Sample records for trimethylated cap structures

  1. Effect of size on structural, optical and magnetic properties of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Thamarai Selvi, E.; Meenakshi Sundar, S.

    2017-07-01

    Tin Oxide (SnO2) nanostructures were synthesized by a microwave oven assisted solvothermal method using with and without cetyl trimethyl ammonium bromide (CTAB) capping agent. XRD confirmed the pure rutile-type tetragonal phase of SnO2 for both uncapped and capped samples. The presence of functional groups was analyzed by Fourier transform infrared spectroscopy. Scanning electron microscopy shows the morphology of the samples. Transmission electron microscopy images exposed the size of the SnO2 nanostructures. Surface defect-related g factor of SnO2 nanoparticles using fluorescence spectroscopy is shown. For both uncapped and capped samples, UV-visible spectrum shows a blue shift in absorption edge due to the quantum confinement effect. Defect-related bands were identified by electron paramagnetic resonance (EPR) spectroscopy. The magnetic properties were studied by using vibrating sample magnetometer (VSM). A high value of magnetic moment 0.023 emu g-1 at room temperature for uncapped SnO2 nanoparticles was observed. Capping with CTAB enhanced the saturation magnetic moment to high value of 0.081 emu g-1 by altering the electronic configuration on the surface.

  2. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii.

    PubMed

    Chang, T Y; Chen, C C; Cheng, K M; Chin, C Y; Chen, Y H; Chen, X A; Sun, J R; Young, J J; Chiueh, T S

    2017-07-01

    We report a facile route for the green synthesis of trimethyl chitosan nitrate-capped silver nanoparticles (TMCN-AgNPs) with positive surface charge. In this synthesis, silver nitrate, glucose, and trimethyl chitosan nitrate (TMCN) were used as silver precursor, reducing agent, and stabilizer, respectively. The reaction was carried out in a stirred basic aqueous medium at room temperature without the use of energy-consuming or expensive equipment. We investigated the effects of the concentrations of NaOH, glucose, and TMCN on the particle size, zeta potential, and formation yield. The AgNPs were characterized by UV-vis spectroscopy, photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The catalytic activity of the TMCN-AgNPs was studied by the reduction of 4-nitrophenol using NaBH 4 as a reducing agent. We evaluated the antibacterial effects of the TMCN-AgNPs on Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus using the broth microdilution method. The results showed that both gram-positive and gram-negative bacteria were killed by the TMCN-AgNPs at very low concentration (<6.13μg/mL). Moreover, the TMCN-AgNPs also showed high antibacterial activity against clinically isolated multidrug-resistant A. baumannii strains, and the minimum inhibitory concentration (MIC) was ≤12.25μg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. N6-Trimethyl-lysine metabolism. 3-Hydroxy-N6-trimethyl-lysine and carnitine biosynthesis.

    PubMed Central

    Hoppel, C L; Cox, R A; Novak, R F

    1980-01-01

    Rats injected with N6-[Me-3H]trimethyl-lysine excrete in the urine five radioactively labelled metabolites. Two of these identified metabolites are carnitine and 4-trimethylammoniobutyrate. A third metabolite, identified as 5-trimethylammoniopentanoate, is not an intermediate in the biosynthesis of carnitine; the fourth and major metabolite, N2-acetyl-N6-trimethyl-lysine, is not a precursor of carnitine. The remaining metabolite (3-hydroxy-N6-trimethyl-lysine) is converted into trimethylammoniobutyrate and carnitine by rat liver slices and into trimethylammoniobutyrate by rat kidney slices. In rat liver and kidney-slice experiments, radioactivity from DL-N6-trimethyl-[1-14C]lysine and DL-N6-trimethyl-[2-14C]lysine was incorporated into N2-acetyl-N6-trimethyl-lysine and 3-hydroxy-N6-trimethyl-lysine, but not into trimethylammoniobutyrate or carnitine. A procedure was devised to purify milligram quantities of 3-hydroxy-N6-trimethyl-lysine from the urine of rats injected chronically with N6-trimethyl-lysine (100 mg/kg body wt. per day). The structure of 3-hydroxy-N6-trimethyl-lysine was confirmed chemically and by nuclear-magnetic-resonance spectrometry [Novak, Swift & Hoppel (1980) Biochem. J. 188, 521--527]. The sequence for carnitine biosynthesis in liver is: N6-trimethyl-lysine leads to 3-hydryxy-N6-trimethyl-lysine leads to leads to 4-trimethylammoniobutyrate leads to carnitine. PMID:6772168

  4. Immunoprecipitation of Tri-methylated Capped RNA.

    PubMed

    Hayes, Karen E; Barr, Jamie A; Xie, Mingyi; Steitz, Joan A; Martinez, Ivan

    2018-02-05

    Cellular quiescence (also known as G 0 arrest) is characterized by reduced DNA replication, increased autophagy, and increased expression of cyclin-dependent kinase p27 Kip1 . Quiescence is essential for wound healing, organ regeneration, and preventing neoplasia. Previous findings indicate that microRNAs (miRNAs) play an important role in regulating cellular quiescence. Our recent publication demonstrated the existence of an alternative miRNA biogenesis pathway in primary human foreskin fibroblast (HFF) cells during quiescence. Indeed, we have identified a group of pri-miRNAs (whose mature miRNAs were found induced during quiescence) modified with a 2,2,7-trimethylguanosine (TMG)-cap by the trimethylguanosine synthase 1 (TGS1) protein and transported to the cytoplasm by the Exportin-1 (XPO1) protein. We used an antibody against (TMG)-caps (which does not cross-react with the (m 7 G)-caps that most pri-miRNAs or mRNAs contain [Luhrmann et al ., 1982]) to perform RNA immunoprecipitations from total RNA extracts of proliferating or quiescent HFFs. The novelty of this assay is the specific isolation of pri-miRNAs as well as other non-coding RNAs containing a TMG-cap modification.

  5. N6-Trimethyl-lysine metabolism. Structural identification of the metabolite 3-hydroxy-N6-trimethyl-lysine

    PubMed Central

    Novak, Raymond F.; Swift, Terrence J.; Hoppel, Charles L.

    1980-01-01

    1H and 13C nuclear-magnetic-resonance spectroscopy and functional-group analysis were used to determine the molecular structure of an isolated metabolite (IIb) of trimethyl-lysine as 3-hydroxy-N6-trimethyl-lysine, an important intermediate in the conversion of trimethyl-lysine into trimethylammoniobutyrate and carnitine [Hoppel, Cox & Novak (1980) Biochem. J. 188, 509–519]. Functional-group analysis revealed the presence of a primary amine and reaction of metabolite (IIb) with periodate yielded 4-N-trimethylammoniobutyrate as a product, showing 2,3-substitution on the molecule and suggesting that the 3-substitution on the molecule may be an alcohol ([unk]CH–OH), amine ([unk]CH[unk]–NH2) or carbonyl ([unk]C=O) functional group. 1H integration ratios, 1H and 13C chemical-shift data and 1H and 13C signal multiplicities from the sample (IIb) were used to complete the identification of metabolite (IIb) as 3-hydroxy-N6-trimethyl-lysine. For example, the proton multiplet at δ 4.2p.p.m. and doublet at δ 4.1p.p.m., positions representative of amine or alcohol substitution on methylene carbon atoms, integration ratios of 1:1:2:9:4 and a positive ninhydrin test suggest 3-hydroxy-N6-trimethyl-lysine as the molecular structure for metabolite (IIb). 13C chemical-shift data obtained from the sample (IIb) and compared with several model compounds (trimethylammoniohexanoate, trimethyl-lysine and 3-hydroxylysine) resulted in generation of the spectrum of the metabolite and allowed independent identification of metabolite (IIb) as 3-hydroxy-N6-trimethyl-lysine. The 1H spectrum of erythro- and threo-3-hydroxylysine are presented for comparison, and the 1H and 13C n.m.r. spectra of the erythro-isomer support this analysis. PMID:6772169

  6. Effect of Organic Capping Layers over Monodisperse Platinum Nanoparticles upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, John N.; Tsung, Chia-Kuang; Huang, Wenyu

    2009-03-24

    The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H{sub 2} chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatmentmore » temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties.« less

  7. Antibacterial properties of 3 H-spiro[1-benzofuran-2,1'-cyclohexane] derivatives from Heliotropium filifolium.

    PubMed

    Urzúa, Alejandro; Echeverría, Javier; Rezende, Marcos C; Wilkens, Marcela

    2008-10-01

    A re-examination of cuticular components of Heliotropium filifolium allowed the isolation of four new compounds: 3'-hydroxy-2',2',6'-trimethyl-3H-spiro[1-benzo-furan-2,1'-cyclohexane]-5-carboxylic acid(2), methyl 3'-acetyloxy-2',2',6'-trimethyl-3H-spiro[1-benzofuran-2,1'-cyclohexane]-5-carboxylate (3), methyl 3'-isopentanoyloxy-2',2',6'-trimethyl-3H-spiro[1-benzofuran-2,1'-cyclohexane]-5-carboxylate (4) and methyl 3'-benzoyloxy-2',2',6'-trimethyl-3H-spiro[1-benzofuran-2,1'-cyclohexane]-5-carboxylate (5).Compounds 2-5 were identified by their spectroscopic analogies with filifolinol (1), and their structures confirmed by chemical correlation with 1. The antimicrobial properties of the compounds were tested against Gram positive and Gram negative bacteria. Some of them proved to be active against Gram positive, but inactive against Gram negative bacteria. In searching for structure-activity relationships from the obtained MIC values, lipophilicity was shown to be an important variable.

  8. Effects of growth retardants and fumigations with ozone and sulfur dioxide on growth and flowering of Euphorbia pulcherrima Willd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathey, H.M.; Heggestad, H.E.

    1973-01-01

    Eight cultivars of poinsettia, Euphorbia pulcherrima Willd., were evaluated for sensitivity to ..cap alpha..-cyclopropyl-..cap alpha.. (4-methoxyphenyl)-5-pyrimidine methanol (ancymidol) and protection from ozone and sulfur dioxide injury afforded by applications of ancymidol and (2-chloroethyl) trimethyl ammonium chloride (chlormequat). Foliar sprays of ancymidol were at least 80 to 500 times and the soil drench 1000 times more active than chlormequat in retarding stem elongation. The diam of the bracts was reduced, but branching increased more on plants treated with ancymidol than on untreated plants. The cv. Annette Hegg (AH) was more sensitive to ozone fumigations than was Eckespoint C-1' (C-1). Sulfur dioxidemore » also caused more injury to AH than to C-1. Ancymidol and chlormequat reduced visible injury induced by ozone and sulfur dioxide.« less

  9. Isolation and identification of an allelopathic substance from Hibiscus sabdariffa.

    PubMed

    Suwitchayanon, Prapaipit; Pukclai, Piyatida; Ohno, Osamu; Suenaga, Kiyotake; Kato-Noguchi, Hisashi

    2015-05-01

    In this study, an allelopathic substance was isolated from an aqueous methanol extract of Hibiscus sabdariffa L. by column chromatography and reverse phase HPLC. The chemical structure of the substance was determined by 1H NMR spectroscopy and mass spectrometry as trimethyl allo-hydroxycitrate. Trimethyl allo-hydroxycitrate inhibited the growth of cress hypocotyls and roots at concentrations greater than 10 mM. The concentrations required for 50% growth inhibition of the hypocotyls and roots of cress were 20.3 and 14.4 mM, respectively. The inhibitory activity of trimethyl allo-hydroxycitrate suggests that the substance may act as an allelopathic substance of H. sabdariffa.

  10. Exfoliation restacking route to Au nanoparticle-clay nanohybrids

    NASA Astrophysics Data System (ADS)

    Paek, Seung-Min; Jang, Jae-Up; Hwang, Seong-Ju; Choy, Jin-Ho

    2006-05-01

    A novel gold-pillared aluminosilicate (Au-PILC) were synthesized with positively charged gold nanoparticles capped by mercaptoammonium and exfoliated silicate layers. Gold nanoparticles were synthesized by NaBH4 reduction of AuCl4- in the presence of N,N,N-Trimethyl (11-mercaptoundecyl)ammonium (HS(CH2)11NMe3+) protecting ligand in an aqueous solution, and purified by dialysis. The resulting positively charged and water-soluble gold nanoparticles were hybridized with exfoliated silicate sheets by electrostatic interaction. The formation of Au clay hybrids could be easily confirmed by the powder X-ray diffraction with the increased basal spacing of clay upon insertion of Au nanoparticles. TEM image clearly revealed that the Au particles with an average size of 4 nm maintain their structure even after intercalation. The Au nanoparticles supported by clay matrix were found to be thermally more stable, suggesting that the Au nanoparticles were homogeneously protected with clay nanoplates. The present synthetic route could be further applicable to various hybrid systems between metal nanoparticles and clays.

  11. Ergothioneine biosynthetic methyltransferase EgtD reveals the structural basis of aromatic amino acid betaine biosynthesis.

    PubMed

    Vit, Allegra; Misson, Laëtitia; Blankenfeldt, Wulf; Seebeck, Florian P

    2015-01-02

    Ergothioneine is an N-α-trimethyl-2-thiohistidine derivative that occurs in human, plant, fungal, and bacterial cells. Biosynthesis of this redox-active betaine starts with trimethylation of the α-amino group of histidine. The three consecutive methyl transfers are catalyzed by the S-adenosylmethionine-dependent methyltransferase EgtD. Three crystal structures of this enzyme in the absence and in the presence of N-α-dimethylhistidine and S-adenosylhomocysteine implicate a preorganized array of hydrophilic interactions as the determinants for substrate specificity and apparent processivity. We identified two active site mutations that change the substrate specificity of EgtD 10(7)-fold and transform the histidine-methyltransferase into a proficient tryptophan-methyltransferase. Finally, a genomic search for EgtD homologues in fungal genomes revealed tyrosine and tryptophan trimethylation activity as a frequent trait in ascomycetous and basidomycetous fungi. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electron Beam-Induced Deposition for Atom Probe Tomography Specimen Capping Layers.

    PubMed

    Diercks, David R; Gorman, Brian P; Mulders, Johannes J L

    2017-04-01

    Six precursors were evaluated for use as in situ electron beam-induced deposition capping layers in the preparation of atom probe tomography specimens with a focus on near-surface features where some of the deposition is retained at the specimen apex. Specimens were prepared by deposition of each precursor onto silicon posts and shaped into sub-70-nm radii needles using a focused ion beam. The utility of the depositions was assessed using several criteria including composition and uniformity, evaporation behavior and evaporation fields, and depth of Ga+ ion penetration. Atom probe analyses through depositions of methyl cyclopentadienyl platinum trimethyl, palladium hexafluoroacetylacetonate, and dimethyl-gold-acetylacetonate [Me2Au(acac)] were all found to result in tip fracture at voltages exceeding 3 kV. Examination of the deposition using Me2Au(acac) plus flowing O2 was inconclusive due to evaporation of surface silicon from below the deposition under all analysis conditions. Dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9] depositions were found to be effective as in situ capping materials for the silicon specimens. Their very different evaporation fields [36 V/nm for Co2(CO)8 and 21 V/nm for Fe2(CO)9] provide options for achieving reasonably close matching of the evaporation field between the capping material and many materials of interest.

  13. Plasmodium falciparum spliceosomal RNAs: 3' and 5' end processing.

    PubMed

    Eliana, Calvo; Javier, Escobar; Moisés, Wasserman

    2011-02-01

    The major spliceosomal small nuclear ribonucleoproteins (snRNPs) consist of snRNA (U1, U2, U4 or U5) and several proteins which can be unique or common to each snRNP particle. The common proteins are known as Sm proteins; they are crucial for RNP assembly and nuclear import of spliceosomal RNPs. This paper reports detecting the interaction between Plasmodium falciparum snRNAs and Sm proteins, and the usual 5' trimethylated caps on the snRNAs, by immunoprecipitation with specific antibodies. Furthermore, an unusual poly(A) tail was detected on these non-coding RNAs. 2010 Elsevier B.V. All rights reserved.

  14. Experimental study of trimethyl aluminum decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Pan, Yang; Yang, Jiuzhong; Jiang, Zhiming; Fang, Haisheng

    2017-09-01

    Trimethyl aluminum (TMA) is an important precursor used for metal-organic chemical vapor deposition (MOCVD) of most Al-containing structures, in particular of nitride structures. The reaction mechanism of TMA with ammonia is neither clear nor certain due to its complexity. Pyrolysis of trimethyl metal is the start of series of reactions, thus significantly affecting the growth. Experimental study of TMA pyrolysis, however, has not yet been conducted in detail. In this paper, a reflectron time-of-flight mass spectrometer is adopted to measure the TMA decomposition from room temperature to 800 °C in a special pyrolysis furnace, activated by soft X-ray from the synchrotron radiation. The results show that generation of methyl, ethane and monomethyl aluminum (MMA) indicates the start of the pyrolysis process. In the low temperature range from 25 °C to 700 °C, the main product is dimethyl aluminum (DMA) from decomposition of TMA. For temperatures larger than 700 °C, the main products are MMA, DMA, methyl and ethane.

  15. Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome.

    PubMed

    Ganot, Philippe; Kallesøe, Torben; Reinhardt, Richard; Chourrout, Daniel; Thompson, Eric M

    2004-09-01

    trans splicing of a spliced-leader RNA (SL RNA) to the 5' ends of mRNAs has been shown to have a limited and sporadic distribution among eukaryotes. Within metazoans, only nematodes are known to process polycistronic pre-mRNAs, produced from operon units of transcription, into mature monocistronic mRNAs via an SL RNA trans-splicing mechanism. Here we demonstrate that a chordate with a highly compact genome, Oikopleura dioica, now joins Caenorhabditis elegans in coupling trans splicing with processing of polycistronic transcipts. We identified a single SL RNA which associates with Sm proteins and has a trimethyl guanosine cap structure reminiscent of spliceosomal snRNPs. The same SL RNA, estimated to be trans-spliced to at least 25% of O. dioica mRNAs, is used for the processing of both isolated or first cistrons and downstream cistrons in a polycistronic precursor. Remarkably, intercistronic regions in O. dioica are far more reduced than those in either nematodes or kinetoplastids, implying minimal cis-regulatory elements for coupling of 3'-end formation and trans splicing. Copyright 2004 American Society for Microbiology

  16. 40 CFR 180.1086 - 3,7,11-Trimethyl-1,6,10-dodecatriene-1-ol and 3,7,11-trimethyl-2,6,10-dodecatriene-3-ol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 3,7,11-Trimethyl-1,6,10-dodecatriene-1-ol and 3,7,11-trimethyl-2,6,10-dodecatriene-3-ol; exemption from the requirement of a tolerance. 180....1086 3,7,11-Trimethyl-1,6,10-dodecatriene-1-ol and 3,7,11-trimethyl-2,6,10-dodecatriene-3-ol; exemption...

  17. Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes

    PubMed Central

    Fournier, David; Redl, Stefan; Best, Gerrit; Borsos, Máté; Tiwari, Vijay K.; Tachibana-Konwalski, Kikuë; Ketting, René F.; Parekh, Sapun H.; Cremer, Christoph; Birk, Udo J.

    2015-01-01

    During meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes. DNA is found to be nonrandomly distributed along the length of the SC in condensed clusters. Periodic clusters of repressive chromatin [trimethylation of histone H3 at lysine (Lys) 27 (H3K27me3)] are found at 500-nm intervals along the SC, whereas one of the ends of the SC displays a large and dense cluster of centromeric histone mark [trimethylation of histone H3 at Lys 9 (H3K9me3)]. Chromatin associated with active transcription [trimethylation of histone H3 at Lys 4 (H3K4me3)] is arranged in a radial hair-like loop pattern emerging laterally from the SC. These loops seem to be punctuated with small clusters of H3K4me3 with an average spread larger than their periodicity. Our findings indicate that the nanoscale structure of the pachytene chromosomes is constrained by periodic patterns of chromatin marks, whose function in recombination and higher order genome organization is yet to be elucidated. PMID:26561583

  18. trans-Bis(thio­cyanato-κN)tetra­kis­(3,4,5-trimethyl-1H-pyrazole-κN 2)nickel(II)–3,4,5-trimethyl-1H-pyrazole (1/1)

    PubMed Central

    Hossaini Sadr, Moayad; Engle, James T.; Ziegler, Christopher J.; Soltani, Behzad; Mousavi, Zahra

    2011-01-01

    In the title compound, [Ni(NCS)2(C6H10N2)4]·C6H10N2, the asymmetric unit comprises a NiII complex and a co-crystallised mol­ecule of 3,4,5-trimethyl-1H-pyrazole (PzMe3). The NiII atom is coordinated by four PzMe3 mol­ecules and two thio­cyanate anions to define a trans N4S2 distorted octa­hedral geometry. A number of intra­molecular N—H⋯N, N—H⋯S and C—H⋯N inter­actions contribute to the stability of the complex. The crystal structure is stabilized by inter­molecular N—H⋯S inter­actions, which link neighbouring mol­ecules into chains along the a axis. PMID:22219831

  19. Exploring advantages/disadvantages and improvements in overcoming gene delivery barriers of amino acid modified trimethylated chitosan.

    PubMed

    Zheng, Hao; Tang, Cui; Yin, Chunhua

    2015-06-01

    Present study aimed at exploring advantages/disadvantages of amino acid modified trimethylated chitosan in conquering multiple gene delivery obstacles and thus providing comprehensive understandings for improved transfection efficiency. Arginine, cysteine, and histidine modified trimethyl chitosan were synthesized and employed to self-assemble with plasmid DNA (pDNA) to form nanocomplexes, namely TRNC, TCNC, and THNC, respectively. They were assessed by structural stability, cellular uptake, endosomal escape, release behavior, nuclear localization, and in vitro and in vivo transfection efficiencies. Besides, sodium tripolyphosphate (TPP) was added into TRNC to compromise certain disadvantageous attributes for pDNA delivery. Optimal endosomal escape ability failed to bring in satisfactory transfection efficiency of THNC due to drawbacks in structural stability, cellular uptake, pDNA liberation, and nuclear distribution. TCNC evoked the most potent gene expression owing to multiple advantages including sufficient stability, preferable uptake, efficient pDNA release, and high nucleic accumulation. Undesirable stability and insufficient pDNA release adversely affected TRNC-mediated gene transfer. However, incorporation of TPP could improve such disadvantages and consequently resulted in enhanced transfection efficiencies. Coordination of multiple contributing effects to conquer all delivery obstacles was necessitated for improved transfection efficiency, which would provide insights into rational design of gene delivery vehicles.

  20. Abscisic acid-type sesquiterpenes and ansamycins from Amycolatopsis alba DSM 44262.

    PubMed

    Li, Xiao-Mei; Li, Xiao-Man; Lu, Chun-Hua

    2017-10-01

    Two new abscisic acid-type sesquiterpenes (1, 2), and one new ansamycin (3), together with four known ansamycins, namely ansacarbamitocins 4-7, were isolated from the fermentation extract of Amycolatopsis alba DSM 44262. The structures of the new compounds were elucidated to be (E)-3-methyl-5-(2,6,6-trimethyl-3-oxocyclohex-1-enyl)pent-2-enoic acid (1) and (E)-3-methyl-5-(2,6,6-trimethyl-4-oxocyclohex-2-enyl)pent-2-enoic acid (2), and 9-O-methylansacarbamitocin A1 (3), on the basis of comprehensive analysis of spectroscopic data, respectively. The antimicrobial activities were also evaluated for all seven compounds.

  1. Aqua­(1,10-phenanthroline-κ2 N,N′)bis­(trimethyl­acetato)-κ2 O,O′;κO-cobalt(II)

    PubMed Central

    Chen, Xiao-Dan; Chen, Hong-Xian; Li, Zhong-Shu; Zhang, Huai-Hong; Sun, Bai-Wang

    2009-01-01

    In the title compound, [Co(C5H9O2)2(C12H8N2)(H2O)], the CoII atom is coordinated in a distorted octahedral environment by three carboxyl O atoms of two trimethyl­acetate ligands, one aqua O atom and two N atoms from 1,10-phen­anthroline. The crystal structure is stabilized by O—H⋯O hydrogen bonds and π–π stacking inter­actions [inter­planar distance between inter­digitating 1,10-phenanthroline ligands = 3.378 (2) Å]. PMID:21583436

  2. Synthesis, characterization, and the antioxidant activity of N,N,N-trimethyl chitosan salts.

    PubMed

    Zhang, Jingjing; Tan, Wenqiang; Wang, Gang; Yin, Xiuli; Li, Qing; Dong, Fang; Guo, Zhanyong

    2018-06-05

    Chitosan, possessing excellent properties, has been drawing broad attention. For the further utilization of chitosan, chemical modification is performed in improving its water solubility and the bioactivities. In the current study, four N,N,N-trimethyl chitosan salts, including N,N,N-trimethyl chitosan citrate (TMCSCi), N,N,N-trimethyl chitosan acetylsalicylate (TMCSAc), N,N,N-trimethyl chitosan ascorbate (TMCSAs), and N,N,N-trimethyl chitosan gallate (TMCSGa), were prepared via N,N,N-trimethyl chitosan iodide (TMCSI). The as-prepared products were characterized by FT-IR and 1 H NMR. Meanwhile, the degrees of substitution were calculated by elemental analysis results. Furthermore, scavenging activities (against DPPH radicals and superoxide radicals) test and reducing power test were selected to evaluate the antioxidant property of N,N,N-trimethyl chitosan salts in vitro. The results indicated that TMCSAs and TMCSGa displayed excellent activity, probably due to the enhancement of ascorbate and gallate in antioxidant activity. However, because of the weak antioxidant property of citrate and acetylsalicylate, the activity was lower for TMCSCi and TMCSAc. For example, in the DPPH radicals scavenging assay, the scavenging rates of chitosan, TMCSI, TMCSCi, TMCSAc, TMCSAs, and TMCSGa were 25.22, 84.11, 6.90, 2.70, 94.92, and 96.75% at 0.4 mg/mL, respectively. Generally, TMCSAs and TMCSGa could be regarded as a potential source of antioxidants. Copyright © 2017. Published by Elsevier B.V.

  3. Structure elucidation and chemical synthesis of stigmolone, a novel type of prokaryotic pheromone.

    PubMed

    Hull, W E; Berkessel, A; Plaga, W

    1998-09-15

    Approximately 2 micromol of a novel prokaryotic pheromone, involved in starvation-induced aggregation and formation of fruiting bodies by the myxobacterium Stigmatella aurantiaca, were isolated by a large-scale elution procedure. The pheromone was purified by HPLC, and high-resolution MS, IR, 1H-NMR, and 13C-NMR were used to identify the active substance as the hydroxy ketone 2,5, 8-trimethyl-8-hydroxy-nonan-4-one, which has been named stigmolone. The analysis was complicated by a solvent-dependent equilibrium between stigmolone and the cyclic enol-ether 3,4-dihydro-2,2, 5-trimethyl-6-(2-methylpropyl)-2H-pyran formed by intramolecular nucleophilic attack of the 8-OH group at the ketone C4 followed by loss of H2O. Both compounds were synthesized chemically, and their structures were confirmed by NMR analysis. Natural and synthetic stigmolone have the same biological activity at ca. 1 nM concentration.

  4. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs...

  5. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs...

  6. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs...

  7. Synthesis and characterization of poly (benzyl trimethyl ammonium chloride) ionic polymer

    NASA Astrophysics Data System (ADS)

    Mathew, Manjusha Elizabeth; Ahmad, Ishak; Thomas, Sabu; Daik, Rusli; Kassim, Muhammad

    2018-04-01

    Poly vinyl benzyl chloride (PVBC) was synthesized by free radical polymerization of 4-vinyl benzyl chloride (VBC) using benzoyl peroxide initiator at 80°C. Amine functionalised polymer prepared by treatment of PVBC with trimethyl amine in different solvents such as water, ethanol, tetra hydro furan(THF) and dimethyl formamide(DMF). The polymers characterized structurally by nuclear magnetic resonance and infrared spectroscopic techniques. The thermal decomposition of the polymer is studied by Thermo Gravimetric Analysis(TGA) and found that the polymer has stability up to 230°C. The nitrogen content of the aminated polymer determined by elemental analysis. The nitrogen content obtained from tetra hydro furan and dimethyl formamide solvents are 20.1% and 19.9% respectively.

  8. Gas-Phase Chemistry of Trimethyl Phosphite,

    DTIC Science & Technology

    keywords include: Flowing afterglow; Trimethyl phosphite ; Reaction mechanisms; Phosphorous ; and Nucleophilic displacement....The reactions of trimethyl phosphite were investigated with a series of nucleophiles. Products, branching ratios, and reaction rate constants are...of methoxide to form a new ion-dipole complex (CH3O-(CH3O)2PZ). If an additional acidic hydrogen is available on the nucleophile, the major products

  9. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.7270 1-propanaminium, 3-amino-, N,N,N-trimethyl-N...

  10. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.7270 1-propanaminium, 3-amino-, N,N,N-trimethyl-N...

  11. Arabidopsis COMPASS-Like Complexes Mediate Histone H3 Lysine-4 Trimethylation to Control Floral Transition and Plant Development

    PubMed Central

    Jiang, Danhua; Kong, Nicholas C.; Gu, Xiaofeng; Li, Zicong; He, Yuehui

    2011-01-01

    Histone H3 lysine-4 (H3K4) methylation is associated with transcribed genes in eukaryotes. In Drosophila and mammals, both di- and tri-methylation of H3K4 are associated with gene activation. In contrast to animals, in Arabidopsis H3K4 trimethylation, but not mono- or di-methylation of H3K4, has been implicated in transcriptional activation. H3K4 methylation is catalyzed by the H3K4 methyltransferase complexes known as COMPASS or COMPASS-like in yeast and mammals. Here, we report that Arabidopsis homologs of the COMPASS and COMPASS-like complex core components known as Ash2, RbBP5, and WDR5 in humans form a nuclear subcomplex during vegetative and reproductive development, which can associate with multiple putative H3K4 methyltransferases. Loss of function of ARABIDOPSIS Ash2 RELATIVE (ASH2R) causes a great decrease in genome-wide H3K4 trimethylation, but not in di- or mono-methylation. Knockdown of ASH2R or the RbBP5 homolog suppresses the expression of a crucial Arabidopsis floral repressor, FLOWERING LOCUS C (FLC), and FLC homologs resulting in accelerated floral transition. ASH2R binds to the chromatin of FLC and FLC homologs in vivo and is required for H3K4 trimethylation, but not for H3K4 dimethylation in these loci; overexpression of ASH2R causes elevated H3K4 trimethylation, but not H3K4 dimethylation, in its target genes FLC and FLC homologs, resulting in activation of these gene expression and consequent late flowering. These results strongly suggest that H3K4 trimethylation in FLC and its homologs can activate their expression, providing concrete evidence that H3K4 trimethylation accumulation can activate eukaryotic gene expression. Furthermore, our findings suggest that there are multiple COMPASS-like complexes in Arabidopsis and that these complexes deposit trimethyl but not di- or mono-methyl H3K4 in target genes to promote their expression, providing a molecular explanation for the observed coupling of H3K4 trimethylation (but not H3K4 dimethylation) with active gene expression in Arabidopsis. PMID:21423667

  12. Structure elucidation and chemical synthesis of stigmolone, a novel type of prokaryotic pheromone

    PubMed Central

    Hull, William E.; Berkessel, Albrecht; Plaga, Wulf

    1998-01-01

    Approximately 2 μmol of a novel prokaryotic pheromone, involved in starvation-induced aggregation and formation of fruiting bodies by the myxobacterium Stigmatella aurantiaca, were isolated by a large-scale elution procedure. The pheromone was purified by HPLC, and high-resolution MS, IR, 1H-NMR, and 13C-NMR were used to identify the active substance as the hydroxy ketone 2,5,8-trimethyl-8-hydroxy-nonan-4-one, which has been named stigmolone. The analysis was complicated by a solvent-dependent equilibrium between stigmolone and the cyclic enol-ether 3,4-dihydro-2,2,5-trimethyl-6-(2-methylpropyl)-2H-pyran formed by intramolecular nucleophilic attack of the 8-OH group at the ketone C4 followed by loss of H2O. Both compounds were synthesized chemically, and their structures were confirmed by NMR analysis. Natural and synthetic stigmolone have the same biological activity at ca. 1 nM concentration. PMID:9736725

  13. A comparative study of internally and externally capped balloons using small scale test balloons

    NASA Technical Reports Server (NTRS)

    Bell, Douglas P.

    1994-01-01

    Caps have been used to structurally reinforce scientific research balloons since the late 1950's. The scientific research balloons used by the National Aeronautics and Space Administration (NASA) use internal caps. A NASA cap placement specification does not exist since no empirical information exisits concerning cap placement. To develop a cap placement specification, NASA has completed two in-hangar inflation tests comparing the structural contributions of internal caps and external caps. The tests used small scale test balloons designed to develop the highest possible stresses within the constraints of the hangar and balloon materials. An externally capped test balloon and an internally capped test balloon were designed, built, inflated and simulated to determine the structural contributions and benefits of each. The results of the tests and simulations are presented.

  14. Synthesis, characterization and cholinesterase enzymes inhibitory activity of 1-[3-methyl-5-(2,6,6-trimethyl-cyclohex-1-enyl)-4,5-dihydro-pyrazol-1-yl]-ethanone

    NASA Astrophysics Data System (ADS)

    Mehdi, Sayed Hasan; Ghalib, Raza Murad; Hashim, Rokiah; da Silva, M. Fátima C. Guedes; Sulaiman, Othman; Murugaiyah, Vikneswaran; Marimuthu, Mani Maran; Naqvi, Mehnaz

    2013-10-01

    The crystal structure of the title compound, 1-[3-methyl-5-(2,6,6-trimethyl-cyclohex-1-enyl)-4,5-dihydro-pyrazol-1-yl]-ethanone has been determined by single crystal X-ray diffraction. It crystallizes in the orthorhombic space group P212121. The FTIR as well as the 1H and 13C NMR spectra of the compound were also recorded and briefly discussed. Compound 1 demonstrated good inhibitory activity against butyrylcholinesterase (BChE; IC50 = 46.42 μM) comparable to physostigmine. However it showed moderate inhibitory activity against acetylcholinesterase (AChE; IC50 = 157.31 μM). It showed moderate inhibitory activity against acetylcholinesterase and selective inhibitory activity towards butyrylcholinesterase enzyme.

  15. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu

    2011-05-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structuremore » was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.« less

  16. Crystallinity of tellurium capping and epitaxy of ferromagnetic topological insulator films on SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel

    2015-06-30

    Thin films of topological insulators are often capped with an insulating layer since topological insulators are known to be fragile to degradation. However, capping can hinder the observation of novel transport properties of the surface states. To understand the influence of capping on the surface states, it is crucial to understand the crystal structure and the atomic arrangement at the interfaces. Here, we use x-ray diffraction to establish the crystal structure of magnetic topological insulator Cr-doped (Bi,Sb) 2Te 3 (CBST) films grown on SrTiO 3 (1 1 1) substrates with and without a Te capping layer. We find that bothmore » the film and capping layer are single crystal and that the crystal quality of the film is independent of the presence of the capping layer, but that x-rays cause sublimation of the CBST film, which is prevented by the capping layer. Our findings show that the different transport properties of capped films cannot be attributed to a lower crystal quality but to a more subtle effect such as a different electronic structure at the interface with the capping layer. Our results on the crystal structure and atomic arrangements of the topological heterostructure will enable modelling the electronic structure and design of topological heterostructures.« less

  17. Synthesis and characterization of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride for potential application in gene delivery.

    PubMed

    Xiao, Bo; Wan, Ying; Wang, Xiaoyu; Zha, Qichen; Liu, Haoming; Qiu, Zhiye; Zhang, Shengmin

    2012-03-01

    A series of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride (HTCC) samples with various degrees of quaternization ranging from 12.4 to 43.7% was synthesized. The structures and properties of HTCC were investigated by FT-IR, (1)H NMR, conductometric titration and XRD analysis. It was found that HTCC had a more amorphous structure than chitosan. HTCC samples showed significantly lower cytotoxicity than polyethyleneimine in HepG2 and HeLa cell lines. The samples spontaneously formed complexes with pGL3 luciferase plasmid. These complexes had desirable particle sizes (160-300 nm) and zeta potentials (10.8-18.7 mV) when the weight ratios of HTCC to plasmid altered in the range of 3:1-20:1. In vitro gene transfection results indicated that HTCC had significantly high transfection efficiency compared with chitosan for delivering pGL3 luciferase plasmid to HeLa cells. The results suggest that HTCC could be a promising non-viral vector for safe and efficient DNA delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein

    NASA Astrophysics Data System (ADS)

    Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2016-06-01

    The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.

  19. 77 FR 57197 - Proposed Collection; Comment Request for Form 1099-CAP

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... 1099-CAP AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments... Form 1099-CAP, Changes in Corporate Control and Capital Structure. DATES: Written comments should be... Structure. OMB Number: 1545-1814. Form Number: 1099-CAP. Abstract: Any corporation that undergoes...

  20. Abrasion resistant track shoe grouser

    DOEpatents

    Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A

    2013-04-23

    A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.

  1. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    PubMed

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation

    PubMed Central

    Nakagawa, Takeya; Kajitani, Takuya; Togo, Shinji; Masuko, Norio; Ohdan, Hideki; Hishikawa, Yoshitaka; Koji, Takehiko; Matsuyama, Toshifumi; Ikura, Tsuyoshi; Muramatsu, Masami; Ito, Takashi

    2008-01-01

    Transcriptional initiation is a key step in the control of mRNA synthesis and is intimately related to chromatin structure and histone modification. Here, we show that the ubiquitylation of H2A (ubH2A) correlates with silent chromatin and regulates transcriptional initiation. The levels of ubH2A vary during hepatocyte regeneration, and based on microarray expression data from regenerating liver, we identified USP21, a ubiquitin-specific protease that catalyzes the hydrolysis of ubH2A. When chromatin is assembled in vitro, ubH2A, but not H2A, specifically represses the di- and trimethylation of H3K4. USP21 relieves this ubH2A-specific repression. In addition, in vitro transcription analysis revealed that ubH2A represses transcriptional initiation, but not transcriptional elongation, by inhibiting H3K4 methylation. Notably, ubH2A-mediated repression was not observed when H3 Lys 4 was changed to arginine. Furthermore, overexpression of USP21 in the liver up-regulates a gene that is normally down-regulated during hepatocyte regeneration. Our studies revealed a novel mode of trans-histone cross-talk, in which H2A ubiquitylation controls the di- and trimethylation of H3K4, resulting in regulation of transcriptional initiation. PMID:18172164

  3. The methyltransferase NSD3 has chromatin-binding motifs, PHD5-C5HCH, that are distinct from other NSD (nuclear receptor SET domain) family members in their histone H3 recognition.

    PubMed

    He, Chao; Li, Fudong; Zhang, Jiahai; Wu, Jihui; Shi, Yunyu

    2013-02-15

    The NSD (nuclear receptor SET domain-containing) family members, consisting of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1), are SET domain-containing methyltransferases and aberrant expression of each member has been implicated in multiple diseases. They have specific mono- and dimethylase activities for H3K36, whereas play nonredundant roles during development. Aside from the well characterized catalytic SET domain, NSD proteins have multiple potential chromatin-binding motifs that are clinically relevant, including the fifth plant homeodomain (PHD5) and the adjacent Cys-His-rich domain (C5HCH) located at the C terminus. Herein, we report the crystal structures of the PHD5-C5HCH module of NSD3, in the free state and in complex with H3(1-7) (H3 residues 1-7), H3(1-15) (H3 residues 1-15), and H3(1-15)K9me3 (H3 residues 1-15 with trimethylation on K9) peptides. These structures reveal that the PHD5 and C5HCH domains fold into a novel integrated PHD-PHD-like structural module with H3 peptide bound only on the surface of PHD5 and provide the molecular basis for the recognition of unmodified H3K4 and trimethylated H3K9 by NSD3 PHD5. Structural studies and binding assays show that differences exist in histone binding specificity of the PHD5 domain between three members of the NSD family. For NSD2, the PHD5-C5HCH:H3 N terminus interaction is largely conserved, although with a stronger preference for unmethylated H3K9 (H3K9me0) than trimethylated H3K9 (H3K9me3), and NSD1 PHD5-C5HCH does not bind to H3 peptides. Our results shed light on how NSD proteins that mediate H3K36 methylation are localized to specific genomic sites and provide implications for the mechanism of functional diversity of NSD proteins.

  4. Toughened uni-piece, fibrous, reinforced, oxidization-resistant composite

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor)

    2008-01-01

    A composite thermal protection structure, for applications such as atmospheric re-entry vehicles, that can withstand temperatures as high as 3600.degree. F. The structure includes an exposed surface cap having a specially formulated coating, an insulator base adjacent to the cap with another specially formulated coating, and one or more pins that extend from the cap through the insulator base to tie the cap and base together, through ceramic bonding and mechanical attachment. The cap and insulator base have corresponding depressions and projections that mate and allow for differences in thermal expansion of the cap and base. A thin coating of a reaction cured glass formulation is optionally provided on the structure to allow reduce oxidization and/or to reduce catalytic efficiency.

  5. The SUVR4 Histone Lysine Methyltransferase Binds Ubiquitin and Converts H3K9me1 to H3K9me3 on Transposon Chromatin in Arabidopsis

    PubMed Central

    Veiseth, Silje V.; Rahman, Mohummad A.; Yap, Kyoko L.; Fischer, Andreas; Egge-Jacobsen, Wolfgang; Reuter, Gunter; Zhou, Ming-Ming; Aalen, Reidunn B.; Thorstensen, Tage

    2011-01-01

    Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation–dependent and –independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity. PMID:21423664

  6. A new pyrimidinedione derivative from the gorgonian coral Verrucella umbraculum.

    PubMed

    Huang, Riming; Peng, Yan; Zhou, Xuefeng; Fu, Manqin; Tian, Shuai; Liu, Yonghong

    2013-03-01

    A new pyrimidinedione derivative, 9-acetyl-1,3,7-trimethyl-pyrimidinedione (1), was isolated from the gorgonian coral Verrucella umbraculum, together with two known compounds, caffeine (2) and 1,3-dimethylpyrimidine-2,4(1H,3H)-dione (3). The structure of 1 was elucidated by the aid of 1D, 2D NMR and MS experiments. The structures of the known compounds were identified by comparison of their spectroscopic data with those reported in the literature.

  7. High-Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine-rich Repeat Protein.

    PubMed

    Zhang, Yi; Berghaus, Melanie; Klein, Sean; Jenkins, Kelly; Zhang, Siwen; McCallum, Scott A; Morgan, Joel E; Winter, Roland; Barrick, Doug; Royer, Catherine A

    2018-04-27

    Many repeat proteins contain capping motifs, which serve to shield the hydrophobic core from solvent and maintain structural integrity. While the role of capping motifs in enhancing the stability and structural integrity of repeat proteins is well documented, their contribution to folding cooperativity is not. Here we examined the role of capping motifs in defining the folding cooperativity of the leucine-rich repeat protein, pp32, by monitoring the pressure- and urea-induced unfolding of an N-terminal capping motif (N-cap) deletion mutant, pp32-∆N-cap, and a C-terminal capping motif destabilization mutant pp32-Y131F/D146L, using residue-specific NMR and small-angle X-ray scattering. Destabilization of the C-terminal capping motif resulted in higher cooperativity for the unfolding transition compared to wild-type pp32, as these mutations render the stability of the C-terminus similar to that of the rest of the protein. In contrast, deletion of the N-cap led to strong deviation from two-state unfolding. In both urea- and pressure-induced unfolding, residues in repeats 1-3 of pp32-ΔN-cap lost their native structure first, while the C-terminal half was more stable. The residue-specific free energy changes in all regions of pp32-ΔN-cap were larger in urea compared to high pressure, indicating a less cooperative destabilization by pressure. Moreover, in contrast to complete structural disruption of pp32-ΔN-cap at high urea concentration, its pressure unfolded state remained compact. The contrasting effects of the capping motifs on folding cooperativity arise from the differential local stabilities of pp32, whereas the contrasting effects of pressure and urea on the pp32-ΔN-cap variant arise from their distinct mechanisms of action. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses.

    PubMed

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-03-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.

  9. Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses[W][OPEN

    PubMed Central

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-01-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616

  10. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    PubMed

    Ma, Sheng; Martin-Laffon, Jacqueline; Mininno, Morgane; Gigarel, Océane; Brugière, Sabine; Bastien, Olivier; Tardif, Marianne; Ravanel, Stéphane; Alban, Claude

    2016-04-04

    Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  11. Effects of Nickel Treatment on H3K4 Trimethylation and Gene Expression

    PubMed Central

    Tchou-Wong, Kam-Meng; Kluz, Thomas; Arita, Adriana; Smith, Phillip R.; Brown, Stuart; Costa, Max

    2011-01-01

    Occupational exposure to nickel compounds has been associated with lung and nasal cancers. We have previously shown that exposure of the human lung adenocarcinoma A549 cells to NiCl2 for 24 hr significantly increased global levels of trimethylated H3K4 (H3K4me3), a transcriptional activating mark that maps to the promoters of transcribed genes. To further understand the potential epigenetic mechanism(s) underlying nickel carcinogenesis, we performed genome-wide mapping of H3K4me3 by chromatin immunoprecipitation and direct genome sequencing (ChIP-seq) and correlated with transcriptome genome-wide mapping of RNA transcripts by massive parallel sequencing of cDNA (RNA-seq). The effect of NiCl2 treatment on H3K4me3 peaks within 5,000 bp of transcription start sites (TSSs) on a set of genes highly induced by nickel in both A549 cells and human peripheral blood mononuclear cells were analyzed. Nickel exposure increased the level of H3K4 trimethylation in both the promoters and coding regions of several genes including CA9 and NDRG1 that were increased in expression in A549 cells. We have also compared the extent of the H3K4 trimethylation in the absence and presence of formaldehyde crosslinking and observed that crosslinking of chromatin was required to observe H3K4 trimethylation in the coding regions immediately downstream of TSSs of some nickel-induced genes including ADM and IGFBP3. This is the first genome-wide mapping of trimethylated H3K4 in the promoter and coding regions of genes induced after exposure to NiCl2. This study may provide insights into the epigenetic mechanism(s) underlying the carcinogenicity of nickel compounds. PMID:21455298

  12. Trimethyl Chitosan Improves Anti-HIV Effects of Atripla as a New Nanoformulated Drug.

    PubMed

    Shohani, Sepideh; Mondanizadeh, Mahdieh; Abdoli, Asghar; Khansarinejad, Behzad; Salimi-Asl, Mohammad; Ardestani, Mehdi Shafiee; Ghanbari, Maryam; Haj, Mehrdad Sadeghi; Zabihollahi, Rezvan

    2017-01-01

    Highly active antiretroviral therapy (HAART) has been commonly used for HIV treatment. Its main drawbacks like drug resistance and side effects raised researcher's interest to find new approaches for its treatment. Trimethyl chitosan is one of the drug carriers which has been introduced recently. the conjugated atripla-trimethyl chitosan was designed and characterized by zetasizer, AFM and FTIR techniques. The drug conjugation with trimethyl chitosan and cellular uptake of nano-conjugate were determined by spectrophotometry. XTT test was used to measure the cytotoxicity. Anti-retroviral efficiency was studied by ELISA test. Zetasizer Results proved that the average size of nano-conjugate particles agglomeration was 493.4±24.6 nm but the size of the majority of the particles was 177.2±7.8 nm with the intensity of 87.9%. AFM technique revealed that the sizes of nano-conjugate and trimethyl chitosan were 129 nm and 59.78 nm, respectively. Zeta potential was -1.35±0.04 mv for nano-conjugate and -7.69±0.3 mv for drug. Conjugation efficiency of atripla with trimethyl chitosan was 5.27%. Measured cellular uptake with spectrophotometry for nano-conjugate was about twice of the free drug in examined concentrations (P=0.007). Compared to atripla, the nano-conjugate showed a higher inhibitory effect on HIV replication (P=0.0001). The result showed that atripla-TMC conjugate does not have a significant cytotoxicity effect. Due to the higher inhibitory effect of nano-conjugate on viral replication, it can be used in lower concentration for antiviral treatment, which resulted in reduction of drug resistance and other side effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Toughened uni-piece, fibrous, reinforced, oxidization-resistant composite

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor)

    2008-01-01

    A composite thermal protection structure, for applications such as atmospheric re-entry vehicles, that can withstand temperatures as high as 3600.degree F. The structure includes an exposed surface cap having a specially formulated coating, an insulator base adjacent to the cap with another specially formulated coating, and one or more pins that extend from the cap through the insulator base to tie the cap and base together, through ceramic bonding and mechanical attachment. The cap and insulator base have corresponding depressions and projections that mate and allow for differences in thermal expansion of the cap and base.

  14. Heat pipe with improved wick structures

    DOEpatents

    Benson, David A.; Robino, Charles V.; Palmer, David W.; Kravitz, Stanley H.

    2000-01-01

    An improved planar heat pipe wick structure having projections formed by micromachining processes. The projections form arrays of interlocking, semi-closed structures with multiple flow paths on the substrate. The projections also include overhanging caps at their tops to increase the capillary pumping action of the wick structure. The capped projections can be formed in stacked layers. Another layer of smaller, more closely spaced projections without caps can also be formed on the substrate in between the capped projections. Inexpensive materials such as Kovar can be used as substrates, and the projections can be formed by electrodepositing nickel through photoresist masks.

  15. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.

    PubMed

    Fraga, Mario F; Ballestar, Esteban; Villar-Garea, Ana; Boix-Chornet, Manuel; Espada, Jesus; Schotta, Gunnar; Bonaldi, Tiziana; Haydon, Claire; Ropero, Santiago; Petrie, Kevin; Iyer, N Gopalakrishna; Pérez-Rosado, Alberto; Calvo, Enrique; Lopez, Juan A; Cano, Amparo; Calasanz, Maria J; Colomer, Dolors; Piris, Miguel Angel; Ahn, Natalie; Imhof, Axel; Caldas, Carlos; Jenuwein, Thomas; Esteller, Manel

    2005-04-01

    CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors. Using immunodetection, high-performance capillary electrophoresis and mass spectrometry, we found that cancer cells had a loss of monoacetylated and trimethylated forms of histone H4. These changes appeared early and accumulated during the tumorigenic process, as we showed in a mouse model of multistage skin carcinogenesis. The losses occurred predominantly at the acetylated Lys16 and trimethylated Lys20 residues of histone H4 and were associated with the hypomethylation of DNA repetitive sequences, a well-known characteristic of cancer cells. Our data suggest that the global loss of monoacetylation and trimethylation of histone H4 is a common hallmark of human tumor cells.

  16. Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis.

    PubMed

    Wang, Junmin; Ge, Beilei; Li, Zihong; Guan, Fangxia; Li, Feifei

    2016-04-20

    Four fractional polysaccharides (CAPS30, CAPS50, CAPS70 and CAPS80) and total polysaccharides (CAPSt) were obtained from Angelica sinensis. Their structures were identified by Fourier transform-infrared spectroscopy (FT-IR), molecular weights were evaluated by high performance gel permeation chromatography (HPGPC) and compositions were analyzed by gas chromatography-mass spectrometry (GC-MS). Their immunoregulation activities were further compared in vitro. The results showed that they displayed different structural features and immuno-enhancement activities. They all could cause the proliferation of the lymphocyte, up-regulate stimulate the productions of IFN-γ, IL-2, IL-6 and TNF-α secretion in the peripheral lymphocytes. Further experiments showed that CAPS50 and CAPS70 could increase the ratio of CD3(+)CD56(+) cells to some extent. These indicated that five CAPSs displayed different activities which were associated with their different structural characteristics and CAPS70, with the molecular weights of 20.82kDa and consisting of mannose and glucose in the molar ratio of 1.20:1.01, possessed the strongest immuno-enhancement activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 75 FR 68728 - Airworthiness Directives; Bombardier, Inc. Model CL-215-1A10 (CL-215), CL-215-6B11 (CL-215T...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... structure in the potential line of trajectory of a failed screw cap/end cap for each accumulator has been..., potentially resulting in fuel spillage, uncommanded flap movement, or loss of aileron control [and consequent... and structure in the potential line of trajectory of a failed screw cap/end cap for each accumulator...

  18. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    NASA Astrophysics Data System (ADS)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  19. A method for determining the composition of methanol-trimethyl borate mixtures

    NASA Technical Reports Server (NTRS)

    Kaye, Samuel; Sordyl, Frank

    1955-01-01

    A study of mixtures of pure methanol and trimethyl borate showed that the composition can be accurately obtained by a simple density determination. The refractive-index determination gives the composition with much less accuracy. The potentiometric titration of boric acid is also discussed.

  20. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo.

    PubMed

    Powers, Natalie R; Parvanov, Emil D; Baker, Christopher L; Walker, Michael; Petkov, Petko M; Paigen, Kenneth

    2016-06-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we suggest that it may play the same role in meiosis.

  1. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo

    PubMed Central

    Powers, Natalie R.; Parvanov, Emil D.; Baker, Christopher L.; Walker, Michael; Petkov, Petko M.; Paigen, Kenneth

    2016-01-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we suggest that it may play the same role in meiosis. PMID:27362481

  2. Systematic identification of non-coding RNA 2,2,7-trimethylguanosine cap structures in Caenorhabditis elegans

    PubMed Central

    Jia, Dong; Cai, Lun; He, Housheng; Skogerbø, Geir; Li, Tiantian; Aftab, Muhammad Nauman; Chen, Runsheng

    2007-01-01

    Background The 2,2,7-trimethylguanosine (TMG) cap structure is an important functional characteristic of ncRNAs with critical cellular roles, such as some snRNAs. Here we used immunoprecipitation with both K121 and R1131 anti-TMG antibodies to systematically identify the TMG cap structures for all presently characterized ncRNAs in C. elegans. Results The two anti-TMG antibodies precipitated a similar group of the C. elegans ncRNAs. All snRNAs known to have a TMG cap structure were found in the precipitate, indicating that our identification system was efficient. Other ncRNA families related to splicing, such as SL RNAs and Sm Y RNAs, were also found in the precipitate, as were 7 C/D box snoRNAs. Further analysis showed that the SL RNAs and the Sm Y RNAs shared a very similar Sm binding site element (AAU4–5GGA), which sequence composition differed somewhat from those of other U snRNAs. There were also 16 ncRNAs without an Sm binding site element in the precipitate, suggesting that for these ncRNAs, TMG formation may occur independently of Sm proteins. Conclusion Our results showed that most ncRNAs predicted to be transcribed by RNA polymerase II had a TMG cap, while those predicted to be transcribed by RNA plymerase III or located in introns did not have a TMG cap structure. Compared to ncRNAs without a TMG cap, TMG-capped ncRNAs tended to have higher expression levels. Five functionally non-annotated ncRNAs also have a TMG cap structure, which might be helpful for identifying the cellular roles of these ncRNAs. PMID:17903271

  3. Systematic identification of non-coding RNA 2,2,7-trimethylguanosine cap structures in Caenorhabditis elegans.

    PubMed

    Jia, Dong; Cai, Lun; He, Housheng; Skogerbø, Geir; Li, Tiantian; Aftab, Muhammad Nauman; Chen, Runsheng

    2007-09-29

    The 2,2,7-trimethylguanosine (TMG) cap structure is an important functional characteristic of ncRNAs with critical cellular roles, such as some snRNAs. Here we used immunoprecipitation with both K121 and R1131 anti-TMG antibodies to systematically identify the TMG cap structures for all presently characterized ncRNAs in C. elegans. The two anti-TMG antibodies precipitated a similar group of the C. elegans ncRNAs. All snRNAs known to have a TMG cap structure were found in the precipitate, indicating that our identification system was efficient. Other ncRNA families related to splicing, such as SL RNAs and Sm Y RNAs, were also found in the precipitate, as were 7 C/D box snoRNAs. Further analysis showed that the SL RNAs and the Sm Y RNAs shared a very similar Sm binding site element (AAU4-5GGA), which sequence composition differed somewhat from those of other U snRNAs. There were also 16 ncRNAs without an Sm binding site element in the precipitate, suggesting that for these ncRNAs, TMG formation may occur independently of Sm proteins. Our results showed that most ncRNAs predicted to be transcribed by RNA polymerase II had a TMG cap, while those predicted to be transcribed by RNA plymerase III or located in introns did not have a TMG cap structure. Compared to ncRNAs without a TMG cap, TMG-capped ncRNAs tended to have higher expression levels. Five functionally non-annotated ncRNAs also have a TMG cap structure, which might be helpful for identifying the cellular roles of these ncRNAs.

  4. The effect of crystal structure of TiO2 nanotubes on the formation of calcium phosphate coatings during biomimetic deposition

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Kim, Sun; McLeod, John A.; Li, Jun; Guo, Xiaoxuan; Sham, Tsun-Kong; Liu, Lijia

    2017-02-01

    The crystallization process of bioactive calcium phosphate (CaP) species via biomimetic deposition onto anodic TiO2 nanotubes is investigated. The porous surface of nanostructured TiO2 provides an ideal substrate for CaP crystallization. The compositions of CaP coatings are studied using X-ray absorption near-edge structures (XANES) at the Ca K-edge. Using detection modes with different probing depths, both the surface of the CaP coating and the CaP-TiO2 interface are simultaneously analyzed. Calcium phosphate (CaP) species, such as hydroxyapatite (HAp), octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O, OCP), brushite (CaHPO4·2H2O, DCPD), and amorphous calcium phosphate (ACP), are found in the CaP coatings. TiO2 nanotubes of amorphous and anatase phases are comparatively studied to determine their effect on the efficiency of CaP formation and the phase transformation among CaP species in prolonged deposition time. It is found the composition of CaP coating has a strong dependency on the crystal structure of TiO2 substrate and the kinetics (deposition time).

  5. Three-component synthesis of dialkyl 2-(alkylimino-methylene)3- (2,2,5-trimethyl-4,6-dioxo-1,3-dioxan-5-yl)-succinates.

    PubMed

    Yavari, Issa; Zare, Hasan; Mohtat, Bita

    2006-05-01

    The adduct produced in the reaction between alkyl isocyanides and dialkyl acetylenedicarboxylates was trapped by 2,2,5-trimethyl-1,3-dioxane-4,6-dione (methyl Meldrum's acid), to afford highly functionalized ketenimines in good yields.

  6. Transcriptionally Active Heterochromatin in Rye B Chromosomes[W

    PubMed Central

    Carchilan, Mariana; Delgado, Margarida; Ribeiro, Teresa; Costa-Nunes, Pedro; Caperta, Ana; Morais-Cecílio, Leonor; Jones, R. Neil; Viegas, Wanda; Houben, Andreas

    2007-01-01

    B chromosomes (Bs) are dispensable components of the genomes of numerous species. Thus far, there is a lack of evidence for any transcripts of Bs in plants, with the exception of some rDNA sequences. Here, we show that the Giemsa banding-positive heterochromatic subterminal domain of rye (Secale cereale) Bs undergoes decondensation during interphase. Contrary to the heterochromatic regions of A chromosomes, this domain is simultaneously marked by trimethylated H3K4 and by trimethylated H3K27, an unusual combination of apparently conflicting histone modifications. Notably, both types of B-specific high copy repeat families (E3900 and D1100) of the subterminal domain are transcriptionally active, although with different tissue type–dependent activity. No small RNAs were detected specifically for the presence of Bs. The lack of any significant open reading frame and the highly heterogeneous size of mainly polyadenylated transcripts indicate that the noncoding RNA may function as structural or catalytic RNA. PMID:17586652

  7. Synthesis and characterization of chitosan quaternary ammonium salt and its application as drug carrier for ribavirin.

    PubMed

    Li, Si-Dong; Li, Pu-Wang; Yang, Zi-Ming; Peng, Zheng; Quan, Wei-Yan; Yang, Xi-Hong; Yang, Lei; Dong, Jing-Jing

    2014-11-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is hydro-soluble chitosan (CS) derivative, which can be obtained by the reaction between epoxypropyl trimethyl ammonium chloride (ETA) and CS. The preparation parameters for the synthesis of HTCC were optimized by orthogonal experimental design. ETA was successfully grafted into the free amino group of CS. Grafting of ETA with CS had great effect on the crystal structure of HTCC, which was confirmed by the XRD results. HTCC displayed higher capability to form nanoparticles by crosslinking with negatively charged sodium tripolyphosphate (TPP). Ribavrin- (RIV-) loaded HTCC nanoparticles were positively charged and were spherical in shape with average particle size of 200 nm. More efficient drug encapsulation efficiency and loading capacity were obtained for HTCC in comparison with CS, however, HTCC nanoparticles displayed faster release rate due to its hydro-soluble properties. The results suggest that HTCC is a promising CS derivative for the encapsulation of hydrophilic drugs in obtaining sustained release of drugs.

  8. Glasses of three alkyl phosphates show a range of kinetic stabilities when prepared by physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Beasley, M. S.; Tylinski, M.; Chua, Y. Z.; Schick, C.; Ediger, M. D.

    2018-05-01

    In situ AC nanocalorimetry was used to characterize vapor-deposited glasses of three phosphates with increasing lengths of alkyl side chains: trimethyl phosphate, triethyl phosphate, and tributyl phosphate. The as-deposited glasses were assessed in terms of their reversing heat capacity, onset temperature, and isothermal transformation time. Glasses with a range of kinetic stabilities were prepared, including kinetically stable glasses, as indicated by high onset temperatures and long transformation times. Trimethyl phosphate forms kinetically stable glasses, similar to many other organic molecules, while triethyl phosphate and tributyl phosphate do not. Triethyl phosphate and tributyl phosphate present the first examples of non-hydrogen bonding systems that are unable to form stable glasses via vapor deposition at 0.2 nm/s. Based on experiments utilizing different deposition rates, we conclude that triethyl phosphate and tributyl phosphate lack the surface mobility required for stable glass formation. This may be related to their high enthalpies of vaporization and the internal structure of the liquid state.

  9. SYNTHESIS AND ISOLATION OF TETRAHYDROCANNABINOL ISOMERS.

    DTIC Science & Technology

    additional amount of cannabidiol . The structure of tetrahydrocannabinol B was elucidated by chemical and spectral evidence. The partial syntheses of...In addition to cannabinol, cannabidiol , and trans-1-hydroxy-3-n-amyl-6, 6, 9 trimethyl-6a, 7, 8, 10a-tetrahydro-6-dibenzopyran (tetrahydrocannabinol...only cannabidiolic acid. A second sample of Mexican marijuana furnished only tetrahydrocannabinol A and cannabinol, while a Spanish sample contained an

  10. A Reaction Path Study of the Catalysis and Inhibition of the Bacillus anthracis CapD gamma-Glutamyl Transpeptidase

    DTIC Science & Technology

    2014-10-21

    lases.11,30,31 The first bound structure of CapD [Protein Data Bank ( PDB ) entry 3G9K] was determined with a di-α-L-Glu ligand.29 The di-α-L-Glu ligand...Article dx.doi.org/10.1021/bi500623c | Biochemistry 2014, 53, 6954−69676956 into the CapD structure ( PDB entry 3G9K29) identified two principal...in capsule anchoring and remodeling makes the enzyme a promising target for anthrax medical countermeasures. Although the structure of CapD is known

  11. Mono-, di- and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance.

    PubMed

    Knappy, Chris; Barillà, Daniela; Chong, James; Hodgson, Dominic; Morgan, Hugh; Suleman, Muhammad; Tan, Christine; Yao, Peng; Keely, Brendan

    2015-12-01

    Higher homologues of widely reported C(86) isoprenoid diglycerol tetraether lipid cores, containing 0-6 cyclopentyl rings, have been identified in (hyper)thermophilic archaea, representing up to 21% of total tetraether lipids in the cells. Liquid chromatography-tandem mass spectrometry confirms that the additional carbon atoms in the C(87-88) homologues are located in the etherified chains. Structures identified include dialkyl and monoalkyl ('H-shaped') tetraethers containing C(40-42) or C(81-82) hydrocarbons, respectively, many representing novel compounds. Gas chromatography-mass spectrometric analysis of hydrocarbons released from the lipid cores by ether cleavage suggests that the C(40) chains are biphytanes and the C(41) chains 13-methylbiphytanes. Multiple isomers, having different chain combinations, were recognised among the dialkyl lipids. Methylated tetraethers are produced by Methanothermobacter thermautotrophicus in varying proportions depending on growth conditions, suggesting that methylation may be an adaptive mechanism to regulate cellular function. The detection of methylated lipids in Pyrobaculum sp. AQ1.S2 and Sulfolobus acidocaldarius represents the first reported occurrences in Crenarchaeota. Soils and aquatic sediments from geographically distinct mesotemperate environments that were screened for homologues contained monomethylated tetraethers, with di- and trimethylated structures being detected occasionally. The structural diversity and range of occurrences of the C(87-89) tetraethers highlight their potential as complementary biomarkers for archaea in natural environments. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Tetra-butyl-ammonium tetra-kis-(trimethyl-silanolato-κO)ferrate(III).

    PubMed

    Hay, Michael; Staples, Richard; Lee, Andre

    2012-09-01

    In the title salt, (C(16)H(36)N)[Fe(C(3)H(9)OSi)(4)], the cation contains a central N atom bonded to four n-butyl alkyl groups in a tetra-hedral arrangement, while the anion contains a central Fe(III) atom tetra-hedrally coordinated by four trimethyl-silanolate ligands.

  13. 78 FR 55641 - Polyurethane-Type Polymers; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... polymers produced by the reaction of either 1,6-hexanediisocyanate; 2,4,4-trimethyl-1,6-hexanediisocyanate... produced by the reaction of either 1,6-hexanediisocyanate; 2,4,4-trimethyl-1,6-hexanediisocyanate; 5.... * * * * * * * Polymers produced by the reaction 1161844-26-3, 1161844-30-9, 1161844- of either 1,6-hexanediisocyanate; 43...

  14. Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan.

    PubMed

    Xu, Tao; Xin, Meihua; Li, Mingchun; Huang, Huili; Zhou, Shengquan; Liu, Juezhao

    2011-11-08

    N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by (1)H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba(2+) and Ca(2+)) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na(+) slightly reduced the antibacterial activity of both chitosan and its derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hitesh; Yu, Shaoning; Kong, Jilie

    2009-10-21

    The binding of cAMP to the Escherichia coli catabolite gene activator protein (CAP) produces a conformational change that enables it to bind specific DNA sequences and regulate transcription, which it cannot do in the absence of the nucleotide. The crystal structures of the unliganded CAP containing a D138L mutation and the unliganded WT CAP were determined at 2.3 and 3.6 {angstrom} resolution, respectively, and reveal that the two DNA binding domains have dimerized into one rigid body and their two DNA recognition helices become buried. The WT structure shows multiple orientations of this rigid body relative to the nucleotide bindingmore » domain supporting earlier biochemical data suggesting that the inactive form exists in an equilibrium among different conformations. Comparison of the structures of the liganded and unliganded CAP suggests that cAMP stabilizes the active DNA binding conformation of CAP through the interactions that the N{sup 6} of the adenosine makes with the C-helices. These interactions are associated with the reorientation and elongation of the C-helices that precludes the formation of the inactive structure.« less

  16. Synthesis of renewable high-density fuel with isophorone.

    PubMed

    Wang, Wei; Liu, Yanting; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2017-07-21

    1,1,3-Trimethyl-5-(2,4,4-trimethylcyclohexyl)cyclohexane, a renewable high density fuel, was first produced in a high overall carbon yield (~70%) with isophorone which can be derived from hemicellulose. The synthetic route used this work contains three steps. In the first step, 3,3,5-trimethylcyclohexanone was synthesized by the selective hydrogenation of isophorone. Among the investigated catalysts, the Pd/C exhibited the highest activity and selectivity. Over this catalyst, a high carbon yield (99.0%) of 3,3,5-trimethylcyclohexanone was achieved under mild conditions (298 K, 2 MPa H 2 , 1 h). In the second step, 3,5,5-trimethyl-2-(3,3,5-trimethylcyclohexylidene)cyclohexanone was produced in a high carbon yield (76.4%) by the NaOH catalyzed self-aldol condensation of 3,3,5-trimethylcyclohexanone which was carried out in a round bottom flask attached to the Dean-Stark apparatus. In the third step, the 3,5,5-trimethyl-2-(3,3,5-trimethylcyclohexylidene)cyclohexanone was hydrodeoxygenated under solvent-free conditions. High carbon yield (93.4%) of 1,1,3-trimethyl-5-(2,4,4-trimethylcyclohexyl)cyclohexane was obtained over the Ni/SiO 2 catalyst. The 1,1,3-trimethyl-5-(2,4,4-trimethylcyclohexyl)cyclohexane as obtained has a density of 0.858 g mL -1 and a freezing point of 222.2 K. As a potential application, it can be blended into conventional fuels (such as RP-1, RG-1, etc.) for rocket propulsion.

  17. Effect of insulin-coated trimethyl chitosan nanoparticles on IGF-1, IGF-2, and apoptosis in the hippocampus of diabetic male rats.

    PubMed

    Kalantarian, Giti; Ziamajidi, Nasrin; Mahjoub, Reza; Goodarzi, Mohammad Taghi; Saidijam, Massoud; Asl, Sara Soleimani; Abbasalipourkabir, Roghayeh

    2018-06-06

    Subcutaneous injection of insulin can lead to problems such as hypoglycemia and edema. The purpose of this research was to evaluate the effect of oral insulin-coated trimethyl chitosan nanoparticles on control of glycemic status, IGF-1 and IGF-2 levels, and apoptosis in the hippocampus of rats with diabetes mellitus. Insulin-coated trimethyl chitosan nanoparticles were prepared by the complex polyelectrolyte (PEC) method. Insulin loading content, loading efficiency, quantity and quality of particle size were evaluated. In vivo study was performed in different treatment groups of male Wistar rats with diabetes mellitus by insulin-coated trimethyl chitosan nanoparticles or subcutaneous injection of trade insulin. The duration of diabetes was eight weeks and the treatment was started after that time and continued for another two weeks. Body weight, fasting blood glucose (FBS), hippocampal apoptosis, and immunohistochemical (IHC) protein levels of IGF-1 and IGF-2 were assessed at the end of the experiments. The size and polydispersity indexes were 533 nanometers and 0.533, respectively. Insulin coated trimethyl chitosan nanoparticles showed high loading efficiency (97.67% ) and loading content (48.83% ). The spherical shape of nanoparticle was confirmed by transmission electron microscopic (TEM). The amine, amide, ether and aliphatic groups were evaluated using FT-IR spectrophotometer which represented the correctness of the insulin coated trimethyl chitosan nanoparticles. Although the apoptotic index was not changed either by insulin-coated nano-particles or commercial insulin in vivo results showed the efficacy of insulin-coated nanoparticles as well as commercial insulin in compensated weight loss, FBS and protein levels of IGF-1 and IGF-2. The present study showed the efficacy of insulin coated nanoparticle in oral route manner that can be tested in Phase I- III clinical trials. However, a behavioral study could reveal the efficacy of insulin-loaded nanoparticles in the improvement of cognitive changes through the modulation of IGF-1 and IGF-2 levels in the hippocampus.

  18. Effect of NiFeCr seed and capping layers on exchange bias and planar Hall voltage response of NiFe/Au/IrMn trilayer structures

    NASA Astrophysics Data System (ADS)

    Talantsev, Artem; Elzwawy, Amir; Kim, CheolGi

    2018-05-01

    Thin films and cross junctions, based on NiFe/Au/IrMn structures, were grown on Ta and NiFeCr seed layers by magnetron sputtering. The effects of substitution of Ta with NiFeCr in seed and capping layers on an exchange bias field are studied. A threefold improvement of the exchange bias value in the structures, grown with NiFeCr seed and capping layers, is demonstrated. The reasons for this effect are discussed. Formation of clusters in the NiFeCr capping layer is proved by atomic force microscopy technique. Ta replacement on NiFeCr in the capping layer results in the enhancement of magnetoresistive response and a reduction of noise.

  19. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, Jennifer L.; Diamond, Michael S., E-mail: diamond@borcim.wustl.edu; Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on theirmore » RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.« less

  20. Ground penetrating radar imaging of cap rock, caliche and carbonate strata

    USGS Publications Warehouse

    Kruse, S.E.; Schneider, J.C.; Campagna, D.J.; Inman, J.A.; Hickey, T.D.

    2000-01-01

    Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to ~3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to ~2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (~5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida. (C) 2000 Elsevier Science B.V. All rights reserved.Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to approx. 3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to approx. 2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (approx. 5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida.

  1. Size and shape tunability of self-assembled InAs/GaAs nanostructures through the capping rate

    NASA Astrophysics Data System (ADS)

    Utrilla, Antonio D.; Grossi, Davide F.; Reyes, Daniel F.; Gonzalo, Alicia; Braza, Verónica; Ben, Teresa; González, David; Guzman, Alvaro; Hierro, Adrian; Koenraad, Paul M.; Ulloa, Jose M.

    2018-06-01

    The practical realization of epitaxial quantum dot (QD) nanocrystals led before long to impressive experimental advances in optoelectronic devices, as well as to the emergence of new technological fields. However, the necessary capping process is well-known to hinder a precise control of the QD morphology and therefore of the possible electronic structure required for certain applications. A straightforward approach is shown to tune the structural and optical properties of InAs/GaAs QDs without the need for any capping material different from GaAs or annealing process. The mere adjust of the capping rate allows controlling kinetically the QD dissolution process induced by the surface In-Ga intermixing taking place during overgrowth, determining the final metastable structure. While low capping rates make QDs evolve into more thermodynamically favorable quantum ring structures, increasing capping rates help preserve the QD height and shape, simultaneously improving the luminescence properties. Indeed, a linear relationship between capping rate and QD height is found, resulting in a complete preservation of the original QD geometry for rates above ∼2.0 ML s-1. In addition, the inhibition of In diffusion from the QDs top to the areas in between them yields thinner WLs, what could improve the performance of several QD-based optoelectronic devices.

  2. Surface Plasmon Coupling and Control Using Spherical Cap Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yu; Joly, Alan G.; Zhang, Xin

    2017-06-05

    Propagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by a linear rotation of the driving laser polarization. A simple geometric model is proposed in which the plasmon direction selectivity is proportional to the projection of the linear laser polarization on the surface normal. An application for the spherical cap coupler as a gate device is proposed.more » Overall, our results indicate that protruded cap structures hold great promise as elements in emerging surface plasmon applications.« less

  3. Capped mRNAs with reduced secondary structure can function in extracts from poliovirus-infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonenberg, N.; Guertin, D.; Lee, K.A.W.

    1982-12-01

    Extracts form poliovirus-infected HeLa cells were used to study ribosome binding of native and denatured reovirus mRNAs and translation of capped mRNAs with different degrees of secondary structure. Here, the authors demonstrate that ribosomes in extracts from poliovirus-infected cells could form initiation complexes with denatured reovirus mRNA, in contrast to their inability to bind native reovirus mRNA. Furthermore, the capped alfalfa mosiac virus 4 RNA, which is most probable devoid of stable secondary structure at its 5' end, could be translated at much higher efficiency than could other capped mRNAs in extracts from poliovirus-infected cells.

  4. Evolution of the Mauthner axon cap.

    PubMed

    Bierman, Hilary S; Zottoli, Steven J; Hale, Melina E

    2009-01-01

    Studies of vertebrate brain evolution have focused primarily on patterns of gene expression or changes in size and organization of major brain regions. The Mauthner cell, an important reticulospinal neuron that functions in the startle response of many species, provides an opportunity for evolutionary comparisons at the cellular level. Despite broad interspecific similarities in Mauthner cell morphology, the motor patterns and startle behaviors it initiates vary markedly. Response diversity has been hypothesized to result, in part, from differences in the structure and function of the Mauthner cell-associated axon cap. We used light microscopy techniques to compare axon cap morphology across a wide range of species, including all four extant basal actinopterygian orders, representatives of a variety of teleost lineages and lungfishes, and we combined our data with published descriptions of axon cap structure. The 'composite' axon cap, observed in teleosts, is an organized conglomeration of glia and fibers of inhibitory and excitatory interneurons. Lungfish, amphibian tadpoles and several basal actinopterygian fishes have 'simple' axon caps that appear to lack glia and include few fibers. Several other basal actinopterygian fishes have 'simple-dense' caps that include greater numbers of fibers than simple caps, but lack the additional elements and organization of composite caps. Phylogenetic mapping shows that through evolution there are discrete transitions in axon cap morphology occurring at the base of gnathostomes, within basal actinopterygians, and at the base of the teleost radiation. Comparing axon cap evolution to the evolution of startle behavior and motor pattern provides insight into the relationship between Mauthner cell-associated structures and their functions in behavior. Copyright 2009 S. Karger AG, Basel.

  5. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Robinson, Andrew B; Heu, Celine; Garvey, Christopher J; Ratcliffe, Julian; Waddington, Lynne J; Gardiner, James; Thordarson, Pall

    2017-03-08

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy.

  6. Method for producing highly conformal transparent conducting oxides

    DOEpatents

    Elam, Jeffrey W.; Mane, Anil U.

    2016-07-26

    A method for forming a transparent conducting oxide product layer. The method includes use of precursors, such as tetrakis-(dimethylamino) tin and trimethyl indium, and selected use of dopants, such as SnO and ZnO for obtaining desired optical, electrical and structural properties for a highly conformal layer coating on a substrate. Ozone was also input as a reactive gas which enabled rapid production of the desired product layer.

  7. Two new oxygen-containing biomarkers isolated from the Chinese Maoming oil shale by silica gel column chromatography and preparative gas chromatography.

    PubMed

    Zhang, Xiangyun; Lu, Hong; Liao, Jing; Tang, Caiming; Sheng, Guoying; Peng, Ping'an

    2017-02-01

    Two biomarkers, 5,9-dimethyl-6-isopropyl-2-decanone (1) and 4,9,11-trimethyl-6-isopropyl-2-dodecanone (2), were isolated from Chinese Maoming oil shale by silica gel column chromatography and preparative gas chromatography. Their structures were elucidated by using spectroscopic techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Aeruginascin, a trimethylammonium analogue of psilocybin from the hallucinogenic mushroom Inocybe aeruginascens.

    PubMed

    Jensen, Niels; Gartz, Jochen; Laatsch, Hartmut

    2006-06-01

    The hallucinogenic mushroom Inocybe aeruginascens contains several typical Psilocybe alkaloids including psilocybin. We have now elucidated the structure of a further indole derivative named aeruginascin as the quaternary ammonium compound N, N, N-trimethyl-4-phosphoryloxytryptamine. Aeruginascin is closely related to the frog skin toxin bufotenidine (5-HTQ), a potent 5-HT3 receptor agonist, and has been found exclusively in Inocybe aeruginascens so far.

  9. Effects of S-containing ligands on the structure and electronic properties of CdnSen/CdnTen nanoparticles (n = 3, 4, 6, and 9)

    NASA Astrophysics Data System (ADS)

    Lim, Emmanuel; Kuznetsov, Aleksey E.; Beratan, David N.

    2012-10-01

    To understand ligand capping effects on the structure and electronic properties of CdnXn (X = Se, Te; n = 3, 4, 6, and 9) species, we performed density functional theory studies of SCH2COOH-, SCH2CH2CO2H-, and SCH2CH2NH2-capped nanoparticles. CdnXn capping with all three capping groups was found to produce significant NP distortions. All three ligands destabilize the NP HOMOs and either stabilize or destabilize their LUMOs, leading to closure of the HOMO/LUMO gaps for all of the capped species, because the HOMO destabilization effect is generally large than the LUMO destabilization effect. The calculated absorption spectra of bare and capped NPs, exemplified by CdnXn with n = 4 and 6, show that all capping groups cause noticeable red shifts for n = 4 and mostly blue shifts for n = 6.

  10. A comparative analysis of green synthesis approach starch capped metal oxides (ZnO & CdO) nanoparticles and its bacterial activity

    NASA Astrophysics Data System (ADS)

    Vidhya, K.; Devarajan, V. P.; Viswanathan, C.; Nataraj, D.; Bhoopathi, G.

    2013-06-01

    In this study, we have investigated the bacterial activity of starch capped ZnO & CdO NPs. The NPs were prepared through green technique under room temperature and then obtained samples were characterized by using XRD and PL techniques. XRD pattern confirms the crystal nature it shows hexagonal structure for ZnO NPs and monoclinic structure for CdO NPs and their average particle size is ±20 nm. Further, the optical properties of NPs were investigated using PL technique in which the starch capped ZnO NPs shows maximum emission at 440 nm whereas starch capped CdO NPs shows maximum emission at 545 nm. Finally, toxic test was performed with E.coli bacteria and their results were investigated. Hence, starch capped ZnO NPs induced less killing effect when compared with starch capped CdO NPs. Therefore, we conclude that the starch capped ZnO NPs may be less toxic to microorganisms when compared with starch capped CdO NPs. In addition, starch capped ZnO NPs is also suitable for anti-microbial activity.

  11. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types

    PubMed Central

    Yamashiro, Sawako; Gokhin, David S.; Kimura, Sumiko; Nowak, Roberta B.; Fowler, Velia M.

    2012-01-01

    Tropomodulins are a family of four proteins (Tmods 1–4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a tropomyosin (TM)-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods’ functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1–3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology. PMID:22488942

  12. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications.

    PubMed

    Eliaz, Noam; Metoki, Noah

    2017-03-24

    Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.

  13. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications

    PubMed Central

    Eliaz, Noam; Metoki, Noah

    2017-01-01

    Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs. PMID:28772697

  14. Crystal structure of Bacillus anthracis transpeptidase enzyme CapD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Richter, S.; Zhang, R.

    2009-09-04

    Bacillus anthracis elaborates a poly-{gamma}-d-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the {gamma}-glutamyltranspeptidase CapD with and without {alpha}-l-Glu-l-Glu dipeptide, a non-hydrolyzable analog of poly-{gamma}-d-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-{gamma}-glutamatemore » binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro{sup 427}, Gly{sup 428}, and Gly{sup 429} activate the catalytic residue of the enzyme, Thr{sup 352}, and stabilize an oxyanion hole via main chain amide hydrogen bonds.« less

  15. Understanding Anion Transport in an Aminated Trimethyl Polyphenylene with High Anionic Conductivity

    DTIC Science & Technology

    2012-01-01

    published online DOI: 10.1002/polb.23164 ABSTRACT: An alkaline exchange membrane (AEM) based on an aminated trimethyl poly(phenylene) is studied in...3874–3882. 23 Cotts, R. M.; Hoch, M. J. R.; Sun, T.; Markert , J. T. J. Magn. Reson. (1969) 1989, 83, 252–266. 24 Tanner, J. E. J. Chem. Phys. 1970

  16. Poloxamer surface modified trimethyl chitosan nanoparticles for the effective delivery of methotrexate in osteosarcoma.

    PubMed

    Li, Shenglong; Xiong, Yuyuan; Zhang, Xiaojing

    2017-06-01

    The present work is an effort to explore the poloxamer-modified trimethyl chitosan (TMC) encapsulated MTX for osteosarcoma treatment in order to improve the therapeutic efficacy and minimize severe toxicity associated with the clinical usage of MTX. The methotrexate-loaded pluronic-chitosan nanoparticles (MTCN) was nanosized and exhibited a controlled release of drug from the carrier system. The MTCN showed higher accumulation in cell cytoplasm region evident by the high red fluorescence indicating its uptake through energy-dependent endocytosis process. MTCN exhibited the increased cytotoxicity in MG63 cells compared free MTX due to its enhanced cellular uptake. Especially, MTCN exhibited a superior apoptosis effect with bright chromatin condensation and nuclear fragmentation was observed and showed remarkably higher apoptosis (∼48%) compared to that of free drug. The results of this investigation clearly demonstrate that the poloxamer-modified trimethyl chitosan (TMC) seems to have a great potential as a drug carrier in cancer chemotherapy. The present research work offers immense scope for further exploitation of poloxamer-modified trimethyl chitosan (TMC) in future for the development of nanoparticulate drug delivery system for cancer chemotherapy. Copyright © 2017. Published by Elsevier Masson SAS.

  17. A remarkable member of the polyoxometalates: the eight-nickel-capped alpha-keggin polyoxoazonickelate.

    PubMed

    Dong, Lanjun; Huang, Rudan; Wei, Yongge; Chu, Wei

    2009-08-17

    The eight-nickel-capped polyoxoazonickelate, [Ni(20)(OH)(24)(MMT)(12)(SO(4))](NO(3))(2).6H(2)O (1; MMT = 2-mercapto-5-methyl-1,3,4-thiadiazole), has been synthesized, which has an alpha-Keggin structure with eight nickel caps. In this structure, the polyatom is the late transition metal Ni(II); the central heteroatom is S, and the organic terminal ligand becomes the primary part of the Keggin structure. This is a Keplerate-type cluster, which shows a central Ni(II)(12) cuboctahedron formed by the 12 Ni(II) centers of the classical alpha-Keggin core and a Ni(II)(8) hexahedron formed by the eight nickel caps.

  18. Serum-deprivation stimulates cap-binding by PARN at the expense of eIF4E, consistent with the observed decrease in mRNA stability

    PubMed Central

    Seal, Ruth; Temperley, Richard; Wilusz, Jeffrey; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M. A.

    2005-01-01

    PARN, a poly(A)-specific ribonuclease, binds the 5′ cap-structure of mRNA and initiates deadenylation-dependent decay. Eukaryotic initiation factor 4E (eIF4E) also binds to the cap structure, an interaction that is critical for initiating cap-dependent translation. The stability of various mRNA transcripts in human cell lines is reduced under conditions of serum starvation as determined by both functional and chemical half-lives. Serum starvation also leads to enhanced cap association by PARN. In contrast, the 5′ cap occupancy by eIF4E decreases under serum-deprivation, as does the translation of reporter transcripts. Further, we show that PARN is a phosphoprotein and that this modification can be modulated by serum status. Taken together, these data are consistent with a natural competition existing at the 5′ cap structure between PARN and eIF4E that may be regulated by changes in post-translational modifications. These phosphorylation-induced changes in the interplay of PARN and eIF4E may determine whether the mRNA is translated or decayed. PMID:15653638

  19. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups

    PubMed Central

    Martin, Adam D.; Wojciechowski, Jonathan P.; Robinson, Andrew B.; Heu, Celine; Garvey, Christopher J.; Ratcliffe, Julian; Waddington, Lynne J.; Gardiner, James; Thordarson, Pall

    2017-01-01

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy. PMID:28272523

  20. Investigation of Mechanistic Pathway for Trimethyl Borate Mediated Amidation of (R)-Mandelic Acid for the Synthesis of Mirabegron, an Antimuscarinic Agent.

    PubMed

    Deshmukh, Dattatray G; Bangal, Mukund N; Patekar, Mukunda R; Medhane, Vijay J; Mathad, Vijayavitthal Thippannachar

    2018-03-01

    The present work describes investigation of mechanistic pathway for trimethyl borate mediated amidation of (R)-mandelic acid (3) with 4-nitophenylethylamine (2) to provide (R)-2-hydroxy-N-[2-(4-nitrophenyl)ethyl]-2-phenylacetamide (4) during mirabegron synthesis. Plausible reaction mechanism is proposed by isolating and elucidating the active α-hydroxy ester intermediate 16 from the reaction mass. Trimethyl borate mediated approach proved to be selective in providing 4 without disturbing α-hydroxyl group and stereochemistry of the chiral center, and is also a greener, more economic and production friendly over the reported methods. The developed approach is rapid and efficient for the preparation of 4 with an overall yield of 85-87% and around 99.0% purity by HPLC at scale.

  1. Capped RNA primer binding to influenza polymerase and implications for the mechanism of cap-binding inhibitors

    PubMed Central

    Pflug, Alexander; Gaudon, Stephanie; Resa-Infante, Patricia; Lethier, Mathilde; Reich, Stefan; Schulze, Wiebke M

    2018-01-01

    Abstract Influenza polymerase uses short capped primers snatched from nascent Pol II transcripts to initiate transcription of viral mRNAs. Here we describe crystal structures of influenza A and B polymerase bound to a capped primer in a configuration consistent with transcription initiation (’priming state’) and show by functional assays that conserved residues from both the PB2 midlink and cap-binding domains are important for positioning the capped RNA. In particular, mutation of PB2 Arg264, which interacts with the triphosphate linkage in the cap, significantly and specifically decreases cap-dependent transcription. We also compare the configuration of the midlink and cap-binding domains in the priming state with their very different relative arrangement (called the ‘apo’ state) in structures where the potent cap-binding inhibitor VX-787, or a close analogue, is bound. In the ‘apo’ state the inhibitor makes additional interactions to the midlink domain that increases its affinity beyond that to the cap-binding domain alone. The comparison suggests that the mechanism of resistance of certain mutations that allow virus to escape from VX-787, notably PB2 N510T, can only be rationalized if VX-787 has a dual mode of action, direct inhibition of capped RNA binding as well as stabilization of the transcriptionally inactive ‘apo’ state. PMID:29202182

  2. T-Cap Pull-Off and Bending Behavior for Stitched Structure

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in largescale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  3. The mechanism of RNA 5' capping with NAD +, NADH and desphospho-CoA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Jeremy G.; Zhang, Yu; Tian, Yuan

    The chemical nature of the 5' end of RNA is a key determinant of RNA stability, processing, localization and translation efficiency and has been proposed to provide a layer of ‘epitranscriptomic’ gene regulation. Recently it has been shown that some bacterial RNA species carry a 5'-end structure reminiscent of the 5' 7-methylguanylate ‘cap’ in eukaryotic RNA. In particular, RNA species containing a 5'-end nicotinamide adenine dinucleotide (NAD+) or 3'-desphospho-coenzyme A (dpCoA) have been identified in both Gram-negative and Gram-positive bacteria. It has been proposed that NAD+, reduced NAD+ (NADH) and dpCoA caps are added to RNA after transcription initiation, inmore » a manner analogous to the addition of 7-methylguanylate caps. Here we show instead that NAD+, NADH and dpCoA are incorporated into RNA during transcription initiation, by serving as non-canonical initiating nucleotides (NCINs) for de novo transcription initiation by cellular RNA polymerase (RNAP). We further show that both bacterial RNAP and eukaryotic RNAP II incorporate NCIN caps, that promoter DNA sequences at and upstream of the transcription start site determine the efficiency of NCIN capping, that NCIN capping occurs in vivo, and that NCIN capping has functional consequences. We report crystal structures of transcription initiation complexes containing NCIN-capped RNA products. Our results define the mechanism and structural basis of NCIN capping, and suggest that NCIN-mediated ‘ab initio capping’ may occur in all organisms.« less

  4. Tetra­butyl­ammonium tetra­kis­(trimethyl­silanolato-κO)ferrate(III)

    PubMed Central

    Hay, Michael; Staples, Richard; Lee, Andre

    2012-01-01

    In the title salt, (C16H36N)[Fe(C3H9OSi)4], the cation contains a central N atom bonded to four n-butyl alkyl groups in a tetra­hedral arrangement, while the anion contains a central FeIII atom tetra­hedrally coordinated by four trimethyl­silanolate ligands. PMID:22969479

  5. 40 CFR 180.1052 - 2,2,5-trimethyl-3-dichloro-acetyl-1,3-oxazolidine; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 2,2,5-trimethyl-3-dichloro-acetyl-1,3... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR... diisobutylthiocarbamate applied to corn fields before the corn plants emerge from the soil with a maximum of 0.5 pound of...

  6. In-situ curvature monitoring and X-ray diffraction study of InGaAsP/InGaP quantum wells

    DOE PAGES

    Sayed, Islam E. H.; Jain, Nikhil; Steiner, Myles A.; ...

    2017-06-20

    The use of InGaAsP/InGaP quantum well structures is a promising approach for subcells in next generation multi-junction devices due to their tunable bandgap (1.50-1.80 eV) and for being aluminum-free. Despite these potentials, the accumulation of stress during the growth of these structures and high background doping in the quantum well region have previously limited the maximum number of quantum wells and barriers that can be included in the intrinsic region and the sub-bandgap external quantum efficiency to less than 30.0%. In this paper, we report on the use of in-situ curvature monitoring by multi-beam optical stress (MOS) sensor measurements duringmore » the growth of this quantum well structure to monitor the stress evolution in these thin films. A series of In 0.32Ga 0.68AsP/In 0.49Ga 0.51P quantum wells with various arsine to phosphine ratios have been analyzed by in-situ curvature monitoring and X-ray diffraction (XRD) to obtain nearly strain-free lattice matched structures. Sharp interfaces, as indicated by the XRD fringes, have been achieved by using triethyl-gallium and trimethyl-gallium as gallium precursors in InGaAsP and InGaP, respectively, with constant flows of trimethyl-indium and phosphine through the entire quantum well structure. The effect of the substrate miscut on quantum well growth was compared and analyzed using XRD, photoluminescence and time resolved photoluminescence. As a result, a 100 period quantum well device was successfully grown with minimal stress and approximately flat in-situ curvature.« less

  7. In-situ curvature monitoring and X-ray diffraction study of InGaAsP/InGaP quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayed, Islam E. H.; Jain, Nikhil; Steiner, Myles A.

    The use of InGaAsP/InGaP quantum well structures is a promising approach for subcells in next generation multi-junction devices due to their tunable bandgap (1.50-1.80 eV) and for being aluminum-free. Despite these potentials, the accumulation of stress during the growth of these structures and high background doping in the quantum well region have previously limited the maximum number of quantum wells and barriers that can be included in the intrinsic region and the sub-bandgap external quantum efficiency to less than 30.0%. In this paper, we report on the use of in-situ curvature monitoring by multi-beam optical stress (MOS) sensor measurements duringmore » the growth of this quantum well structure to monitor the stress evolution in these thin films. A series of In 0.32Ga 0.68AsP/In 0.49Ga 0.51P quantum wells with various arsine to phosphine ratios have been analyzed by in-situ curvature monitoring and X-ray diffraction (XRD) to obtain nearly strain-free lattice matched structures. Sharp interfaces, as indicated by the XRD fringes, have been achieved by using triethyl-gallium and trimethyl-gallium as gallium precursors in InGaAsP and InGaP, respectively, with constant flows of trimethyl-indium and phosphine through the entire quantum well structure. The effect of the substrate miscut on quantum well growth was compared and analyzed using XRD, photoluminescence and time resolved photoluminescence. As a result, a 100 period quantum well device was successfully grown with minimal stress and approximately flat in-situ curvature.« less

  8. How to find the optimal partner--studies of snurportin 1 interactions with U snRNA 5' TMG-cap analogues containing modified 2-amino group of 7-methylguanosine.

    PubMed

    Piecyk, Karolina; Niedzwiecka, Anna; Ferenc-Mrozek, Aleksandra; Lukaszewicz, Maciej; Darzynkiewicz, Edward; Jankowska-Anyszka, Marzena

    2015-08-01

    Snurportin 1 is an adaptor protein that mediates the active nuclear import of uridine-rich small nuclear RNAs (U snRNA) by the importin-β receptor pathway. Its cellular activity influences the overall transport yield of small ribonucleoprotein complexes containing N(2),N(2),7-trimethylguanosine (TMG) capped U snRNA. So far little is still known about structural requirements related to molecular recognition of the trimethylguanosine moiety by snurportin in solution. Since these interactions are of a great biomedical importance, we synthesized a series of new 7-methylguanosine cap analogues with extended substituents at the exocyclic 2-amino group to gain a deeper insight into how the TMG-cap is adapted into the snurportin cap-binding pocket. Prepared chemical tools were applied in binding assays using emission spectroscopy. Surprisingly, our results revealed strict selectivity of snurportin towards the TMG-cap structure that relied mainly on its structural stiffness and compactness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A simple model for metal cation-phosphate interactions in nucleic acids in the gas phase: alkali metal cations and trimethyl phosphate.

    PubMed

    Ruan, Chunhai; Huang, Hai; Rodgers, M T

    2008-02-01

    Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies (BDEs) of complexes of alkali metal cations to trimethyl phosphate, TMP. Endothermic loss of the intact TMP ligand is the only dissociation pathway observed for all complexes. Theoretical calculations at the B3LYP/6-31G* level of theory are used to determine the structures, vibrational frequencies, and rotational constants of neutral TMP and the M+(TMP) complexes. Theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level using the B3LYP/6-31G* optimized geometries. The agreement between theory and experiment is reasonably good for all complexes except Li+(TMP). The absolute M+-(TMP) BDEs are found to decrease monotonically as the size of the alkali metal cation increases. No activated dissociation was observed for alkali metal cation binding to TMP. The binding of alkali metal cations to TMP is compared with that to acetone and methanol.

  10. Ge-cap quantum-well bulk FinFET for 5 nm node CMOS integration

    NASA Astrophysics Data System (ADS)

    Dwi Kurniawan, Erry; Peng, Kang-Hui; Yang, Shang-Yi; Yang, Yi-Yun; Thirunavukkarasu, Vasanthan; Lin, Yu-Hsien; Wu, Yung-Chun

    2018-04-01

    We propose the use of Ge-cap quantum-well (QW) bulk FinFET for 5 nm CMOS integration, which is a Si channel wrapped with Ge around three sides of the fin channel. The simulation results show that the Ge-cap FinFET structure demonstrates better performance than pure Si, pure Ge, and Si-cap FinFET structures. By optimizing Si fin width and Ge-cap thickness, the on-state current of nFET and pFET can also be symmetric without changing the total fin width (F Wp = F Wn). The electrons in Ge-cap nFinFET concentrate in the Si channel because of QWs formed in the lowest conduction band of the Ge and Si heterostructure, while the holes in Ge-cap pFinFET prefer to stay in Ge surfaces owing to QWs formed in the Ge valence band. The physics studies of this device have made the design rules relevant for the application of the CMOS inverter and static random access memory (SRAM) application technology.

  11. Structure-Activity Relationships for in vitro Diuretic Activity of CAP2b in the Housefly

    DTIC Science & Technology

    2007-01-01

    p e p t i d e s 2 8 ( 2 0 0 7 ) 5 7 – 6 1Structure-activity relationships for in vitro diuretic activity of CAP2b in the housefly Ronald J. Nachman a...the peptide Manse-CAP2b (pELYAFPRV-NH2) were assayed for diuretic activity on Malpighian tubules of the housefly Musca domestica (M. domestica). The C...required the C-terminal heptapeptide, which was equipotent with the most active of the native housefly CAP2b peptides. Replacement of Arg7 and Val8 with

  12. Curved cap corrugated sheet

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Bales, T. T.; Royster, D. M.; Jackson, L. R. (Inventor)

    1984-01-01

    The report describes a structure for a strong, lightweight corrugated sheet. The sheet is planar or curved and includes a plurality of corrugation segments, each segment being comprised of a generally U-shaped corrugation with a part-cylindrical crown and cap strip, and straight side walls and with secondary corrugations oriented at right angles to said side walls. The cap strip is bonded to the crown and the longitudinal edge of said cap strip extends beyond edge at the intersection between said crown and said side walls. The high strength relative to weight of the structure makes it desirable for use in aircraft or spacecraft.

  13. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    PubMed

    Henderson, Brittney R; Saeedi, Bejan J; Campagnola, Grace; Geiss, Brian J

    2011-01-01

    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  14. Tunable cavity resonator including a plurality of MEMS beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  15. Loss of Nucleolar Histone Chaperone NPM1 Triggers Rearrangement of Heterochromatin and Synergizes with a Deficiency in DNA Methyltransferase DNMT3A to Drive Ribosomal DNA Transcription*

    PubMed Central

    Holmberg Olausson, Karl; Nistér, Monica; Lindström, Mikael S.

    2014-01-01

    Nucleoli are prominent nuclear structures assembled and organized around actively transcribed ribosomal DNA (rDNA). The nucleolus has emerged as a platform for the organization of chromatin enriched for repressive histone modifications associated with repetitive DNA. NPM1 is a nucleolar protein required for the maintenance of genome stability. However, the role of NPM1 in nucleolar chromatin dynamics and ribosome biogenesis remains unclear. We found that normal fibroblasts and cancer cells depleted of NPM1 displayed deformed nucleoli and a striking rearrangement of perinucleolar heterochromatin, as identified by immunofluorescence staining of trimethylated H3K9, trimethylated H3K27, and heterochromatin protein 1γ (HP1γ/CBX3). By co-immunoprecipitation we found NPM1 associated with HP1γ and core and linker histones. Moreover, NPM1 was required for efficient tethering of HP1γ-enriched chromatin to the nucleolus. We next tested whether the alterations in perinucleolar heterochromatin architecture correlated with a difference in the regulation of rDNA. U1242MG glioma cells depleted of NPM1 presented with altered silver staining of nucleolar organizer regions, coupled to a modest decrease in H3K9 di- and trimethylation at the rDNA promoter. rDNA transcription and cell proliferation were sustained in these cells, indicating that altered organization of heterochromatin was not secondary to inhibition of rDNA transcription. Furthermore, knockdown of DNA methyltransferase DNMT3A markedly enhanced rDNA transcription in NPM1-depleted U1242MG cells. In summary, this study highlights a function of NPM1 in the spatial organization of nucleolus-associated heterochromatin. PMID:25349213

  16. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation.

    PubMed

    Shields, Kaitlyn M; Tooley, John G; Petkowski, Janusz J; Wilkey, Daniel W; Garbett, Nichola C; Merchant, Michael L; Cheng, Alan; Schaner Tooley, Christine E

    2017-08-01

    A subset of B-cell lymphoma patients have dominant mutations in the histone H3 lysine 27 (H3K27) methyltransferase EZH2, which change it from a monomethylase to a trimethylase. These mutations occur in aromatic resides surrounding the active site and increase growth and alter transcription. We study the N-terminal trimethylase NRMT1 and the N-terminal monomethylase NRMT2. They are 50% identical, but differ in key aromatic residues in their active site. Given how these residues affect EZH2 activity, we tested whether they are responsible for the distinct catalytic activities of NRMT1/2. Additionally, NRMT1 acts as a tumor suppressor in breast cancer cells. Its loss promotes oncogenic phenotypes but sensitizes cells to DNA damage. Mutations of NRMT1 naturally occur in human cancers, and we tested a select group for altered activity. While directed mutation of the aromatic residues had minimal catalytic effect, NRMT1 mutants N209I (endometrial cancer) and P211S (lung cancer) displayed decreased trimethylase and increased monomethylase/dimethylase activity. Both mutations are located in the peptide-binding channel and indicate a second structural region impacting enzyme specificity. The NRMT1 mutants demonstrated a slower rate of trimethylation and a requirement for higher substrate concentration. Expression of the mutants in wild type NRMT backgrounds showed no change in N-terminal methylation levels or growth rates, demonstrating they are not acting as dominant negatives. Expression of the mutants in cells lacking endogenous NRMT1 resulted in minimal accumulation of N-terminal trimethylation, indicating homozygosity could help drive oncogenesis or serve as a marker for sensitivity to DNA damaging chemotherapeutics or γ-irradiation. © 2017 The Protein Society.

  17. Preparation of poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith and its application in solid phase microextraction of brominated flame retardants.

    PubMed

    Yang, Ting-ting; Zhou, Lin-feng; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin; Chen, Hong-yuan

    2013-05-24

    A capillary poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith was in situ synthesized by thermally initiated free radical co-polymerization using trimethyl-2-methacroyloxyethylammonium chloride (MATE) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. N,N-dimethylformamide and polyethylene glycol 6000 were used as solvent and porogen, respectively. The morphology and porous structure of the resulting monoliths were assessed by scanning electron microscope. In order to prepare practically useful poly(MATE-co-EGDMA) monoliths with low flow resistance and good mechanical strength, some parameters such as PEG-6000 to DMF ratio, total monomer to porogen ratio, and crosslinker to monomer ratio were optimized systematically. Moreover, the extraction mechanism was evaluated using two series of compounds, alkylbenzenes and weak acids, as model compounds on poly(MATE-co-EGDMA) monoliths as liquid chromatographic stationary phase. Finally, the monoliths were applied as the solid phase microextraction medium, and a simple off-line method for simultaneous determination of three brominated flame retardants, 2,4,6-tribromophenol (TBP), tetrabromobisphenol A (TBBPA) and 4,4'-dibrominated diphenyl ether (DBDPE), in environmental waters was developed by coupling the polymer monolith microextraction to HPLC with UV detection. The regression equations for these three brominated flame retardants showed good linearity from their limit of quantification to 5000ng/mL. The limits of detection were 0.20, 0.15 and 0.10ng/mL for TBP, TBBPA and DBDPE, respectively. The recovery of the proposed method was 78.7-106.1% with intra-day relative standard deviation of 1.3-4.4%. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Hematoporphyrin derivative induced photodamage to brain tumor cells: Alterations in subcellular membranes

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Rajesh; Joshi, Preeti G.; Joshi, Nanda B.

    1997-01-01

    Photoinduced structural and functional changes were studied in the subcellular membranes isolated from HpD treated cells. Changes in the limiting anisotropy of lipid specific probes 1,6,Diphenyl-1,3,5,hexatriene (DPH) and 1-(4-Trimethyl ammonium 1,6 diphenyl)-1,3,5,hexatriene toulene sulphonate (TMA-DPH) incorporated into the membrane were used to assess the structural alterations while changes in the activity of the marker enzymes were used to assess the functional alterations. Our results suggest that damage to the endoplasmic reticulum may play an important role in the photosensitization of brain tumor cells.

  19. Cubane Derivatives for Propellant Applicationsxb

    DTIC Science & Technology

    1989-07-03

    cycloperitanone ketal containing 2-3% cyclopentanone and trace amounts of toluene. Approximately 4 liters of purified cyclopentanone ketal per day could be...such as reaction with trimethyl phosphite , also gave inconsistent results. In reactions involving 45 moles of ketal in a 20 gallon Pfaudler reactor...Dioxane treated with trimethyl phosphite Dehydrohalogenation and Dimerization of the Tribromo Ketal to the Bisketal. In-0 0 stop 3 0 Gr r or [to"t

  20. Structure of catabolite activator protein with cobalt(II) and sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Ramya R.; Lawson, Catherine L., E-mail: cathy.lawson@rutgers.edu

    2014-04-15

    The crystal structure of E. coli catabolite activator protein with bound cobalt(II) and sulfate ions at 1.97 Å resolution is reported. The crystal structure of cyclic AMP–catabolite activator protein (CAP) from Escherichia coli containing cobalt(II) chloride and ammonium sulfate is reported at 1.97 Å resolution. Each of the two CAP subunits in the asymmetric unit binds one cobalt(II) ion, in each case coordinated by N-terminal domain residues His19, His21 and Glu96 plus an additional acidic residue contributed via a crystal contact. The three identified N-terminal domain cobalt-binding residues are part of a region of CAP that is important for transcriptionmore » activation at class II CAP-dependent promoters. Sulfate anions mediate additional crystal lattice contacts and occupy sites corresponding to DNA backbone phosphate positions in CAP–DNA complex structures.« less

  1. Self-assembly of short aβ(16-22) peptides: effect of terminal capping and the role of electrostatic interaction.

    PubMed

    Tao, Kai; Wang, Jiqian; Zhou, Peng; Wang, Chengdong; Xu, Hai; Zhao, Xiubo; Lu, Jian R

    2011-03-15

    We report the characterization of self-assembly of two short β-amyloid (Aβ) peptides (16-22), KLVFFAE and Ac-KLVFFAE-NH2, focusing on examining the effect of terminal capping. At pH 2.0, TEM and AFM imaging revealed that the uncapped peptide self-assembled into long, straight, and unbranched nanofibrils with a diameter of 3.8 ± 1.0 nm while the capped one formed nanotapes with a width of 70.0 ± 25.0 nm. CD analysis indicated the formation of β-sheet structures in both aggregated systems, but the characteristic CD peaks were less intense and less red-shifted for the uncapped than the capped one, indicative of weaker hydrogen bonding and weaker π-π stacking. Fluorescence and rheological measurements also confirmed stronger intermolecular attraction associated with the capped nanotapes. At acidic pH 2, each uncapped KLVFFAE molecule carries two positive charges at the N-terminus, and the strong electrostatic repulsion favors interfacial curving and twisting within the β-sheet, causing weakening of hydrogen bonds and π-π stacking. In contrast, capping reduces the charge by half, and intermolecular electrostatic repulsion is drastically reduced. As a result, the lateral attraction of β-sheets favors stronger lamellar structuring, leading to the formation of rather flat nanotapes. Flat tapes with similar morphological structure were also formed by the capped peptide at pH 12.0 where the charge on the capping end was reversed. This study has thus demonstrated how self-assembled nanostructures of small peptides can be manipulated through simple molecular structure design and tuning of electrostatic interaction.

  2. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    PubMed

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  3. Synthesis and structure-activity relationship of histone deacetylase (HDAC) inhibitors with triazole-linked cap group.

    PubMed

    Chen, Po C; Patil, Vishal; Guerrant, William; Green, Patience; Oyelere, Adegboyega K

    2008-05-01

    Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. Small molecule HDAC inhibitors identified so far fall in to three distinct structural motifs: the zinc-binding group (ZBG), a hydrophobic linker, and a recognition cap group. Here we report the suitability of a 1,2,3-triazole ring as a surface recognition cap group-linking moiety in suberoylanilide hydroxamic acid-like (SAHA-like) HDAC inhibitors. Using "click" chemistry (Huisgen cycloaddition reaction), several triazole-linked SAHA-like hydroxamates were synthesized. Structure-activity relationship revealed that the position of the triazole moiety as well as the identity of the cap group markedly affected the in vitro HDAC inhibition and cell growth inhibitory activities of this class of compounds.

  4. Characterization of a Trifunctional Mimivirus mRNA Capping Enzyme and Crystal Structure of the RNA Triphosphatase Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benarroch,D.; Smith, P.; Shuman, S.

    2008-01-01

    The RNA triphosphatase (RTPase) components of the mRNA capping apparatus are a bellwether of eukaryal taxonomy. Fungal and protozoal RTPases belong to the triphosphate tunnel metalloenzyme (TTM) family, exemplified by yeast Cet1. Several large DNA viruses encode metal-dependent RTPases unrelated to the cysteinyl-phosphatase RTPases of their metazoan host organisms. The origins of DNA virus RTPases are unclear because they are structurally uncharacterized. Mimivirus, a giant virus of amoeba, resembles poxviruses in having a trifunctional capping enzyme composed of a metal-dependent RTPase module fused to guanylyltransferase (GTase) and guanine-N7 methyltransferase domains. The crystal structure of mimivirus RTPase reveals a minimized tunnelmore » fold and an active site strikingly similar to that of Cet1. Unlike homodimeric fungal RTPases, mimivirus RTPase is a monomer. The mimivirus TTM-type RTPase-GTase fusion resembles the capping enzymes of amoebae, providing evidence that the ancestral large DNA virus acquired its capping enzyme from a unicellular host.« less

  5. Heliotropium huascoense resin exudate: chemical constituents and defensive properties.

    PubMed

    Villarroel, L; Torres, R; Urzúa, A; Reina, M; Cabrera, R; González-Coloma, A

    2001-09-01

    From the resinous exudate of Heliotropium huascoense a new compound, rel-(8R,9R)-carrizaloic acid, (1) (3-[rel-(8R,9R-9-hydroxy-9,13,13-trimethyl-12-oxo-10-cyclohexenyl)methyl]-4-methoxybenzoic acid), and three known flavonoids, [3-methylgalangin, 3,7-dimethylgalangin, and (-)-alpinone] have been isolated. The structure of 1 was determined by spectral and chemical methods. Several plant defensive properties of 1 (insecticidal and antifungal) have been evaluated.

  6. DFT Studies of Graphene-Functionalised Derivatives of Capecitabine

    NASA Astrophysics Data System (ADS)

    Aramideh, Mehdi; Mirzaei, Mahmoud; Khodarahmi, Ghadamali; Gülseren, Oğuz

    2017-11-01

    Cancer is one of the major problems for so many people around the world; therefore, dedicating efforts to explore efficient therapeutic methodologies is very important for researchers of life sciences. In this case, nanostructures are expected to be carriers of medicinal compounds for targeted drug design and delivery purposes. Within this work, the graphene (Gr)-functionalised derivatives of capecitabine (CAP), as a representative anticancer, have been studied based on density functional theory calculations. Two different sizes of Gr molecular models have been used for the functionalisation of CAP counterparts, CAP-Gr3 and CAP-Gr5, to explore the effects of Gr-functionalisation on the original properties of CAP. All singular and functionalised molecular models have been optimised and the molecular and atomic scale properties have been evaluated for the optimised structures. Higher formation favourability has been obtained for CAP-Gr5 in comparison with CAP-Gr3 and better structural stability has been obtained in the water-solvated system than the isolated gas-phase system for all models. The CAP-Gr5 model could play a better role of electron transferring in comparison with the CAP-Gr3 model. As a concluding remark, the molecular properties of CAP changed from singular to functionalised models whereas the atomic properties remained almost unchanged, which is expected for a carrier not to use significant perturbations to the original properties of the carried counterpart.

  7. Tension and Bending Testing of an Integral T-Cap for Stitched Composite Airframe Joints

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in large-scale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  8. Production of porous Calcium Phosphate (CaP) ceramics with aligned pores using ceramic/camphene-based co-extrusion.

    PubMed

    Choi, Won-Young; Kim, Hyoun-Ee; Moon, Young-Wook; Shin, Kwan-Ha; Koh, Young-Hag

    2015-01-01

    Calcium phosphate (CaP) ceramics are one of the most valuable biomaterials for uses as the bone scaffold owing to their outstanding biocompatability, bioactivity, and biodegradation nature. In particular, these materials with an open porous structure can stimulate bone ingrowth into their 3-dimensionally interconnected pores. However, the creation of pores in bulk materials would inevitably cause a severe reduction in mechanical properties. Thus, it is a challenge to explore new ways of improving the mechanical properties of porous CaP scaffolds without scarifying their high porosity. Porous CaP ceramic scaffolds with aligned pores were successfully produced using ceramic/camphene-based co-extrusion. This aligned porous structure allowed for the achievement of high compressive strength when tested parallel to the direction of aligned pores. In addition, the overall porosity and mechanical properties of the aligned porous CaP ceramic scaffolds could be tailored simply by adjusting the initial CaP content in the CaP/camphene slurry. The porous CaP scaffolds showed excellent in vitro biocompatibility, suggesting their potential as the bone scaffold. Aligned porous CaP ceramic scaffolds with considerably enhanced mechanical properties and tailorable porosity would find very useful applications as the bone scaffold.

  9. Photooxidation of Trimethyl Phosphite in Nitrogen, Oxygen, and para-Hydrogen Matrixes at Low Temperatures.

    PubMed

    Ramanathan, N; Sundararajan, K; Gopi, R; Sankaran, K

    2017-03-16

    Trimethyl phosphite (TMPhite) was photooxidized to trimethyl phosphate (TMP) in N 2 , O 2 , and para-H 2 matrixes at low temperatures to correlate the conformational landscape of these two molecules. The photooxidation produced the trans (TGG)-rich conformer with respect to the ground state gauche (GGG) conformer of TMP in N 2 and O 2 matrixes, which has diverged from the conformational composition of freshly deposited pure TMP in the low-temperature matrixes. The enrichment of the trans conformer in preference to the gauche conformer of TMP during photooxidation is due to the TMPhite precursor, which exists exclusively in the trans conformer. Interestingly, whereas the photooxidized TMP molecule suffers site effects possibly due to the local asymmetry in N 2 and O 2 matrixes, in the para-H 2 matrix owing to the quantum crystal nature the site effects were observed to be self-repaired.

  10. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    NASA Astrophysics Data System (ADS)

    Augustine, M. Sajimol; Mathew, Lizzy; Alex, Roselin; Deepa, G. D.; Jayalekshmi, S.

    2014-01-01

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.

  11. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    NASA Astrophysics Data System (ADS)

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-12-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  12. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures.

    PubMed

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L; Zhang, Qianfan; Zhao, Weisheng

    2015-12-11

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Shota, E-mail: shota-o@gifu-u.ac.jp; Department of Physics, Graduate School of Engineering, Yokohama National University, Yokohama 240-8501; Tanikawa, Kousei

    Revealing a universal relation between geometrical structures and electronic properties of capped carbon nanotubes (CNTs) is one of the current objectives in nanocarbon community. Here, we investigate the local curvature of capped CNTs and define the cap region by a crossover behavior of the curvature energy versus the number of carbon atoms integrated from the tip to the tube region. Clear correlations among the energy gap of the cap localized states, the curvature energy, the number of carbon atoms in the cap region, and the number of specific carbon clusters are observed. The present analysis opens the way to understandmore » the cap states.« less

  14. 76 FR 6536 - Airworthiness Directives; Bombardier, Inc. Model CL-215-1A10 (CL-215), CL-215-6B11 (CL-215T...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... analysis of the systems and structure in the potential line of trajectory of a failed screw cap/end cap for... of aileron control [and consequent reduced controllability of the airplane]. * * * * * We are issuing... in the potential line of trajectory of a failed screw cap/end cap for each accumulator has been...

  15. Discrimination of acoustically similar conspecific and heterospecific vocalizations by black-capped chickadees (Poecile atricapillus).

    PubMed

    Hahn, Allison H; Campbell, Kimberley A; Congdon, Jenna V; Hoang, John; McMillan, Neil; Scully, Erin N; Yong, Joshua J H; Elie, Julie E; Sturdy, Christopher B

    2017-07-01

    Chickadees produce a multi-note chick-a-dee call in multiple socially relevant contexts. One component of this call is the D note, which is a low-frequency and acoustically complex note with a harmonic-like structure. In the current study, we tested black-capped chickadees on a between-category operant discrimination task using vocalizations with acoustic structures similar to black-capped chickadee D notes, but produced by various songbird species, in order to examine the role that phylogenetic distance plays in acoustic perception of vocal signals. We assessed the extent to which discrimination performance was influenced by the phylogenetic relatedness among the species producing the vocalizations and by the phylogenetic relatedness between the subjects' species (black-capped chickadees) and the vocalizers' species. We also conducted a bioacoustic analysis and discriminant function analysis in order to examine the acoustic similarities among the discrimination stimuli. A previous study has shown that neural activation in black-capped chickadee auditory and perceptual brain regions is similar following the presentation of these vocalization categories. However, we found that chickadees had difficulty discriminating between forward and reversed black-capped chickadee D notes, a result that directly corresponded to the bioacoustic analysis indicating that these stimulus categories were acoustically similar. In addition, our results suggest that the discrimination between vocalizations produced by two parid species (chestnut-backed chickadees and tufted titmice) is perceptually difficult for black-capped chickadees, a finding that is likely in part because these vocalizations contain acoustic similarities. Overall, our results provide evidence that black-capped chickadees' perceptual abilities are influenced by both phylogenetic relatedness and acoustic structure.

  16. Inhibitory effects of opioids on compound action potentials in frog sciatic nerves and their chemical structures.

    PubMed

    Mizuta, Kotaro; Fujita, Tsugumi; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2008-08-01

    An opioid tramadol more effectively inhibits compound action potentials (CAPs) than its metabolite mono-O-demethyl-tramadol (M1). To address further this issue, we examined the effects of opioids (morphine, codeine, ethylmorphine and dihydrocodeine) and cocaine on CAPs by applying the air-gap method to the frog sciatic nerve. All of the opioids at concentrations less than 10 mM reduced the peak amplitude of the CAP in a reversible and dose-dependent manner. The sequence of the CAP peak amplitude reductions was ethylmorphine>codeine>dihydrocodeine> or = morphine; the effective concentration for half-maximal inhibition (IC(50)) of ethylmorphine was 4.6 mM. All of the CAP inhibitions by opioids were resistant to a non-specific opioid-receptor antagonist naloxone. The CAP peak amplitude reductions produced by morphine, codeine and ethylmorphine were related to their chemical structures in such that this extent enhanced with an increase in the number of -CH(2) in a benzene ring, as seen in the inhibitory actions of tramadol and M1. Cocaine reduced CAP peak amplitudes with an IC(50) value of 0.80 mM. It is concluded that opioids reduce CAP peak amplitudes in a manner being independent of opioid-receptor activation and with an efficacy being much less than that of cocaine. It is suggested that the substituted groups of -OH bound to the benzene ring of morphine, codeine and ethylmorphine as well as of tramadol and M1, the structures of which are quite different from those of the opioids, may play an important role in producing nerve conduction block.

  17. [A new eremophilane derivative from Senecio dianthus].

    PubMed

    Han, He-Dong; Hu, Hai-Qing; Li, Yan; Wang, Xiao-Ling

    2013-10-01

    A new eremophilane derivative, 4,5,11-trimethyl-9( 10), 7 ( 11) -eremophiladien-8-keto-12-carboxylic acid-beta-D-glucopyranoside( which named dianthuside A) 1 and four known compounds, 5,7,4'-trihydroxy-flavonone-3-0-beta-D-glucoside (2), quercetin-3-0-beta-D-glucoside(3) ,hyperin(4) and rutin(5) have been isolated from the aerial part of Senecio dianthus. Their structures were elucidated by physicochemical properties and spectroscopic data analysis. Compounds 2, 4 and 5 were isolated from this plant for the first time.

  18. Diphosphates at the 5' end of the positive strand of yeast L-A double-stranded RNA virus as a molecular self-identity tag.

    PubMed

    Fujimura, Tsutomu; Esteban, Rosa

    2016-10-01

    The 5'end of RNA conveys important information on self-identity. In mammalian cells, double-stranded RNA (dsRNA) with 5'di- or triphosphates generated during virus infection is recognized as foreign and elicits the host innate immune response. Here, we analyze the 5' ends of the dsRNA genome of the yeast L-A virus. The positive strand has largely diphosphates with a minor amount of triphosphates, while the negative strand has only diphosphates. Although the virus can produce capped transcripts by cap snatching, neither strand carried a cap structure, suggesting that only non-capped transcripts serve as genomic RNA for encapsidation. We also found that the 5' diphosphates of the positive but not the negative strand within the dsRNA genome are crucial for transcription in vitro. Furthermore, the presence of a cap structure in the dsRNA abrogated its template activity. Given that the 5' diphosphates of the transcripts are also essential for cap acquisition and that host cytosolic RNAs (mRNA, rRNA, and tRNA) are uniformly devoid of 5' pp-structures, the L-A virus takes advantage of its 5' terminal diphosphates, using them as a self-identity tag to propagate in the host cytoplasm. © 2016 John Wiley & Sons Ltd.

  19. [Identification of migrants from nitrile-butadiene rubber gloves].

    PubMed

    Mutsuga, Motoh; Kawamura, Yoko; Wakui, Chiseko; Maitani, Tamio

    2003-04-01

    Polyvinyl chloride gloves containing di(2-ethylhexyl) phthalate are restricted for food contact use. In their place, disposable gloves made from nitrile-butadiene rubber (NBR) are used in contact with foodstuffs. Some unknown substances were found to migrate into n-heptane from NBR gloves. By GC/MS, HR-MS and NMR, their chemical structures were confirmed to be 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (used as a plasticizer), 4,4'-butylidenedi(6-tert-butyl-m-cresol), a mixture of styrenated phenols consisting of 2-(alpha-methylbenzyl)phenol, 4-(alpha-methylbenzyl)phenol, 2,6-di(alpha-methylbenzyl)phenol, 2,4-di(alpha-methylbenzyl)phenol and 2,4,6-tri(alpha-methylbenzyl)phenol (used as antioxidants), and 2,4-di-tert-butylphenol, which seems to a degradation product of antioxidant. Migration levels of these compounds were 1.68 micrograms/cm2 of 2,4-di-tert-butylphenol, 2.80 micrograms/cm2 of 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, 46.08 micrograms/cm2 of styrenated phenols and 4.22 micrograms/cm2 of 4,4'-butylidenedi(6-tert-butyl-m-cresol) into n-heptane, respectively. The content of total styrenated phenols was 6,900 micrograms/g in NBR gloves.

  20. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    DOE PAGES

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; ...

    2016-02-09

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less

  1. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less

  2. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwase, Shigeki; Xiang, Bin; Ghosh, Sharmistha

    ATR-X (alpha-thalassemia/mental retardation, X-linked) syndrome is a human congenital disorder that causes severe intellectual disabilities. Mutations in the ATRX gene, which encodes an ATP-dependent chromatin-remodeler, are responsible for the syndrome. Approximately 50% of the missense mutations in affected persons are clustered in a cysteine-rich domain termed ADD (ATRX-DNMT3-DNMT3L, ADD{sub ATRX}), whose function has remained elusive. Here we identify ADD{sub ATRX} as a previously unknown histone H3-binding module, whose binding is promoted by lysine 9 trimethylation (H3K9me3) but inhibited by lysine 4 trimethylation (H3K4me3). The cocrystal structure of ADD{sub ATRX} bound to H3{sub 1-15}K9me3 peptide reveals an atypical composite H3K9me3-binding pocket,more » which is distinct from the conventional trimethyllysine-binding aromatic cage. Notably, H3K9me3-pocket mutants and ATR-X syndrome mutants are defective in both H3K9me3 binding and localization at pericentromeric heterochromatin; thus, we have discovered a unique histone-recognition mechanism underlying the ATR-X etiology.« less

  3. ATRX ADD Domain Links an Atypical Histone Methylation Recognition Mechanism to Human Mental-Retardation Syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Iwase; B Xiang; S Ghosh

    ATR-X (alpha-thalassemia/mental retardation, X-linked) syndrome is a human congenital disorder that causes severe intellectual disabilities. Mutations in the ATRX gene, which encodes an ATP-dependent chromatin-remodeler, are responsible for the syndrome. Approximately 50% of the missense mutations in affected persons are clustered in a cysteine-rich domain termed ADD (ATRX-DNMT3-DNMT3L, ADD{sub ATRX}), whose function has remained elusive. Here we identify ADD{sub ATRX} as a previously unknown histone H3-binding module, whose binding is promoted by lysine 9 trimethylation (H3K9me3) but inhibited by lysine 4 trimethylation (H3K4me3). The cocrystal structure of ADD{sub ATRX} bound to H3{sub 1-15}K9me3 peptide reveals an atypical composite H3K9me3-binding pocket,more » which is distinct from the conventional trimethyllysine-binding aromatic cage. Notably, H3K9me3-pocket mutants and ATR-X syndrome mutants are defective in both H3K9me3 binding and localization at pericentromeric heterochromatin; thus, we have discovered a unique histone-recognition mechanism underlying the ATR-X etiology.« less

  4. RNA Cap Methyltransferase Activity Assay

    PubMed Central

    Trotman, Jackson B.; Schoenberg, Daniel R.

    2018-01-01

    Methyltransferases that methylate the guanine-N7 position of the mRNA 5′ cap structure are ubiquitous among eukaryotes and commonly encoded by viruses. Here we provide a detailed protocol for the biochemical analysis of RNA cap methyltransferase activity of biological samples. This assay involves incubation of cap-methyltransferase-containing samples with a [32P]G-capped RNA substrate and S-adenosylmethionine (SAM) to produce RNAs with N7-methylated caps. The extent of cap methylation is then determined by P1 nuclease digestion, thin-layer chromatography (TLC), and phosphorimaging. The protocol described here includes additional steps for generating the [32P]G-capped RNA substrate and for preparing nuclear and cytoplasmic extracts from mammalian cells. This assay is also applicable to analyzing the cap methyltransferase activity of other biological samples, including recombinant protein preparations and fractions from analytical separations and immunoprecipitation/pulldown experiments. PMID:29644259

  5. Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarkar, Swapnil C.; Wang, Chen; Miller, Matthew T.

    The cytosolic innate immune receptor Retinoic Acid Inducible Gene-I (RIG-I) is the principal detector of pathogenic RNAs carrying a 5'-triphosphate (5'ppp). Self RNAs like mRNAs evade recognition by RIG-I due to posttranscriptional modifications like 5'-end capping with 7-methyl guanosine (m7G) and 2'-O-methylation of 5'-end nucleotides. Viruses have also evolved mechanisms to mimic these modifications, which in part is believed to aid in immune evasion. Currently, it is unclear how these modifications modulate RIG-I recognition. This paper provides structural and mechanistic insights into the roles of the m7G cap and 2'-O-methylation in RIG-I evasion. We show that RIG-I accommodates the m7Gmore » base while maintaining the 5'ppp contacts and can recognize Cap-0 RNAs but not Cap-1.« less

  6. Perceptions of medical graduates and their workplace supervisors towards a medical school clinical audit program.

    PubMed

    Davis, Stephanie; O'Ferrall, Ilse; Hoare, Samuel; Caroline, Bulsara; Mak, Donna B

    2017-07-07

    This study explores how medical graduates and their workplace supervisors perceive the value of a structured clinical audit program (CAP) undertaken during medical school. Medical students at the University of Notre Dame Fremantle complete a structured clinical audit program in their final year of medical school.  Semi-structured interviews were conducted with 12 Notre Dame graduates (who had all completed the CAP), and seven workplace supervisors (quality and safety staff and clinical supervisors).  Purposeful sampling was used to recruit participants and data were analysed using thematic analysis. Both graduates and workplace supervisors perceived the CAP to be valuable. A major theme was that the CAP made a contribution to individual graduate's medical practice, including improved knowledge in some areas of patient care as well as awareness of healthcare systems issues and preparedness to undertake scientifically rigorous quality improvement activities. Graduates perceived that as a result of the CAP, they were confident in undertaking a clinical audit after graduation.  Workplace supervisors perceived the value of the CAP beyond an educational experience and felt that the audits undertaken by students improved quality and safety of patient care. It is vital that health professionals, including medical graduates, be able to carry out quality and safety activities in the workplace. This study provides evidence that completing a structured clinical audit during medical school prepares graduates to undertake quality and safety activities upon workplace entry. Other health professional faculties may be interested in incorporating a similar program in their curricula.

  7. Crystal Structure of Serine Racemase that Produces Neurotransmitter d-Serine for Stimulation of the NMDA Receptor

    NASA Astrophysics Data System (ADS)

    Goto, Masaru

    d-Serine is an endogenous coagonist for the N-methyl-d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5’-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of l-serine to yield d-serine and vice versa. We have determined the structures of three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe. Lys57 and Ser82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique lysino-d-alanyl residue at the active site, also binds the substrate serine in the active site, suggesting that the lysino-d-alanyl residue acts as a catalytic base in the same manner as Lys57 of the wild type enzyme.

  8. 40 CFR 180.1281 - S-Abscisic Acid, (S)-5-(1-hydroxy-2,6,6-trimethyl-4-oxo-1-cyclohex-2-enyl)-3-methyl-penta-(2Z,4E...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false S-Abscisic Acid, (S)-5-(1-hydroxy-2,6... Exemptions From Tolerances § 180.1281 S-Abscisic Acid, (S)-5-(1-hydroxy-2,6,6-trimethyl-4-oxo-1-cyclohex-2... from the requirement of a tolerance is established for residues of S-Abscisic Acid in or on all food...

  9. New synthesis of a stereoisomeric mixture of methyl 12-trishomofarnesoate, a juvenile hormone mimic useful in sericulture by increasing silk production

    PubMed Central

    MORI, Kenji

    2017-01-01

    A mixture of (E,Z)-isomers of methyl 12-trishomofarnesoate (methyl 3,7,11-trimethyl-2,6,10-pentadecatrienoate), a juvenile hormone mimic, was synthesized in nine steps (32.6% overall yield) by starting from only four commercially available materials: 2-hexanone, vinylmagnesium bromide, methyl acetoacetate and trimethyl phosphonoacetate. The mimic is useful in increasing the yield of silk by elongating the larval period of the silkworm, Bombyx mori (L.). PMID:29021513

  10. New synthesis of a stereoisomeric mixture of methyl 12-trishomofarnesoate, a juvenile hormone mimic useful in sericulture by increasing silk production.

    PubMed

    Mori, Kenji

    2017-01-01

    A mixture of (E,Z)-isomers of methyl 12-trishomofarnesoate (methyl 3,7,11-trimethyl-2,6,10-pentadecatrienoate), a juvenile hormone mimic, was synthesized in nine steps (32.6% overall yield) by starting from only four commercially available materials: 2-hexanone, vinylmagnesium bromide, methyl acetoacetate and trimethyl phosphonoacetate. The mimic is useful in increasing the yield of silk by elongating the larval period of the silkworm, Bombyx mori (L.).

  11. Isomer effects on polyimide properties

    NASA Technical Reports Server (NTRS)

    Stump, B. L.

    1975-01-01

    Polyimide polymers which are thermally stable and processable are developed. The addition of alkyl substituents to an aromatic ring in the polymer backbone is examined along with polyimide precursor amines containing functional groups that allow for post-cure crosslinking. The synthesis of key monomers is reported, including 2,4,6-tris (m-aminobenzyl) 1,3,5-trimethyl benzene and 2,4,6-tris (p-aminobenzyl) 1,3,5-trimethyl benzene. The preparation of a key monomer, 2,5,3-triamino benzophenone, is reported.

  12. Martian Polar Caps: Folding, Faulting, Flowing Glaciers of Multiple Interbedded Ices

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2001-12-01

    The Martian south polar cap (permanent CO2 cap and polar layered deposits), exhibit abundant, varied, and widespread deformational phenomena. Folding and boudinage are very common. Strike-slip or normal faults are rarer. Common in the vicinity of major troughs and scarps are signs of convergent flow tectonics manifested as wrinkle-ridge-like surface folds, thrust faults, and viscous forebulges with thin-skinned extensional crevasses and wrinkle-ridge folds. Such flow convergence is predicted by theory. Boudinage and folding at the 300-m wavelength scale, indicating rheologically contrasting materials, is widely exposed at deep levels along erosional scarps. Independent morphologic evidence indicates south polar materials of contrasting volatility. Hence, the south polar cap appears to be a multiphase structure of interbedded ices. The north polar cap locally also exhibits flow indicators, though they are neither as common nor as varied as in the south. The large-scale quasi-spiral structure of the polar caps could be a manifestation of large-scale boudinage. According to this scenario, deep-level boudinage continuously originates under the glacial divide (the polar cap summit). Rod-like boudin structures are oriented transverse to flow and migrate outward with the large-scale flow field. Troughs develop over areas between major boudins. A dynamic competition, and possibly a rough balance, develops between the local flow field in the vicinity of a trough (which tends to close the trough by lateral closure and upwelling flow) and sublimation erosion (which tends to widen and deepen them). Over time, the troughs flow to the margins of the polar cap where they, along with other polar structures, are destroyed by sublimation. Major ice types contributing to rheological and volatility layering may include, in order of highest to lowest mechanical strength, CO2 clathrate hydrate, water ice containing inert/insoluble dust, pure water ice, water ice containing traces of liquid-soluble salts, water ice containing traces of solid-soluble acids, CO2 ice. This is also nearly the same sequence of highest to lowest melting/dissociation points, but it is different than the sequence of volatility. This geologic-structural interpretation and specific chemical models are amenable to testing by computational means and point the way toward future needed observations, including complete high-resolution imaging of the polar caps, measurement of flow fields (possibly by laser interferometry), mapping of subsurface structures (by radar and/or seismic methods), and determination of composition (by penetrators, drillers, or borers). New lab data are needed on the physical properties of candidate ices.

  13. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations

    PubMed Central

    Laudenbach, Beatrice Theres; Martínez-Montero, Saúl; Cencic, Regina; Habjan, Matthias; Pichlmair, Andreas; Damha, Masad J.; Pelletier, Jerry; Nagar, Bhushan

    2017-01-01

    IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2′-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2′-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA. PMID:28251928

  14. Range Condition Assessment Report for Naval Surface Warfare Center, Dahlgren Laboratory Ranges, Dahlgren, Virginia

    DTIC Science & Technology

    2010-09-01

    following alternative: vegetative soil cap, offsite disposal of sediments, and phytoremediation to control groundwater levels beneath the landfill. The...cap. These issues include poor condition of the phytoremediation trees on the surface of the landfill cap and blockage of the pond outfall structure...to be completed in January 2009. Based on the poor condition of the phytoremediation trees on the landfill cap, a supplemental tree planting

  15. Functional hypervariability and gene diversity of cardioactive neuropeptides.

    PubMed

    Möller, Carolina; Melaun, Christian; Castillo, Cecilia; Díaz, Mary E; Renzelman, Chad M; Estrada, Omar; Kuch, Ulrich; Lokey, Scott; Marí, Frank

    2010-12-24

    Crustacean cardioactive peptide (CCAP) and related peptides are multifunctional regulatory neurohormones found in invertebrates. We isolated a CCAP-related peptide (conoCAP-a, for cone snail CardioActive Peptide) and cloned the cDNA of its precursor from venom of Conus villepinii. The precursor of conoCAP-a encodes for two additional CCAP-like peptides: conoCAP-b and conoCAP-c. This multi-peptide precursor organization is analogous to recently predicted molluscan CCAP-like preprohormones, and suggests a mechanism for the generation of biological diversification without gene amplification. While arthropod CCAP is a cardio-accelerator, we found that conoCAP-a decreases the heart frequency in Drosophila larvae, demonstrating that conoCAP-a and CCAP have opposite effects. Intravenous injection of conoCAP-a in rats caused decreased heart frequency and blood pressure in contrast to the injection of CCAP, which did not elicit any cardiac effect. Perfusion of rat ventricular cardiac myocytes with conoCAP-a decreased systolic calcium, indicating that conoCAP-a cardiac negative inotropic effects might be mediated via impairment of intracellular calcium trafficking. The contrasting cardiac effects of conoCAP-a and CCAP indicate that molluscan CCAP-like peptides have functions that differ from those of their arthropod counterparts. Molluscan CCAP-like peptides sequences, while homologous, differ between taxa and have unique sequences within a species. This relates to the functional hypervariability of these peptides as structure activity relationship studies demonstrate that single amino acids variations strongly affect cardiac activity. The discovery of conoCAPs in cone snail venom emphasizes the significance of their gene plasticity to have mutations as an adaptive evolution in terms of structure, cellular site of expression, and physiological functions.

  16. Functional Hypervariability and Gene Diversity of Cardioactive Neuropeptides*

    PubMed Central

    Möller, Carolina; Melaun, Christian; Castillo, Cecilia; Díaz, Mary E.; Renzelman, Chad M.; Estrada, Omar; Kuch, Ulrich; Lokey, Scott; Marí, Frank

    2010-01-01

    Crustacean cardioactive peptide (CCAP) and related peptides are multifunctional regulatory neurohormones found in invertebrates. We isolated a CCAP-related peptide (conoCAP-a, for cone snail CardioActive Peptide) and cloned the cDNA of its precursor from venom of Conus villepinii. The precursor of conoCAP-a encodes for two additional CCAP-like peptides: conoCAP-b and conoCAP-c. This multi-peptide precursor organization is analogous to recently predicted molluscan CCAP-like preprohormones, and suggests a mechanism for the generation of biological diversification without gene amplification. While arthropod CCAP is a cardio-accelerator, we found that conoCAP-a decreases the heart frequency in Drosophila larvae, demonstrating that conoCAP-a and CCAP have opposite effects. Intravenous injection of conoCAP-a in rats caused decreased heart frequency and blood pressure in contrast to the injection of CCAP, which did not elicit any cardiac effect. Perfusion of rat ventricular cardiac myocytes with conoCAP-a decreased systolic calcium, indicating that conoCAP-a cardiac negative inotropic effects might be mediated via impairment of intracellular calcium trafficking. The contrasting cardiac effects of conoCAP-a and CCAP indicate that molluscan CCAP-like peptides have functions that differ from those of their arthropod counterparts. Molluscan CCAP-like peptides sequences, while homologous, differ between taxa and have unique sequences within a species. This relates to the functional hypervariability of these peptides as structure activity relationship studies demonstrate that single amino acids variations strongly affect cardiac activity. The discovery of conoCAPs in cone snail venom emphasizes the significance of their gene plasticity to have mutations as an adaptive evolution in terms of structure, cellular site of expression, and physiological functions. PMID:20923766

  17. Modeling polar cap F-region patches using time varying convection

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Bowline, M. D.; Schunk, R. W.; Decker, D. T.; Valladares, C. E.; Sheehan, R.; Anderson, D. N.; Heelis, R. A.

    1993-01-01

    Creation of polar cap F-region patches are simulated for the first time using two independent physical models of the high latitude ionosphere. The patch formation is achieved by temporally varying the magnetospheric electric field (ionospheric convection) input to the models. The imposed convection variations are comparable to changes in the convection that result from changes in the B(y) IMF component for southward IMF. Solar maximum-winter simulations show that simple changes in the convection pattern lead to significant changes in the polar cap plasma structuring. Specifically, in winter, as enhanced dayside plasma convects into the polar cap to form the classic tongue-of-ionization the convection changes produce density structures that are indistinguishable from the observed patches.

  18. A morphometric analysis of cellular differentiation in caps of primary and lateral roots of Helianthus annuus

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.

  19. DNA 3' pp 5' G de-capping activity of aprataxin: effect of cap nucleoside analogs and structural basis for guanosine recognition

    DOE PAGES

    Chauleau, Mathieu; Jacewicz, Agata; Shuman, Stewart

    2015-05-24

    DNA 3' pp 5'G caps synthesized by the 3'-PO 4/5'-OH ligase RtcB have a strong impact on enzymatic reactions at DNA 3'-OH ends. Aprataxin, an enzyme that repairs A5'pp5'DNA ends formed during abortive ligation by classic 3'-OH/5'-PO 4 ligases, is also a DNA 3' de-capping enzyme, converting DNAppG to DNA 3'p and GMP. By taking advantage of RtcB's ability to utilize certain GTP analogs to synthesize DNAppN caps, we show that aprataxin hydrolyzes inosine and 6-O-methylguanosine caps, but is not adept at removing a deoxyguanosine cap. We report a 1.5 Å crystal structure of aprataxin in a complex with GMP,more » which reveals that: (i) GMP binds at the same position and in the same anti nucleoside conformation as AMP; and (ii) aprataxin makes more extensive nucleobase contacts with guanine than with adenine, via a hydrogen bonding network to the guanine O6, N1, N2 base edge. Alanine mutations of catalytic residues His147 and His149 abolish DNAppG de-capping activity, suggesting that the 3' de-guanylylation and 5' de-adenylylation reactions follow the same pathway of nucleotidyl transfer through a covalent aprataxin-(His147)–NMP intermediate. Alanine mutation of Asp63, which coordinates the guanosine ribose hydroxyls, impairs DNAppG de-capping.« less

  20. The X-ray Crystal Structures of Human {alpha}-Phosphomannomutase 1 Reveal the Structural Basis of Congenital Disorder of Glycosylation Type 1a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvaggi,N.; Zhang, C.; Lu, Z.

    2006-01-01

    Carbohydrate-deficient glycoprotein syndrome type 1a (CDG-1a) is a congenital disease characterized by severe defects in nervous system development. It is caused by mutations in alpha -phosphomannomutase (of which there are two isozymes, {alpha}-PMM1 and {alpha}-PPM2). Here we report the X-ray crystal structures of human {alpha}-PMM1 in the open conformation, with and without the bound substrate, {alpha}-D-mannose 1-phosphate. {alpha}-PMM1, like most Haloalkanoic Acid Dehalogenase Superfamily (HADSF) members, consists of two domains, the cap and core, which open to bind substrate and then close to provide a solvent exclusive environment for catalysis. The substrate phosphate group is observed at a positively chargedmore » site of the cap domain, rather than at the core domain phosphoryl-transfer site defined by the D19 nucleophile and Mg{sup 2+} cofactor. This suggests that substrate binds first to the cap and then is swept into the active site upon cap closure. The orientation of the acid/base residue D21 suggests that {alpha}-PMM uses a different method of protecting the aspartylphosphate from hydrolysis than the HADSF member {beta}-phosphoglucomutase. It is hypothesized that the electrostatic repulsion of positive charges at the interface of the cap and core domains stabilizes {alpha}-PMM1 in the open conformation, and that the negatively charged substrate binds to the cap, thereby facilitating its closure over the core domain. The two isozymes {alpha}-PMM1 and {alpha}-PMM2 are shown to have a conserved active-site structure and to display similar kinetic properties. Analysis of the known mutation sites in the context of the structures reveals the genotype-phenotype relationship underlying CDG-1a.« less

  1. Molecular dynamics simulation on HP1 protein binding by histone H3 tail methylation and phosphorylation

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Ke; Zou, Jian-Wei; Wu, Yu-Qian; Zhang, Na; Yu, Qing-Sen; Jiang, Yong-Jun

    Trimethylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Phosphorylation of histone H3 has been linked with mitotic chromatin condensation. During mitosis in vivo, H3 lysine 9 methylation and serine 10 phosphorylation can occur concomitantly on the same histone tail, whereas the influence of phosphorylation to trimethylation H3 tail recruiting HP1 remains controversial. In this work, molecular dynamics simulation of HP1 complexed with both trimethylated and phosphorylated H3 tail were performed and compared with the results from the previous methylated H3-HP1 trajectory. It is clear from the 10-ns dynamics simulation that two adjacent posttranslational modifications directly increase the flexibility of the H3 tail and weaken HP1 binding to chromatin. A combinatorial readout of two adjacent posttranslational modifications-a stable methylation and a dynamic phosphorylation mark-establish a regulatory mechanism of protein-protein interactions.

  2. Topological structure prediction in binary nanoparticle superlattices

    DOE PAGES

    Travesset, A.

    2017-04-27

    Systems of spherical nanoparticles with capping ligands have been shown to self-assemble into beautiful superlattices of fascinating structure and complexity. Here, I show that the spherical geometry of the nanoparticle imposes constraints on the nature of the topological defects associated with the capping ligand and that such topological defects control the structure and stability of the superlattices that can be assembled. Furthermore, all of these considerations form the basis for the orbifold topological model (OTM) described in this paper. Finally, the model quantitatively predicts the structure of super-lattices where capping ligands are hydrocarbon chains in excellent agreement with experimental results,more » explains the appearance of low packing fraction lattices as equilibrium, why certain similar structures are more stable (bccAB 6vs. CaB 6, AuCu vs. CsCl, etc.) and many other experimental observations.« less

  3. Suppression of gate leakage current in in-situ grown AlN/InAlN/AlN/GaN heterostructures based on the control of internal polarization fields

    NASA Astrophysics Data System (ADS)

    Kotani, Junji; Yamada, Atsushi; Ishiguro, Tetsuro; Yamaguchi, Hideshi; Nakamura, Norikazu

    2017-03-01

    This paper investigates the gate leakage characteristics of in-situ AlN capped InAlN/AlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. It was revealed that the leakage characteristics of AlN capped InAlN/AlN/GaN heterostructures are strongly dependent on the growth temperature of the AlN cap. For an AlN capped structure with an AlN growth temperature of 740 °C, the leakage current even increased although there exists a large bandgap material on InAlN/AlN/GaN heterostructures. On the other hand, a large reduction of the gate leakage current by 4-5 orders of magnitudes was achieved with a very low AlN growth temperature of 430 °C. X-ray diffraction analysis of the AlN cap grown at 740 °C indicated that the AlN layer is tensile-strained. In contrast to this result, the amorphous structure was confirmed for the AlN cap grown at 430 °C by transmission electron microscopy. Furthermore, theoretical analysis based on one-dimensional band simulation was carried out, and the large increase in two-dimensional electron gas (2DEG) observed in Hall measurements was well reproduced by taking into account the spontaneous and piezo-electric polarization in the AlN layer grown at 740 °C. For the AlN capped structure grown at 430 °C, it is believed that the reduced polarization field in the AlN cap suppressed the penetration of 2DEG into the InAlN barrier layer, resulting in a small impact on 2DEG mobility and density. We believe that an in-situ grown AlN cap with a very low growth temperature of 430 °C is a promising candidate for high-frequency/high-power GaN-based devices with low gate leakage current.

  4. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, M. Sajimol, E-mail: sajimollazar@gmail.com; Mathew, Lizzy; Alex, Roselin

    2014-01-28

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural propertiesmore » of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.« less

  5. Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) is a novel lipid-binding SCP/TAPS protein that lacks the prototypical CAP motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelleher, Alan; Darwiche, Rabih; Rezende, Wanderson C.

    2014-08-01

    The first structure of an S. mansoni venom allergen-like protein is presented. Schistosomiasis is a parasitic disease that affects over 200 million people. Vaccine candidates have been identified, including Schistosoma mansoni venom allergen-like proteins (SmVALs) from the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. The first SmVAL structure, SmVAL4, was refined to a resolution limit of 2.16 Å. SmVAL4 has a unique structure that could not be predicted from homologous structures, with longer loops and an unusual C-terminal extension. SmVAL4 has the characteristic α/β-sandwich and central SCP/TAPS cavity. Furthermore, SmVAL4 has only one of the signature CAP cavity tetrad amino-acid residuesmore » and is missing the histidines that coordinate divalent cations such as Zn{sup 2+} in other SCP/TAPS proteins. SmVAL4 has a cavity between α-helices 1 and 4 that was observed to bind lipids in tablysin-15, suggesting the ability to bind lipids. Subsequently, SmVAL4 was shown to bind cholesterol in vitro. Additionally, SmVAL4 was shown to complement the in vivo sterol-export phenotype of yeast mutants lacking their endogenous CAP proteins. Expression of SmVAL4 in yeast cells lacking endogenous CAP function restores the block in sterol export. These studies suggest an evolutionarily conserved lipid-binding function shared by CAP proteins such as SmVAL4 and yeast CAP proteins such as Pry1.« less

  6. Perceptions of medical graduates and their workplace supervisors towards a medical school clinical audit program

    PubMed Central

    O'Ferrall, Ilse; Hoare, Samuel; Caroline, Bulsara; Mak, Donna B.

    2017-01-01

    Objectives This study explores how medical graduates and their workplace supervisors perceive the value of a structured clinical audit program (CAP) undertaken during medical school. Methods Medical students at the University of Notre Dame Fremantle complete a structured clinical audit program in their final year of medical school.  Semi-structured interviews were conducted with 12 Notre Dame graduates (who had all completed the CAP), and seven workplace supervisors (quality and safety staff and clinical supervisors).  Purposeful sampling was used to recruit participants and data were analysed using thematic analysis. Results Both graduates and workplace supervisors perceived the CAP to be valuable. A major theme was that the CAP made a contribution to individual graduate’s medical practice, including improved knowledge in some areas of patient care as well as awareness of healthcare systems issues and preparedness to undertake scientifically rigorous quality improvement activities. Graduates perceived that as a result of the CAP, they were confident in undertaking a clinical audit after graduation.  Workplace supervisors perceived the value of the CAP beyond an educational experience and felt that the audits undertaken by students improved quality and safety of patient care. Conclusions It is vital that health professionals, including medical graduates, be able to carry out quality and safety activities in the workplace. This study provides evidence that completing a structured clinical audit during medical school prepares graduates to undertake quality and safety activities upon workplace entry. Other health professional faculties may be interested in incorporating a similar program in their curricula.  PMID:28692425

  7. Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases

    PubMed Central

    Reguera, Juan; Gerlach, Piotr; Rosenthal, Maria; Gaudon, Stephanie; Coscia, Francesca; Günther, Stephan; Cusack, Stephen

    2016-01-01

    Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5′ end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase. PMID:27304209

  8. The Cyclase-Associated Protein Cap1 Is Important for Proper Regulation of Infection-Related Morphogenesis in Magnaporthe oryzae

    PubMed Central

    Zhou, Xiaoying; Zhang, Haifeng; Li, Guotian; Shaw, Brian; Xu, Jin-Rong

    2012-01-01

    Surface recognition and penetration are critical steps in the infection cycle of many plant pathogenic fungi. In Magnaporthe oryzae, cAMP signaling is involved in surface recognition and pathogenesis. Deletion of the MAC1 adenylate cyclase gene affected appressorium formation and plant infection. In this study, we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting proteins is the adenylate cyclase-associated protein named Cap1. CAP genes are well-conserved in phytopathogenic fungi but none of them have been functionally characterized. Deletion of CAP1 blocked the effects of a dominant RAS2 allele and resulted in defects in invasive growth and a reduced intracellular cAMP level. The Δcap1 mutant was defective in germ tube growth, appressorium formation, and formation of typical blast lesions. Cap1-GFP had an actin-like localization pattern, localizing to the apical regions in vegetative hyphae, at the periphery of developing appressoria, and in circular structures at the base of mature appressoria. Interestingly, Cap1, similar to LifeAct, did not localize to the apical regions in invasive hyphae, suggesting that the apical actin cytoskeleton differs between vegetative and invasive hyphae. Domain deletion analysis indicated that the proline-rich region P2 but not the actin-binding domain (AB) of Cap1 was responsible for its subcellular localization. Nevertheless, the AB domain of Cap1 must be important for its function because CAP1 ΔAB only partially rescued the Δcap1 mutant. Furthermore, exogenous cAMP induced the formation of appressorium-like structures in non-germinated conidia in CAP1 ΔAB transformants. This novel observation suggested that AB domain deletion may result in overstimulation of appressorium formation by cAMP treatment. Overall, our results indicated that CAP1 is important for the activation of adenylate cyclase, appressorium morphogenesis, and plant infection in M. oryzae. CAP1 may also play a role in feedback inhibition of Ras2 signaling when Pmk1 is activated. PMID:22969430

  9. Adaptive fiber optics collimator based on flexible hinges.

    PubMed

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  10. Morphological and functional changes in RAW264 macrophage-like cells in response to a hydrated layer of carbonate-substituted hydroxyapatite.

    PubMed

    Igeta, Kazuki; Kuwamura, Yuta; Horiuchi, Naohiro; Nozaki, Kosuke; Shiraishi, Daichi; Aizawa, Mamoru; Hashimoto, Kazuaki; Yamashita, Kimihiro; Nagai, Akiko

    2017-04-01

    Synthetic hydroxyapatite (HAp) is used clinically as a material for bone prostheses owing to its good bone-bonding ability; however, it does not contribute to bone remodeling. Carbonate-substituted hydroxyapatite (CAp) has greater bioresorption capacity than HAp while having similar bone-bonding potential, and is therefore considered as a next promising material for bone prostheses. However, the effects of the CAp instability on inflammatory and immune responses are unknown in detail. Here, we show that the surface layer of CAp is more hydrated than that of HAp and induces changes in the shape and function of macrophage-like cells. HAp and CAp were synthesized by wet method and molded into disks. The carbonate content of CAp disks was 6.2% as determined by Fourier transform (FT) infrared spectral analysis. Diffuse reflectance infrared FT analysis confirmed that physisorbed water and surface hydroxyl groups (OH - ) were increased whereas structural OH - was decreased on the CAp as compared to the HAp surface. The degree of hydroxylation in CAp was comparable to that in bone-apatite structures, and the CAp surface exhibited greater hydrophilicity and solubility than HAp. We investigated immune responses to these materials by culturing RAW264 cells (macrophage precursors) on their surfaces. Cell spreading on the CAp disk was suppressed and the secretion level of inflammatory cytokines was reduced as compared to cells grown on HAp. These results indicate that the greater surface hydration of CAp surface can attenuate adverse inflammatory responses to implanted bone prostheses composed of this material. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1063-1070, 2017. © 2017 Wiley Periodicals, Inc.

  11. On the base-stacking in the 5'-terminal cap structure of mRNA: a fluorescence study.

    PubMed Central

    Nishimura, Y; Takahashi, S; Yamamoto, T; Tsuboi, M; Hattori, M; Miura, K; Yamaguchi, K; Ohtani, S; Hata, T

    1980-01-01

    The fluorescence at 370 nm of the 7-methylguanosine residue (m7G) is found to be quenched when the base residue is involved in a stacking interaction with the adenosine residue in the cap structure m7G5' pppA of an eukaryotic mRNA. On the basis of the observed degree of quenching, the amounts of the stacked and unstacked forms in the cap structure have been determined at various temperatures and pH's. It has been found that at pH 6.2 effective enthalpy and entropy in the unstacked leads to stacked change are delta H degrees = 4.4 +/- 0.1 kcal/mole and delta S degrees = - 14.3 +/- 0.2 e.u., respectively. The pka value for the m7G residue is found to be 7.7 at 10 degrees C and 7.3 at 30 degrees C. The stacked structure seems to be less favourable in the deprotonated form that occurs in the higher pH solution. A similar analysis of some other cap structures indicates that the stacked form in m7G5' pppN structure is favourable if N is a purine nucleoside or a 2'-O-methylpyrimidine nucleoside but not for an unmethylated pyrimidine nucleoside. PMID:7443542

  12. QM/MM Investigation of Substrate and Product Specificities of Suv4-20h2: How Does This Enzyme Generate Dimethylated H4K20 from Monomethylated Substrate?

    PubMed

    Qian, Ping; Guo, Haobo; Wang, Liang; Guo, Hong

    2017-06-13

    Protein lysine methyltransferases (PKMTs) catalyze the methylation of lysine residues on histone proteins in the regulation of chromatin structure and gene expression. In contrast to many other PKMTs for which unmodified lysine is the methylation target, the enzymes in the Suv4-20 family are able to generate dimethylated product (H4K20me2) based exclusively on the monomethylated H4K20 substrate (H4K20me1). The origin of such substrate/product specificity is still not clear. Here, molecular dynamics (MD) and free energy (potential of mean force) simulations are undertaken using quantum mechanical/molecular mechanical (QM/MM) potentials to understand the substrate/product specificities of Suv4-20h2, a member of the Suv4-20 family. The free energy barriers for mono-, di-, and trimethylation in Suv4-20h2 obtained from the simulations are found to be well correlated with the specificities observed experimentally with the allowed dimethylation based on the H4K20me1 substrate and prohibited monomethylation and trimethylation based on H4K20 and H4K20me2, respectively. It is demonstrated that the reason for the relatively efficient dimethylation is an effective transition state (TS) stabilization through strengthening the CH···O interactions as well as the presence of a cation-π interaction at the transition state. The simulations also show that the failures of Suv4-20h2 to catalyze monomethylation and trimethylation are due, respectively, to a less effective TS stabilization and inability of the reactant complex containing H4K20me2 to adopt a reactive (near attack) configuration for methyl transfer. The results suggest that care must be exercised in the prediction of the substrate specificity based only on the existence of near attack configurations in substrate complexes.

  13. Context dependency of Set1/COMPASS-mediated histone H3 Lys4 trimethylation

    PubMed Central

    Thornton, Janet L.; Westfield, Gerwin H.; Takahashi, Yoh-hei; Cook, Malcolm; Gao, Xin; Woodfin, Ashley R.; Lee, Jung-Shin; Morgan, Marc A.; Jackson, Jessica; Smith, Edwin R.; Couture, Jean-Francois; Skiniotis, Georgios; Shilatifard, Ali

    2014-01-01

    The stimulation of trimethylation of histone H3 Lys4 (H3K4) by H2B monoubiquitination (H2Bub) has been widely studied, with multiple mechanisms having been proposed for this form of histone cross-talk. Cps35/Swd2 within COMPASS (complex of proteins associated with Set1) is considered to bridge these different processes. However, a truncated form of Set1 (762-Set1) is reported to function in H3K4 trimethylation (H3K4me3) without interacting with Cps35/Swd2, and such cross-talk is attributed to the n-SET domain of Set1 and its interaction with the Cps40/Spp1 subunit of COMPASS. Here, we used biochemical, structural, in vivo, and chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) approaches to demonstrate that Cps40/Spp1 and the n-SET domain of Set1 are required for the stability of Set1 and not the cross-talk. Furthermore, the apparent wild-type levels of H3K4me3 in the 762-Set1 strain are due to the rogue methylase activity of this mutant, resulting in the mislocalization of H3K4me3 from the promoter-proximal regions to the gene bodies and intergenic regions. We also performed detailed screens and identified yeast strains lacking H2Bub but containing intact H2Bub enzymes that have normal levels of H3K4me3, suggesting that monoubiquitination may not directly stimulate COMPASS but rather works in the context of the PAF and Rad6/Bre1 complexes. Our study demonstrates that the monoubiquitination machinery and Cps35/Swd2 function to focus COMPASS's H3K4me3 activity at promoter-proximal regions in a context-dependent manner. PMID:24402317

  14. Azapsoralens: new potential photochemotherapeutic agents for psoriasis.

    PubMed

    Vedaldi, D; Caffieri, S; Miolo, G; Dall'Acqua, F; Baccichetti, F; Guiotto, A; Benetollo, F; Bombieri, G; Recchia, G; Cristofolini, M

    1991-12-01

    New bioisoters of psoralen, obtained by replacing carbon 8 of the central benzene ring with a nitrogen, were studied from the photochemical, photobiological and phototherapeutic points of view. In particular, 4,4'-, 4',5'-dimetyl, 4,4',5'-trimethyl and 3,4,4',5'-tetramethylazapsoralen were studied. The crystal and molecular structure of 4,4',5'-trimethylazapsoralen, obtained by X ray diffraction, was also reported. Like psoralen, these compounds form a molecular complex with DNA, undergoing intercalation inside the double helix of the macromolecule. When irridiated with long ultraviolet light (365 nm), the intercalated drug photoconjugates covalently to the macromolecule, forming mono- and diadducts. The photobinding rate show the following order of magnitude: 4,4',5'-trimetylazapsoralen (4,4',5'-TMAP) = 3,4,4',5'-tetramethylazapsoralen (3,4,4',5'-TMAP) greater than 4',5'-dimethylazapsoralen (4',5'-DMAP) = 4,4'-dimethylazapsoralen (4,4'-DMAP). The DNA photobinding rate of 8-methoxypsoralen (8-MOP), taken as reference compound, is similar to that of the two dimetylazapsoralens but lower than tri- and tetramethyl derivatives. The ability of azapsoralens to form cross-links in DNA is lower than that of 8-MOP. However, capacity to induce cross-links does not parallel the DNA photobinding rate; it is higher for trimethyl derivate and lower for tetramethylazapsoralen. Azapsoralens show evident antiproliferative activity. The trimethyl derivative is the most active, followed by tetrametyl, both these compounds showing activity slightly higher than that of 8-MOP. The two dimethylderivatives are less active. The mautagenic activity of azapsoralens on E. coli WP2 TM6 is lower than that of 8-MOP in the same conditions. The new compounds do not show any skin phototoxicity on guinea pig skin. On the basis of its DNA photobinding, antiproliferative activity, mutagenicity and lack of skin phototoxicity, 4,4',5'-TMAP was chosen for clinical evaluation. Clinical results obtained by topical treatment of psoriatic plaques reveal evident therapeutic effectiveness and clearing is between good and moderate, although 8-MOP, used as reference compound, is more effective.

  15. Telomere Capping Proteins are Structurally Related to RPA with an additional Telomere-Specific Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinas, A.; Paschini, M; Reyes, F

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to supportmore » a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.« less

  16. VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability.

    PubMed

    Yu, Xiao; Chen, Shuliang; Hou, Panpan; Wang, Min; Chen, Yu; Guo, Deyin

    2015-04-03

    Eukaryotic cellular and most viral RNAs carry a 5'-terminal cap structure, a 5'-5' triphosphate linkage between the 5' end of the RNA and a guanosine nucleotide (cap-0). SARS coronavirus (SARS-CoV) nonstructural protein nsp16 functions as a methyltransferase, to methylate mRNA cap-0 structure at the ribose 2'-O position of the first nucleotide to form cap-1 structures. However, whether there is interplay between nsp16 and host proteins was not yet clear. In this report, we identified several potential cellular nsp16-interacting proteins from a human thymus cDNA library by yeast two-hybrid screening. VHL, one of these proteins, was proven to interact with nsp16 both in vitro and in vivo. Further studies showed that VHL can inhibit SARS-CoV replication by regulating nsp16 ubiquitination and promoting its degradation. Our results have revealed the role of cellular VHL in the regulation of SARS-CoV replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Development of a unique laboratory standard: Indium gallium arsenide detector for the 500-1700 nm spectral region

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A planar (5 mm diameter) indium gallium arsenide detector having a high (greater than 50 pct) quantum efficiency from the visible into the infrared spectrum (500 to 1700 nm) was fabricated. Quantum efficiencies as high as 37 pct at 510 nm, 58 pct at 820 nm and 62 pct at 1300 nm and 1550 nm were measured. A planar InP/InGaAs detector structure was also fabricated using vapor phase epitaxy to grow device structures with 0, 0.2, 0.4 and 0.6 micrometer thick InP caps. Quantum efficiency was studied as a function of cap thickness. Conventional detector structures were also used by completely etching off the InP cap after zinc diffusion. Calibrated quantum efficiencies were measured. Best results were obtained with devices whose caps were completely removed by etching. Certain problems still remain with these detectors including non-uniform shunt resistance, reproducibility, contact resistance and narrow band anti-reflection coatings.

  18. Rethinking the polar cap: Eccentric dipole structuring of ULF power at the highest corrected geomagnetic latitudes

    NASA Astrophysics Data System (ADS)

    Urban, Kevin D.; Gerrard, Andrew J.; Lanzerotti, Louis J.; Weatherwax, Allan T.

    2016-09-01

    The day-to-day evolution and statistical features of Pc3-Pc7 band ultralow frequency (ULF) power throughout the southern polar cap suggest that the corrected geomagnetic (CGM) coordinates do not adequately organize the observed hydromagnetic spatial structure. It is shown that that the local-time distribution of ULF power at sites along CGM latitudinal parallels exhibit fundamental differences and that the CGM latitude of a site in general is not indicative of the site's projection into the magnetosphere. Thus, ULF characteristics observed at a single site in the polar cap cannot be freely generalized to other sites of similar CGM latitude but separated in magnetic local time, and the inadequacy of CGM coordinates in the polar cap has implications for conjugacy/mapping studies in general. In seeking alternative, observationally motivated systems of "polar cap latitudes," it is found that eccentric dipole (ED) coordinates have several strengths in organizing the hydromagnetic spatial structure in the polar cap region. ED latitudes appear to better classify the local-time ULF power in both magnitude and morphology and better differentiate the "deep polar cap" (where the ULF power is largely UT dependent and nearly free of local-time structure) from the "peripheral polar cap" (where near-magnetic noon pulsations dominate at lower and lower frequencies as one increases in ED latitude). Eccentric local time is shown to better align the local-time profiles in the magnetic east component over several PcX bands but worsen in the magnetic north component. It is suggested that a hybrid ED-CGM coordinate system might capture the strengths of both CGM and ED coordinates. It is shown that the local-time morphology of median ULF power at high-latitude sites is dominantly driven by where they project into the magnetosphere, which is best quantified by their proximity to the low-altitude cusp on the dayside (which is not necessarily quantified by a site's CGM latitude), and that variations in the local-time morphology at sites similar in ED latitude are due to both geographic local-time control (relative amplification or dampening by the diurnal variation in the local ionospheric conductivity) and geomagnetic coastal effects (enhanced power in a coastally mediated direction). Regardless of cause, it is emphasized that the application of CGM latitudes in the polar cap region is not entirely meaningful and likely should be dispensed with in favor of a scheme that is in better accord with the observed hydromagnetic spatial structure.

  19. Total synthesis and structural revision of TMG-chitotriomycin, a specific inhibitor of insect and fungal beta-N-acetylglucosaminidases.

    PubMed

    Yang, You; Li, Yao; Yu, Biao

    2009-09-02

    TMG-chitotriomycin, a potent and selective inhibitor of the beta-N-acetylglucosaminidases that possesses an unique N,N,N-trimethyl-d-glucosamine (TMG) residue, is revised to be the TMG-beta-(1-->4)-chitotriose instead of the originally proposed alpha-anomer via its total synthesis, for which a highly convergent approach was developed in which the sterically demanding (1-->4)-glycosidic linkages are efficiently constructed by the Au(I)-catalyzed glycosylation protocol with glycosyl o-hexynylbenzoates as donors.

  20. Trimethyl phosphite as a trap for alkoxy radicals formed from the ring opening of oxiranylcarbinyl radicals. Conversion to alkenes. Mechanistic applications to the study of C-C versus C-O ring cleavage.

    PubMed

    Ding, Bangwei; Bentrude, Wesley G

    2003-03-19

    Trimethyl phosphite, (MeO)(3)P, is introduced as an efficient and selective trap in oxiranylcarbinyl radical (2) systems, formed from haloepoxides 8-13 under thermal AIBN/n-Bu(3)SnH conditions at about 80 degrees C. Initially, the transformations of 8-13, in the absence of phosphite, to allyl alcohol 7 and/or vinyl ether 5 were measured quantitatively (Table 1). Structural variations in the intermediate oxiranylcarbinyl (2), allyloxy (3), and vinyloxycarbinyl (4) radicals involve influences of the thermodynamics and kinetics of the C-O (2 --> 3, k(1)) and C-C (2 --> 4, k(2)) radical scission processes and readily account for the changes in the amounts of product vinyl ether (5) and allyl alcohol (7) formed. Added (MeO)(3)P is inert to vinyloxycarbinyl radical 4 and selectively and rapidly traps allyloxy radical 3, diverting it to trimethyl phosphate and allyl radical 6. Allyl radicals (6) dimerize or are trapped by n-Bu(3)SnH to give alkenes, formed from haloepoxides 8, 9, and 13 in 69-95% yields. Intermediate vinyloxycarbinyl radicals (4), in the presence or absence of (MeO)(3)P, are trapped by n-Bu(3)SnH to give vinyl ethers (5). The concentrations of (MeO)(3)P and n-Bu(3)SnH were varied independently, and the amounts of phosphate, vinyl ether (5), and/or alkene from haloepoxides 10, 11, and 13 were carefully monitored. The results reflect readily understood influences of changes in the structures of radicals 2-4, particularly as they influence the C-O (k(1)) and C-C (k(2)) cleavages of intermediate oxiranylcarbinyl radical 2 and their reverse (k(-1), k(-2)). Diversion by (MeO)(3)P of allyloxy radicals (3) from haloepoxides 11 and 12 fulfills a prior prediction that under conditions closer to kinetic control, products of C-O scission, not just those of C-C scission, may result. Thus, for oxiranylcarbinyl radicals from haloepoxides 11, 12, and 13, C-O scission (k(1), 2 --> 3) competes readily with C-C cleavage (k(2), 2 --> 4), even though C-C scission is favored thermodynamically.

  1. A Capped Dipeptide Which Simultaneously Exhibits Gelation and Crystallization Behavior.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Bhadbhade, Mohan M; Thordarson, Pall

    2016-03-08

    Short peptides capped at their N-terminus are often highly efficient gelators, yet notoriously difficult to crystallize. This is due to strong unidirectional interactions within fibers, resulting in structure propagation only along one direction. Here, we synthesize the N-capped dipeptide, benzimidazole-diphenylalanine, which forms both hydrogels and single crystals. Even more remarkably, we show using atomic force microscopy the coexistence of these two distinct phases. We then use powder X-ray diffraction to investigate whether the single crystal structure can be extrapolated to the molecular arrangement within the hydrogel. The results suggest parallel β-sheet arrangement as the dominant structural motif, challenging existing models for gelation of short peptides, and providing new directions for the future rational design of short peptide gelators.

  2. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis.

    PubMed

    Luo, Fang; Yang, Die; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-08-15

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC-MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles.

    PubMed

    Vatansever, Fatma; Hamblin, Michael R

    2017-02-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly( n -hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was "seeded" with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n -hexyl isocyanate monomer insertion, to "build up" the surface-grown polymer layers from the "bottom-up". A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses.

  4. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles

    PubMed Central

    Vatansever, Fatma; Hamblin, Michael R.

    2017-01-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly(n-hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was “seeded” with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n-hexyl isocyanate monomer insertion, to “build up” the surface-grown polymer layers from the “bottom-up”. A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses. PMID:28989336

  5. Convection flow structure in the central polar cap

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.

    2017-12-01

    A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.

  6. Plasma turbulence and coherent structures in the polar cap observed by the ICI-2 sounding rocket

    NASA Astrophysics Data System (ADS)

    Spicher, A.; Miloch, W. J.; Clausen, L. B. N.; Moen, J. I.

    2015-12-01

    The electron density data from the ICI-2 sounding rocket experiment in the high-latitude F region ionosphere are analyzed using the higher-order spectra and higher-order statistics. Two regions of enhanced fluctuations are chosen for detailed analysis: the trailing edge of a polar cap patch and an electron density enhancement associated with particle precipitation. While these two regions exhibit similar power spectra, our analysis reveals that their internal structures are significantly different. The structures on the edge of the polar cap patch are likely due to nonlinear wave interactions since this region is characterized by intermittency and significant coherent mode coupling. The plasma enhancement subjected to precipitation, however, exhibits stronger random characteristics with uncorrelated phases of density fluctuations. These results suggest that particle precipitation plays a fundamental role in ionospheric plasma structuring creating turbulent-like structures. We discuss the physical mechanisms that cause plasma structuring as well as the possible processes for the low-frequency part of the spectrum in terms of plasma instabilities.

  7. Perturbations in DNA structure upon interaction with porphyrins revealed by chemical probes, DNA footprinting and molecular modelling.

    PubMed

    Ford, K G; Neidle, S

    1995-06-01

    The interactions of several porphyrins with a 74 base-pair DNA sequence have been examined by footprinting and chemical protection methods. Tetra-(4-N-methyl-(pyridyl)) porphyrin (TMPy), two of its metal complexes and tetra-(4-trimethylanilinium) porphyrin (TMAP) bind to closely similar AT-rich sequences. The three TMPy ligands produce modest changes in DNA structure and base accessibility on binding, in contrast to the large-scale conformational changes observed with TMAP. Molecular modelling studies have been performed on TMPy and TMAP bound in the AT-rich minor groove of an oligonucleotide. These have shown that significant structural change is needed to accommodate the bulky trimethyl substituent groups of TMAP, in contrast to the facile minor groove fit of TMPy.

  8. Structural and Biological Characterization of a Capsular Polysaccharide Produced by Staphylococcus haemolyticus▿

    PubMed Central

    Flahaut, Sigrid; Vinogradov, Evgeny; Kelley, Kathryn A.; Brennan, Shannon; Hiramatsu, Keiichi; Lee, Jean C.

    2008-01-01

    The DNA sequence of the genome of Staphylococcus haemolyticus JCSC1435 revealed a putative capsule operon composed of 13 genes in tandem. The first seven genes (capABCDEFGSh) showed ≥57% similarity with the Staphylococcus aureus cap5 or cap8 locus. However, the capHIJKLMSh genes are unique to S. haemolyticus and include genes encoding a putative flippase, an aminotransferase, two glycosyltransferases, and a transcriptional regulator. Capsule-like material was readily apparent by immunoelectron microscopy on bacteria harvested in the postexponential phase of growth. Electron micrographs of a JCSC1435 mutant with a deleted cap region lacked the capsule-like material. Both strains produced small amounts of surface-associated material that reacted with antibodies to polyglutamic acid. S. haemolyticus cap genes were amplified from four of seven clinical isolates of S. haemolyticus from humans, and three of these strains produced a serologically cross-reactive capsular polysaccharide. In vitro assays demonstrated that the acapsular mutant strain showed greater biofilm formation but was more susceptible to complement-mediated opsonophagocytic killing than the parent strain. Structural characterization of capsule purified from S. haemolyticus strain JCSC1435 showed a trisaccharide repeating unit: −3-α-l-FucNAc-3-(2-NAc-4-N-Asp-2,4,6-trideoxy-β-d-Glc)-4-α-d-GlcNAc-. This structure is unique among staphylococcal polysaccharides in that its composition includes a trideoxy sugar residue with aspartic acid as an N-acyl substituent. PMID:18165309

  9. Structural and biological characterization of a capsular polysaccharide produced by Staphylococcus haemolyticus.

    PubMed

    Flahaut, Sigrid; Vinogradov, Evgeny; Kelley, Kathryn A; Brennan, Shannon; Hiramatsu, Keiichi; Lee, Jean C

    2008-03-01

    The DNA sequence of the genome of Staphylococcus haemolyticus JCSC1435 revealed a putative capsule operon composed of 13 genes in tandem. The first seven genes (capABCDEFG(Sh)) showed > or = 57% similarity with the Staphylococcus aureus cap5 or cap8 locus. However, the capHIJKLM(Sh) genes are unique to S. haemolyticus and include genes encoding a putative flippase, an aminotransferase, two glycosyltransferases, and a transcriptional regulator. Capsule-like material was readily apparent by immunoelectron microscopy on bacteria harvested in the postexponential phase of growth. Electron micrographs of a JCSC1435 mutant with a deleted cap region lacked the capsule-like material. Both strains produced small amounts of surface-associated material that reacted with antibodies to polyglutamic acid. S. haemolyticus cap genes were amplified from four of seven clinical isolates of S. haemolyticus from humans, and three of these strains produced a serologically cross-reactive capsular polysaccharide. In vitro assays demonstrated that the acapsular mutant strain showed greater biofilm formation but was more susceptible to complement-mediated opsonophagocytic killing than the parent strain. Structural characterization of capsule purified from S. haemolyticus strain JCSC1435 showed a trisaccharide repeating unit: -3-alpha-L-FucNAc-3-(2-NAc-4-N-Asp-2,4,6-trideoxy-beta-D-Glc)-4-alpha-D-GlcNAc-. This structure is unique among staphylococcal polysaccharides in that its composition includes a trideoxy sugar residue with aspartic acid as an N-acyl substituent.

  10. Identification and Characterization of a Novel Human Methyltransferase Modulating Hsp70 Protein Function through Lysine Methylation*

    PubMed Central

    Jakobsson, Magnus E.; Moen, Anders; Bousset, Luc; Egge-Jacobsen, Wolfgang; Kernstock, Stefan; Melki, Ronald; Falnes, Pål Ø.

    2013-01-01

    Hsp70 proteins constitute an evolutionarily conserved protein family of ATP-dependent molecular chaperones involved in a wide range of biological processes. Mammalian Hsp70 proteins are subject to various post-translational modifications, including methylation, but for most of these, a functional role has not been attributed. In this study, we identified the methyltransferase METTL21A as the enzyme responsible for trimethylation of a conserved lysine residue found in several human Hsp70 (HSPA) proteins. This enzyme, denoted by us as HSPA lysine (K) methyltransferase (HSPA-KMT), was found to catalyze trimethylation of various Hsp70 family members both in vitro and in vivo, and the reaction was stimulated by ATP. Furthermore, we show that HSPA-KMT exclusively methylates 70-kDa proteins in mammalian protein extracts, demonstrating that it is a highly specific enzyme. Finally, we show that trimethylation of HSPA8 (Hsc70) has functional consequences, as it alters the affinity of the chaperone for both the monomeric and fibrillar forms of the Parkinson disease-associated protein α-synuclein. PMID:23921388

  11. Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation.

    PubMed

    Jintapattanakit, Anchalee; Mao, Shirui; Kissel, Thomas; Junyaprasert, Varaporn Buraphacheep

    2008-10-01

    The aim of this research was to investigate the effect of degrees of quaternization (DQ) and dimethylation (DD) on physicochemical properties and cytotoxicity of N-trimethyl chitosan (TMC). TMC was synthesized by reductive methylation of chitosan in the presence of a strong base at elevated temperature and polymer characteristics were investigated. The number of methylation process and duration of reaction were demonstrated to affect the DQ and DD. An increased number of reaction steps increased DQ and decreased DD, while an extended duration of reaction increased both DQ and DD. The molecular weight of TMC was in the range of 60-550kDa. From the Mark-Houwink equation, it was found that TMC in 2% acetic acid/0.2M sodium acetate behaved as a spherical structure, approximating a random coil. The highest solubility was found with TMC of an intermediate DQ (40%) regardless of DD and molecular weight. The effect of DD on the physicochemical properties and cytotoxicity was obviously observed when proportion of DD to DQ was higher than 1. TMC with relatively high DD showed reduction in both solubility and mucoadhesion and hence decreased cytotoxicity. However, the influence of DD was insignificant when DQ of TMC was higher than 40% at which physicochemical properties and cytotoxicity were mainly dependent upon DQ.

  12. Trimethyl and carboxymethyl chitosan carriers for bio-active polymer-inorganic nanocomposites.

    PubMed

    Geisberger, Georg; Gyenge, Emina Besic; Maake, Caroline; Patzke, Greta R

    2013-01-02

    The carrier properties of carboxymethyl chitosan (CMC) and trimethyl chitosan (TMC) in combination with polyoxometalates (POMs) as inorganic drug prototypes are compared with respect to the influence of polymer matrix charge and structure on the emerging composites. A direct crosslinking approach with TMC and K(6)H(2)[CoW(11)TiO(40)]·13H(2)O ({CoW(11)TiO(40)}) as a representative anticancer POM affords nanocomposites with a size range of 50-90nm. The obtained POM-chitosan composites are characterized with a wide range of analytical methods, and POM encapsulation into positively charged TMC brings forward different nanocomposite morphologies and properties than CMC as a carrier material. Furthermore, uptake of fluorescein isothiocyanate (FITC) labeled POM-CMC and POM-TMC by HeLa cells was monitored, and the influence of chlorpromazine (CP) as inhibitor of the clathrin mediated pathway revealed different cellular uptake behavior of composites and pristine carriers. TMC/{CoW(11)TiO(40)} nanocomposites are taken up by HeLa cells after short incubation times around 30 min at low concentrations. The anticancer activity of pristine {CoW(11)TiO(40)} and its TMC-nanocomposites was investigated in vitro with MTT assays and compared to a reference POM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Psychometric Properties and Factor Structure of the German Version of the Clinician-Administered PTSD Scale for DSM-5.

    PubMed

    Müller-Engelmann, Meike; Schnyder, Ulrich; Dittmann, Clara; Priebe, Kathlen; Bohus, Martin; Thome, Janine; Fydrich, Thomas; Pfaltz, Monique C; Steil, Regina

    2018-05-01

    The Clinician-Administered PTSD Scale (CAPS) is a widely used diagnostic interview for posttraumatic stress disorder (PTSD). Following fundamental modifications in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition ( DSM-5), the CAPS had to be revised. This study examined the psychometric properties (internal consistency, interrater reliability, convergent and discriminant validity, and structural validity) of the German version of the CAPS-5 in a trauma-exposed sample ( n = 223 with PTSD; n =51 without PTSD). The results demonstrated high internal consistency (αs = .65-.93) and high interrater reliability (ICCs = .81-.89). With regard to convergent and discriminant validity, we found high correlations between the CAPS severity score and both the Posttraumatic Diagnostic Scale sum score ( r = .87) and the Beck Depression Inventory total score ( r = .72). Regarding the underlying factor structure, the hybrid model demonstrated the best fit, followed by the anhedonia model. However, we encountered some nonpositive estimates for the correlations of the latent variables (factors) for both models. The model with the best fit without methodological problems was the externalizing behaviors model, but the results also supported the DSM-5 model. Overall, the results demonstrate that the German version of the CAPS-5 is a psychometrically sound measure.

  14. Carbon Nanotubes: On the Origin of Helicity

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Avetik

    2015-03-01

    The mechanism of helicity formation of carbon nanotubes still remains elusive that hinders their applications. Current explanations mainly rely on the planar interrelationship between the structure of nanotube and corresponding facet of catalyst in 2D geometry that could amend the structure of grown carbon layer, specifically due to the epitaxial interaction. Yet, the structure of carbon nanotube and circumference of the rims assume involvement of more than one facet i.e. it is 3D problem. By aiming this problem we find that the nanotube nucleation is initiated by cap formation via evolving of graphene embryo across the adjacent facets of catalyst particle. As a result the graphene embryos incorporate in their hexagonic network various polygons to accommodate the curved 3D geometry that initiates cap formation following by elongation of the circumferential rims. Based on these results, also on the census of nanotube caps and the fact that given cap fit only one nanotube wall, we consider carbon cap responsible for the helicity of carbon nanotube. This understanding could provide new avenues towards engineering particles to explicitly accommodate certain helicities via exploitation of the angular distribution of catalyst adjacent facets. Our recent progresses in production of carbon nanotubes, nanotube reinforced composites and their potential applications also will be presented.

  15. Characterization of hMTr1, a Human Cap1 2′-O-Ribose Methyltransferase*

    PubMed Central

    Bélanger, François; Stepinski, Janusz; Darzynkiewicz, Edward; Pelletier, Jerry

    2010-01-01

    Cellular eukaryotic mRNAs are capped at their 5′ ends with a 7-methylguanosine nucleotide, a structural feature that has been shown to be important for conferring mRNA stability, stimulating mRNA biogenesis (splicing, poly(A) addition, nucleocytoplasmic transport), and increasing translational efficiency. Whereas yeast mRNAs have no additional modifications to the cap, called cap0, higher eukaryotes are methylated at the 2′-O-ribose of the first or the first and second transcribed nucleotides, called cap1 and cap2, respectively. In the present study, we identify the methyltransferase responsible for cap1 formation in human cells, which we call hMTr1 (also known as FTSJD2 and ISG95). We show in vitro that hMTr1 catalyzes specific methylation of the 2′-O-ribose of the first nucleotide of a capped RNA transcript. Using siRNA-mediated knockdown of hMTr1 in HeLa cells, we demonstrate that hMTr1 is responsible for cap1 formation in vivo. PMID:20713356

  16. Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics.

    PubMed

    Chek, Min Fey; Kim, Sun-Yong; Mori, Tomoyuki; Arsad, Hasni; Samian, Mohammed Razip; Sudesh, Kumar; Hakoshima, Toshio

    2017-07-13

    Polyhydroxyalkanoate (PHA) is a promising candidate for use as an alternative bioplastic to replace petroleum-based plastics. Our understanding of PHA synthase PhaC is poor due to the paucity of available three-dimensional structural information. Here we present a high-resolution crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, PhaC Cs -CAT. The structure shows that PhaC Cs -CAT forms an α/β hydrolase fold comprising α/β core and CAP subdomains. The active site containing Cys291, Asp447 and His477 is located at the bottom of the cavity, which is filled with water molecules and is covered by the partly disordered CAP subdomain. We designated our structure as the closed form, which is distinct from the recently reported catalytic domain from Cupriavidus necator (PhaC Cn -CAT). Structural comparison showed PhaC Cn -CAT adopting a partially open form maintaining a narrow substrate access channel to the active site, but no product egress. PhaC Cs -CAT forms a face-to-face dimer mediated by the CAP subdomains. This arrangement of the dimer is also distinct from that of the PhaC Cn -CAT dimer. These findings suggest that the CAP subdomain should undergo a conformational change during catalytic activity that involves rearrangement of the dimer to facilitate substrate entry and product formation and egress from the active site.

  17. Two stage serial impingement cooling for isogrid structures

    DOEpatents

    Lee, Ching-Pang; Morrison, Jay A.

    2014-09-09

    A system for cooling a wall (24) of a component having an outer surface with raised ribs (12) defining a structural pocket (10), including: an inner wall (26) within the structural pocket and separating the wall outer surface within the pocket into a first region (28) outside of the inner wall and a second region (40) enclosed by the inner wall; a plate (14) disposed atop the raised ribs and enclosing the structural pocket, the plate having a plate impingement hole (16) to direct cooling air onto an impingement cooled area (38) of the first region; a cap having a skirt (50) in contact with the inner wall, the cap having a cap impingement hole (20) configured to direct the cooling air onto an impingement cooled area (44) of the second region, and; a film cooling hole (22) formed through the wall in the second region.

  18. Optimized extraction by cetyl trimethyl ammonium bromide reversed micelles of xylose reductase and xylitol dehydrogenase from Candida guilliermondii homogenate.

    PubMed

    Cortez, Ely Vieira; Pessoa, Adalberto; das Graças de Almeida Felipe, Maria; Roberto, Inês Conceição; Vitolo, Michele

    2004-07-25

    The intracellular enzymes xylose reductase (XR, EC 1.1.1.21) and xylitol dehydrogenase (XD, EC 1.1.1.9) from Candida guilliermondii, grown in sugar cane bagasse hydrolysate, were separated by reversed micelles of cetyl trimethyl ammonium bromide (CTAB) cationic surfactant. An experimental design was employed to optimize the extraction conditions of both enzymes. Under these conditions (temperature = 5 degree C, hexanol: isooctane proportion = 5% (v/v), 22 %, surfactant concentration = 0.15M, pH = 7.0 and electrical conductivity = 14 mScm(-1)) recovery values of about 100 and 80% were achieved for the enzymes XR and XD, respectively. The purity of XR and XD increased 5.6- and 1.8-fold, respectively. The extraction process caused some structural modifications in the enzymes molecules, as evidenced by the alteration of K(M) values determined before and after extraction, either in regard to the substrate (up 35% for XR and down 48% for XD) or cofactor (down 29% for XR and up 11% for XD). However, the average variation of V(max) values for both enzymes was not higher than 7%, indicating that the modified affinity of enzymes for their respective substrates and cofactors, as consequence of structural modifications suffered by them during the extraction, are compensated in some extension. This study demonstrated that liquid-liquid extraction by CTAB reversed micelles is an efficient process to separate the enzymes XR and XD present in the cell extract, and simultaneously increase the enzymatic activity and the purity of both enzymes produced by C. guilliermondii.

  19. Chemical beam epitaxy growth of AlGaAs/GaAs tunnel junctions using trimethyl aluminium for multijunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paquette, B.; DeVita, M.; Turala, A.

    AlGaAs/GaAs tunnel junctions for use in high concentration multijunction solar cells were designed and grown by chemical beam epitaxy (CBE) using trimethyl aluminium (TMA) as the p-dopant source for the AlGaAs active layer. Controlled hole concentration up to 4⋅10{sup 20} cm{sup −3} was achieved through variation in growth parameters. Fabricated tunnel junctions have a peak tunneling current up to 6140 A/cm{sup 2}. These are suitable for high concentration use and outperform GaAs/GaAs tunnel junctions.

  20. Importance of the lid and cap domains for the catalytic activity of gastric lipases.

    PubMed

    Miled, N; Bussetta, C; De caro, A; Rivière, M; Berti, L; Canaan, S

    2003-09-01

    Human gastric lipase (HGL) is an enzyme secreted by the stomach, which is stable and active despite the highly acidic environment. It has been clearly established that this enzyme is responsible for 30% of the fat digestion processes occurring in human. This globular protein belongs to the alpha/beta hydrolase fold family and its catalytic serine is deeply buried under a domain called the extrusion domain, which is composed of a 'cap' domain and a segment consisting of 58 residues, which can be defined as a lid. The exact roles played by the cap and the lid domains during the catalytic step have not yet been elucidated. We have recently solved the crystal structure of the open form of the dog gastric lipase in complex with a covalent inhibitor. The detergent molecule and the inhibitor were mimicking a triglyceride substrate that would interact with residues belonging to both the cap and the lid domains. In this study, we have investigated the role of the cap and the lid domains, using site-directed mutagenesis procedures. We have produced truncated mutants lacking the lid and the cap. After expressing these mutants and purifying them, their activity was found to have decreased drastically in comparison with the wild type HGL. The lid and the cap domains play an important role in the catalytic reaction mechanism. Based on these results and the structural data (open form of DGL), we have pointed out the cap and the lid residues involved in the binding with the lipidic substrate.

  1. Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture.

    PubMed

    Zhang, Weiwei; Huang, Guoyou; Ng, Kelvin; Ji, Yuan; Gao, Bin; Huang, Liqing; Zhou, Jinxiong; Lu, Tian Jian; Xu, Feng

    2018-03-26

    Hydrogel particles that can be engineered to compartmentally culture cells in a three-dimensional (3D) and high-throughput manner have attracted increasing interest in the biomedical area. However, the ability to generate hydrogel particles with specially designed structures and their potential biomedical applications need to be further explored. This work introduces a method for fabricating hydrogel particles in an ellipsoidal cap-like shape (i.e., ellipsoidal cap-like hydrogel particles) by employing an open-pore anodic aluminum oxide membrane. Hydrogel particles of different sizes are fabricated. The ability to produce ellipsoidal cap-like magnetic hydrogel particles with controlled distribution of magnetic nanoparticles is demonstrated. Encapsulated cells show high viability, indicating the potential for using these hydrogel particles as structure- and remote-controllable building blocks for tissue engineering application. Moreover, the hydrogel particles are also used as sacrificial templates for fabricating ellipsoidal cap-like concave wells, which are further applied for producing size controllable cell aggregates. The results are beneficial for the development of hydrogel particles and their applications in 3D cell culture.

  2. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures

    DOE PAGES

    Pei, Yuchen; Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; ...

    2015-09-11

    Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO 2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO 2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic propertiesmore » and thermal stabilities compared with those prepared with organic capping agents. As a result, this inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties.« less

  3. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2015-02-07

    The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, andmore » therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.« less

  4. High Performance 0.1 μm GaAs Pseudomorphic High Electron Mobility Transistors with Si Pulse-Doped Cap Layer for 77 GHz Car Radar Applications

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Noh, Hunhee; Jang, Kyoungchul; Lee, JaeHak; Seo, Kwangseok

    2005-04-01

    In this study, 0.1 μm double-recessed T-gate GaAs pseudomorphic high electron mobility transistors (PHEMT’s), in which an InGaAs layer and a Si pulse-doped layer in the cap structure are inserted, have been successfully fabricated. This cap structure improves ohmic contact. The ohmic contact resistance is as small as 0.07 Ωmm, consequently the source resistance is reduced by about 20% compared to that of a conventional cap structure. This device shows good DC and microwave performance such as an extrinsic transconductance of 620 mS/mm, a maximum saturated drain current of 780 mA/mm, a cut-off frequency fT of 140 GHz and a maximum oscillation frequency of 260 GHz. The reverse breakdown is 5.7 V at a gate current density of 1 mA/mm. The maximum available gain is about 7 dB at 77 GHz. It is well suited for car radar monolithic microwave integrated circuits (MMICs).

  5. The material and biological characteristics of osteoinductive calcium phosphate ceramics

    PubMed Central

    Tang, Zhurong; Li, Xiangfeng; Tan, Yanfei

    2018-01-01

    Abstract The discovery of osteoinductivity of calcium phosphate (Ca-P) ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics. The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system, creating a local environment conducive to new bone formation. Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties. Inspired by this conceptual breakthrough, many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials, and besides the bones, other tissues such as cartilage, nerves and blood vessels were also regenerated with the assistance of biomaterials. Here, we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics, summarize the underlying material factors and biological characteristics, and discuss the mechanism of osteoinduction concerning protein adsorption, and the interaction with different types of cells, and the involvement of the vascular and immune systems. PMID:29423267

  6. The Nematode Eukaryotic Translation Initiation Factor 4E/G Complex Works with a trans-Spliced Leader Stem-Loop To Enable Efficient Translation of Trimethylguanosine-Capped RNAs ▿ †

    PubMed Central

    Wallace, Adam; Filbin, Megan E.; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E.

    2010-01-01

    Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5′ end through the eIF4F initiation complex binding to the 5′ m7G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5′ end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m7G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5′ untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs. PMID:20154140

  7. The nematode eukaryotic translation initiation factor 4E/G complex works with a trans-spliced leader stem-loop to enable efficient translation of trimethylguanosine-capped RNAs.

    PubMed

    Wallace, Adam; Filbin, Megan E; Veo, Bethany; McFarland, Craig; Stepinski, Janusz; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Davis, Richard E

    2010-04-01

    Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5' end through the eIF4F initiation complex binding to the 5' m(7)G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5' end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m(7)G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5' untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs.

  8. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans.

    PubMed

    Weathers, Frank W; Bovin, Michelle J; Lee, Daniel J; Sloan, Denise M; Schnurr, Paula P; Kaloupek, Danny G; Keane, Terence M; Marx, Brian P

    2018-03-01

    The Clinician-Administered PTSD Scale (CAPS) is an extensively validated and widely used structured diagnostic interview for posttraumatic stress disorder (PTSD). The CAPS was recently revised to correspond with PTSD criteria in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5; American Psychiatric Association, 2013). This article describes the development of the CAPS for DSM-5 (CAPS-5) and presents the results of an initial psychometric evaluation of CAPS-5 scores in 2 samples of military veterans (Ns = 165 and 207). CAPS-5 diagnosis demonstrated strong interrater reliability (к = .78 to 1.00, depending on the scoring rule) and test-retest reliability (к = .83), as well as strong correspondence with a diagnosis based on the CAPS for DSM-IV (CAPS-IV; к = .84 when optimally calibrated). CAPS-5 total severity score demonstrated high internal consistency (α = .88) and interrater reliability (ICC = .91) and good test-retest reliability (ICC = .78). It also demonstrated good convergent validity with total severity score on the CAPS-IV (r = .83) and PTSD Checklist for DSM-5 (r = .66) and good discriminant validity with measures of anxiety, depression, somatization, functional impairment, psychopathy, and alcohol abuse (rs = .02 to .54). Overall, these results indicate that the CAPS-5 is a psychometrically sound measure of DSM-5 PTSD diagnosis and symptom severity. Importantly, the CAPS-5 strongly corresponds with the CAPS-IV, which suggests that backward compatibility with the CAPS-IV was maintained and that the CAPS-5 provides continuity in evidence-based assessment of PTSD in the transition from DSM-IV to DSM-5 criteria. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. KSC-04pd0965

    NASA Image and Video Library

    2004-04-28

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility remove Ground Support Equipment used to install Discovery’s nose cap on Friday. The nose cap had been removed from the vehicle in the summer of 2003 and returned to the vendor, where it underwent numerous forms of Non-Destructive Evaluation. These tests included X-ray, ultrasound and eddy current to ensure its structural integrity prior to installation on the vehicle. The nose cap was also recoated. Once returned to KSC, new Thermal Protection System blankets were assembled inside of the nose cap and thermography was performed prior to installation on the orbiter.

  10. KSC-04pd0964

    NASA Image and Video Library

    2004-04-28

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility get ready to remove Ground Support Equipment used to install Discovery’s nose cap on Friday. The nose cap had been removed from the vehicle in the summer of 2003 and returned to the vendor, where it underwent numerous forms of Non-Destructive Evaluation. These tests included X-ray, ultrasound and eddy current to ensure its structural integrity prior to installation on the vehicle. The nose cap was also recoated. Once returned to KSC, new Thermal Protection System blankets were assembled inside of the nose cap and thermography was performed prior to installation on the orbiter.

  11. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas.

    PubMed

    Sneeringer, Christopher J; Scott, Margaret Porter; Kuntz, Kevin W; Knutson, Sarah K; Pollock, Roy M; Richon, Victoria M; Copeland, Robert A

    2010-12-07

    EZH2, the catalytic subunit of the PRC2 complex, catalyzes the mono- through trimethylation of lysine 27 on histone H3 (H3K27). Histone H3K27 trimethylation is a mechanism for suppressing transcription of specific genes that are proximal to the site of histone modification. Point mutations of the EZH2 gene (Tyr641) have been reported to be linked to subsets of human B-cell lymphoma. The mutant allele is always found associated with a wild-type allele (heterozygous) in disease cells, and the mutations were reported to ablate the enzymatic activity of the PRC2 complex for methylating an unmodified peptide substrate. Here we demonstrate that the WT enzyme displays greatest catalytic efficiency (k(cat)/K) for the zero to monomethylation reaction of H3K27 and diminished efficiency for subsequent (mono- to di- and di- to trimethylation) reactions. In stark contrast, the disease-associated Y641 mutations display very limited ability to perform the first methylation reaction, but have enhanced catalytic efficiency for the subsequent reactions, relative to the WT enzyme. These results imply that the malignant phenotype of disease requires the combined activities of a H3K27 monomethylating enzyme (PRC2 containing WT EZH2 or EZH1) together with the mutant PRC2s for augmented conversion of H3K27 to the trimethylated form. To our knowledge, this is the first example of a human disease that is dependent on the coordinated activities of normal and disease-associated mutant enzymatic function.

  12. Human METTL20 Methylates Lysine Residues Adjacent to the Recognition Loop of the Electron Transfer Flavoprotein in Mitochondria*

    PubMed Central

    Rhein, Virginie F.; Carroll, Joe; He, Jiuya; Ding, Shujing; Fearnley, Ian M.; Walker, John E.

    2014-01-01

    In mammalian mitochondria, protein methylation is a relatively uncommon post-transcriptional modification, and the extent of the mitochondrial protein methylome, the modifying methyltransferases, and their substrates have been little studied. As shown here, the β-subunit of the electron transfer flavoprotein (ETF) is one such methylated protein. The ETF is a heterodimer of α- and β-subunits. Lysine residues 199 and 202 of mature ETFβ are almost completely trimethylated in bovine heart mitochondria, whereas ETFα is not methylated. The enzyme responsible for the modifications was identified as methyltransferase-like protein 20 (METTL20). In human 143B cells, the methylation of ETFβ is less extensive and is diminished further by suppression of METTL20. Tagged METTL20 expressed in HEK293T cells specifically associates with the ETF and promotes the trimethylation of ETFβ lysine residues 199 and 202. ETF serves as a mobile electron carrier linking dehydrogenases involved in fatty acid oxidation and one-carbon metabolism to the membrane-associated ubiquinone pool. The methylated residues in ETFβ are immediately adjacent to a protein loop that recognizes and binds to the dehydrogenases. Suppression of trimethylation of ETFβ in mouse C2C12 cells oxidizing palmitate as an energy source reduced the consumption of oxygen by the cells. These experiments suggest that the oxidation of fatty acids in mitochondria and the passage of electrons via the ETF may be controlled by modulating the protein-protein interactions between the reduced dehydrogenases and the β-subunit of the ETF by trimethylation of lysine residues. METTL20 is the first lysine methyltransferase to be found to be associated with mitochondria. PMID:25023281

  13. Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria.

    PubMed

    Rhein, Virginie F; Carroll, Joe; He, Jiuya; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2014-08-29

    In mammalian mitochondria, protein methylation is a relatively uncommon post-transcriptional modification, and the extent of the mitochondrial protein methylome, the modifying methyltransferases, and their substrates have been little studied. As shown here, the β-subunit of the electron transfer flavoprotein (ETF) is one such methylated protein. The ETF is a heterodimer of α- and β-subunits. Lysine residues 199 and 202 of mature ETFβ are almost completely trimethylated in bovine heart mitochondria, whereas ETFα is not methylated. The enzyme responsible for the modifications was identified as methyltransferase-like protein 20 (METTL20). In human 143B cells, the methylation of ETFβ is less extensive and is diminished further by suppression of METTL20. Tagged METTL20 expressed in HEK293T cells specifically associates with the ETF and promotes the trimethylation of ETFβ lysine residues 199 and 202. ETF serves as a mobile electron carrier linking dehydrogenases involved in fatty acid oxidation and one-carbon metabolism to the membrane-associated ubiquinone pool. The methylated residues in ETFβ are immediately adjacent to a protein loop that recognizes and binds to the dehydrogenases. Suppression of trimethylation of ETFβ in mouse C2C12 cells oxidizing palmitate as an energy source reduced the consumption of oxygen by the cells. These experiments suggest that the oxidation of fatty acids in mitochondria and the passage of electrons via the ETF may be controlled by modulating the protein-protein interactions between the reduced dehydrogenases and the β-subunit of the ETF by trimethylation of lysine residues. METTL20 is the first lysine methyltransferase to be found to be associated with mitochondria. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Kong, Yike; Diao, Yu

    2016-10-01

    Due to the drawbacks of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, a new-type NEA GaN photocathodes with heterojunction surface dispense with Cs activation are proposed. This structure can be obtained through the coverage of an ultrathin n-type Si-doped GaN cap layer on the p-type Mg-doped GaN emission layer. The influences of the cap layer on the photocathode are calculated using DFT. This study indicates that the n-type cap layer can promote the photoemission characteristics of GaN photocathode and demonstrates the probability of the preparation of a NEA GaN photocathode with an n-type cap layer.

  15. Magnetic vortices in nanocaps induced by curvature

    NASA Astrophysics Data System (ADS)

    Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.

    2018-05-01

    Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.

  16. Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein.

    PubMed

    Kelly, Brian N; Kyere, Sampson; Kinde, Isaac; Tang, Chun; Howard, Bruce R; Robinson, Howard; Sundquist, Wesley I; Summers, Michael F; Hill, Christopher P

    2007-10-19

    The CA domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein plays critical roles in both the early and late phases of viral replication and is therefore an attractive antiviral target. Compounds with antiviral activity were recently identified that bind to the N-terminal domain of CA (CA N) and inhibit capsid assembly during viral maturation. We have determined the structure of the complex between CA N and the antiviral assembly inhibitor N-(3-chloro-4-methylphenyl)-N'-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}-urea) (CAP-1) using a combination of NMR spectroscopy and X-ray crystallography. The protein undergoes a remarkable conformational change upon CAP-1 binding, in which Phe32 is displaced from its buried position in the protein core to open a deep hydrophobic cavity that serves as the ligand binding site. The aromatic ring of CAP-1 inserts into the cavity, with the urea NH groups forming hydrogen bonds with the backbone oxygen of Val59 and the dimethylamonium group interacting with the side-chains of Glu28 and Glu29. Elements that could be exploited to improve binding affinity are apparent in the structure. The displacement of Phe32 by CAP-1 appears to be facilitated by a strained main-chain conformation, which suggests a potential role for a Phe32 conformational switch during normal capsid assembly.

  17. O2 and CO binding to tetraaza-tripodal-capped iron(II) porphyrins.

    PubMed

    Ruzié, Christian; Even, Pascale; Ricard, David; Roisnel, Thierry; Boitrel, Bernard

    2006-02-06

    A series of tris(2-aminoethylamine) (tren) capped iron(II) porphyrins has been synthesized and characterized and their affinities for dioxygen and carbon monoxide measured. The X-ray structure of the basic scaffold with nickel inserted in the porphyrin is also reported. All the ligands differ by the nature of the group(s) attached to the secondary amine functions of the cap. These various substitutions were introduced to probe if a hydrogen bond with these secondary amine groups acting as the donor could rationalize the high affinity of these myoglobin models. This work clearly indicates that the cage structure of the tren predominates over all the other appended groups with the exception of p-nitrophenol.

  18. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors.

    PubMed

    Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J; Mijowska, Ewa

    2012-05-29

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.

  19. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    NASA Astrophysics Data System (ADS)

    Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa

    2012-05-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.

  20. Anion Transport in a Chemically Stable, Sterically Bulky alpha-C Modified Imidazolium Functionalized Anion Exchange Membrane

    DTIC Science & Technology

    2014-06-24

    AEM is often inconvenient, as ambient carbon dioxide (at publication time, 400 ppm) will react with the OH− to form a mixture of CO3 2− and HCO3 − in... crystal . Spectra were obtained in the range 500−4000 cm−1, with 256 scans and a resolution of 8 cm−1. Figure 1. Structure of 1,4,5-trimethyl-2-(2,4,6...pulsed-field gradient nuclear magnetic resonance (PFG NMR) on an AVANCEIII NMR spectrometer with a 5 mm Bruker single -axis DIFF60L Z-diffusion probe. The

  1. Redetermination of dicerium(III) tris-(sulfate) tetra-hydrate.

    PubMed

    Xu, Xin

    2007-12-06

    Ce(2)(SO(4))(3)(H(2)O)(4) was obtained hydro-thermally from an aqueous solution of cerium(III) oxide, trimethyl-amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 ▶). Bull. Soc. Fr. Mineral. Cristallogr.95, 269-280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S-O-Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands.

  2. Age structure and mortality of walleyes in Kansas reservoirs: Use of mortality caps to establish realistic management objectives

    USGS Publications Warehouse

    Quist, M.C.; Stephen, J.L.; Guy, C.S.; Schultz, R.D.

    2004-01-01

    Age structure, total annual mortality, and mortality caps (maximum mortality thresholds established by managers) were investigated for walleye Sander vitreus (formerly Stizostedion vitreum) populations sampled from eight Kansas reservoirs during 1991-1999. We assessed age structure by examining the relative frequency of different ages in the population; total annual mortality of age-2 and older walleyes was estimated by use of a weighted catch curve. To evaluate the utility of mortality caps, we modeled threshold values of mortality by varying growth rates and management objectives. Estimated mortality thresholds were then compared with observed growth and mortality rates. The maximum age of walleyes varied from 5 to 11 years across reservoirs. Age structure was dominated (???72%) by walleyes age 3 and younger in all reservoirs, corresponding to ages that were not yet vulnerable to harvest. Total annual mortality rates varied from 40.7% to 59.5% across reservoirs and averaged 51.1% overall (SE = 2.3). Analysis of mortality caps indicated that a management objective of 500 mm for the mean length of walleyes harvested by anglers was realistic for all reservoirs with a 457-mm minimum length limit but not for those with a 381-mm minimum length limit. For a 500-mm mean length objective to be realized for reservoirs with a 381-mm length limit, managers must either reduce mortality rates (e.g., through restrictive harvest regulations) or increase growth of walleyes. When the assumed objective was to maintain the mean length of harvested walleyes at current levels, the observed annual mortality rates were below the mortality cap for all reservoirs except one. Mortality caps also provided insight on management objectives expressed in terms of proportional stock density (PSD). Results indicated that a PSD objective of 20-40 was realistic for most reservoirs. This study provides important walleye mortality information that can be used for monitoring or for inclusion into population models; these results can also be combined with those of other studies to investigate large-scale differences in walleye mortality. Our analysis illustrates the utility of mortality caps for monitoring walleye populations and for establishing realistic management goals.

  3. The structure-mechanical relationship of palm vascular tissue.

    PubMed

    Wang, Ningling; Liu, Wangyu; Huang, Jiale; Ma, Ke

    2014-08-01

    The structure-mechanical relationship of palm sheath is studied with numerical and experimental methods. The cellular structure of the vascular tissue is rebuilt with an image-based reconstruction method and used to create finite element models. The validity of the models is firstly verified with the results from the tensile tests. Then, the cell walls inside each of the specific regions (fiber cap, vessel, xylem, etc.) are randomly removed to obtain virtually imperfect structures. By comparing the magnitudes of performance degradation in the different imperfect structures, the influences of each region on the overall mechanical performances of the vascular tissue are discussed. The longitudinal stiffness and yield strength are sensitive to the defects in the vessel regions. While in the transverse directions (including the radial and tangential directions), the parenchymatous tissue determines the mechanical properties of the vascular tissue. Moreover, the hydraulic, dynamic response and energy absorption behavior of the vascular tissue are numerically explored. The flexibility of natural palm tissue enhances its impact resistance. Under the quasi-static compression, the cell walls connecting the fiber cap and the vessel dissipate more energy. The dominant role of the fiber cap in the plastic energy dissipation under high-speed impact is observed. And the radially-arranged fiber cap also allows the palm tissue to improve its tangential mechanical performances under hydraulic pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. All-aromatic biphenylene end-capped polyquinoline and polyimide matrix resins

    NASA Technical Reports Server (NTRS)

    Droske, J. P.; Stille, J. K.; Alston, W. B.

    1985-01-01

    Biphenylene end-capped polyquinoline and polyimide resins afford low void content graphite-reinforced composites with good initial properties. However, with both resins, rapid degradation occurs during oxidative isothermal aging at elevated temperatures. The degradation is not observed during isothermal aging under a nitrogen atmosphere which suggests that the biphenylene end-cap (or the resulting crosslink/chain extension structures) is not particularly thermooxidatively stable. The nature of the thermooxidative instability is currently under investigation.

  5. Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo.

    PubMed

    Montoya, Gonzalo; Arenas, Jesús; Romo, Enrique; Zeichner-David, Margarita; Alvarez, Marco; Narayanan, A Sampath; Velázquez, Ulises; Mercado, Gabriela; Arzate, Higinio

    2014-12-01

    Cementum extracellular matrix is similar to other mineralized tissues; however, this unique tissue contains molecules only present in cementum. A cDNA of these molecules, cementum attachment protein (hrPTPLa/CAP) was cloned and expressed in a prokaryotic system. This molecule is an alternative splicing of protein tyrosine phosphatase-like A (PTPLa). In this study, we wanted to determine the structural and functional characteristics of this protein. Our results indicate that hrPTPLa/CAP contains a 43.2% α-helix, 8.9% β-sheet, 2% β-turn and 45.9% random coil secondary structure. Dynamic light scattering shows that this molecule has a size distribution of 4.8 nm and aggregates as an estimated mass of 137 kDa species. AFM characterization and FE-SEM studies indicate that this protein self-assembles into nanospheres with sizes ranging from 7.0 to 27 nm in diameter. Functional studies demonstrate that hrPTPLa/CAP promotes hydroxyapatite crystal nucleation: EDS analysis revealed that hrPTPLa/CAP-induced crystals had a 1.59 ± 0.06 Ca/P ratio. Further confirmation with MicroRaman spectrometry and TEM confirm the presence of hydroxyapatite. In vivo studies using critical-size defects in rat cranium showed that hrPTPLa/CAP promoted 73% ± 2.19% and 87% ± 1.97% new bone formation at 4 and 8 weeks respectively. Although originally identified in cementum, PTPLa/CAP is very effective at inducing bone repair and healing and therefore this novel molecule has a great potential to be used for mineralized tissue bioengineering and tissue regeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Ruthenium (Ru) peeling and predicting robustness of the capping layer using finite element method (FEM) modeling

    NASA Astrophysics Data System (ADS)

    Jang, Il-Yong; John, Arun; Goodwin, Frank; Lee, Su-Young; Kim, Byung-Gook; Kim, Seong-Sue; Jeon, Chan-Uk; Kim, Jae Hyung; Jang, Yong Hoon

    2014-07-01

    Ruthenium (Ru) film used as capping layer in extreme ultraviolet (EUV) mask peeled off after annealing and in-situ UV (IUV) cleaning. We investigated Ru peeling and found out that the mechanical stress caused by the formation of Si oxide due to the penetration of oxygen atoms from ambient or cleaning media to top-Si of ML is the root cause for the problem. To support our experimental results, we developed a numerical model of finite element method (FEM) using commercial software (ABAQUS™) to calculate the stress and displacement forced on the capping layer. By using this model, we could observe that the displacement agrees well with the actual results measured from the transmission electron microscopy (TEM) image. Using the ion beam deposition (IBD) tool at SEMATECH, we developed four new types of alternative capping materials (RuA, RuB, B4C, B4C-buffered Ru). The durability of each new alternative capping layer observed by experiment was better than that of conventional Ru. The stress and displacement calculated from each new alternative capping layer, using modeling, also agreed well with the experimental results. A new EUV mask structure is proposed, inserting a layer of B4C (B4C-buffered Ru) at the interface between the capping layer (Ru) and the top-Si layer. The modeling results showed that the maximum displacement and bending stress observed from the B4C-buffered Ru are significantly lower than that of single capping layer cases. The durability investigated from the experiment also showed that the B4C-buffered structure is at least 3X stronger than that of conventional Ru.

  7. DFT investigation on the adsorption behavior of dimethyl and trimethyl amine molecules on borophene nanotube

    NASA Astrophysics Data System (ADS)

    Bhuvaneswari, R.; Chandiramouli, R.

    2018-06-01

    The electronic properties of borophene nanotube (BNT) are witnessed and the adsorption properties of dimethyl amine (DMA) and trimethyl amine (TMA) molecules on borophene nanotube are explored through non-equilibrium Green's function (NEGF) and density functional theory (DFT) method. The device density of states spectrum interprets the change in peak maxima, thus indicating the electron transition between DMA, TMA molecules and BNT base material. I-V characteristics strengthen the adsorption property of DMA and TMA on BNT by pointing out the variation in the current. The present work assures that borophene nanotube (BNT) can be employed as DMA and TMA sensor.

  8. Method and apparatus for the preparation of liquid samples for determination of boron

    DOEpatents

    Siemer, Darryl D.

    1986-01-01

    A method and apparatus for the preparation of a liquid sample for the quantitative determination of boron by flame photometry. The sample is combined in a vessel with sulfuric acid, and an excess of methanol is added thereto. The methanol reacts with any boron present in the sample to form trimethyl borate which is volatilized by the heat of reaction between the excess methanol and sulfuric acid. The volatilized trimethyl borate is withdrawn from the vessel by either a partial vacuum or a positive pressure and is rapidly transferred to a standard flame photometer. The method is free of interference from typical boron concomitants.

  9. Method and apparatus for the preparation of liquid samples for determination of boron

    DOEpatents

    Siemer, Darryl D.

    1986-03-04

    A method and apparatus for the preparation of a liquid sample for the quantitative determination of boron by flame photometry. The sample is combined in a vessel with sulfuric acid, and an excess of methanol is added thereto. The methanol reacts with any boron present in the sample to form trimethyl borate which is volatilized by the heat of reaction between the excess methanol and sulfuric acid. The volatilized trimethyl borate is withdrawn from the vessel by either a partial vacuum or a positive pressure and is rapidly transferred to a standard flame photometer. The method is free of interference from typical boron concomitants.

  10. Method and apparatus for the preparation of liquid samples for determination of boron

    DOEpatents

    Siemer, D.D.

    A method and apparatus are described for the preparation of a liquid sample for the quantitative determination of boron by flame photometry. The sample is combined in a vessel with sulfuric acid, and an excess of methanol is added thereto. The methanol reacts with any boron present in the sample to form trimethyl borate which is volatilized by the heat of reaction between the excess methanol and sulfuric acid. The volatilized trimethyl borate is withdrawn from the vessel by either a partial vacuum or a positive pressure and is rapidly transferred to a standard flame photometer. The method is free of interference from typical boron concomitants.

  11. Design and synthesis of new adamantyl-substituted antileishmanial ether phospholipids.

    PubMed

    Papanastasiou, Ioannis; Prousis, Kyriakos C; Georgikopoulou, Kalliopi; Pavlidis, Theofilos; Scoulica, Effie; Kolocouris, Nicolas; Calogeropoulou, Theodora

    2010-09-15

    A series of new 2-[3-(2-alkyloxy-ethyl)-adamantan-1-yl]-ethoxy substituted ether phospholipids was synthesized and their antileishmanial activity was evaluated against Leishmania infantum amastigotes. The majority of the new analogues were significantly less cytotoxic than miltefosine while, antiparasitic activity depended on the length of the 2-alkyloxy substituent. The most potent compounds were {2-[[[3-(2-hexyloxy-ethyl)-adamant-1-yl]-ethoxy]hydroxyphosphinyloxy]ethyl}-Nu,Nu,Nu-trimethyl-ammonium inner salt (5b) and {2-[[[3-(2-octyloxy-ethyl)-adamant-1-yl]-ethoxy]hydroxyphosphinyloxy]ethyl}-Nu,Nu,Nu-trimethyl-ammonium inner salt (5c). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Structural efficiency studies of corrugated compression panels with curved caps and beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Mills, C. T.; Prabhakaran, R.; Jackson, L. R.

    1984-01-01

    Curved cross-sectional elements are employed in structural concepts for minimum-mass compression panels. Corrugated panel concepts with curved caps and beaded webs are optimized by using a nonlinear mathematical programming procedure and a rigorous buckling analysis. These panel geometries are shown to have superior structural efficiencies compared with known concepts published in the literature. Fabrication of these efficient corrugation concepts became possible by advances made in the art of superplastically forming of metals. Results of the mass optimization studies of the concepts are presented as structural efficiency charts for axial compression.

  13. Formation mechanisms of boron oxide films fabricated by large-area electron beam-induced deposition of trimethyl borate [Formation Mechanisms of Boron Oxide Fillms Fabricated by Large Area Electron Beam-Induced Deposition of Trimethyl Borate

    DOE PAGES

    Martin, Aiden A.; Depond, Philip J.

    2018-04-24

    Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the depositionmore » mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. Lastly, the results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials.« less

  14. Formation mechanisms of boron oxide films fabricated by large-area electron beam-induced deposition of trimethyl borate [Formation Mechanisms of Boron Oxide Fillms Fabricated by Large Area Electron Beam-Induced Deposition of Trimethyl Borate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Aiden A.; Depond, Philip J.

    Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the depositionmore » mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. Lastly, the results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials.« less

  15. Liver damage induced in rats by malathion impurities.

    PubMed

    Keadtisuke, S; Dheranetra, W; Nakatsugawa, T; Fukuto, T R

    1990-06-01

    Administration of a single oral dose of the malathion impurity, O,O,S-trimethyl phosphorothioate (OOS-Me) or O,S,S-trimethyl phosphorodithioate (OSS-Me), to the rat resulted in hemostatic disorders, e.g. prolongation of blood clotting, prothrombin and thrombin time. Deficiency of coagulation Factors II, V and VII was also observed. OOS-Me and OSS-Me also caused dose-dependent increases of beta-glucuronidase in the blood with a maximum of 15- and 31-fold observed following treatment with 60 mg/kg OOS-Me and 40 mg/kg OSS-Me, respectively. Analysis of serum beta-glucuronidase by isoelectrofocusing electrophoresis showed that the liver endoplasmic reticulum was the source of this enzyme released into the blood. Co-treatment of OOS-Me with 5% O,O,O-trimethyl phosphorothioate (OOO-Me), a potent antagonist of OOS-Me-induced delayed toxicity, prevented hemostatic disorders but had no effect in reducing beta-glucuronidase levels. However, pretreatment of rats with piperonyl butoxide reduced the amount of beta-glucuronidase released into the blood. Of other O,O,S-trialkyl phosphorothioates examined, the O,O-diethyl S-alkyl phosphorothioates showed the highest activity in increasing beta-glucuronidase levels.

  16. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier.

    PubMed

    Xu, Yongmei; Du, Yumin; Huang, Ronghua; Gao, Leping

    2003-12-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is water-soluble derivative of chitosan (CS), synthesized by the reaction between glycidyl-trimethyl-ammonium chloride and CS. HTCC nanoparticles have been formed based on ionic gelation process of HTCC and sodium tripolyphosphate (TPP). Bovine serum albumin (BSA), as a model protein drug, was incorporated into the HTCC nanoparticles. HTCC nanoparticles were 110-180 nm in size, and their encapsulation efficiency was up to 90%. In vitro release studies showed a burst effect and a slow and continuous release followed. Encapsulation efficiency was obviously increased with increase of initial BSA concentration. Increasing TPP concentration from 0.5 to 0.7 mg/ml promoted encapsulation efficiency from 46.7% to 90%, and delayed release. As for modified HTCC nanoparticles, adding polyethylene glycol (PEG) or sodium alginate obviously decreased the burst effect of BSA from 42% to 18%. Encapsulation efficiency was significantly reduced from 47.6% to 2% with increase of PEG from 1.0 to 20.0 mg/ml. Encapsulation efficiency was increased from 14.5% to 25.4% with increase of alginate from 0.3 to 1.0 mg/ml.

  17. Synthesis and Utilization of Trialkylammonium-Substituted Cyclodextrins as Water-Soluble Chiral NMR Solvating Agents for Anionic Compounds.

    PubMed

    Dowey, Alison E; Puentes, Cira Mollings; Carey-Hatch, Mira; Sandridge, Keyana L; Krishna, Nikhil B; Wenzel, Thomas J

    2016-04-01

    Cationic trialkylammonium-substituted α-, β-, and γ-cyclodextrins containing trimethyl-, triethyl-, and tri-n-propylammonium substituent groups were synthesized and analyzed for utility as water-soluble chiral nuclear magnetic resonance (NMR) solvating agents. Racemic and enantiomerically pure (3-chloro-2-hydroxypropyl)trimethyl-, triethyl-, and tri-n-propyl ammonium chloride were synthesized from the corresponding trialkyl amine hydrochloride and either racemic or enantiomerically pure epichlorohydrin. The ammonium salts were then reacted with α-, β-, and γ-cyclodextrins at basic pH to provide the corresponding randomly substituted cationic cyclodextrins. The (1) H NMR spectra of a range of anionic, aromatic compounds was recorded with the cationic cyclodextrins. Cyclodextrins with a single stereochemistry at the hydroxy group on the (2-hydroxypropyl)trialkylammonium chloride substituent were often but not always more effective than the corresponding cyclodextrin in which the C-2 position was racemic. In several cases, the larger triethyl or tri-n-propyl derivatives were more effective than the corresponding trimethyl derivative at causing enantiomeric differentiation. None of the cyclodextrin derivatives were consistently the most effective for all of the anionic compounds studied. © 2016 Wiley Periodicals, Inc.

  18. FOXP3 Orchestrates H4K16 Acetylation and H3K4 Tri-Methylation for Activation of Multiple Genes through Recruiting MOF and Causing Displacement of PLU-1

    PubMed Central

    Katoh, Hiroto; Qin, Zhaohui S.; Liu, Runhua; Wang, Lizhong; Li, Weiquan; Li, Xiangzhi; Wu, Lipeng; Du, Zhanwen; Lyons, Robert; Liu, Chang-Gong; Liu, Xiuping; Dou, Yali; Zheng, Pan; Liu, Yang

    2011-01-01

    SUMMARY Both H4K16 acetylation and H3K4 tri-methylation are required for gene activation. However, it is still largely unclear how these modifications are orchestrated by transcriptional factors. Here we analyzed the mechanism of the transcriptional activation by FOXP3, an X-linked suppressor of autoimmune diseases and cancers. FOXP3 binds near transcriptional start sites of its target genes. By recruiting MOF and displacing histone H3K4 demethylase PLU-1, FOXP3 increases both H4K16 acetylation and H3K4 tri-methylation at the FOXP3-associated chromatins of multiple FOXP3-activated genes. RNAi-mediated silencing of MOF reduced both gene activation and tumor suppression by FOXP3, while both somatic mutations in clinical cancer samples and targeted mutation of FOXP3 in mouse prostate epithelial disrupted nuclear localization of MOF. Our data demonstrate a pull-push model in which a single transcription factor orchestrates two epigenetic alterations necessary for gene activation and provide a mechanism for somatic inactivation of the FOXP3 protein function in cancer cells. PMID:22152480

  19. Method to improve commercial bonded SOI material

    DOEpatents

    Maris, Humphrey John; Sadana, Devendra Kumar

    2000-07-11

    A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.

  20. Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma.

    PubMed

    Smet, C; Noriega, E; Rosier, F; Walsh, J L; Valdramidis, V P; Van Impe, J F

    2017-01-02

    The large potential of cold atmospheric plasma (CAP) for food decontamination has recently been recognized. Room-temperature gas plasmas can decontaminate foods without causing undesired changes. This innovative technology is a promising alternative for treating fresh produce. However, more fundamental studies are needed before its application in the food industry. The impact of the food structure on CAP decontamination efficacy of Salmonella Typhimurium and Listeria monocytogenes was studied. Cells were grown planktonically or as surface colonies in/on model systems. Both microorganisms were grown in lab culture media in petri dishes at 20°C until cells reached the stationary phase. Before CAP treatment, cells were deposited in a liquid carrier, on a solid(like) surface or on a filter. A dielectric barrier discharge reactor generated helium-oxygen plasma, which was used to treat samples up to 10min. Although L. monocytogenes is more resistant to CAP treatment, similar trends in inactivation behavior as for S. Typhimurium are observed, with log reductions in the range [1.0-2.9] for S. Typhimurium and [0.2-2.2] for L. monocytogenes. For both microorganisms, cells grown planktonically are easily inactivated, as compared to surface colonies. More stressing growth conditions, due to cell immobilization, result in more resistant cells during CAP treatment. The main difference between the inactivation support systems is the absence or presence of a shoulder phase. For experiments in the liquid carrier, which exhibit a long shoulder, the plasma components need to diffuse and penetrate through the medium. This explains the higher efficacies of CAP treatment on cells deposited on a solid(like) surface or on a filter. This research demonstrates that the food structure influences the cell inactivation behavior and efficacy of CAP, and indicates that food intrinsic factors need to be accounted when designing plasma treatment. Copyright © 2016. Published by Elsevier B.V.

  1. A computer program to analyze bending of bent caps.

    DOT National Transportation Integrated Search

    1966-10-01

    This report is one of a series of developments planned to facilitate the : use of computers in the analysis of highway bridge structures. It specifically : concerns a computer program for the bending analysis of bent caps. : The development of this p...

  2. High performance EUV multilayer structures insensitive to capping layer optical parameters.

    PubMed

    Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L

    2008-09-15

    We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.

  3. Two Routes to Genetic Suppression of RNA Trimethylguanosine Cap Deficiency via C-Terminal Truncation of U1 snRNP Subunit Snp1 or Overexpression of RNA Polymerase Subunit Rpo26.

    PubMed

    Qiu, Zhicheng R; Schwer, Beate; Shuman, Stewart

    2015-04-24

    The trimethylguanosine (TMG) caps of small nuclear (sn) RNAs are synthesized by the enzyme Tgs1 via sequential methyl additions to the N2 atom of the m(7)G cap. Whereas TMG caps are inessential for Saccharomyces cerevisiae vegetative growth at 25° to 37°, tgs1∆ cells that lack TMG caps fail to thrive at 18°. The cold-sensitive defect correlates with ectopic stoichiometric association of nuclear cap-binding complex (CBC) with the residual m(7)G cap of the U1 snRNA and is suppressed fully by Cbc2 mutations that weaken cap binding. Here, we show that normal growth of tgs1∆ cells at 18° is also restored by a C-terminal deletion of 77 amino acids from the Snp1 subunit of yeast U1 snRNP. These results underscore the U1 snRNP as a focal point for TMG cap function in vivo. Casting a broader net, we conducted a dosage suppressor screen for genes that allowed survival of tgs1∆ cells at 18°. We thereby recovered RPO26 (encoding a shared subunit of all three nuclear RNA polymerases) and RPO31 (encoding the largest subunit of RNA polymerase III) as moderate and weak suppressors of tgs1∆ cold sensitivity, respectively. A structure-guided mutagenesis of Rpo26, using rpo26∆ complementation and tgs1∆ suppression as activity readouts, defined Rpo26-(78-155) as a minimized functional domain. Alanine scanning identified Glu89, Glu124, Arg135, and Arg136 as essential for rpo26∆ complementation. The E124A and R135A alleles retained tgs1∆ suppressor activity, thereby establishing a separation-of-function. These results illuminate the structure activity profile of an essential RNA polymerase component. Copyright © 2015 Qiu et al.

  4. Flavivirus RNA cap methyltransferase: structure, function, and inhibition.

    PubMed

    Liu, Lihui; Dong, Hongping; Chen, Hui; Zhang, Jing; Ling, Hua; Li, Zhong; Shi, Pei-Yong; Li, Hongmin

    2010-08-01

    Many flaviviruses are significant human pathogens. The plus-strand RNA genome of a flavivirus contains a 5' terminal cap 1 structure (m(7)GpppAmG). The flavivirus encodes one methyltransferase (MTase), located at the N-terminal portion of the NS5 RNA-dependent RNA polymerase (RdRp). Here we review recent advances in our understanding of flaviviral capping machinery and the implications for drug development. The NS5 MTase catalyzes both guanine N7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus MTases, from dengue, yellow fever, and West Nile virus (WNV), sequentially generate GpppA → m(7)GpppA → m(7)GpppAm. Despite the existence of two distinct methylation activities, the crystal structures of flavivirus MTases showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. This finding indicates that the substrate GpppA-RNA must be repositioned to accept the N7 and 2'-O methyl groups from SAM during the sequential reactions. Further studies demonstrated that distinct RNA elements are required for the methylations of guanine N7 on the cap and of ribose 2'-OH on the first transcribed nucleotide. Mutant enzymes with different methylation defects can trans complement one another in vitro, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. In the context of the infectious virus, defects in both methylations, or a defect in the N7 methylation alone, are lethal to WNV. However, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel and promising target for flavivirus therapy.

  5. A novel role for the condensin II complex in cellular senescence.

    PubMed

    Yokoyama, Yuhki; Zhu, Hengrui; Zhang, Rugang; Noma, Ken-ichi

    2015-01-01

    Although cellular senescence is accompanied by global alterations in genome architecture, how the genome is restructured during the senescent processes is not well understood. Here, we show that the hCAP-H2 subunit of the condensin II complex exists as either a full-length protein or an N-terminus truncated variant (ΔN). While the full-length hCAP-H2 associates with mitotic chromosomes, the ΔN variant exists as an insoluble nuclear structure. When overexpressed, both hCAP-H2 isoforms assemble this nuclear architecture and induce senescence-associated heterochromatic foci (SAHF). The hCAP-H2ΔN protein accumulates as cells approach senescence, and hCAP-H2 knockdown inhibits oncogene-induced senescence. This study identifies a novel mechanism whereby condensin drives senescence via nuclear/genomic reorganization.

  6. Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco

    2013-05-28

    Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.

  7. Method for removing strongly adsorbed surfactants and capping agents from metal to facilitate their catalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adzic, Radoslav R.; Gong, Kuanping; Cai, Yun

    A method of synthesizing activated electrocatalyst, preferably having a morphology of a nanostructure, is disclosed. The method includes safely and efficiently removing surfactants and capping agents from the surface of the metal structures. With regard to metal nanoparticles, the method includes synthesis of nanoparticle(s) in polar or non-polar solution with surfactants or capping agents and subsequent activation by CO-adsorption-induced surfactant/capping agent desorption and electrochemical oxidation. The method produces activated macroparticle or nanoparticle electrocatalysts without damaging the surface of the electrocatalyst that includes breaking, increasing particle thickness or increasing the number of low coordination sites.

  8. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.

    1996-01-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  9. Structured copolymers and their use as absorbents, gels and carriers of metal ions

    DOEpatents

    Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.

    1996-10-01

    Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.

  10. Space fabrication: Graphite composite truss welding and cap forming subsystems

    NASA Technical Reports Server (NTRS)

    Jenkins, L. M.; Browning, D. L.

    1980-01-01

    An automated beam builder for the fabrication of space structures is described. The beam builder forms a triangular truss 1.3 meters on a side. Flat strips of preconsolidated graphite fiber fabric in a polysulfone matrix are coiled in a storage canister. Heaters raise the material to forming temperature then the structural cap section is formed by a series of rollers. After cooling, cross members and diagonal tension cords are ultrasonically welded in place to complete the truss. The stability of fabricated structures and composite materials is also examined.

  11. A real options approach to clinical faculty salary structure.

    PubMed

    Kahn, Marc J; Long, Hugh W

    2012-01-01

    One can use the option theory model originally developed to price financial opportunities in security markets to analyze many other economic arrangements such as the salary structures of clinical faculty in an academic medical center practice plan. If one views the underlying asset to be the portion (labeled "salary") of the economic value of the collections made for the care provided patients by the physician, then a salary guarantee can be considered a put option provided the physician, the guarantee having value to the physician only when the actual salary earned is less than the salary guarantee. Similarly, within an incentive plan, a salary cap can be thought of as a call option provided to the practice plan since a salary cap only has value to the practice plan when a physician's earnings exceed the cap. Further, based on analysis of prior earnings, the Black-Scholes options pricing model can be used both to price each option and to determine a financially neutral balance between a salary guarantee and a salary cap by equating the prices of the implied put and call options. We suggest that such analysis is superior to empirical methods for setting clinical faculty salary structure in the academic practice plan setting.

  12. Variation in structure of proteins by adjusting reactive oxygen and nitrogen species generated from dielectric barrier discharge jet

    NASA Astrophysics Data System (ADS)

    Park, Ji Hoon; Kim, Minsup; Shiratani, Masaharu; Cho, Art. E.; Choi, Eun Ha; Attri, Pankaj

    2016-10-01

    Over the last few years, the variation in liquid chemistry due to the development of radicals generated by cold atmospheric plasma (CAP) has played an important role in plasma medicine. CAP direct treatment or CAP activated media treatment in cancer cells shows promising anticancer activity for both in vivo and in vitro studies. However, the anticancer activity or antimicrobial activity varies between plasma devices due to the different abilities among plasma devices to generate the reactive oxygen and nitrogen species (RONS) at different ratios and in different concentrations. While the generation of RONS depends on many factors, the feeding gas plays the most important role among the factors. Hence, in this study we used different compositions of feeding gas while fixing all other plasma characteristics. We used Ar, Ar-O2 (at different ratios), and Ar-N2 (at different ratios) as the working gases for CAP and investigated the structural changes in proteins (Hemoglobin (Hb) and Myoglobin (Mb)). We then analyzed the influence of RONS generated in liquid on the conformations of proteins. Additionally, to determine the influence of H2O2 on the Hb and Mb structures, we used molecular dynamic simulation.

  13. Calcium phosphate coatings modified with zinc- or copper- incorporation on Ti-40Nb alloy

    NASA Astrophysics Data System (ADS)

    Komarova, E. G.; Sedelnikova, M. B.; Sharkeev, Yu P.; Kazakbaeva, A. A.; Glukhov, I. A.; Khimich, M. A.

    2017-05-01

    The influence of the microarc oxidation parameters and electrolyte composition on the structure, properties and composition of CaP coatings modified with Zn- or Cu- incorporation on the Ti-40mas.%Nb (Ti-40Nb) alloy was investigated. The linear growth of thickness, roughness, and size of structural elements with process voltage increasing has been revealed. It was shown that the CaP coatings have the low contact angles with liquids and, consequently, high free surface energy. This indicates a high hydrophilicity of the coatings. X-ray diffraction analysis showed that the coatings have X-ray amorphous structure. The increase of the process voltage leads to the formation of such crystalline phases as CaHPO4 and β-Ca2P2O7 in the coatings. The maximum Ca/P atomic ratio was equal to 0.4, and Zn or Cu contents was equal to 0.3 or 0.2 at.%, respectively.

  14. Observations of severe in-flight environments on airplane composite structural components

    NASA Technical Reports Server (NTRS)

    Howell, W. E.; Fisher, B. D.

    1983-01-01

    The development of relatively inexpensive, highly sophisticated avionics systems makes it now possible for general aviation aircraft to fly under more severe weather conditions than formerly. Increased instrument flying increases exposure of aircraft to potentially severe thunderstorm activity such as high rain rates, hail stones, and lightning strikes. In particular, the effects of lightning on aircraft can be catastrophic. Interest in aircraft lightning protection has been stimulated by the introduction of advanced composites as an aircraft structural material. The present investigation has the objective to report experiences with three composite components which have flown in thunderstorms, taking into account three F-106B composite fin caps. The only visible lightning strike damage to a flame sprayed aluminum coated glass/epoxy fin cap was a small area of the aluminum which was burned. Visible lightning strike damage to a Kevlar/epoxy fin cap was limited to the exterior ply of aluminum coated glass fabric. In the case of a graphite/epoxy fin cap, lightning currents could be conducted.

  15. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features inmore » a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.« less

  16. The neurotoxicology and pathology of organomercury, organolead, and organotin.

    PubMed

    Chang, L W

    1990-12-01

    The toxicities of many metals, such as mercury and lead, are known to man since the dawn of civilization. Organic compounds of some heavy metals are known to have a particular toxic impact on the central nervous system. Organomercury, particularly alkyl-mercuric compounds (e.g. methylmercury), has a selective effect on the granule cells of the cerebellum, the nerve cells of the calcarine cortex, and the sensory neurons in the dorsal root ganglia. The well known Minamata Bay disease is the result of a massive epidemic episode of human exposure to alkylmercury contaminated food sources. Mental retardation and other developmental defects are also known to be a consequence of exposure to this toxic metal. Organic lead compounds have been employed as gasoline additives and in other industrial purposes. Unlike its inorganic counterpart, organolead compounds have a more prominent impact on the central nervous system. Pathological changes of the brain stem neurons have been described. Organotin compounds have been used in plastic industries and as agricultural chemicals. Both trimethyl and triethyl tin compounds are found to be extremely neurotoxic. Despite the similarity of their chemical structures, trimethyl and triethyl tins have a diversely different toxic property and effects. While triethyl tin is myelinotoxic, producing edematous and vacuolar changes in the central myelin, trimethyl tin is neurotoxic, producing prominent toxic changes in the neurons of the limbic system (hippocampus, entorhinal cortex, etc.). The factors which determine the specificity and selectivity of the neurotoxic impacts by various organometals are still unknown. In view that most of the organometals are still widely employed by many countries for industrial and for agricultural purposes, caution must be made for their proper handling and disposure to avoid undesirable exposures to workers and environmental contamination of water sources and food-chain for the common public. Since organometals are difficult to eliminate from the central nervous system, injuries usually lead to permanent neurological deficits, such tragedies are frequently long lasting and create not only a medical problem, but also a social economical problem for the society.

  17. Histone Methylation in Nickel-Smelting Industrial Workers

    PubMed Central

    Ma, Li; Bai, Yana; Pu, Hongquan; Gou, Faxiang; Dai, Min; Wang, Hui; He, Jie; Zheng, Tongzhang; Cheng, Ning

    2015-01-01

    Background Nickel is an essential trace metal naturally found in the environment. It is also common in occupational settings, where it associates with various levels of both occupational and nonoccupational exposure In vitro studies have shown that nickel exposure can lead to intracellular accumulation of Ni2+, which has been associated with global decreases in DNA methylation, increases in chromatin condensation, reductions in H3K9me2, and elevated levels of H3K4me3. Histone modifications play an important role in modulating chromatin structure and gene expression. For example, tri-methylation of histone H3k4 has been found to be associated with transcriptional activation, and tri-methylation of H3k27 has been found to be associated with transcriptional repression. Aberrant histone modifications have been found to be associated with various human diseases, including cancer. The purpose of this work was to identify biomarkers for populations with occupational nickel exposure and to examine the relationship between histone methylation and nickel exposure. This may provide a scientific indicator of early health impairment and facilitate exploration of the molecular mechanism underlying cancer pathogenesis. Methods One hundred and forty subjects with occupational exposure to Ni and 140 referents were recruited. H3K4 and H3K27 trimethylation levels were measured in subjects’ blood cells. Results H3K4me3 levels were found to be higher in nickel smelting workers (47.24±20.85) than in office workers (22.65±8.81; P = 0.000), while the opposite was found for levels of H3K27me3(nickel smelting workers, 13.88± 4.23; office workers, 20.67± 5.96; P = 0.000). H3K4me3 was positively (r = 0.267, P = 0.001) and H3K27 was negatively (r = -0.684, P = 0.000) associated with age and length of service in smelting workers. Conclusion This study indicated that occupational exposure to Ni is associated with alterations in levels of histone modification. PMID:26474320

  18. Structural transformation and photoluminescence modification of AgInS2 nanoparticles induced by ZnS shell formation

    NASA Astrophysics Data System (ADS)

    Hamanaka, Yasushi; Yukitoki, Daichi; Kuzuya, Toshihiro

    2015-09-01

    AgInS2 nanoparticles were capped by ZnS via a widely used procedure to fabricate core/shell nanoparticles with highly efficient luminescence. The nanoparticle structures were investigated by ultrahigh-resolution analytical electron microscopy. We found that Zn-Ag-In-S nanoparticles were created by ZnS capping at ˜480 K, which suggests that the luminescence enhancement reported for such core/shell nanoparticles is not caused by the passivation of surface defects by ZnS shells but by Zn doping. Quasi-core/shell nanoparticles could be obtained by ZnS capping without heating. However, their luminescence efficiency remained unchanged, indicating that surface passivation was ineffective when ZnS shells were formed at room temperature.

  19. Capping of rare earth silicide nanowires on Si(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appelfeller, Stephan; Franz, Martin; Kubicki, Milan

    The capping of Tb and Dy silicide nanowires grown on Si(001) was studied using scanning tunneling microscopy and cross-sectional high-resolution transmission electron microscopy. Several nanometers thick amorphous Si films deposited at room temperature allow an even capping, while the nanowires maintain their original structural properties. Subsequent recrystallization by thermal annealing leads to more compact nanowire structures and to troughs in the Si layer above the nanowires, which may even reach down to the nanowires in the case of thin Si films, as well as to V-shaped stacking faults forming along (111) lattice planes. This behavior is related to strain duemore » to the lattice mismatch between the Si overlayer and the nanowires.« less

  20. Design and implementation of the protective cap/biobarrier experiment at the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limbach, W.E.; Ratzlaff, T.D.; Anderson, J.E.

    1994-12-31

    The Protective Cap/Biobarrier Experiment (PCBE), initiated in 1993 at the Idaho National Engineering Laboratory (INEL), is a strip-split plot experiment with three replications designed to rigorously test a 2.0-m loessal soil cap against a cap recommended by the US Environmental Protection Agency and two caps with biological intrusion barriers. Past research at INEL indicates that it should be possible to exclude water from buried wastes using natural materials and natural processes in arid environments rather than expensive materials (geotextiles) and highly engineered caps. The PCBE will also test the effects of two vegetal covers and three irrigation levels on capmore » performance. Drainage pans, located at the bottom of each plot, will monitor cap failure. Soil water profiles will be monitored biweekly by neutron probe and continuously by time domain reflectometry. The performance of each cap design will be monitored under a variety of conditions through 1998. From 1994 to 1996, the authors will assess plant establishment, rooting depths, patterns of moisture extraction and their interactions among caps, vegetal covers, and irrigation levels. In 1996, they will introduce ants and burrowing mammals to test the structural integrity of each cap design. In 1998, the authors will apply sufficient water to determine the failure limit for each cap design. The PCBE should provide reliable knowledge of the performances of the four cap designs under a variety of conditions and aid in making hazardous-waste management decisions at INEL and at disposal sites in similar environments.« less

  1. Composite propellant combustion with low aluminum agglomeration

    NASA Astrophysics Data System (ADS)

    Mullen, Jessica Christine

    Aluminum behavior---accumulation, agglomeration and ignition---is studied in a unique, wide-distribution, ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) propellant formulation that results in low Al agglomeration, even at low pressures (1--30 atm). Variations in formulation---such as fine-AP/binder ratio, Al particle size, Al loading, coarse-AP size---are also examined. A fuel-rich, oxygenated binder matrix highly loaded with fine (2-mum) AP (FAP) at 75/25:FAP/binder (by mass) is found to have premixed flame conditions that produce minimal agglomeration (without ignition) of 15-mum Al. Coarse AP (CAP) is added to the system in the form of either particles (200 or 400 mum) or pressed-AP laminates (simulated CAP). In the 2-D laminate system the CAP/oxyfuel-matrix flame structure is seen to be similar to that previously described for non-aluminized laminates with split (diffusion) and merged (partially-premixed) flame regimes, depending on pressure and fuel-matrix thickness. Both laminate and particulate systems show that with CAP present, Al can agglomerate more extensively on CAP via lateral surface migration from fuel matrix to the CAP region. The particulate CAP system also shows that Al can accumulate/agglomerate via settling on CAP from above (in the direction of burning). Both systems, but more clearly the 2-D laminates, show that with CAP present, Al is ignited by the outer CAP/fuel-matrix canopy flames. Thus, a propellant formulation is proposed for reducing overall Al agglomeration through intrinsically reduced agglomeration in the fuel-matrix and a reduced number of CAP-particle agglomerates via higher FAP/CAP ratio.

  2. Structural Insight Into Histone Recognition by the ING PHD Fingers

    PubMed Central

    Champagne, Karen S.; Kutateladze, Tatiana G.

    2009-01-01

    The Inhibitor of Growth (ING) tumor suppressors are implicated in oncogenesis, control of DNA damage repair, cellular senescence and apoptosis. All members of the ING family contain unique amino-terminal regions and a carboxy-terminal plant homeodomain (PHD) finger. While the amino-terminal domains associate with a number of protein effectors including distinct components of histone deacetylase (HDAC) and histone acetyltransferase (HAT) complexes, the PHD finger binds strongly and specifically to histone H3 trimethylated at lysine 4 (H3K4me3). In this review we describe the molecular mechanism of H3K4me3 recognition by the ING1-5 PHD fingers, analyze the determinants of the histone specificity and compare the biological activities and structures within subsets of PHD fingers. The atomic-resolution structures of the ING PHD fingers in complex with a H3K4me3 peptide reveal that the histone tail is bound in a large and deep binding site encompassing nearly one-third of the protein surface. An extensive network of intermolecular hydrogen bonds, hydrophobic and cation-π contacts, and complementary surface interactions coordinate the first six residues of the H3K4me3 peptide. The trimethylated Lys4 occupies an elongated groove, formed by the highly conserved aromatic and hydrophobic residues of the PHD finger, whereas the adjacent groove accommodates Arg2. The two grooves are connected by a narrow channel, the small size of which defines the PHD finger’s specificity, excluding interactions with other modified histone peptides. Binding of the ING PHD fingers to H3K4me3 plays a critical role in regulating chromatin acetylation. The ING proteins function as tethering molecules that physically link the HDAC and HAT enzymatic complexes to chromatin. In this review we also highlight progress recently made in understanding the molecular basis underlying biological and tumorigenic activities of the ING tumor suppressors. PMID:19442115

  3. Sleep modifications in acute transient global amnesia.

    PubMed

    Della Marca, Giacomo; Mazza, Marianna; Losurdo, Anna; Testani, Elisa; Broccolini, Aldobrando; Frisullo, Giovanni; Marano, Giuseppe; Morosetti, Roberta; Pilato, Fabio; Profice, Paolo; Vollono, Catello; Di Lazzaro, Vincenzo

    2013-09-15

    Transient global amnesia (TGA) is a temporary memory loss characterized by an abrupt onset of antero-grade and retrograde amnesia, totally reversible. Since sleep plays a major role in memory consolidation, and in the storage of memory-related traces into the brain cortex, the aims of the present study were: (1) to evaluate changes in sleep macro-structure in TGA; (2) to assess modifications in sleep micro-structure in TGA, with particular reference to the arousal EEG and to cyclic alternating pattern (CAP); (3) to compare sleep parameters in TGA patients with a control group of patients with acute ischemic events ("minor stroke" or transient ischemic attack [TIA]) clinically and neuroradiologically "similar" to the TGA. TGA GROUP: 17 patients, (8 men and 9 women, 60.2 ± 12.5 years). Stroke or TIA (SoT) group: 17 patients hospitalized in the Stroke Unit for recent onset of minor stroke or TIA with hemispheric localization; healthy controls (HC) group: 17 healthy volunteers, matched for age and sex. Patients and controls underwent full-night polysomnography. In the multivariate analysis (conditions TGA, SoT, and HC) a significant effect of the condition was observed for sleep efficiency index, number of awakenings longer 1 min, REM latency, CAP time, and CAP rate. TGA and SoT differed only for CAP time and CAP rate, which were lower in the TGA group. Microstructural modification associated with tga could be consequent to: (1) hippocampal dysfunction and memory impairment; (2) impairment of arousal-related structures (in particular, cholinergic pathways); (3) emotional distress.

  4. CAP payments and agricultural GHG emissions in Italy. A farm-level assessment.

    PubMed

    Coderoni, Silvia; Esposti, Roberto

    2018-06-15

    The Common Agricultural Policy (CAP) is an important external driver of European agricultural production. Nowadays and in its envisioned future structure post-2020, the CAP has among its major objectives tackling climate change, for what concerns both adaptation and mitigation strategies. However, little is known about the link between past CAP reforms and agricultural greenhouse gases (GHG) emissions. This paper investigates the possible role played by the Fischler Reform (FR) on the agricultural GHG emissions at the farm level. The FR represents a major CAP reform for which data availability allows an ex-post analysis about its actual impacts. The empirical analysis concerns a balanced panel of 6542 Italian Farm Accountancy Data Network observed over years the 2003-2007. Multinomial Logit models are estimated in sequence to express how the farm-level production choices, and the respective emissions, vary over time also in response to CAP expenditure. Results suggest that CAP expenditure had a role in the evolution of the farm-level emissions, though the direction of this effect may differ across farms and deserves further investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Crystal structure of inhibitor of growth 4 (ING4) dimerization domain reveals functional organization of ING family of chromatin-binding proteins.

    PubMed

    Culurgioni, Simone; Muñoz, Inés G; Moreno, Alberto; Palacios, Alicia; Villate, Maider; Palmero, Ignacio; Montoya, Guillermo; Blanco, Francisco J

    2012-03-30

    The protein ING4 binds to histone H3 trimethylated at Lys-4 (H3K4me3) through its C-terminal plant homeodomain, thus recruiting the HBO1 histone acetyltransferase complex to target promoters. The structure of the plant homeodomain finger bound to an H3K4me3 peptide has been described, as well as the disorder and flexibility in the ING4 central region. We report the crystal structure of the ING4 N-terminal domain, which shows an antiparallel coiled-coil homodimer with each protomer folded into a helix-loop-helix structure. This arrangement suggests that ING4 can bind simultaneously two histone tails on the same or different nucleosomes. Dimerization has a direct impact on ING4 tumor suppressor activity because monomeric mutants lose the ability to induce apoptosis after genotoxic stress. Homology modeling based on the ING4 structure suggests that other ING dimers may also exist.

  6. Evaluation of ZnSe(S) Quantum Dots on the Cell Viability of Prostate Cancer Cell (PC3)

    NASA Astrophysics Data System (ADS)

    Calderón-Ortiz, E. R.; Bailón-Ruiz, S.; Martínez-Ferrer, M.; Rodríguez-Orengo, J. F.; Perales-Pérez, O.

    2018-05-01

    Nanomedicine is described as the process of diagnosing, treating, and preventing disease using nanostructured materials to improve human health. Quantum dots (QDs) host suitable optical properties for light-driven therapies, e.g., photo-dynamic therapy (PDT), for cancer treatment. The efficacy of QDs-assisted PDT relies on the capability of QDs to generate reactive oxygen species, which can be enhanced by inducing structural defects at the atomic level. Furthermore, data concerning the applicability of QDs-PDT in medicine is scarce, particularly for prostate cancer cells (PC3). On this basis, and as a first step in this research, the present report focused on the direct aqueous-synthesis of water-stable ZnSe(S) QDs via a microwave-assisted synthesis approach in the presence of thioglycolic acid (TGA) and mercaptopropionic acid (MPA). XRD analysis confirmed the face centered cubic structure in host ZnS; the average crystallite size was estimated at 10 nm. The photoluminescence of MPA-capped ZnSe(S) showed a strong main emission peak around 363 nm and a trap emission, attributed to structural defects, centered on 450 nm. The photoluminescence spectrum for TGA-capped ZnSe(S) QDs exhibited only the band gap peak around 390 nm, suggesting the absence of major structural defects. In turn, cell viability assays TGA-capped ZnSe(S) were not toxic at concentrations up to 100 ppm, whereas MPA-capped ZnSe(S) evidenced cytotoxicity at a concentration of 10 ppm. The lethal dose (LD50) for the MPA-capped ZnSe(S) in the PC3 cell line was 36 ppm and 35 ppm for 24 h and 48 h, respectively.

  7. Application of a simplified calculation for full-wave microtremor H/ V spectral ratio based on the diffuse field approximation to identify underground velocity structures

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José

    2017-12-01

    Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.

  8. Graphoepitaxy by encapsulation

    DOEpatents

    Geis, Michael W.; Smith, Henry I.; Antoniadis, Dimitri A.; Flanders, Dale C.

    1986-01-01

    Improvements on the graphoepitaxial process for obtaining epitaxial or preferred orientation films are described wherein a cap of material is formed over the film to be oriented, artificial surface-relief structure may be present in the substrate, the cap, or both, and the film may be heated by irradiation with electromagnetic radiation.

  9. Six New Polyketide Decalin Compounds from Mangrove Endophytic Fungus Penicillium aurantiogriseum 328#

    PubMed Central

    Ma, Yanhong; Li, Jing; Huang, Meixiang; Liu, Lan; Wang, Jun; Lin, Yongcheng

    2015-01-01

    Six new compounds with polyketide decalin ring, peaurantiogriseols A–F (1–6), along with two known compounds, aspermytin A (7), 1-propanone,3-hydroxy-1-(1,2,4a,5,6,7,8,8a-octahydro-2,5-dihydroxy-1,2,6-trimethyl-1-naphthalenyl) (8), were isolated from the fermentation products of mangrove endophytic fungus Penicillium aurantiogriseum 328#. Their structures were elucidated based on their structure analysis. The absolute configurations of compounds 1 and 2 were determined by 1H NMR analysis of their Mosher esters; the absolute configurations of 3–6 were determined by using theoretical calculations of electronic circular dichroism (ECD). Compounds 1–8 showed low inhibitory activity against human aldose reductase, no activity of inducing neurite outgrowth, nor antimicrobial activity. PMID:26473887

  10. Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.

    PubMed

    Ruan, Qichao; Liberman, David; Zhang, Yuzheng; Ren, Dongni; Zhang, Yunpeng; Nutt, Steven; Moradian-Oldak, Janet

    2016-06-13

    Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.

  11. Experimental Study of the Structure of a Wingtip Vortex

    NASA Technical Reports Server (NTRS)

    Anderson, Elgin A.; Wright, Christopher T.

    2000-01-01

    A complete look at the near-field development and subsequent role-up of a wingtip vortex from a NACA 0015 wing section is investigated. Two separate but equally important surveys of the vortex structure in the region adjacent to the wingtip and approximately one chord length downstream of the trailing edge are performed. The two surveys provide qualitative flow-visualization an quantitative velocity measurement data. The near-field development and subsequent role-up of the vortex structures is strongly influenced by the angle-of-attack and the end-cap treatment of the wing section. The velocity field near the wingtip of the NACA 0015 wing section was measured with a triple-sensor hot wire probe and compared to flow visualization images produced with titanium tetrachloride smoke injection and laser illumination. The flat end-cap results indicate the formation of multiple, relatively strong vortex structures as opposed to the formation of a single vortex produced with the round end-cap. The multiple vortices generated by the flat end-cap are seen to rotate around a common ce te in a helical pattern until they eventually merge into a single vortex. Compared to a non-dimensional loading parameter, the results of the velocity and flow visualization data shows a "jetlike" axial velocity profile for loading parameter values on the order of 0.1 and a "wakelike" profile for much lower loading parameter values.

  12. Crystal structure of Au25(SePh)18 nanoclusters and insights into their electronic, optical and catalytic properties

    NASA Astrophysics Data System (ADS)

    Song, Yongbo; Zhong, Juan; Yang, Sha; Wang, Shuxin; Cao, Tiantian; Zhang, Jun; Li, Peng; Hu, Daqiao; Pei, Yong; Zhu, Manzhou

    2014-10-01

    The crystal structure of selenolate-capped Au25(SePh)18- nanoclusters has been unambiguously determined for the first time, and provides a solid basis for a deeper understanding of the structure-property relationships. The selenolate-capped Au25 cluster shows noticeable differences from the previously reported Au25(SCH2CH2Ph)18- counterpart, albeit both share the icosahedral Au13 core and semi-ring Au2(SeR)3 or Au2(SR)3 motifs. Distinct differences in the electronic structure and optical, catalytic and electrochemical properties are revealed by the coupling experiments with density functional theory (TD-DFT) calculations. Overall, the successful determination of the Au25(SePh)18- structure removes any ambiguity about its structure, and comparison with the thiolated Au25 counterpart helps us to further understand how the ligands affect the properties of the nanocluster.The crystal structure of selenolate-capped Au25(SePh)18- nanoclusters has been unambiguously determined for the first time, and provides a solid basis for a deeper understanding of the structure-property relationships. The selenolate-capped Au25 cluster shows noticeable differences from the previously reported Au25(SCH2CH2Ph)18- counterpart, albeit both share the icosahedral Au13 core and semi-ring Au2(SeR)3 or Au2(SR)3 motifs. Distinct differences in the electronic structure and optical, catalytic and electrochemical properties are revealed by the coupling experiments with density functional theory (TD-DFT) calculations. Overall, the successful determination of the Au25(SePh)18- structure removes any ambiguity about its structure, and comparison with the thiolated Au25 counterpart helps us to further understand how the ligands affect the properties of the nanocluster. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04631e

  13. Effect of capping layer on interlayer coupling in synthetic spin valves

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Qiu, Jinjun; Han, Guchang; Guo, Zaibing; Zheng, Yuankai; Wu, Yihong; Li, Jinshan

    2005-01-01

    The magnetic and transport properties of high quality synthetic spin-valves with the structure of Ta/NiFe/IrMn/CoFe/Ru/CoFe/NOL/CoFe/Cu/CoFe/CL were studied by using magnetoresistance measurements. Here Ti, Hf, and Al are used as the capping layer. It is found that both the thickness and materials properties of the capping layers can affect the interlayer coupling field. The interlayer coupling field oscillates weakly with respect to the thickness of the Ti and Hf capping layers. Extremely strong ferromagnetic coupling has been observed when the thickness of the Al capping layer is in a certain range where resonant exchange coupling takes place. The strength of the interlayer coupling is inversely proportional to the square of the thickness of the spacer. It is a typical characteristic of quantum size effect.

  14. Structural signal of a dynamic glass transition

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sudeshna; Uysal, Ahmet; Stripe, Benjamin; Evmenenko, Guennadi; Dutta, Pulak; Ehrlich, Steven; Karapetrova, Evguenia A.

    2010-03-01

    Conventional wisdom states that there is no significant difference between the static structures of the glass and liquid states of a given material. Using x-ray reflectivity, we have studied pentaphenyl trimethyl trisiloxane, an isotropic liquid at room temperature with a dynamic glass transition at 224K. Surface density oscillations (surface layers) develop below 285K, similar to those seen in other metallic and dielectric liquids and in computer simulations [1]. Upon cooling further, there is a sharp increase in the penetration of the surface layers into the bulk material, i.e. an apparently discontinuous change in the static structure, exactly at the glass transition (224K) [2]. [4pt] [1]. e.g. O. M. Magnussen et al., PRL 74, 4444 (1995); H. Mo et al. PRL 96, 096107 (2006); E. Chac'on et al., PRL 87, 166101 (2001) [0pt] [2] S. Chattopadhyay et al, PRL 103, 175701 (2009)

  15. Racemic synthesis and solid phase peptide synthesis application of the chimeric valine/leucine derivative 2-amino-3,3,4-trimethyl-pentanoic acid.

    PubMed

    Pelà, M; Del Zoppo, L; Allegri, L; Marzola, E; Ruzza, C; Calo, G; Perissutti, E; Frecentese, F; Salvadori, S; Guerrini, R

    2014-07-01

    The synthesis of non natural amino acid 2-amino-3,3,4-trimethyl-pentanoic acid (Ipv) ready for solid phase peptide synthesis has been developed. Copper (I) chloride Michael addition, followed by a Curtius rearrangement are the key steps for the lpv synthesis. The racemic valine/leucine chimeric amino acid was then successfully inserted in position 5 of neuropeptide S (NPS) and the diastereomeric mixture separated by reverse phase HPLC. The two diastereomeric NPS derivatives were tested for intracellular calcium mobilization using HEK293 cells stably expressing the mouse NPS receptor where they behaved as partial agonist and pure antagonist.

  16. Asymmetric metal-insulator-metal (MIM) structure formed by pulsed Nd:YAG laser deposition with titanium nitride (TiN) and aluminum nitride (AlN)

    NASA Astrophysics Data System (ADS)

    Oshikane, Yasushi

    2017-08-01

    A novel nanostructured end cap for a truncated conical apex of optical fiber has been studied experimental and numerically. The peculiar cap is composed of asymmetric metal-insulator-metal (MIM) structure coupled with subwavelength holes. The MIM structure may act as reflective band cut filter or generator of surface plasmon polariton (SPP). And nano holes in the thicker metal layer could extract the SPP from the MIM structure and lead it to outer surface of the metal layer. For the purpose, the author has started to create the asymmetric MIM structure with TiN and AlN by pulsed laser deposition (PLD). The resultant structure was diagnosed by spectroscopic analyses.

  17. Observations of the north polar region of Mars from the Mars orbiter laser altimeter.

    PubMed

    Zuber, M T; Smith, D E; Solomon, S C; Abshire, J B; Afzal, R S; Aharonson, O; Fishbaugh, K; Ford, P G; Frey, H V; Garvin, J B; Head, J W; Ivanov, A B; Johnson, C L; Muhleman, D O; Neumann, G A; Pettengill, G H; Phillips, R J; Sun, X; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-12-11

    Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.

  18. Measuring Psychological Capital: Construction and Validation of the Compound PsyCap Scale (CPC-12)

    PubMed Central

    Lorenz, Timo; Beer, Clemens; Pütz, Jan; Heinitz, Kathrin

    2016-01-01

    With the Psychological Capital Questionnaire (PCQ) being the standard measure to assess psychological capital (PsyCap) in the context of organizations, this paper aims to broaden this domain-specific approach by introducing a measure with universal claim. Two studies were conducted to create and validate a German self-report scale (CPC-12) measuring PsyCap. We performed confirmatory factor analyses and correlations with other positive psychological constructs on the data of two German samples (N1 = 321; N2 = 202). The twelve-item CPC-12 exhibits the anticipated factorial structure with a very good model fit and associations to other constructs concur with previous findings with other measures of PsyCap. PMID:27035437

  19. Graphoepitaxy by encapsulation

    DOEpatents

    Geis, M.W.; Smith, H.I.; Antoniadis, D.A.; Flanders, D.C.

    1986-01-21

    Improvements on the graphoepitaxial process for obtaining epitaxial or preferred orientation films are described wherein a cap of material is formed over the film to be oriented, artificial surface-relief structure may be present in the substrate, the cap, or both, and the film may be heated by irradiation with electromagnetic radiation. 13 figs.

  20. Characterization of rat leydig cell gonadotropin receptor structure by affinity cross-linking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.Y.; Hwang, J.; Menon, K.M.J.

    1986-05-01

    The gonadotropin receptor from rat leydig cell has been characterized with respect to binding kinetics and physiological regulation. The present study was intended to examine the structure of the receptor. Leydig cell suspension was prepared by either collagenase digestion or by mechanical disruption of the testis. The cells were incubated with /sup 125/I-hCG and the unreacted hCG was removed by centrifugation. The /sup 125/I-hCG was then covalently linked to the cell surface receptor using cleavable (dithiobis (succinimidyl propionate)) and non-cleavable (disuccinimidyl suberate) cross-linking reagents. The extracted cross-linked membrane proteins were resolved on SDS-polyacrylamide gels under reducing and non-reducing conditions andmore » subjected to autoradiographic analysis. Under non-reducing conditions, two labeled species with M/sub r/ = 87,000 and 120,000 were detected. However, only one labeled band was detected under reducing conditions with M/sub r/ = 64,000. The binding of /sup 125/I-hCG to the receptor was inhibited by hCG and LH, but not by a number of peptides and proteins. The data suggest that hCG receptor in leydig cell is an oligomeric complex consisting of four subunits, ..cap alpha cap alpha beta gamma... The ..beta.. and ..gamma.. subunits are each linked to an ..cap alpha.. subunit through disulfide linkage and the hormone binds to each ..cap alpha.. subunit. The two dimers formed (..cap alpha beta cap alpha gamma..) are associated by noncovalent interactions.« less

  1. Anthraquinones from a Marine-Derived Streptomyces spinoverrucosus

    PubMed Central

    Hu, Youcai; Martinez, Elisabeth D.; MacMillan, John B.

    2012-01-01

    Four new anthraquinone analogs including galvaquinones A-C (1–3) and an isolation artifact 5,8-dihydroxy-2,2,4-trimethyl-6-(3-methylbutyl)anthra[9,1-de][1,3]oxazin-7(2H)-one (4) were isolated from a marine-derived Streptomyces spinoverrucosus based on activity in an image-based assay to identify epigenetic modifying compounds. The structures of 1–4 were elucidated by comprehensive NMR and MS spectroscopic analysis. Galvaquinone B (2) was found to show epigenetic modulatory activity at 1.0 μM, and exhibited moderate cytotoxicity against non-small cell lung cancer (NSCLC) cell lines Calu-3 and H2887. PMID:23057874

  2. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    PubMed Central

    2012-01-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors. PMID:22643113

  3. Redetermination of dicerium(III) tris­(sulfate) tetra­hydrate

    PubMed Central

    Xu, Xin

    2008-01-01

    Ce2(SO4)3(H2O)4 was obtained hydro­thermally from an aqueous solution of cerium(III) oxide, trimethyl­amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 ▶). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S—O—Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands. PMID:21200451

  4. Preparation of Curcumin-Piperazine Coamorphous Phase and Fluorescence Spectroscopic and Density Functional Theory Simulation Studies on the Interaction with Bovine Serum Albumin.

    PubMed

    Pang, Wenzhe; Lv, Jie; Du, Shuang; Wang, Jiaojiao; Wang, Jing; Zeng, Yanli

    2017-09-05

    In the present study, a new coamorphous phase (CAP) of bioactive herbal ingredient curcumin (CUR) with high solubilitythe was screened with pharmaceutically acceptable coformers. Besides, to provide basic information for the best practice of physiological and pharmaceutical preparations of CUR-based CAP, the interaction between CUR-based CAP and bovine serum albumin (BSA) was studied at the molecular level in this paper. CAP of CUR and piperazine with molar ratio of 1:2 was prepared by EtOH-assisted grinding. The as-prepared CAP was characterized by powder X-ray diffraction, modulated temperature differential scanning calorimetry, thermogravimetric analysis, Fourier-transform infrared, and solid-state 13 C nuclear magnetic resonance. The 1:2 CAP stoichioimetry was sustained by C═O···H hydrogen bonds between the N-H group of the piperazine and the C═O group of CUR; piperazine stabilized the diketo structure of CUR in CAP. The dissolution rate of CUR-piperazine CAP in 30% ethanol-water was faster than that of CUR; the t 50 values were 243.1 min for CUR and 4.378 min for CAP. Furthermore, interactions of CUR and CUR-piperazine CAP with BSA were investigated by fluorescence spectroscopy and density functional theory (DFT) calculation. The binding constants (K b ) of CUR and CUR-piperazine CAP with BSA were 10.0 and 9.1 × 10 3 L mol -1 at 298 K, respectively. Moreover, DFT simulation indicated that the interaction energy values of hydrogen-bonded interaction in the tryptophan-CUR and tryptophan-CUR-piperazine complex were -26.1 and -17.9 kJ mol -1 , respectively. In a conclusion, after formation of CUR-piperazine CAP, the interaction forces between CUR and BSA became weaker.

  5. Recombination and Population Mosaic of a Multifunctional Viral Gene, Adeno-Associated Virus cap

    PubMed Central

    Takeuchi, Yasuhiro; Myers, Richard; Danos, Olivier

    2008-01-01

    Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV) cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI) revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u) region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred. PMID:18286191

  6. Advances in synthesis of calcium phosphate crystals with controlled size and shape.

    PubMed

    Lin, Kaili; Wu, Chengtie; Chang, Jiang

    2014-10-01

    Calcium phosphate (CaP) materials have a wide range of applications, including biomaterials, adsorbents, chemical engineering materials, catalysts and catalyst supports and mechanical reinforcements. The size and shape of CaP crystals and aggregates play critical roles in their applications. The main inorganic building blocks of human bones and teeth are nanocrystalline CaPs; recently, much progress has been made in the application of CaP nanocrystals and their composites for clinical repair of damaged bone and tooth. For example, CaPs with special micro- and nanostructures can better imitate the biomimetic features of human bone and tooth, and this offers significantly enhanced biological performances. Therefore, the design of CaP nano-/microcrystals, and the shape and hierarchical structures of CaPs, have great potential to revolutionize the field of hard tissue engineering, starting from bone/tooth repair and augmentation to controlled drug delivery devices. Previously, a number of reviews have reported the synthesis and properties of CaP materials, especially for hydroxyapatite (HAp). However, most of them mainly focused on the characterizations and physicochemical and biological properties of HAp particles. There are few reviews about the control of particle size and size distribution of CaPs, and in particular the control of nano-/microstructures on bulk CaP ceramic surfaces, which is a big challenge technically and may have great potential in tissue engineering applications. This review summarizes the current state of the art for the synthesis of CaP crystals with controlled sizes from the nano- to the macroscale, and the diverse shapes including the zero-dimensional shapes of particles and spheres, the one-dimensional shapes of rods, fibers, wires and whiskers, the two-dimensional shapes of sheets, disks, plates, belts, ribbons and flakes and the three-dimensional (3-D) shapes of porous, hollow, and biomimetic structures similar to biological bone and tooth. In addition, this review will also summarize studies on the controlled formation of nano-/microstructures on the surface of bulk ceramics, and the preparation of macroscopical bone grafts with 3-D architecture nano-/microstructured surfaces. Moreover, the possible directions of future research and development in this field, such as the detailed mechanisms behind the size and shape control in various strategies, the importance of theoretical simulation, self-assembly, biomineralization and sacrificial precursor strategies in the fabrication of biomimetic bone-like and enamel-like CaP materials are proposed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Comparison of VOC and ammonia emissions from individual PVC materials, adhesives and from complete structures.

    PubMed

    Järnström, H; Saarela, K; Kalliokoski, P; Pasanen, A-L

    2008-04-01

    Emission rates of volatile organic compounds (VOCs) and ammonia measured from six PVC materials and four adhesives in the laboratory were compared to the emission rates measured on site from complete structures. Significantly higher specific emission rates (SERs) were generally measured from the complete structures than from individual materials. There were large differences between different PVC materials in their permeability for VOCs originating from the underlying structure. Glycol ethers and esters from adhesives used in the installation contributed to the emissions from the PVC covered structure. Emissions of 2-ethylhexanol and TXIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate) were common. High ammonia SERs were measured from single adhesives but their contribution to the emissions from the complete structure did not appear as obvious as for VOCs. The results indicate that three factors affected the VOC emissions from the PVC flooring on a structure: 1) the permeability of the PVC product for VOCs, 2) the VOC emission from the adhesive used, and 3) the VOC emission from the backside of the PVC product.

  8. Advantages of InGaN/GaN multiple quantum wells with two-step grown low temperature GaN cap layers

    NASA Astrophysics Data System (ADS)

    Zhu, Yadan; Lu, Taiping; Zhou, Xiaorun; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe

    2017-11-01

    Two-step grown low temperature GaN cap layers (LT-cap) are employed to improve the optical and structural properties of InGaN/GaN multiple quantum wells (MQWs). The first LT-cap layer is grown in nitrogen atmosphere, while a small hydrogen flow is added to the carrier gas during the growth of the second LT-cap layer. High-resolution X-ray diffraction results indicate that the two-step growth method can improve the interface quality of MQWs. Room temperature photoluminescence (PL) tests show about two-fold enhancement in integrated PL intensity, only 25 meV blue-shift in peak energy and almost unchanged line width. On the basis of temperature-dependent PL characteristics analysis, it is concluded that the first and the second LT-cap layer play a different role during the growth of MQWs. The first LT-cap layer acts as a protective layer, which protects quantum well from serious indium loss and interface roughening resulting from the hydrogen over-etching. The hydrogen gas employed in the second LT-cap layer is in favor of reducing defect density and indium segregation. Consequently, interface/surface and optical properties are improved by adopting the two-step growth method.

  9. Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation.

    PubMed

    Wakeham, Stuart G; Canuel, Elizabeth A

    2016-06-01

    Biogenic perylene and higher plant pentacyclic triterpenoid-derived alkylated and partially aromatized tetra- and pentacyclic derivatives of chrysene (3,4,7-trimethyl- and 3,3,7-trimethyl-1,2,3,4-tetrahydrochrysene, THC) and picene (1,2,9-trimethyl- and 2,2,9-trimethyl-1,2,3,4-tetrahydropicene, THP) were two- to four-fold more abundant than pyrogenic PAH in two sediment cores from the San Joaquin River in Northern California (USA). In a core from Venice Cut (VC), located in the river, PAH concentrations varied little downcore and the whole-core PAH concentration (biogenics + pyrogenics) was 250.6 ± 73.7 ng g(-1) dw; biogenic PAH constituted 67 ± 4 % of total PAH. THC were 26 ± 9 % of total biogenic PAH, THP were 36 ± 7 %, and perylene was 38 ± 7 %. PAH distributions in a core from Franks Tract (FT), a former wetland that was converted to an agricultural tract in the late 1800s and flooded in 1938, were more variable. Surface sediments were dominated by pyrogenic PAH so that biogenic PAH were only ~30 % of total PAH. Deeper in the core, biogenic PAH constituted 60-93 % of total PAH; THC, THP and perylene were 31 ± 28 %, 24 ± 32 %, and 45 ± 36 % of biogenic PAH. At 100-103 cm depth, THP constituted 80 % of biogenic PAH and at 120-123 cm perylene was 95 % of biogenic PAH. Current concepts related to precursors and transformation processes responsible for the diagenetic generation of perylene and triterpenoid-derived PAH are discussed. Distributions of biogenic PAH in VC and FT sediments suggest that they may not form diagenetically within these sediments but rather might be delivered pre-formed from the river's watershed.

  10. Chitosan capped nanoscale Fe-MIL-88B-NH2 metal-organic framework as drug carrier material for the pH responsive delivery of doxorubicin

    NASA Astrophysics Data System (ADS)

    Sivakumar, P.; Priyatharshni, S.; Nagashanmugam, K. B.; Thanigaivelan, A.; Kumar, K.

    2017-08-01

    In recent years nanoscale metal-organic frameworks (NMOFs) are contributing as an effective material for use in drug delivery and imaging applications due to their porous surfaces and easy surface modifications. In this work, Fe-MIL-88B-NH2 NMOFs were successfully synthesized on facile hydrothermal route and 2-aminoterephthalic acid (NH2-BDC) was employed as a bridging ligand to activate amine functional groups on the surface. Amine functional groups not only serve as a structure stabilizing agent but also enhance the loading efficiency of the doxorubicin (DOX) anticancer drug. A pH responsive DOX release was realized by introducing a positively charged chitosan (Chi) capping layer. Upon Chi-coating, cleavage was observed in the Fe-MIL-88B-NH2 structure at acidic pH, while gel-like insoluble structure was formed at basic pH. By utilizing this phenomenon, a pH responsive DOX release system was developed by using Chi capped Fe-MIL-88B-NH2 NMOFs under the designed pH (4.0-8.0). The results suggest the Chi capped Fe-MIL-88B-NH2 can be a promising candidate for future pH responsive drug delivery systems.

  11. Structural and Functional Diversity of Plant Virus 3'-Cap-Independent Translation Enhancers (3'-CITEs).

    PubMed

    Truniger, Verónica; Miras, Manuel; Aranda, Miguel A

    2017-01-01

    Most of the positive-strand RNA plant viruses lack the 5'-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5'- or 3'-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3'-end of viruses belonging to the family Tombusviridae and the genus Luteovirus . Seven classes of 3'-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3'-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5'-end by different mechanisms, often long-distance RNA-RNA interactions. As previously proposed and recently found in one case in nature, 3'-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3'-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3'-CITEs belonging to different classes.

  12. Structural and Functional Diversity of Plant Virus 3′-Cap-Independent Translation Enhancers (3′-CITEs)

    PubMed Central

    Truniger, Verónica; Miras, Manuel; Aranda, Miguel A.

    2017-01-01

    Most of the positive-strand RNA plant viruses lack the 5′-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5′- or 3′-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3′-end of viruses belonging to the family Tombusviridae and the genus Luteovirus. Seven classes of 3′-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3′-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5′-end by different mechanisms, often long-distance RNA–RNA interactions. As previously proposed and recently found in one case in nature, 3′-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3′-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3′-CITEs belonging to different classes. PMID:29238357

  13. Influence of microgravity on cellular differentiation in root caps of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.

  14. Assessing the Role of Capping Molecules in Controlling Aggregative Growth of Gold Nanoparticles in Heated Solution.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2016-01-01

    This report describes findings of an investigation of the role of capping molecules in the size growth in the aggregative growth of pre-formed small-sized gold nanoparticles capped with alkanethiolate monolayers toward monodispersed larger sizes. The size controllability depends on the thiolate chain length and concentration in the thermal solution. The size evolution in solution at different concentrations of alkanethiols is analyzed in relation to adsorption isotherms and cohesive energy. The size dependence on thiolate chain length is also analyzed by considering the cohesive energy of the capping molecules, revealing the importance of cohesive energy in the capping structure. Theoretical and experimental comparisons of the surface plasmonic resonance optical properties have also provided new insights into the mechanism, thus enabling the exploitation of size-dependent nanoscale properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap.

    PubMed

    Gokul, Jarishma K; Hodson, Andrew J; Saetnan, Eli R; Irvine-Fynn, Tristram D L; Westall, Philippa J; Detheridge, Andrew P; Takeuchi, Nozomu; Bussell, Jennifer; Mur, Luis A J; Edwards, Arwyn

    2016-08-01

    Microbial colonization of glacial ice surfaces incurs feedbacks which affect the melting rate of the ice surface. Ecosystems formed as microbe-mineral aggregates termed cryoconite locally reduce ice surface albedo and represent foci of biodiversity and biogeochemical cycling. Consequently, greater understanding the ecological processes in the formation of functional cryoconite ecosystems upon glacier surfaces is sought. Here, we present the first bacterial biogeography of an ice cap, evaluating the respective roles of dispersal, environmental and biotic filtration occurring at local scales in the assembly of cryoconite microbiota. 16S rRNA gene amplicon semiconductor sequencing of cryoconite colonizing a Svalbard ice cap coupled with digital elevation modelling of physical parameters reveals the bacterial community is dominated by a ubiquitous core of generalist taxa, with evidence for a moderate pairwise distance-decay relationship. While geographic position and melt season duration are prominent among environmental predictors of community structure, the core population of taxa appears highly influential in structuring the bacterial community. Taxon co-occurrence network analysis reveals a highly modular community structured by positive interactions with bottleneck taxa, predominantly Actinobacteria affiliated to isolates from soil humus. In contrast, the filamentous cyanobacterial taxon (assigned to Leptolyngbya/Phormidesmis pristleyi) which dominates the community and binds together granular cryoconite are poorly connected to other taxa. While our study targeted one ice cap, the prominent role of generalist core taxa with close environmental relatives across the global cryosphere indicate discrete roles for cosmopolitan Actinobacteria and Cyanobacteria as respective keystone taxa and ecosystem engineers of cryoconite ecosystems colonizing ice caps. © 2016 John Wiley & Sons Ltd.

  16. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs.

    PubMed

    Lahr, Roni M; Fonseca, Bruno D; Ciotti, Gabrielle E; Al-Ashtal, Hiba A; Jia, Jian-Jun; Niklaus, Marius R; Blagden, Sarah P; Alain, Tommy; Berman, Andrea J

    2017-04-07

    The 5'terminal oligopyrimidine (5'TOP) motif is a cis -regulatory RNA element located immediately downstream of the 7-methylguanosine [m 7 G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5'TOP motif, a cap analog (m 7 GTP), and a capped cytidine (m 7 GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5'TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5'TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis.

  17. Perennial water ice identified in the south polar cap of Mars

    NASA Astrophysics Data System (ADS)

    Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; OMEGA Team; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V.; Ignatiev, N.; Titov, D.; Zasova, L.; Pinet, P.; Sotin, C.; Hauber, E.; Hoffman, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Duxbury, T.; Forget, F.

    2004-04-01

    The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.

  18. Structural basis for LeishIF4E-1 modulation by an interacting protein in the human parasite Leishmania major.

    PubMed

    Meleppattu, Shimi; Arthanari, Haribabu; Zinoviev, Alexandra; Boeszoermenyi, Andras; Wagner, Gerhard; Shapira, Michal; Léger-Abraham, Mélissa

    2018-03-19

    Leishmania parasites are unicellular pathogens that are transmitted to humans through the bite of infected sandflies. Most of the regulation of their gene expression occurs post-transcriptionally, and the different patterns of gene expression required throughout the parasites' life cycle are regulated at the level of translation. Here, we report the X-ray crystal structure of the Leishmania cap-binding isoform 1, LeishIF4E-1, bound to a protein fragment of previously unknown function, Leish4E-IP1, that binds tightly to LeishIF4E-1. The molecular structure, coupled to NMR spectroscopy experiments and in vitro cap-binding assays, reveal that Leish4E-IP1 allosterically destabilizes the binding of LeishIF4E-1 to the 5' mRNA cap. We propose mechanisms through which Leish4E-IP1-mediated LeishIF4E-1 inhibition could regulate translation initiation in the human parasite.

  19. Electromagnetically induced reflectance and Fano resonance in one dimensional superconducting photonic crystal

    NASA Astrophysics Data System (ADS)

    Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.

    2018-04-01

    In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.

  20. Time-resolved spectroscopy of dye-labeled photoactive yellow protein suggests a pathway of light-induced structural changes in the N-terminal cap.

    PubMed

    Hoersch, Daniel; Otto, Harald; Cusanovich, Michael A; Heyn, Maarten P

    2009-07-14

    The photoreceptor PYP responds to light activation with global conformational changes. These changes are mainly located in the N-terminal cap of the protein, which is approximately 20 A away from the chromophore binding pocket and separated from it by the central beta-sheet. The question of the propagation of the structural change across the central beta-sheet is of general interest for the superfamily of PAS domain proteins, for which PYP is the structural prototype. Here we measured the kinetics of the structural changes in the N-terminal cap by transient absorption spectroscopy on the ns to second timescale. For this purpose the cysteine mutants A5C and N13C were prepared and labeled with thiol reactive 5-iodoacetamidofluorescein (IAF). A5 is located close to the N-terminus, while N13 is part of helix alpha1 near the functionally important salt bridge E12-K110 between the N-terminal cap and the central anti-parallel beta-sheet. The absorption spectrum of the dye is sensitive to its environment, and serves as a sensor for conformational changes near the labeling site. In both labeled mutants light activation results in a transient red-shift of the fluorescein absorption spectrum. To correlate the conformational changes with the photocycle intermediates of the protein, we compared the kinetics of the transient absorption signal of the dye with that of the p-hydroxycinnamoyl chromophore. While the structural change near A5 is synchronized with the rise of the I(2) intermediate, which is formed in approximately 200 mus, the change near N13 is delayed and rises with the next intermediate I(2)', which forms in approximately 2 ms. This indicates that different parts of the N-terminal cap respond to light activation with different kinetics. For the signaling pathway of photoactive yellow protein we propose a model in which the structural signal propagates from the chromophore binding pocket across the central beta-sheet via the N-terminal region to helix alpha1, resulting in a large change in the protein conformation.

  1. Lightweight Thermal Protection System for Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Stewart, David; Leiser, Daniel

    2007-01-01

    TUFROC (Toughened Uni-piece Fibrous Reinforced Oxidation-resistant Composite) has been developed as a new thermal protection system (TPS) material for wing leading edge and nose cap applications. The composite withstands temperatures up to 1,970 K, and consists of a toughened, high-temperature surface cap and a low-thermal-conductivity base, and is applicable to both sharp and blunt leading edge vehicles. This extends the possible application of fibrous insulation to the wing leading edge and/or nose cap on a hypersonic vehicle. The lightweight system comprises a treated carbonaceous cap composed of ROCCI (Refractory Oxidation-resistant Ceramic Carbon Insulation), which provides dimensional stability to the outer mold line, while the fibrous base material provides maximum thermal insulation for the vehicle structure.

  2. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids.

    PubMed

    Sturm, Sabine; Engelken, Johannes; Gruber, Ansgar; Vugrinec, Sascha; Kroth, Peter G; Adamska, Iwona; Lavaud, Johann

    2013-07-30

    Light, the driving force of photosynthesis, can be harmful when present in excess; therefore, any light harvesting system requires photoprotection. Members of the extended light-harvesting complex (LHC) protein superfamily are involved in light harvesting as well as in photoprotection and are found in the red and green plant lineages, with a complex distribution pattern of subfamilies in the different algal lineages. Here, we demonstrate that the recently discovered "red lineage chlorophyll a/b-binding-like proteins" (RedCAPs) form a monophyletic family within this protein superfamily. The occurrence of RedCAPs was found to be restricted to the red algal lineage, including red algae (with primary plastids) as well as cryptophytes, haptophytes and heterokontophytes (with secondary plastids of red algal origin). Expression of a full-length RedCAP:GFP fusion construct in the diatom Phaeodactylum tricornutum confirmed the predicted plastid localisation of RedCAPs. Furthermore, we observed that similarly to the fucoxanthin chlorophyll a/c-binding light-harvesting antenna proteins also RedCAP transcripts in diatoms were regulated in a diurnal way at standard light conditions and strongly repressed at high light intensities. The absence of RedCAPs from the green lineage implies that RedCAPs evolved in the red lineage after separation from the the green lineage. During the evolution of secondary plastids, RedCAP genes therefore must have been transferred from the nucleus of the endocytobiotic alga to the nucleus of the host cell, a process that involved complementation with pre-sequences allowing import of the gene product into the secondary plastid bound by four membranes. Based on light-dependent transcription and on localisation data, we propose that RedCAPs might participate in the light (intensity and quality)-dependent structural or functional reorganisation of the light-harvesting antennae of the photosystems upon dark to light shifts as regularly experienced by diatoms in nature. Remarkably, in plastids of the red lineage as well as in green lineage plastids, the phycobilisome based cyanobacterial light harvesting system has been replaced by light harvesting systems that are based on members of the extended LHC protein superfamily, either for one of the photosystems (PS I of red algae) or for both (diatoms). In their proposed function, the RedCAP protein family may thus have played a role in the evolutionary structural remodelling of light-harvesting antennae in the red lineage.

  3. A search for structurally similar cellular internal ribosome entry sites

    PubMed Central

    Baird, Stephen D.; Lewis, Stephen M.; Turcotte, Marcel; Holcik, Martin

    2007-01-01

    Internal ribosome entry sites (IRES) allow ribosomes to be recruited to mRNA in a cap-independent manner. Some viruses that impair cap-dependent translation initiation utilize IRES to ensure that the viral RNA will efficiently compete for the translation machinery. IRES are also employed for the translation of a subset of cellular messages during conditions that inhibit cap-dependent translation initiation. IRES from viruses like Hepatitis C and Classical Swine Fever virus share a similar structure/function without sharing primary sequence similarity. Of the cellular IRES structures derived so far, none were shown to share an overall structural similarity. Therefore, we undertook a genome-wide search of human 5′UTRs (untranslated regions) with an empirically derived structure of the IRES from the key inhibitor of apoptosis, X-linked inhibitor of apoptosis protein (XIAP), to identify novel IRES that share structure/function similarity. Three of the top matches identified by this search that exhibit IRES activity are the 5′UTRs of Aquaporin 4, ELG1 and NF-kappaB repressing factor (NRF). The structures of AQP4 and ELG1 IRES have limited similarity to the XIAP IRES; however, they share trans-acting factors that bind the XIAP IRES. We therefore propose that cellular IRES are not defined by overall structure, as viral IRES, but are instead dependent upon short motifs and trans-acting factors for their function. PMID:17591613

  4. Rapid feedback of chemical vapor deposition growth mechanisms by operando X-ray diffraction

    DOE PAGES

    Martin, Aiden A.; Depond, Philip J.; Bagge-Hansen, Michael; ...

    2018-03-14

    An operando x-ray diffraction system is presented for elucidating optimal laser assisted chemical vapor deposition growth conditions. The technique is utilized to investigate deposition dynamics of boron-carbon materials using trimethyl borate precursor. Trimethyl borate exhibits vastly reduced toxicological and flammability hazards compared to existing precursors, but has previously not been applied to boron carbide growth. Crystalline boron-rich carbide material is produced in a narrow growth regime on addition of hydrogen during the growth phase at high temperature. Finally, the use of the operando x-ray diffraction system allows for the exploration of highly nonequilibrium conditions and rapid process control, which aremore » not possible using ex situ diagnostics.« less

  5. Rapid feedback of chemical vapor deposition growth mechanisms by operando X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Aiden A.; Depond, Philip J.; Bagge-Hansen, Michael

    An operando x-ray diffraction system is presented for elucidating optimal laser assisted chemical vapor deposition growth conditions. The technique is utilized to investigate deposition dynamics of boron-carbon materials using trimethyl borate precursor. Trimethyl borate exhibits vastly reduced toxicological and flammability hazards compared to existing precursors, but has previously not been applied to boron carbide growth. Crystalline boron-rich carbide material is produced in a narrow growth regime on addition of hydrogen during the growth phase at high temperature. Finally, the use of the operando x-ray diffraction system allows for the exploration of highly nonequilibrium conditions and rapid process control, which aremore » not possible using ex situ diagnostics.« less

  6. Specification and spatial arrangement of cells in the germline stem cell niche of the Drosophila ovary depend on the Maf transcription factor Traffic jam

    PubMed Central

    Panchal, Trupti; Chen, Xi; Poon, James; Kouptsova, Jane

    2017-01-01

    Germline stem cells in the Drosophila ovary are maintained by a somatic niche. The niche is structurally and functionally complex and contains four cell types, the escort, cap, and terminal filament cells and the newly identified transition cell. We find that the large Maf transcription factor Traffic jam (Tj) is essential for determining niche cell fates and architecture, enabling each niche in the ovary to support a normal complement of 2–3 germline stem cells. In particular, we focused on the question of how cap cells form. Cap cells express Tj and are considered the key component of a mature germline stem cell niche. We conclude that Tj controls the specification of cap cells, as the complete loss of Tj function caused the development of additional terminal filament cells at the expense of cap cells, and terminal filament cells developed cap cell characteristics when induced to express Tj. Further, we propose that Tj controls the morphogenetic behavior of cap cells as they adopted the shape and spatial organization of terminal filament cells but otherwise appeared to retain their fate when Tj expression was only partially reduced. Our data indicate that Tj contributes to the establishment of germline stem cells by promoting the cap cell fate, and controls the stem cell-carrying capacity of the niche by regulating niche architecture. Analysis of the interactions between Tj and the Notch (N) pathway indicates that Tj and N have distinct functions in the cap cell specification program. We propose that formation of cap cells depends on the combined activities of Tj and the N pathway, with Tj promoting the cap cell fate by blocking the terminal filament cell fate, and N supporting cap cells by preventing the escort cell fate and/or controlling the number of cap cell precursors. PMID:28542174

  7. A front-end wafer-level microsystem packaging technique with micro-cap array

    NASA Astrophysics Data System (ADS)

    Chiang, Yuh-Min

    2002-09-01

    The back-end packaging process is the remaining challenge for the micromachining industry to commercialize microsystem technology (MST) devices at low cost. This dissertation presents a novel wafer level protection technique as a final step of the front-end fabrication process for MSTs. It facilitates improved manufacturing throughput and automation in package assembly, wafer level testing of devices, and enhanced device performance. The method involves the use of a wafer-sized micro-cap array, which consists of an assortment of small caps micro-molded onto a material with adjustable shapes and sizes to serve as protective structures against the hostile environments during packaging. The micro-cap array is first constructed by a micromachining process with micro-molding technique, then sealed to the device wafer at wafer level. Epoxy-based wafer-level micro cap array has been successfully fabricated and showed good compatibility with conventional back-end packaging processes. An adhesive transfer technique was demonstrated to seal the micro cap array with a MEMS device wafer. No damage or gross leak was observed while wafer dicing or later during a gross leak test. Applications of the micro cap array are demonstrated on MEMS, microactuators fabricated using CRONOS MUMPS process. Depending on the application needs, the micro-molded cap can be designed and modified to facilitate additional component functions, such as optical, electrical, mechanical, and chemical functions, which are not easily achieved in the device by traditional means. Successful fabrication of a micro cap array comprised with microlenses can provide active functions as well as passive protection. An optical tweezer array could be one possibility for applications of a micro cap with microlenses. The micro cap itself could serve as micro well for DNA or bacteria amplification as well.

  8. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them.

    PubMed

    Leppek, Kathrin; Das, Rhiju; Barna, Maria

    2018-03-01

    RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5' untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5' UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms.

  9. Coextrusion-Based 3D Plotting of Ceramic Pastes for Porous Calcium Phosphate Scaffolds Comprised of Hollow Filaments.

    PubMed

    Jo, In-Hwan; Koh, Young-Hag; Kim, Hyoun-Ee

    2018-05-29

    This paper demonstrates the utility of coextrusion-based 3D plotting of ceramic pastes (CoEx-3DP) as a new type of additive manufacturing (AM) technique, which can produce porous calcium phosphate (CaP) ceramic scaffolds comprised of hollow CaP filaments. In this technique, green filaments with a controlled core/shell structure can be produced by coextruding an initial feedrod, comprised of the carbon black (CB) core and CaP shell, through a fine nozzle in an acetone bath and then deposited in a controlled manner according to predetermined paths. In addition, channels in CaP filaments can be created through the removal of the CB cores during heat-treatment. Produced CaP scaffolds had two different types of pores with well-defined geometries: three-dimensionally interconnected pores (~360 × 230 μm² in sizes) and channels (>100 μm in diameter) in hollow CaP filaments. The porous scaffolds showed high compressive strengths of ~12.3 ± 2.2 MPa at a high porosity of ~73 vol % when compressed parallel to the direction of the hollow CaP filaments. In addition, the mechanical properties of porous CaP scaffolds could be tailored by adjusting their porosity, for example, compressive strengths of 4.8 ± 1.1 MPa at a porosity of ~82 vol %. The porous CaP scaffold showed good biocompatibility, which was assessed by in vitro cell tests, where several the cells adhered to and spread actively with the outer and inner surfaces of the hollow CaP filaments.

  10. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  11. Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film

    DOE PAGES

    Huang, Li; Chen, Hou -Tong; Zeng, Beibei; ...

    2016-03-30

    Metamaterials/metasurfaces have enabled unprecedented manipulation of electromagnetic waves. Here we present a new design of metasurface structure functioning as antireflection coatings. The structure consists of a subwavelength metallic mesh capped with a thin dielectric layer on top of a substrate. By tailoring the geometric parameters of the metallic mesh and the refractive index and thickness of the capping dielectric film, reflection from the substrate can be completely eliminated at a specific frequency. Compared to traditional methods such as coatings with single- or multi-layer dielectric films, the metasurface antireflection coatings are much thinner and the requirement of index matching is largelymore » lifted. Here, this approach is particularly suitable for antireflection coatings in the technically challenging terahertz frequency range and is also applicable in other frequency regimes.« less

  12. Studies on the chemical synthesis and characterization of lead oxide nanoparticles with different organic capping agents

    NASA Astrophysics Data System (ADS)

    Arulmozhi, K. T.; Mythili, N.

    2013-12-01

    Lead oxide (PbO) nanoparticles were chemically synthesized using Lead (II) acetate as precursor. The effects of organic capping agents such as Oleic acid, Ethylene Diamine Tetra Acetic acid (EDTA) and Cetryl Tri Methyl Butoxide (CTAB) on the size and morphology of the nanoparticles were studied. Characterization techniques such as X-ray diffraction (XRD), Fourier Transform-Infrared spectroscopy (FT-IR), Photoluminescence (PL) Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM) were used to analyse the prepared nanoparticles for their physical, structural and optical properties. The characterization studies reveal that the synthesized PbO nanoparticles had well defined crystalline structure and sizes in the range of 25 nm to 36 nm for capping agents used and 40 nm for pure PbO nanoparticles.

  13. Bis­[4,4′-(propane-1,3-di­yl)­dipiperidin­ium] β-octa­molybdate(VI)

    PubMed Central

    Driss, Mohamed; Ksiksi, Rekaya; Ben Amor, Fatma; Zid, Mohamed Faouzi

    2010-01-01

    The title compound, bis­[4,4′-(propane-1,3-di­yl)­dipiperidin­ium] β-octa­molybdate(VI), (C13H28N2)2[Mo8O26], was produced by hydro­thermal reaction of an acidified aqueous solution of Na2MoO4·2H2O and 4,4′-trimethyl­ene­dipiperidine (L). The structure of the title compound consists of β-octa­molybdate(VI) anion clusters and protonated [H2 L]2+ cations. The octa­molybdate anion is located around an inversion center. N—H⋯O hydrogen bonds between the cations and anions ensure the cohesion of the structure and result in a three-dimensional network. PMID:21579027

  14. Intercellular signaling in Stigmatella aurantiaca: Purification and characterization of stigmolone, a myxobacterial pheromone

    PubMed Central

    Plaga, Wulf; Stamm, Irmela; Schairer, Hans Ulrich

    1998-01-01

    The myxobacterium Stigmatella aurantiaca passes through a life cycle that involves formation of a multicellular fruiting body as the most complex stage. An early step in this differentiation process depends on a signal factor secreted by the cells when nutrients become limited. The formation of a fruiting body from a small cell population can be accelerated by addition of this secreted material. The bioactive compound was found to be steam volatile. It was purified to homogeneity by steam distillation followed by reversed-phase and normal-phase HPLC. The pheromone was named stigmolone, in accordance with the structure 2,5,8-trimethyl-8-hydroxy-nonan-4-one, as determined by NMR and mass spectrometry. Stigmolone represents a structurally unique and highly bioactive prokaryotic pheromone that is effective in the bioassay at 1 nM concentration. PMID:9736724

  15. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone.

    PubMed

    Plaga, W; Stamm, I; Schairer, H U

    1998-09-15

    The myxobacterium Stigmatella aurantiaca passes through a life cycle that involves formation of a multicellular fruiting body as the most complex stage. An early step in this differentiation process depends on a signal factor secreted by the cells when nutrients become limited. The formation of a fruiting body from a small cell population can be accelerated by addition of this secreted material. The bioactive compound was found to be steam volatile. It was purified to homogeneity by steam distillation followed by reversed-phase and normal-phase HPLC. The pheromone was named stigmolone, in accordance with the structure 2,5, 8-trimethyl-8-hydroxy-nonan-4-one, as determined by NMR and mass spectrometry. Stigmolone represents a structurally unique and highly bioactive prokaryotic pheromone that is effective in the bioassay at 1 nM concentration.

  16. Insight into self-discharge of layered lithium-rich oxide cathode in carbonate-based electrolytes with and without additive

    NASA Astrophysics Data System (ADS)

    Li, Jianhui; Xing, Lidan; Zhang, Liping; Yu, Le; Fan, Weizhen; Xu, Mengqing; Li, Weishan

    2016-08-01

    Self-discharge behavior of layered lithium-rich oxide as cathode of lithium ion battery in a carbonated-based electrolyte is understood, and a simple boron-containing compound, trimethyl borate (TMB), is used as an electrolyte additive to suppress this self-discharge. It is found that layered lithium-rich oxide charged under 4.8 V in additive-free electrolyte suffers severe self-discharge and TMB is an effective electrolyte additive for self-discharge suppression. Physical characterizations from XRD, SEM, TEM, XPS and ICP-MS demonstrate that the crystal structure of the layered lithium-rich oxide collapses due to the chemical interaction between the charged oxide and electrolyte. When TMB is applied, the structural integrity of the oxide is maintained due to the protective cathode film generated from the preferential oxidation of TMB.

  17. DEAD ZONE IN THE POLAR-CAP ACCELERATOR OF PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Alexander Y.; Beloborodov, Andrei M.

    We study plasma flows above pulsar polar caps using time-dependent simulations of plasma particles in the self-consistent electric field. The flow behavior is controlled by the dimensionless parameter {alpha} = j/c{rho}{sub GJ}, where j is the electric current density and {rho}{sub GJ} is the Goldreich-Julian charge density. The region of the polar cap where 0 < {alpha} < 1 is a {sup d}ead zone{sup -}in this zone, particle acceleration is inefficient and pair creation is not expected even for young, rapidly rotating pulsars. Pulsars with polar caps near the rotation axis are predicted to have a hollow-cone structure of radiomore » emission, as the dead zone occupies the central part of the polar cap. Our results apply to charge-separated flows of electrons (j < 0) or ions (j > 0). In the latter case, we consider the possibility of a mixed flow consisting of different ion species, and observe the development of two-stream instability. The dead zone at the polar cap is essential for the development of an outer gap near the null surface {rho}{sub GJ} = 0.« less

  18. New candidate markers of head and neck squamous cell carcinoma progression

    NASA Astrophysics Data System (ADS)

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Kulbakin, D. E.; Choinzonov, E. L.

    2017-09-01

    The tumor progression in head and neck squamous cell carcinoma (HNSCC) is one of the main causes of high mortality of the patients with HNSCC. The tumor progression, particularly the metastasis, is characterized by the changes in the composition, functions and structure of different proteins. We have previously shown that serum of HNSCC patients contains the proteins which regulate various cellular processes—adenylyl cyclase associated protein 1 (CAP1), protein phosphatase 1 B (PPM1B), etc. The levels of CAP1 and PPM1B were determined using the enzyme immunoassay. The results of this study show that CAP1 and PPM1B take a part in the progression of HNSCC. The levels of CAP1 and PPM1B in the tumor and in morphologically normal tissue depended on the prevalence of the tumor process. The CAP1 and PPM1B levels were significantly higher in tumor tissue of the patients with regional metastasis. Our data allow assuming the potential possibility for predicting the outcome of the HNSCC measuring the level of tissue CAP1.

  19. Co-crystallization of cholesterol and calcium phosphate as related to atherosclerosis

    NASA Astrophysics Data System (ADS)

    Hirsch, Danielle; Azoury, Reuven; Sarig, Sara

    1990-09-01

    Calcification of atherosclerotic plaques occurs very frequently and aggravates the disease. In biological systems, epitaxial relationships between crystal structures may be important in nucleating the deposit of a solid phase. The biologically preferred calcium phosphate species, apatite, and cholesterol crystal have structurally compatible crystallographic faces which allow epitaxial growth of one crystal upon another. The present study describes a new approach to explore, in vitro, the crystallization processes of calcium phosphate (CaP) with cholesterol (CS) and cholestanol (CN) which are related to atherosclerosis. Aqueous solutions containing calcium and phosphate ions or CaP crystals as hydroxyapatite were added into saturated ethanolic solutions of CS or CS and 10% CN. After precipitation, crystals were collected and analyzed by nuclear magnetic resonance (NMR), infra-red (IR), X-ray, scanning electron microscope (SEM-LINK), differential scanning calorimeter (DSC) and atomic absorption. The principal result is the well-formed crystals precipitation when an aqueous solution and CaP seed crystals were added to saturated solutions of CS and 10% CN. Cholesterol-cholestanol dihydrate (CC2W) crystals precipitated in the presence of CaP seeds were compared to the CC2W crystals obtained without the mineral compound. The results of this comparison indicate a special link between crystals of CaP and CC2W, and support the epitaxial relationship between the two kinds of crystals. The potential of CC2W crystals to be precipitated by CaP seed crystals prove likewise the possible significant role of the cholestanol metabolite in the process of cholesterol crystallization and calcification in the arteries.

  20. Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland

    NASA Astrophysics Data System (ADS)

    Vitasse, Yann; Klein, Geoffrey; Kirchner, James W.; Rebetez, Martine

    2017-11-01

    Some of the world's valleys are famous for having particularly cold microclimates. The La Brevine valley, in the Swiss Jura Mountains, holds the record for the lowest temperature ever measured in an inhabited location in Switzerland. We studied cold air pools (CAPs) in this valley during the winter of 2014-2015 using 44 temperature data loggers distributed between 1033 and 1293 m asl. Our goals were to (i) describe the climatic conditions under which CAPs form in the valley, (ii) examine the spatial configuration and the temperature structure of the CAPs and (iii) quantify how often temperature inversions occur in winter using long-term series of temperature from the valley floor. Our results show that CAPs occurred every second night, on average, during the winter of 2014-2015 and were typically formed under cloudless, windless and high-pressure conditions. Strong temperature inversions up to 28 °C were detected between the valley floor and the surrounding hills. The spatial temperature structure of the CAPs varies among the different inversion days, with the upper boundary of the cold pool generally situated at about 1150 m asl. Although mean temperatures have increased in this area over the period 1960-2015 in connection with climate change, the occurrences of extreme cold temperatures did not decrease in winter and are highly correlated with the North Atlantic Oscillation and the East Atlantic indices. This suggests that CAPs in sheltered valleys are largely decoupled from the free atmosphere temperature and will likely continue to occur in the next decades under warmer conditions.

  1. Microstructures of Randall's plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms.

    PubMed

    Sethmann, Ingo; Wendt-Nordahl, Gunnar; Knoll, Thomas; Enzmann, Frieder; Simon, Ludwig; Kleebe, Hans-Joachim

    2017-06-01

    Randall's plaques (RP) are preferred sites for the formation of calcium oxalate monohydrate (COM) kidney stones. However, although processes of interstitial calcium phosphate (CaP) plaque formation are not well understood, the potential of plaque microstructures as indicators of CaP precipitation conditions received only limited attention. We investigated RP-associated COM stones for structural details of the calcified tissues and microstructural features of plaque-stone interfaces as indicators of the initial processes of stone formation. Significantly increased CaP supersaturation can be expected for interstitial fluid, if reabsorbed ions from the tubular system continuously diffuse into the collagenous connective tissue. Densely packed, fine-grained CaP particles were found in dense textures of basement membranes while larger, laminated particles were scattered in coarse-meshed interstitial tissue, which we propose to be due to differential spatial confinements and restrictions of ion diffusion. Particle morphologies suggest an initial precipitation as metastable amorphous calcium phosphate (ACP). Morphologies and arrangements of first COM crystals at the RP-stone interface ranged from stacked euhedral platelets to skeletal morphologies and even porous, dendritic structures, indicating, in this order, increasing levels of COM supersaturation. Furthermore, these first COM crystals were often coated with CaP. On this basis, we propose that ions from CaP-supersaturated interstitial fluid may diffuse through porous RP into the urine, where a resulting local increase in COM supersaturation could trigger crystal nucleation and, hence, initiate stone formation. Ion-depleted fluid in persistent pores of initial COM layers may get replenished from interstitial fluid, leading to CaP precipitation in porous COM.

  2. Early root cap development and graviresponse in white clover (Trifolium repens) grown in space and on a two-axis clinostat

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Staehelin, L. A.; Todd, P.

    1999-01-01

    White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.

  3. Development of Multiple Cell-Based Assays for the Detection of Histone H3 Lys27 Trimethylation (H3K27me3)

    PubMed Central

    Lu, Lihui; Wu, Jianghong

    2013-01-01

    Abstract Posttranslational modification of histone proteins in eukaryotes plays an important role in gene transcription and chromatin structure. Dysregulation of the enzymes involved in histone modification has been linked to many cancer forms, making this target class a potential new area for therapeutics. A reliable assay to monitor small-molecule inhibition of various epigenetic enzymes should play a critical role in drug discovery to fight cancer. However, it has been challenging to develop cell-based assays for high-throughput screening (HTS) and compound profiling. Recently, two homogeneous cell-based assay kits using the AlphaLISA® and LanthaScreen® technologies to detect trimethyl histone H3 Lysine 27 have become commercially available, and a heterogeneous cell assay with modified dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA®) format has been reported. To compare their pros and cons, we evaluated, optimized, and validated these three assay formats in three different cell lines and compared their activities with traditional Western blot detection of histone methylation inhibition by using commercial and in-house small-molecule inhibitors. Our data indicate that, although all four formats produced acceptable results, the homogeneous AlphaLISA assay was best suited for HTS and compound profiling due to its wider window and ease of automation. The DELFIA and Western blot assays were useful as validation tools to confirm the cell activities and eliminate potential false-positive compounds. PMID:23992119

  4. Euchromatic subdomains in rice centromeres are associated with genes and transcription.

    PubMed

    Wu, Yufeng; Kikuchi, Shinji; Yan, Huihuang; Zhang, Wenli; Rosenbaum, Heidi; Iniguez, A Leonardo; Jiang, Jiming

    2011-11-01

    The presence of the centromere-specific histone H3 variant, CENH3, defines centromeric (CEN) chromatin, but poorly understood epigenetic mechanisms determine its establishment and maintenance. CEN chromatin is embedded within pericentromeric heterochromatin in most higher eukaryotes, but, interestingly, it can show euchromatic characteristics; for example, the euchromatic histone modification mark dimethylated H3 Lys 4 (H3K4me2) is uniquely associated with animal centromeres. To examine the histone marks and chromatin properties of plant centromeres, we developed a genomic tiling array for four fully sequenced rice (Oryza sativa) centromeres and used chromatin immunoprecipitation-chip to study the patterns of four euchromatic histone modification marks: H3K4me2, trimethylated H3 Lys 4, trimethylated H3 Lys 36, and acetylated H3 Lys 4, 9. The vast majority of the four histone marks were associated with genes located in the H3 subdomains within the centromere cores. We demonstrate that H3K4me2 is not a ubiquitous component of rice CEN chromatin, and the euchromatic characteristics of rice CEN chromatin are hallmarks of the transcribed sequences embedded in the centromeric H3 subdomains. We propose that the transcribed sequences located in rice centromeres may provide a barrier preventing loading of CENH3 into the H3 subdomains. The separation of CENH3 and H3 subdomains in the centromere core may be favorable for the formation of three-dimensional centromere structure and for rice centromere function.

  5. An Alternative Approach to ChIP-Seq Normalization Enables Detection of Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon EZH2 Inhibition

    PubMed Central

    Yuan, Chih-Chi; Craske, Madeleine Lisa; Labhart, Paul; Guler, Gulfem D.; Arnott, David; Maile, Tobias M.; Busby, Jennifer; Henry, Chisato; Kelly, Theresa K.; Tindell, Charles A.; Jhunjhunwala, Suchit; Zhao, Feng; Hatton, Charlie; Bryant, Barbara M.

    2016-01-01

    Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) has been instrumental in inferring the roles of histone post-translational modifications in the regulation of transcription, chromatin compaction and other cellular processes that require modulation of chromatin structure. However, analysis of ChIP-seq data is challenging when the manipulation of a chromatin-modifying enzyme significantly affects global levels of histone post-translational modifications. For example, small molecule inhibition of the methyltransferase EZH2 reduces global levels of histone H3 lysine 27 trimethylation (H3K27me3). However, standard ChIP-seq normalization and analysis methods fail to detect a decrease upon EZH2 inhibitor treatment. We overcome this challenge by employing an alternative normalization approach that is based on the addition of Drosophila melanogaster chromatin and a D. melanogaster-specific antibody into standard ChIP reactions. Specifically, the use of an antibody that exclusively recognizes the D. melanogaster histone variant H2Av enables precipitation of D. melanogaster chromatin as a minor fraction of the total ChIP DNA. The D. melanogaster ChIP-seq tags are used to normalize the human ChIP-seq data from DMSO and EZH2 inhibitor-treated samples. Employing this strategy, a substantial reduction in H3K27me3 signal is now observed in ChIP-seq data from EZH2 inhibitor treated samples. PMID:27875550

  6. An Alternative Approach to ChIP-Seq Normalization Enables Detection of Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon EZH2 Inhibition.

    PubMed

    Egan, Brian; Yuan, Chih-Chi; Craske, Madeleine Lisa; Labhart, Paul; Guler, Gulfem D; Arnott, David; Maile, Tobias M; Busby, Jennifer; Henry, Chisato; Kelly, Theresa K; Tindell, Charles A; Jhunjhunwala, Suchit; Zhao, Feng; Hatton, Charlie; Bryant, Barbara M; Classon, Marie; Trojer, Patrick

    2016-01-01

    Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) has been instrumental in inferring the roles of histone post-translational modifications in the regulation of transcription, chromatin compaction and other cellular processes that require modulation of chromatin structure. However, analysis of ChIP-seq data is challenging when the manipulation of a chromatin-modifying enzyme significantly affects global levels of histone post-translational modifications. For example, small molecule inhibition of the methyltransferase EZH2 reduces global levels of histone H3 lysine 27 trimethylation (H3K27me3). However, standard ChIP-seq normalization and analysis methods fail to detect a decrease upon EZH2 inhibitor treatment. We overcome this challenge by employing an alternative normalization approach that is based on the addition of Drosophila melanogaster chromatin and a D. melanogaster-specific antibody into standard ChIP reactions. Specifically, the use of an antibody that exclusively recognizes the D. melanogaster histone variant H2Av enables precipitation of D. melanogaster chromatin as a minor fraction of the total ChIP DNA. The D. melanogaster ChIP-seq tags are used to normalize the human ChIP-seq data from DMSO and EZH2 inhibitor-treated samples. Employing this strategy, a substantial reduction in H3K27me3 signal is now observed in ChIP-seq data from EZH2 inhibitor treated samples.

  7. Increasing Interest in Child and Adolescent Psychiatry in the Third-Year Clerkship: Results from a Post-Clerkship Survey

    ERIC Educational Resources Information Center

    Malloy, Erin; Hollar, David; Lindsey, Anthony

    2008-01-01

    Objective: The authors aimed to determine whether a structured clinical experience in child and adolescent psychiatry (CAP) during the third-year psychiatry clerkship would impact interest in pursuing careers in psychiatry and CAP. Methods: The authors constructed and administered a post-rotation survey, the Child and Adolescent Psychiatry…

  8. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection.

    Treesearch

    Sean P. Healey; Warren B. Cohen; Yang Zhiqiang; Olga N. Krankina

    2005-01-01

    Landsat satellite data has become ubiquitous in regional-scale forest disturbance detection. The Tasseled Cap (TC) transformation for Landsat data has been used in several disturbance-mapping projects because of its ability to highlight relevant vegetation changes. We used an automated composite analysis procedure to test four multi-date variants of the TC...

  9. An Analysis and Allocation System for Library Collections Budgets: The Comprehensive Allocation Process (CAP)

    ERIC Educational Resources Information Center

    Lyons, Lucy Eleonore; Blosser, John

    2012-01-01

    The "Comprehensive Allocation Process" (CAP) is a reproducible decision-making structure for the allocation of new collections funds, for the reallocation of funds within stagnant budgets, and for budget cuts in the face of reduced funding levels. This system was designed to overcome common shortcomings of current methods. Its philosophical…

  10. Risk factors for community-acquired pneumonia in adults in Europe: a literature review

    PubMed Central

    Torres, Antoni; Peetermans, Willy E; Viegi, Giovanni; Blasi, Francesco

    2013-01-01

    Background Community-acquired pneumonia (CAP) causes considerable morbidity and mortality in adults, particularly in the elderly. Methods Structured searches of PubMed were conducted to identify up-to-date information on the incidence of CAP in adults in Europe, as well as data on lifestyle and medical risk factors for CAP. Results The overall annual incidence of CAP in adults ranged between 1.07 to 1.2 per 1000 person-years and 1.54 to 1.7 per 1000 population and increased with age (14 per 1000 person-years in adults aged ≥65 years). Incidence was also higher in men than in women and in patients with chronic respiratory disease or HIV infection. Lifestyle factors associated with an increased risk of CAP included smoking, alcohol abuse, being underweight, having regular contact with children and poor dental hygiene. The presence of comorbid conditions, including chronic respiratory and cardiovascular diseases, cerebrovascular disease, Parkinson's disease, epilepsy, dementia, dysphagia, HIV or chronic renal or liver disease all increased the risk of CAP by twofold to fourfold. Conclusion A range of lifestyle factors and underlying medical conditions are associated with an increased risk of CAP in European adults. Understanding of the types of individual at greatest risk of CAP can help to ensure that interventions to reduce the risk of infection and burden of disease are targeted appropriately. PMID:24130229

  11. Structural, optical and enhanced power filtering application of PEG capped Zn1-xCoxS quantum dots

    NASA Astrophysics Data System (ADS)

    Vineeshkumar, T. V.; Prasanth, S.; Pragash, R.; Unnikrishnan, N. V.; Sudarsanakumar, C.

    2018-04-01

    Zn1-xCoxS (x= 0.05, 0.1, 0.15 and 0.2) quantum dots were synthesized successfully using co precipitation technique in polyethylene glycol (PEG) matrix. The PEG acted as a capping agent as well as a reducing agent. The structural and optical properties of the samples were studied by x-ray diffraction (XRD), TEM analysis and UV-Visible absorption. Nonlinear optical properties were measured using open aperture z-scan technique, employing frequency doubled (532 nm) pumping sources.

  12. KSC-03pd0075

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. -- After rollback of the Rotating Service Structure on Launch Pad 39A, the top of Space Shuttle Columbia's external tank and solid rocket booster are bathed in sunlight. Shadows from the Fixed Service Structure stretch across the Shuttle and landscape. Visible are the orbiter access arm with the White Room extended to Columbia's cockpit, and at the top, the gaseous oxygen vent arm and cap, called the "beanie cap." Columbia is scheduled for launch Jan. 16 at 10:39 a.m. EST on mission STS-107, a research mission.

  13. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    PubMed

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied. Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. Although their success is related to their ability to exactly mimic the structure of natural tissues and control mechanical properties of scaffolds, 3D printed scaffolds have shortcomings such as limited mimicking of the nanoscale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nanoscale roughness and chemical composition of a 3D printed scaffold surface. The results indicated that using CAP surface modification could achieve a positive change of roughness and surface chemistry. Results showed that both hydrophilicity and nanoscale roughness changes to these scaffolds after CAP treatment played an important role in enhancing bone cell and mesenchymal stem cell attachment and functions. More importantly, this technique could be used for many 3D printed polymer-based biomaterials to improve their properties for numerous applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. The polar caps

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    1985-12-01

    According to the most common definition, the 'polar cap' is the region bounded by the average or statistical auroral oval. Studies of the effects of the interplanetary magnetic field (IMF) on various upper atmospheric phenomena are reviewed. The Antarctic region and the Arctic region represent an area for such investigations. Particular attention is given in this paper to those observations in the highest latitude region which provide some information concerning corresponding changes of the internal structure of the magnetosphere. A definition and working definition of the polar cap are considered along with the IMF and magnetospheric models, the entry of solar energetic electrons, statistical studies regarding the aurora, individual events, polar cap arcs, the cusp aurora, auroral electron precipitation, convection, ionospheric currents and field-aligned currents, the ionosphere, the thermosphere, polar rain, polar wind, and hopping motions of heavy ions.

  15. Exploring of bioactive compounds in essential oil acquired from the stem and root derivatives of Hypericum triquetrifolium callus cultures.

    PubMed

    Tahir, Nawroz Abdul-Razzak; Azeez, Hoshyar Abdullah; Muhammad, Kadhm Abdullah; Faqe, Shewa Anwer; Omer, Dlshad Ali

    2017-12-25

    The chemical profile of the essential oil of callus and cell suspension cultures derivatives from stem and root of Hypericum triquetrifolium were explored by ITEX/GC-MS. The major constituents for stem derivatives were undecane (78.44%) and 2,4,6-trimethyl-octane (9.74%) for fresh calli, 2,4-dimethyl-benzaldehyde (46.94%), 2,3-dimethyl-undecane (28.39%), 2,4-dimethyl-1-hexene (10.17%), 1,2-oxolinalool (3.64%) and limonene (3.55%) for dry calli and undecane (61.24%), octane, 2,4,6-trimethyl- (16.73%), nonane, 3-methyl-(3.74%), 2,5-diphenyl-benzoquinone (3.70%) and limonene (3.60%) for cell suspension. However, for root derivatives, the dominated components were: undecane (49.94%), eucalyptol (12.07%), limonene (9.98%), toluene (9.03%) and 3-methyl-nonane (4.29%) for fresh calli, 2,4-dimethyl-benzaldehyde (29.80%), 1,1-dimethylethyl-cyclohexane (14.99%), 3-methyl-pentanal (14.99%), undecane (10.04%), beta-terpinyl acetate (8.60%), 1,2-oxolinalool (6.27%) and 2-pentyl-furan (4.09%) for dry calli, undecane (52.38%), 2,4,6-trimethyl-octane (13.81%), 3-methyl-nonane (5.73%), toluene (4.82%) and limonene (4.57%) for cell suspension derivative in root. The attained outcomes indicated that the alkane, aldehyde and monoterpene fractions dominated the chemical composition of essential oils.

  16. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells

    PubMed Central

    Fei, Qi; Yang, Xiaoqin; Jiang, Hua; Wang, Qian; Yu, Yanyan; Yu, Yiling; Yi, Wei; Zhou, Shaolian; Chen, Taiping; Lu, Chris; Atadja, Peter; Liu, Xiaole Shirley; Li, En; Zhang, Yong; Shou, Jianyong

    2015-01-01

    SETDB1, a histone methyltransferase responsible for methylation of histone H3 lysine 9 (H3K9), is involved in maintenance of embryonic stem (ES) cells and early embryonic development of the mouse. However, how SETDB1 regulates gene expression during development is largely unknown. Here, we characterized genome-wide SETDB1 binding and H3K9 trimethylation (H3K9me3) profiles in mouse ES cells and uncovered two distinct classes of SETDB1 binding sites, termed solo and ensemble peaks. The solo peaks were devoid of H3K9me3 and enriched near developmental regulators while the ensemble peaks were associated with H3K9me3. A subset of the SETDB1 solo peaks, particularly those near neural development–related genes, was found to be associated with Polycomb Repressive Complex 2 (PRC2) as well as PRC2-interacting proteins JARID2 and MTF2. Genetic deletion of Setdb1 reduced EZH2 binding as well as histone 3 lysine 27 (H3K27) trimethylation level at SETDB1 solo peaks and facilitated neural differentiation. Furthermore, we found that H3K27me3 inhibits SETDB1 methyltransferase activity. The currently identified reciprocal action between SETDB1 and PRC2 reveals a novel mechanism underlying ES cell pluripotency and differentiation regulation. PMID:26160163

  17. Microwave-Assisted Hydrothermal Rapid Synthesis of Calcium Phosphates: Structural Control and Application in Protein Adsorption

    PubMed Central

    Cai, Zhu-Yun; Peng, Fan; Zi, Yun-Peng; Chen, Feng; Qian, Qi-Rong

    2015-01-01

    Synthetic calcium phosphate (CaP)-based materials have attracted much attention in the biomedical field. In this study, we have investigated the effect of pH values on CaP nanostructures prepared using a microwave-assisted hydrothermal method. The hierarchical nanosheet-assembled hydroxyapatite (HAP) nanostructure was prepared under weak acidic conditions (pH 5), while the HAP nanorod was prepared under neutral (pH 7) and weak alkali (pH 9) condition. However, when the pH value increases to 11, a mixed product of HAP nanorod and tri-calcium phosphate nanoparticle was obtained. The results indicated that the pH value of the initial reaction solution played an important role in the phase and structure of the CaP. Furthermore, the protein adsorption and release performance of the as-prepared CaP nanostructures were investigated by using hemoglobin (Hb) as a model protein. The sample that was prepared at pH = 11 and consisted of mixed morphologies of nanorods and nanoprisms showed a higher Hb protein adsorption capacity than the sample prepared at pH 5, which could be explained by its smaller size and dispersed structure. The results revealed the relatively high protein adsorption capacity of the as-prepared CaP nanostructures, which show promise for applications in various biomedical fields such as drug delivery and protein adsorption. PMID:28347064

  18. Microwave-Assisted Hydrothermal Rapid Synthesis of Calcium Phosphates: Structural Control and Application in Protein Adsorption.

    PubMed

    Cai, Zhu-Yun; Peng, Fan; Zi, Yun-Peng; Chen, Feng; Qian, Qi-Rong

    2015-07-31

    Synthetic calcium phosphate (CaP)-based materials have attracted much attention in the biomedical field. In this study, we have investigated the effect of pH values on CaP nanostructures prepared using a microwave-assisted hydrothermal method. The hierarchical nanosheet-assembled hydroxyapatite (HAP) nanostructure was prepared under weak acidic conditions (pH 5), while the HAP nanorod was prepared under neutral (pH 7) and weak alkali (pH 9) condition. However, when the pH value increases to 11, a mixed product of HAP nanorod and tri-calcium phosphate nanoparticle was obtained. The results indicated that the pH value of the initial reaction solution played an important role in the phase and structure of the CaP. Furthermore, the protein adsorption and release performance of the as-prepared CaP nanostructures were investigated by using hemoglobin (Hb) as a model protein. The sample that was prepared at pH = 11 and consisted of mixed morphologies of nanorods and nanoprisms showed a higher Hb protein adsorption capacity than the sample prepared at pH 5, which could be explained by its smaller size and dispersed structure. The results revealed the relatively high protein adsorption capacity of the as-prepared CaP nanostructures, which show promise for applications in various biomedical fields such as drug delivery and protein adsorption.

  19. Structural determination of importin alpha in complex with beak and feather disease virus capsid nuclear localization signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Edward I.; EH Graham Centre for Agricultural Innovation; Dombrovski, Andrew K.

    2013-09-06

    Highlights: •Circovirus capsid proteins contain large nuclear localization signals (NLS). •A method of nuclear import has not been elucidated. •Beak and feather disease virus (BFDV) capsid NLS was crystallized with importin α. •The structure showed BFDV NLS binding to the major site of importin α. •Result shows implications for mechanism of nuclear transport for all circoviruses. -- Abstract: Circoviruses represent a rapidly increasing genus of viruses that infect a variety of vertebrates. Replication requires shuttling viral molecules into the host cell nucleus, a process facilitated by capsid-associated protein (Cap). Whilst a nuclear localization signal (NLS) has been shown to mediatemore » nuclear translocation, the mode of nuclear transport remains to be elucidated. To better understand this process, beak and feather disease virus (BFDV) Cap NLS was crystallized with nuclear import receptor importin-α (Impα). Diffraction yielded structural data to 2.9 Å resolution, and the binding site on both Impα and BFDV Cap NLS were well resolved. The binding mechanism for the major site is likely conserved across circoviruses as supported by the similarity of NLSs in circovirus Caps. This finding illuminates a crucial step for infection of host cells by this viral family, and provides a platform for rational drug design against the binding interface.« less

  20. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    NASA Astrophysics Data System (ADS)

    Athi, N.; Wylie, S. R.; Cullen, J. D.; Al-Jader, M.; Al-Shamma'a, A. I.; Shaw, A.

    2009-07-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  1. Equilibrium magnetic states in individual hemispherical permalloy caps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Schmidt, Oliver G.; Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz

    2012-09-24

    The magnetization distributions in individual soft magnetic permalloy caps on non-magnetic spherical particles with sizes ranging from 50 to 800 nm are investigated. We experimentally visualize the magnetic structures at the resolution limit of the x-ray magnetic circular dichroism photoelectron emission microscopy (XMCD-PEEM). By analyzing the so-called tail contrast in XMCD-PEEM, the spatial resolution is significantly enhanced, which allowed us to explore magnetic vortices and their displacement on curved surfaces. Furthermore, cap nanostructures are modeled as extruded hemispheres to determine theoretically the phase diagram of equilibrium magnetic states. The calculated phase diagram agrees well with the experimental observations.

  2. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  3. Graphite composite truss welding and cap section forming subsystems. Volume 1: Executive summary. [large space structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A rolltrusion process was developed for forming of a hybrid, single-ply woven graphite and glass fiber cloth, impregnated with a polysulfone resin and coated with TI02 pigmented P-1700 resin into strips for the on-orbit fabrication of triangular truss segments. Ultrasonic welding in vacuum showed no identifiable effects on weld strength or resin flow characteristics. An existing bench model cap roll forming machine was modified and used to roll form caps for the prototype test truss and for column test specimens in order to test local buckling and torsional instability characteristics.

  4. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs

    PubMed Central

    Lahr, Roni M; Fonseca, Bruno D; Ciotti, Gabrielle E; Al-Ashtal, Hiba A; Jia, Jian-Jun; Niklaus, Marius R; Blagden, Sarah P; Alain, Tommy; Berman, Andrea J

    2017-01-01

    The 5’terminal oligopyrimidine (5’TOP) motif is a cis-regulatory RNA element located immediately downstream of the 7-methylguanosine [m7G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5’TOP motif, a cap analog (m7GTP), and a capped cytidine (m7GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5’TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5’TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis. DOI: http://dx.doi.org/10.7554/eLife.24146.001 PMID:28379136

  5. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity.

    PubMed

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-05-21

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5'-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5'-triphosphorylated but not 5'-diphosphorylated RABV mRNA-start sequences, 5'-AACA(C/U), with GDP to generate the 5'-terminal cap structure G(5')ppp(5')A. The 5'-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents.

  6. Structural Determinants of Substrate Recognition in the HAD Superfamily Member D-glycero-D-manno-Heptose-1,7-bisphosphate Phosphatase (GmhB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, H.; Wang, L; Huang, H

    2010-01-01

    The haloalkanoic acid dehalogenase (HAD) enzyme superfamily is the largest family of phosphohydrolases. In HAD members, the structural elements that provide the binding interactions that support substrate specificity are separated from those that orchestrate catalysis. For most HAD phosphatases, a cap domain functions in substrate recognition. However, for the HAD phosphatases that lack a cap domain, an alternate strategy for substrate selection must be operative. One such HAD phosphatase, GmhB of the HisB subfamily, was selected for structure-function analysis. Herein, the X-ray crystallographic structures of Escherichia coli GmhB in the apo form (1.6 {angstrom} resolution), in a complex with Mg{supmore » 2+} and orthophosphate (1.8 {angstrom} resolution), and in a complex with Mg{sup 2+} and D-glycero-D-manno-heptose 1{beta},7-bisphosphate (2.2 {angstrom} resolution) were determined, in addition to the structure of Bordetella bronchiseptica GmhB bound to Mg{sup 2+} and orthophosphate (1.7 {angstrom} resolution). The structures show that in place of a cap domain, the GmhB catalytic site is elaborated by three peptide inserts or loops that pack to form a concave, semicircular surface around the substrate leaving group. Structure-guided kinetic analysis of site-directed mutants was conducted in parallel with a bioinformatics study of sequence diversification within the HisB subfamily to identify loop residues that serve as substrate recognition elements and that distinguish GmhB from its subfamily counterpart, the histidinol-phosphate phosphatase domain of HisB. We show that GmhB and the histidinol-phosphate phosphatase domain use the same design of three substrate recognition loops inserted into the cap domain yet, through selective residue usage on the loops, have achieved unique substrate specificity and thus novel biochemical function.« less

  7. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them

    PubMed Central

    Leppek, Kathrin; Das, Rhiju; Barna, Maria

    2017-01-01

    RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5′ untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5′ UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms. PMID:29165424

  8. A novel route for preparing 5′ cap mimics and capped RNAs: phosphate-modified cap analogues obtained via click chemistry† †Electronic supplementary information (ESI) available: Tables S1–S6 and Fig. S1–S10, experimental procedures, HPLC profiles, NMR and HRMS spectra. See DOI: 10.1039/c6sc02437h Click here for additional data file. Click here for additional data file.

    PubMed Central

    Walczak, Sylwia; Nowicka, Anna; Kubacka, Dorota; Fac, Kaja; Wanat, Przemyslaw; Mroczek, Seweryn; Kowalska, Joanna

    2017-01-01

    The significant biological role of the mRNA 5′ cap in translation initiation makes it an interesting subject for chemical modifications aimed at producing useful tools for the selective modulation of intercellular processes and development of novel therapeutic interventions. However, traditional approaches to the chemical synthesis of cap analogues are time-consuming and labour-intensive, which impedes the development of novel compounds and their applications. Here, we explore a different approach for synthesizing 5′ cap mimics, making use of click chemistry (CuAAC) to combine two mononucleotide units and yield a novel class of dinucleotide cap analogues containing a triazole ring within the oligophosphate chain. As a result, we synthesized a library of 36 mRNA cap analogues differing in the location of the triazole ring, the polyphosphate chain length, and the type of linkers joining the phosphate and the triazole moieties. After biochemical evaluation, we identified two analogues that, when incorporated into mRNA, produced transcripts translated with efficiency similar to compounds unmodified in the oligophosphate bridge obtained by traditional synthesis. Moreover, we demonstrated that the triazole-modified cap structures can be generated at the RNA 5′ end using two alternative capping strategies: either the typical co-transcriptional approach, or a new post-transcriptional approach based on CuAAC. Our findings open new possibilities for developing chemically modified mRNAs for research and therapeutic applications, including RNA-based vaccinations. PMID:28451173

  9. Fudecalone, a new anticoccidial agent produced by Penicillium sp. FO-2030.

    PubMed

    Tabata, N; Tomoda, H; Masuma, R; Iwai, Y; Omura, S

    1995-01-01

    Penicillium sp. FO-2030, a soil isolate, was found to produce a new anticoccidial compound. The active compound, designated fudecalone, was isolated from the fermentation broth of the producing strain by solvent extraction, silica gel column chromatography and preparative HPLC. The structure of fudecalone was elucidated to be 3,3a,6,6a,7,8,9,10-octahydro-1-hydroxy-4,7,7-trimethyl-1H-naphtho[1,8a- c]furan-6-one mainly by spectroscopic studies including various NMR measurements. The anticoccidial activity using cell systems indicated that schizont formation of monensin-resistant Eimeria tenella was completely inhibited by fudecalone at concentrations more than 16 microM.

  10. Spirocyclopropane-type sesquiterpene hydrocarbons from Schinus terebinthifolius Raddi.

    PubMed

    Richter, Rita; von Reuss, Stephan H; König, Wilfried A

    2010-08-01

    The essential oil of Schinus terebinthifolius fruits was reinvestigated using GC and GC-MS techniques. Apart from several known compounds three sesquiterpene hydrocarbons with a carbon skeleton exhibiting the rare spiro(cyclopropane) moiety could be isolated by a combination of column chromatography and GLC. Structure assignments were carried out by NMR spectroscopy. These natural products are 9-spiro(cyclopropa)-4,4,8-trimethyl-2-methylenbicyclo[4.3.0]non-1(6)-ene (terebanene), 9-spiro(cyclopropa)-2,4,4,8-tetramethylbicyclo[4.3.0]nona-1,5-diene (teredenene), and (6R*,8R*)-9-spiro(cyclopropa)-2,4,4,8-tetramethylbicyclo[4.3.0]non-1-ene (terebinthene). Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion

    DOE PAGES

    Thomas, S.; Kuiper, B.; Hu, J.; ...

    2017-10-27

    With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO 3 films by the deposition of a SrTiO 3 capping layer, which can be lithographically patterned to achieve local control. Here, using a scanning Sagnac magnetic microscope, we show an increasemore » in the Curie temperature of SrRuO 3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. Lastly, this capping-layer-based technique may open new possibilities for developing functional oxide materials.« less

  12. Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-Layer-Induced Octahedral Distortion.

    PubMed

    Thomas, S; Kuiper, B; Hu, J; Smit, J; Liao, Z; Zhong, Z; Rijnders, G; Vailionis, A; Wu, R; Koster, G; Xia, J

    2017-10-27

    With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO_{3} films by the deposition of a SrTiO_{3} capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show an increase in the Curie temperature of SrRuO_{3} due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.

  13. Identification of helix capping and β-turn motifs from NMR chemical shifts

    PubMed Central

    Shen, Yang; Bax, Ad

    2012-01-01

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13Cβ chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed that attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures. PMID:22314702

  14. Microanatomy of passerine hard-cornified tissues: Beak and claw structure of the black-capped chickadee (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, C.; Handel, Colleen M.; Blake, J.E.; Swor, R.M.; O'Hara, T. M.

    2012-01-01

    The microanatomy of healthy beaks and claws in passerine birds has not been well described in the literature, despite the importance of these structures in avian life. Histological processing of hard-cornified tissues is notoriously challenging and only a few reports on effective techniques have been published. An emerging epizootic of beak deformities among wild birds in Alaska and the Pacific Northwest region of North America recently highlighted the need for additional baseline information about avian hard-cornified structures. In this study, we examine the beak and claw of the Black-capped Chickadee (Poecile atricapillus), a common North American passerine that is affected by what has been described as "avian keratin disorder." We use light and scanning electron microscopy and high-magnification radiography to document the healthy microanatomy of these tissues and identify features of functional importance. We also describe detailed methods for histological processing of avian hard-cornified structures and discuss the utility of special stains. Results from this study will assist in future research on the functional anatomy and pathology of hard-cornified structures and will provide a necessary reference for ongoing investigations of avian keratin disorder in Black-capped Chickadees and other wild passerine species. ?? 2011 Wiley Periodicals, Inc.

  15. Manufacturing of mushroom-shaped structures and its hydrophobic robustness analysis based on energy minimization approach

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yang, Xiaonan; Wang, Quandai; Yang, Zhiqiang; Duan, Hui; Lu, Bingheng

    2017-07-01

    The construction of stable hydrophobic surfaces has increasingly gained attention owing to its wide range of potential applications. However, these surfaces may become wet and lose their slip effect owing to insufficient hydrophobic stability. Pillars with a mushroom-shaped tip are believed to enhance hydrophobicity stability. This work presents a facile method of manufacturing mushroom-shaped structures, where, compared with the previously used method, the modulation of the cap thickness, cap diameter, and stem height of the structures is more convenient. The effects of the development time on the cap diameter and overhanging angle are investigated and well-defined mushroom-shaped structures are demonstrated. The effect of the microstructure geometry on the contact state of a droplet is predicted by taking an energy minimization approach and is experimentally validated with nonvolatile ultraviolet-curable polymer with a low surface tension by inspecting the profiles of liquid-vapor interface deformation and tracking the trace of the receding contact line after exposure to ultraviolet light. Theoretical and experimental results show that, compared with regular pillar arrays having a vertical sidewall, the mushroom-like structures can effectively enhance hydrophobic stability. The proposed manufacturing method will be useful for fabricating robust hydrophobic surfaces in a cost-effective and convenient manner.

  16. Microanatomy of Passerine hard-cornified tissues: beak and claw structure of the Black-capped Chickadee (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.; Blake, J.; Swor, Rhonda; O'Hara, Todd M.

    2012-01-01

    The microanatomy of healthy beaks and claws in passerine birds has not been well described in the literature, despite the importance of these structures in avian life. Histological processing of hard-cornified tissues is notoriously challenging and only a few reports on effective techniques have been published. An emerging epizootic of beak deformities among wild birds in Alaska and the Pacific Northwest region of North America recently highlighted the need for additional baseline information about avian hard-cornified structures. In this study, we examine the beak and claw of the Black-capped Chickadee (Poecile atricapillus), a common North American passerine that is affected by what has been described as “avian keratin disorder.” We use light and scanning electron microscopy and high-magnification radiography to document the healthy microanatomy of these tissues and identify features of functional importance. We also describe detailed methods for histological processing of avian hard-cornified structures and discuss the utility of special stains. Results from this study will assist in future research on the functional anatomy and pathology of hard-cornified structures and will provide a necessary reference for ongoing investigations of avian keratin disorder in Black-capped Chickadees and other wild passerine species.

  17. Structural Design and Analysis of the Upper Pressure Shell Section of a Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Paddock, David; Jeans, Jim W.; Hudeck, John D.

    2008-01-01

    This paper presents the results of the structural design and analysis of the upper pressure shell section of a carbon composite demonstration structure for the Composite Crew Module (CCM) Project. The project is managed by the NASA Engineering and Safety Center with participants from eight NASA Centers, the Air Force Research Laboratory, and multiple aerospace contractors including ATK/Swales, Northrop Grumman, Lockheed Martin, Collier Research Corporation, Genesis Engineering, and Janicki Industries. The paper discusses details of the upper pressure shell section design of the CCM and presents the structural analysis results using the HyperSizer structural sizing software and the MSC Nastran finite element analysis software. The HyperSizer results showed that the controlling load case driving most of the sizing in the upper pressure shell section was the internal pressure load case. The regions around the cutouts were controlled by internal pressure and the main parachute load cases. The global finite element analysis results showed that the majority of the elements of the CCM had a positive margin of safety with the exception of a few hot spots around the cutouts. These hot spots are currently being investigated with a more detailed analysis. Local finite element models of the Low Impact Docking System (LIDS) interface ring and the forward bay gussets with greater mesh fidelity were created for local sizing and analysis. The sizing of the LIDS interface ring was driven by the drogue parachute loads, Trans-Lunar Insertion (TLI) loads, and internal pressure. The drogue parachute loads controlled the sizing of the gusset cap on the drogue gusset and TLI loads controlled the sizing of the other five gusset caps. The main parachute loads controlled the sizing of the lower ends of the gusset caps on the main parachute fittings. The results showed that the gusset web/pressure shell and gusset web/gusset cap interfaces bonded using Pi-preform joints had local hot spots in the Pi-preform termination regions. These regions require a detailed three-dimensional analysis, which is currently being performed, to accurately address the load distribution near the Pi-preform termination in the upper and lower gusset caps.

  18. Cap-independent translation of plant viral RNAs

    PubMed Central

    Pettit Kneller, Elizabeth L.; Rakotondrafara, Aurélie M.; Miller, W. Allen

    2007-01-01

    The RNAs of many plant viruses lack a 5′ cap and must be translated by a cap-independent mechanism. Here, we discuss the remarkably diverse cap-independent translation elements that have been identified in members of the Potyviridae, Luteoviridae, and Tombusviridae families, and genus Tobamovirus. Many other plant viruses have uncapped RNAs but their translation control elements are uncharacterized. Cap-independent translation elements of plant viruses differ strikingly from those of animal viruses: they are smaller (<200 nt), some are located in the 3′ untranslated region, some require ribosome scanning from the 5′ end of the mRNA, and the 5′ UTR elements are much less structured than those of animal viruses. We discuss how these elements may interact with host translation factors, and speculate on their mechanism of action and their roles in the virus replication cycle. Much remains to be learned about how these elements enable plant viruses to usurp the host translational machinery. PMID:16360925

  19. STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap.

    PubMed

    Woroniuk, Anna; Porter, Andrew; White, Gavin; Newman, Daniel T; Diamantopoulou, Zoi; Waring, Thomas; Rooney, Claire; Strathdee, Douglas; Marston, Daniel J; Hahn, Klaus M; Sansom, Owen J; Zech, Tobias; Malliri, Angeliki

    2018-05-29

    The perinuclear actin cap is an important cytoskeletal structure that regulates nuclear morphology and re-orientation during front-rear polarisation. The mechanisms regulating the actin cap are currently poorly understood. Here, we demonstrate that STEF/TIAM2, a Rac1 selective guanine nucleotide exchange factor, localises at the nuclear envelope, co-localising with the key perinuclear proteins Nesprin-2G and Non-muscle myosin IIB (NMMIIB), where it regulates perinuclear Rac1 activity. We show that STEF depletion reduces apical perinuclear actin cables (a phenotype rescued by targeting active Rac1 to the nuclear envelope), increases nuclear height and impairs nuclear re-orientation. STEF down-regulation also reduces perinuclear pMLC and decreases myosin-generated tension at the nuclear envelope, suggesting that STEF-mediated Rac1 activity regulates NMMIIB activity to promote stabilisation of the perinuclear actin cap. Finally, STEF depletion decreases nuclear stiffness and reduces expression of TAZ-regulated genes, indicating an alteration in mechanosensing pathways as a consequence of disruption of the actin cap.

  20. Facile and High-Yielding Synthesis of TAM Biradicals and Monofunctional TAM Radicals.

    PubMed

    Trukhin, Dmitry V; Rogozhnikova, Olga Yu; Troitskaya, Tatiana I; Vasiliev, Vladimir G; Bowman, Michael K; Tormyshev, Victor M

    2016-04-01

    Facile and high-yielding procedures for synthesis of monocarboxylic acid derivatives of triarylmethyl radicals (TAMs) were developed. Reaction of methyl thioglycolate with tris(2,3,5,6-tetrathiaaryl)methyl cation smoothly afforded the monosubstituted TAM derivative, which was hydrolyzed to a monocarboxylic acid, with the TAM moiety attached to thioglycolic acid via the sulfur atom. Alternatively, the diamagnetic tricarboxylic acid precursor of Finland trityl was transformed to a trimethyl ester and partially hydrolyzed under controlled conditions. The diester product was isolated and the remaining fractions were converted back to the trimethyl ester for production of more diester. The first representatives of TAM biradicals with different TAM cores and interspin distances were obtained by reaction of these new TAM monocaboxylic acids with N,N'-dimethylethylenediamine.

  1. Three different product types from reactions of lithiated cyclic aminals with trivalent organometal chlorides.

    PubMed

    Hellmann, Benjamin J; Kamps, Ina; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2010-09-21

    The reaction of 2-lithio-1,3,5-trimethyl-1,3,5-triazacyclohexane with YCp(2)Cl leads to the formation of a donor-functionalised mono-anionic amide ligand, 1,3,5-trimethyl-2-(methylamidomethyl)-1,3,5-triazacyclohexane, bonded to the YCp(2) unit. The reaction involves a cleavage of the 1,3,5-triazacyclohexane ring and such a cleavage is also observed in the analogous reaction with (Me(3)C)(2)GaCl, where a MeN[double bond, length as m-dash]CH(-) fragment is formed. No such cleavage occurs in the reaction of the related dilithiated bicyclic bis(3-methyl-1,3-diazacyclohex-1-yl)methane with YCpCl(2).3thf, which affords a mixed lithium-yttrium organyl.

  2. Differences in the epigenetic regulation of MT-3 gene expression between parental and Cd+2 or As+3 transformed human urothelial cells

    PubMed Central

    2011-01-01

    Background Studies have shown that metallothionein 3 (MT-3) is not expressed in normal urothelium or in the UROtsa cell line, but is expressed in urothelial cancer and in tumors generated from the UROtsa cells that have been transformed by cadmium (Cd+2) or arsenite (As+3).The present study had two major goals. One, to determine if epigenetic modifications control urothelial MT-3 gene expression and if regulation is altered by malignant transformation by Cd+2 or As+3. Two, to determine if MT-3 expression might translate clinically as a biomarker for malignant urothelial cells released into the urine. Results The histone deacetylase inhibitor MS-275 induced MT-3 mRNA expression in both parental UROtsa cells and their transformed counterparts. The demethylating agent, 5-Aza-2'-deoxycytidine (5-AZC) had no effect on MT-3 mRNA expression. ChIP analysis showed that metal-responsive transformation factor-1 (MTF-1) binding to metal response elements (MRE) elements of the MT-3 promoter was restricted in parental UROtsa cells, but MTF-1 binding to the MREs was unrestricted in the transformed cell lines. Histone modifications at acetyl H4, trimethyl H3K4, trimethyl H3K27, and trimethyl H3K9 were compared between the parental and transformed cell lines in the presence and absence of MS-275. The pattern of histone modifications suggested that the MT-3 promoter in the Cd+2 and As+3 transformed cells has gained bivalent chromatin structure, having elements of being "transcriptionally repressed" and "transcription ready", when compared to parental cells. An analysis of MT-3 staining in urinary cytologies showed that a subset of both active and non-active patients with urothelial cancer shed positive cells in their urine, but that control patients only rarely shed MT-3 positive cells. Conclusion The MT-3 gene is silenced in non-transformed urothelial cells by a mechanism involving histone modification of the MT-3 promoter. In contrast, transformation of the urothelial cells with either Cd+2 or As+3 modified the chromatin of the MT-3 promoter to a bivalent state of promoter readiness. Urinary cytology for MT-3 positive cells would not improve the diagnosis of urothelial cancer, but might have potential as a biomarker for tumor progression. PMID:21303554

  3. Retention of Electronic Conductivity in LaAlO3/SrTiO3 Nanostructures Using a SrCuO2 Capping Layer

    NASA Astrophysics Data System (ADS)

    Aurino, P. P.; Kalabukhov, A.; Borgani, R.; Haviland, D. B.; Bauch, T.; Lombardi, F.; Claeson, T.; Winkler, D.

    2016-08-01

    The interface between two wide band-gap insulators, LaAlO3 and SrTiO3 (LAO/STO) offers a unique playground to study the interplay and competitions between different ordering phenomena in a strongly correlated two-dimensional electron gas. Recent studies of the LAO/STO interface reveal the inhomogeneous nature of the 2DEG that strongly influences electrical-transport properties. Nanowires needed in future applications may be adversely affected, and our aim is, thus, to produce a more homogeneous electron gas. In this work, we demonstrate that nanostructures fabricated in the quasi-2DEG at the LaAlO3/SrTiO3 interface, capped with a SrCuO2 layer, retain their electrical resistivity and mobility independent of the structure size, ranging from 100 nm to 30 μ m . This is in contrast to noncapped LAO/STO structures, where the room-temperature electrical resistivity significantly increases when the structure size becomes smaller than 1 μ m . High-resolution intermodulation electrostatic force microscopy reveals an inhomogeneous surface potential with "puddles" of a characteristic size of 130 nm in the noncapped samples and a more uniform surface potential with a larger characteristic size of the puddles in the capped samples. In addition, capped structures show superconductivity below 200 mK and nonlinear current-voltage characteristics with a clear critical current observed up to 700 mK. Our findings shed light on the complicated nature of the 2DEG at the LAO/STO interface and may also be used for the design of electronic devices.

  4. What is the impact of primary care model type on specialist referral rates? A cross-sectional study.

    PubMed

    Liddy, Clare; Singh, Jatinderpreet; Kelly, Ryan; Dahrouge, Simone; Taljaard, Monica; Younger, Jamie

    2014-02-03

    Several new primary care models have been implemented in Ontario, Canada over the past two decades. These practice models differ in team structure, physician remuneration, and group size. Few studies have examined the impact of these models on specialist referrals. We compared specialist referral rates amongst three primary care models: 1) Enhanced Fee-for-service, 2) Capitation- Non-Interdisciplinary (CAP-NI), 3) Capitation - Interdisciplinary (CAP-I). We conducted a cross-sectional study using health administrative data from primary care practices in Ontario from April 1st, 2008 to March 31st, 2010. The analysis included all family physicians providing comprehensive care in one of the three models, had at least 100 patients, and did not have a prolonged absence (eight consecutive weeks). The primary outcome was referral rate (# of referrals to all medical specialties/1000 patients/year). A multivariable clustered Poisson regression analysis was used to compare referral rates between models while adjusting for provider (sex, years since graduation, foreign trained, time in current model) and patient (age, sex, income, rurality, health status) characteristics. Fee-for-service had a significantly lower adjusted referral rate (676, 95% CI: 666-687) than the CAP-NI (719, 95% confidence interval (CI): 705-734) and CAP-I (694, 95% CI: 681-707) models and the interdisciplinary CAP-I group had a 3.5% lower referral rate than the CAP-NI group (RR = 0.965, 95% CI: 0.943-0.987, p = 0.002). Female and Canadian-trained physicians referred more often, while female, older, sicker and urban patients were more likely to be referred. Primary care model is significantly associated with referral rate. On a study population level, these differences equate to 111,059 and 37,391 fewer referrals by fee-for-service versus CAP-NI and CAP-I, respectively - a difference of $22.3 million in initial referral appointment costs. Whether a lower rate of referral is more appropriate or not is not known and requires further investigation. Physician remuneration and team structure likely account for the differences; however, further investigation is also required to better understand whether other organizational factors associated with primary care model also impact referral.

  5. Phase Composition Control of Calcium Phosphate Nanoparticles for Tunable Drug Delivery Kinetics and Treatment of Osteomyelitis. Part 1: Preparation and Drug Release

    PubMed Central

    Uskoković, Vuk; Desai, Tejal A.

    2012-01-01

    Developed in this study is a multifunctional material for simultaneous osseoinduction and drug delivery, potentially applicable in the treatment of osteomyelitis. It is composed of agglomerates of nanoparticles of calcium phosphate (CAP) with different monophasic contents. The drug loading capacity and the release kinetics were investigated on two model drug compounds with different chemical structures, sizes and adsorption propensities: bovine serum albumin and fluorescein. Loading of CAP powders with small molecule drugs was achieved by physisorption and desiccation-induced agglomeration of nanoparticulate subunits into microscopic blocks. The material dissolution rate and the drug release rate depended on the nature of the CAP phase, decreasing from monocalcium phosphate to monetite to amorphous CAP and calcium pyrophosphate to hydroxyapatite. The sustained release of the two model drugs was shown to be directly relatable to the degradation rate of CAP carriers. It was demonstrated that the degradation rate of the carrier and the drug release kinetics could be made tunable within the time scale of 1–2 h for the most soluble CAP phase, monocalcium phosphate, to 1–2 years for the least soluble one, hydroxyapatite. From the standpoint of antibiotic therapy for osteomyelitis, typically lasting for six weeks, the most prospective CAP powder was amorphous CAP with its release time scale for a small organic molecule, the same category to which antibiotics belong, of 1 – 2 months under the conditions applied in our experiments. By combining these different CAP phases in various proportions, drug release profiles could be tailored to the therapeutic occasion. PMID:23115118

  6. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Lee, J. I.; Lim, Y. J.

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  7. Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains.

    PubMed

    Thierry, Eric; Guilligay, Delphine; Kosinski, Jan; Bock, Thomas; Gaudon, Stephanie; Round, Adam; Pflug, Alexander; Hengrung, Narin; El Omari, Kamel; Baudin, Florence; Hart, Darren J; Beck, Martin; Cusack, Stephen

    2016-01-07

    Influenza virus polymerase transcribes or replicates the segmented RNA genome (vRNA) into respectively viral mRNA or full-length copies and initiates RNA synthesis by binding the conserved 3' and 5' vRNA ends (the promoter). In recent structures of promoter-bound polymerase, the cap-binding and endonuclease domains are configured for cap snatching, which generates capped transcription primers. Here, we present a FluB polymerase structure with a bound complementary cRNA 5' end that exhibits a major rearrangement of the subdomains within the C-terminal two-thirds of PB2 (PB2-C). Notably, the PB2 nuclear localization signal (NLS)-containing domain translocates ∼90 Å to bind to the endonuclease domain. FluA PB2-C alone and RNA-free FluC polymerase are similarly arranged. Biophysical and cap-dependent endonuclease assays show that in solution the polymerase explores different conformational distributions depending on which RNA is bound. The inherent flexibility of the polymerase allows it to adopt alternative conformations that are likely important during polymerase maturation into active progeny RNPs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Effects of solution concentration and capping agents on the properties of potassium titanyl phosphate noparticles synthesized using a co-precipitation method

    NASA Astrophysics Data System (ADS)

    Gharibshahian, E.; Jafar Tafershi, M.; Fazli, M.

    2018-05-01

    In this study, KTiOPO4 (KTP) nanoparticles were synthesized using a co-precipitation method. The effects of the solution concentration (M) and capping agents, such as PVA, oxalic acid, glycine, triethanolamine, and L-alanine, on the structural, microstructural, and optical properties of the products were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. Decreasing the solution concentration decreased the crystallite size from 53.07 nm (for M = 2) to 39.42 nm (for M = 0.5). After applying different capping agents to the sample at the optimum concentration (M = 0.5), the crystallite size decreased again and grains as small as 10.61 nm were obtained. XRD and FTIR analyses indicated the formation of KTP nanoparticles with an orthorhombic structure in all of the samples. The optical band gap increased as the crystallite size decreased. Different morphological patterns such as spherical, needle shaped, polyhedron, and tablet forms were observed in the nanoparticles, which were correlated with the effects of the capping agents employed.

  9. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.

    PubMed

    Zhou, Changchun; Ye, Xingjiang; Fan, Yujiang; Ma, Liang; Tan, Yanfei; Qing, Fangzu; Zhang, Xingdong

    2014-09-01

    A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds.

  10. EuCAP, a Eukaryotic Community Annotation Package, and its application to the rice genome

    PubMed Central

    Thibaud-Nissen, Françoise; Campbell, Matthew; Hamilton, John P; Zhu, Wei; Buell, C Robin

    2007-01-01

    Background Despite the improvements of tools for automated annotation of genome sequences, manual curation at the structural and functional level can provide an increased level of refinement to genome annotation. The Institute for Genomic Research Rice Genome Annotation (hereafter named the Osa1 Genome Annotation) is the product of an automated pipeline and, for this reason, will benefit from the input of biologists with expertise in rice and/or particular gene families. Leveraging knowledge from a dispersed community of scientists is a demonstrated way of improving a genome annotation. This requires tools that facilitate 1) the submission of gene annotation to an annotation project, 2) the review of the submitted models by project annotators, and 3) the incorporation of the submitted models in the ongoing annotation effort. Results We have developed the Eukaryotic Community Annotation Package (EuCAP), an annotation tool, and have applied it to the rice genome. The primary level of curation by community annotators (CA) has been the annotation of gene families. Annotation can be submitted by email or through the EuCAP Web Tool. The CA models are aligned to the rice pseudomolecules and the coordinates of these alignments, along with functional annotation, are stored in the MySQL EuCAP Gene Model database. Web pages displaying the alignments of the CA models to the Osa1 Genome models are automatically generated from the EuCAP Gene Model database. The alignments are reviewed by the project annotators (PAs) in the context of experimental evidence. Upon approval by the PAs, the CA models, along with the corresponding functional annotations, are integrated into the Osa1 Genome Annotation. The CA annotations, grouped by family, are displayed on the Community Annotation pages of the project website , as well as in the Community Annotation track of the Genome Browser. Conclusion We have applied EuCAP to rice. As of July 2007, the structural and/or functional annotation of 1,094 genes representing 57 families have been deposited and integrated into the current gene set. All of the EuCAP components are open-source, thereby allowing the implementation of EuCAP for the annotation of other genomes. EuCAP is available at . PMID:17961238

  11. 5'-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping.

    PubMed

    Ogino, Minako; Ogino, Tomoaki

    2017-03-15

    The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5'-phospho-RNA (pRNA) from 5'-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5'-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m 7 G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m 7 GpppA (cap 0), respectively. Furthermore, either the 2'- or 3'-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5'-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups of GDP as essential for the substrate activity. The findings presented here are useful not only for understanding the mechanism of the substrate recognition with PRNTase but also for designing antiviral agents targeting this enzyme. Copyright © 2017 American Society for Microbiology.

  12. 5′-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping

    PubMed Central

    Ogino, Minako

    2017-01-01

    ABSTRACT The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5′-phospho-RNA (pRNA) from 5′-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5′-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m7G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m7GpppA (cap 0), respectively. Furthermore, either the 2′- or 3′-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5′-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups of GDP as essential for the substrate activity. The findings presented here are useful not only for understanding the mechanism of the substrate recognition with PRNTase but also for designing antiviral agents targeting this enzyme. PMID:28053102

  13. Structural, spectroscopic and anti-microbial inspection of PEG capped ZnO nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Meshram, J. V.; Koli, V. B.; Kumbhar, S. G.; Borde, L. C.; Phadatare, M. R.; Pawar, S. H.

    2018-04-01

    Zinc oxide (ZnO) nanoparticles (NPs) have a wide range of biomedical applications. Present study demonstrates the new methodology in sol-gel technology for synthesizing Polyethylene glycol (PEG) capped ZnO NPs and its size effect on anti-microbial activity. The reaction time was increased from 1 h to 5 h for the synthesis of ZnO NPs at 130 °C. The size of PEG capped ZnO NPs is increased from 10 to 84 nm by increasing the reaction upto 5 h. The x-ray diffraction studies and transmission electron microscopy analysis reveals the phase purity and hexagonal wurtzite crystal structure with uniform PEG capping on the surface of ZnO NPs. UV–visible spectroscopy exhibits the peak at 366 nm which is attributed to ZnO NPs. No adverse effect is observed in case of absorbance spectroscopy. Further, Fourier transforms infrared spectroscopy and thermo gravimetric analysis depicts the adsorption of PEG molecules on the ZnO NPs surface. The anti-microbial activities for both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria were studied by optical density (OD) mesurement. The remarkable anti-microbial activity was observed for PEG capped ZnO NPs synthesized at 1 h reaction time showing higher activity in comparison with that synthesized from 2 h to 5 h reaction time. The microbial growth was found to be inhibited after 10 h OD measurement for both the bacteria. The anti-microbial activity may be attributed to the generation of ROS and H2O2. However, these generated species plays a vital role in inhibition of microbial growth. Hence, PEG capped ZnO NPs has promising biomedical applications.

  14. E2C mechanism of elimination reactions. IX. Secondary deuterium isotope effects on rates of bimolecular reactions in alicyclic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D.

    1976-06-11

    Secondary ..cap alpha..-deuterium isotope effects on the rates of NBu/sub 4/OAc and NBu/sub 4/Cl promoted bimolecular reactions (E2 and SN2) of cyclohexyl tosylate and cyclohexyl bromide have been studied. The E2 reactions, previously categorized as E2C-like, show ..cap alpha..-deuterium isotope effects in the range 1.14--1.22, while the related SN2 reactions give values in the range 1.05--1.08. The discrepancy in the magnitude of the ..cap alpha..-deuterium isotope effect for the E2 and SN2 processes is consistent with the view that E2C-like reactions use ''looser'' transition states than those used in the concurrent SN2 reactions. While the reported ..cap alpha..-d isotope effectsmore » do not provide positive evidence to support the idea that the base interacts with C/sub ..cap alpha../ in the E2 transition states of the reactions studied, neither do they substantiate claims for dismissal of the concept. A comparison of the secondary ..gamma..-deuterium and ..beta..'-deuterium isotope effects arising in the reaction of cyclohexyl tosylate with NBu/sub 4/OAc in acetone indicates the two isotope effects to be of equivalent magnitude (k/sub ..beta..'-d/k/sub ..gamma..-d/ = 0.98). This observation can only be rationalized for this reaction in terms of a transition state structure in which there is extensive double bond development. It provides compelling evidence against the involvement of any transition state structure which accommodates extensive positive charge development at C/sub ..cap alpha../.« less

  15. 3′ Cap-Independent Translation Enhancers of Plant Viruses

    PubMed Central

    Simon, Anne E.; Miller, W. Allen

    2014-01-01

    In the absence of a 5′ cap, plant positive-strand RNA viruses have evolved a number of different elements in their 3′ untranslated region (UTR) to attract initiation factors and/or ribosomes to their templates. These 3′ cap-independent translational enhancers (3′ CITEs) take different forms, such as I-shaped, Y-shaped, T-shaped, or pseudoknotted structures, or radiate multiple helices from a central hub. Common features of most 3′ CITEs include the ability to bind a component of the translation initiation factor eIF4F complex and to engage in an RNA-RNA kissing-loop interaction with a hairpin loop located at the 5′ end of the RNA. The two T-shaped structures can bind to ribosomes and ribosomal subunits, with one structure also able to engage in a simultaneous long-distance RNA-RNA interaction. Several of these 3′ CITEs are interchangeable and there is evidence that natural recombination allows exchange of modular CITE units, which may overcome genetic resistance or extend the virus’s host range. PMID:23682606

  16. A new, simple, green, and one-pot four-component synthesis of bare and poly(α,γ, L-glutamic acid)-capped silver nanoparticles

    PubMed Central

    Savanović, Igor; Uskoković, Vuk; Škapin, Srečo D.; Bračko, Ines; Jovanović, Uroš; Uskoković, Dragan

    2013-01-01

    A simple and green chemical method has been developed to synthesize stable bare and capped silver nanoparticles based on the reduction of silver ions by glucose and capping by poly(α,γ,L-glutamic acid) (PGA). The use of ammonia during synthesis was avoided. PGA has had a dual role in the synthesis and was used as a capping agent to make the silver nanoparticle more biocompatible and to protect the nanoparticles from agglomerating in the liquid medium. The synthesized PGA-capped silver nanoparticles in the size range 5–45 nm were stable over long periods of time, without signs of precipitation. Morphological examination has shown that the silver nanoparticles had a nearly spherical, multiply twinned structure. The effects of the reaction temperature and the reaction time during the synthesis were investigated too. The biocompatibility of the PGA-capped silver nano-particles is discussed in terms of in vitro toxicity with human intestinal Caco-2 cells. The samples were characterized by UV–Visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurements. PMID:24062597

  17. Electronic properties and reactivity of Pt-doped carbon nanotubes.

    PubMed

    Tian, Wei Quan; Liu, Lei Vincent; Wang, Yan Alexander

    2006-08-14

    The structures of the (5,5) single-walled carbon nanotube (SWCNT) segments with hemispheric carbon cages capped at the ends (SWCNT rod) and the Pt-doped SWCNT rods have been studied within density functional theory. Our theoretical studies find that the hemispheric cages introduce localized states on the caps. The cap-Pt-doped SWCNT rods can be utilized as sensors because of the sensitivity of the doped Pt atom. The Pt-doped SWCNT rods can also be used as catalysts, where the doped Pt atom serves as the enhanced and localized active center on the SWCNT. The adsorptions of C(2)H(4) and H(2) on the Pt atom in the Pt-doped SWCNT rods reveal different adsorption characteristics. The adsorption of C(2)H(4) on the Pt atom in all of the three Pt-doped SWCNT rods studied (cap-end-doped, cap-doped, and wall-doped) is physisorption with the strongest interaction occurring in the middle of the sidewall of the SWCNT. On the other hand, the adsorption of H(2) on the Pt atom at the sidewall of the SWCNT is chemisorption resulting in the decomposition of H(2), and the adsorption of H(2) at the hemispheric caps is physisorption.

  18. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Bayliss, D. L.; Walsh, J. L.; Shama, G.; Iza, F.; Kong, M. G.

    2009-11-01

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  19. The Common Alerting Protocol (CAP) adaption in National Early Warning Alerting Systems of China

    NASA Astrophysics Data System (ADS)

    Li, Chao

    2017-04-01

    The Common Alerting Protocol (CAP) [1] is an XML-based data format for exchanging public warnings and emergencies between alerting technologies. In China, from local communities to entire nations, there was a patchwork of specialized hazard public alerting systems. And each system was often designed just for certain emergency situations and for certain communications media. Application took place in the NEWAS (National Early Warning Alerting Systems) [2]project where CAP serves as central message to integrate all kind of hazard situations, including the natural calamity, accident disaster, public health emergency , social safety etc. Officially operated on May 2015, NEWAS now has completed docking work with 14 departments including civil administration, safety supervision, forestry, land, water conservancy, earthquake, traffic, meteorology, agriculture, tourism, food and drug supervision, public security and oceanic administration. Thus, several items in CAP has been modified, redefined and extended according to the various grading standards and publishing strategies, as well as the characteristics of Chinese Geocoding. NEWAS successfully delivers information to end users through 4 levels (i.e. State, province, prefecture and county) structure and by various means. [1] CAP, http://www.oasis-emergency.org/cap [2] http://www.12379.cn/

  20. Structure across the northeastern margin of Flemish Cap, offshore Newfoundland from Erable multichannel seismic reflection profiles: evidence for a transtensional rifting environment

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Hall, Jeremy; Sibuet, Jean-Claude; Srivastava, Shiri P.

    2010-11-01

    We present the results from processing and interpreting nine multichannel seismic reflection lines collected during the 1992 Erable experiment over the northeastern margin of Flemish Cap offshore Newfoundland. These lines, combined into five cross-sections, provide increased seismic coverage over this lightly probed section of the margin and reveal tectonically significant along-strike variations in the degree and compartmentalization of crustal thinning. Similar to the southeastern margins of Flemish Cap and the Grand Banks, a transitional zone of exhumed serpentinized mantle is interpreted between thinned continental and oceanic crust. The 25 km wide transitional zone bears similarities to the 120 km wide transitional zone interpreted as exhumed serpentinized mantle on the conjugate Irish Atlantic margin but the significant width difference is suggestive of an asymmetric conjugate pair. A 40-50 km wide zone of inferred strike-slip shearing is interpreted and observed to extend along most of the northeastern margin of Flemish Cap. Individual shear zones (SZs) may represent extensions of SZs and normal faults within the Orphan Basin providing further evidence for the rotation and displacement of Flemish Cap out of Orphan Basin. The asymmetry between the Flemish Cap and Irish conjugate pairs is likely due in large part to the rotation and displacement of Flemish Cap which resulted in the Flemish Cap margin displaying features of both a strike-slip margin and an extensional margin.

  1. Redetermined structure, inter-molecular inter-actions and absolute configuration of royleanone.

    PubMed

    Fun, Hoong-Kun; Chantrapromma, Suchada; Salae, Abdul Wahab; Razak, Ibrahim Abdul; Karalai, Chatchanok

    2011-05-01

    The structure of the title diterpenoid, C(20)H(28)O(3), {systematic name: (4bS,8aS)-3-hy-droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octa-hydro-phenanthrene-1,4-dione} is confirmed [Eugster et al. (1993 ▶). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge] and its packing is now described. Its absolute structure was established by refinement against data collected with Cu radiation: the two stereogenic centres both have S configurations. One cyclo-hexane ring adopts a chair conformation whereas the other cyclo-hexane ring is in a half-chair conformation and the benzoquinone ring is slightly twisted. An intra-molecular O-H⋯O hydrogen bond generates an S(5) ring motif. In the crystal, mol-ecules are linked into chains along [010] by O-H⋯O hydrogen bonds and weak C-H⋯O inter-actions. The packing also features C⋯O [3.131 (3) Å] short contacts.

  2. Studying metal impurities (Mn2+, Cu2+, Fe3+) in calcium phosphates by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Iskhakova, K.; Murzakhanov, F.; Mamin, G.; Putlyaev, V.; Klimashina, E.; Fadeeva, I.; Fomin, A.; Barinov, S.; Maltsev, A.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Calcium phosphates (CaP) are exploited in many fields of science, including geology, chemistry, biology and medicine due to their abundance in the nature and presence in the living organism. Various analytical and biochemical methods are used for controlling their chemical content, structure, morphology, etc. Unfortunately, magnetic resonance techniques are usually not even considered as necessary tools for CaP inspection. Some aspects of application of the commercially realized electron paramagnetic resonance (EPR) approaches for characterization of CaP powders and ceramics (including the nanosized materails) such as hydroxyapatite and tricalcium phosphates of biogenic and synthetic origins containing intrinsic impurities or intentional dopants are demonstrated. The key features and advantages of the EPR techniques for CaP based materials characterization that could compliment the data obtained with the recognized analytical methods are pointed out.

  3. Efficient Tuning of Optical Properties and Morphology of Mesoscopic CdS via a Facile Route

    NASA Astrophysics Data System (ADS)

    Aslam, Samia; Mustafa, Faiza; Jamil, Ayesha; Abbas, Ghazanfar; Raza, Rizwan; Ahmad, Muhammad Ashfaq

    2018-03-01

    A facile and simple synthetic route has been employed to synthesize rod-shaped optically efficient cadmium sulfide (CdS) mesoscopic structures using high concentrations of cetyl trimethyl ammonium bromide (CTAB) as the stabilizing agent. The mesoscopic structures were characterized using x-ray diffaractometer (XRD), scanning electron microscopy, UV-visible, photoluminescence (PL), and Fourier transform and infrared (FTIR) spectroscopy. It was found that, if the concentration of CTAB is significantly higher than its critical micelle concentration, the nucleation of CdS mesoscopic structures resulted in rod-like structures. The size of the mesoscopic structures initially increased and then decreased with band gaps 2.5-2.7 eV. XRD analysis showed that the samples had a pure cubic phase confirming the particle size. The values of Urbach energy for the absorption tail states were determined and found to be in agreement with the single crystal. PL spectra showed sharp green emission peaks in the 530-nm to 560-nm wavelength range. FTIR spectra showed the adsorption mode of CTAB onto the CdS mesoscopic structures. A possible mechanism of formation of rod-shaped CdS mesoscopic structures is also elucidated.

  4. The uteroglobin fold.

    PubMed

    Callebaut, I; Poupon, A; Bally, R; Demaret, J P; Housset, D; Delettré, J; Hossenlopp, P; Mornon, J P

    2000-01-01

    Uteroglobin (UTG) forms a fascinating homodimeric structure that binds small- to medium-sized ligands through an internal hydrophobic cavity, located at the interface between the two monomers. Previous studies have shown that UTG fold is not limited to the UTG/CC10 family, whose sequence/structure relationships are highlighted here, but can be extended to the cap domain of Xanthobacter autotrophicus haloalkane dehalogenase. We show here that UTG fold is adopted by several other cap domains within the alpha/beta hydrolase family, making it a well-suited "geode" structure allowing it to sequester various hydrophobic molecules. Additionally, some data about a new crystal form of oxidized rabbit UTG are presented, completing previous structural studies, as well as results from molecular dynamics, suggesting an alternative way for the ligand to reach the internal cavity.

  5. Synthesis and high temperature stability of amorphous Si(B)CN-MWCNT composite nanowires

    NASA Astrophysics Data System (ADS)

    Bhandavat, Romil; Singh, Gurpreet

    2012-02-01

    We demonstrate synthesis of a hybrid nanowire structure consisting of an amorphous polymer-derived silicon boron-carbonitride (Si-B-C-N) shell with a multiwalled carbon nanotube core. This was achieved through a novel process involving preparation of a boron-modified liquid polymeric precursor through a reaction of trimethyl borate and polyureasilazane under atmospheric conditions; followed by conversion of polymer to glass-ceramic on carbon nanotube surfaces through controlled heating. Chemical structure of the polymer was studied by liquid-NMR while evolution of various ceramic phases was studied by Raman spectroscopy, solid-NMR, Fourier transform infrared and X-ray photoelectron spectroscopy. Electron microscopy and X-ray diffraction confirms presence of amorphous Si(B)CN coating on individual nanotubes for all specimen processed below 1400 degree C. Thermogravimetric analysis, followed by TEM revealed high temperature stability of the carbon nanotube core in flowing air up to 1300 degree C.

  6. Morphological and physical behavior of styrenic, phosphonium-containing ionomers

    NASA Astrophysics Data System (ADS)

    Beyer, Rick; Stokes, Kristoffer

    2010-03-01

    Despite many years of effort, a clear understanding of the factors controlling morphology in Nafion and other ionomers has not been achieved. The increasing need for fuel cell technology continues to drive efforts to develop materials having better performance characteristics even though fundamental structure-property relationships remain unclarified. Alkaline fuel cells (AFCs) present several benefits over proton exchange membrane (PEM) fuel cells, including cost of manufacture (less expensive catalysts) and a significantly shorter path to commercialization. Here we present the most recent findings from our efforts to examine structure-morphology-property relationships for a series of model cationic ionomers. A series of statistical copolymers of styrene and p-vinylbenzyl-trimethyl-phosphonium chloride have been prepared via RAFT polymerization, allowing us to investigate the effect of ion content on physical behavior. Chemical, physical, and morphological characterization has been undertaken using NMR, TGA, DSC, SAXS, and TEM.

  7. Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin

    PubMed Central

    Bandaria, Jigar N.; Qin, Peiwu; Berk, Veysel; Chu, Steven; Yildiz, Ahmet

    2016-01-01

    SUMMARY Telomeres, repetitive DNA sequences at chromosome ends, are shielded against the DNA damage response (DDR) by the shelterin complex. To understand how shelterin protects telomere ends, we investigated the structural organization of telomeric chromatin in human cells using super-resolution microscopy. We found that telomeres form compact globular structures through a complex network of interactions between shelterin subunits and telomeric DNA, and not by DNA methylation, histone deacetylation or histone trimethylation at telomeres and subtelomeric regions. Mutations that abrogate shelterin assembly or removal of individual subunits from telomeres cause up to a 10-fold increase in telomere volume. Decompacted telomeres become more accessible to telomere-associated proteins and accumulate DDR signals. Recompaction of telomeric chromatin using an orthogonal method displaces DDR signals from telomeres. These results reveal the chromatin remodeling activity of shelterin and demonstrate that shelterin-mediated compaction of telomeric chromatin provides robust protection of chromosome ends against the DDR machinery. PMID:26871633

  8. Alcohol-induced epigenetic alterations to developmentally crucial genes regulating neural stemness and differentiation.

    PubMed

    Veazey, Kylee J; Carnahan, Mindy N; Muller, Daria; Miranda, Rajesh C; Golding, Michael C

    2013-07-01

    From studies using a diverse range of model organisms, we now acknowledge that epigenetic changes to chromatin structure provide a plausible link between environmental teratogens and alterations in gene expression leading to disease. Observations from a number of independent laboratories indicate that ethanol (EtOH) has the capacity to act as a powerful epigenetic disruptor and potentially derail the coordinated processes of cellular differentiation. In this study, we sought to examine whether primary neurospheres cultured under conditions maintaining stemness were susceptible to alcohol-induced alterations in the histone code. We focused our studies on trimethylated histone 3 lysine 4 and trimethylated histone 3 lysine 27, as these are 2 of the most prominent posttranslational histone modifications regulating stem cell maintenance and neural differentiation. Primary neurosphere cultures were maintained under conditions promoting the stem cell state and treated with EtOH for 5 days. Control and EtOH-treated cellular extracts were examined using a combination of quantitative RT-PCR and chromatin immunoprecipitation techniques. We find that the regulatory regions of genes controlling both neural precursor cell identity and processes of differentiation exhibited significant declines in the enrichment of the chromatin marks examined. Despite these widespread changes in chromatin structure, only a small subset of genes including Dlx2, Fabp7, Nestin, Olig2, and Pax6 displayed EtOH-induced alterations in transcription. Unexpectedly, the majority of chromatin-modifying enzymes examined including members of the Polycomb Repressive Complex displayed minimal changes in expression and localization. Only transcripts encoding Dnmt1, Uhrf1, Ehmt1, Ash2 l, Wdr5, and Kdm1b exhibited significant differences. Our results indicate that primary neurospheres maintained as stem cells in vitro are susceptible to alcohol-induced perturbation of the histone code and errors in the epigenetic program. These observations indicate that alterations to chromatin structure may represent a crucial component of alcohol teratogenesis and progress toward a better understanding of the developmental origins of fetal alcohol spectrum disorders. Copyright © 2013 by the Research Society on Alcoholism.

  9. Water-Solubilized, Cap-Stabilized, Helical Polyalanines: Calibration Standards for NMR and CD Analyses

    PubMed Central

    Heitmann, Björn; Job, Gabriel E.; Kennedy, Robert J.; Walker, Sharon M.; Kemp, Daniel S.

    2006-01-01

    NMR and CD studies are reported for two length series of solubilized, spaced, highly helical polyalanines that are N-capped by the optimal helix stabilizer βAsp-Hel and C-capped by β-aminoalanine beta and that are studied in water at 2 °C, pH 1–8. NMR analysis yields a structural characterization of the peptide AcβAspHelAla8betaNH2 and selected members of one βAspHelAlanbeta series. At pH > 4.5 the βAspHel cap provides a preorganized triad of carboxylate anion and two amide residues that is complementary to the helical polyalanine N-terminus. The C-terminal β-aminoalanine assumes a helix-stabilizing conformation consistent with literature precedents. H(N)CO NMR experiments applied to capped, uniformly 13C- and 15N-labeled Ala8 and Ala12 peptides define Alan hydrogen bonding signatures as α-helical without detectable 310 character. Relative NH→ND exchange rates yield site protection factors PFi that define uniquely high fractional helicities FH for the peptide Alan regions. These Alan calibration series, studied in water and lacking helix-stabilizing tertiary structure, yield the first 13C NMR chemical shifts, 3JHNHα coupling constants, and CD ellipticities [θMolar]λ,n characteristic of a fully helical alanine within an Alan context. CD data are used to assign parameters X and [θ]λ,∞, required for rigorous calculation of FH values from CD ellipticities. PMID:15701003

  10. Specific and total N-nitrosamines formation potentials of nitrogenous micropollutants during chloramination.

    PubMed

    Piazzoli, Andrea; Breider, Florian; Aquillon, Caroline Gachet; Antonelli, Manuela; von Gunten, Urs

    2018-05-15

    N-nitrosamines are a group of potent human carcinogens that can be formed during oxidative treatment of drinking water and wastewater. Many tertiary and quaternary amines present in consumer products (e.g., pharmaceuticals, personal care and household products) are known to be N-nitrosodimethylamine (NDMA) precursors during chloramination, but the formation of other N-nitrosamines has been rarely studied. This study investigates the specific and total N-nitrosamine (TONO) formation potential (FP) of various precursors from nitrogen-containing micropollutants (chlorhexidine, metformin, benzalkonium chloride and cetyltrimethylammonium chloride) and tertiary and quaternary model amines (trimethyl amine, N,N-dimethylbutyl amine, N,N-dimethylbenzyl amine and tetramethyl ammonium). All the studied nitrogenous micropollutants displayed quantifiable TONO FP, with molar yields in the range 0.04-11.92%. However, the observed TONO pools constituted mostly of uncharacterized species, not included in US-EPA 8270 N-nitrosamines standard mix. Only the quaternary ammonium compound benzalkonium chloride showed quantifiable NDMA FP (0.56% molar yield), however, explaining only a minor fraction of the observed TONO FP. The studied model amines showed molar NDMA yields from 0.10% (trimethyl amine) to 5.05% (N,N-dimethylbenzyl amine), very similar to the molar TONO yields. The comparison of the FPs of micropollutants and model compounds showed that the presence of electron donating functional groups (such as a benzyl group) in tertiary and quaternary amine precursors leads to a higher formation of NDMA and uncharacterized N-nitrosamines, respectively. LC-qTOF screening of a list of proposed N-nitrosamine structures has enabled to identify a novel N-nitrosamine (N-nitroso-N-methyldodecylamine) from the chloramination of benzalkonium chloride. This finding supports the hypothesis that different functional groups in quaternary amines can act as leaving groups during chloramination and form differing N-nitrosamine structures at significant yield. Molar TONO yields determined for micropollutants were finally validated under experimental conditions closer to real water matrices, confirming their representativeness also for lower concentration ranges. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Impacts of forest harvest on active carbon and microbial properties of a volcanic ash cap soil in northern Idaho

    Treesearch

    Deborah S. Page-Dumroese; Matt D. Busse; Steven T. Overby; Brian D. Gardner; Joanne M. Tirocke

    2015-01-01

    Soil quality assessments are essential for determining impacts on belowground microbial community structure and function. We evaluated the suitability of active carbon (C), a rapid field test, as an indicator of soil biological quality in five paired forest stands (clear cut harvested 40 years prior and unharvested) growing on volcanic ash-cap soils in northern Idaho....

  12. Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike

    2016-09-01

    For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauleau, Mathieu; Jacewicz, Agata; Shuman, Stewart

    DNA 3' pp 5'G caps synthesized by the 3'-PO 4/5'-OH ligase RtcB have a strong impact on enzymatic reactions at DNA 3'-OH ends. Aprataxin, an enzyme that repairs A5'pp5'DNA ends formed during abortive ligation by classic 3'-OH/5'-PO 4 ligases, is also a DNA 3' de-capping enzyme, converting DNAppG to DNA 3'p and GMP. By taking advantage of RtcB's ability to utilize certain GTP analogs to synthesize DNAppN caps, we show that aprataxin hydrolyzes inosine and 6-O-methylguanosine caps, but is not adept at removing a deoxyguanosine cap. We report a 1.5 Å crystal structure of aprataxin in a complex with GMP,more » which reveals that: (i) GMP binds at the same position and in the same anti nucleoside conformation as AMP; and (ii) aprataxin makes more extensive nucleobase contacts with guanine than with adenine, via a hydrogen bonding network to the guanine O6, N1, N2 base edge. Alanine mutations of catalytic residues His147 and His149 abolish DNAppG de-capping activity, suggesting that the 3' de-guanylylation and 5' de-adenylylation reactions follow the same pathway of nucleotidyl transfer through a covalent aprataxin-(His147)–NMP intermediate. Alanine mutation of Asp63, which coordinates the guanosine ribose hydroxyls, impairs DNAppG de-capping.« less

  14. Polyaspartic Acid Concentration Controls the Rate of Calcium Phosphate Nanorod Formation in High Concentration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, Daniel V.; Wang, Dongbo; Lin-Gibson, Sheng

    Polyelectrolytes are known to greatly affect calcium phosphate (CaP) mineralization. The reaction kinetics as well as the CaP phase, morphology and aggregation state depend on the relative concentrations of the polyelectrolyte and the inorganic ions in a complex, nonlinear manner. This study examines the structural evolution and kinetics of polyaspartic acid (pAsp) directed CaP mineralization at high concentrations of polyelectrolytes, calcium, and total phosphate (19–30 mg/mL pAsp, 50–100 mM Ca2+, Ca/P = 2). Using a novel combination of characterization techniques including cryogenic transmission electron microscopy (cryo-TEM), spectrophotometry, X-ray total scattering pair distribution function analysis, and attenuated total reflectance Fourier transformmore » infrared spectroscopy (ATR-FTIR), it was determined that the CaP mineralization occurred over four transition steps. The steps include the formation of aggregates of pAsp stabilized CaP spherical nanoparticles (sNP), crystallization of sNP, oriented attachment of the sNP into nanorods, and further crystallization of the nanorods. The intermediate aggregate sizes and the reaction kinetics were found to be highly polymer concentration dependent while the sizes of the particles were not concentration dependent. This study demonstrates the complex role of pAsp in controlling the mechanism as well as the kinetics of CaP mineralization.« less

  15. 21 CFR 184.1890 - α-Tocopherols.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam distillation of edible... condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room temperature...

  16. 21 CFR 184.1890 - α-Tocopherols.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... commercially as a concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam... by condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room...

  17. 21 CFR 184.1890 - α-Tocopherols.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... commercially as a concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam... by condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room...

  18. Trimethylated homoserine functions as the major compatible solute in the globally significant oceanic cyanobacterium Trichodesmium.

    PubMed

    Pade, Nadin; Michalik, Dirk; Ruth, Wolfgang; Belkin, Natalia; Hess, Wolfgang R; Berman-Frank, Ilana; Hagemann, Martin

    2016-11-15

    The oceanic N 2 -fixing cyanobacterium Trichodesmium spp. form extensive surface blooms and contribute significantly to marine carbon and nitrogen cycles in the oligotrophic subtropical and tropical oceans. Trichodesmium grows in salinities from 27 to 43 parts per thousand (ppt), yet its salt acclimation strategy remains enigmatic because the genome of Trichodesmium erythraeum strain IMS101 lacks all genes for the biosynthesis of any known compatible solute. Using NMR and liquid chromatography coupled to mass spectroscopy, we identified the main compatible solute in T. erythraeum strain IMS101 as the quaternary ammonium compound N,N,N-trimethyl homoserine (or homoserine betaine) and elucidated its biosynthetic pathway. The identification of this compatible solute explains how Trichodesmium spp. can thrive in the marine system at varying salinities and provides further insight into the diversity of microbial salt acclimation.

  19. Enhancement of methylbenzene adsorption capacity through cetyl trimethyl ammonium bromide-modified activated carbon derived from Astragalus residue

    NASA Astrophysics Data System (ADS)

    Feng, Ningchuan; Zhang, Yumei; Fan, Wei; Zhu, Meilin

    2018-02-01

    Activated carbon was prepared from astragalus residue by KOH and then treated with cetyl trimethyl ammonium bromide (CTAB) and used for the removal of methylbenzene from aqueous solution. The samples were characterized by FTIR, XRD, SEM and Boehm titration. The results showed that CTAB changed the physicochemical properties of activated carbon significantly. The isotherm adsorption studies of methylbenzene onto the astragalus residue activated carbon (ASC) and CTAB-modified astragalus residue activated carbon (ASCCTAB) were examined by using batch techniques and agreed well with the Langmuir model. The maximum adsorption capacity of ASC and ASC-CTAB for methylbenzene determined from the Langmuir model was183.56 mg/g and 235.18 mg/g, respectively. The results indicated that using CTAB as a modifier for ASC modification could markedly enhance the methylbenzene removal from water.

  20. Synthesis and characterization of low-toxicity N-caprinoyl-N-trimethyl chitosan as self-assembled micelles carriers for osthole

    PubMed Central

    Hu, Xiao-juan; Liu, Yang; Zhou, Xiao-feng; Zhu, Qiao-ling; Bei, Yong-yan; You, Ben-gang; Zhang, Chun-ge; Chen, Wei-liang; Wang, Zhou-li; Zhu, Ai-jun; Zhang, Xue-nong; Fan, Yu-jiang

    2013-01-01

    Novel amphiphilic chitosan derivatives (N-caprinoyl-N-trimethyl chitosan [CA-TMC]) were synthesized by grafting the hydrophobic moiety caprinoyl (CA) and hydrophilic moiety trimethyl chitosan to prepare carriers with good compatibility for poorly soluble drugs. Based on self-assembly, CA-TMC can form micelles with sizes ranging from 136 nm to 212 nm. The critical aggregation concentration increased from 0.6 mg • L−1 to 88 mg • L−1 with decrease in the degree of CA substitution. Osthole (OST) could be easily encapsulated into the CA-TMC micelles. The highest entrapment efficiency and drug loading of OST-loaded CA-TMC micelles(OST/CA-TMC) were 79.1% and 19.1%, respectively. The antitumor efficacy results show that OST/CA-TMC micelles have significant antitumor activity on Hela and MCF-7 cells, with a 50% of cell growth inhibition (IC50) of 35.8 and 46.7 μg. mL−1, respectively. Cell apoptosis was the main effect on cell death of Hela and MCF-7 cells after OST administration. The blank micelles did not affect apoptosis or cell death of Hela and MCF-7 cells. The fluorescence imaging results indicated that OST/CA-TMC micelles could be easily uptaken by Hela and MCF-7 cells and could localize in the cell nuclei. These findings suggest that CA-TMC micelles are promising carriers for OST delivery in cancer therapy. PMID:24106424

  1. Histone H3 Lysine 36 Trimethylation Is Established over the Xist Promoter by Antisense Tsix Transcription and Contributes to Repressing Xist Expression

    PubMed Central

    Ohhata, Tatsuya; Matsumoto, Mika; Leeb, Martin; Shibata, Shinwa; Sakai, Satoshi; Kitagawa, Kyoko; Niida, Hiroyuki

    2015-01-01

    One of the two X chromosomes in female mammals is inactivated by the noncoding Xist RNA. In mice, X chromosome inactivation (XCI) is regulated by the antisense RNA Tsix, which represses Xist on the active X chromosome. In the absence of Tsix, PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) is established over the Xist promoter. Simultaneous disruption of Tsix and PRC2 leads to derepression of Xist and in turn silencing of the single X chromosome in male embryonic stem cells. Here, we identified histone H3 lysine 36 trimethylation (H3K36me3) as a modification that is recruited by Tsix cotranscriptionally and extends over the Xist promoter. Reduction of H3K36me3 by expression of a mutated histone H3.3 with a substitution of methionine for lysine at position 36 causes a significant derepression of Xist. Moreover, depletion of the H3K36 methylase Setd2 leads to upregulation of Xist, suggesting H3K36me3 as a modification that contributes to the mechanism of Tsix function in regulating XCI. Furthermore, we found that reduction of H3K36me3 does not facilitate an increase in H3K27me3 over the Xist promoter, indicating that additional mechanisms exist by which Tsix blocks PRC2 recruitment to the Xist promoter. PMID:26370508

  2. Histone H3 K79 methylation states play distinct roles in UV-induced sister chromatid exchange and cell cycle checkpoint arrest in Saccharomyces cerevisiae

    PubMed Central

    Rossodivita, Alyssa A.; Boudoures, Anna L.; Mecoli, Jonathan P.; Steenkiste, Elizabeth M.; Karl, Andrea L.; Vines, Eudora M.; Cole, Arron M.; Ansbro, Megan R.; Thompson, Jeffrey S.

    2014-01-01

    Histone post-translational modifications have been shown to contribute to DNA damage repair. Prior studies have suggested that specific H3K79 methylation states play distinct roles in the response to UV-induced DNA damage. To evaluate these observations, we examined the effect of altered H3K79 methylation patterns on UV-induced G1/S checkpoint response and sister chromatid exchange (SCE). We found that the di- and trimethylated states both contribute to activation of the G1/S checkpoint to varying degrees, depending on the synchronization method, although methylation is not required for checkpoint in response to high levels of UV damage. In contrast, UV-induced SCE is largely a product of the trimethylated state, which influences the usage of gene conversion versus popout mechanisms. Regulation of H3K79 methylation by H2BK123 ubiquitylation is important for both checkpoint function and SCE. H3K79 methylation is not required for the repair of double-stranded breaks caused by transient HO endonuclease expression, but does play a modest role in survival from continuous exposure. The overall results provide evidence for the participation of H3K79 methylation in UV-induced recombination repair and checkpoint activation, and further indicate that the di- and trimethylation states play distinct roles in these DNA damage response pathways. PMID:24748660

  3. Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication.

    PubMed

    Brustel, Julien; Kirstein, Nina; Izard, Fanny; Grimaud, Charlotte; Prorok, Paulina; Cayrou, Christelle; Schotta, Gunnar; Abdelsamie, Alhassan F; Déjardin, Jérôme; Méchali, Marcel; Baldacci, Giuseppe; Sardet, Claude; Cadoret, Jean-Charles; Schepers, Aloys; Julien, Eric

    2017-09-15

    Among other targets, the protein lysine methyltransferase PR-Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4-20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila , partially impairs S-phase progression and protects from DNA re-replication induced by stabilization of PR-Set7. Using Epstein-Barr virus-derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4-20h is not sufficient to define an efficient origin per se , but rather serves as an enhancer for MCM2-7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4-20h-mediated H4K20 tri-methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1-associated origins, which ensure proper replication timing of late-replicating heterochromatin domains. Altogether, these results reveal Suv4-20h-mediated H4K20 tri-methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes. © 2017 The Authors.

  4. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoli; Li, Sujing; Dong, Minli; Li, Wei; Gao, Xiang; Ye, Rongmin; Zhang, Dongxiao

    2018-06-01

    Zhoushan is an island city with booming tourism and service industry, but also has many developed VOCs and/or NOX emission industries. It is necessary to carry out regional VOCs and O3 pollution control in Zhoushan as the only new area owns the provincial economic and social administration rights. Anthropogenic VOCs emission inventories were built based on emission factor method and main emission sources were identified according to the emission inventories. Then, localized VOCs source profiles were built based on in-site sampling and referring to other studies. Furthermore, ozone formation potentials (OFPs) profiles were built through VOCs source profiles and maximum incremental reactivity (MIR) theory. At last, the priority control analysis results showed that industrial processes, especially surface coating, are the key of VOCs and O3 control. Alkanes were the most emitted group, accounting for 58.67%, while aromatics contributed the most to ozone production accounting for 69.97% in total OFPs. n-butane, m/p-xylene, i-pentane, n-decane, toluene, propane, n-undecane, o-xylene, methyl cyclohexane and ethyl benzene were the top 10 VOC species that should be preferentially controlled for VOCs emission control. However, m/p-xylene, o-xylene, ethylene, n-butane, toluene, propene, 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, ethyl benzene and 1,2,3-trimethyl benzene were the top 10 VOC species that required preferential control for O3 pollution control.

  5. Effect of the dispersing agent on the structural and magnetic properties of CoFe2O4 /SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Daboin, Viviana; Briceño, Sarah; Suárez, Jorge; Gonzalez, Gema

    2018-04-01

    Cobalt ferrite nanoparticles CoFe2O4 were synthesized using the thermal decomposition method; subsequently the NPs were functionalized using poli vinyl pyrrolidone (PVP) cetyl trimethyl ammonium bromide (CTAB) and polyethylene glycol (PEG) as dispersing agent. Surface modification with silica SiO2 was made using the Stöber method and tetraethyl orthosilicate (TEOS) as precursor. The purpose of this study is to investigate the influence of the different dispersing agents on the structure and therefore on the magnetic properties of the CoFe2O4 /SiO2 nanocomposites. Structural characterization was carried out using: X-ray diffraction (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Magnetic properties were evaluated using a vibrating sample magnetometer (VSM) at room temperature. Our results revealed that the structural and magnetic properties of the CoFe2O4 /SiO2 nanocomposites were significantly different depending of the type of dispersing agents used before the surface modification with silica SiO2 .

  6. Deposition of a-C/B films from o-carborane and trimethyl boron precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geddes, J.B.; Getty, W.D.

    1996-12-31

    Vacuum wall deposition of a-B/C films has had tremendous positive impact on the performance of tokamak fusion reactors. In this work, precursor vapor and helium carrier gas have been used to create a plasma using a novel plasma source. Either trimethyl boron (TMB) or sublimed vapor from o-carborane solid can be used as deposition precursors. The plasma operates in a pressure range of 5 to 15 mTorr and typical flow rates are 5 sccm He plus 0.5-1 sccm o-carborane or TMB vapor. The film deposition rate ranges from less than 100 {angstrom}/minute to over 1,000 {angstrom}/minute. Microwave power levels rangemore » from 300--400 W at 2.45 GHz. The temperature and bias of the substrate can be varied, and the temperature of the substrate is recorded during deposition. The films have been analyzed using XPS. The atomic composition of the films has been measured. The o-carborane films have a much higher boron concentration than those deposited from TMB. The chemical bond characteristics of the different species have also been examined for each type of film. The thickness of the films is measured by profilometry, and this is combined with measurements of the film area and weight to calculate the film density. X-ray diffraction analysis has been performed; no evidence of any crystalline structure was found. Films with a thickness of a few thousand {angstrom} are routinely obtained. Deposition rates were 350 {angstrom}/minute on average.« less

  7. Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery.

    PubMed

    Farhadian, Asma; Dounighi, Naser Mohammadpour; Avadi, Mohammadreza

    2015-01-01

    Oral vaccination is the preferred route of immunization. However, the degradative condition of the gastrointestinal tract and the higher molecular size of peptides pose major challenges in developing an effective oral vaccination system. One of the most excellent methods used in the development of oral vaccine delivery system relies on the entrapment of the antigen in polymeric nanoparticles. In this work, trimethyl chitosan (TMC) nanoparticles were fabricated using ionic gelation teqnique by interaction hydroxypropyl methylcellulose phthalate (HPMCP), a pH-sensitive polymer, with TMC and the utility of the particles in the oral delivery of hepatitis B surface antigen (HBsAg) was evaluated employing solutions that simulated gastric and intestinal conditions. The particle size, morphology, zeta potential, loading capacity, loading efficiency, in vitro release behavior, structure, and morphology of nanoparticles were evaluated, and the activity of the loaded antigen was assessed. Size of the optimized TMC/HPMCP nanoparticles and that of the antigen-loaded nanoparticles were 85 nm and 158 nm, respectively. Optimum loading capacity (76.75%) and loading efficiency (86.29%) were achieved at 300 µg/mL concentration of the antigen. SEM images revealed a spherical shape as well as a smooth and near-homogenous surface of nanoparticles. Results of the in vitro release studies showed that formulation with HPMCP improved the acid stability of the TMC nanoparticles as well as their capability to preserve the loaded HBsAg from gastric destruction. The antigen showed good activity both before and after loading. The results suggest that TMC/HPMCP nanoparticles could be used in the oral delivery of HBsAg vaccine.

  8. Polarizable Multipole-Based Force Field for Dimethyl and Trimethyl Phosphate

    PubMed Central

    2015-01-01

    Phosphate groups are commonly observed in biomolecules such as nucleic acids and lipids. Due to their highly charged and polarizable nature, modeling these compounds with classical force fields is challenging. Using quantum mechanical studies and liquid-phase simulations, the AMOEBA force field for dimethyl phosphate (DMP) ion and trimethyl phosphate (TMP) has been developed. On the basis of ab initio calculations, it was found that ion binding and the solution environment significantly impact both the molecular geometry and the energy differences between conformations. Atomic multipole moments are derived from MP2/cc-pVQZ calculations of methyl phosphates at several conformations with their chemical environments taken into account. Many-body polarization is handled via a Thole-style induction model using distributed atomic polarizabilities. van der Waals parameters of phosphate and oxygen atoms are determined by fitting to the quantum mechanical interaction energy curves for water with DMP or TMP. Additional stretch-torsion and angle-torsion coupling terms were introduced in order to capture asymmetry in P–O bond lengths and angles due to the generalized anomeric effect. The resulting force field for DMP and TMP is able to accurately describe both the molecular structure and conformational energy surface, including bond and angle variations with conformation, as well as interaction of both species with water and metal ions. The force field was further validated for TMP in the condensed phase by computing hydration free energy, liquid density, and heat of vaporization. The polarization behavior between liquid TMP and TMP in water is drastically different. PMID:26574325

  9. Structure and function of flavivirus NS5 methyltransferase.

    PubMed

    Zhou, Yangsheng; Ray, Debashish; Zhao, Yiwei; Dong, Hongping; Ren, Suping; Li, Zhong; Guo, Yi; Bernard, Kristen A; Shi, Pei-Yong; Li, Hongmin

    2007-04-01

    The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA-->m7GpppA-->m7GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 A resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.

  10. Human beta-globin mRNAs that harbor a nonsense codon are degraded in murine erythroid tissues to intermediates lacking regions of exon I or exons I and II that have a cap-like structure at the 5' termini.

    PubMed Central

    Lim, S K; Maquat, L E

    1992-01-01

    Previous studies have demonstrated that nonsense codons within beta zero-thalassemic or in vitro-mutagenized human beta-globin transgenes result in the production of mRNAs that are degraded abnormally rapidly in the cytoplasm of murine erythroid cells. As a consequence, three RNA degradative intermediates are formed that lack sequences from either exon I or exons I and II. We show here that the intermediates, like the full-length mRNA from which they derive and the endogenous murine beta maj-globin mRNA, bind to the anticap monoclonal antibody H-20 in a way that is competed by the cap analogue m7G and eliminated by prior exposure to tobacco acid pyrophosphatase. Furthermore, the intermediates, like the two full-length mRNAs, are resistant to a 5'----3' exonuclease activity isolated from HeLa cell nuclei that degrades uncapped but not capped ribopolymers. Based on these observations, the intermediates appear to possess a structure that is indistinguishable from the cap at the 5' end of mRNA, i.e. a methylated nucleoside that is linked to the RNA by a 5'-5' phosphodiester bond. Detection of the intermediates during murine development was concomitant with detection of full-length thalassemic mRNA. Intermediate production appears to be influenced by RNA structure as indicated by the products that derive from a beta zero-thalassemic beta-globin transgene harboring a structural alteration (a 4 bp deletion) that was larger than any of those previously studied. Images PMID:1324170

  11. Optimized capping layers for EUV multilayers

    DOEpatents

    Bajt, Sasa [Livermore, CA; Folta, James A [Livermore, CA; Spiller, Eberhard A [Livermore, CA

    2004-08-24

    A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.

  12. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, E.D.; Baenziger, J.U.

    1988-01-05

    The asparagine-linked oligosaccharides on the pituitary glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) consist of a heterogeneous array of neutral, sulfated, sialylated, and sulfated/sialylated structures. In this study, the authors determined the relative quantities of the various asparagine-linked oligosaccharides on LH, FSH, and TSH from these three animal species. The proportions of sulfated versus sialylated oligosaccharides varied markedly among the different hormones. Both hormone- and animal species-specific differences in the types and distributions of sulfated, sialylated, and sulfated/sialylated structures were evident. In particular, LH and FSH, which are synthesized in the same pituitary cell and bear ..cap alpha..-subunitsmore » with the identical amino acid sequence, contained significantly different distributions of sulfated and sialylated oligosaccharides. For all three animal species, the ratio of sialylated to sulfated oligosaccharides differed by >10-fold for LH and FSH, with sulfated structures dominating on LH and sialylated structures on FSH. Sialylated oligosaccharides were also heterogeneous with respect to sialic acid linkage (..cap alpha..2,3 versus ..cap alpha..2,6). The differences in oligosaccharide structures among the various pituitary glycoprotein hormones as well as among the various glycosylation sites within a single hormone support the hypothesis that glycosylation may serve important functional roles in the expression and/or regulation of hormone bioactivity.« less

  13. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-06-01

    The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27-61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72-93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.

  14. Development and tests on OREX vehicle thermal structure system

    NASA Astrophysics Data System (ADS)

    Yoshinaka, Toshinari; Morino, Yoshiki

    1992-08-01

    An overview of the thermal system structure development and their tests for Orbital Re-entry Experiment (OREX) vehicle, being developed as a part of H-2 Orbiting Plane (HOPE) development, is presented. The results of study on the OREX vehicle thermal structure system and concept of the system study are shown. The results of HOPE thermal structure system research were reflected to OREX in employing polyacrylonitrile tissues with conversion coating for the nose cap, Carbon-Thermal Protection System (TPS), and ceramic tile TPS for the structure. Test plans were established for material characteristics and design verifications, and flight validation for C/C (Carbon/Carbon Composite) nose cap and TPS, and gap filler, arc wind tunnel, heat insulation, and adhesion quality verification tests. Environment resistance of the C/C nose cone, C/C TPS, and ceramic tile TPS were verified and prospects of their manufacturing were obtained.

  15. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors.

    PubMed

    Shinji, Chihiro; Maeda, Satoko; Imai, Keisuke; Yoshida, Minoru; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2006-11-15

    A series of hydroxamic acid derivatives bearing a cyclic amide/imide group as a linker and/or cap structure, prepared during our structural development studies based on thalidomide, showed class-selective potent histone deacetylase (HDAC)-inhibitory activity. Structure-activity relationship studies indicated that the steric character of the substituent introduced at the cyclic amide/imide nitrogen atom, the presence of the amide/imide carbonyl group, the hydroxamic acid structure, the shape of the linking group, and the distance between the zinc-binding hydroxamic acid group and the cap structure are all important for HDAC-inhibitory activity and class selectivity. A representative compound (30w) showed potent p21 promoter activity, comparable with that of trichostatin A (TSA), and its cytostatic activity against cells of the human prostate cell line LNCaP was more potent than that of the well-known HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA).

  16. Broad spectrum antiviral agent ribavirin inhibits capping of mRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, B.B.; Borek, E.; Sharma, O.K.

    1979-08-13

    Ribavirin (1-..beta..-D-ribofuranosyl-1,2,4-triazole-3-carboxamide) is a broad spectrum antiviral substance active against a wide range of both DNA and RNA viruses. It is, however, virtually inactive against polio virus. Its pharmacological mechanism of action was obscure. A possible common target for a chemotherapeutic agent in both DNA and RNA viruses is the capping reaction of mRNAs which inter alia involves the formation of a guanine pyrophosphate structure at the 5' terminus by mRNA guanylyl transferase. We have observed that Ribavirin triphosphate is a potent competitive inhibitor of the capping guanylation of viral mRNA. This finding could account for the antiviral potency ofmore » the drug against both DNA and RNA viruses and its ineffectiveness against a virus in which the mRNAs derived from them are not capped.« less

  17. Biodegradable/biocompatible coated metal implants for orthopedic applications.

    PubMed

    Saleh, Mohamed M; Touny, A H; Al-Omair, Mohammed A; Saleh, M M

    2016-05-12

    Biocompatible metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Although metals and their alloys are widely and successfully used in producing biomedical implants due to their good mechanical properties and corrosion resistance, they have a lack in bioactivity. Therefore coating of the metal surface with calcium phosphates (CaP) is a benign way to achieve well bioactivity and get controlled corrosion properties. The biocompatibility and bioactivity calcium phosphates (CaP) in bone growth were guided them to biomedical treatment of bone defects and fractures. Many techniques have been used for fabrication of CaP coatings on metal substrates such as magnesium and titanium. The present review will focus on the synthesis of CaP and their relative forms using different techniques especially electrochemical techniques. The latter has always been known of its unique way of optimizing the process parameters that led to a control in the structure and characteristics of the produced materials.

  18. The effect of PVP on morphology, optical properties and electron paramagnetic resonance of Zn0.5Co0.5Fe2-xPrxO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bitar, Z.; El-Said Bakeer, D.; Awad, R.

    2017-07-01

    Zinc Cobalt nano ferrite doped with Praseodymium, Zn0.5Co0.5Fe2-xPrxO4 (0 ≤ x ≤ 0.2), were prepared by co-precipitation method from an aqueous solution containing metal chlorides and two concentrations of poly(vinylpyrrolidone) (PVP) 0 and 30g/L as capping agent. The samples were characterized using X-ray powder diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible optical spectroscopy, Fourier transform infrared (FTIR) and Electron Paramagnetic Resonance (EPR). XRD results display the formation of cubic spinel structure with space group Fd3m and the lattice parameter (a) is slightly decreased for PVP capping samples. The particle size that determined by TEM, decreases for PVP capping samples. The optical band energy Eg increases for PVP capping samples, confirming the variation of energy gap with the particle size. The FTIR results indicate that the metal oxide bands were shifted for the PVP capping samples. EPR data shows that the PVP addition increases the magnetic resonance field and hence decreases the g-factor.

  19. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement*

    PubMed Central

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-01-01

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. PMID:26887951

  20. Interactions between citrate-capped gold nanoparticles and polymersomes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohan; Lopez, Anand; Liu, Yibo; Wang, Feng; Liu, Juewen

    2018-06-01

    Polymersomes are vesicles formed by self-assembled amphiphilic block copolymers. Polymersomes generally have better stability than liposomes and they have been widely used in making drug delivery vehicles. In this work, the interaction between two types of polymersomes and citrate-capped gold nanoparticles (AuNPs) was studied. The following two polymers: poly(2-methyloxazoline-b-dimethylsiloxane-b-2-methyloxazoline) (called P1) and poly(butadiene-b-ethylene oxide) (called P2) were respectively used to form polymersomes. While P1 only formed spherical vesicle structures, worm-like structures were also observed with P2 as indicated by cryo-TEM. Both polymersomes adsorbed AuNPs leading to their subsequent aggregation. A lower polymersome concentration produced more obvious aggregation of AuNPs as judged from the color change. Capping AuNPs with glutathione inhibited adsorption of AuNPs. Considering the surface property of the polymers, the interaction with AuNPs was likely due to van der Waals forces. P1 polymersomes encapsulated calcein stably and AuNPs did not induce leakage. The P1/AuNP complex was more efficiently internalized by HeLa cells compared to free P1 polymersomes, further indicating a stable adsorption under cell culture conditions. In summary, this work indicates citrate-capped AuNPs form stable adsorption complexes with these polymersomes and their interactions have been explored.

  1. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from E C-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement betweenmore » experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about E C-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.« less

  2. [Chemical Constituents from Ethyl Acetate Extract of Psidium guajava Leaves (II)].

    PubMed

    Ouyang, Wen; Zhu, Xiao-ai; He, Cui-xia; Chen, Xue-xiang; Ye, Shu-min; Peng, Shan; Cao, Yong

    2015-08-01

    To study the chemical constituents from ethyl acetate extract of Psidium guajava leaves. The constituents were separated and purified by silica gel and Sephadex LH-20 column chromatography and their structures were identified on the basis of physicochemical properties and spectral data. Eleven compounds were isolated and identified as 6,10,14-trimethyl-2-pentadecanone (1), phytyl-acetate (2), cubenol (3), eucalyptin (4), n-docosanoic acid-p-hydroxy-phenethylol ester (5),8-methyl-5,7- dihydroxy-flavonone (6), 6-methyl-5,7-dihydroxy-flavonone (7), betulinic acid (8), carnosol (9), quercetin (10), and 2,4,6-tirhydroxy- 3,5-dimethyl-diphenylketone-4-O-(6'"-O-galloyl)-β-D-glucoside (11). Compounds 1-9 are isolated from this plant for the first time.

  3. 76 FR 13546 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This proposed AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are proposing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.

  4. 76 FR 41651 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs = 52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.

  5. 76 FR 35342 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.

  6. Conformational landscape of isolated capped amino acids: on the nature of non-covalent interactions*

    NASA Astrophysics Data System (ADS)

    González, Jorge; Martínez, Rodrigo; Fernández, José A.; Millan, Judith

    2017-08-01

    The intramolecular interactions for isolated capped amino acids were investigated computationally by characterizing the conformers for selected amino acids with charged (arginine), polar (asparagine and glutamine), non-polar (alanine, valine and isoleucine), and aromatic (phenylalanine, tryptophan and tyrosine) side chains. The computational method applied combined a molecular mechanics conformational search (with an MMFFs forced field) followed by structural and vibrational density-functional calculations (M06-2X with a triple- ζ Pople's basis set). The intramolecular forces in each amino acid were analyzed with the Non-Covalent Interactions (NCI) analysis. The results for the 15 most stable conformers studied showed that the structure of isolated capped amino acids resembles those found in proteins. In particular, the two most stable conformers of the nine amino acids investigated exhibit γ L and β L conformations with 7- and 5-membered rings, respectively, as a result of the balance between non-covalent interactions (hydrogen bonds and van der Waals).

  7. Two-Dimensional Polymer Synthesized via Solid-State Polymerization for High-Performance Supercapacitors.

    PubMed

    Liu, Wei; Ulaganathan, Mani; Abdelwahab, Ibrahim; Luo, Xin; Chen, Zhongxin; Rong Tan, Sherman Jun; Wang, Xiaowei; Liu, Yanpeng; Geng, Dechao; Bao, Yang; Chen, Jianyi; Loh, Kian Ping

    2018-01-23

    Two-dimensional (2-D) polymer has properties that are attractive for energy storage applications because of its combination of heteroatoms, porosities and layered structure, which provides redox chemistry and ion diffusion routes through the 2-D planes and 1-D channels. Here, conjugated aromatic polymers (CAPs) were synthesized in quantitative yield via solid-state polymerization of phenazine-based precursor crystals. By choosing flat molecules (2-TBTBP and 3-TBQP) with different positions of bromine substituents on a phenazine-derived scaffold, C-C cross coupling was induced following thermal debromination. CAP-2 is polymerized from monomers that have been prepacked into layered structure (3-TBQP). It can be mechanically exfoliated into micrometer-sized ultrathin sheets that show sharp Raman peaks which reflect conformational ordering. CAP-2 has a dominant pore size of ∼0.8 nm; when applied as an asymmetric supercapacitor, it delivers a specific capacitance of 233 F g -1 at a current density of 1.0 A g -1 , and shows outstanding cycle performance.

  8. Octoxy capped Si nanoparticles synthesized by homogeneous reduction of SiCl4 with crown ether alkalide.

    PubMed

    Sletnes, M; Maria, J; Grande, T; Lindgren, M; Einarsrud, M-A

    2014-02-07

    Blue-green luminescent octoxy capped Si nanoparticles were synthesized via homogeneous reduction of SiCl4 with the crown ether alkalide K(+)(15-crown-5)2K(-) in tetrahydrofuran. The Si nanoparticles were characterized with respect to size, crystal structure, morphology, surface termination, optical properties and stability. Si diamond structure nanoparticles with narrow size distributions, and average diameters ranging from 3 to 7 nm were obtained. A finite-size effect on the lattice dimensions was observed, in the form of an expansion of the [220] lattice planes of smaller Si nanoparticles. The concentration of SiCl4 was found to be the most important parameter governing the particle size and size distribution. The octoxy capped particles were stable under an ambient atmosphere for at least one month, but exposure to water made them prone to oxidation. An average radiative recombination lifetime of 8.8 ns was measured for the blue-green luminescence. The luminescence appears to originate from surface defects, rather than from quantum confinement.

  9. Photoluminescence Study of Plasma-Induced Damage of GaInN Single Quantum Well

    NASA Astrophysics Data System (ADS)

    Izumi, Shouichiro; Minami, Masaki; Kamada, Michiru; Tatsumi, Tetsuya; Yamaguchi, Atsushi A.; Ishikawa, Kenji; Hori, Masaru; Tomiya, Shigetaka

    2013-08-01

    Plasma-induced damage (PID) due to Cl2/SiCl4/Ar plasma etching of the GaN capping layer (CAP)/GaInN single quantum well (SQW)/GaN structure was investigated by conventional photoluminescence (PL), transmission electron microscopy (TEM), and time-resolved and temperature-dependent photoluminescence (TRPL). SQW PL intensity remained constant initially, although plasma etching of the CAP layer proceeded, but when the etching thickness reached a certain amount (˜60 nm above the SQW), PL intensity started to decrease sharply. On the other hand, TEM observations show that the physical damage (structural damage) was limited to the topmost surface region. These findings can be explained by the results of TRPL studies, which revealed that there exist two different causes of PID. One is an increase in the number of nonradiative recombination centers, which mainly affects the PL intensity. The other is an increase in the quantum level fluctuation owing mainly to physical damage.

  10. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    NASA Astrophysics Data System (ADS)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  11. Nanoscale coupling of photons to vibrational excitation of Ag nanoparticle 2D array studied by scanning tunneling microscope light emission spectroscopy.

    PubMed

    Katano, Satoshi; Toma, Koji; Toma, Mana; Tamada, Kaoru; Uehara, Yoichi

    2010-11-28

    Scanning tunneling microscope light emission (STM-LE) spectroscopy has been utilized to elucidate the luminescence phenomena of Ag nanoparticles capped with myristate (myristate-capped AgNP) and 2-methyl-1-propanethiolate (C(4)S-capped AgNP) on the dodecanethiol-precovered Au substrate. The STM imaging revealed that myristate-capped AgNPs form an ordered hexagonal array whereas C(4)S-capped AgNPs show imperfect ordering, indicating that a shorter alkyl chain of C(4)S-capped AgNP is not sufficient to form rigid interdigitation. It should be noted that such a nanoparticle ordering affects the luminescence properties of the Ag nanoparticle. We found that the STM-LE is only detected from the Ag nanoparticles forming the two-dimensional superlattice. This indicates that the STM-LE of the Ag nanoparticle is radiated via the collective excitation of the local surface plasmon resonance (LSPR) spread over the Ag nanoparticles. Note that the STM-LE spectra of the Ag nanoparticles exhibit spike-like peaks superimposed on the broad light emission peak. Using Raman spectroscopy, we concluded that the spike-like structure appearing in the STM-LE spectra is associated with the vibrational excitation of the molecule embedded between Ag nanoparticles.

  12. What is the impact of primary care model type on specialist referral rates? A cross-sectional study

    PubMed Central

    2014-01-01

    Background Several new primary care models have been implemented in Ontario, Canada over the past two decades. These practice models differ in team structure, physician remuneration, and group size. Few studies have examined the impact of these models on specialist referrals. We compared specialist referral rates amongst three primary care models: 1) Enhanced Fee-for-service, 2) Capitation- Non-Interdisciplinary (CAP-NI), 3) Capitation – Interdisciplinary (CAP-I). Methods We conducted a cross-sectional study using health administrative data from primary care practices in Ontario from April 1st, 2008 to March 31st, 2010. The analysis included all family physicians providing comprehensive care in one of the three models, had at least 100 patients, and did not have a prolonged absence (eight consecutive weeks). The primary outcome was referral rate (# of referrals to all medical specialties/1000 patients/year). A multivariable clustered Poisson regression analysis was used to compare referral rates between models while adjusting for provider (sex, years since graduation, foreign trained, time in current model) and patient (age, sex, income, rurality, health status) characteristics. Results Fee-for-service had a significantly lower adjusted referral rate (676, 95% CI: 666-687) than the CAP-NI (719, 95% confidence interval (CI): 705-734) and CAP-I (694, 95% CI: 681-707) models and the interdisciplinary CAP-I group had a 3.5% lower referral rate than the CAP-NI group (RR = 0.965, 95% CI: 0.943-0.987, p = 0.002). Female and Canadian-trained physicians referred more often, while female, older, sicker and urban patients were more likely to be referred. Conclusions Primary care model is significantly associated with referral rate. On a study population level, these differences equate to 111,059 and 37,391 fewer referrals by fee-for-service versus CAP-NI and CAP-I, respectively – a difference of $22.3 million in initial referral appointment costs. Whether a lower rate of referral is more appropriate or not is not known and requires further investigation. Physician remuneration and team structure likely account for the differences; however, further investigation is also required to better understand whether other organizational factors associated with primary care model also impact referral. PMID:24490703

  13. Composite intersection reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2010-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  14. Fabrication of nanobaskets by sputter deposition on porous substrates and uses thereof

    NASA Technical Reports Server (NTRS)

    Johnson, Paige Lea (Inventor); Teeters, Dale (Inventor)

    2010-01-01

    A method of producing a nanobasket and the applications or uses thereof. The method includes the steps of providing a substrate with at least one (1) pore having diameters of about one (1) nanometer to about ten (10) micrometers. Material is deposited by sputter-coating techniques along continuous edges of the pores to form a capped or partially capped nanotube or microtube structure, termed a nanobasket. Either a single material may be used to form nanobaskets over the pores or, alternately, a layered structure may be created wherein an initial material is deposited followed by one or more other materials to form nanobaskets over the pores.

  15. Suckers and other bursal structures of Pomphorhynchus bulbocolli and Acanthocephalus dirus (Acanthocephala).

    PubMed

    Doyle, L R; Gleason, L N

    1991-06-01

    Accessory copulatory structures in the bursa of Pomphorhynchus bulbocolli include 2 suckers on the inner surface and bursal rays. A stylet was present in the penis of this species. Two suckers were present in the bursa of Acanthocephalus dirus, but bursal rays and a stylet in the penis were not observed. This is the first report of suckers present in the bursas of acanthocephalans. Copulatory cement caps and holes surrounded by a ring approximating the inner bursal diameter and not covered by a cap were present on the sides of some P. bulbocolli, indicating the possibility of hypodermic insemination in this species.

  16. Composite Intersection Reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2013-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  17. Si-centered capped trigonal prism ordering in liquid Pd 82Si 18 alloy study by first-principles calculations

    DOE PAGES

    Dong, F.; Yue, G. Q.; Ames Lab. and Iowa State Univ., Ames, IA; ...

    2017-03-24

    First-principles molecular dynamic (MD) simulation and X-ray diffraction were employed to study the local structures of Pd–Si liquid at the eutectic composition (Pd 82Si 18). Here, a strong repulsion is found between Si atoms, and Si atoms prefer to be evenly distributed in the liquid. The dominate local structures around Si atoms are found to be with of a trigonal prism capped by three half-octahedra and an archimedean anti-prism. The populations of these clusters increase significantly upon cooling, and may play an important role in the formation of Pd 82Si 18 alloy glass.

  18. Si-centered capped trigonal prism ordering in liquid Pd 82Si 18 alloy study by first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.; Yue, G. Q.; Ames Lab. and Iowa State Univ., Ames, IA

    First-principles molecular dynamic (MD) simulation and X-ray diffraction were employed to study the local structures of Pd–Si liquid at the eutectic composition (Pd 82Si 18). Here, a strong repulsion is found between Si atoms, and Si atoms prefer to be evenly distributed in the liquid. The dominate local structures around Si atoms are found to be with of a trigonal prism capped by three half-octahedra and an archimedean anti-prism. The populations of these clusters increase significantly upon cooling, and may play an important role in the formation of Pd 82Si 18 alloy glass.

  19. The German version of the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): psychometric properties and diagnostic utility.

    PubMed

    Krüger-Gottschalk, Antje; Knaevelsrud, Christine; Rau, Heinrich; Dyer, Anne; Schäfer, Ingo; Schellong, Julia; Ehring, Thomas

    2017-11-28

    The Posttraumatic Stress Disorder (PTSD) Checklist (PCL, now PCL-5) has recently been revised to reflect the new diagnostic criteria of the disorder. A clinical sample of trauma-exposed individuals (N = 352) was assessed with the Clinician Administered PTSD Scale for DSM-5 (CAPS-5) and the PCL-5. Internal consistencies and test-retest reliability were computed. To investigate diagnostic accuracy, we calculated receiver operating curves. Confirmatory factor analyses (CFA) were performed to analyze the structural validity. Results showed high internal consistency (α = .95), high test-retest reliability (r = .91) and a high correlation with the total severity score of the CAPS-5, r = .77. In addition, the recommended cutoff of 33 on the PCL-5 showed high diagnostic accuracy when compared to the diagnosis established by the CAPS-5. CFAs comparing the DSM-5 model with alternative models (the three-factor solution, the dysphoria, anhedonia, externalizing behavior and hybrid model) to account for the structural validity of the PCL-5 remained inconclusive. Overall, the findings show that the German PCL-5 is a reliable instrument with good diagnostic accuracy. However, more research evaluating the underlying factor structure is needed.

  20. Hierarchical structures of carbon nanotubes and arrays of chromium-capped silicon nanopillars: formation and electrical properties.

    PubMed

    Koch, Stefan; Joshi, Ravi K; Noyong, Michael; Timper, Jan; Schneider, Jörg J; Simon, Ulrich

    2012-09-10

    The formation of stochastically oriented carbon-nanotube networks on top of an array of free-standing chromium-capped silicon nanopillars is reported. The combination of nanosphere lithography and chemical vapor deposition enables the construction of nanostructures that exhibit a hierarchical sequence of structural sizes. Metallic chromium serves as an etching mask for Si-pillar formation and as a nucleation site for the formation of carbon nanotubes through the chemical vapor deposition of ethene, ethanol, and methane, respectively, thereby bridging individual pillars from top to top. Iron and cobalt were applied onto the chromium caps as catalysts for CNT growth and the influence of different carbon sources and different gas-flow rates were investigated. The carbon nanotubes were structurally characterized and their DC electrical properties were studied by in situ local- and ex situ macroscopic measurements, both of which reveal their semiconductor properties. This process demonstrates how carbon nanotubes can be integrated into Si-based semiconductors and, thus, this process may be used to form high-surface-area sensors or new porous catalyst supports with enhanced gas-permeation properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Composite piston

    NASA Technical Reports Server (NTRS)

    Taylor, Allan H. (Inventor)

    1988-01-01

    A composite piston structure is disclosed which provides a simple and reliable means for joining a carbon-carbon or ceramic piston cap with a metallic piston body. Attachment is achieved by means of a special geometry which compensates for differences in thermal expansion without complicated mechanical fastening devices. The shape employs a flange created by opposed frustoconical shapes with coincident vertices intersecting on the radial centerline of the piston in order to retain the piston cap. The use of carbon-carbon for the piston cap material allows a close fit between the piston and a cylinder wall, eliminating the need for piston rings. The elimination of extra mechanical parts of previous composite pistons provides a lightweight composite piston capable of extended high temperature operation.

  2. Sleep Modifications in Acute Transient Global Amnesia

    PubMed Central

    Della Marca, Giacomo; Mazza, Marianna; Losurdo, Anna; Testani, Elisa; Broccolini, Aldobrando; Frisullo, Giovanni; Marano, Giuseppe; Morosetti, Roberta; Pilato, Fabio; Profice, Paolo; Vollono, Catello; Di Lazzaro, Vincenzo

    2013-01-01

    Study Objective: Transient global amnesia (TGA) is a temporary memory loss characterized by an abrupt onset of antero-grade and retrograde amnesia, totally reversible. Since sleep plays a major role in memory consolidation, and in the storage of memory-related traces into the brain cortex, the aims of the present study were: (1) to evaluate changes in sleep macro-structure in TGA; (2) to assess modifications in sleep micro-structure in TGA, with particular reference to the arousal EEG and to cyclic alternating pattern (CAP); (3) to compare sleep parameters in TGA patients with a control group of patients with acute ischemic events (“minor stroke” or transient ischemic attack [TIA]) clinically and neuroradiologically “similar” to the TGA. Methods: TGA group: 17 patients, (8 men and 9 women, 60.2 ± 12.5 years). Stroke or TIA (SoT) group: 17 patients hospitalized in the Stroke Unit for recent onset of minor stroke or TIA with hemispheric localization; healthy controls (HC) group: 17 healthy volunteers, matched for age and sex. Patients and controls underwent full-night polysomnography. Results: In the multivariate analysis (conditions TGA, SoT, and HC) a significant effect of the condition was observed for sleep efficiency index, number of awakenings longer 1 min, REM latency, CAP time, and CAP rate. TGA and SoT differed only for CAP time and CAP rate, which were lower in the TGA group. Conclusions: Microstructural modification associated with TGA could be consequent to: (1) hippocampal dysfunction and memory impairment; (2) impairment of arousal-related structures (in particular, cholinergic pathways); (3) emotional distress. Citation: Della Marca G; Mazza M; Losurdo A; Testani E; Broccolini A; Frisullo G; Marano G; Morosetti R; Pilato F; Profice P; Vollono C; Di Lazzaro V. Sleep modifications in acute transient global amnesia. J Clin Sleep Med 2013;9(9):921-927. PMID:23997704

  3. Differential heat stability of amphenicols characterized by structural degradation, mass spectrometry and antimicrobial activity.

    PubMed

    Franje, Catherine A; Chang, Shao-Kuang; Shyu, Ching-Lin; Davis, Jennifer L; Lee, Yan-Wen; Lee, Ren-Jye; Chang, Chao-Chin; Chou, Chi-Chung

    2010-12-01

    Heat stability of amphenicols and the relationship between structural degradation and antimicrobial activity after heating has not been well investigated. Florfenicol (FF), thiamphenicol (TAP), and chloramphenicol (CAP) were heated at 100 degrees C in water, salt water, soybean sauce and chicken meat for up to 2h. Degradation and antimicrobial activity of the compounds was evaluated using capillary electrophoresis (CE) with UV-DAD spectrometry, minimum inhibitory concentration (MIC) assay, and gas chromatography with electron impact ionization mass spectrometry (GC-EI-MS). Heat stability of amphenicols in matrices was ranked as water> or =salt water>soybean sauce>meat, suggesting that heat degradation of amphenicols was accelerated in soybean sauce and was not protected in meat. Heat stability by drug and matrices was ranked as FF>TAP=CAP in water, FF=TAP>CAP in salt water, TAP> or =FF=CAP in soybean sauce, and TAP> or =FF=CAP in meat, indicating differential heat stability of amphenicols among the 3 drugs and in different matrices. In accordance with the less than 20% degradation, the MIC against Escherichia coli and Staphylococcus aureus did not change after 2h heating in water. A 5-min heating of amphenicols in water by microwave oven generated comparable percentage degradation to boiling in water bath for 30 min to 1h. Both CE and GC-MS analysis showed that heating of FF produced TAP but not FF amine as one of its breakdown products. In conclusion, despite close similarity in structure; amphenicols exhibited differential behavior toward heating degradation in solutions and protein matrices. Although higher degradations of amphenicols were observed in soybean sauce and meat, heating treatment may generate product with antimicrobial activity (FF to TAP), therefore, heating of amphenicol residues in food cannot always be assumed safe. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination.

    PubMed

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-08-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.

  5. Effect of Arabinogalactan Proteins from the Root Caps of Pea and Brassica napus on Aphanomyces euteiches Zoospore Chemotaxis and Germination12[C][W

    PubMed Central

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-01-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions. PMID:22645070

  6. Structural studies of human glioma pathogenesis-related protein 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu; Koski, Raymond A.; Bonafé, Nathalie

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structuresmore » of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.« less

  7. cap alpha. -D-Mannopyranosylmethyl-P-nitrophenyltriazene effects on the degradation and biosynthesis of N-linked oligosaccharide chains on. cap alpha. /sub 1/-acid glycoprotein by liver cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Docherty, P.A.; Aronson, N.N. Jr.

    1986-05-01

    The effects of ..cap alpha..-D-mannopyranosylmethyl-p-nitrophenyltriazene (..cap alpha..-ManMNT) on the degradation and processing of oligosaccharide chains on ..cap alpha../sub 1/-acid glycoprotein (AGP) were studied. Addition of the triazene to a perfused liver blocked the complete degradation of endocytosed N-acetyl (/sup 14/C)glucosamine-labeled asialo-AGP and caused the accumulation of Man/sub 2/GlcNAc/sub 1/ fragments in the lysosome-enriched fraction of the liver homogenate. This compound also reduced the reincorporation of lysosomally-derived (/sup 14/C)GlcNAc into newly secreted glycoproteins. Cultured hepatocytes treated with the inhibitor synthesized and secreted fully-glycosylated AGP. However, the N-linked oligosaccharide chains on AGP secreted by the ..cap alpha..-ManMNT-treated hepatocytes remained sensitive to digestionmore » with endoglycosidase H, were resistant to neuraminidase, and consisted of Man/sub 9-7/GlcNAc/sub 2/ structures as analyzed by high resolution Bio-Gel P-4 chromatography. As measured by their resistance to cleavage by endoglycosidase H, the normal processing of all six carbohydrate chains on AGP to the complex form did not completely resume until nearly 24 h after triazene treatment. Since ManMNT is likely to irreversibly inactivate ..cap alpha..-D-mannosidases, the return of AGP to secretory forms with complex chains after 24 h probably resulted from synthesis of new processing enzymes.« less

  8. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Zhang, Lingli; Hanagata, Nobutaka; Maeda, Megumi; Minowa, Takashi; Ikoma, Toshiyuki; Fan, Hongsong; Zhang, Xingdong

    2009-04-01

    Because calcium phosphate (Ca-P) ceramics have been used as bone substitutes, it is necessary to investigate what effects the ceramics have on osteoblast maturation. We prepared three types of Ca-P ceramics with different Ca-P ratios, i.e. hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP) ceramics with dense-smooth and porous structures. Comprehensive gene expression microarray analysis of mouse osteoblast-like cells cultured on these ceramics revealed that porous Ca-P ceramics considerably affected the gene expression profiles, having a higher potential for osteoblast maturation. In the in vivo study that followed, porous Ca-P ceramics were implanted into rat skeletal muscle. Sixteen weeks after the implantation, more alkaline-phosphatase-positive cells were observed in the pores of hydroxyapatite and BCP, and the expression of the osteocalcin gene (an osteoblast-specific marker) in tissue grown in pores was also higher in hydroxyapatite and BCP than in β-TCP. In the pores of any Ca-P ceramics, 16 weeks after the implantation, we detected the expressions of marker genes of the early differentiation stage of chondrocytes and the complete differentiation stage of adipocytes, which originate from mesenchymal stem cells, as well as osteoblasts. These marker gene expressions were not observed in the muscle tissue surrounding the implanted Ca-P ceramics. These observations indicate that porous hydroxyapatite and BCP had a greater potential for promoting the differentiation of mesenchymal stem cells into osteoblasts than β-TCP.

  9. Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming.

    PubMed

    Zahnd, Guillaume; Karanasos, Antonios; van Soest, Gijs; Regar, Evelyn; Niessen, Wiro; Gijsen, Frank; van Walsum, Theo

    2015-09-01

    Fibrous cap thickness is the most critical component of plaque stability. Therefore, in vivo quantification of cap thickness could yield valuable information for estimating the risk of plaque rupture. In the context of preoperative planning and perioperative decision making, intracoronary optical coherence tomography imaging can provide a very detailed characterization of the arterial wall structure. However, visual interpretation of the images is laborious, subject to variability, and therefore not always sufficiently reliable for immediate decision of treatment. A novel semiautomatic segmentation method to quantify coronary fibrous cap thickness in optical coherence tomography is introduced. To cope with the most challenging issue when estimating cap thickness (namely the diffuse appearance of the anatomical abluminal interface to be detected), the proposed method is based on a robust dynamic programming framework using a geometrical a priori. To determine the optimal parameter settings, a training phase was conducted on 10 patients. Validated on a dataset of 179 images from 21 patients, the present framework could successfully extract the fibrous cap contours. When assessing minimal cap thickness, segmentation results from the proposed method were in good agreement with the reference tracings performed by a medical expert (mean absolute error and standard deviation of 22 ± 18 μm) and were similar to inter-observer reproducibility (21 ± 19 μm, R = .74), while being significantly faster and fully reproducible. The proposed framework demonstrated promising performances and could potentially be used for online identification of high-risk plaques.

  10. Structure-property relationships in low-temperature adhesives. [for inflatable structures

    NASA Technical Reports Server (NTRS)

    Schoff, C. K.; Udipi, K.; Gillham, J. K.

    1977-01-01

    Adhesive materials of aliphatic polyester, linear hydroxyl end-capped polybutadienes, or SBS block copolymers are studied with the objective to replace conventional partially aromatic end-reactive polyester-isocyanate adhesives that have shown embrittlement

  11. p130Cas-associated Protein (p140Cap) as a New Tyrosine-phosphorylated Protein Involved in Cell Spreading

    PubMed Central

    Di Stefano, Paola; Cabodi, Sara; Erba, Elisabetta Boeri; Margaria, Valentina; Bergatto, Elena; Giuffrida, Maria Gabriella; Silengo, Lorenzo; Tarone, Guido; Turco, Emilia; Defilippi, Paola

    2004-01-01

    Integrin-mediated cell adhesion stimulates a cascade of signaling pathways that control cell proliferation, migration, and survival, mostly through tyrosine phosphorylation of signaling molecules. p130Cas, originally identified as a major substrate of v-Src, is a scaffold molecule that interacts with several proteins and mediates multiple cellular events after cell adhesion and mitogen treatment. Here, we describe a novel p130Cas-associated protein named p140Cap (Cas-associated protein) as a new tyrosine phosphorylated molecule involved in integrin- and epidermal growth factor (EGF)-dependent signaling. By affinity chromatography of human ECV304 cell extracts on a MBP-p130Cas column followed by mass spectrometry matrix-assisted laser desorption ionization/time of flight analysis, we identified p140Cap as a protein migrating at 140 kDa. We detected its expression in human, mouse, and rat cells and in different mouse tissues. Endogenous and transfected p140Cap proteins coimmunoprecipitate with p130Cas in ECV304 and in human embryonic kidney 293 cells and associate with p130Cas through their carboxy-terminal region. By immunofluorescence analysis, we demonstrated that in ECV304 cells plated on fibronectin, the endogenous p140Cap colocalizes with p130Cas in the perinuclear region as well as in lamellipodia. In addition p140Cap codistributes with cortical actin and actin stress fibers but not with focal adhesions. We also show that p140Cap is tyrosine phosphorylated within 15 min of cell adhesion to integrin ligands. p140Cap tyrosine phosphorylation is also induced in response to EGF through an EGF receptor dependent-mechanism. Interestingly expression of p140Cap in NIH3T3 and in ECV304 cells delays the onset of cell spreading in the early phases of cell adhesion to fibronectin. Therefore, p140Cap is a novel protein associated with p130Cas and actin cytoskeletal structures. Its tyrosine phosphorylation by integrin-mediated adhesion and EGF stimulation and its involvement in cell spreading on matrix proteins suggest that p140Cap plays a role in controlling actin cytoskeleton organization in response to adhesive and growth factor signaling. PMID:14657239

  12. Interaction of PLGA and trimethyl chitosan modified PLGA nanoparticles with mixed anionic/zwitterionic phospholipid bilayers studied using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Novak, Brian; Astete, Carlos; Sabliov, Cristina; Moldovan, Dorel

    2012-02-01

    Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable polymer. Nanoparticles of PLGA are commonly used for drug delivery applications. The interaction of the nanoparticles with the cell membrane may influence the rate of their uptake by cells. Both PLGA and cell membranes are negatively charged, so adding positively charged polymers such as trimethyl chitosan (TMC) which adheres to the PLGA particles improves their cellular uptake. The interaction of 3 nm PLGA and TMC-modified-PLGA nanoparticles with lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine lipids was studied using molecular dynamics simulations. The free energy profiles as function of nanoparticles position along the normal direction to the bilayers were calculated, the distribution of phosphatidylserine lipids as a function of distance of the particle from the bilayer was calculated, and the time scale for particle motion in the directions parallel to the bilayer surface was estimated.

  13. Comparison of precursor infiltration into polymer thin films via atomic layer deposition and sequential vapor infiltration using in-situ quartz crystal microgravimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padbury, Richard P.; Jur, Jesse S., E-mail: jsjur@ncsu.edu

    Previous research exploring inorganic materials nucleation behavior on polymers via atomic layer deposition indicates the formation of hybrid organic–inorganic materials that form within the subsurface of the polymer. This has inspired adaptations to the process, such as sequential vapor infiltration, which enhances the diffusion of organometallic precursors into the subsurface of the polymer to promote the formation of a hybrid organic–inorganic coating. This work highlights the fundamental difference in mass uptake behavior between atomic layer deposition and sequential vapor infiltration using in-situ methods. In particular, in-situ quartz crystal microgravimetry is used to compare the mass uptake behavior of trimethyl aluminummore » in poly(butylene terephthalate) and polyamide-6 polymer thin films. The importance of trimethyl aluminum diffusion into the polymer subsurface and the subsequent chemical reactions with polymer functional groups are discussed.« less

  14. Corrosion mitigation of N-(2-hydroxy-3-trimethyl ammonium)propyl chitosan chloride as inhibitor on mild steel.

    PubMed

    Sangeetha, Y; Meenakshi, S; SairamSundaram, C

    2015-01-01

    The biopolymer N-(2-hydroxy-3-trimethyl ammonium)propyl chitosan chloride (HTACC) was synthesised and its influence as a novel corrosion inhibitor on mild steel in 1M HCl was studied using gravimetric and electrochemical experiments. The compound obtained was characterised using FTIR and NMR studies. The inhibition efficiency increased with the increase in concentration and reached a maximum of 98.9% at 500 ppm concentration. Polarisation studies revealed that HTACC acts both as anodic and cathodic inhibitor. Electrochemical impedance studies confirmed that the inhibition is through adsorption on the metal surface. The extent of inhibition exhibits a negative trend with increase in temperature. Langmuir isotherm provides the best description on the adsorption nature of the inhibitor. SEM analysis indicated the presence of protective film formed by the inhibitor on the metal surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. 4,4',5'-trimethyl-8-azapsoralen, a new-photoreactive and non-skin-phototoxic bifunctional bioisoster of psoralen.

    PubMed

    Vedaldi, D; Dall'Acqua, F; Caffieri, S; Baccichetti, F; Carlassare, F; Bordin, F; Chilin, A; Guiotto, A

    1991-01-01

    Photochemical and photobiological properties of a new isoster of psoralen, 4,4',5'-trimethyl-8-azapsoralen (4,4',5'-TMAP), have been studied. This compound shows a high DNA-photobinding rate, higher than that of 8-methoxypsoralen (8-MOP), forming both monoadducts and inter-strand cross-links. The yield of cross-links, however, is markedly lower than that of 8-MOP. Antiproliferative activity of 4,4',5'-TMAP, in terms of DNA synthesis inhibition in Ehrlich ascites tumor cells, is higher than that of 8-MOP. Mutagenic activity on E. coli WP2 R46+ cells appeared similar to or even lower than that of 8-MOP. This new compound applied on depilated guinea pig skin and irradiated with UVA did not show any skin-phototoxicity. On the basis of these properties 4,4',5'-TMAP appears to be a potential photochemotherapeutic agent.

  16. Quaternary ammonium salt N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride induced alterations in Saccharomyces cerevisiae physiology.

    PubMed

    Oblak, Ewa; Piecuch, Agata; Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata

    2016-12-01

    We investigated the influence of the quaternary ammonium salt (QAS) called IM (N-(dodecyloxycarboxymethyl)- N,N,N-trimethyl ammonium chloride) on yeast cells of the parental strain and the IM-resistant mutant (EO25 IMR) growth. The phenotype of this mutant was pleiotropic. The IMR mutant exhibited resistance to ethanol, osmotic shock and oxidative stress, as well as increased sensitivity to UV. Moreover, it was noted that mutant EO25 appears to have an increased resistance to clotrimazole, ketoconazole, fluconazole, nystatin and cycloheximide. It also tolerated growth in the presence of crystal violet, DTT and metals (selenium, tin, arsenic). It was shown that the presence of IM decreased ergosterol level in mutant plasma membrane and increased its unsaturation. These results indicate changes in the cell lipid composition. Western blot analysis showed the induction of Pma1 level by IM. RT-PCR revealed an increased PMA1 expression after IM treatment.

  17. Linearized Alternating Direction Method of Multipliers for Constrained Nonconvex Regularized Optimization

    DTIC Science & Technology

    2016-11-22

    structure of the graph, we replace the ℓ1- norm by the nonconvex Capped -ℓ1 norm , and obtain the Generalized Capped -ℓ1 regularized logistic regression...X. M. Yuan. Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 82(281):301...better approximations of ℓ0- norm theoretically and computationally beyond ℓ1- norm , for example, the compressive sensing (Xiao et al., 2011). The

  18. Evaluation of the 3D spatial distribution of the Calcium/Phosphorus ratio in bone using computed-tomography dual-energy analysis.

    PubMed

    Hadjipanteli, A; Kourkoumelis, N; Fromme, P; Huang, J; Speller, R D

    2016-01-01

    The Calcium/Phosphorus (Ca/P) ratio was shown to vary between healthy bones and bones with osteoporotic symptoms. The relation of the Ca/P ratio to bone quality remains under investigation. To study this relation and determine if the ratio can be used to predict bone fractures, a non-invasive 3D imaging technique is required. The first aim of this study was to test the effectiveness of a computed-tomography dual-energy analysis (CT-DEA) technique developed to assess the Ca/P ratio in bone apatite (collagen-free bone) in identifying differences between healthy and inflammation-mediated osteoporotic (IMO) bones. The second aim was to extend the above technique for its application to a more complex structure, intact bone, that could potentially lead to clinical use. For the first aim, healthy and IMO rabbit cortical bone apatite samples were assessed. For the second aim, some changes were made to the technique, which was applied to healthy and IMO intact bone samples. Statistically significant differences between healthy and IMO bone apatite were found for the bulk Ca/P ratio, low Ca/P ratio proportion and interconnected low Ca/P ratio proportion. For the intact bone samples, the bulk Ca/P ratio was found to be significantly different between healthy and IMO. Results show that the CT-DEA technique can be used to identify differences in the Ca/P ratio between healthy and osteoporotic, in both bone apatite and intact bone. With quantitative imaging becoming an increasingly important advancement in medical imaging, CT-DEA for bone decomposition could potentially have several applications. Copyright © 2015. Published by Elsevier Ltd.

  19. Performance Analysis of GaN Capping Layer Thickness on GaN/AlGaN/GaN High Electron Mobility Transistors.

    PubMed

    Sharma, N; Periasamy, C; Chaturvedi, N

    2018-07-01

    In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.

  20. Structural attachments for large space structures

    NASA Technical Reports Server (NTRS)

    Pruett, E. C.; Loughead, T. E.; Robertson, K. B., III

    1980-01-01

    The feasibility of fabricating beams in space and using them as components of a large, crew assembled structure, was investigated. Two projects were undertaken: (1) design and development of a ground version of an automated beam builder capable of producing triangular cross section aluminum beams; and (2) design and fabrication of lap joints to connect the beams orthogonally and centroidal end caps to connect beams end to end at any desired angle. The first project produced a beam building machine which fabricates aluminum beams suitable for neutral buoyancy evaluation. The second project produced concepts for the lap joint and end cap. However, neither of these joint concepts was suitable for use by a pressure suited crew member in a zero gravity environment. It is concluded that before the beams can be evaluated the joint designs need to be completed and sufficient joints produced to allow assembly of a complex structure.

  1. Structural enhancement of ZnO on SiO2 for photonic applications

    NASA Astrophysics Data System (ADS)

    Ruth, Marcel; Meier, Cedrik

    2013-07-01

    Multi-layer thin films are often the basis of photonic devices. Zinc oxide (ZnO) with its excellent optoelectronic properties can serve as a high quality emitter in structures like microdisks or photonic crystals. Here, we present a detailed study on the enhancement of the structural properties of low-temperature MBE grown ZnO on silica (SiO2). By thermal annealing a grain coalescence of the initially polycrystalline layer leads to an enhancement of the electronic structure, indicated by a blue shift of the photoluminescence (PL) signal maximum. Oxygen atmosphere during the annealing process prevents the creation of intrinsic defects by out-diffusion. Pre-annealing deposited SiO2 capping layers instead obstruct the recrystallization and lead to less intense emission. While thin capping layers partially detach from the ZnO film at high temperatures and cause higher surface roughness and the weakest emission, thicker layers remain smoother and exhibit a significantly stronger photoluminescence.

  2. [Psychodynamics in organisation and cooperation of child and adolescents institutions].

    PubMed

    Fliedl, Rainer; Sevecke, Kathrin

    2017-09-01

    According to underlying law (Krankenanstaltengesetz) the internal structure of Departments of Child and Adolescent Psychiatry (CAP) represents a matrix structure, defining formal roles and tasks of the personel. In contrast, external cooperation is defined in several different laws. Furthermore, patients and their systems are exhibiting a high tensional potential. These different influences can cause more or less severe enmeshments. Thus, during the treatment of this patients it is necessary to take into account the possibility of these enmeshments. It should be answered by special forms of care of the relationship between professionals and families. These special forms of relational care can be delivered by clear organizational structures and must undergo reflective processes on a regular basis. The planning and delivery of those structures is clearly seen as a central responsibility of the management of a CAP-Department.

  3. Characterization of Chloroplastic Fructose 1,6-Bisphosphate Aldolases as Lysine-methylated Proteins in Plants*

    PubMed Central

    Mininno, Morgane; Brugière, Sabine; Pautre, Virginie; Gilgen, Annabelle; Ma, Sheng; Ferro, Myriam; Tardif, Marianne; Alban, Claude; Ravanel, Stéphane

    2012-01-01

    In pea (Pisum sativum), the protein-lysine methyltransferase (PsLSMT) catalyzes the trimethylation of Lys-14 in the large subunit (LS) of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the enzyme catalyzing the CO2 fixation step during photosynthesis. Homologs of PsLSMT, herein referred to as LSMT-like enzymes, are found in all plant genomes, but methylation of LS Rubisco is not universal in the plant kingdom, suggesting a species-specific protein substrate specificity of the methyltransferase. In this study, we report the biochemical characterization of the LSMT-like enzyme from Arabidopsis thaliana (AtLSMT-L), with a focus on its substrate specificity. We show that, in Arabidopsis, LS Rubisco is not naturally methylated and that the physiological substrates of AtLSMT-L are chloroplastic fructose 1,6-bisphosphate aldolase isoforms. These enzymes, which are involved in the assimilation of CO2 through the Calvin cycle and in chloroplastic glycolysis, are trimethylated at a conserved lysyl residue located close to the C terminus. Both AtLSMT-L and PsLSMT are able to methylate aldolases with similar kinetic parameters and product specificity. Thus, the divergent substrate specificity of LSMT-like enzymes from pea and Arabidopsis concerns only Rubisco. AtLSMT-L is able to interact with unmethylated Rubisco, but the complex is catalytically unproductive. Trimethylation does not modify the kinetic properties and tetrameric organization of aldolases in vitro. The identification of aldolases as methyl proteins in Arabidopsis and other species like pea suggests a role of protein lysine methylation in carbon metabolism in chloroplasts. PMID:22547063

  4. Genome-Wide RNA Polymerase II Profiles and RNA Accumulation Reveal Kinetics of Transcription and Associated Epigenetic Changes During Diurnal Cycles

    PubMed Central

    Gilardi, Federica; Liechti, Robin; Martin, Olivier; Harshman, Keith; Delorenzi, Mauro; Desvergne, Béatrice; Herr, Winship; Deplancke, Bart; Schibler, Ueli; Rougemont, Jacques; Guex, Nicolas; Hernandez, Nouria; Naef, Felix

    2012-01-01

    Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II) as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver. PMID:23209382

  5. Impact of Xist RNA on chromatin modifications and transcriptional silencing maintenance at different stages of imprinted X chromosome inactivation in vole Microtus levis.

    PubMed

    Shevchenko, Alexander I; Grigor'eva, Elena V; Medvedev, Sergey P; Zakharova, Irina S; Dementyeva, Elena V; Elisaphenko, Eugeny A; Malakhova, Anastasia A; Pavlova, Sophia V; Zakian, Suren M

    2018-03-01

    In vole Microtus levis, cells of preimplantation embryo and extraembryonic tissues undergo imprinted X chromosome inactivation (iXCI) which is triggered by a long non-coding nuclear RNA, Xist. At early stages of iXCI, chromatin of vole inactive X chromosome is enriched with the HP1 heterochromatin-specific protein, trimethylated H3K9 and H4K20 attributable to constitutive heterochromatin. In the study, using vole trophoblast stem (TS) cells as a model of iXCI, we further investigated chromatin of the inactive X chromosome of M. levis and tried to find out the role of Xist RNA. We demonstrated that chromatin of the inactive X chromosome in vole TS cells also contained the SETDB1 histone methyltransferase and KAP1 protein. In addition, we observed that Xist RNA did not contribute significantly to maintenance of X chromosome inactive state during iXCI in vole TS cells. Xist repression affected neither transcriptional silencing caused by iXCI nor maintenance of trimethylated H3K9 and H4K20 as well as HP1, KAP1, and SETDB1 on the inactive X chromosome. Moreover, the unique repertoire of chromatin modifications on the inactive X chromosome in vole TS cells could be disrupted by a chemical compound, DZNep, and then restored even in the absence of Xist RNA. However, Xist transcript was necessary for recruitment of an additional repressive histone modification, trimethylated H3K27, to the inactive X chromosome during vole TS cell differentiation.

  6. Intelligent Flexible Materials for Space Structures: Expandable Habitat Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Hinkle, Jon; Sharpe, George; Lin, John; Wiley, Cliff; Timmers, Richard

    2010-01-01

    Expandable habitable elements are an enabling technology for human exploration in space and on planetary surfaces. Large geometries can be deployed from a small launch volume, allowing greater mission capability while reducing mass and improving robustness over traditional rigid shells. This report describes research performed by ILC Dover under the Intelligent Flexible Materials for Space Structures program on the design and manufacture of softgoods for LaRC's Expandable Habitat Engineering Development Unit (EDU). The EDU is a full-scale structural test article of an expandable hybrid habitat, integrating an expandable softgoods center section with two rigid end caps. The design of the bladder, restraint layer and a mock-up Thermal Micrometeoroid Cover is detailed together with the design of the interface hardware used to attach them to the end caps. The integration and design of two windows and a floor are also covered. Analysis was performed to study the effects of the open weave design, and to determine the correct webbing and fabric configuration. Stress analyses were also carried out on the interfaces between the softgoods and the end caps and windows. Testing experimentally determined the strength of the fabric and straps, and component testing was used to proof several critical parts of the design. This program established new manufacturing and design techniques that can be applied to future applications in expandable structures.

  7. Hybrid calcium phosphate coatings for implants

    NASA Astrophysics Data System (ADS)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  8. On line automated system for the determination of Sb(V), Sb(III), thrimethyl antimony(v) and total antimony in soil employing multisyringe flow injection analysis coupled to HG-AFS.

    PubMed

    Silva Junior, Mario M; Portugal, Lindomar A; Serra, Antonio M; Ferrer, Laura; Cerdà, Victor; Ferreira, Sergio L C

    2017-04-01

    This paper proposes the use of a multisyringe flow injection analysis (MSFIA) system for inorganic antimony speciation analysis, trimethyl antimony(V) and determination of total antimony in soil samples using hydride generation atomic fluorescence spectrometry (HG-AFS). Total antimony has been determined after reduction of antimony(V) to antimony(III) using potassium iodide and ascorbic acid. For determination of total inorganic antimony the sample is percolated in a mini-column containing the Dowex 50W-X8 resin for retention of the organic species of antimony. Antimony(III) is quantified in presence of 8-hydroxyquinoline as masking agent for antimony(V) after an extraction step of the organic antimony species using the also same mini-column. The trimethyl antimony(V) content is found by difference between total antimony and total inorganic antimony. By other hand, antimony(V) is quantified by difference between total inorganic antimony and antimony(III). The analytical determinations were performed using sodium tetrahydroborate as reducing agent. The optimization step was performed using two-level full factorial design and Doehlert matrix involving the factors: hydrochloric acid and sodium tetrahydroborate concentrations and sample flow rate. The optimized experimental conditions allow the antimony determination utilizing the external calibration technique with limits of detection and quantification of 0.9 and 3.1ngg -1 , respectively, and a precision expressed as relative standard deviation of 3.2% for an antimony solution of 5.0µgL -1 . The method accuracy was confirmed by analysis of the soil certified reference material furnished from Sigma-Aldrich RTC. Additionally, addition/recovery tests were performed employing synthetic solutions prepared using trimethyl antimony(V), antimony(III), antimony(V) and five soil samples. The antimony extraction step was performed in a closed system using hydrochloric acid, ultrasonic radiation and controlled temperature. The method proposed was applied for analysis of thirteen soil samples collected in different sites of the Balearic Islands, Spain, and the results obtained varied from 19 to 46ngg -1 for trimethyl antimony(V) and from 113 to 215ngg -1 for total inorganic antimony. The concentrations obtained to antimony(V) were always higher than for antimony(III) in all the analyzed samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Javed, Rabia; Usman, Muhammad; Tabassum, Saira; Zia, Muhammad

    2016-11-01

    Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV-vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and antidiabetic activity against α-amylase enzyme found to be exhibited highest by ZnO-PEG nanoparticles.

  10. SEM evaluation of pulp reaction to different pulp capping materials in dog’s teeth

    PubMed Central

    Asgary, Saeed; Parirokh, Masoud; Eghbal, Mohammad Jafar; Ghoddusi, Jamileh

    2006-01-01

    Introduction: This investigation evaluates the effects of mineral trioxide aggregate (MTA), calcium hydroxide (CH) and calcium enriched mixture (CEM) as pulp capping materials on dental pulp tissues. Materials and Methods: The experimental procedures were performed on eighteen intact dog canine teeth. The pulps were exposed. Cavities were randomly filled with CEM, MTA, or CH followed by glass ionomer filling. After 2 months, animals were sacrificed, each tooth was sectioned into halves, and the interface between each capping material and pulp tissue was evaluated by scanning electron microscope (SEM) in profile view of the specimens. Results: Dentinal bridge formation as the most characteristic reaction was resulted from SEM observation in all examined groups. Odontoblast-like cells were formed and create dens collagen network, which was calcified gradually by deposition of calcosphirit structures to form newly dentinal bridge. Conclusion: Based on the results of this in vivo study, it was concluded that these test materials are able to produce calcified tissue in underlying pulp in the case of being used as a pulp capping agent. Additionally, it appears that CEM has the potential to be used as a direct pulp capping material during vital pulp therapy. PMID:24379876

  11. Changing Criminal Attitudes Among Incarcerated Offenders: Initial Examination of a Structured Treatment Program.

    PubMed

    Simourd, David J; Olver, Mark E; Brandenburg, Bryan

    2016-09-01

    The present study investigated the effect of a criminal attitude treatment program to changes on measured criminal attitudes and postprogram recidivism. The criminal attitude program (CAP) is a standardized therapeutic curriculum consisting of 15 modules offering 44 hr of therapeutic time. It was delivered by trained facilitators to a total of 113 male offenders incarcerated in one of five state correctional institutions. Pretreatment and posttreatment comparisons were made on standardized measures of criminal attitudes, response bias, and motivation for lifestyle changes. Results found statistically significant lower criminal attitudes at posttreatment that were unaffected by response bias. There were also increases in motivation for lifestyle changes, but these did not reach statistical significance. Fifty-seven participants were released into the community following the program and were eligible for recidivism analyses. Comparisons between participants who completed the CAP and those who did not complete the CAP revealed 7% lower rearrest among CAP completers. Although preliminary, these results indicate that the CAP had a positive effect on changes to criminal attitudes and recidivism. The findings are discussed in terms of conceptual and practical considerations in the assessment and treatment of criminal attitudes among offenders. © The Author(s) 2015.

  12. Au36(SPh)24 nanomolecules: X-ray crystal structure, optical spectroscopy, electrochemistry, and theoretical analysis.

    PubMed

    Nimmala, Praneeth Reddy; Knoppe, Stefan; Jupally, Vijay Reddy; Delcamp, Jared H; Aikens, Christine M; Dass, Amala

    2014-12-11

    The physicochemical properties of gold:thiolate nanomolecules depend on their crystal structure and the capping ligands. The effects of protecting ligands on the crystal structure of the nanomolecules are of high interest in this area of research. Here we report the crystal structure of an all aromatic thiophenolate-capped Au36(SPh)24 nanomolecule, which has a face-centered cubic (fcc) core similar to other nanomolecules such as Au36(SPh-tBu)24 and Au36(SC5H9)24 with the same number of gold atoms and ligands. The results support the idea that a stable core remains intact even when the capping ligand is varied. We also correct our earlier assignment of "Au36(SPh)23" which was determined based on MALDI mass spectrometry which is more prone to fragmentation than ESI mass spectrometry. We show that ESI mass spectrometry gives the correct assignment of Au36(SPh)24, supporting the X-ray crystal structure. The electronic structure of the title compound was computed at different levels of theory (PBE, LDA, and LB94) using the coordinates extracted from the single crystal X-ray diffraction data. The optical and electrochemical properties were determined from experimental data using UV-vis spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Au36(SPh)24 shows a broad electrochemical gap near 2 V, a desirable optical gap of ∼1.75 eV for dye-sensitized solar cell applications, as well as appropriately positioned electrochemical potentials for many electrocatalytic reactions.

  13. An X-Ray Survey for Polar CAP Qpos in AM Herculis Systems

    NASA Astrophysics Data System (ADS)

    Wood, Kent

    Five AM Herculis binary systems show an optical QPO that is known to be associated with magentically channeled polar cap accretion. Hard X-ray QPOs are predicted by the time-depndent hydrodynamic models. We propose to search selected AM Her systems for polar cap X-ray QPOs using the XTE PCA. Because of its large collecting area, the PCA is the only instrument that can do this job. No other accreting objects provide comparable high-quality observational diagnostics on the accretion flow. The detailed understanding of flow geometry, shock heating, ion-electron energy exchange, accretion column structure, and emission and radiative transfer mechanisms that go to make up the picture of AM Her accretion needs to be tested against X-ray timing information.

  14. Leveraging the Polar Cap: Ground-Based Measurements of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Urban, K. D.; Gerrard, A. J.; Weatherwax, A. T.; Lanzerotti, L. J.; Patterson, J. D.

    2016-12-01

    In this study, we look at and identify relationships between solar wind quantities that have previously been shown to have direct access into the very high-latitude polar cap as measured by ground-based riometers and magnetometers in Antarctica: ultra-low frequency (ULF) power in the interplanetary magnetic field (IMF) Bz component and solar energetic proton (SEP) flux (Urban [2016] and Patterson et al. [2001], respectively). It is shown that such solar wind and ground-based observations can be used to infer the hydromagnetic structure and magnetospheric mapping of the polar cap region in a data-driven manner, and that high-latitude ground-based instrumentation can be used to infer concurrent various state parameters of the geospace environment.

  15. Isolation of human hexosaminidase. cap alpha. cDNA and expression of. cap alpha. chains in E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiktorowicz, J.E.; Whitman, J.M.

    1986-05-01

    Pooled antisera against homogeneous, glutaraldehyde cross-linked hexosaminidase (hex) A was adsorbed with E. coli lysate insolubilized on Sepharose 4B. Aliquots of a human liver lambdagtll cDNA library (50,000-100,000 pfu) were plated on E. coli Y1090. Expression of cloned cDNA, after sufficient plaque growth at 42/sup 0/, was accomplished by induction with isopropylthiogalactoside soaked nitrocellulose filters. Identification of hex cDNA clones was performed by incubation of the filters with purified antisera. Protein A labelled with I-125 was used to develop the reactive plaques. Positive plaques, identified by autoradiography, were picked, replated at a lower density, and rescreened. This was repeated severalmore » more times until all plaques yielded positive signals. Identification of the clones as containing ..cap alpha.. or ..beta.. cDNA was accomplished by replating the purified phage and rescreening the plaques with anti-hex B antiserum preadsorbed with E. coli lysate. According to this protocol several hex ..cap alpha.. clones have been identified. While these clones generate ..beta..-galactosidase: hex ..cap alpha.. fusion proteins, these findings suggest that in the future it may be possible to obtain large quantities of unmodified hex ..cap alpha.. and ..beta.. polypeptides from E. coli for the study of the structural and enzymatic properties of these polypeptides and for diagnostic purposes in the GM2 gangliosidoses.« less

  16. Pulse radiolysis and 77 K matrix. gamma. irradiation of dimethyl truxinates and trans-methyl cinnamate in 2-methyltetrahydrofuran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamuku, S.; Kigawa, H.; Suematsu, H.

    1982-05-13

    One-electron reduction of dimethyl ..mu..-truxinate (..mu..-DMT), dimethyl ..beta..-truxinate (..beta..-DMT), and dimethyl ..cap alpha..-truxillate (..cap alpha..-DMT) has been investigated by pulse radiolysis and 77 K matrix ..gamma.. irradiation of the 2-methyltetrahydrofuran solutions. Cycloreversion of the radical anions formed by an electron attachment to these cyclobutanes was observed in all cases, even at 77 K. The orientation of the cycloreversion was dependent on the stereochemistry of the cyclobutanes, and the selectivity was reasonably explained by a so-called cis effect; the best possible release of steric hindrance decides the primary step of the reaction. In 77 K matrix ..gamma.. irradiation of ..cap alpha..-DMT,more » an intense IR absorption was found after the photobleaching of trapped electrons with light > 690 nm. In other DMTs, the IR absorption band was not observed while the cycloreversion of DMT by mobile electrons occurred. Thus, the IR band in the case of ..cap alpha..-DMT was assigned to an associated dimer anion due to the interaction between the radical anion and the neutral molecule pair of trans-methyl cinnamate orginally formed by the cycloreversion of ..cap alpha..-DMT. The dimer anion was presumed to be oriented in a head-to-tail structure in a solvent cage on the basis of the original configuration of ..cap alpha..-DMT.« less

  17. Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III.

    PubMed Central

    Das, G; Henning, D; Wright, D; Reddy, R

    1988-01-01

    Whereas the genes coding for trimethyl guanosine-capped snRNAs are transcribed by RNA polymerase II, the U6 RNA genes are transcribed by RNA polymerase III. In this study, we have analyzed the cis-regulatory elements involved in the transcription of a mouse U6 snRNA gene in vitro and in frog oocytes. Transcriptional analysis of mutant U6 gene constructs showed that, unlike most known cases of polymerase III transcription, intragenic sequences except the initiation nucleotide are dispensable for efficient and accurate transcription of U6 gene in vitro. Transcription of 5' deletion mutants in vitro and in frog oocytes showed that the upstream region, within 79 bp from the initiation nucleotide, contains elements necessary for U6 gene transcription. Transcription studies were carried out in frog oocytes with U6 genes containing 5' distal sequence; these studies revealed that the distal element acts as an orientation-dependent enhancer when present upstream to the gene, while it is orientation-independent but distance-dependent enhancer when placed down-stream to the U6 gene. Analysis of 3' deletion mutants showed that the transcription termination of U6 RNA is dependent on a T cluster present on the 3' end of the gene, thus providing further support to other lines of evidence that U6 genes are transcribed by RNA polymerase III. These observations suggest the involvement of a composite of components of RNA polymerase II and III transcription machineries in the transcription of U6 genes by RNA polymerase III. Images PMID:3366121

  18. Mars Secular Obliquity Change Due to Water Ice Caps

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    1998-01-01

    Mars may have substantially changed its average axial tilt over geologic time due to the waxing and waning of water ice caps. Depending upon Mars' climate and internal structure, the average obliquity could have increased or decreased through climate friction by tens of degrees. A decrease could account for the apparent youthfulness of the polar layered terrain. Alternatively, Mars' average obliquity may have changed until it became "stuck" at its present value of 24.4 deg.

  19. KSC-03pd0077

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. -- The late afternoon sun highlights the external tank and solid rocket booster on Space Shuttle Columbia after rollback of the Rotating Service Structure on Launch Pad 39A. Visible are the orbiter access arm with the White Room extended to Columbia's cockpit, and at the top, the gaseous oxygen vent arm and cap, called the "beanie cap." Columbia is scheduled for launch Jan. 16 at 10:39 a.m. EST on mission STS-107, a research mission.

  20. KSC-03pd0074

    NASA Image and Video Library

    2003-01-15

    KENNEDY SPACE CENTER, FLA. -- The late afternoon sun highlights the external tank and solid rocket booster on Space Shuttle Columbia after rollback of the Rotating Service Structure on Launch Pad 39A. Visible are the orbiter access arm with the White Room extended to Columbia's cockpit, and at the top, the gaseous oxygen vent arm and cap, called the "beanie cap." Columbia is scheduled for launch Jan. 16 at 10:39 a.m. EST on mission STS-107, a research mission.

  1. Exploring bis-(indolyl)methane moiety as an alternative and innovative CAP group in the design of histone deacetylase (HDAC) inhibitors.

    PubMed

    Giannini, Giuseppe; Marzi, Mauro; Marzo, Maria Di; Battistuzzi, Gianfranco; Pezzi, Riccardo; Brunetti, Tiziana; Cabri, Walter; Vesci, Loredana; Pisano, Claudio

    2009-05-15

    In order to gather further knowledge about the structural requirements on histone deacetylase inhibitors (HDACi), starting from the schematic model of the common pharmacophore that characterizes this class of molecules (surface recognition CAP group-connection unit-linker region-Zinc Binding Group), we designed and synthesized a series of hydroxamic acids containing a bis-(indolyl)methane moiety. HDAC inhibition profile and antiproliferative activity were evaluated.

  2. Influence of Capping Ligand and Synthesis Method on Structure and Morphology of Aqueous Phase Synthesized CuInSe2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ram Kumar, J.; Ananthakumar, S.; Moorthy Babu, S.

    2017-01-01

    A facile route to synthesize copper indium diselenide (CuInSe2) nanoparticles in aqueous medium was developed using mercaptoacetic acid (MAA) as capping agent. Two different mole ratios (5 and 10) of MAA were used to synthesize CuInSe2 nanoparticles at room temperature, as well as hydrothermal (high temperature) method. Powder x-ray diffraction analysis reveals that the nanoparticles exhibit chalcopyrite phase and the crystallinity increases with increasing the capping ratio. Raman analysis shows a strong band at 233 cm-1 due to the combination of B2 (E) modes. Broad absorption spectra were observed for the synthesized CuInSe2 nanoparticles. The effective surface capping by MAA on the nanoparticles surface was confirmed through attenuated total reflection-Fourier transform infrared spectral analysis. The thermal stability of the synthesized samples was analyzed through thermogravimetric analysis-differential scanning calorimetry. The change in morphology of the synthesized samples was analyzed through scanning electron microscope and it shows that the samples prepared at room temperature are spherical in shape, whereas hydrothermally synthesized samples were found to have nanorod- and nanoflake-like structures. Transmission electron microscope analysis further indicates larger grains for the hydrothermally prepared samples with 10 mol ratio of MAA. Comparative analyses were made for synthesizing CuInSe2 nanoparticles by two different methods to explore the role of ligand and influence of temperature.

  3. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement.

    PubMed

    Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh

    2016-04-15

    Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  5. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site.

    PubMed

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S; Mkhize, Nonhlanhla N; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D; Labuschagne, Phillip; Louder, Mark K; Bailer, Robert T; Abdool Karim, Salim S; Mascola, John R; Williamson, Carolyn; Moore, Penny L; Kwong, Peter D; Morris, Lynn

    2016-11-15

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site. Copyright © 2016 Wibmer et al.

  6. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report themore » isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site.« less

  7. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    PubMed Central

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Abdool Karim, Salim S.; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.

    2016-01-01

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCE The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site. PMID:27581986

  8. Investigations on structural and optical properties of starch capped ZnS nanoparticles synthesized by microwave irradiation method

    NASA Astrophysics Data System (ADS)

    Lalithadevi, B.; Mohan Rao, K.; Ramananda, D.

    2018-05-01

    Following a green synthesis method, zinc sulfide (ZnS) nanoparticles were prepared by chemical co-precipitation technique using starch as capping agent. Microwave irradiation was used as heating source. X-ray diffraction studies indicated that nanopowders obtained were polycrystalline possessing ZnS simple cubic structure. Transmission electron microscopic studies indicated that starch limits the agglomeration by steric stabilization. Interaction between ZnS and starch was confirmed by Fourier transform infrared spectroscopy as well as Raman scattering studies. Quantum size effects were observed in optical absorption studies while quenching of defect states on nanoparticles was improved with increase in starch addition as indicated by photoluminescence spectra.

  9. Hardware Design and Testing of SUPERball, A Modular Tensegrity Robot

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Chen, Yangxin; Lu, Dizhou; Liu, Yuejia; Agogino, Adrian K.; SunSpiral, Vytas; Agogino, Alice M.

    2014-01-01

    We are developing a system of modular, autonomous "tensegrity end-caps" to enable the rapid exploration of untethered tensegrity robot morphologies and functions. By adopting a self-contained modular approach, different end-caps with various capabilities (such as peak torques, or motor speeds), can be easily combined into new tensegrity robots composed of rods, cables, and actuators of different scale (such as in length, mass, peak loads, etc). As a first step in developing this concept, we are in the process of designing and testing the end-caps for SUPERball (Spherical Underactuated Planetary Exploration Robot), a project at the Dynamic Tensegrity Robotics Lab (DTRL) within NASA Ames's Intelligent Robotics Group. This work discusses the evolving design concepts and test results that have gone into the structural, mechanical, and sensing aspects of SUPERball. This representative tensegrity end-cap design supports robust and repeatable untethered mobility tests of the SUPERball, while providing high force, high displacement actuation, with a low-friction, compliant cabling system.

  10. Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy.

    PubMed

    Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Kovalenko, Maksym V

    2015-11-04

    Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands.

  11. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu

    2016-12-01

    Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).

  12. Mechanism for CARMIL Protein Inhibition of Heterodimeric Actin-capping Protein*

    PubMed Central

    Kim, Taekyung; Ravilious, Geoffrey E.; Sept, David; Cooper, John A.

    2012-01-01

    Capping protein (CP) controls the polymerization of actin filaments by capping their barbed ends. In lamellipodia, CP dissociates from the actin cytoskeleton rapidly, suggesting the possible existence of an uncapping factor, for which the protein CARMIL (capping protein, Arp2/3 and myosin-I linker) is a candidate. CARMIL binds to CP via two motifs. One, the CP interaction (CPI) motif, is found in a number of unrelated proteins; the other motif is unique to CARMILs, the CARMIL-specific interaction motif. A 115-aa CARMIL fragment of CARMIL with both motifs, termed the CP-binding region (CBR), binds to CP with high affinity, inhibits capping, and causes uncapping. We wanted to understand the structural basis for this function. We used a collection of mutants affecting the actin-binding surface of CP to test the possibility of a steric-blocking model, which remained open because a region of CBR was not resolved in the CBR/CP co-crystal structure. The CP actin-binding mutants bound CBR normally. In addition, a CBR mutant with all residues of the unresolved region changed showed nearly normal binding to CP. Having ruled out a steric blocking model, we tested an allosteric model with molecular dynamics. We found that CBR binding induces changes in the conformation of the actin-binding surface of CP. In addition, ∼30-aa truncations on the actin-binding surface of CP decreased the affinity of CBR for CP. Thus, CARMIL promotes uncapping by binding to a freely accessible site on CP bound to a filament barbed end and inducing a change in the conformation of the actin-binding surface of CP. PMID:22411988

  13. Role of laser irradiation in direct pulp capping procedures: a systematic review and meta-analysis.

    PubMed

    Javed, Fawad; Kellesarian, Sergio Varela; Abduljabbar, Tariq; Gholamiazizi, Elham; Feng, Changyong; Aldosary, Khaled; Vohra, Fahim; Romanos, Georgios E

    2017-02-01

    A variety of materials are available to treat exposed dental pulp by direct pulp capping. The healing response of the pulp is crucial to form a dentin bridge and seal off the exposed pulp. Studies have used lasers to stimulate the exposed pulp to form tertiary dentin. The aim of the present systematic review and meta-analysis was to evaluate the evidence on the effects of laser irradiation as an adjunctive therapy to stimulate healing after pulp exposure. A systematic literature search was conducted up to April 2016. A structured search using the keywords "Direct pulp capping," "Lasers," "Calcium hydroxide pulp capping," and "Resin pulp capping" was performed. Initially, 34 potentially relevant articles were identified. After removal of duplicates and screening by title, abstract, and full text when necessary, nine studies were included. Studies were assessed for bias and data were synthetized using a random-effects meta-analysis model. Six studies were clinical, and three were preclinical animal trials; the follow-up period ranged from 2 weeks to 54 months. More than two thirds of the included studies showed that laser therapy used as an adjunct for direct pulp capping was more effective in maintaining pulp vitality than conventional therapy alone. Meta-analysis showed that the success rate in the laser treatment group was significantly higher than the control group (log odds ratio = 1.737; 95 % confidence interval, 1.304-2.171). Lasers treatment of exposed pulps can improve the outcome of direct pulp capping procedures; a number of confounding factors may have influenced the outcomes of the included studies.

  14. FIB Plan View Preparation and Electron Tomography of Ga-Containing Droplets Induced by Melt-Back Etching in Si.

    PubMed

    Gries, Katharina I; Werner, Katharina; Beyer, Andreas; Stolz, Wolfgang; Volz, Kerstin

    2016-02-01

    Melt-back etching is an effect that can occur for gallium (Ga) containing III/V semiconductors grown on Si. Since this effect influences interfaces between the two compounds and therefore the physical characteristics of the material composition, it is desirable to understand its driving forces. Therefore, we investigated Ga grown on Si (001) via metal organic chemical vapor deposition using trimethyl Ga as a precursor. As a result of the melt-back etching, Ga-containing droplets formed on the Si surface which reach into the Si wafer. The shape of these structures was analyzed by plan view investigation and cross sectional tomography in a (scanning) transmission electron microscope. For plan view preparation a focused ion beam was used to avoid damage to the Ga-containing structures, which are sensitive to the chemicals normally used during conventional plan view preparation. Combining the results of both investigation methods confirms that the Ga-containing structure within the Si exhibits a pyramid shape with facets along the Si {111} lattice planes.

  15. UV-driven microvalve based on a micro-nano TiO₂/SiO₂ composite surface for microscale flow control.

    PubMed

    Guo, Ting; Meng, Tao; Li, Wei; Qin, Jilong; Tong, Zhiping; Zhang, Qing; Li, Xueru

    2014-03-28

    This paper presents a novel ultraviolet (UV)-driven microvalve based on the concept of inserting a trimethyl chlorosilane (CTMS) modified TiO₂/SiO₂ composite patch of switchable wettability in a microfluidic system. A unique micro-nano hierarchical structure was designed and used to enhance the overall wetting contrast with the aim of improving the wetting-based valve performances. Field-emission scanning electron microscopy (FE-SEM) and x-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and chemical composition of the surface. UV-driven wettability conversion on the patched microchannel was investigated using water column relative height tests, and the results confirmed the significant improvement of the hierarchical structure with the surface hydrophobic/hydrophilic conversion, which produced enhancements of 276% and 95% of the water-repellent and water-sucking pressures, respectively, compared with those of the single-scale TiO₂ nanopatterned structure. Accordingly, a good reversible and repeated on-off performance was identified by the valve tests, highlighting the potential application of the novel microvalve in the efficient control of microscale flow.

  16. UV-driven microvalve based on a micro-nano TiO2/SiO2 composite surface for microscale flow control

    NASA Astrophysics Data System (ADS)

    Guo, Ting; Meng, Tao; Li, Wei; Qin, Jilong; Tong, Zhiping; Zhang, Qing; Li, Xueru

    2014-03-01

    This paper presents a novel ultraviolet (UV)-driven microvalve based on the concept of inserting a trimethyl chlorosilane (CTMS) modified TiO2/SiO2 composite patch of switchable wettability in a microfluidic system. A unique micro-nano hierarchical structure was designed and used to enhance the overall wetting contrast with the aim of improving the wetting-based valve performances. Field-emission scanning electron microscopy (FE-SEM) and x-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and chemical composition of the surface. UV-driven wettability conversion on the patched microchannel was investigated using water column relative height tests, and the results confirmed the significant improvement of the hierarchical structure with the surface hydrophobic/hydrophilic conversion, which produced enhancements of 276% and 95% of the water-repellent and water-sucking pressures, respectively, compared with those of the single-scale TiO2 nanopatterned structure. Accordingly, a good reversible and repeated on-off performance was identified by the valve tests, highlighting the potential application of the novel microvalve in the efficient control of microscale flow.

  17. In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level

    NASA Astrophysics Data System (ADS)

    Park, Insun; Hwang, Yu Jin; Kim, TaeHun; Viswanath, Ambily Nath Indu; Londhe, Ashwini M.; Jung, Seo Yun; Sim, Kyoung Mi; Min, Sun-Joon; Lee, Ji Eun; Seong, Jihye; Kim, Yun Kyung; No, Kyoung Tai; Ryu, Hoon; Pae, Ae Nim

    2017-10-01

    ERG-associated protein with the SET domain (ESET/SET domain bifurcated 1/SETDB1/KMT1E) is a histone lysine methyltransferase (HKMT) and it preferentially tri-methylates lysine 9 of histone H3 (H3K9me3). SETDB1/ESET leads to heterochromatin condensation and epigenetic gene silencing. These functional changes are reported to correlate with Huntington's disease (HD) progression and mood-related disorders which make SETDB1/ESET a viable drug target. In this context, the present investigation was performed to identify novel peptide-competitive small molecule inhibitors of the SETDB1/ESET by a combined in silico-in vitro approach. A ligand-based pharmacophore model was built and employed for the virtual screening of ChemDiv and Asinex database. Also, a human SETDB1/ESET homology model was constructed to supplement the data further. Biological evaluation of the selected 21 candidates singled out 5 compounds exhibiting a notable reduction of the H3K9me3 level via inhibitory potential of SETDB1/ESET activity in SETDB1/ESET-inducible cell line and HD striatal cells. Later on, we identified two compounds as final hits that appear to have neuronal effects without cytotoxicity based on the result from MTT assay. These compounds hold the calibre to become the future lead compounds and can provide structural insights into more SETDB1/ESET-focused drug discovery research. Moreover, these SETDB1/ESET inhibitors may be applicable for the preclinical study to ameliorate neurodegenerative disorders via epigenetic regulation.

  18. Comparative study of the interaction of meso-tetrakis (N-para-trimethyl-anilium) porphyrin (TMAP) in its free base and Fe derivative form with oligo(dA.dT)15 and oligo(dG.dC)15.

    PubMed

    Bathaie, S Zahra; Ajloo, Davood; Daraie, Marzieh; Ghadamgahi, Maryam

    2015-01-01

    Interaction between a cationic porphyrin and its ferric derivative with oligo(dA.dT)15 and oligo(dG.dC)15 was studied by UV-vis spectroscopy, resonance light scattering (RLS), and circular dichroism (CD) at different ionic strengths; molecular docking and molecular dynamics simulation were also used for completion. Followings are the observed changes in the spectral properties of meso-tetrakis (N-para-trimethyl-anilium) porphyrin (TMAP), as a free-base porphyrin with no axial ligand, and its Fe derivative (FeTMAP) upon interaction with oligo(dA.dT)15 and oligo(dG.dC)15: (1) the substantial red shift and hypochromicity at the Soret maximum in the UV-vis spectra; (2) the increased RLS intensity by increasing the ionic strength; and (3) an intense bisignate excitonic CD signal. All of them are the reasons for TMAP and FeTMAP binding to oligo(dA.dT)15 and oligo(dG.dC)15 with the outside binding mode, accompanied by the self-stacking of the ligands along the oligonucleotide helix. The CD results demonstrated a drastic change from excitonic in monomeric behavior at higher ionic strengths, which indicates the groove binding of the ligands with oligonucleotides. Molecular docking also confirmed the groove binding mode of the ligands and estimated the binding constants and energies of the interactions. Their interaction trend was further confirmed by molecular dynamics technique and structure parameters obtained from simulation. It showed that TMAP reduced the number of intermolecular hydrogen bonds and increased the solvent accessible surface area in the oligonucleotide. The self-aggregation of ligands at lower concentrations was also confirmed.

  19. In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level.

    PubMed

    Park, Insun; Hwang, Yu Jin; Kim, TaeHun; Viswanath, Ambily Nath Indu; Londhe, Ashwini M; Jung, Seo Yun; Sim, Kyoung Mi; Min, Sun-Joon; Lee, Ji Eun; Seong, Jihye; Kim, Yun Kyung; No, Kyoung Tai; Ryu, Hoon; Pae, Ae Nim

    2017-10-01

    ERG-associated protein with the SET domain (ESET/SET domain bifurcated 1/SETDB1/KMT1E) is a histone lysine methyltransferase (HKMT) and it preferentially tri-methylates lysine 9 of histone H3 (H3K9me3). SETDB1/ESET leads to heterochromatin condensation and epigenetic gene silencing. These functional changes are reported to correlate with Huntington's disease (HD) progression and mood-related disorders which make SETDB1/ESET a viable drug target. In this context, the present investigation was performed to identify novel peptide-competitive small molecule inhibitors of the SETDB1/ESET by a combined in silico-in vitro approach. A ligand-based pharmacophore model was built and employed for the virtual screening of ChemDiv and Asinex database. Also, a human SETDB1/ESET homology model was constructed to supplement the data further. Biological evaluation of the selected 21 candidates singled out 5 compounds exhibiting a notable reduction of the H3K9me3 level via inhibitory potential of SETDB1/ESET activity in SETDB1/ESET-inducible cell line and HD striatal cells. Later on, we identified two compounds as final hits that appear to have neuronal effects without cytotoxicity based on the result from MTT assay. These compounds hold the calibre to become the future lead compounds and can provide structural insights into more SETDB1/ESET-focused drug discovery research. Moreover, these SETDB1/ESET inhibitors may be applicable for the preclinical study to ameliorate neurodegenerative disorders via epigenetic regulation.

  20. Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons.

    PubMed

    Shulha, Hennady P; Cheung, Iris; Whittle, Catheryne; Wang, Jie; Virgil, Daniel; Lin, Cong L; Guo, Yin; Lessard, Andree; Akbarian, Schahram; Weng, Zhiping

    2012-03-01

    Neuronal dysfunction in cerebral cortex and other brain regions could contribute to the cognitive and behavioral defects in autism. To characterize epigenetic signatures of autism in prefrontal cortex neurons. We performed fluorescence-activated sorting and separation of neuronal and nonneuronal nuclei from postmortem prefrontal cortex, digested the chromatin with micrococcal nuclease, and deeply sequenced the DNA from the mononucleosomes with trimethylated H3K4 (H3K4me3), a histone mark associated with transcriptional regulation. Approximately 15 billion base pairs of H3K4me3-enriched sequences were collected from 32 brains. Academic medical center. A total of 16 subjects diagnosed as having autism and 16 control subjects ranging in age from 0.5 to 70 years. Identification of genomic loci showing autism-associated H3K4me3 changes in prefrontal cortex neurons. Subjects with autism showed no evidence for generalized disruption of the developmentally regulated remodeling of the H3K4me3 landscape that defines normal prefrontal cortex neurons in early infancy. However, excess spreading of H3K4me3 from the transcription start sites into downstream gene bodies and upstream promoters was observed specifically in neuronal chromatin from 4 of 16 autism cases but not in controls. Variable subsets of autism cases exhibit altered H3K4me3 peaks at numerous genes regulating neuronal connectivity, social behaviors, and cognition, often in conjunction with altered expression of the corresponding transcripts. Autism-associated H3K4me3 peaks were significantly enriched in genes and loci implicated in neurodevelopmental diseases. Prefrontal cortex neurons from subjects with autism show changes in chromatin structures at hundreds of loci genome-wide, revealing considerable overlap between genetic and epigenetic risk maps of developmental brain disorders.

Top