tool to overcome many of the shortcomings of conventional methods, enabling live human neural cell modeling of complex conditions relating to aberrant neurodevelopment, such as schizophrenia, epilepsy and autism as well as age-associated neurodegeneration. This review considers the current status of induced pluripotent stem cell-based modeling of neurological disorders, canvassing proven and putative advantages, current constraints, and future prospects of next-generation culture systems for biomedical research and translation.
Nishihara, Taishi; Bousseksou, Azzdine; Tanaka, Koichiro
2013-12-16
We report the spatial and temporal dynamics of the photo-induced phase in the iron (II) spin crossover complex Fe(ptz)(6)(BF(4))(2) studied by image measurement under steady light irradiation and transient absorption measurement. The dynamic factors are derived from the spatial and temporal fluctuation of the image in the steady state under light irradiation between 65 and 100 K. The dynamic factors clearly indicate that the fluctuation has a resonant frequency that strongly depends on the temperature, and is proportional to the relaxation rate of the photo-induced phase. This oscillation of the speckle pattern under steady light irradiation is ascribed to the nonlinear interaction between the spin state and the lattice volume at the surface.
The centromeric nucleosome-like CENP–T–W–S–X complex induces positive supercoils into DNA
Takeuchi, Kozo; Nishino, Tatsuya; Mayanagi, Kouta; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Hori, Tetsuya; Kurumizaka, Hitoshi; Fukagawa, Tatsuo
2014-01-01
The centromere is a specific genomic region upon which the kinetochore is formed to attach to spindle microtubules for faithful chromosome segregation. To distinguish this chromosomal region from other genomic loci, the centromere contains a specific chromatin structure including specialized nucleosomes containing the histone H3 variant CENP–A. In addition to CENP–A nucleosomes, we have found that centromeres contain a nucleosome-like structure comprised of the histone-fold CENP–T–W–S–X complex. However, it is unclear how the CENP–T–W–S–X complex associates with centromere chromatin. Here, we demonstrate that the CENP–T–W–S–X complex binds preferentially to ∼100 bp of linker DNA rather than nucleosome-bound DNA. In addition, we find that the CENP–T–W–S–X complex primarily binds to DNA as a (CENP–T–W–S–X)2 structure. Interestingly, in contrast to canonical nucleosomes that negatively supercoil DNA, the CENP–T–W–S–X complex induces positive DNA supercoils. We found that the DNA-binding regions in CENP–T or CENP–W, but not CENP–S or CENP–X, are required for this positive supercoiling activity and the kinetochore targeting of the CENP–T–W–S–X complex. In summary, our work reveals the structural features and properties of the CENP–T–W–S–X complex for its localization to centromeres. PMID:24234442
3-D decoupled inversion of complex conductivity data in the real number domain
NASA Astrophysics Data System (ADS)
Johnson, Timothy C.; Thomle, Jonathan
2018-01-01
Complex conductivity imaging (also called induced polarization imaging or spectral induced polarization imaging when conducted at multiple frequencies) involves estimating the frequency-dependent complex electrical conductivity distribution of the subsurface. The superior diagnostic capabilities provided by complex conductivity spectra have driven advancements in mechanistic understanding of complex conductivity as well as modelling and inversion approaches over the past several decades. In this work, we demonstrate the theory and application for an approach to 3-D modelling and inversion of complex conductivity data in the real number domain. Beginning from first principles, we demonstrate how the equations for the real and imaginary components of the complex potential may be decoupled. This leads to a description of the real and imaginary source current terms, and a corresponding assessment of error arising from an assumption necessary to complete the decoupled modelling. We show that for most earth materials, which exhibit relatively small phases (e.g. less than 0.2 radians) in complex conductivity, these errors become insignificant. For higher phase materials, the errors may be quantified and corrected through an iterative procedure. We demonstrate the accuracy of numerical forward solutions by direct comparison to corresponding analytic solutions. We demonstrate the inversion using both synthetic and field examples with data collected over a waste infiltration trench, at frequencies ranging from 0.5 to 7.5 Hz.
Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes
NASA Astrophysics Data System (ADS)
Jouaville, Laurence S.; Ichas, François; Holmuhamedov, Ekhson L.; Camacho, Patricia; Lechleiter, James D.
1995-10-01
INXenopus oocytes, as well as other cells, inositol-l,4,5-tris-phosphate (Ins(l,4,5)P3)-induced Ca2+ release1-4 is an excitable process that generates propagating Ca2+ waves5-7 that annihilate upon collision8-12. The fundamental property responsible for excitability13 appears to be the Ca2+ dependency of the Ins(l,4,5)P3 receptor9. Here we report that Ins(l,4,5)P3-induced Ca2+ wave activity is strengthened by oxidizable substrates that energize mitochondria, increasing Ca2+ wave amplitude, velocity and interwave period. The effects of pyruvate/malate are blocked by ruthenium red at the Ca2+ uniporter, by rotenone at complex I, and by antimycin A at complex III, and are subsequently rescued at complex IV by ascorbate tetramethylphenylenediamine (TMPD)14. Our data reveal that potential-driven mitochondrial Ca2+ uptake is a major factor in the regulation of Ins(l,4,5)P3-induced Ca2+ release and clearly demonstrate a physiological role of mitochondria in intracellular Ca2+ signalling.
Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses.
Yang, Yutao; Cui, Jiajun; Xue, Feng; Zhang, Chuanfu; Mei, Zhu; Wang, Yue; Bi, Mingjun; Shan, Dapeng; Meredith, Alex; Li, Hui; Xu, Zhi-Qing David
2015-03-01
Pokemon, an important proto-oncoprotein, is a transcriptional repressor that belongs to the POK (POZ and Krüppel) family. Smad4, a key component of TGF-β pathway, plays an essential role in TGF-β-induced transcriptional responses. In this study, we show that Pokemon can interact directly with Smad4 both in vitro and in vivo. Overexpression of Pokemon decreases TGF-β-induced transcriptional activities, whereas knockdown of Pokemon increases these activities. Interestingly, Pokemon does not affect activation of Smad2/3, formation of Smads complex, or DNA binding activity of Smad4. TGF-β1 treatment increases the interaction between Pokemon and Smad4, and also enhances the recruitment of Pokemon to Smad4-DNA complex. In addition, we also find that Pokemon recruits HDAC1 to Smad4 complex but decreases the interaction between Smad4 and p300/CBP. Taken together, all these data suggest that Pokemon is a new partner of Smad4 and plays a negative role in TGF-β pathway. Copyright © 2014. Published by Elsevier B.V.
Mohsen, Ahmed; Saby, Charles; Collery, Philippe; Sabry, Gilane Mohamed; Hassan, Rasha Elsherif; Badawi, Abdelfattah; Jeannesson, Pierre; Desmaële, Didier; Morjani, Hamid
2016-10-01
Two water soluble gallium complexes described as [Ga(III)LCl], where L is the deprotonated form of N-2-hydroxybenzyl aspartic acid derivatives, were synthesized and characterized by (1)H NMR, (13)C NMR, FT-IR, mass spectrometry, and elemental analysis. The 2-(5-chloro-2-hydroxybenzylamino)succinic acid derivative (GS2) has been found to be a promising anticancer drug candidate. This compound was found to be more cytotoxic against human breast carcinoma MDA-MB231 and fibrosarcoma HT-1080 cell lines than the unsubstituted derivative and GaCl3. GS2 was able to induce apoptosis through downregulation of AKT phosphorylation, G2M arrest in cell cycle, and caspase 3/7 pathway. This gallium complex was found to induce an increase in mitochondrial ROS level in HT-1080 cells but not in MDA-MB231 cells. This suggests that the mechanism of action of GS2 would not be mediated by the drug-induced oxidative stress but probably by directly and indirectly inhibiting the AKT cell-signaling pathway.
Boixel, Julien; Guerchais, Véronique; Le Bozec, Hubert; Chantzis, Agisilaos; Jacquemin, Denis; Colombo, Alessia; Dragonetti, Claudia; Marinotto, Daniele; Roberto, Dominique
2015-05-07
An unprecedented DTE-based Pt(II) complex, 2(o), which stands as the first example of a sequential double nonlinear optical switch, induced first by protonation and next upon irradiation with UV light is presented.
Dhingra, Rimpy; Margulets, Victoria; Chowdhury, Subir Roy; Thliveris, James; Jassal, Davinder; Fernyhough, Paul; Dorn, Gerald W.; Kirshenbaum, Lorrie A.
2014-01-01
Doxorubicin (DOX) is widely used for treating human cancers, but can induce heart failure through an undefined mechanism. Herein we describe a previously unidentified signaling pathway that couples DOX-induced mitochondrial respiratory chain defects and necrotic cell death to the BH3-only protein Bcl-2-like 19kDa-interacting protein 3 (Bnip3). Cellular defects, including vacuolization and disrupted mitochondria, were observed in DOX-treated mice hearts. This coincided with mitochondrial localization of Bnip3, increased reactive oxygen species production, loss of mitochondrial membrane potential, mitochondrial permeability transition pore opening, and necrosis. Interestingly, a 3.1-fold decrease in maximal mitochondrial respiration was observed in cardiac mitochondria of mice treated with DOX. In vehicle-treated control cells undergoing normal respiration, the respiratory chain complex IV subunit 1 (COX1) was tightly bound to uncoupling protein 3 (UCP3), but this complex was disrupted in cells treated with DOX. Mitochondrial dysfunction induced by DOX was accompanied by contractile failure and necrotic cell death. Conversely, shRNA directed against Bnip3 or a mutant of Bnip3 defective for mitochondrial targeting abrogated DOX-induced loss of COX1-UCP3 complexes and respiratory chain defects. Finally, Bnip3−/− mice treated with DOX displayed relatively normal mitochondrial morphology, respiration, and mortality rates comparable to those of saline-treated WT mice, supporting the idea that Bnip3 underlies the cardiotoxic effects of DOX. These findings reveal a new signaling pathway in which DOX-induced mitochondrial respiratory chain defects and necrotic cell death are mutually dependent on and obligatorily linked to Bnip3 gene activation. Interventions that antagonize Bnip3 may prove beneficial in preventing mitochondrial injury and heart failure in cancer patients undergoing chemotherapy. PMID:25489073
Hsia, Chih-Hsuan; Jayakumar, Thanasekaran; Sheu, Joen-Rong; Tsao, Shin-Yi; Velusamy, Marappan; Hsia, Chih-Wei; Chou, Duen-Suey; Chang, Chao-Chien; Chung, Chi-Li; Khamrang, Themmila; Lin, Kao-Chang
2018-02-22
The regulation of platelet function by pharmacological agents that modulate platelet signaling has proven to be a positive approach to the prevention of thrombosis. Ruthenium complexes are fascinating for the development of new drugs, as they possess numerous chemical and biological properties. The present study aims to evaluate the structure-activity relationship (SAR) of newly synthesized ruthenium (II) complexes, TQ-1, TQ-2 and TQ-3 in agonists-induced washed human platelets. Silica gel column chromatography, aggregometry, immunoblotting, NMR, and X-ray analyses were performed in this study. Of the three tested compounds, TQ-3 showed a concentration (1-5 μM) dependent inhibitory effect on platelet aggregation induced by collagen (1 μg/mL) and thrombin (0.01 U/mL) in washed human platelets; however, TQ-1 and TQ-2 had no response even at 250 μM of collagen and thrombin-induced aggregation. TQ-3 was effective with inhibiting collagen-induced ATP release, calcium mobilization ([Ca 2+ ]i) and P-selectin expression without cytotoxicity. Moreover, TQ-3 significantly abolished collagen-induced Lyn-Fyn-Syk, Akt-JNK and p38 mitogen-activated protein kinases (p38 MAPKs) phosphorylation. The compound TQ-3 containing an electron donating amino group with two phenyl groups of the quinoline core could be accounted for by its hydrophobicity and this nature might be the reason for the noted antiplatelet effects of TQ-3. The present results provide a molecular basis for the inhibition by TQ-3 in collagen-induced platelet aggregation, through the suppression of multiple machineries of the signaling pathway. These results may suggest that TQ-3 can be considered a potential agent for the treatment of vascular diseases.
Identification of an inducible regulator of c-myb expression during T-cell activation.
Phan, S C; Feeley, B; Withers, D; Boxer, L M
1996-01-01
Resting T cells express very low levels of c-Myb protein. During T-cell activation, c-myb expression is induced and much of the increase in expression occurs at the transcriptional level. We identified a region of the c-myb 5' flanking sequence that increased c-myb expression during T-cell activation. In vivo footprinting by ligation-mediated PCR was performed to correlate in vivo protein binding with functional activity. A protein footprint was visible over this region of the c-myb 5' flanking sequence in activated T cells but not in unactivated T cells. An electrophoretic mobility shift assay (EMSA) with nuclear extract from activated T cells and an oligonucleotide of this binding site demonstrated a new protein-DNA complex, referred to as CMAT for c-myb in activated T cells; this complex was not present in unactivated T cells. Because the binding site showed some sequence similarity with the nuclear factor of activated T cells (NFAT) binding site, we compared the kinetics of induction of the two binding complexes and the molecular masses of the two proteins. Studies of the kinetics of induction showed that the NFAT EMSA binding complex appeared earlier than the CMAT complex. The NFAT protein migrated more slowly in a sodium dodecyl sulfate-polyacrylamide gel than the CMAT protein did. In addition, an antibody against NFAT did not cross-react with the CMAT protein. The appearance of the CMAT binding complex was inhibited by both cyclosporin A and rapamycin. The CMAT protein appears to be a novel inducible protein involved in the regulation of c-myb expression during T-cell activation. PMID:8628306
Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan
2017-01-01
Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. PMID:27845895
Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan
2017-03-21
Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.
NASA Astrophysics Data System (ADS)
Samanta, Sudipta; Mukherjee, Sanchita
2018-01-01
The first hydration shell of a protein exhibits heterogeneous behavior owing to several attributes, majorly local polarity and structural flexibility as revealed by solvation dynamics of secondary structural elements. We attempt to recognize the change in complex water counteraction generated due to substantial alteration in flexibility during protein complex formation. The investigation is carried out with the signaling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, and interacting with SLAM-associated protein (SAP), composed of one SH2 domain. All atom molecular dynamics simulations are employed to the aqueous solutions of free SAP and SLAM-peptide bound SAP. We observed that water dynamics around different secondary structural elements became highly affected as well as nicely correlated with the SLAM-peptide induced change in structural rigidity obtained by thermodynamic quantification. A few instances of contradictory dynamic features of water to the change in structural flexibility are explained by means of occluded polar residues by the peptide. For βD, EFloop, and BGloop, both structural flexibility and solvent accessibility of the residues confirm the obvious contribution. Most importantly, we have quantified enhanced restriction in water dynamics around the second Fyn-binding site of the SAP due to SAP-SLAM complexation, even prior to the presence of Fyn. This observation leads to a novel argument that SLAM induced more restricted water molecules could offer more water entropic contribution during the subsequent Fyn binding and provide enhanced stability to the SAP-Fyn complex in the signaling cascade. Finally, SLAM induced water counteraction around the second binding site of the SAP sheds light on the allosteric property of the SAP, which becomes an integral part of the underlying signal transduction mechanism.
Samanta, Sudipta; Mukherjee, Sanchita
2018-01-28
The first hydration shell of a protein exhibits heterogeneous behavior owing to several attributes, majorly local polarity and structural flexibility as revealed by solvation dynamics of secondary structural elements. We attempt to recognize the change in complex water counteraction generated due to substantial alteration in flexibility during protein complex formation. The investigation is carried out with the signaling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, and interacting with SLAM-associated protein (SAP), composed of one SH2 domain. All atom molecular dynamics simulations are employed to the aqueous solutions of free SAP and SLAM-peptide bound SAP. We observed that water dynamics around different secondary structural elements became highly affected as well as nicely correlated with the SLAM-peptide induced change in structural rigidity obtained by thermodynamic quantification. A few instances of contradictory dynamic features of water to the change in structural flexibility are explained by means of occluded polar residues by the peptide. For βD, EFloop, and BGloop, both structural flexibility and solvent accessibility of the residues confirm the obvious contribution. Most importantly, we have quantified enhanced restriction in water dynamics around the second Fyn-binding site of the SAP due to SAP-SLAM complexation, even prior to the presence of Fyn. This observation leads to a novel argument that SLAM induced more restricted water molecules could offer more water entropic contribution during the subsequent Fyn binding and provide enhanced stability to the SAP-Fyn complex in the signaling cascade. Finally, SLAM induced water counteraction around the second binding site of the SAP sheds light on the allosteric property of the SAP, which becomes an integral part of the underlying signal transduction mechanism.
Jin, K.; Lu, C.; Wang, L. M.; ...
2016-04-14
The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.
Simulations of Instabilities in Complex Valve and Feed Systems
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter A.
2006-01-01
CFD analyses are playing an increasingly important role in identifying and characterizing flow induced instabilities in rocket engine test facilities and flight systems. In this paper, we analyze instability mechanisms that range from turbulent pressure fluctuations due to vortex shedding in structurally complex valve systems to flow resonance in plug cavities to large scale pressure fluctuations due to collapse of cavitation induced vapor clouds. Furthermore, we discuss simulations of transient behavior related to valve motion that can serve as guidelines for valve scheduling. Such predictions of valve response to varying flow conditions is of crucial importance to engine operation and testing.
NASA Astrophysics Data System (ADS)
Beni, A.; Bogani, L.; Bussotti, L.; Dei, A.; Gentili, P. L.; Righini, R.
2005-01-01
The valence tautomerism of low-spin CoIII(Cat-N-BQ)(Cat-N-SQ) was investigated by means of UV-vis pump-probe transient absorption spectroscopy in chloroform. By exciting the CT transition of the complex at 480 nm, an intramolecular electron transfer process is selectively triggered. The photo-induced charge transfer is pursued by a cascade of two main molecular events characterized by the ultrafast transient absorption spectroscopy: the first gives rise to the metastable high-spin CoII(Cat-N-BQ)2 that, secondly, reaches the chemical equilibrium with the reactant species.
Environmental Complexity and Central Nervous System Development and Function
ERIC Educational Resources Information Center
Lewis, Mark H.
2004-01-01
Environmental restriction or deprivation early in development can induce social, cognitive, affective, and motor abnormalities similar to those associated with autism. Conversely, rearing animals in larger, more complex environments results in enhanced brain structure and function, including increased brain weight, dendritic branching,…
Induction of HoxB Transcription by Retinoic Acid Requires Actin Polymerization
Ferrai, Carmelo; Naum-Onganía, Gabriela; Longobardi, Elena; Palazzolo, Martina; Disanza, Andrea; Diaz, Victor M.; Crippa, Massimo P.; Scita, Giorgio
2009-01-01
We have analyzed the role of actin polymerization in retinoic acid (RA)-induced HoxB transcription, which is mediated by the HoxB regulator Prep1. RA induction of the HoxB genes can be prevented by the inhibition of actin polymerization. Importantly, inhibition of actin polymerization specifically affects the transcription of inducible Hox genes, but not that of their transcriptional regulators, the RARs, nor of constitutively expressed, nor of actively transcribed Hox genes. RA treatment induces the recruitment to the HoxB2 gene enhancer of a complex composed of “elongating” RNAPII, Prep1, β-actin, and N-WASP as well as the accessory splicing components p54Nrb and PSF. We show that inhibition of actin polymerization prevents such recruitment. We conclude that inducible Hox genes are selectively sensitive to the inhibition of actin polymerization and that actin polymerization is required for the assembly of a transcription complex on the regulatory region of the Hox genes. PMID:19477923
Induction of HoxB transcription by retinoic acid requires actin polymerization.
Ferrai, Carmelo; Naum-Onganía, Gabriela; Longobardi, Elena; Palazzolo, Martina; Disanza, Andrea; Diaz, Victor M; Crippa, Massimo P; Scita, Giorgio; Blasi, Francesco
2009-08-01
We have analyzed the role of actin polymerization in retinoic acid (RA)-induced HoxB transcription, which is mediated by the HoxB regulator Prep1. RA induction of the HoxB genes can be prevented by the inhibition of actin polymerization. Importantly, inhibition of actin polymerization specifically affects the transcription of inducible Hox genes, but not that of their transcriptional regulators, the RARs, nor of constitutively expressed, nor of actively transcribed Hox genes. RA treatment induces the recruitment to the HoxB2 gene enhancer of a complex composed of "elongating" RNAPII, Prep1, beta-actin, and N-WASP as well as the accessory splicing components p54Nrb and PSF. We show that inhibition of actin polymerization prevents such recruitment. We conclude that inducible Hox genes are selectively sensitive to the inhibition of actin polymerization and that actin polymerization is required for the assembly of a transcription complex on the regulatory region of the Hox genes.
Influence of dietary iodine on drug-induced hypothyrodism in the rat.
Beyssen, M L; Lagorce, J F; Cledat, D; Buxeraud, J
1999-06-01
Several compounds of pharmaceutical importance from a variety of chemical families, for example chlorpromazine and clomipramine, have been found to form charge-transfer complexes with iodine. We have investigated the influence of dietary iodine on thyroid-gland dysfunction induced by clomipramine, chlorpromazine or 2-thiazoline-2-thiol. We suggest that iodine is partly diverted from its metabolic pathway by complexation with drugs, and so the urinary concentration of iodide is increased. Both chlorpromazine and clomipramine, at doses which do not inhibit thyroperoxidase, enhanced urinary iodine excretion when dietary iodine was restricted (3.944+/-0.96 microg/day for chlorpromazine-tested rats, 3.43+/-1.33 microg/day for clomipramine-tested rats, compared with 2.34+/-0.11 microg/day in control rats). Concurrently, these pharmaceutical compounds increased the level of free thyroid-stimulating hormone (TSH) in comparison with controls and induced histological modifications in, and enlargement of, the thyroid gland. We have demonstrated that drug-induced loss of iodine in the urine was associated with antithyroid action when iodine intake was limited.
Belal, Khaled; Stoffelbach, François; Lyskawa, Joël; Fumagalli, Matthieu; Hourdet, Dominique; Marcellan, Alba; Smet, Lieselot De; de la Rosa, Victor R; Cooke, Graeme; Hoogenboom, Richard; Woisel, Patrice
2016-11-02
Most polymeric thermoresponsive hydrogels contract upon heating beyond the lower critical solution temperature (LCST) of the polymers used. Herein, we report a supramolecular hydrogel system that shows the opposite temperature dependence. When the non-thermosesponsive hydrogel NaphtGel, containing dialkoxynaphthalene guest molecules, becomes complexed with the tetra cationic macrocyclic host CBPQT 4+ , swelling occurred as a result of host-guest complex formation leading to charge repulsion between the host units, as well as an osmotic contribution of chloride counter-ions embedded in the network. The immersion of NaphtGel in a solution of poly(N-isopropylacrylamide) with tetrathiafulvalene (TTF) end groups complexed with CBPQT 4+ induced positive thermoresponsive behaviour. The LCST-induced dethreading of the polymer-based pseudorotaxane upon heating led to transfer of the CBPQT 4+ host and a concomitant swelling of NaphtGel. Subsequent cooling led to reformation of the TTF-based host-guest complexes in solution and contraction of the hydrogel. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
[RXR, a key member of the oncogenic complex in acute promyelocytic leukemia].
Halftermeyer, Juliane; Le Bras, Morgane; De Thé, Hugues
2011-11-01
Acute promyelocytic leukaemia (APL) is induced by fusion proteins always implying the retinoic acid receptor RARa. Although PML-RARa and other fusion oncoproteins are able to bind DNA as homodimers, in vivo they are always found in association with the nuclear receptor RXRa (Retinoid X Receptor). Thus, RXRa is an essential cofactor of the fusion protein for the transformation. Actually, RXRa contributes to several aspects of in vivo -transformation: RARa fusion:RXRa hetero-oligomeric complexes bind DNA with a much greater affinity than RARa fusion homodimers. Besides, PML-RARa:RXRa recognizes an enlarged repertoire of DNA binding sites. Thus the association between fusion proteins and RXRa regulates more genes than the homodimer alone. Titration of RXRa by the fusion protein may also play a role in the transformation process, as well as post-translational modifications of RXRa in the complex. Finally, RXRa is required for rexinoid-induced APL differentiation. Thus, RXRa is a key member of the oncogenic complex. © 2011 médecine/sciences – Inserm / SRMS.
Antony, Lizamma; van der Schoor, Freek; Dalrymple, Susan L.; Isaacs, John T.
2016-01-01
INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5′ and 3′ c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3′ c-MYC enhancer, but now suppresses c-MYC transcription. PMID:24913829
Neiser, Susann; Koskenkorva, Taija S.; Schwarz, Katrin; Wilhelm, Maria; Burckhardt, Susanna
2016-01-01
Intravenous iron preparations are typically classified as non-dextran-based or dextran/dextran-based complexes. The carbohydrate shell for each of these preparations is unique and is key in determining the various physicochemical properties, the metabolic pathway, and the immunogenicity of the iron-carbohydrate complex. As intravenous dextran can cause severe, antibody-mediated dextran-induced anaphylactic reactions (DIAR), the purpose of this study was to explore the potential of various intravenous iron preparations, non-dextran-based or dextran/dextran-based, to induce these reactions. An IgG-isotype mouse monoclonal anti-dextran antibody (5E7H3) and an enzyme-linked immunosorbent assay (ELISA) were developed to investigate the dextran antigenicity of low molecular weight iron dextran, ferumoxytol, iron isomaltoside 1000, ferric gluconate, iron sucrose and ferric carboxymaltose, as well as isomaltoside 1000, the isolated carbohydrate component of iron isomaltoside 1000. Low molecular weight iron dextran, as well as dextran-based ferumoxytol and iron isomaltoside 1000, reacted with 5E7H3, whereas ferric carboxymaltose, iron sucrose, sodium ferric gluconate, and isolated isomaltoside 1000 did not. Consistent results were obtained with reverse single radial immunodiffusion assay. The results strongly support the hypothesis that, while the carbohydrate alone (isomaltoside 1000) does not form immune complexes with anti-dextran antibodies, iron isomaltoside 1000 complex reacts with anti-dextran antibodies by forming multivalent immune complexes. Moreover, non-dextran based preparations, such as iron sucrose and ferric carboxymaltose, do not react with anti-dextran antibodies. This assay allows to assess the theoretical possibility of a substance to induce antibody-mediated DIARs. Nevertheless, as this is only one possible mechanism that may cause a hypersensitivity reaction, a broader set of assays will be required to get an understanding of the mechanisms that may lead to intravenous iron-induced hypersensitivity reactions. PMID:27455240
Local bias-induced phase transitions
Seal, Katyayani; Baddorf, Arthur P.; Jesse, Stephen; ...
2008-11-27
Electrical bias-induced phase transitions underpin a wide range of applications from data storage to energy generation and conversion. The mechanisms behind these transitions are often quite complex and in many cases are extremely sensitive to local defects that act as centers for local transformations or pinning. Furthermore, using ferroelectrics as an example, we review methods for probing bias-induced phase transitions and discuss the current limitations and challenges for extending the methods to field-induced phase transitions and electrochemical reactions in energy storage, biological and molecular systems.
Portes, Juliana de A; Azeredo, Nathália F B; Siqueira, Pedro G T; de Souza, Tatiana Guinancio; Fernandes, Christiane; Horn, Adolfo; Candela, Dalber R S; de Souza, Wanderley; DaMatta, Renato A; Seabra, Sérgio H
2018-06-22
We have previously shown that metallocomplexes can control the growth of Toxoplasma gondii, the agent that causes toxoplasmosis. In order to develop new metallodrugs to treat this disease, we investigated the influence of the coordination of sulfadiazine (SDZ), a drug used to treat toxoplasmosis, on the biological activity of the iron(III) complex [Fe(HBPClNOL)Cl 2 ]·H 2 O, 1, (H 2 BPClNOL=N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)(3-chloro)(2-hydroxy)-propylamine). The new complex [(Cl)(SDZ)Fe(III)(μ-BPClNOL) 2 Fe(III)(SDZ)(Cl)]·2H 2 O, 2, which was obtained by the reaction between complex 1 and SDZ, was characterized using a range of physico-chemical techniques. The cytotoxic effect of the complexes and the ability of T. gondii to infect LLC-MK2 cells were assessed. It was found that both complexes reduced the growth of T. gondii while also causing low cytotoxicity in the host cells. After 48 h of treatment, complex 2 reduced the parasite's ability to proliferate by about 50% with an IC 50 of 1.66 μmol/L. Meanwhile, complex 1 or SDZ alone caused a 40% reduction in proliferation, and SDZ displayed an IC 50 of 5.3 μmol/L. In addition, complex 2 treatment induced distinct morphological and ultrastructural changes in the parasites and triggered the formation of cyst-like forms. These results show that the coordination of SDZ to the iron(III) complex is a good strategy for increasing the anti-toxoplasma activity of these compounds.
Lin, Yuting; Li, Meiyue; Huang, Liqin; Shen, Wenbiao; Ren, Yong
2012-09-01
Our previous results showed that β-cyclodextrin-hemin complex (CDH) exhibited a vital protective role against cadmium-induced oxidative damage and toxicity in alfalfa seedling roots by the regulation of heme oxygenase-1 (HO-1) gene expression. In this report, we further test whether CDH exhibited the hormonal-like response. The application of CDH and an inducer of HO-1, hemin, were able to induce the up-regulation of cucumber HO-1 gene (CsHO1) expression and thereafter the promotion of adventitious rooting in cucumber explants. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blocked the above responses triggered by CDH, and the inhibitory effects were reversed further when 30% saturation of CO aqueous solution was added together. Further, molecular evidence showed that CDH triggered the increases of the HO-1-mediated target genes responsible for adventitious rooting, including one DnaJ-like gene (CsDNAJ-1) and two calcium-dependent protein kinase (CDPK) genes (CsCDPK1 and CsCDPK5), and were inhibited by ZnPP and reversed by CO. The calcium (Ca2+) chelator ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and the Ca2+ channel blocker lanthanum chloride (LaCl3) not only compromised the induction of adventitious rooting induced by CDH but also decreased the transcripts of above three target genes. However, the application of ascorbic acid (AsA), a well-known antioxidant in plants, failed to exhibit similar inducible effect on adventitious root formation. In short, above results illustrated that the response of CDH in the induction of cucumber adventitious rooting might be through HO-1-dependent mechanism and calcium signaling. Physiological, pharmacological and molecular evidence showed that β-cyclodextrin-hemin complex (CDH) was able to induce cucumber adventitious rooting through heme oxygenase-1 (HO-1)-dependent mechanism and calcium signaling.
Catalytic intermolecular carbon electrophile induced semipinacol rearrangement.
Zhang, Qing-Wei; Zhang, Xiao-Bo; Li, Bao-Sheng; Xiang, Kai; Zhang, Fu-Min; Wang, Shao-Hua; Tu, Yong-Qiang
2013-02-25
A catalytic intermolecular carbon electrophile induced semipinacol rearrangement was realized and the asymmetric version was also preliminarily accomplished with 92% and 82% ee. The complex tricyclic system architecture with four continuous stereogenic centers could be achieved from simple starting materials in a single step under mild conditions.
USDA-ARS?s Scientific Manuscript database
Despite long-term efforts to characterize inducible antimicrobial defenses in crops, the presence of acidic phytoalexins in maize was only recently established with the discovery of kauralexins and zealexins. Given the predicted existence of additional phytoalexins, we profiled terpenoids in maize t...
Novel Inhibitors of Protein-Protein Interaction for Prostate Cancer Therapy
2011-04-01
medical need. 7 REFERENCES 1. Babbar N, Hacker A, Huang Y, Casero RA Jr. Tumor necrosis factor alpha induces spermidine /spermine N-acetyl...PCa development and progression. We have published that activated androgen receptor (AR)-JunD complex induces spermidine /spermine N1-acetyl transferase
Perceptual Learning, Cognition, and Expertise
ERIC Educational Resources Information Center
Kellman, Philip J.; Massey, Christine M.
2013-01-01
Recent research indicates that perceptual learning (PL)--experience-induced changes in the way perceivers extract information--plays a larger role in complex cognitive tasks, including abstract and symbolic domains, than has been understood in theory or implemented in instruction. Here, we describe the involvement of PL in complex cognitive tasks…
ERIC Educational Resources Information Center
Bowden, A. Brooks; Shand, Robert; Belfield, Clive R.; Wang, Anyi; Levin, Henry M.
2017-01-01
Educational interventions are complex: Often they combine a diagnostic component (identifying student need) with a service component (ensuring appropriate educational resources are provided). This complexity raises challenges for program evaluation. These interventions, which we refer to as "service mediation interventions," affect…
A high-throughput screen for single gene activities: isolation of apoptosis inducers.
Albayrak, Timur; Grimm, Stefan
2003-05-16
We describe a novel genetic screen that is performed by transfecting every individual clone of an expression library into a separate population of cells in a high-throughput mode. The screen allows one to achieve a hitherto unattained sensitivity in expression cloning which was exploited in a first read-out to clone apoptosis-inducing genes. This led to the isolation of several genes whose proteins induce distinct phenotypes of apoptosis in 293T cells. One of the isolated genes is the tumor suppressor cytochrome b(L) (cybL), a component of the respiratory chain complex II, that diminishes the activity of this complex for apoptosis induction. This gene is more efficient and specific for causing cell death than a drug with the same activity. These results suggest further applications, both of the isolated genes and the screen.