Sample records for triplet state spectra

  1. The Triplet State

    NASA Astrophysics Data System (ADS)

    Zahlan, A. B.

    2010-01-01

    Preface; List of participants; Part I. Spin-orbit Coupling and Intersystem Crossing: 1. Spin-orbit interactions in organic molecules; 2. Singlet-triplet transitions in organic molecules; 3. Triplet decay and intersystem crossing in aromatic hydrocarbons; 4. Statistical aspects of resonance energy transfer; Discussion; Part II. Magnetic Resonance and Magnetic Interactions: 5. Magnetic resonance spectra of organic molecules in triplet states in single crystals; 6. Magnetic interactions related to phosphorescence; 7. ESR investigations of naphthalene-d8:Naphthalene-h8 mixed crystals; 8. Biradicals and polyradicals in the nitroxide series; 9. Changes induced in the phosphorescent radiation of aromatic molecules by paramagnetic resonance in their metastable triplet states; 10. Paramagnetic resonance of the triplet state of tetramethylpyrazine; 11. On magnetic dipole contributions to the intrinsic S0 = T1 transition in simple aromatics; Discussion; Part III. Photochemistry: 12. The kinetics of energy transfer from the triplet state in rigid solutions; 13. Triplet states in gas-phase photochemistry; 14. Biphotonic photochemistry, involving the triplet state: polarisation of the effective T-T transition and solvent effects; 15. Direct and sensitised photo-oxidation of aromatic hydrocarbons in boric acid glass; Discussion; Part IV. Radiationless Transitions: 16. Radiationless transitions in gaseous benzene; 17. Low-lying excited triplet states and intersystem crossing in aromatic hydrocarbons; 18. De-excitation rates of triplet states in condensed media; 19. Lifetimes of the triplet state of aromatic hydrocarbons in the vapour phase; Discussion; Part V. Triplet Excitons: 20. Some comments on the properties of triplet excitons in molecular crystals; 21. Exact treatment of coherent and incoherent triplet exciton migration; 22. Magnetic susceptibility of a system of triplet excitons: Würster's Blue Perchlorate; 23. A study of triplet excitons in anthracene crystals under

  2. Photodissociation of N2O: triplet states and triplet channel.

    PubMed

    Schinke, R; Schmidt, J A; Johnson, M S

    2011-11-21

    The role of triplet states in the UV photodissociation of N(2)O is investigated by means of quantum mechanical wave packet calculations. Global potential energy surfaces are calculated for the lowest two (3)A' and the lowest two (3)A'' states at the multi-reference configuration interaction level of electronic structure theory using the augmented valence quadruple zeta atomic basis set. Because of extremely small transition dipole moments with the ground electronic state, excitation of the triplet states has only a marginal effect on the far red tail of the absorption cross section. The calculations do not show any hint of an increased absorption around 280 nm as claimed by early experimental studies. The peak observed in several electron energy loss spectra at 5.4 eV is unambiguously attributed to the lowest triplet state 1(3)A'. Excitation of the 2(1)A' state and subsequent transition to the repulsive branch of the 2(3)A'' state at intermediate NN-O separations, promoted by spin-orbit coupling, is identified as the main pathway to the N(2)((1)Σ(g)(+))+O((3)P) triplet channel. The yield, determined in two-state wave packet calculations employing calculated spin-orbit matrix elements, is 0.002 as compared to 0.005 ± 0.002 measured by Nishida et al. [J. Phys. Chem. A 108, 2451 (2004)].

  3. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    NASA Astrophysics Data System (ADS)

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.; Herbert, John M.; Kohler, Bern

    2008-05-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2'-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ˜1700 cm -1 in room-temperature acetonitrile- d3 solution. These bands and additional ones observed between 1300 and 1450 cm -1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4 dbnd O carbonyl exhibits substantial single-bond character, explaining the large (˜70 cm -1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ ∗ state as the triplet precursor.

  4. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    PubMed Central

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.

    2008-01-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2’-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs – 3 µs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ~1700 cm−1 in room-temperature acetonitrile-d3 solution. These bands and additional ones observed between 1300 and 1450 cm−1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4=O carbonyl exhibits substantial single-bond character, explaining the large (~70 cm−1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ* state as the triplet precursor. PMID:19936322

  5. Photo-physical properties and triplet-triplet absorption of platinum(II) acetylides in solid PMMA matrices

    NASA Astrophysics Data System (ADS)

    Glimsdal, Eirik; Westlund, Robert; Lindgren, Mikael

    2009-05-01

    Because of their strong nonlinear optical properties, Platinum(II) acetylides are investigated as potential chromophores for optical power limiting (OPL) applications. The strong excited state absorption and efficient intersystem crossing to the triplet states in these materials are desired properties for good OPL performance. We recently reported on OPL and photo-physical properties of Pt(II)-acetylide chromophores in solution, modified with thiophenyl or triazole groups. [R. Westlund et al. J. Mater. Chem. 18, 166 (2008); E. Glimsdal et al. Proc. SPIE 6740, 67400M (2007)] The chromophores were later incorporated into poly(methyl-methacrylate) (PMMA) glasses. A variety of doped organic solids were prepared, reaching concentrations of up to 13 wt% of the guest molecule. Raman spectra of the doped solid devices proved that the chemical structure of the nonlinear dyes remains intact upon the polymerization of the solid matrix. Luminescence spectra confirm that the basic photo-physical properties (absorption, emission and inter-system crossing) observed for the solute molecules in THF are maintained also in the solid state. In particular, the phosphorescence lifetime stays in the order of μs to ms, just as in the oxygen evacuated liquid samples. Also, the wavelength dependence and time-dynamics of the triplet absorption spectra of the dyes, dissolved in THF solution and dispersed in solid PMMA matrices, were investigated and compared. Ground state UV absorption spectra between 300 and 420 nm have corresponding broad band visible triplet-triplet absorption between 400 and 800 nm. The triplet state extinction coefficients were determined to be in the order of 104 M-1cm-1.

  6. Theory of Transient Excited State Absorptions in Pentacene and Derivatives: Triplet-Triplet Biexciton versus Free Triplets.

    PubMed

    Khan, Souratosh; Mazumdar, Sumit

    2017-12-07

    Recent experiments in several singlet-fission materials have found that the triplet-triplet biexciton either is the primary product of photoexcitation or has a much longer lifetime than believed until now. It thus becomes essential to determine the difference in the spectroscopic signatures of the bound triplet-triplet and free triplets to distinguish between them optically. We report calculations of excited state absorptions (ESAs) from the singlet and triplet excitons and from the triplet-triplet biexciton for a pentacene crystal with the herringbone structure and for nanocrystals of bis(triisopropylsilylethynyl) (TIPS)-pentacene. The triplet-triplet biexciton absorbs in both the visible and the near-infrared (NIR), while the monomer free triplet absorbs only in the visible. The intensity of the NIR absorption depends on the extent of intermolecular coupling, in agreement with observations in TIPS-pentacene nanocrystals. We predict additional weak ESA from the triplet-triplet but not from the triplet, at still lower energy.

  7. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Suchmore » specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.« less

  8. Toward Triplet Ground State NaLi Molecules

    NASA Astrophysics Data System (ADS)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  9. Theoretical study of triplet state properties of free-base porphin

    NASA Astrophysics Data System (ADS)

    Loboda, Oleksandr; Tunell, Ingvar; Minaev, Boris; Ågren, Hans

    2005-06-01

    This paper presents results and analysis of various properties of the triplet state of free-base porphin (FBP) as calculated by density-functional theory. The radiative lifetime of phosphorescence lines and microwave signals in optical detection of magnetic resonance (ODMR) spectra are obtained using the B3LYP hybrid density-functional and the quadratic response method. The zero-field splitting (ZFS) in the lowest triplet state, a3 B2u, of FBP is calculated as an expectation value of spin-spin coupling operator using the self-consistent field wavefunction. The second-order contribution to ZFS from the spin-orbit coupling operator is found to be almost negligible. The interpretation of the ODMR spectrum is completed by computing the hyperfine tensors of the 14N, 13C and hydrogen atoms in the lowest triplet state. The most intense phosphorescence emission corresponds to the Tz-spin-sublevel of the a3 B2u state, where the z-axis lies in the N-H direction of the FBP molecule in a qualitative agreement with ODMR data. The results indicate that the observed decay of the lowest triplet state of FBP molecule is determined by non-radiative deactivation. The calculated radiative rate constant for the Tz-spin-sublevel kz = 2.65 × 10-3 s-1 is in agreement with the value kz ≃ 2 × 10-3 s-1, estimated by van Dorp et al. [W. van Dorp, W. Schoemaker, M. Soma, J. van der Waals, Mol. Phys. 30 (1975) 1701] from kinetic analysis of microwave-induced fluorescent signals. The correct prediction of the spin quantization axis of the most active spin sublevel and of its radiative lifetime in the lowest triplet state of the FBP molecule is taken as a proof of capability of the quadratic response time-dependent density-functional theory.

  10. One-way Z→E isomerization around the double bond of N-methoxy- 1- (2-anthryl) ethanimine in the excited triplet state. Direct observation of one-way isomerization from Z triplet to E triplet of the C dbnd N bond

    NASA Astrophysics Data System (ADS)

    Arai, Tatsuo; Furuya, Yasunori; Furuuchi, Hideo; Tokumaru, Katsumi

    1993-09-01

    On direct as well as benzil-sensitized irradiation in degassed benzene N-methoxy-1-(2-anthryl) ethanimine ( I), ArC (CH 3) dbnd N sbnd OCH 3 (Ar: 2-anthryl), underwent one-way Z→E isomerization through a quantum chain process. The barrier to Z→E isomerization of I in the excited triplet state was determined by directly observing the change of T—T absorption spectra from the Z triplet to the E triplet. Based on these results the potential energy surface of photoisomerization of I is discussed.

  11. The triplet excited state of Bodipy: formation, modulation and application.

    PubMed

    Zhao, Jianzhang; Xu, Kejing; Yang, Wenbo; Wang, Zhijia; Zhong, Fangfang

    2015-12-21

    Boron dipyrromethene (Bodipy) is one of the most extensively investigated organic chromophores. Most of the investigations are focused on the singlet excited state of Bodipy, such as fluorescence. In stark contrast, the study of the triplet excited state of Bodipy is limited, but it is an emerging area, since the triplet state of Bodipy is tremendously important for several areas, such as the fundamental photochemistry study, photodynamic therapy (PDT), photocatalysis and triplet-triplet annihilation (TTA) upconversion. The recent developments in the study of the production, modulation and application of the triplet excited state of Bodipy are discussed in this review article. The formation of the triplet state of Bodipy upon photoexcitation, via the well known approach such as the heavy atom effect (including I, Br, Ru, Ir, etc.), and the new methods, such as using a spin converter (e.g. C60), charge recombination, exciton coupling and the doubly substituted excited state, are summarized. All the Bodipy-based triplet photosensitizers show strong absorption of visible or near IR light and the long-lived triplet excited state, which are important for the application of the triplet excited state in PDT or photocatalysis. Moreover, the methods for switching (or modulation) of the triplet excited state of Bodipy were discussed, such as those based on the photo-induced electron transfer (PET), by controlling the competing Förster-resonance-energy-transfer (FRET), or the intermolecular charge transfer (ICT). Controlling the triplet excited state will give functional molecules such as activatable PDT reagents or molecular devices. It is worth noting that switching of the singlet excited state and the triplet state of Bodipy may follow different principles. Application of the triplet excited state of Bodipy in PDT, hydrogen (H2) production, photoredox catalytic organic reactions and TTA upconversion were discussed. The challenges and the opportunities in these areas were

  12. Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.

    PubMed

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku

    2016-03-24

    Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF

  13. The entangled triplet pair state in acene and heteroacene materials

    NASA Astrophysics Data System (ADS)

    Yong, Chaw Keong; Musser, Andrew J.; Bayliss, Sam L.; Lukman, Steven; Tamura, Hiroyuki; Bubnova, Olga; Hallani, Rawad K.; Meneau, Aurélie; Resel, Roland; Maruyama, Munetaka; Hotta, Shu; Herz, Laura M.; Beljonne, David; Anthony, John E.; Clark, Jenny; Sirringhaus, Henning

    2017-07-01

    Entanglement of states is one of the most surprising and counter-intuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which mediates the spin-conserving fission of one spin-0 singlet exciton into two spin-1 triplet excitons. Despite long theoretical and experimental exploration, the nature of the triplet-pair state and inter-triplet interactions have proved elusive. Here we use a range of organic semiconductors that undergo singlet exciton fission to reveal the photophysical properties of entangled triplet-pair states. We find that the triplet pair is bound with respect to free triplets with an energy that is largely material independent (~30 meV). During its lifetime, the component triplets behave cooperatively as a singlet and emit light through a Herzberg-Teller-type mechanism, resulting in vibronically structured photoluminescence. In photovoltaic blends, charge transfer can occur from the bound triplet pairs with >100% photon-to-charge conversion efficiency.

  14. Photocyclization Reactions of Diarylethenes via the Excited Triplet State.

    PubMed

    Murata, Ryutaro; Yago, Tomoaki; Wakasa, Masanobu

    2015-11-12

    Cyclization reactions of three diarylethene derivatives, 1,2-bis(2-methyl-3-benzothienyl)perfluorocyclopentene (BT), 1,2-bis(2-hexyl-3-benzothienyl)perfluorocyclopentene (BTHex), and 1,2-bis(2-isopropyl-3-benzothienyl)perfluorocyclopentene (BTiPr), via their excited triplet states were studied by means of steady-state and nanosecond transient absorption spectroscopy. The excited triplet states of BT, BTHex, and BTiPr were generated by energy transfer from the photoexcited triplet states of sensitizers such as xanthone, phenanthrene, and pyrene. The single-step quantum yields of the cyclization reactions from the excited triplet states of BT, BTHex, and BTiPr were determined to be 0.34, 0.53, and 0.65, respectively. The triplet energies of these three BTs were estimated to be 190-200 kJ mol(-1).

  15. The entangled triplet pair state in acene and heteroacene materials

    PubMed Central

    Yong, Chaw Keong; Musser, Andrew J.; Bayliss, Sam L.; Lukman, Steven; Tamura, Hiroyuki; Bubnova, Olga; Hallani, Rawad K.; Meneau, Aurélie; Resel, Roland; Maruyama, Munetaka; Hotta, Shu; Herz, Laura M.; Beljonne, David; Anthony, John E.; Clark, Jenny; Sirringhaus, Henning

    2017-01-01

    Entanglement of states is one of the most surprising and counter-intuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which mediates the spin-conserving fission of one spin-0 singlet exciton into two spin-1 triplet excitons. Despite long theoretical and experimental exploration, the nature of the triplet-pair state and inter-triplet interactions have proved elusive. Here we use a range of organic semiconductors that undergo singlet exciton fission to reveal the photophysical properties of entangled triplet-pair states. We find that the triplet pair is bound with respect to free triplets with an energy that is largely material independent (∼30 meV). During its lifetime, the component triplets behave cooperatively as a singlet and emit light through a Herzberg–Teller-type mechanism, resulting in vibronically structured photoluminescence. In photovoltaic blends, charge transfer can occur from the bound triplet pairs with >100% photon-to-charge conversion efficiency. PMID:28699637

  16. Unravelling electronic and structural requisites of triplet-triplet energy transfer by advanced electron paramagnetic resonance and density functional theory

    NASA Astrophysics Data System (ADS)

    Di Valentin, M.; Salvadori, E.; Barone, V.; Carbonera, D.

    2013-10-01

    Advanced electron paramagnetic resonance (EPR) techniques, in combination with Density Functional theory (DFT), have been applied to the comparative study of carotenoid triplet states in two major photosynthetic antenna complexes, the Peridinin-chlorophyll a-protein of dinoflagellates and the light-harvesting complex II of higher plants. Carotenoid triplet states are populated by triplet-triplet energy transfer (TTET) from chlorophyll molecules to photoprotect the system from singlet oxygen formation under light-stress conditions. The TTET process is strongly dependent on the relative arrangement and on the electronic properties of the triplet states involved. The proposed spectroscopic approach exploits the concept of spin conservation during TTET, which leads to recognisable spin polarisation effects in the time-resolved and field-swept echo-detected EPR spectra. The electron spin polarisation produced at the carotenoid acceptor site depends on the initial polarisation of the chlorophyll donor and on the relative geometrical arrangement of the donor-acceptor zero-field splitting axes. We have demonstrated that a proper analysis of the spectra in the framework of spin angular momentum conservation allows to derive the pathways of TTET and to gain insight into the structural requirements of this mechanism for those antenna complexes, whose X-ray structure is available. We have further proved that this method, developed for natural antenna complexes of known X-ray structure, can be extended to systems lacking structural information in order to derive the relative arrangement of the partners in the energy transfer process. The structural requirements for efficient TTET, obtained from time-resolved and pulse EPR, have been complemented by a detailed description of the electronic structure of the carotenoid triplet state, provided by pulse Electron-Nuclear DOuble Resonance (ENDOR) experiments. Triplet-state hyperfine couplings of the α- and β-protons of the

  17. Distinct properties of the triplet pair state from singlet fission.

    PubMed

    Trinh, M Tuan; Pinkard, Andrew; Pun, Andrew B; Sanders, Samuel N; Kumarasamy, Elango; Sfeir, Matthew Y; Campos, Luis M; Roy, Xavier; Zhu, X-Y

    2017-07-01

    Singlet fission, the conversion of a singlet exciton (S 1 ) to two triplets (2 × T 1 ), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state 1 (TT). Despite extensive research, the nature of the 1 (TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound 1 (TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of the S 1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to 1 (TT)→S n and S 1 →S n' transitions; S n and S n' likely come from the antisymmetric and symmetric linear combinations, respectively, of the S 2 state localized on each pentacene unit in the dimer molecule. The 1 (TT)→S n transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound 1 (TT) state also shows chemical reactivity that is distinctively different from that of an individual T 1 state. Using an electron-accepting iron oxide molecular cluster [Fe 8 O 4 ] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T 1 in pentacene but not from the tightly bound 1 (TT) state. Thus, reducing intertriplet electronic coupling in 1 (TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission.

  18. Distinct properties of the triplet pair state from singlet fission

    PubMed Central

    Trinh, M. Tuan; Pinkard, Andrew; Pun, Andrew B.; Sanders, Samuel N.; Kumarasamy, Elango; Sfeir, Matthew Y.; Campos, Luis M.; Roy, Xavier; Zhu, X.-Y.

    2017-01-01

    Singlet fission, the conversion of a singlet exciton (S1) to two triplets (2 × T1), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state 1(TT). Despite extensive research, the nature of the 1(TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound 1(TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of the S1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to 1(TT)→Sn and S1→Sn′ transitions; Sn and Sn′ likely come from the antisymmetric and symmetric linear combinations, respectively, of the S2 state localized on each pentacene unit in the dimer molecule. The 1(TT)→Sn transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound 1(TT) state also shows chemical reactivity that is distinctively different from that of an individual T1 state. Using an electron-accepting iron oxide molecular cluster [Fe8O4] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T1 in pentacene but not from the tightly bound 1(TT) state. Thus, reducing intertriplet electronic coupling in 1(TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission. PMID:28740866

  19. Ion-Pair States in Triplet Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Setzer, W.; Baker, B. C.; Ashman, S.; Morgan, T. J.

    2016-05-01

    An experimental search is underway to observe the long range triplet ionic states H+ H- of molecular hydrogen. Resonantly enhanced multi-photon ionization of the metastable c 3∏u- 2 pπ state is used access to the R(1)nd1 n = 21 Rydberg state that serves as an intermediate stepping stone state to probe the energy region above the ionization limit with a second tunable laser photon. The metastable state is prepared by electron capture of 6 keV H2+ions in potassium in a molecular beam. Formation of the H+ H- triplet configuration involves triplet excited states of the H- ion, especially the 2p23Pe state, the second bound state of H- predicted to exist with a lifetime long compared to typical auto ionization lifetimes but not yet observed experimentally. Details of the experiment and preliminary results to date will be presented at the conference.

  20. Off-Centre Effects in the Triplet Relaxed Excited State of Ga+ Centres in CsBr:Ga Crystal

    NASA Astrophysics Data System (ADS)

    Kalder, K.; Korrovits, V.; Nagirnyi, V.; Stolovits, A.; Zazubovich, S.; Babin, V.

    1997-06-01

    Spectra, polarization and decay kinetics of the triplet and singlet emission of Ga+ centres in CsBr:Ga crystals have been studied in the temperature range of 0.1 to 400 K. It has been found that the triplet AX and AT emission bands coincide. Two slow components have been observed in the decay kinetics of each emission at T < 1.5 K and explained by the tunnel splitting of the metastable minima of the corresponding triplet relaxed excited state. It points to the off-centre displacement of a Ga+ ion from a crystal lattice site both in the tetragonal (T) and in the trigonal (X) Jahn-Teller minima.

  1. Distinct properties of the triplet pair state from singlet fission

    DOE PAGES

    Trinh, M. Tuan; Pinkard, Andrew; Pun, Andrew B.; ...

    2017-07-14

    Singlet fission, the conversion of a singlet exciton (S 1) to two triplets (2 × T 1), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state 1(TT). Despite extensive research, the nature of the 1(TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound 1(TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of themore » S 1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to 1(TT)→S n and S 1→S n' transitions; S n and S n' likely come from the antisymmetric and symmetric linear combinations, respectively, of the S 2 state localized on each pentacene unit in the dimer molecule. The 1(TT)→S n transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound 1(TT) state also shows chemical reactivity that is distinctively different from that of an individual T 1 state. Using an electron-accepting iron oxide molecular cluster [Fe 8O 4] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T 1 in pentacene but not from the tightly bound 1(TT) state. Thus, reducing intertriplet electronic coupling in 1(TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission.« less

  2. Aqueous reactions of triplet excited states with allylic compounds

    NASA Astrophysics Data System (ADS)

    Kaur, R.; Anastasio, C.; Hudson, B. M.; Tantillo, D. J.

    2016-12-01

    Triplet excited states of dissolved organic matter react with several classes of aromatic organics such as phenols, anilines, sulfonamide antibiotics and phenylurea herbicides. Aqueous triplets appear to be among the most important oxidants for atmospheric phenols in regions with biomass burning, with phenol lifetimes on the order of a few hours to a day. However, little is known of the reactions of triplets with other classes of organic compounds. Recent work from our group shows that triplets react rapidly with several biogenic volatile organic compounds (BVOCs), such as methyl jasmonate, cis-3-hexenyl acetate, and cis-3-hexen-1-ol. However, there are only a few rate constants for aqueous reactions between alkenes such as these and triplet excited states. For our work, we refer to these and similar alkenes which have hydrogen(s) attached to a carbon adjacent to the double bond, as allylic compounds. To better assess the importance of triplets as aqueous oxidants, we measured second-order rate constants (kAC+3BP*) for a number of allylic compounds (ACs) with the triplet state of benzophenone; then established a quantitative structure-activity relationship (QSAR) between kAC+3BP* and computed oxidation potential of the ACs (R2 =0.65). Using the QSAR, we estimated the rate constants for triplets with some allylic isoprene and limonene oxidation products that have high Henry's law constants (KH>103 M atm-1). Hydroxylated limonene products and the delta-isomers of isoprene hydroxyhydroperoxides (δ4ISOPOOH) and hydroxynitrates (δ4ISONO2) were faster with predicted kAC+3BP* values ranging between (0.5-3.5) x 109 M-1-s-1 whereas the beta-isomers of ISOPOOH and ISONO2 were slower (kAC+3BP* < 0.5 x 109 M-1s-1). We scaled the predicted kAC+3BP* to represent less reactive atmospheric triplets that have been measured in fog drops, and compared to gas and aqueous hydroxyl radical and ozone, triplets in fog could account for up to 20 % of the measured loss of these compounds

  3. High-resolution spectroscopy and quantum-defect model for the gerade triplet np and nf Rydberg states of He{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprecher, D.; Liu, J.; Krähenmann, T.

    2014-02-14

    Photoionization spectra and Rydberg-state-resolved threshold-ionization spectra of the gerade triplet np Rydberg states of {sup 4}He{sub 2} located in the vicinity of the X{sup +2}Σ{sub u}{sup +}(ν{sup +} =0) ionization threshold were recorded from the 2sσa{sup 3}Σ{sub u}{sup +} metastable state. An accuracy of 0.01 cm{sup −1} was achieved for the experimental term values of the observed Rydberg states. The data were combined with spectroscopic data on low-lying triplet np and nf Rydberg states from the literature to derive energy- and internuclear-distance-dependent eigenquantum-defect parameters of multichannel quantum-defect theory (MQDT). The MQDT calculations reproduce the experimental data within their experimental uncertainties andmore » enabled the derivation of potential-energy curves for the lowest triplet p Rydberg states (n = 2–5) of He{sub 2}. The eigenquantum-defect parameters describing the p -f interaction were found to be larger than 0.002 at the energies corresponding to the high-n Rydberg states, so that the p -f interaction plays an important role in the autoionization dynamics of np Rydberg states with ν{sup +} = 0. By extrapolating the experimental term values of triplet np Rydberg states of {sup 4}He{sub 2} in the range of principal quantum number n between 87 and 110, the positions of the (ν{sup +} = 0, N{sup +} = 3) and (ν{sup +} = 0, N{sup +} = 5) levels of the ground state of {sup 4}He{sub 2}{sup +} were determined to lie 70.937(3) cm{sup −1} and 198.369(6) cm{sup −1}, respectively, above the (ν{sup +} = 0, N{sup +} = 1) ground rotational level.« less

  4. Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions.

    PubMed

    Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi

    2006-08-31

    We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.

  5. On the Importance of Electronic Symmetry for Triplet State Delocalization

    DOE PAGES

    Richert, Sabine; Bullard, George; Rawson, Jeff; ...

    2017-03-29

    The influence of electronic symmetry on triplet state delocalization in linear zinc porphyrin oligomers is explored by electron paramagnetic resonance techniques. Using a combination of transient continuous wave and pulse electron nuclear double resonance spectroscopies, it is demonstrated experimentally that complete triplet state delocalization requires the chemical equivalence of all porphyrin units. These results are supported by density functional theory calculations, showing uneven delocalization in a porphyrin dimer in which a terminal ethynyl group renders the two porphyrin units inequivalent. When the conjugation length of the molecule is further increased upon addition of a second terminal ethynyl group that restoresmore » the symmetry of the system, the triplet state is again found to be completely delocalized. Finally, the observations suggest that electronic symmetry is of greater importance for triplet state delocalization than other frequently invoked factors such as conformational rigidity or fundamental length-scale limitations.« less

  6. Delocalisation of photoexcited triplet states probed by transient EPR and hyperfine spectroscopy

    NASA Astrophysics Data System (ADS)

    Richert, Sabine; Tait, Claudia E.; Timmel, Christiane R.

    2017-07-01

    Photoexcited triplet states play a crucial role in photochemical mechanisms: long known to be of paramount importance in the study of photosynthetic reaction centres, they have more recently also been shown to play a major role in a number of applications in the field of molecular electronics. Their characterisation is crucial for an improved understanding of these processes with a particular focus on the determination of the spatial distribution of the triplet state wavefunction providing information on charge and energy transfer efficiencies. Currently, active research in this field is mostly focussed on the investigation of materials for organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). As the properties of triplet states and their spatial extent are known to have a major impact on device performance, a detailed understanding of the factors governing triplet state delocalisation is at the basis of the further development and improvement of these devices. Electron Paramagnetic Resonance (EPR) has proven a valuable tool in the study of triplet state properties and both experimental methods as well as data analysis and interpretation techniques have continuously improved over the last few decades. In this review, we discuss the theoretical and practical aspects of the investigation of triplet states and triplet state delocalisation by transient continuous wave and pulse EPR and highlight the advantages and limitations of the presently available techniques and the current trends in the field. Application of EPR in the study of triplet state delocalisation is illustrated on the example of linear multi-porphyrin chains designed as molecular wires.

  7. The excited spin-triplet state of a charged exciton in quantum dots.

    PubMed

    Molas, M R; Nicolet, A A L; Piętka, B; Babiński, A; Potemski, M

    2016-09-14

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex.

  8. Exploiting the benefit of S0 → T1 excitation in triplet-triplet annihilation upconversion to attain large anti-stokes shifts: tuning the triplet state lifetime of a tris(2,2'-bipyridine) osmium(ii) complex.

    PubMed

    Liu, Dongyi; Zhao, Yingjie; Wang, Zhijia; Xu, Kejing; Zhao, Jianzhang

    2018-03-07

    Os(ii) complexes are particularly interesting for triplet-triplet annihilation (TTA) upconversion, due to the strong direct S 0 → T 1 photoexcitation, as in this way, energy loss is minimized and large anti-Stokes shift can be achieved for TTA upconversion. However, Os(bpy) 3 has an intrinsic short T 1 state lifetime (56 ns), which is detrimental for the intermolecular triplet-triplet energy transfer (TTET), one of the crucial steps in TTA upconversion. In order to prolong the triplet state lifetime, we prepared an Os(ii) tris(bpy) complex with a Bodipy moiety attached, so that an extended T 1 state lifetime is achieved by excited state electronic configuration mixing or triplet state equilibrium between the coordination center-localized state ( 3 MLCT state) and Bodipy ligand-localized state ( 3 IL state). With steady-state and time-resolved transient absorption/emission spectroscopy, we proved that the 3 MLCT is slightly above the 3 IL state (by 0.05 eV), and the triplet state lifetime was prolonged by 31-fold (from 56 ns to 1.73 μs). The TTA upconversion quantum yield was increased by 4-fold as compared to that of the unsubstituted Os(ii) complex.

  9. Infrared vibrational spectroscopy of [Ru(bpy)2(bpm)]2+ and [Ru(bpy)3]2+ in the excited triplet state.

    PubMed

    Mukuta, Tatsuhiko; Fukazawa, Naoto; Murata, Kei; Inagaki, Akiko; Akita, Munetaka; Tanaka, Sei'ichi; Koshihara, Shin-ya; Onda, Ken

    2014-03-03

    This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.

  10. Higher triplet state of fullerene C{sub 70} revealed by electron spin relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uvarov, Mikhail N., E-mail: uvarov@kinetics.nsc.ru; Behrends, Jan; Kulik, Leonid V.

    2015-12-28

    Spin-lattice relaxation times T{sub 1} of photoexcited triplets {sup 3}C{sub 70} in glassy decalin were obtained from electron spin echo inversion recovery dependences. In the range 30–100 K, the temperature dependence of T{sub 1} was fitted by the Arrhenius law with an activation energy of 172 cm{sup −1}. This indicates that the dominant relaxation process of {sup 3}C{sub 70} is described by an Orbach-Aminov mechanism involving the higher triplet state t{sub 2} which lies 172 cm{sup −1} above the lowest triplet state t{sub 1}. Chemical modification of C{sub 70} fullerene not only decreases the intrinsic triplet lifetime by about tenmore » times but also increases T{sub 1} by several orders of magnitude. The reason for this is the presence of a low-lying excited triplet state in {sup 3}C{sub 70} and its absence in triplet C{sub 70} derivatives. The presence of the higher triplet state in C{sub 70} is in good agreement with the previous results from phosphorescence spectroscopy.« less

  11. The EPR of the triplet state of aryl cations in crystals of diazonium salts

    NASA Astrophysics Data System (ADS)

    Kondratenko, P. A.; Shrubovich, E. V.; Shulga, S. Z.

    The spectra of the electron paramagnetic resonance (EPR) of aryl cations possessing a principle triplet ground-state and orientated in a monocrystal of diazonium salts is studied. It is shown that two nonequivalent paramagnetic centers, which differ in orientation are formed within the crystal. A theoretic description of experimental results is possible only when allowing for the effect of low symmetry. This symmetry is invoked by the interactivity of the paramagnetic center of symmetry C(sub 2v) with the crystal field of symmetry C(sub i).

  12. Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon

    NASA Astrophysics Data System (ADS)

    Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.

    2012-09-01

    We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.

  13. Concentrations of a triplet excited state are enhanced in illuminated ice.

    PubMed

    Chen, Zeyuan; Anastasio, Cort

    2017-01-25

    Photochemical reactions influence the fates and lifetimes of organic compounds in snow and ice, both through direct photoreactions and via photoproduced transient species such as hydroxyl radical (˙OH) and, perhaps, triplet excited states of organic compounds (i.e., triplets). While triplets can be important oxidants in atmospheric drops and surface waters, little is known of this class of oxidants in frozen samples. To investigate this, we examined the photoreaction of phenol with the triplet state of 3,4-dimethoxybenzaldehyde ( 3 DMB*), a product from biomass combustion, in illuminated laboratory ices. Our results show that the rate of phenol loss due to 3 DMB* is, on average, increased by a factor of 95 ± 50 in ice compared to the equivalent liquid sample. We find that this experimentally measured freeze concentration factor, F EXP , is independent of total solute concentration and temperature, in contrast to what is expected from a liquid-like region whose composition follows freezing point depression. We also find that F EXP for triplets is independent of pH, although the rates of phenol loss increase with decreasing pH in both solution and ice. The enhancement in the rate of phenol loss in/on ice indicates that concentrations of triplet excited states are enhanced in ice relative to solution and suggests that this class of oxidants might be a significant sink for organics in snow and ice.

  14. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  15. Bright triplet excitons in caesium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; Michopoulos, John G.; Lambrakos, Samuel G.; Bernstein, Noam; Lyons, John L.; Stöferle, Thilo; Mahrt, Rainer F.; Kovalenko, Maksym V.; Norris, David J.; Rainò, Gabriele; Efros, Alexander L.

    2018-01-01

    Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund’s rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the ‘dark exciton’. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

  16. Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homomenthyl salicylate.

    PubMed

    Sugiyama, Kazuto; Tsuchiya, Takumi; Kikuchi, Azusa; Yagi, Mikio

    2015-09-26

    The energy levels and lifetimes of the lowest excited triplet (T1) states of UV-B absorbers, 2-ethylhexyl salicylate (EHS) and homomenthyl salicylate (HMS), and their deprotonated anions (EHS(-) and HMS(-)) were determined through measurements of phosphorescence and electron paramagnetic resonance (EPR) spectra in rigid solutions at 77 K. The observed T1 energies of EHS and HMS are higher than those of butylmethoxydibenzoylmethane, the most widely used UV-A absorber, and octyl methoxycinnamate, the most widely used UV-B absorber. The T1 states of EHS, HMS, EHS(-) and HMS(-) were assigned to almost pure (3)ππ* state from the observed T1 lifetimes and zero-field splitting parameters. EHS and HMS with an intramolecular hydrogen bond show a photoinduced phosphorescence enhancement in ethanol at 77 K. The EPR signals of the T1 states of EHS and HMS also increase in intensity with UV-irradiation time (photoinduced EPR enhancement). The T1 lifetimes of EHS and HMS at room temperature were determined through triplet-triplet absorption measurements in ethanol. The quantum yields of singlet oxygen production by EHS and HMS were determined by using time-resolved near-IR phosphorescence.

  17. Photoexcited singlet and triplet states of a UV absorber ethylhexyl methoxycrylene.

    PubMed

    Kikuchi, Azusa; Hata, Yuki; Kumasaka, Ryo; Nanbu, Yuichi; Yagi, Mikio

    2013-01-01

    The excited states of UV absorber, ethylhexyl methoxycrylene (EHMCR) have been studied through measurements of UV absorption, fluorescence, phosphorescence and electron paramagnetic resonance (EPR) spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states of EHMCR were determined. The energy levels of the S1 and T1 states of EHMCR are much lower than those of photolabile 4-tert-butyl-4'-methoxydibenzoylmethane. The energy levels of the S1 and T1 states of EHMCR are lower than those of octyl methoxycinnamate. The weak phosphorescence and EPR B(min) signals were observed and the lifetime was estimated to be 93 ms. These facts suggest that the significant proportion of the S1 molecules undergoes intersystem crossing to the T1 state, and the deactivation process from the T1 state is predominantly radiationless. The photostability of EHMCR arises from the (3)ππ* character in the T1 state. The zero-field splitting (ZFS) parameter in the T1 state is D** = 0.113 cm(-1). © 2012 The Authors Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  18. Solid State Photochemical Generation of Triplet Phenoxy-Phenoxy Radical Pairs

    DTIC Science & Technology

    1990-04-01

    of diphenyl oxalate . Tert-butylated bis-aryloxalat s show good radical pair stability, with triplet ESR signals surviving days at room temperature in...between the geminate phenoxyl radicals. The comparable breadth of the spectra for diphenyl carbonate and the oxalates implies a similar interaction strength...ferromagnetic coupling that may be achieved in geminate pairs generated from a diphenyl oxalate vs. a diphenyl carbonate. In addition, we see similar

  19. Singlet-to-triplet intermediates and triplet exciton dynamics in pentacene thinfilms

    NASA Astrophysics Data System (ADS)

    Thorsmolle, Verner; Korber, Michael; Obergfell, Emanuel; Kuhlman, Thomas; Campbell, Ian; Crone, Brian; Taylor, Antoinette; Averitt, Richard; Demsar, Jure

    Singlet-to-triplet fission in organic semiconductors is a spin-conserving multiexciton process in which one spin-zero singlet excitation is converted into two spin-one triplet excitations on an ultrafast timescale. Current scientific interest into this carrier multiplication process is largely driven by prospects of enhancing the efficiency in photovoltaic applications by generating two long-lived triplet excitons by one photon. The fission process is known to involve intermediate states, known as correlated triplet pairs, with an overall singlet character, before being interchanged into uncorrelated triplets. Here we use broadband femtosecond real-time spectroscopy to study the excited state dynamics in pentacene thin films, elucidating the fission process and the role of intermediate triplet states. VKT and AJT acknowledge support by the LDRD program at Los Alamos National Laboratory and the Department of Energy, Grant No. DE-FG02-04ER118. MK, MO and JD acknowledge support by the Alexander von Humboldt Foundation.

  20. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    DOE PAGES

    Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.; ...

    2017-11-30

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less

  1. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefullymore » engineer the solid-state microstructure of these 'singlet fission polymers' to produce the long-lived triplets needed to realize efficient photovoltaic devices.« less

  2. The origin of efficient triplet state population in sulfur-substituted nucleobases

    PubMed Central

    Mai, Sebastian; Pollum, Marvin; Martínez-Fernández, Lara; Dunn, Nicholas; Marquetand, Philipp; Corral, Inés; Crespo-Hernández, Carlos E.; González, Leticia

    2016-01-01

    Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero. PMID:27703148

  3. Efficiency of noncoherent photon upconversion by triplet-triplet annihilation: the C60 plus anthanthrene system and the importance of tuning the triplet energies.

    PubMed

    Sugunan, Sunish K; Greenwald, Chelsea; Paige, Matthew F; Steer, Ronald P

    2013-07-03

    As part of a continuing effort to find noncoherent photon upconversion (NCPU) systems with improved energy conversion efficiencies, the photophysics of the blue emitter, anthanthrene (An), and the fullerene absorber-sensitizer, C60, have been examined by both steady-state and pulsed laser techniques. An is a promising candidate for NCPU by homomolecular triplet-triplet annihilation (TTA) because its triplet state lies ∼800 cm(-1) below the triplet energy of the C60 donor (thereby improving efficiency by reducing back triplet energy transfer), and its fluorescent singlet state lies in near resonance with double its triplet energy (thus minimizing thermal energy losses in the annihilation process). In fluid solution, efficient triplet-triplet donor-acceptor energy transfer is observed, and rate constants for homomolecular TTA in the An acceptor are estimated to approach the diffusion limit. NCPU is also observed in An + C60 in poly(methylmethacrylate) thin films.

  4. Room temperature triplet state spectroscopy of organic semiconductors.

    PubMed

    Reineke, Sebastian; Baldo, Marc A

    2014-01-21

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

  5. Long-lived room temperature deep-red/near-IR emissive intraligand triplet excited state (3IL) of naphthalimide in cyclometalated platinum(II) complexes and its application in upconversion.

    PubMed

    Wu, Wenting; Guo, Huimin; Wu, Wanhua; Ji, Shaomin; Zhao, Jianzhang

    2011-11-21

    [C(^)NPt(acac)] (C(^)N = cyclometalating ligand; acac = acetylacetonato) complexes in which the naphthalimide (NI) moiety is directly cyclometalated (NI as the C donor of the C-Pt bond) were synthesized. With 4-pyrazolylnaphthalimide, isomers with five-membered (Pt-2) and six-membered (Pt-3) chelate rings were obtained. With 4-pyridinylnaphthalimide, only the complex with a five-membered chelate ring (Pt-4) was isolated. A model complex with 1-phenylpyrazole as the C(^)N ligand was prepared (Pt-1). Strong absorption of visible light (ε = 21,900 M(-1) cm(-1) at 443 nm for Pt-3) and room temperature (RT) phosphorescence at 630 nm (Pt-2 and Pt-3) or 674 nm (Pt-4) were observed. Long-lived phosphorescences were observed for Pt-2 (τ(P) = 12.8 μs) and Pt-3 (τ(P) = 61.9 μs). Pt-1 is nonphosphorescent at RT in solution because of the acac-localized T(1) excited state [based on density functional theory (DFT) calculations and spin density analysis], but a structured emission band centered at 415 nm was observed at 77 K. Time-resolved transient absorption spectra and spin density analysis indicated a NI-localized intraligand triplet excited state ((3)IL) for complexes Pt-2, Pt-3, and Pt-4. DFT calculations on the transient absorption spectra (T(1) → T(n) transitions, n > 1) also support the (3)IL assignment of the T(1) excited states of Pt-2, Pt-3, and Pt-4. The complexes were used as triplet sensitizers for triplet-triplet-annihilation (TTA) based upconversion, and the results show that Pt-3 is an efficient sensitizer with an upconversion quantum yield of up to 14.1%, despite its low phosphorescence quantum yield of 5.2%. Thus, we propose that the sensitizer molecules at the triplet excited state that are otherwise nonphosphorescent were involved in the TTA upconversion process, indicating that weakly phosphorescent or nonphosphorescent transition-metal complexes can be used as triplet sensitizers for TTA upconversion.

  6. Phototautomerization of 3-hydroxyflavone in the lowest triplet state

    NASA Astrophysics Data System (ADS)

    Tokumura, Kunihiro; Kurauchi, Mutsuo; Yagata, Nobuo; Itoh, Michiya

    1996-08-01

    Selective excitation of benzil in the presence of 3-hydroxyflavone (3HF) in fluid solution results in diffusional triplet energy transfer from benzil to 3HF, and the T n←T 1 absorption spectrum of 3HF (acceptor) was determined by transient absorption spectroscopy. It is demonstrated that red probe pulse excitation of the lowest triplet state (T 1) of the normal tautomer yields green fluorescence from the phototautomer in the lowest excited singlet state (S' 1). Generation of S' 1 upon the excitation of T 1 may be ascribed to an efficient T n→T' n proton transfer followed by T n'→T' 2 relaxation and T' 2→S' 1 reverse intersystem crossing.

  7. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    PubMed

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  8. Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Pistol, M. E.; Monemar, B.

    1986-05-01

    A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.

  9. The Lowest Triplet of Tetracyanoquinodimethane via UV-vis Absorption Spectroscopy with Br-Containing Solvents.

    PubMed

    Khvostenko, Olga G; Kinzyabulatov, Renat R; Khatymova, Laysan Z; Tseplin, Evgeniy E

    2017-10-05

    This study was undertaken to find the previously unknown lowest triplet of the isolated molecule of tetracyanoquinodimethane (TCNQ), which is a widely used organic semiconductor. The problem is topical because the triplet excitation of this compound is involved in some processes which occur in electronic devices incorporating TCNQ and its derivatives, and information on the TCNQ triplet is needed for better understanding of these processes. The lowest triplet of TCNQ was obtained at 1.96 eV using UV-vis absorption spectroscopy with Br-containing solvents. Production of the triplet band with sufficient intensity in the spectra was provided by the capacity of the Br atom to augment the triplet excitation and through using a 100 mm cuvette. The assignment of the corresponding spectral band to the triplet transition was made by observation that this band appeared only in the spectra recorded in Br-containing solvents but not in spectra recorded in other solvents. Additional support for the triplet assignment came from the overall UV-vis absorption spectra of TCNQ recorded in various solvents, using a 10 mm cuvette, in the 1.38-6.5 eV energy range. Singlet transitions of the neutral TCNQ o molecule and doublet transitions of the TCNQ ¯ negative ion were identified in these overall spectra and were assigned with TD B3LYP/6-31G calculations. Determination of the lowest triplet of TCNQ attained in this work may be useful for theoretical studies and practical applications of this important compound.

  10. Triplet photosensitizers: from molecular design to applications.

    PubMed

    Zhao, Jianzhang; Wu, Wanhua; Sun, Jifu; Guo, Song

    2013-06-21

    Triplet photosensitizers (PSs) are compounds that can be efficiently excited to the triplet excited state which subsequently act as catalysts in photochemical reactions. The name is originally derived from compounds that were used to transfer the triplet energy to other compounds that have only a small intrinsic triplet state yield. Triplet PSs are not only used for triplet energy transfer, but also for photocatalytic organic reactions, photodynamic therapy (PDT), photoinduced hydrogen production from water and triplet-triplet annihilation (TTA) upconversion. A good PS should exhibit strong absorption of the excitation light, a high yield of intersystem crossing (ISC) for efficient production of the triplet state, and a long triplet lifetime to allow for the reaction with a reactant molecule. Most transition metal complexes show efficient ISC, but small molar absorption coefficients in the visible spectral region and short-lived triplet excited states, which make them unsuitable as triplet PSs. One obstacle to the development of new triplet PSs is the difficulty in predicting the ISC of chromophores, especially of organic compounds without any heavy atoms. This review article summarizes some molecular design rationales for triplet PSs, based on the molecular structural factors that facilitate ISC. The design of transition metal complexes with large molar absorption coefficients in the visible spectral region and long-lived triplet excited states is presented. A new method of using a spin converter to construct heavy atom-free organic triplet PSs is discussed, with which ISC becomes predictable, C60 being an example. To enhance the performance of triplet PSs, energy funneling based triplet PSs are proposed, which show broadband absorption in the visible region. Applications of triplet PSs in photocatalytic organic reactions, hydrogen production, triplet-triplet annihilation upconversion and luminescent oxygen sensing are briefly introduced.

  11. Long-lived room-temperature deep-red-emissive intraligand triplet excited state of naphthalimide in cyclometalated Ir(III) complexes and its application in triplet-triplet annihilation-based upconversion.

    PubMed

    Sun, Jifu; Wu, Wanhua; Zhao, Jianzhang

    2012-06-25

    Cyclometalated Ir(III) complexes with acetylide ppy and bpy ligands were prepared (ppy = 2-phenylpyridine, bpy = 2,2'-bipyridine) in which naphthal (Ir-2) and naphthalimide (NI) were attached onto the ppy (Ir-3) and bpy ligands (Ir-4) through acetylide bonds. [Ir(ppy)(3)] (Ir-1) was also prepared as a model complex. Room-temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir-3 and Ir-4 showed strong absorption in the visible range (ε=39,600  M(-1)  cm(-1) at 402 nm and ε=25,100  M(-1)  cm(-1) at 404 nm, respectively), long-lived triplet excited states (τ(T)=9.30 μs and 16.45 μs) and room-temperature red emission (λ(em)=640 nm, Φ(p)=1.4 % and λ(em)=627 nm, Φ(p)=0.3 %; cf. Ir-1: ε=16,600  M(-1)  cm(-1) at 382 nm, τ(em)=1.16 μs, Φ(p)=72.6 %). Ir-3 was strongly phosphorescent in non-polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir-4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non-polar solvents. Emission of Ir-1 and Ir-2 was not solvent-polarity-dependent. The T(1) excited states of Ir-2, Ir-3, and Ir-4 were identified as mainly intraligand triplet excited states ((3)IL) by their small thermally induced Stokes shifts (ΔE(s)), nanosecond time-resolved transient difference absorption spectroscopy, and spin-density analysis. The complexes were used as triplet photosensitizers for triplet-triplet annihilation (TTA) upconversion and quantum yields of 7.1 % and 14.4 % were observed for Ir-2 and Ir-3, respectively, whereas the upconversion was negligible for Ir-1 and Ir-4. These results will be useful for designing visible-light-harvesting transition-metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Abnormal temperature dependent behaviors of intersystem crossing and triplet-triplet annihilation in organic planar heterojunction devices

    NASA Astrophysics Data System (ADS)

    Xiang, Jie; Chen, Yingbing; Yuan, De; Jia, Weiyao; Zhang, Qiaoming; Xiong, Zuhong

    2016-09-01

    Anomalous temperature dependent magneto-electroluminescence was observed at low and high magnetic field strength from organic planar heterojunction devices incorporated common phosphorescent host materials of N,N'-dicarbazolyl-3,5-benzene (mCP) or 4,4'-N,N'-dicarbazole-biphenyl (CBP) as an emissive layer. We found that intersystem crossing became stronger with decreasing temperature and that triplet-triplet annihilation (TTA) occurred at room temperature but ceased at low temperature. Analyses of the electroluminescence spectra of these devices and their temperature dependences indicated that the population of exciplex states increased at low temperature, which caused the abnormal behavior of intersystem crossing. Additionally, long lifetime of the excitons within mCP or CBP layer may allow TTA to occur at room temperature, while the reduced population of excitons at low temperature may account for the disappearance of TTA even though the excitons had increased lifetime.

  13. Recalculation of the infrared continuum spectrum of the lowest energy triplet transitions in K2

    NASA Astrophysics Data System (ADS)

    Ligare, Martin; Edmonds, J. Brent

    1991-09-01

    The observation and identification of the spectra arising from transitions between the lowest energy triplet electronic states of diatomic potassium molecules were made by Huennekens et al. [J. Chem. Phys. 80, 4794 (1984)]. In this letter we recalculate theoretical spectra for these transitions using quasistatic line broadening theory and the recently published ab initio potential energy curves of Jeung and Ross [J. Phys. B 21, 1473 (1988)]. The calculated satellite of the 3Σ+g-3Σ+u transition occurs at 1.105 μm while the satellite is experimentally observed at 1.096 μm. This improved agreement both solidifies the original identification of Huennekens et al. and indicates the accuracy of the recent potential energy curves of Jeung and Ross for the low energy triplet states.

  14. Theory of triplet-triplet annihilation in optically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Keevers, T. L.; McCamey, D. R.

    2016-01-01

    Triplet-triplet annihilation allows two low-energy photons to be upconverted into a single high-energy photon. By essentially engineering the solar spectrum, this allows solar cells to be made more efficient and even exceed the Shockley-Quiesser limit. Unfortunately, optimizing the reaction pathway is difficult, especially with limited access to the microscopic time scales and states involved in the process. Optical measurements can provide detailed information: triplet-triplet annihilation is intrinsically spin dependent and exhibits substantial magnetoluminescence in the presence of a static magnetic field. Pulsed optically detected magnetic resonance is especially suitable, since it combines high spin sensitivity with coherent manipulation. In this paper, we develop a time-domain theory of triplet-triplet annihilation for complexes with arbitrary spin-spin coupling. We identify unique "Rabi fingerprints" for each coupling regime and show that this can be used to characterize the microscopic Hamiltonian.

  15. Formation of Triplet Positron-helium Bound State by Stripping of Positronium Atoms in Collision with Ground State Helium

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.

  16. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A., E-mail: baldo@mit.edu

    2015-07-20

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator ismore » 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.« less

  17. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  18. Long-Lived Correlated Triplet Pairs in a π-Stacked Crystalline Pentacene Derivative.

    PubMed

    Folie, Brendan D; Haber, Jonah B; Refaely-Abramson, Sivan; Neaton, Jeffrey B; Ginsberg, Naomi S

    2018-02-14

    Singlet fission is the spin-conserving process by which a singlet exciton splits into two triplet excitons. Singlet fission occurs via a correlated triplet pair intermediate, but direct evidence of this state has been scant, and in films of TIPS-pentacene, a small molecule organic semiconductor, even the rate of fission has been unclear. We use polarization-resolved transient absorption microscopy on individual crystalline domains of TIPS-pentacene to establish the fission rate and demonstrate that the initially created triplets remain bound for a surprisingly long time, hundreds of picoseconds, before separating. Furthermore, using a broadband probe, we show that it is possible to determine absorbance spectra of individual excited species in a crystalline solid. We find that triplet interactions perturb the absorbance, and provide evidence that triplet interaction and binding could be caused by the π-stacked geometry. Elucidating the relationship between the lattice structure and the electronic structure and dynamics has important implications for the creation of photovoltaic devices that aim to boost efficiency via singlet fission.

  19. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals

    NASA Astrophysics Data System (ADS)

    Thompson, Nicholas J.; Wilson, Mark W. B.; Congreve, Daniel N.; Brown, Patrick R.; Scherer, Jennifer M.; Bischof, Thomas S.; Wu, Mengfei; Geva, Nadav; Welborn, Matthew; Voorhis, Troy Van; Bulović, Vladimir; Bawendi, Moungi G.; Baldo, Marc A.

    2014-11-01

    Triplet excitons are ubiquitous in organic optoelectronics, but they are often an undesirable energy sink because they are spin-forbidden from emitting light and their high binding energy hinders the generation of free electron-hole pairs. Harvesting their energy is consequently an important technological challenge. Here, we demonstrate direct excitonic energy transfer from ‘dark’ triplets in the organic semiconductor tetracene to colloidal PbS nanocrystals, thereby successfully harnessing molecular triplet excitons in the near infrared. Steady-state excitation spectra, supported by transient photoluminescence studies, demonstrate that the transfer efficiency is at least (90 ± 13)%. The mechanism is a Dexter hopping process consisting of the simultaneous exchange of two electrons. Triplet exciton transfer to nanocrystals is expected to be broadly applicable in solar and near-infrared light-emitting applications, where effective molecular phosphors are lacking at present. In particular, this route to ‘brighten’ low-energy molecular triplet excitons may permit singlet exciton fission sensitization of conventional silicon solar cells.

  20. The photophysics of singlet, triplet, and degradation trap states in 4,4-N,N'-dicarbazolyl-1,1'-biphenyl

    NASA Astrophysics Data System (ADS)

    Jankus, Vygintas; Winscom, Chris; Monkman, Andrew P.

    2009-02-01

    In this paper we report the results of optical characterization of 4,4-N,N'-dicarbazolyl-1,1'-biphenyl (CBP), known as a host material for phosphorescent light emitting devices. Using absorption, steady state, and time-resolved spectroscopy, we explore the singlet and triplet states in solid and solution samples of CBP. In solutions we observe two distinct short-lived states with well-resolved emission originating from individual molecule singlet states (at 365 and 380 nm) and "quenching" low energy (LE) states (at 404 and 424 nm). The latter are seen only in saturated solutions and solid samples. Both of those species have different lifetimes. After UV exposure of very concentrated degassed solution the intensities of the LE bands starts to decrease. The longer the solution is exposed to UV, the less emission is seen at 404 and 424 nm, until it is totally gone. The spectrum of the highly concentrated solution is then the same as the spectrum of dilute solution, i.e., only emission at 365 and 380 nm is present. An increase in intensities of the singlet emission peaks correlates with an increase in UV exposure time. Similar behavior is observed in evaporated CBP film. We propose that this behavior is due to chemical instability of the weak N-C bonding of carbazolyl moiety—this creates new degradational species over time which dissociate after exposure to UV. We believe this to be the reason for variation in CBP fluorescence and delayed fluorescence spectra recorded by various research groups. Further, we detected two types of very long-lived states. One of these states (higher energy) is ascribed to molecular phosphorescence emission, the other to emission from low energy triplet trap states which we relate to degradational species. We propose that triplets are more easily caught by these latter sites when their hopping rate increases, and they emit inefficiently from these lower energy sites.

  1. Triplet and ground state potential energy surfaces of 1,4-diphenyl-1,3-butadiene: theory and experiment.

    PubMed

    Saltiel, J; Dmitrenko, O; Pillai, Z S; Klima, R; Wang, S; Wharton, T; Huang, Z-N; van de Burgt, L J; Arranz, J

    2008-05-01

    Relative energies of the ground state isomers of 1,4-diphenyl-1,3-butadiene (DPB) are determined from the temperature dependence of equilibrium isomer compositions obtained with the use of diphenyl diselenide as catalyst. Temperature and concentration effects on photostationary states and isomerization quantum yields with biacetyl or fluorenone as triplet sensitizers with or without the presence of O(2), lead to significant modification of the proposed DPB triplet potential energy surface. Quantum yields for ct-DPB formation from tt-DPB increase with [tt-DPB] revealing a quantum chain process in the tt --> ct direction, as had been observed for the ct --> tt direction, and suggesting an energy minimum at the (3)ct* geometry. They confirm the presence of planar and twisted isomeric triplets in equilibrium (K), with energy transfer from planar or quasi-planar geometries (quantum chain events from tt and ct triplets) and unimolecular decay (k(d)) from twisted geometries. Starting from cc-DPB, varphi(cc-->tt) increases with increasing [cc-DPB] whereas varphi(cc-->ct) is relatively insensitive to concentration changes. The concentration and temperature dependencies of the decay rate constants of DPB triplets in cyclohexane are consistent with the mechanism deduced from the photoisomerization quantum yields. The experimental DeltaH between (3)tt-DPB* and (3)tp-DPB*, 2.7 kcal mol(-1), is compared with the calculated energy difference [DFT with B3LYP/6-31+G(d,p) basis set]. Use of the calculated DeltaS = 4.04 eu between the two triplets gives k(d) = (2.4-6.4) x 10(7) s(-1), close to 1.70 x 10(7) s(-1), the value for twisted stilbene triplet decay. Experimental and calculated relative energies of DPB isomers on the ground and triplet state surfaces agree and theory is relied upon to deduce structural characteristics of the equilibrated conformers in the DPB triplet state.

  2. Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers

    DOE PAGES

    Johnson, Philip M.; Sears, Trevor J.

    2015-07-28

    Naphthalene, anthracene, and phenanthrene are shown to have very long-lived triplet lifetimes when the isolated molecules are excited with nanosecond pulsed lasers resonant with the lowest singlet state. For naphthalene, triplet state populations are created only during the laser pulse, excluding the possibility of normal intersystem crossing at the one photon level, and all molecules have triplet lifetimes greater than hundreds of microseconds, similar to the behavior previously reported for phenylacetylene. Although containing 7–12 thousand cm⁻¹ of vibrational energy, the triplet molecules have ionization thresholds appropriate to vibrationless T₁ states. The laser power dependences (slopes of log-log power plots) ofmore » the excited singlet and triplet populations are about 0.7 for naphthalene and about 0.5 for anthracene. Kinetic modeling of the power dependences successfully reproduces the experimental results and suggests that the triplet formation mechanism involves an enhanced spin orbit coupling caused by sigma character in states at the 2-photon level. Symmetry Adapted Cluster-Configuration Interaction calculations produced excited state absorption spectra to provide guidance for estimating kinetic rates and the sigma character present in higher electronic states. It is concluded that higher excited state populations are significant when larger molecules are excited with pulsed lasers and need to be taken into account whenever discussing the molecular photodynamics.« less

  3. A solid state source of photon triplets based on quantum dot molecules

    PubMed Central

    Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed

    2017-01-01

    Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705

  4. Laser photolysis studies of ω-bond dissociation in aromatic carbonyls with a C-C triple bond stimulated by triplet sensitization.

    PubMed

    Yamaji, Minoru; Horimoto, Ami; Marciniak, Bronislaw

    2017-07-14

    We have prepared three types of carbonyl compounds, benzoylethynylmethyl phenyl sulfide (2@SPh), (p-benzoyl)phenylethynylmethyl phenyl sulfide (3@SPh) and p-(benzoylethynyl)benzyl phenyl sulfide (4@SPh) with benzoyl and phenylthiylmethyl groups, which are interconnected with a C-C triple bond and a phenyl ring. Laser flash photolysis of 3@SPh and 4@SPh in acetonitrile provided the transient absorption spectra of the corresponding triplet states where no chemical reactions were recognized. Upon laser flash photolysis of 2@SPh, the absorption band due to the phenylthiyl radical (PTR) was obtained, indicating that the C-S bond cleaved in the excited state. Triplet sensitization of these carbonyl compounds using acetone and xanthone was conducted using laser photolysis techniques. The formation of triplet 3@SPh was seen in the transient absorption, whereas the PTR formation was observed for 2@SPh and 4@SPh, indicating that the triplet states were reactive for the C-S bond dissociation. The C-S bond dissociation mechanism for 4@SPh upon triplet sensitization is discussed in comparison with those for 2@SPh and 3@SPh.

  5. Thermal transport in topological-insulator-based superconducting hybrid structures with mixed singlet and triplet pairing states.

    PubMed

    Li, Hai; Zhao, Yuan Yuan

    2017-11-22

    In the framework of the Bogoliubov-de Gennes equation, we investigate the thermal transport properties in topological-insulator-based superconducting hybrid structures with mixed spin-singlet and spin-triplet pairing states, and emphasize the different manifestations of the spin-singlet and spin-triplet pairing states in the thermal transport signatures. It is revealed that the temperature-dependent differential thermal conductance strongly depends on the components of the pairing state, and the negative differential thermal conductance only occurs in the spin-singlet pairing state dominated regime. It is also found that the thermal conductance is profoundly sensitive to the components of the pairing state. In the spin-singlet pairing state controlled regime, the thermal conductance obviously oscillates with the phase difference and junction length. With increasing the proportion of the spin-triplet pairing state, the oscillating characteristic of the thermal conductance fades out distinctly. These results suggest an alternative route for distinguishing the components of pairing states in topological-insulator-based superconducting hybrid structures.

  6. Triplet-State Dissolved Organic Matter Quantum Yields and Lifetimes from Direct Observation of Aromatic Amine Oxidation.

    PubMed

    Schmitt, Markus; Erickson, Paul R; McNeill, Kristopher

    2017-11-21

    Excited triplet state chromophoric dissolved organic matter ( 3 CDOM*) is a short-lived mixture of excited-state species that plays important roles in aquatic photochemical processes. Unlike the study of the triplet states of well-defined molecules, which are amenable to transient absorbance spectroscopy, the study of 3 CDOM* is hampered by it being a complex mixture and its low average intersystem crossing quantum yield (Φ ISC ). This study is an alternative approach to investigating 3 CDOM* using transient absorption laser spectroscopy. The radical cation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), formed through oxidation by 3 CDOM*, was directly observable by transient absorption spectroscopy and was used to probe basic photophysical properties of 3 CDOM*. Quenching and control experiments verified that TMPD •+ was formed from 3 CDOM* under anoxic conditions. Model triplet sensitizers with a wide range of excited triplet state reduction potentials and CDOM oxidized TMPD at near diffusion-controlled rates. This gives support to the idea that a large cross-section of 3 CDOM* moieties are able to oxidize TMPD and that the complex mixture of 3 CDOM* can be simplified to a single signal. Using the TMPD •+ transient, the natural triplet lifetime and Φ ISC for different DOM isolates and natural waters were quantified; values ranged from 12 to 26 μs and 4.1-7.8%, respectively.

  7. Triplet-triplet energy transfer between luminescent probes bound to albumins

    NASA Astrophysics Data System (ADS)

    Mel'Nikov, A. G.; Saletskii, A. M.; Kochubey, V. I.; Pravdin, A. B.; Kurchatov, I. S.; Mel'Nikov, G. V.

    2010-08-01

    The interaction of polar and nonpolar luminescent probes with human blood serum albumins is studied by absorption and luminescence spectroscopy. It is found that the probes (polar eosin and nonpolar anthracene) can efficiently bind to proteins. The radii of the quenching spheres of energy-donor (eosin) triplet states in the presence of an acceptor (anthracene) in the process of the triplet-triplet energy transfer in proteins are determined for homogeneous and inhomogeneous distributions of acceptor molecules over the solution volume. It is shown that a decrease in the radius of the quenching sphere observed upon the addition of sodium dodecylsulfate surfactant is caused by structural changes in the protein.

  8. Delayed Triplet-State Formation through Hybrid Charge Transfer Exciton at Copper Phthalocyanine/GaAs Heterojunction.

    PubMed

    Lim, Heeseon; Kwon, Hyuksang; Kim, Sang Kyu; Kim, Jeong Won

    2017-10-05

    Light absorption in organic molecules on an inorganic substrate and subsequent electron transfer to the substrate create so-called hybrid charge transfer exciton (HCTE). The relaxation process of the HCTE states largely determines charge separation efficiency or optoelectronic device performance. Here, the study on energy and time-dispersive behavior of photoelectrons at the hybrid interface of copper phthalocyanine (CuPc)/p-GaAs(001) upon light excitation of GaAs reveals a clear pathway for HCTE relaxation and delayed triplet-state formation. According to the ground-state energy level alignment at the interface, CuPc/p-GaAs(001) shows initially fast hole injection from GaAs to CuPc. Thus, the electrons in GaAs and holes in CuPc form an unusual HCTE state manifold. Subsequent electron transfer from GaAs to CuPc generates the formation of the triplet state in CuPc with a few picoseconds delay. Such two-step charge transfer causes delayed triplet-state formation without singlet excitation and subsequent intersystem crossing within the CuPc molecules.

  9. Triplet diffusion leads to triplet-triplet annihilation in organic phosphorescent emitters

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Forrest, Stephen R.

    2013-12-01

    In organic materials, triplet-triplet annihilation (TTA) can be dominated by triplet diffusion or triplet-to-triplet energy transfer. Here, we discuss the diffusion and transfer dominated mechanisms in the context of photoluminescence (PL) transient measurements from thin films of archetype phosphorescent organic light emitters based on Ir and Pt complexes. We find that TTA in these emitters is controlled by diffusion due to a Dexter-type exchange interaction, suggesting triplet radiative decay and TTA are independent processes. Minimizing the PL and absorption spectral overlap in phosphorescent emitters can lead to a significantly decreased TTA rate, and thus suppressed efficiency roll-off in phosphorescent organic light emitting diodes at high brightness.

  10. Mimicking the photosynthetic triplet energy-transfer relay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gust, D.; Moore, T.A.; Moore, A.L.

    1993-06-30

    In the reaction centers of photosynthetic organisms, chlorophyll triplet states are sometimes formed by recombination of charge-separated intermediates. These triplets are excellent sensitizers for singlet oxygen formation. Carotenoid polyenes can provide photoprotection from singlet oxygen generation by rapidly quenching chlorophyll triplet states via triplet-triplet energy transfer. Because in bacteria the reaction center carotenoid is not located adjacent to the bacteriochlorophyll special pair, which is the origin of the charge separation, it has been postulated that quenching may occur via a triplet relay involving an intermediate chlorophyll monomer. We now report the synthesis and spectroscopic study of a covalently linked carotenoidmore » (C)-porphyrin (P)-pyropheophorbide (Ppd) triad molecule which mimics this triplet relay. The pyropheophorbide singlet-state C-P-[sup 1]Ppd (generated by direct excitation or energy transfer from the attached porphyrin) undergoes intersystem crossing to the triplet C-P-[sup 3]Ppd. In oxygen-free solutions, this triplet decays to [sup 3]C-p-Ppd through a triplet-transfer relay involving an intermediate C-[sup 3]P-Ppd species. In aerated solutions, quenching of C-P-[sup 3]Ppd by the attached carotenoid competes with singlet oxygen sensitization and thus provides a degree of photoprotection. In a similar traid containing a zinc porphyrin moiety, triplet transfer is slow due to the higher energy of the C-[sup 3]P[sub Zn]-Ppd intermediate, and photoprotection via the relay is nonexistent. The triplet relay ceases to function at low temperatures in both the natural and biomimetic cases due to the endergonicity of the first step. 37 refs., 6 figs., 1 tab.« less

  11. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  12. Magnetic Field Effects on Triplet-Triplet Annihilation in Solutions: Modulation of Visible/NIR Luminescence.

    PubMed

    Mani, Tomoyasu; Vinogradov, Sergei A

    2013-08-06

    Photon upconversion based on sensitized triplet-triplet annihilation (TTA) presents interest for such areas as photovoltaics and imaging. Usually energy upconversion is observed as p -type delayed fluorescence from molecules whose triplet states are populated via energy transfer from a suitable triplet donor, followed by TTA. Magnetic field effects (MFE) on delayed fluorescence in molecular crystals are well known; however, there exist only a few examples of MFE on TTA in solutions, and all of them are limited to UV-emitting materials. Here we present MFE on TTA-mediated visible and near infrared (NIR) emission, sensitized by far-red absorbing metalloporphyrins in solutions at room temperature. In addition to visible delayed fluorescence from annihilator, we also observed NIR emission from the sensitizer, occurring as a result of triplet-triplet energy transfer back from annihilator, termed "delayed phosphorescence". This emission also exhibits MFE, but opposite in sign to the annihilator fluorescence.

  13. Triplet-Triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design.

    PubMed

    Jiang, Xinpeng; Guo, Xinyan; Peng, Jiang; Zhao, Dahui; Ma, Yuguo

    2016-05-11

    Efficient visible-to-UV photon upconversion via triplet-triplet annihilation (TTA) is accomplished in polyurethane (PU) films by developing new, powerful photosensitizers fully functional in the solid-state matrix. These rationally designed triplet sensitizers feature a bichromophoric scaffold comprising a tris-cyclometalated iridium(III) complex covalently tethered to a suitable organic small molecule. The very rapid intramolecular triplet energy transfer from the former to the latter is pivotal for achieving the potent sensitizing ability, because this process out-competes the radiative and nonradiative decays inherent to the metal complex and produces long-lived triplet excitons localized with the acceptor moiety readily available for intermolecular transfer and TTA. Nonetheless, compared to the solution state, the molecular diffusion is greatly limited in solid matrices, which even creates difficulty for the Dexter-type intramolecular energy transfer. This is proven by the experimental results showing that the sensitizing performance of the bichromophoric molecules strongly depends on the spatial distance separating the donor (D) and acceptor (A) units and that incorporating a longer linker between the D and A evidently curbs the TTA upconversion efficiency in PU films. Using a rationally optimized sensitizer structure in combination with 2,7-di-tert-butylpyrene as the annihilator/emitter, the doped polyurethane (PU) films demonstrate effective visible-to-UV upconverted emission signal under noncoherent-light irradiation, attaining an upconversion quantum yield of 2.6%. Such quantum efficiency is the highest value so far reported for the visible-to-UV TTA systems in solid matrices.

  14. Relativistic potential energy surfaces of initial oxidations of Si(100) by atomic oxygen: The importance of surface dimer triplet state

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Rae; Shin, Seokmin; Choi, Cheol Ho

    2012-06-01

    The non-relativistic and relativistic potential energy surfaces (PESs) of the symmetric and asymmetric reaction paths of Si(100)-2×1 oxidations by atomic oxygen were theoretically explored. Although only the singlet PES turned out to exist as a major channel leading to "on-dimer" product, both the singlet and triplet PESs leading to "on-top" products are attractive. The singlet PESs leading to the two surface products were found to be the singlet combinations (open-shell singlet) of the low-lying triplet state of surface silicon dimer and the ground 3P state of atomic oxygen. The triplet state of the "on-top" product can also be formed by the ground singlet state of the surface silicon dimer and the same 3P oxygen. The attractive singlet PESs leading to the "on-dimer" and "on-top" products made neither the intersystem crossings from triplet to singlet PES nor high energy 1D of atomic oxygen necessary. Rather, the low-lying triplet state of surface silicon dimer plays an important role in the initial oxidations of silicon surface.

  15. Dynamics of intramolecular electron transfer reaction of FAD studied by magnetic field effects on transient absorption spectra.

    PubMed

    Murakami, Masaaki; Maeda, Kiminori; Arai, Tatsuo

    2005-07-07

    The kinetics of intermediates generated from intramolecular electron-transfer reaction by photo irradiation of the flavin adenine dinucleotide (FAD) molecule was studied by a magnetic field effect (MFE) on transient absorption (TA) spectra. Existence time of MFE and MFE action spectra have a strong dependence on the pH of solutions. The MFE action spectra have indicated the existence of interconversion between the radical pair and the cation form of the triplet excited state of flavin part. All rate constants of the triplet and the radical pair were determined by analysis of the MFE action spectra and decay kinetics of TA. The obtained values for the interconversion indicate that the formation of cation radical promotes the back electron-transfer reaction to the triplet excited state. Further, rate constants of spin relaxation and recombination have been studied by the time profiles of MFE at various pH. The drastic change of those two factors has been obtained and can be explained by SOC (spin-orbit coupling) induced back electron-transfer promoted by the formation of a stacking conformation at pH > 2.5.

  16. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions.

    PubMed

    Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee

    2017-04-06

    Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.

  17. Diphotons from electroweak triplet-singlet mixing

    DOE PAGES

    Howe, Kiel; Knapen, Simon; Robinson, Dean J.

    2016-08-23

    The neutral component of a real pseudoscalar electroweak (EW) triplet can produce a diphoton excess at 750 GeV, if it is somewhat mixed with an EW singlet pseudoscalar. This triplet-singlet mixing allows for greater freedom in the diboson branching ratios than the singlet-only case, but it is still possible to probe the parameter space extensively with 300 fb -1. The charged component of the triplet is pair produced at the LHC, which results in a striking signal in the form of a pair of Wγ resonances with an irreducible rate of 0.27 fb. Other signatures include multiboson final states from cascade decaysmore » of the triplet-singlet neutral states. In conclusion, a large class of composite models feature both EW singlet and triplet pseudo-Nambu-Goldstone bosons in their spectrum, with the diboson couplings generated by axial anomalies.« less

  18. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers.

    PubMed

    Andernach, Rolf; Utzat, Hendrik; Dimitrov, Stoichko D; McCulloch, Iain; Heeney, Martin; Durrant, James R; Bronstein, Hugo

    2015-08-19

    We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple time scales and investigated the mechanism of triplet exciton formation. During sensitization, singlet exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and found that 60% of the complex triplet excitons were transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and upconversion layers.

  19. Quenching of chlorophyll a singlets and triplets by carotenoids in light-harvesting complex of photosystem II: comparison of aggregates with trimers

    NASA Astrophysics Data System (ADS)

    Naqvi, K. Razi; Melø, T. B.; Raju, B. Bangar; Jávorfi, Tamás; Simidjiev, Ilian; Garab, Gyözö

    1997-12-01

    Laser-induced changes in the absorption spectra of isolated light-harvesting chlorophyll a/ b complex (LHC II) associated with photosystem II of higher plants have been recorded under anaerobic conditions and at ambient temperature by using multichannel detection with sub-microsecond time resolution. Difference spectra (Δ A) of LHC II aggregates have been found to differ from the corresponding spectra of trimers on two counts: (i) in the aggregates, the carotenoid (Car) triplet-triplet absorption band (Δ A>0) is red-shifted and broader; and (ii) the features attributable to the perturbation of the Qy band of a chlorophyll a (Chl a) by a nearby Car triplet are more pronounced, than in trimers. Aggregation, which is known to be accompanied by a reduction in the fluorescence yield of Chl a, is shown to cause a parallel decline in the triplet formation yield of Chl a; on the other hand, the efficiency (100%) of Chl a-to-Car transfer of triplet energy and the lifetime (9.3 μs) of Car triplets are not affected by aggregation. These findings are rationalized by postulating that the antenna Cars transact, besides light-harvesting and photoprotection, a third process: energy dissipation within the antenna. The suggestion is advanced that luteins, which are buried inside the LHC II monomers, as well as the other, peripheral, xanthophylls (neoxanthin and violaxanthin) quench the excited singlet state of Chl a by catalyzing internal conversion, a decay channel that competes with fluorescence and intersystem crossing; support for this explanation is presented by recalling reports of similar behaviour in bichromophoric model compounds in which one moiety is a Car and the other a porphyrin or a pyropheophorbide.

  20. Local CC2 response method for triplet states based on Laplace transform: excitation energies and first-order properties.

    PubMed

    Freundorfer, Katrin; Kats, Daniel; Korona, Tatiana; Schütz, Martin

    2010-12-28

    A new multistate local CC2 response method for calculating excitation energies and first-order properties of excited triplet states in extended molecular systems is presented. The Laplace transform technique is employed to partition the left/right local CC2 eigenvalue problems as well as the linear equations determining the Lagrange multipliers needed for the properties. The doubles part in the equations can then be inverted on-the-fly and only effective equations for the singles part must be solved iteratively. The local approximation presented here is adaptive and state-specific. The density-fitting method is utilized to approximate the electron-repulsion integrals. The accuracy of the new method is tested by comparison to canonical reference values for a set of 12 test molecules and 62 excited triplet states. As an illustrative application example, the lowest four triplet states of 3-(5-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophene-2-yl)thiophene-2-yl)-2-cyanoacrylic acid, an organic sensitizer for solar-cell applications, are computed in the present work. No triplet charge-transfer states are detected among these states. This situation contrasts with the singlet states of this molecule, where the lowest singlet state has been recently found to correspond to an excited state with a pronounced charge-transfer character having a large transition strength.

  1. Photofunctional triplet excited states of cyclometalated Ir(III) complexes: beyond electroluminescence.

    PubMed

    You, Youngmin; Nam, Wonwoo

    2012-11-07

    The development of cyclometalated Ir(III) complexes has enabled important breakthroughs in electroluminescence because such complexes permit the efficient population of triplet excited states that give rise to luminescent transitions. The triplet states of Ir(III) complexes are advantageous over those of other transition metal complexes in that their electronic transitions and charge-transfer characteristics are tunable over wide ranges. These favorable properties suggest that Ir(III) complexes have significant potential in a variety of photofunctions other than electroluminescence. In this critical review, we describe recent photonic applications of novel Ir(III) complexes. Ir(III) complexes have been shown to affect the exciton statistics in the active layers of organic photovoltaic cells, thereby improving the photon-to-current conversion efficiencies. Nonlinear optical applications that take advantage of the strong charge-transfer properties of triplet transitions are also discussed. The tunability of the electrochemical potentials facilitates the development of efficient photocatalysis in the context of water photolysis or organic syntheses. The photoredox reactivities of Ir(III) complexes have been employed in studies of charge migration along DNA chains. The photoinduced cytotoxicity of Ir(III) complexes on live cells suggests that the complexes may be useful in photodynamic therapy. Potential biological applications of the complexes include phosphorescence labeling and sensing. Intriguing platforms based on cyclometalated Ir(III) complexes potentially provide novel protein tagging and ratiometric detection. We envision that future research into the photofunctionality of Ir(III) complexes will provide important breakthroughs in a variety of photonic applications.

  2. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Excited triplet states as photooxidants in surface waters

    NASA Astrophysics Data System (ADS)

    Canonica, S.

    2012-12-01

    The chromophoric components of dissolved organic matter (DOM) are generally the main absorbers of sunlight in surface waters and therefore a source of transient reactants under irradiation. Such short-lived species can be relevant for the fate of various classes of chemical contaminants in the aquatic environment. The present contribution focuses on the role of excited triplet states of chromophoric DOM, 3CDOM*, as transient photooxidants initiating the transformation and degradation of organic chemical contaminants. An early study [1] indicated that 3CDOM* may play a dominant role in the photo-induced transformation of electron-rich phenols, a conclusion which was later fortified by the results of transient absorption investigations using aromatic ketones as model photosensitizers [2] and by a recent careful analysis of the effect of oxygen concentration on transformation rates [3]. The variety of aquatic contaminants shown to be affected by triplet-induced oxidation has kept increasing, phenylurea herbicides [4], sulfonamide antibiotics [5] and some phytoestrogens [6] being prominent examples. Recent research has shown that the triplet-induced transformation of specific contaminants, especially aromatic nitrogen compounds, could be inhibited by the presence of DOM, very probably due to its antioxidant moieties [7]. While such moieties are not relevant for the quenching of 3CDOM*, they are expected to react with it in a similar way as the studied contaminants. Analogous reactions can be postulated to occur in liquid or solid phases of the atmospheric environment, as demonstrated in the case of HONO formation [8]. References 1. Canonica, S.; Jans, U.; Stemmler, K.; Hoigné, J. Transformation kinetics of phenols in water: Photosensitization by dissolved natural organic material and aromatic ketones. Environ. Sci. Technol. 1995, 29 (7), 1822-1831. 2. Canonica, S.; Hellrung, B.; Wirz, J. Oxidation of phenols by triplet aromatic ketones in aqueous solution. J. Phys

  4. Efficient triplet harvesting of hybrid white organic light-emitting diodes using thermally activated delayed fluorescence green emitter

    NASA Astrophysics Data System (ADS)

    Lee, Song Eun; Lee, Ho Won; Baek, Hyun Jung; Yun, Tae Jun; Yun, Geum Jae; Kim, Woo Young; Kim, Young Kwan

    2016-10-01

    Hybrid white organic light-emitting diodes (WOLEDs) were fabricated by applying triplet harvesting (TH) using a green thermally activated delayed fluorescence (TADF) emitter. The triplet exciton of the green TADF emitter can be upconverted to its singlet state. The TH involved energy transfer of triplet exciton from a blue fluorescent emitter to a green TADF and red phosphorescent emitters, where they can decay radiatively. In addition, the triplet exciton of the green TADF emitter was energy transferred to its singlet state for a reverse intersystem crossing by green emission. Enhanced hybrid WOLEDs were demonstrated using an efficient green TADF emitter combined with red phosphorescent and blue fluorescent emitters. Hybrid WOLEDs were fabricated with various hole-electron recombination zones as changing blue emitting layer thicknesses. Among these, hybrid WOLEDs showed a maximum external quantum efficiency of 11.23%, luminous efficiency of 29.20 cd/A, and a power efficiency of 26.21 lm/W. Moreover, the WOLED exhibited electroluminescence spectra with Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1000 cd/m2 and a color rendering index of 82 at a practical brightness of 20,000 cd/m2.

  5. Reversible Photoisomerization among Triplet Amino Naphthylnitrene, Triplet Diimine Biradical, and Indazole: Matrix-Isolation IR Spectra of 8-Amino-1-naphthylnitrene, 1,8-Naphthalenediimine, and 1,2-Dihydrobenz[cd]indazole.

    PubMed

    Okamura, Takuya; Akai, Nobuyuki; Nakata, Munetaka

    2017-03-02

    Reaction mechanisms of nitrene, one of the most famous biradicals, have been frequently studied, and many spectral data have been obtained so far. In the present study, the experimental IR spectra of triplet 8-amino-1-naphthylnitrene ( 3 ANN), a triplet diimine biradical 1,8-dihydro-1,8-naphthalenediimine ( 3 DND), and 1,2-dihydrobenz[cd]indazole (DBI), which are produced in the UV photolysis of 1,8-diaminonaphthalene in an Ar matrix and identified by a combination method of IR spectroscopy and DFT quantum chemical calculations, are first reported. 3 ANN is found to change to DBI by hydrogen-atom migration with bond making between the two nitrogen atoms upon visible-light irradiation (λ > 580 nm) with its backward reaction caused by 350 nm irradiation. In addition, 3 ANN isomerizes to 3 DND by 700 nm irradiation, while its backward reaction occurs upon 500 nm irradiation. The wavelength dependences of these photoisomerizations are explained in terms of their electronic transition energies estimated by time-dependent DFT calculations. It is concluded that the novel reversible photoisomerization system among 3 ANN, 3 DND, and DBI is totally different from the well-known photoisomerization between phenylnitrene and a seven-membered cyclic compound.

  6. The role of secondary processes in kinetics of triplet states of a hydrogen molecule in an ECR discharge

    NASA Astrophysics Data System (ADS)

    Shakhatov, V. A.; Lebedev, Yu A.; Lacoste, A.; Bechu, S.

    2017-11-01

    An electronic state sensitive semiempirical collision-radiative model of hydrogen plasma of ECR-discharge is used to analyze the applicability of emission of triplet states of molecular hydrogen for plasma diagnostics. It is shown that secondary processes make the greatest contribution to the kinetics of population-depopulation of triplet states {a}3{{Σ }}}g+,{c}3{{{\\Pi }}}u,{d}3{{{\\Pi }}}u,{e}3{{{Σ }}}u+,{g}3{{{Σ }}}g+,{h}3{{{Σ }}}g+, i 3Πg and r 3Πg. The secondary processes give the smallest contribution to the excitation and deactivation of triplet states {f}3{{{Σ }}}u+ {\\unicode{x00438;} {k}3{{{\\Pi }}}u. Thus a simplified coronal model (electron impact excitation followed by radiative decay) can be used to process the intensities of the dipole allowed {f}3{{{Σ }}}u+ \\to {a}3{{{Σ }}}g+,{g}3{{{Σ }}}g+ and {k}3{{{\\Pi }}}u \\to {a}3{{{Σ }}}g+ transitions. The complicated collision-radiative model should be used for other transitions.

  7. Triplet energy transfer and triplet exciton recycling in singlet fission sensitized organic heterojunctions

    NASA Astrophysics Data System (ADS)

    Hamid, Tasnuva; Yambem, Soniya D.; Crawford, Ross; Roberts, Jonathan; Pandey, Ajay K.

    2017-08-01

    Singlet exciton fission is a process where an excited singlet state splits into two triplets, thus leading to generation of multiple excitons per absorbed photon in organic semiconductors. Herein, we report a detailed exciton management approach for multiexciton harvesting over a broadband region of the solar spectrum in singlet fission sensitized organic photodiodes. Through systematic studies on the model cascade of pentacene/rubrene/C60, we found that efficient photocurrent generation from pentacene can still occur despite the presence of a >10nm thick interlayer of rubrene in between the pentacene/C60 heterojunction. Our results show that thin rubrene interlayers of thickness < 5 nm are effective in maintaining the delicate balance between two free charge generation channels that progress independently via the electron and hole transfer routes. The contribution to photocurrent from pentacene despite having a reasonably thick rubrene interlayer, that too with higher triplet energy (T1=1.12 eV) than pentacene (T1= 0.86 eV), makes its operation a rather interesting result. We discuss the role of rubrene interlayer film discontinuity, triplet exciton reflection from rubrene interlayer and triplet energy transfer from rubrene to pentacene layer followed by diffusion of triplet excitons through rubrene as plausible mechanisms that would enable triplet excitons from pentacene to generate significant photocurrent in a multilayer organic heterojunction.

  8. Infrared Spectroscopy of the Mass 31 Cation: Protonated Formaldehyde VS. The Triplet Methoxy Cation

    NASA Astrophysics Data System (ADS)

    Mosley, J. D.; Cheng, T. C.; Duncan, M. A.

    2012-06-01

    The m/z=31 cation is produced by ionization and fragmentation of methanol, ethanol, dimethyl ether, etc. Two structures have been proposed, protonated formaldehyde (^1CH_2OH^+) and the triplet methoxy cation (^3CH_3O^+). The infrared spectrum of the mass 31 cation is obtained using infrared photodissociation spectroscopy with Ar tagging. The spectrum reveals the presence of two stable isomers, protonated formaldehyde (^1CH_2OH^+) and the triplet methoxy cation (^3CH_3O^+). The triplet methoxy cation has been studied extensively and is predicted to interconvert to protonated formaldehyde through an essentially barrierless process on a timescale much faster than our experiment (>100 μs). The presence of two structural isomers is verified by comparison of spectra from different precursors and spectra of different temperature ions from the same precursor.

  9. Interactions of NO{sub 2}{sup {minus}} and SO{sub 3}{sup 2{minus}} with organic triplets. Charge transfer versus energy transfer: The role of reorganization energy in triplet-anion interactions and spectroscopic methods for its evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loeff, I.; Treinin, A.; Linschitz, H.

    1992-06-25

    Charge-transfer (CT) and energy-transfer (NT) interactions of simple anions with organic triplets are reviewed and discussed in connection with new quenching rate constant (K{sub q}) and radical yield measurements for SO{sub 3}{sup 2{minus}} and No{sub 2}{sup {minus}}. In the latter case both processes may occur at high organic triplet energies. Reorganization energies for one-electron oxidations are obtained for several anions, using data on charge-transfer-to-solvent (CTTS) spectra and photoelectron emission thresholds, which like the kinetic parameters of Marcus-Hush theory, also reflect Franck-Condon strains. The results, combined with thermodynamic free energies, give vertical redox potentials which correlate better than do equilibrium potentialsmore » with quenching rates. The theoretical basis for correlation between k{sub q} and Hv{sub CTTS} is discussed in the framework of Marcus rate theory. Assigning the total reorganization energy in the CT quenching reaction to the small anion component of the D-A pair gives reasonable agreement with data on quenching of dye triplets but too slow rates for aryl carbonyl triplets where exciplex formation may possibly occur. The optical reorganization energy for NO{sub 2}{sup {minus}} leads to values of the thermal self-exchange rate agreeing with those computed from the Marcus-Hush cross-relations, which also neglect bonding effects. The mechanism of NO{sub 2}{sup {minus}} interaction with triplets is discussed in detail, including indirect kinetic evidence for quenching of a short-lived exciplex by NO{sub 2}{sup {minus}} without radical formation. The possibility of reduction by triplet NO{sub 2}{sup {minus}} formed by initial NT from the organic triplet is also considered. Finally, a scheme is presented involving an equilibrium between CT and NT states and relating the free energy difference between these states to radical yields. 54 refs., 8 figs., 3 tabs.« less

  10. Determinants of the efficiency of photon upconversion by triplet-triplet annihilation in the solid state: zinc porphyrin derivatives in PVA.

    PubMed

    Rautela, Ranjana; Joshi, Neeraj K; Novakovic, Sacha; Wong, Wallace W H; White, Jonathan M; Ghiggino, Kenneth P; Paige, Matthew F; Steer, Ronald P

    2017-08-30

    Spectroscopic, photophysical and computational studies designed to expose and explain the differences in the efficiencies of non-coherent photon upconversion (NCPU) by triplet-triplet annihilation (TTA) have been carried out for a new series of alkyl-substituted diphenyl and tetraphenyl zinc porphyrins, both in fluid solution and in solid films. Systematic variations in the alkyl-substitution of the phenyl groups in both the di- and tetraphenyl porphyrins introduces small, but well-understood changes in their spectroscopic and photophysical properties and in their TTA efficiencies. In degassed toluene solution TTA occurs for all derivatives and produces the fluorescent S 2 product states in all cases. In PVA matrices, however, none of the di-phenylporphyrins exhibit measurable NCPU whereas all the tetraphenyl-substituted compounds remain upconversion-active. In PVA the NCPU efficiencies of the zinc tetraphenylporphyrins vary significantly with their steric characteristics; the most sterically crowded tetraphenyl derivative exhibits the greatest efficiency. DFT-D computations have been undertaken and help reveal the sources of these differences.

  11. Identification of a triplet pair intermediate in singlet exciton fission in solution

    PubMed Central

    Stern, Hannah L.; Musser, Andrew J.; Gelinas, Simon; Parkinson, Patrick; Herz, Laura M.; Bruzek, Matthew J.; Anthony, John; Friend, Richard H.; Walker, Brian J.

    2015-01-01

    Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley–Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]—tetracene we find rapid (<100 ps) formation of excimers and a slower (∼10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process. PMID:26060309

  12. Understanding Singlet and Triplet Excitons in Acene Crystals from First Principles

    NASA Astrophysics Data System (ADS)

    Rangel Gordillo, Tonatiuh; Sharifzadeh, Sahar; Kronik, Leeor; Neaton, Jeffrey

    2014-03-01

    Singlet fission, a process in which two triplet excitons are formed from a singlet exciton, has the potential to increase the solar cell efficiencies above 100%. Efficient singlet fission has been reported in larger acene crystals, such as tetracene and pentacene, in part attributable to their low-lying triplet energies. In this work, we use many-body perturbation theory within the GW approximation and the Bethe-Salpeter equation approach to compute quasiparticle gaps, low-lying singlet and and triplet excitations, and optical absorption spectra across the entire acene family of crystals, from benzene to hexacene. We closely examine the degree of localization and charge-transfer character of the low-lying singlets and triplets, and their sensitivity to crystal environment, and discuss implications for the efficiency of singlet fission in this systems. This work supported by DOE and computational resources provided by NERSC.

  13. Enhanced Access to the Dark Triplet States of 7Li 2 through New Singlet-Triplet A1Σ +u ˜ b3Π u Perturbation Window Levels: Perturbation-Facilitated Optical-Optical Double Resonance Study of the 2 3Σ +g State

    NASA Astrophysics Data System (ADS)

    Lazarov, Guenadiy; Lyyra, A. Marjatta; Li, Li

    2001-01-01

    Two new pairs of singlet-triplet A1Σ+u ∼ b3Πu mixed levels of 7Li2 have been observed and used here as 'window' levels in cw perturbation-facilitated optical-optical double-resonance (PFOODR) experiments. Previously, only one b3Πu vibrational level, v = 19, was known to mix with the singlet A1Σ+uv = 13 level, resulting in three perturbed A ∼ b pairs [L. Li, T. An, T.-J. Whang, A. M. Lyyra, W. C. Stwalley, R. W. Field, and R. A. Bernheim, J. Chem. Phys. 96, 3342 (1992)]. The scarcity of window levels and the resulting difficulty in accessing the dark triplet states of Li2 is caused by the weak spin-orbit interaction of Li2. The two new mixed b3Πuv = 15 and 22 levels reported here enhance access to the dark triplet state manifold through expansion of the Franck-Condon overlap factor range. Furthermore, the earlier range of accessible rotational levels, N = 5, 7, and 10, is now expanded to include N = 8 and N = 16, thereby allowing for more reliable determination of the excited triplet states rotational structure. To demonstrate the importance of the new A1Σ+u ∼ b3Πu mixed levels, we have studied the 23Σ+g state by cw PFOODR fluorescence excitation spectroscopy. New molecular constants and RKR potential curve have been determined. As previously reported [L. Li, G. Lazarov, and A. M. Lyyra, J. Mol. Spectrosc. 191, 387 (1998)], the 23Σ+g state interacts with the repulsive 13Πg state by L-uncoupling and predissociates. We show that some 23Πg levels predissociate accidentally by the 13Πg state via the 23Σ+g state through L-uncoupling.

  14. An electron spin polarization study of the interaction of photoexcited triplet molecules with mono- and polynitroxyl stable free radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turro, N.J.; Khudyakov, I.V.; Bossmann, S.H.

    1993-02-11

    Time-resolved electron spin resonance (TR ESR) has been used to investigate the chemically induced dynamic electron polarization (CIDEP) generated by the interaction of stable free radicals with the triplet states of benzophenone, benzil, and 2-acetylnaphthalene. The stable radicals were mono-, di-, tri-, and tetranitroxyl free radicals possessing the 2,2,6,6-tetramethylpiperidine-N-oxyl moiety. All of the stable radical systems investigated were found to be emissively polarized by interaction with the triplet states, and the phase of polarization was independent of the sign of zero-field splitting (D) of the interacting triple molecule. Possible and likely mechanisms of polarization transfer (creation) resulting from the interactionmore » of photoexcited triplet molecules with nitroxyls in the strong electron exchange are discussed. The emissive CIDEP of nitroxyls observed in the interactions with triplet benzil, which has D > 0, provides strong support for the operation of the radical-triplet pair mechanism. Within the time scale of TR ESR experiments ([approximately]10[sup [minus]7]--10[sup [minus]6] s) no significant variation in the shape of the CIDEP spectra of the nitroxyls was observed, either in viscous media or in micelles. It is concluded that intramolecular spin exchange (or conformational change) of polynitroyls occurs much faster than the time resolution of the experiment. 24 refs., 6 figs., 1 tab.« less

  15. A first detection of singlet to triplet conversion from the 1 1B u- to the 1 3A g state and triplet internal conversion from the 1 3A g to the 1 3B u state in carotenoids: dependence on the conjugation length

    NASA Astrophysics Data System (ADS)

    Rondonuwu, Ferdy S.; Watanabe, Yasutaka; Fujii, Ritsuko; Koyama, Yasushi

    2003-07-01

    Subpicosecond time-resolved absorption spectra were recorded in the visible region for a set of photosynthetic carotenoids having different numbers of conjugated double bonds ( n), which include neurosporene ( n=9), spheroidene ( n=10), lycopene ( n=11), anhydrorhodovibrin ( n=12) and spirilloxanthin ( n=13). Singular-value decomposition and global fitting of the spectral-data matrices lead us to a branched relaxation scheme including both (1) the singlet internal conversion in the sequence of 1 1B u+ → 1 1B u- → 2 1A g- → 1 1A g-(ground), and (2) the singlet-to-triplet conversion of 1 1B u- → 1 3A g followed by triplet internal conversion of 1 3A g → 1 3B u.

  16. Bodipy-C60 triple hydrogen bonding assemblies as heavy atom-free triplet photosensitizers: preparation and study of the singlet/triplet energy transfer.

    PubMed

    Guo, Song; Xu, Liang; Xu, Kejing; Zhao, Jianzhang; Küçüköz, Betül; Karatay, Ahmet; Yaglioglu, Halime Gul; Hayvali, Mustafa; Elmali, Ayhan

    2015-07-01

    Supramolecular triplet photosensitizers based on hydrogen bonding-mediated molecular assemblies were prepared. Three thymine-containing visible light-harvesting Bodipy derivatives ( B-1 , B-2 and B-3 , which show absorption at 505 nm, 630 nm and 593 nm, respectively) were used as H-bonding modules, and 1,6-diaminopyridine-appended C 60 was used as the complementary hydrogen bonding module ( C-1 ), in which the C 60 part acts as a spin converter for triplet formation. Visible light-harvesting antennae with methylated thymine were prepared as references ( B-1-Me , B-2-Me and B-3-Me ), which are unable to form strong H-bonds with C-1 . Triple H-bonds are formed between each Bodipy antenna ( B-1 , B-2 and B-3 ) and the C 60 module ( C-1 ). The photophysical properties of the H-bonding assemblies and the reference non-hydrogen bond-forming mixtures were studied using steady state UV/vis absorption spectroscopy, fluorescence emission spectroscopy, electrochemical characterization, and nanosecond transient absorption spectroscopy. Singlet energy transfer from the Bodipy antenna to the C 60 module was confirmed by fluorescence quenching studies. The intersystem crossing of the latter produced the triplet excited state. The nanosecond transient absorption spectroscopy showed that the triplet state is either localized on the C 60 module (for assembly B-1·C-1 ), or on the styryl-Bodipy antenna (for assemblies B-2·C-1 and B-3·C-1 ). Intra-assembly forward-backward (ping-pong) singlet/triplet energy transfer was proposed. In contrast to the H-bonding assemblies, slow triplet energy transfer was observed for the non-hydrogen bonding mixtures. As a proof of concept, these supramolecular assemblies were used as triplet photosensitizers for triplet-triplet annihilation upconversion.

  17. The photophysics of monomeric bacteriochlorophylls c and d and their derivatives: properties of the triplet state and singlet oxygen photogeneration and quenching

    NASA Technical Reports Server (NTRS)

    Krasnovsky, A. A. Jr; Cheng, P.; Blankenship, R. E.; Moore, T. A.; Gust, D.

    1993-01-01

    Measurements of pigment triplet-triplet absorption, pigment phosphorescence and photosensitized singlet oxygen luminescence were carried out on solutions containing monomeric bacteriochlorophylls (Bchl) c and d, isolated from green photosynthetic bacteria, and their magnesium-free and farnesyl-free analogs. The energies of the pigment triplet states fell in the range 1.29-1.34 eV. The triplet lifetimes in aerobic solutions were 200-250 ns; they increased to 280 +/- 70 microseconds after nitrogen purging in liquid solutions and to 0.7-2.1 ms in a solid matrix at ambient or liquid nitrogen temperatures. Rate constants for quenching of the pigment triplet state by oxygen were (2.0-2.5) x 10(9) M-1 s-1, which is close to 1/9 of the rate constant for diffusion-controlled reactions. This quenching was accompanied by singlet oxygen formation. The quantum yields for the triplet state formation and singlet oxygen production were 55-75% in air-saturated solutions. Singlet oxygen quenching by ground-state pigment molecules was observed. Quenching was the most efficient for magnesium-containing pigments, kq = (0.31-1.2) x 10(9) M-1 s-1. It is caused mainly by a physical process of singlet oxygen (1O2) deactivation. Thus, Bchl c and d and their derivatives, as well as chlorophyll and Bchl a, combine a high efficiency of singlet oxygen production with the ability to protect photochemical and photobiological systems against damage by singlet oxygen.

  18. Nearly Perfect Triplet-Triplet Energy Transfer from Wannier Excitons to Naphthalene in Organic-Inorganic Hybrid Quantum-Well Materials

    NASA Astrophysics Data System (ADS)

    Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.

    2008-06-01

    We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.

  19. Experimental Investigation of Triplet Correlation Approximations for Fluid Water.

    PubMed

    Pallewela, Gayani N; Ploetz, Elizabeth A; Smith, Paul E

    2018-08-25

    Triplet correlations play a central role in our understanding of fluids and their properties. Of particular interest is the relationship between the pair and triplet correlations. Here we use a combination of Fluctuation Solution Theory and experimental pair radial distribution functions to investigate the accuracy of the Kirkwood Superposition Approximation (KSA), as given by integrals over the relevant pair and triplet correlation functions, at a series of state points for pure water using only experimental quantities. The KSA performs poorly, in agreement with a variety of other studies. Several additional approximate relationships between the pair and triplet correlations in fluids are also investigated and generally provide good agreement for the fluid thermodynamics for regions of the phase diagram where the compressibility is small. A simple power law relationship between the pair and triplet fluctuations is particularly successful for state points displaying low to moderately high compressibilities.

  20. Bodipy–C60 triple hydrogen bonding assemblies as heavy atom-free triplet photosensitizers: preparation and study of the singlet/triplet energy transfer† †Electronic supplementary information (ESI) available: Syntheses, structure characterization data, and UV/vis absorption and emission spectra. See DOI: 10.1039/c4sc03865g

    PubMed Central

    Guo, Song; Xu, Liang; Xu, Kejing; Küçüköz, Betül; Karatay, Ahmet; Yaglioglu, Halime Gul; Hayvali, Mustafa; Elmali, Ayhan

    2015-01-01

    Supramolecular triplet photosensitizers based on hydrogen bonding-mediated molecular assemblies were prepared. Three thymine-containing visible light-harvesting Bodipy derivatives (B-1, B-2 and B-3, which show absorption at 505 nm, 630 nm and 593 nm, respectively) were used as H-bonding modules, and 1,6-diaminopyridine-appended C60 was used as the complementary hydrogen bonding module (C-1), in which the C60 part acts as a spin converter for triplet formation. Visible light-harvesting antennae with methylated thymine were prepared as references (B-1-Me, B-2-Me and B-3-Me), which are unable to form strong H-bonds with C-1. Triple H-bonds are formed between each Bodipy antenna (B-1, B-2 and B-3) and the C60 module (C-1). The photophysical properties of the H-bonding assemblies and the reference non-hydrogen bond-forming mixtures were studied using steady state UV/vis absorption spectroscopy, fluorescence emission spectroscopy, electrochemical characterization, and nanosecond transient absorption spectroscopy. Singlet energy transfer from the Bodipy antenna to the C60 module was confirmed by fluorescence quenching studies. The intersystem crossing of the latter produced the triplet excited state. The nanosecond transient absorption spectroscopy showed that the triplet state is either localized on the C60 module (for assembly B-1·C-1), or on the styryl-Bodipy antenna (for assemblies B-2·C-1 and B-3·C-1). Intra-assembly forward–backward (ping-pong) singlet/triplet energy transfer was proposed. In contrast to the H-bonding assemblies, slow triplet energy transfer was observed for the non-hydrogen bonding mixtures. As a proof of concept, these supramolecular assemblies were used as triplet photosensitizers for triplet–triplet annihilation upconversion. PMID:29218142

  1. Photochemistry of furyl- and thienyldiazomethanes: spectroscopic characterization of triplet 3-thienylcarbene.

    PubMed

    Pharr, Caroline R; Kopff, Laura A; Bennett, Brian; Reid, Scott A; McMahon, Robert J

    2012-04-11

    Photolysis (λ > 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N(2) at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm(-1), |E/hc| = 0.0554 cm(-1); |D/hc| = 0.579 cm(-1), |E/hc| = 0.0315 cm(-1)). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon-an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λ(max) = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C(5)H(4)S or C(5)H(4)O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively). © 2012 American Chemical Society

  2. Photoinduced triplet-triplet energy transfer in a 2-ureido-4(1H)-pyrimidinone-bridged, quadruply hydrogen-bonded ferrocene-fullerene assembly.

    PubMed

    Feng, Ke; Yu, Mao-Lin; Wang, Su-Min; Wang, Ge-Xia; Tung, Chen-Ho; Wu, Li-Zhu

    2013-01-14

    2-Ureido-4(1H)-pyrimidinone-bridged ferrocene-fullerene assembly I is designed and synthesized for elaborating the photoinduced electron-transfer processes in self-complementary quadruply hydrogen-bonded modules. Unexpectedly, steady-state and time-resolved spectroscopy reveal an inefficient electron-transfer process from the ferrocene to the singlet or triplet excited state of the fullerene, although the electron-transfer reactions are thermodynamically feasible. Instead, an effective intra-assembly triplet-triplet energy-transfer process is found to be operative in assembly I with a rate constant of 9.2×10(5) s(-1) and an efficiency of 73% in CH(2)Cl(2) at room temperature. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Conformationally Constrained, Stable, Triplet Ground State (S = 1) Nitroxide Diradicals. Antiferromagnetic Chains of S = 1 Diradicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajca, Andrzej; Takahashi, Masahiro; Pink, Maren

    2008-06-30

    Nitroxide diradicals, in which nitroxides are annelated to m-phenylene forming tricyclic benzobisoxazine-like structures, have been synthesized and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, as well as magnetic studies in solution and in solid state. For the octamethyl derivative of benzobisoxazine nitroxide diradical, the conformationally constrained nitroxide moieties are coplanar with the m-phenylene, leading to large values of 2J (2J/k > 200 K in solution and 2J/k >> 300 K in the solid state). For the diradical, in which all ortho and para positions of the m-phenylene are sterically shielded, distortion of the nitroxide moietiesmore » from coplanarity is moderate, such that the singlet-triplet gaps remain large in both solution (2J/k > 200 K) and the solid state (2J/k {approx} 400-800 K), though an onset of thermal depopulation of the triplet ground state is detectable near room temperature. These diradicals have robust triplet ground states with strong ferromagnetic coupling and good stability at ambient conditions. Magnetic behavior of the nitroxide diradicals at low temperature is best fit to the model of one-dimensional S = 1 Heisenberg chains with intrachain antiferromagnetic coupling. The antiferromagnetic coupling between the S = 1 diradicals may be associated with the methyl nitroxide C-H {hor_ellipsis} O contacts, including nonclassical hydrogen bonds. These unprecedented organic S = 1 antiferromagnetic chains are highly isotropic, compared to those of the extensively studied Ni(II)-based chains.« less

  4. Ping-Pong Energy Transfer in a Boron Dipyrromethane Containing Pt(II)-Schiff Base Complex: Synthesis, Photophysical Studies, and Anti-Stokes Shift Increase in Triplet-Triplet Annihilation Upconversion.

    PubMed

    Razi, Syed S; Koo, Yun Hee; Kim, Woojae; Yang, Wenbo; Wang, Zhijia; Gobeze, Habtom; D'Souza, Francis; Zhao, Jianzhang; Kim, Dongho

    2018-05-07

    A boron dipyrromethane (BDP)-containing Pt(II)-Schiff base complex (Pt-BDP), showing ping-pong singlet-triplet energy transfer, was synthesized, and the detailed photophysical properties were investigated using various steady-state and time-resolved transient spectroscopies. Femtosecond/nanosecond transient absorption spectroscopies demonstrated that, upon selective excitation of the BDP unit in Pt-BDP at 490 nm, Förster resonance energy transfer from the BDP unit to the Pt(II) coordination center occurred (6.7 ps), accompanied by an ultrafast intersystem crossing at the Pt(II) coordination center (<1 ps) and triplet-triplet energy transfer back to the BDP moiety (148 ps). These processes generated a triplet state localized at BDP, and the lifetime was 103.2 μs, much longer than the triplet-state lifetime of Pt-Ph (3.5 μs), a complex without the BDP moiety. Finally, Pt-BDP was used as a triplet photosensitizer for triplet-triplet annihilation (TTA) upconversion through selective excitation of the BDP unit or the Pt(II) coordination center at lower excitation energy. An upconversion quantum yield of up to 10% was observed with selective excitation of the BDP moiety, and a large anti-Stokes shift of 0.65 eV was observed upon excitation of the lower-energy band of the Pt(II) coordination center. We propose that using triplet photosensitizers with the ping-pong energy-transfer process may become a useful method for increasing the anti-Stokes shift of TTA upconversion.

  5. Matrix Isolation Spectroscopy and Photochemistry of Triplet 1,3-DIMETHYLPROPYNYLIDENE (MeC3Me)

    NASA Astrophysics Data System (ADS)

    Knezz, Stephanie N.; Waltz, Terese A.; Haenni, Benjamin C.; Burrmann, Nicola J.; McMahon, Robert J.

    2015-06-01

    Acetylenic carbenes and conjugated carbon chain molecules of the HCnH family are relevant to the study of combustion and chemistry in the interstellar medium (ISM). Propynylidene (HC3H) has been thoroughly studied and its structure and photochemistry determined. Here, we produce triplet diradical 1,3-dimethylpropynylidene (MeC3Me) photochemically from a precursor diazo compound in a cryogenic matrix (N2 or Ar) at 10 K, and spectroscopic analysis is carried out. The infrared, electronic absorption, and electron paramagnetic resonance spectra were examined in light of the parent (HC3H) system to ascertain the effect of alkyl substituents on delocalized carbon chains of this type. Computational analysis, EPR, and infrared analysis indicate a triplet ground state with a quasilinear structure. Infrared experiments reveal photochemical reaction to penten-3-yne upon UV irradiation. Further experimental and computational results pertaining to the structure and photochemistry will be presented. Seburg, R. A.; Patterson, E. V.; McMahon, R. J., Structure of Triplet Propynylidene (HCCCH) as Probed by IR, UV/vis, and EPR Spectroscopy of Isotopomers. Journal of the American Chemical Society 2009, 131 (26), 9442-9455.

  6. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    PubMed

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption.

    PubMed

    Yanai, Nobuhiro; Kimizuka, Nobuo

    2017-10-17

    Photon upconversion based on triplet-triplet annihilation (TTA-UC) has attracted much interest because of its possible applications to renewable energy production and biological fields. In particular, the UC of near-infrared (NIR) light to visible (vis) light is imperative to overcome the Shockley-Queisser limit of single-junction photovoltaic cells, and the efficiency of photocatalytic hydrogen production from water can also be improved with the aid of vis-to-ultraviolet (UV) UC. However, both processes have met limitations in the wavelength range, efficiency, and sensitivity for weak incident light. This Account describes recent breakthroughs that solve these major problems, new triplet sensitization routes to significantly enlarge the range of conversion wavelength by minimizing the energy loss during intersystem crossing (ISC) of triplet sensitizers or bypassing the ISC process. The photochemical processes of TTA-UC in general start with the absorption of longer wavelength incident light by triplet sensitizers, which generate the triplet states via ISC. This ISC inevitably accompanies the energy loss of hundreds of millielectronvolts, which significantly limits the TTA-UC with large anti-Stokes shifts. The small S 1 -T 1 gap of molecules showing thermally activated delayed fluorescence (TADF) allows the sensitization of emitters with the highest T 1 and S 1 energy levels ever employed in TTA-UC, which results in efficient vis-to-UV UC. As alternatives to molecular sensitizers in the NIR region, inorganic nanocrystals with broad NIR absorption bands have recently been shown to work as effective sensitizers for NIR-to-vis TTA-UC. Their small exchange splitting minimizes the energy loss during triplet sensitization. The modification of nanocrystal surfaces with organic acceptors via coordination bonds allows efficient energy transfer between the components and succeeding TTA processes. To remove restrictions on the energy loss during ISC, molecules with direct

  8. Definition and determination of the triplet-triplet energy transfer reaction coordinate.

    PubMed

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Acuña, A Ulises; Frutos, Luis Manuel

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  9. Definition and determination of the triplet-triplet energy transfer reaction coordinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfermore » processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.« less

  10. DERIVING METALLICITIES FROM THE INTEGRATED SPECTRA OF EXTRAGALACTIC GLOBULAR CLUSTERS USING THE NEAR-INFRARED CALCIUM TRIPLET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, Caroline; Forbes, Duncan A.; Proctor, Robert N.

    2010-04-15

    The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as a metallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a functionmore » of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.« less

  11. Triplet-triplet annihilation in highly efficient fluorescent organic light-emitting diodes: current state and future outlook.

    PubMed

    Kondakov, Denis Y

    2015-06-28

    Studies of delayed electroluminescence in highly efficient fluorescent organic light-emitting diodes (OLEDs) of many dissimilar architectures indicate that the triplet-triplet annihilation (TTA) significantly increases yield of excited singlet states-emitting molecules in this type of device thereby contributes substantially to their efficiency. Towards the end of the 2000s, the essential role of TTA in realizing highly efficient fluorescent devices was widely recognized. Analysis of a diverse set of fluorescent OLEDs shows that high efficiencies are often cor-related to TTA extents. It is therefore likely that it is the long-term empirical optimization of OLED efficiencies that has resulted in fortuitous emergence of TTA as a large and ubiquitous contributor to efficiency. TTA contributions as high as 20-30% are common in the state-of-the-art OLEDs, and even become dominant in special cases, where TTA is shown to substantially exceed the spin-statistical limit. The fundamental features of OLED efficiency enhancement via TTA-molecular structure-dependent contributions, current density-dependent intensities in practical devices and frequently observed antagonistic relationships between TTA extent and OLED lifetime-came to be understood over the course of the next few years. More recently, however, there was much less reported progress with respect to all-important quantitative details of the TTA mechanism. It should be emphasized that, to this day and despite the decades of work on improving blue phosphorescent OLEDs as well as the recent advent of thermally activated delayed fluorescence OLEDs, the majority of practical blue OLEDs still rely on TTA. Considering such practical importance of fluorescent blue OLEDs, the design of blue OLED-compatible materials capable of substantially exceeding the spin-statistical limit in TTA, elimination of the antagonistic relationship between TTA-related efficiency gains and lifetime losses, and designing devices with an extended

  12. Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties.

    PubMed

    McNeill, Kristopher; Canonica, Silvio

    2016-11-09

    Excited triplet states of chromophoric dissolved organic matter ( 3 CDOM*) play a major role among the reactive intermediates produced upon absorption of sunlight by surface waters. After more than two decades of research on the aquatic photochemistry of 3 CDOM*, the need for improving the knowledge about the photophysical and photochemical properties of these elusive reactive species remains considerable. This critical review examines the efforts to date to characterize 3 CDOM*. Information on 3 CDOM* relies mainly on the use of probe compounds because of the difficulties associated with directly observing 3 CDOM* using transient spectroscopic methods. Singlet molecular oxygen ( 1 O 2 ), which is a product of the reaction between 3 CDOM* and dissolved oxygen, is probably the simplest indicator that can be used to estimate steady-state concentrations of 3 CDOM*. There are two major modes of reaction of 3 CDOM* with substrates, namely triplet energy transfer or oxidation (via electron transfer, proton-coupled electron transfer or related mechanisms). Organic molecules, including several environmental contaminants, that are susceptible to degradation by these two different reaction modes are reviewed. It is proposed that through the use of appropriate sets of probe compounds and model photosensitizers an improved estimation of the distribution of triplet energies and one-electron reduction potentials of 3 CDOM* can be achieved.

  13. Can H-aggregates serve as light-harvesting antennae? Triplet-triplet energy transfer between excited aggregates and monomer thionine in aerosol-OT solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.; Kamat, P.V.

    1999-01-07

    The cationic dye thionine undergoes slow dissolution in aerosol-OT (AOT) containing solutions of heptane and toluene. By controlling the ratio of [dye]/[AOT], it is possible to obtain varying amounts of monomer, dimer, and higher order aggregates (trimer) in dilute dye solutions. The thionine aggregates exhibit characteristic absorption maxima at 565 and 530 nm for the dimer and trimer forms, respectively. The singlet excited states of these dye aggregates are short-lived ({tau} = 40--63 ps) as they undergo efficient intersystem crossing to generate the triplet excited states. Triplet energy transfer from the excited dye aggregates to monomeric thionine molecules was observedmore » upon excitation with a 532 nm laser pulse. Pulse radiolysis experiments, in which the excited triplet states were generated indirectly, also confirm the finding that the triplet energy cascades down from excited trimer to dimer to monomeric dye. These studies demonstrate the possibility of using H-type dye aggregates as antenna molecules to harvest light energy whereby the aggregate molecules absorb light in different spectral regions and subsequently transfer energy to the monomeric dye.« less

  14. Promoting Singlet/triplet Exciton Transformation in Organic Optoelectronic Molecules: Role of Excited State Transition Configuration.

    PubMed

    Chen, Runfeng; Tang, Yuting; Wan, Yifang; Chen, Ting; Zheng, Chao; Qi, Yuanyuan; Cheng, Yuanfang; Huang, Wei

    2017-07-24

    Exciton transformation, a non-radiative process in changing the spin multiplicity of an exciton usually between singlet and triplet forms, has received much attention recently due to its crucial effects in manipulating optoelectronic properties for various applications. However, current understanding of exciton transformation mechanism does not extend far beyond a thermal equilibrium of two states with different multiplicity and it is a significant challenge to probe what exactly control the transformation between the highly active excited states. Here, based on the recent developments of three types of purely organic molecules capable of efficient spin-flipping, we perform ab initio structure/energy optimization and similarity/overlap extent analysis to theoretically explore the critical factors in controlling the transformation process of the excited states. The results suggest that the states having close energy levels and similar exciton characteristics with same transition configurations and high heteroatom participation are prone to facilitating exciton transformation. A basic guideline towards the molecular design of purely organic materials with facile exciton transformation ability is also proposed. Our discovery highlights systematically the critical importance of vertical transition configuration of excited states in promoting the singlet/triplet exciton transformation, making a key step forward in excited state tuning of purely organic optoelectronic materials.

  15. Triplet Transport to and Trapping by Acceptor End Groups on Conjugated Polyfluorene Chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreearunothai, P.; Miller, J.; Estrada, A.

    2011-08-31

    Triplet excited states created in polyfluorene (pF) molecules having average lengths up to 170 repeat units were transported to and captured by trap groups at the ends in less {approx}40 ns. Almost all of the triplets attached to the chains reached the trap groups, ruling out the presence of substantial numbers of defects that prevent transport. The transport yields a diffusion coefficient D of at least 3 x 10{sup -4} cm{sup 2} s{sup -1}, which is 30 times typical molecular diffusion and close to a value for triplet transport reported by Keller (J. Am. Chem. Soc.2011, 133, 11289-11298). The tripletmore » states were created in solution by pulse radiolysis; time resolution was limited by the rate of attachment of triplets to the pF chains. Naphthylimide (NI) or anthraquinone (AQ) groups attached to the ends of the chains acted as traps for the triplets, although AQ would not have been expected to serve as a trap on the basis of triplet energies of the separate molecules. The depths of the NI and AQ triplet traps were determined by intermolecular triplet transfer equilibria and temperature dependence. The trap depths are shallow, just a few times thermal energy for both, so a small fraction of the triplets reside in the pF chains in equilibrium with the end-trapped triplets. Trapping by AQ appears to arise from charge transfer interactions between the pF chains and the electron-accepting AQ groups. Absorption bands of the end-trapped triplet states are similar in peak wavelength (760 nm) and shape to the 760 nm bands of triplets in the pF chains but have reduced intensities. When an electron donor, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), is added to the solution, it reacts with the end-trapped triplets to remove the 760 nm bands and to make the trapping irreversible. New bands created upon reaction with TMPD may be due to charge transfer states.« less

  16. Phenol and terpene quenching of singlet- and triplet-excited states of riboflavin in relation to light-struck flavor formation in beer.

    PubMed

    Cardoso, Daniel R; Olsen, Karsten; Møller, Jens K S; Skibsted, Leif H

    2006-07-26

    Phenolic compounds present in beer were shown by fluorescence spectroscopy and laser flash photolysis to deactivate both singlet- and triplet-excited states of riboflavin with bimolecular rate constants close to the diffusion control ranging from 2.8x10(9) to 1.1x10(10) M-1 s-1 and from 1.1x10(9) to 2.6x10(9) M-1 s-1, respectively. Enthalpies of activation were low (up to 33.2 kJ mol-1), and entropies of activation were positive, ranging from 17 to 92 J mol-1 K-1, as derived from temperature dependence, indicating a compensation effect. From a Stern-Volmer analysis of the singlet-excited riboflavin quenching by phenols it was found that high amounts of phenolic compounds (>0.3 M) would be needed to hinder triplet-excited riboflavin generation. On the other hand, a phenolic content of 0.36 mM is likely to quench 90% of the triplet-excited state. Phenol photodegradation was found to be complex, and using ESI-MS analysis it was not possible to identify specific photooxidation products of the phenolic compounds; only the photoproducts of riboflavin could be detected and structurally assigned. The rate of reaction of triplet-excited riboflavin with phenolic compounds in acetonitrile/citrate buffer (pH 4.6, 10 mM) is 550 times faster than the reaction with iso-alpha-acids from hops, indicating that triplet-excited quenchers such as phenols may be involved in the early steps in light-struck flavor formation in beer through radical formation. Terpenes present in herb-flavored beers were found to be nonreactive toward singlet- and triplet-excited-state riboflavin, and any protection depends on other mechanisms.

  17. Direct observation of triplet energy transfer from semiconductor nanocrystals.

    PubMed

    Mongin, Cédric; Garakyaraghi, Sofia; Razgoniaeva, Natalia; Zamkov, Mikhail; Castellano, Felix N

    2016-01-22

    Triplet excitons are pervasive in both organic and inorganic semiconductors but generally remain confined to the material in which they originate. We demonstrated by transient absorption spectroscopy that cadmium selenide semiconductor nanoparticles, selectively excited by green light, engage in interfacial Dexter-like triplet-triplet energy transfer with surface-anchored polyaromatic carboxylic acid acceptors, extending the excited-state lifetime by six orders of magnitude. Net triplet energy transfer also occurs from surface acceptors to freely diffusing molecular solutes, further extending the lifetime while sensitizing singlet oxygen in an aerated solution. The successful translation of triplet excitons from semiconductor nanoparticles to the bulk solution implies that such materials are generally effective surrogates for molecular triplets. The nanoparticles could thereby potentially sensitize a range of chemical transformations that are relevant for fields as diverse as optoelectronics, solar energy conversion, and photobiology. Copyright © 2016, American Association for the Advancement of Science.

  18. Effect of H2 binding on the nonadiabatic transition probability between singlet and triplet states of the [NiFe]-hydrogenase active site.

    PubMed

    Kaliakin, Danil S; Zaari, Ryan R; Varganov, Sergey A

    2015-02-12

    We investigate the effect of H2 binding on the spin-forbidden nonadiabatic transition probability between the lowest energy singlet and triplet electronic states of [NiFe]-hydrogenase active site model, using a velocity averaged Landau-Zener theory. Density functional and multireference perturbation theories were used to provide parameters for the Landau-Zener calculations. It was found that variation of the torsion angle between the terminal thiolate ligands around the Ni center induces an intersystem crossing between the lowest energy singlet and triplet electronic states in the bare active site and in the active site with bound H2. Potential energy curves between the singlet and triplet minima along the torsion angle and H2 binding energies to the two spin states were calculated. Upon H2 binding to the active site, there is a decrease in the torsion angle at the minimum energy crossing point between the singlet and triplet states. The probability of nonadiabatic transitions at temperatures between 270 and 370 K ranges from 35% to 32% for the active site with bound H2 and from 42% to 38% for the bare active site, thus indicating the importance of spin-forbidden nonadiabatic pathways for H2 binding on the [NiFe]-hydrogenase active site.

  19. Strongly exchange-coupled triplet pairs in an organic semiconductor

    NASA Astrophysics Data System (ADS)

    Weiss, Leah R.; Bayliss, Sam L.; Kraffert, Felix; Thorley, Karl J.; Anthony, John E.; Bittl, Robert; Friend, Richard H.; Rao, Akshay; Greenham, Neil C.; Behrends, Jan

    2017-02-01

    From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.

  20. Marvel Analysis of the Measured High-resolution Rovibronic Spectra of TiO

    NASA Astrophysics Data System (ADS)

    McKemmish, Laura K.; Masseron, Thomas; Sheppard, Samuel; Sandeman, Elizabeth; Schofield, Zak; Furtenbacher, Tibor; Császár, Attila G.; Tennyson, Jonathan; Sousa-Silva, Clara

    2017-02-01

    Accurate, experimental rovibronic energy levels, with associated labels and uncertainties, are reported for 11 low-lying electronic states of the diatomic {}48{{Ti}}16{{O}} molecule, determined using the Marvel (Measured Active Rotational-Vibrational Energy Levels) algorithm. All levels are based on lines corresponding to critically reviewed and validated high-resolution experimental spectra taken from 24 literature sources. The transition data are in the 2-22,160 cm-1 region. Out of the 49,679 measured transitions, 43,885 are triplet-triplet, 5710 are singlet-singlet, and 84 are triplet-singlet transitions. A careful analysis of the resulting experimental spectroscopic network (SN) allows 48,590 transitions to be validated. The transitions determine 93 vibrational band origins of {}48{{Ti}}16{{O}}, including 71 triplet and 22 singlet ones. There are 276 (73) triplet-triplet (singlet-singlet) band-heads derived from Marvel experimental energies, 123(38) of which have never been assigned in low- or high-resolution experiments. The highest J value, where J stands for the total angular momentum, for which an energy level is validated is 163. The number of experimentally derived triplet and singlet {}48{{Ti}}16{{O}} rovibrational energy levels is 8682 and 1882, respectively. The lists of validated lines and levels for {}48{{Ti}}16{{O}} are deposited in the supporting information to this paper.

  1. Accurate simulation of geometry, singlet-singlet and triplet-singlet excitation of cyclometalated iridium(III) complex.

    PubMed

    Wang, Jian; Bai, Fu-Quan; Xia, Bao-Hui; Zhang, Hong-Xing; Cui, Tian

    2014-03-01

    In the current contribution, we present a critical study of the theoretical protocol used for the determination of the electronic spectra properties of luminescent cyclometalated iridium(III) complex, [Ir(III)(ppy)₂H₂dcbpy]⁺ (where, ppy = 2-phenylpyridine, H₂dcbpy = 2,2'-bipyridine-4,4'-dicarboxylic acid), considered as a representative example of the various problems related to the prediction of electronic spectra of transition metal complex. The choice of the exchange-correlation functional is crucial for the validity of the conclusions that would be drawn from the numerical results. The influence of the exchange-correlation on geometry parameter and absorption/emission band, the role of solvent effects on time-dependent density function theory (TD-DFT) calculations, as well as the importance of the chosen proper procedure to optimize triplet excited geometry, have been thus examined in detail. From the obtained results, some general conclusions and guidelines are presented: i) PBE0 functional is the most accurate in prediction of ground state geometry; ii) the well-established B3LYP, B3P86, PBE0, and X3LYP have similar accuracy in calculation of absorption spectrum; and iii) the hybrid approach TD-DFT//CIS gives out excellent agreement in the evaluation of triplet excitation energy.

  2. Polaron pair mediated triplet generation in polymer/fullerene blends

    PubMed Central

    Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.

    2015-01-01

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields. PMID:25735188

  3. Long-lived, colour-triplet scalars from unnaturalness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, James; Cox, Peter; Gherghetta, Tony

    We study that long-lived, colour-triplet scalars are a generic prediction of unnatural, or split, composite Higgs models where the spontaneous global-symmetry breaking scale f ≳ 10TeV and an unbroken SU(5) symmetry is preserved. Since the triplet scalars are pseudo Nambu- Goldstone bosons they are split from the much heavier composite-sector resonances and are the lightest exotic, coloured states. This makes them ideal to search for at colliders. Due to discrete symmetries the triplet scalar decays via a dimension-six term and given the large suppression scale f is often metastable. We show that existing searches for collider-stable R-hadrons from Run-I atmore » the LHC forbid a triplet scalar mass below 845 GeV, whereas with 300 fb -1 at 13TeV triplet scalar masses up to 1.4TeV can be discovered. For shorter lifetimes displaced-vertex searches provide a discovery reach of up to 1.8TeV. Also, we present exclusion and discovery reaches of future hadron colliders as well as indirect limits that arise from modi cations of the Higgs couplings.« less

  4. Long-lived, colour-triplet scalars from unnaturalness

    DOE PAGES

    Barnard, James; Cox, Peter; Gherghetta, Tony; ...

    2016-03-01

    We study that long-lived, colour-triplet scalars are a generic prediction of unnatural, or split, composite Higgs models where the spontaneous global-symmetry breaking scale f ≳ 10TeV and an unbroken SU(5) symmetry is preserved. Since the triplet scalars are pseudo Nambu- Goldstone bosons they are split from the much heavier composite-sector resonances and are the lightest exotic, coloured states. This makes them ideal to search for at colliders. Due to discrete symmetries the triplet scalar decays via a dimension-six term and given the large suppression scale f is often metastable. We show that existing searches for collider-stable R-hadrons from Run-I atmore » the LHC forbid a triplet scalar mass below 845 GeV, whereas with 300 fb -1 at 13TeV triplet scalar masses up to 1.4TeV can be discovered. For shorter lifetimes displaced-vertex searches provide a discovery reach of up to 1.8TeV. Also, we present exclusion and discovery reaches of future hadron colliders as well as indirect limits that arise from modi cations of the Higgs couplings.« less

  5. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.

    PubMed

    Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2016-06-01

    Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Experimental Study of the Triplet Synchronization of Coupled Nonidentical Mechanical Metronomes

    PubMed Central

    Jia, Ji; Song, Zhiwen; Liu, Weiqing; Kurths, Jürgen; Xiao, Jinghua

    2015-01-01

    Triplet synchrony is an interesting state when the phases and the frequencies of three coupled oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains asynchronous. Experimental observation of triplet synchrony is firstly realized in three coupled nonidentical mechanical metronomes. A more direct method based on the phase diagram is proposed to observe and determine triplet synchronization. Our results show that the stable triplet synchrony is observed in several intervals of the parameter space. Moreover, the experimental results are verified according to the theoretical model of the coupled metronomes. The outcomes are useful to understand the inner regimes of collective dynamics in coupled oscillators. PMID:26598175

  7. Half-metallic superconducting triplet spin multivalves

    NASA Astrophysics Data System (ADS)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  8. Mixing of Exciton and Charge-Transfer States in Photosystem II Reaction Centers: Modeling of Stark Spectra with Modified Redfield Theory

    PubMed Central

    Novoderezhkin, Vladimir I.; Dekker, Jan P.; van Grondelle, Rienk

    2007-01-01

    We propose an exciton model for the Photosystem II reaction center (RC) based on a quantitative simultaneous fit of the absorption, linear dichroism, circular dichroism, steady-state fluorescence, triplet-minus-singlet, and Stark spectra together with the spectra of pheophytin-modified RCs, and so-called RC5 complexes that lack one of the peripheral chlorophylls. In this model, the excited state manifold includes a primary charge-transfer (CT) state that is supposed to be strongly mixed with the pure exciton states. We generalize the exciton theory of Stark spectra by 1), taking into account the coupling to a CT state (whose static dipole cannot be treated as a small parameter in contrast to usual excited states); and 2), expressing the line shape functions in terms of the modified Redfield approach (the same as used for modeling of the linear responses). This allows a consistent modeling of the whole set of experimental data using a unified physical picture. We show that the fluorescence and Stark spectra are extremely sensitive to the assignment of the primary CT state, its energy, and coupling to the excited states. The best fit of the data is obtained supposing that the initial charge separation occurs within the special-pair PD1PD2. Additionally, the scheme with primary electron transfer from the accessory chlorophyll to pheophytin gave a reasonable quantitative fit. We show that the effectiveness of these two pathways is strongly dependent on the realization of the energetic disorder. Supposing a mixed scheme of primary charge separation with a disorder-controlled competition of the two channels, we can explain the coexistence of fast sub-ps and slow ps components of the Phe-anion formation as revealed by different ultrafast spectroscopic techniques. PMID:17526589

  9. Sensitized and heavy atom induced production of acenaphthylene triplet: A laser flash photolysis study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, A.; Fessenden, R.W.

    1989-07-27

    The triplet state of acenaphthylene has been examined by nanosecond laser flash photolysis using sensitization and heavy atom perturbation techniques. Although acenaphthylene does not form any observable triplet upon direct flash excitation, a transient with microsecond lifetime ({lambda}{sub max} = 315 nm) is observable when a solution of the sample is excited by sensitizers (benzophenone, thioxanthone, benzil). This transient is ascribed to the triplet of acenaphthylene on the basis of its quenching behavior toward oxygen, ferrocene, azulene, and {beta}-carotene. Quantitative data concerning the triplet-triplet absorption and quenching constants are presented. The triplet energy is estimated to lie between 46 andmore » 47 kcal/mol. The triplet can also be produced by direct excitation in solvents containing heavy atoms (ethyl bromide, ethyl iodide). The triplet yield is found to increase with an increase of the amount of the heavy atom containing solvent. No saturation limit is obtained. These facts together with the effect of heavy atoms on the T{sub 1} {yields} S{sub 0} process allow the differing behavior of ethyl bromide and ethyl iodide on the photodimerization process of acenaphthylene to be explained. Triplet-state parameters (extinction coefficient and triplet yield) have been estimated in these solvents by the energy-transfer technique and actinometry.« less

  10. Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy

    DOE PAGES

    Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.; ...

    2017-09-13

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less

  11. Charge Separation and Triplet Exciton Formation Pathways in Small Molecule Solar Cells as Studied by Time-resolved EPR Spectroscopy.

    PubMed

    Thomson, Stuart A J; Niklas, Jens; Mardis, Kristy L; Mallares, Christopher; Samuel, Ifor D W; Poluektov, Oleg G

    2017-10-19

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2 ) 2 , DTS(F 2 BTTh 2 ) 2 , DTS(PTTh 2 ) 2 , DTG(FBTTh 2 ) 2 and DTG(F 2 BTTh 2 ) 2 ) with the fullerene derivative PC 61 BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2 ) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2 ) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh 2 ) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.

  12. Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less

  13. Exciplex-Sensitized Triplet-Triplet Annihilation in Heterojunction Organic Thin-Film.

    PubMed

    Lin, Bo-Yen; Easley, Connor J; Chen, Chia-Hsun; Tseng, Po-Chen; Lee, Ming-Zer; Sher, Pin-Hao; Wang, Juen-Kai; Chiu, Tien-Lung; Lin, Chi-Feng; Bardeen, Christopher J; Lee, Jiun-Haw

    2017-03-29

    A new concept for organic light-emitting diodes (OLEDs) is presented, which is called exciplex-sensitized triplet-triplet annihilation (ESTTA). The exciplex formed at the organic heterojunction interface of 4,4',4″-tris(N-3-methyphenyl-N-phenyl-amino) triphenylamine and 9,10-bis(2'-naphthyl) anthracene (ADN) is used to sensitize the triplet-triplet annihilation (TTA) process on the ADN molecules. This results in a turn-on voltage (2.2 V) of the blue emission from the OLED below the bandgap (2.9 eV). From the transient electroluminescence measurement, blue emission totally came from the TTA process without direct recombination on the ADN molecules. The blue singlet exciton from the TTA process can be quenched by energy transfer to the exciplex, as revealed by transient photoluminescence measurements. This can be prevented by blocking the energy transfer path and improving the radiative recombination rate of blue emission. With the insertion of the "triplet diffusion and singlet blocking (TDSB)" layer and the incorporation of the dopant material, an ESTTA-OLED with external quantum efficiency of 5.1% was achieved, which consists of yellow and blue emission coming from the exciplex and ESTTA process, respectively.

  14. Spin-rotation symmetry breaking and triplet superconducting state in doped topological insulator CuxBi2Se3

    NASA Astrophysics Data System (ADS)

    Zheng, Guo-Qing

    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been obtained so far in any candidate compounds. We report 77Se nuclear magnetic resonance measurements which showed that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc =3.4 K. Our results not only establish spin-triplet (odd parity) superconductivity in this compound, but also serve to lay a foundation for the research of topological superconductivity (Ref.). We will also report the doping mechanism and superconductivity in Sn1-xInxTe.

  15. Interaction of triplet sensitizers with chlorophyll: Formation of singlet chlorophyll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohne, C.; Scaiano, J.C.

    1989-03-29

    The interaction of several triplet sensitizers with chlorophyll a (Chla) has been examined using laser techniques. For the carbonyl sensitizers (with triplet energies > 53 kcal/mol) it was possible to measure the quenching rate constants; these were systematically {>=} 10{sup 10} M{sup {minus}1} s{sup {minus}1}. In the cases of acetone, benzophenone, and p-methoxyacetophenone the quenching process leads to the formation of the fluorescent singlet state of Chla. For benzophenone (k{sub q} = 2.4 {times} 10{sup 10} M{sup {minus}1} s{sup {minus}1}) approximately 3% of the quenching events lead to the formation of excited Chla. Several sensitizers (decafluorobenzophenone, benzil, and fluorenone) domore » not induce Chla fluorescence (or do it very inefficiently) in spite of having triplet energies above the S{sub 1} level of Chla. In light of their results the most probable mechanism involves energy transfer from the triplet sensitizer to an upper triple state of Chla ({sup 3}Chla**) which can undergo reverse intersystem crossing to the singlet manifold of Chla and thus induce fluorescence. The inefficient sensitizers are those where electron transfer between the excited singlet of Chla or {sup 3}Chla** and ground-state sensitizers is energetically favorable, leading to rapid in-cage quenching of the initially formed excited states of Chla. Formation of radical-ion pair between the triplet sensitizer and Chla followed by the generation of singlet Chla in the recombination of the radical ions could not be completely discarded.« less

  16. Perturbation Theory of Spin-Triplet Superconductivity for Sr 2RuO 4

    NASA Astrophysics Data System (ADS)

    Nomura, Takuji; Yamada, Kosaku

    2000-11-01

    We discuss the possibility of spin-triplet superconductivity within the third order perturbation theory with respect to on-site Coulomb repulsion U. Critical temperature T c for spin-triplet pairing state is calculated in a single-band two-dimensional Hubbard modeland relatively high T c is obtained for moderately large U. The present situation considered here is particularly intended for the main branch γ in Sr2RuO4. According to the calculation, third order vertex correction terms, which are not direct contribution from spin fluctuation, are important, while the bare susceptibility χ0(q) need not always have a prominent peak at q=0 for the spin-triplet pairing state. The picture that strong ferromagnetic spin fluctuations mainly induce the spin-triplet superconductivity in Sr2RuO4 may not be appropriate, and such momentum dependence of renormalized effective interaction between quasi-particles as is not sufficiently taken into accountin spin fluctuation mediated interaction is essential for realizing the spin-triplet pairing.

  17. Singlet and triplet trions in WS2 monolayer encapsulated in hexagonal boron nitride.

    PubMed

    Vaclavkova, D; Wyzula, J; Nogajewski, K; Bartos, M; Slobodeniuk, A O; Faugeras, C; Potemski, M; Molas, M R

    2018-08-10

    Embedding a WS 2 monolayer in flakes of hexagonal boron nitride allowed us to resolve and study the photoluminescence response due to both singlet and triplet states of negatively charged excitons (trions) in this atomically thin semiconductor. The energy separation between the singlet and triplet states has been found to be relatively small reflecting rather weak effects of the electron-electron exchange interaction for the trion triplet in a WS 2 monolayer, which involves two electrons with the same spin but from different valleys. Polarization-resolved experiments demonstrate that the helicity of the excitation light is better preserved in the emission spectrum of the triplet trion than in that of the singlet trion. Finally, the singlet (intravalley) trions are found to be observable even at ambient conditions whereas the emission due to the triplet (intervalley) trions is only efficient at low temperatures.

  18. Influence of an electric field on photostimulated states in NH4BPh4 films

    NASA Astrophysics Data System (ADS)

    Antonova, O. V.; Nadolinny, V. A.; Il'inchik, E. A.; Trubin, S. V.

    2012-10-01

    The influence of an electric field on stable photostimulated triplet states of NH4BPh4 at a temperature of 77 K have been studied by EPR spectroscopy. It has been established that, on exposure to UV radiation, electron capture by traps in the band gaps takes place with formation of triplet state. After application of an electric field, triplet states are destructed because, with an increase in the applied voltage, a gradual inclination of energy bands takes place and electrons found in traps on different energy levels are released. The assumption that captured electrons are found in traps on different energy levels is confirmed by earlier studies of thermoluminescence spectra.

  19. Excited-state properties of nucleic acid components

    NASA Astrophysics Data System (ADS)

    Salet, C.; Bensasson, R. V.; Becker, R. S.

    1981-12-01

    Measurements were made of the fluorescence and phosphorescence spectra and lifetimes, and also of the absorption spectra, lifetimes, extinction coefficients, and quantum yields of the T1 lower triplet states of thymine, uracil, their N, N'-dimethyl derivatives, thymidine, thymidine monophosphate, uridine, and uridine monophosphate in various solvents at 300 °K. The influence of the solvent on the quantum yield of the T1 state of nucleic acid components is discussed.

  20. Computational Prediction of Excited-State Carbon Tunneling in the Two Steps of Triplet Zimmerman Di-π-Methane Rearrangement.

    PubMed

    Li, Xin; Liao, Tao; Chung, Lung Wa

    2017-11-22

    The photoinduced Zimmerman di-π-methane (DPM) rearrangement of polycyclic molecules to form synthetically useful cyclopropane derivatives was found experimentally to proceed in a triplet excited state. We have applied state-of-the-art quantum mechanical methods, including M06-2X, DLPNO-CCSD(T) and variational transition-state theory with multidimensional tunneling corrections, to an investigation of the reaction rates of the two steps in the triplet DPM rearrangement of dibenzobarrelene, benzobarrelene and barrelene. This study predicts a high probability of carbon tunneling in regions around the two consecutive transition states at 200-300 K, and an enhancement in the rates by 104-276/35-67% with carbon tunneling at 200/300 K. The Arrhenius plots of the rate constants were found to be curved at low temperatures. Moreover, the computed 12 C/ 13 C kinetic isotope effects were affected significantly by carbon tunneling and temperature. Our predictions of electronically excited-state carbon tunneling and two consecutive carbon tunneling are unprecedented. Heavy-atom tunneling in some photoinduced reactions with reactive intermediates and narrow barriers can be potentially observed at relatively low temperature in experiments.

  1. Can Baird's and Clar's Rules Combined Explain Triplet State Energies of Polycyclic Conjugated Hydrocarbons with Fused 4nπ- and (4n + 2)π-Rings?

    PubMed

    Ayub, Rabia; Bakouri, Ouissam El; Jorner, Kjell; Solà, Miquel; Ottosson, Henrik

    2017-06-16

    Compounds that can be labeled as "aromatic chameleons" are π-conjugated compounds that are able to adjust their π-electron distributions so as to comply with the different rules of aromaticity in different electronic states. We used quantum chemical calculations to explore how the fusion of benzene rings onto aromatic chameleonic units represented by biphenylene, dibenzocyclooctatetraene, and dibenzo[a,e]pentalene modifies the first triplet excited states (T 1 ) of the compounds. Decreases in T 1 energies are observed when going from isomers with linear connectivity of the fused benzene rings to those with cis- or trans-bent connectivities. The T 1 energies decreased down to those of the parent (isolated) 4nπ-electron units. Simultaneously, we observe an increased influence of triplet state aromaticity of the central 4n ring as given by Baird's rule and evidenced by geometric, magnetic, and electron density based aromaticity indices (HOMA, NICS-XY, ACID, and FLU). Because of an influence of triplet state aromaticity in the central 4nπ-electron units, the most stabilized compounds retain the triplet excitation in Baird π-quartets or octets, enabling the outer benzene rings to adapt closed-shell singlet Clar π-sextet character. Interestingly, the T 1 energies go down as the total number of aromatic cycles within a molecule in the T 1 state increases.

  2. Perinatal death of triplet pregnancies by chorionicity.

    PubMed

    Kawaguchi, Haruna; Ishii, Keisuke; Yamamoto, Ryo; Hayashi, Shusaku; Mitsuda, Nobuaki

    2013-07-01

    The purpose of this study was to evaluate the perinatal risk of death by chorionicity at >22 weeks of gestation of triplet pregnancies. In a retrospective cohort study, the perinatal data were collected from triplet pregnancies in Japanese perinatal care centers between 1999 and 2009. We included maternal characteristics and examined the following factors: prenatal interventions, pregnancy outcome, and neonatal outcome. The association between fetal or neonatal death of triplets and chorionicity was evaluated by logistic regression analysis. After the exclusion of 253 cases, the study group comprised 701 cases: 507 trichorionic triamniotic (TT) triplet pregnancies, 144 diamniotic triamniotic (DT) triplet pregnancies, and 50 monochorionic triamniotic (MT) triplet pregnancies. The mortality rate (fetal death at >22 weeks of gestation; neonatal death) in triplets was 2.6% and included 2.1% of TT triplet pregnancies, 3.2% of DT triplet pregnancies, and 5.3% of MT triplet pregnancies. No significant risk of death was identified in DT triplet pregnancies; however, MT triplet pregnancies had a 2.6-fold greater risk (adjusted odds ratio, 2.60; 95% confidence interval, 1.17-5.76; P = .019) compared with TT triplet pregnancies. Prophylactic cervical cerclage did not reduce the perinatal mortality rate at >22 weeks of gestation in triplets. The risk of death for MT triplet pregnancies is significantly higher than that of TT triplet pregnancies; however, the risk of death for DT triplet pregnancies is not. Copyright © 2013 Mosby, Inc. All rights reserved.

  3. Infrared laser spectroscopy of jet-cooled carbon clusters: structure of triplet C6

    NASA Technical Reports Server (NTRS)

    Hwang, H. J.; Van Orden, A.; Tanaka, K.; Kuo, E. W.; Heath, J. R.; Saykally, R. J.

    1993-01-01

    We report the first structural characterization of the triplet isomer of C6. Forty-one rovibrational/fine structure transitions in the nu 4(sigma u) antisymmetric stretch fundamental of the C6 cluster have been measured by diode laser absorption spectroscopy of a supersonic carbon cluster beam. The observed spectrum is characteristic of a centrosymmetric linear triplet state with cumulene-type bonding. The measured ground state rotational constant B0 = 0.048 479 (10)cm-1 and the effective bond length r(eff) = 1.2868 (1) angstroms are in good agreement with ab initio predictions for the linear triplet (3 sigma g-) state of C6.

  4. Solid state photochemistry of polycarbonates

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Rembaum, A.; Moacanin, J.

    1978-01-01

    The quantum yield of photoFries rearrangement in a polycarbonate film has been analyzed as a function of temperature and humidity on the basis of previously reported (Koyler and Mann, 1977) experimental data. Results indicate that in the homogeneous amorphous phase, photoFries rearrangement is a concerted process proceeding either from the pi star reversed arrow n singlet, in which case it must be subject to considerable self quenching, or from a triplet, presumably the first triplet since the lifetime of higher triplets is expected to be very short in the solid phase. If the parent excited state is the first triplet, chain scission is possibly an independent process, probably occurring from the pi star reversed arrow n singlet. Evidence of chain scission on photodegradation in the solid state includes loss of C-O and C-C bond intensities revealed in the Fourier transform infrared spectra, gel permeation chromotography elution profiles of degraded film samples dissolved in CHCl3, and a decrease in tensile strength and T sub g as photodegradation proceeds. Chain scission is apparently inhibited as photoFries products accumulate.

  5. The energies and kinetics of triplet carotenoids in the LH2 antenna complexes as determined by phosphorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Rondonuwu, Ferdy S.; Taguchi, Tokio; Fujii, Ritsuko; Yokoyama, Kyosuke; Koyama, Yasushi; Watanabe, Yasutaka

    2004-01-01

    The triplet (T 1) states of carotenoids (Cars) and bacteriochlorophyll a (BChl) in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rba. sphaeroides 2.4.1 and Rhodospirillum molischianum, containing neurosporene, spheroidene and lycopene, respectively, were examined by stationary-state and time-resolved phosphorescence spectroscopy. The T 1 energies of Cars were determined, irrespective of the Car or BChl excitation, to be 7030 cm -1 (neurosporene), 6920 cm -1 (spheroidene) and 6870 cm -1 (lycopene), respectively, whereas that of BChl to be 7590 cm -1. In the Rba. sphaeroides G1C, the Car and BChl triplet states decayed in similar time constant as the BChl Q y state, a fact which indicates that the pair of triplet states decays through the triplet-triplet annihilation mechanism.

  6. [Percentile Values for the Anthropometric Dimensions of Triplet Neonates - Analysis of German Perinatal Survey Data of 2007-2011 from all States of Germany].

    PubMed

    Voigt, M; Olbertz, D; Hentschel, R; Kunze, M; Hagenah, H-P; Scholz, R; Wittwer-Backofen, U; Hesse, V; Straube, S

    2016-04-01

    We aimed to develop national reference values for birth weight, length, head circumference, and weight for length for newborn triplets based on data from the German perinatal survey of 2007-2011. Perinatal survey data of 3,690 newborn triplets from all the states of Germany were kindly provided to us by the AQUA Institute in Göttingen, Germany. Data of 3,567 newborn triplets were included in the analyses. Sex-specific percentile values were calculated using cumulative frequencies. Percentile values at birth were computed for the 3rd, 10th, 25th, 50th, 75th, 90th, and 97th percentiles for 21-36 completed weeks of gestation. We present the first German reference values (tables and curves) for the anthropometric dimensions of triplet neonates and compare selected birth weight and length percentiles of triplets (after 32 and 34 completed weeks of gestation) to those of singletons and twins. The differences in the 50th birth weight percentiles between singletons and triplets after 32 completed weeks of gestation were 180 g for girls and 210 g for boys; after 34 weeks of gestation the differences were 320 and 325 g, respectively. The differences between twins and triplets after 32 weeks of gestation were 100 g for girls and 120 g for boys; after 34 weeks of gestation they were 130 and 135 g, respectively. The data presented here enable the classification of newborn triplets according to somatic parameters making reference to German perinatal data. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Pulsed electron nuclear double resonance studies of the photoexcited triplet state of pentacene in p-terphenyl crystals at room temperature.

    PubMed

    Yago, Tomoaki; Link, Gerhard; Kothe, Gerd; Lin, Tien-Sung

    2007-09-21

    Pulsed electron nuclear double resonance (ENDOR) using a modified Davies-type [Phys. Lett. 47A, 1 (1974)] sequence is employed to study the hyperfine (HF) structure of the photoexcited triplet state of pentacene dispersed in protonated and deuterated p-terphenyl single crystals. The strong electron spin polarization and long phase memory time of triplet pentacene enable us to perform the ENDOR measurements on the S=1 spin system at room temperature. Proton HF tensor elements and spin density values of triplet pentacene are extracted from a detailed angular-dependent study in which the orientation of the magnetic field is varied systematically in two different pentacene planes. Analysis reveals that the pentacene molecule is no longer planar in the p-terphenyl host lattice. The distortion is more pronounced in the deuterated crystal where the unit cell dimensions are slightly smaller than those of the protonated crystal.

  8. Does the concept of Clar's aromatic sextet work for dicationic forms of polycyclic aromatic hydrocarbons?--testing the model against charged systems in singlet and triplet states.

    PubMed

    Dominikowska, Justyna; Palusiak, Marcin

    2011-07-07

    The concept of Clar's π-electron aromatic sextet was tested against a set of polycyclic aromatic hydrocarbons in neutral and doubly charged forms. Systems containing different types of rings (in the context of Clar's concept) were chosen, including benzene, naphthalene, anthracene, phenanthrene and triphenylene. In the case of dicationic structures both singlet and triplet states were considered. It was found that for singlet state dicationic structures the concept of aromatic sextet could be applied and the local aromaticity could be discussed in the context of that model, whereas in the case of triplet state dicationic structures Clar's model rather failed. Different aromaticity indices based on various properties of molecular systems were applied for the purpose of the studies. The discussion about the interdependence between the values of different aromaticity indices applied to neutral and charged systems in singlet and triplet states is also included. This journal is © the Owner Societies 2011

  9. High-Fidelity Single-Shot Singlet-Triplet Readout of Precision-Placed Donors in Silicon.

    PubMed

    Broome, M A; Watson, T F; Keith, D; Gorman, S K; House, M G; Keizer, J G; Hile, S J; Baker, W; Simmons, M Y

    2017-07-28

    In this work we perform direct single-shot readout of the singlet-triplet states in exchange coupled electrons confined to precision-placed donor atoms in silicon. Our method takes advantage of the large energy splitting given by the Pauli-spin blockaded (2,0) triplet states, from which we can achieve a single-shot readout fidelity of 98.4±0.2%. We measure the triplet-minus relaxation time to be of the order 3 s at 2.5 T and observe its predicted decrease as a function of magnetic field, reaching 0.5 s at 1 T.

  10. The examination of berberine excited state by laser flash photolysis

    NASA Astrophysics Data System (ADS)

    Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong

    2009-07-01

    The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.

  11. Phasic Triplet Markov Chains.

    PubMed

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data.

  12. Electronic structure of some adenosine receptor antagonists. III. Quantitative investigation of the electronic absorption spectra of alkyl xanthines

    NASA Astrophysics Data System (ADS)

    Moustafa, H.; Shalaby, Samia H.; El-sawy, K. M.; Hilal, Rifaat

    2002-07-01

    Quantitative and comparative investigation of the electronic absorption spectra of theophylline, caffeine and their derivatives is reported. The spectra of theophylline, caffeine and theobromine were compared to establish the predominant tautomeric species in solution. This comparison, analysis of solvent effects and assignments of the observed transitions via MO computations indicate the exits of only one tautomeric species in solution that is the N7 form. A low-lying triplet state was identified which corresponds to a HOMO-LUMO transition. This relatively long-lived T 1 state is always less polar than the ground state and may very well underlie the photochemical reactivity of alkyl xanthines. Substituents of different electron donating or withdrawing strengths and solvent effects are investigated and analyzed. The present analysis is facilitated via computer deconvolution of the observed spectra and MO computation.

  13. Excitation of lowest electronic states of the uracil molecule by slow electrons

    NASA Astrophysics Data System (ADS)

    Chernyshova, I. V.; Kontros, J. E.; Markush, P. P.; Shpenik, O. B.

    2012-07-01

    The excitation of lowest electronic states of the uracil molecule in the gas phase has been studied by electron energy loss spectroscopy. Along with excitation of lowest singlet states, excitation of two lowest triplet states at 3.75 and 4.76 eV (±0.05 eV) and vibrational excitation of the molecule in two resonant ranges (1-2 and 3-4 eV) have been observed for the first time. The peak of the excitation band related to the lowest singlet state (5.50 eV) is found to be blueshifted by 0.4 eV in comparison with the optical absorption spectroscopy data. The threshold excitation spectra have been measured for the first time, with detection of electrons inelastically scattered by an angle of 180°. These spectra exhibit clear separation of the 5.50-eV-wide band into two bands, which are due to the excitation of the triplet 13 A″ and singlet 11 A' states.

  14. DFT and ab initio study of the unimolecular decomposition of the lowest singlet and triplet states of nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manaa, M.R.; Fried, L.E.

    1998-11-26

    The fully optimized potential energy curves for the unimolecular decomposition of the lowest singlet and triplet states of nitromethane through the C-NO{sub 2} bond dissociation pathway are calculated using various DFT and high-level ab initio electronic structure methods. The authors perform gradient corrected density functional theory (DFT) and multiconfiguration self-consistent field (MCSCF) to conclusively demonstrate that the triplet state of nitromethane is bound. The adiabatic curve of this state exhibits a 33 kcal/mol energy barrier as determined at the MCSCF level. DFT methods locate this barrier at a shorter C-N bond distance with 12--16 kcal/mol lower energy than does MCSCF.more » In addition to MCSCF and DFT, quadratic configuration interactions with single and double substitutions (QCISD) calculations are also performed for the singlet curve. The potential energy profiles of this state predicted by FT methods based on Becke`s 1988 exchange functional differ by as much as 17 kcal/mol from the predictions of MCSCF and QCISD in the vicinity of the equilibrium structure. The computational methods predict bond dissociation energies 5--9 kcal/mol lower than the experimental value. DFT techniques based on Becke`s 3-parameter exchange functional show the best overall agreement with the higher level methods.« less

  15. Self-homodyne measurement of a dynamic Mollow triplet in the solid state

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Müller, Kai; Rundquist, Armand; Sarmiento, Tomas; Piggott, Alexander Y.; Kelaita, Yousif; Dory, Constantin; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-03-01

    The study of the light-matter interaction at the quantum scale has been enabled by the cavity quantum electrodynamics (CQED) architecture, in which a quantum two-level system strongly couples to a single cavity mode. Originally implemented with atoms in optical cavities, CQED effects are now also observed with artificial atoms in solid-state environments. Such realizations of these systems exhibit fast dynamics, making them attractive candidates for devices including modulators and sources in high-throughput communications. However, these systems possess large photon out-coupling rates that obscure any quantum behaviour at large excitation powers. Here, we have used a self-homodyning interferometric technique that fully employs the complex mode structure of our nanofabricated cavity to observe a quantum phenomenon known as the dynamic Mollow triplet. We expect this interference to facilitate the development of arbitrary on-chip quantum state generators, thereby strongly influencing quantum lithography, metrology and imaging.

  16. Large refractive index variations induced by accumulating triplet excitons under photoexcitation at low power

    NASA Astrophysics Data System (ADS)

    Hori, Tomoe; Totani, Kenro; Hirata, Shuzo; Watanabe, Toshiyuki

    2018-07-01

    Herein, we present a method for the modification of the refractive index (n), based on employing an organic molecule with a long triplet excited-state lifetime. A host-guest material composed of a cyclic aromatic as the guest and an amorphous steroidal compound as the host was used to modulate n. The guest material exhibited a triplet lifetime longer than 1 s, and a high-density triplet excited-state population was obtained upon excitation with blue-violet light. The refractive index could be changed by 0.002, even when using a relatively low excitation power level of 100 mW cm-2.

  17. Vibronic singlet and triplet steady-state interplay emissions in phenazine-based 1,2,3-triazole films

    NASA Astrophysics Data System (ADS)

    Costa, Bárbara B. A.; Souza, Paula D. C.; Gontijo, Rafael N.; Jardim, Guilherme A. M.; Moreira, Roberto L.; da Silva, Eufrânio N.; Cury, Luiz A.

    2018-03-01

    Photoluminescence and phosphorescence emissions of solid-state phenazine films were investigated in steady-state experimental conditions. Important discrepancies were observed for blended films where a host optically inert matrix was introduced to disperse the probe molecules. A vibronic spin-orbit phosphorescent emission clearly appeared, while for the films solely composed by the probe molecules, the phosphorescence broadened and presented a structureless shape, shifted to longer wavelengths. Further Arrhenius behavior analysis on the photoluminescent and phosphorescent emissions on temperature, corroborated the direct and reverse intersystem crossing interplay between singlet and triplet states. Molecular aggregation is responsible for the deterioration of non-blended triazole films phosphorescence.

  18. Analysis of applicability of triplet-state emission of molecular hydrogen for spectral diagnostics of a DC discharge

    NASA Astrophysics Data System (ADS)

    Shakhatov, V. A.; Lebedev, Yu. A.

    2017-10-01

    The applicability of emission of the N 3Λσ triplet states of molecular hydrogen for spectral diagnostics of the positive column of a dc glow discharge in hydrogen at translational gas temperatures of 360-600 K, specific absorbed powers of 0.8-4.25 W/cm, gas pressures of p = 0.3-15.0 Torr, reduced fields of E/N = 30-130 Td, and electron densities of n e = 4.0 × 109-6.5 × 1010 cm-3 is analyzed by using an advanced level-based semi-empirical collisional-radiative model. It is found that secondary processes make the main contribution to the population and decay of the N 3Λσ = a 3Σ+ g , c 3Π u , g 3Σ+ g , h 3Σ+ g , and i 3Π g triplet states. The dipole-allowed transitions e 3Σ+ g → a 3Σ+ g , f 3Σ+ g → a 3Σ+ g , g 3Σ+ g and k 3Π u → a 3Σ+ g can be used for spectral diagnostics of a dc discharge within a simplified coronal model.

  19. Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet-Triplet Energy Gap.

    PubMed

    Freeman, David M E; Musser, Andrew J; Frost, Jarvist M; Stern, Hannah L; Forster, Alexander K; Fallon, Kealan J; Rapidis, Alexandros G; Cacialli, Franco; McCulloch, Iain; Clarke, Tracey M; Friend, Richard H; Bronstein, Hugo

    2017-08-16

    The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and "bright" singlets, allowing thermal population exchange between them and eliminating a significant loss channel in devices. In conjugated polymers, this gap has proved resistant to modification. Here, we introduce a general approach to reduce the singlet-triplet energy gap in fully conjugated polymers, using a donor-orthogonal acceptor motif to spatially separate electron and hole wave functions. This new generation of conjugated polymers allows for a greatly reduced exchange energy, enhancing triplet formation and enabling thermally activated delayed fluorescence. We find that the mechanisms of both processes are driven by excited-state mixing between π-π*and charge-transfer states, affording new insight into reverse intersystem crossing.

  20. Attaching naphthalene derivatives onto BODIPY for generating excited triplet state and singlet oxygen: Tuning PET-based photosensitizer by electron donors

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Fu; Feng, Nan

    2018-01-01

    meso-Naphthalene substituted BODIPY compounds were prepared in a facile one pot reaction. The naphthalene functionalization of BODIPY leads up to a 5-fold increase in the formation efficiency of excited triplet state and singlet oxygen in polar solvents. Steady state and time resolved fluorescence, laser flash photolysis, and quantum chemistry methods were used to reveal the mechanism. All measured data and quantum chemical results suggest that these systems can be viewed as electron donor-acceptor (D-A) pair (BODIPY acts as the acceptor), photoinduced charge transfer (PCT) or photoinduced electron transfer (PET) occurs upon photo excitation (D-A + hν → Dδ +-Aδ -, 0 < δ ≤ 1), and the charge recombination induced the formation of triplet state (Dδ +-Aδ - → D-A (T1). These novel PCT- or PET-based photosensitizers (PSs) show different features from traditional PSs, such as the strong tunability by facile structural modification and good selectivity upon medium polarity. The new character for this type of PSs can lead to important applications in organic oxygenation reactions and photodynamic therapy of tumors.

  1. Electron Transfer from Triplet State of TIPS-Pentacene Generated by Singlet Fission Processes to CH3NH3PbI3 Perovskite.

    PubMed

    Lee, Sangsu; Hwang, Daesub; Jung, Seok Il; Kim, Dongho

    2017-02-16

    To reveal the applicability of singlet fission processes in perovskite solar cell, we investigated electron transfer from TIPS-pentacene to CH 3 NH 3 PbI 3 (MAPbI 3 ) perovskite in film phase. Through the observation of the shorter fluorescence lifetime in TIPS-pentacene/MAPbI 3 perovskite bilayer film (5 ns) compared with pristine MAPbI 3 perovskite film (20 ns), we verified electron-transfer processes between TIPS-pentacene and MAPbI 3 perovskite. Furthermore, the observation of singlet fission processes, a faster decay rate, TIPS-pentacene cations, and the analysis of kinetic profiles of the intensity ratio between 500 and 525 nm in the TA spectra of the TIPS-pentacene/MAPbI 3 perovskite bilayer film indicate that electron transfer occurs from triplet state of TIPS-pentacene generated by singlet fission processes to MAPbI 3 perovskite conduction band. We believe that our results can provide useful information on the design of solar cells sensitized by singlet fission processes and pave the way for new types of perovskite solar cells.

  2. Entanglement and Metrology with Singlet-Triplet Qubits

    NASA Astrophysics Data System (ADS)

    Shulman, Michael Dean

    Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the

  3. An apparatus for pulsed ESR and DNP experiments using optically excited triplet states down to liquid helium temperatures

    NASA Astrophysics Data System (ADS)

    Eichhorn, T. R.; Haag, M.; van den Brandt, B.; Hautle, P.; Wenckebach, W. Th.; Jannin, S.; van der Klink, J. J.; Comment, A.

    2013-09-01

    In standard Dynamic Nuclear Polarization (DNP) electron spins are polarized at low temperatures in a strong magnetic field and this polarization is transferred to the nuclear spins by means of a microwave field. To obtain high nuclear polarizations cryogenic equipment reaching temperatures of 1 K or below and superconducting magnets delivering several Tesla are required. This equipment strongly limits applications in nuclear and particle physics where beams of particles interact with the polarized nuclei, as well as in neutron scattering science. The problem can be solved using short-lived optically excited triplet states delivering the electron spin. The spin is polarized in the optical excitation process and both the cryogenic equipment and magnet can be simplified significantly. A versatile apparatus is described that allows to perform pulsed dynamic nuclear polarization experiments at X-band using short-lived optically excited triplet sates. The efficient 4He flow cryostat that cools the sample to temperatures between 4 K and 300 K has an optical access with a coupling stage for a fiber transporting the light from a dedicated laser system. It is further designed to be operated on a neutron beam. A combined pulse ESR/DNP spectrometer has been developed to observe and characterize the triplet states and to perform pulse DNP experiments. The ESR probe is based on a dielectric ring resonator of 7 mm inner diameter that can accommodate cubic samples of 5 mm length needed for neutron experiments. NMR measurements can be performed during DNP with a coil integrated in the cavity. With the presented apparatus a proton polarization of 0.5 has been achieved at 0.3 T.

  4. Modeling Photoelectron Spectra of CuO, Cu2O, and CuO2 Anions with Equation-of-Motion Coupled-Cluster Methods: An Adventure in Fock Space.

    PubMed

    Orms, Natalie; Krylov, Anna I

    2018-04-12

    The experimental photoelectron spectra of di- and triatomic copper oxide anions have been reported previously. We present an analysis of the experimental spectra of the CuO - , Cu 2 O - , and CuO 2 - anions using equation-of-motion coupled-cluster (EOM-CC) methods. The open-shell electronic structure of each molecule demands a unique combination of EOM-CC methods to achieve an accurate and balanced representation of the multiconfigurational anionic- and neutral-state manifolds. Analysis of the Dyson orbitals associated with photodetachment from CuO - reveals the strong non-Koopmans character of the CuO states. For the lowest detachment energy, a good agreement between theoretical and experimental values is obtained with CCSD(T) (coupled-cluster with single and double excitations and perturbative account of triple excitations). The (T) correction is particularly important for Cu 2 O - . Use of a relativistic pseudopotential and matching basis set improves the quality of results in most cases. EOM-DIP-CCSD analysis of the low-lying states of CuO 2 - reveals multiple singlet and triplet anionic states near the triplet ground state, adding an extra layer of complexity to the interpretation of the experimental CuO 2 - photoelectron spectrum.

  5. Observation of direct infrared multiphoton pumping of the triplet manifold of biacetyl

    NASA Astrophysics Data System (ADS)

    Tsao, Jeffrey Y.; Black, Jerry G.; Yablonovitch, Eli; Burak, Itamar

    1980-09-01

    Direct collisionless multiphoton (MP) excitation of the triplet vibronic manifold of biacetyl is reported. Following a dye laser pulse which prepares some of the biacetyl molecules in the triplet metastable state, the system is irradiated by an intense 20 ns 9.6μ CO2 pulse. The CO2 radiation induces fast quenching of the phosphorescence emission from the 3Au excited molecules. It also induces an emission signal in the fluorescence spectral region of biacetyl. This signal is related to an inverse electronic relaxation (IER) from excited triplet vibronic levels into isoenergetic singlet 1Au vibronic levels. Analysis of the induced luminescence signals provides information on the collisionless MP prompted vibrational distribution. Excitation with 10.6μ CO2 pulses leads to the simultaneous MP pumping of both the ground and triplet manifolds. The generation of blue emission signals in this experiment bears a close resemblance to recent observations of prompt visible emission due to MP pumping of ground state molecules. General expressions for the emission intensities are derived with special emphasis on the specific features of MP vibrational distributions. The detectability of MP induced emission signals is discussed.

  6. Triplet ultrasound growth parameters.

    PubMed

    Vora, Neeta L; Ruthazer, Robin; House, Michael; Chelmow, David

    2006-03-01

    To create ultrasound growth curves for normal growth of fetal triplets using statistical methodology that properly accounts for similarities of growth of fetuses within a mother as well as repeated measurements over time for each fetus. In this longitudinal study, all triplet pregnancies managed at a single tertiary center from 1992-2004 were reviewed. Fetuses with major anomalies, prior selective reduction, or fetal demise were excluded. Data from early and late gestation in which there were fewer than 30 fetal measurements available for analysis were excluded. We used multilevel models to account for variation in growth within a single fetus over time, variations in growth between multiple fetuses within a single mother, and variations in fetal growth between mothers. Medians (50th), 10th, and 90th percentiles were estimated by the creation of multiple quadratic growth models from bootstrap samples adapting a previously published method to compute prediction intervals. Estimated fetal weight was derived from Hadlock's formula. One hundred fifty triplet pregnancies were identified. Twenty-seven pregnancies were excluded for the following reasons: missing records (23), fetal demise (3), and fetal anomaly (1). The study group consisted of 123 pregnancies. The gestational age range was restricted to 14-34 weeks. Figures and tables were developed showing medians, 10th and 90th percentiles for estimated fetal weight, femur length, biparietal diameter, abdominal circumference, and head circumference. Growth curves for triplet pregnancies were derived. These may be useful for identification of abnormal growth in triplet fetuses. III.

  7. Laser photolysis study of the exciplex between triplet benzil and triethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Encinas, M.V.; Scaiano, J.C.

    1979-12-19

    Nanosecond laser flash photolysis techniques have been used to examine the triplet decay and radical-ion formation in the triethylamine (TEA) - benzil system in wet acetonitrile. Under conditions of high TEA concentrations yielding short triplet lifetime, the formation of the benzil radical anion was found to be considerably slower than the decay of the triplet state. This effect is attributed to the intermediacy of a relatively stable exciplex whose properties are reported here. Results of a study of optical density of the system with time following laser excitation led to the assignment of a lifetime of 55ns to the exciplexmore » formed between the triplet benzil and TEA. A structure is suggested for the exciplex. Results of experiments with the non-polar medium n-heptane indicated a shorter lifetime exciplex or one with very different properties from the species identified in the polar medium, wet acetonitrile. (BLM)« less

  8. Triplet pregnancies: perinatal outcome evolution.

    PubMed

    Almeida, Patrícia; Domingues, Ana Patrícia; Belo, Adriana; Fonseca, Etelvina; Moura, Paulo

    2014-09-01

    To evaluate the obstetric and perinatal outcomes evolution of triplet pregnancies. A prospective observational study was conducted in triplet pregnancies delivered over 16 years in a tertiary obstetric center with differentiated perinatal support. Evaluation of demographic factors, obstetric complications, gestational age at delivery, mode of delivery, birth weight and immediate newborn outcome were done over a 16 years period. A global characterization of the sample was performed considering the listed parameters. Variables were categorized in three groups according to year of occurrence: 1996-2000, 2001-2006, 2007-2011, and all parameters were compared. Of the 33 triplets included, 72.7% resulted from induced pregnancies. All except one patient received prenatal corticosteroids and five received tocolytics. All women delivered prenatally and no significant differences were seen in the mean gestational age at delivery or birth weight towards time. There were three intrauterine fetal deaths. Neonatal immediate outcomes were not significantly different over the years. Despite remarkable progresses in perinatal and neonatal cares, no noticeable impact in triplet gestations' outcomes was seen, sustaining that triplets should be avoided due to their great risk of prematurity and neonatal morbidities, either by limiting the numbers of embryos transferred or by fetal reduction.

  9. Triplet correlation in sheared suspensions of Brownian particles

    NASA Astrophysics Data System (ADS)

    Yurkovetsky, Yevgeny; Morris, Jeffrey F.

    2006-05-01

    Triplet microstructure of sheared concentrated suspensions of Brownian monodisperse spherical particles is studied by sampling realizations of a three-dimensional unit cell subject to periodic boundary conditions obtained in accelerated Stokesian dynamics simulations. Triplets are regarded as a bridge between particle pairs and many-particle clusters thought responsible for shear thickening. Triplet-correlation data for weakly sheared near-equilibrium systems display an excluded volume effect of accumulated correlation for equilateral contacting triplets. As the Péclet number increases, there is a change in the preferred contacting isosceles triplet configuration, away from the "closed" triplet where the particles lie at the vertices of an equilateral triangle and toward the fully extended rod-like linear arrangement termed the "open" triplet. This transition is most pronounced for triplets lying in the plane of shear, where the open triplets' angular orientation with respect to the flow is very similar to that of a contacting pair. The correlation of suspension rheology to observed structure signals onset of larger clusters. An investigation of the predictive ability of Kirkwood's superposition approximation (KSA) provides valuable insights into the relationship between the pair and triplet probability distributions and helps achieve a better and more detailed understanding of the interplay of the pair and triplet dynamics. The KSA is seen more successfully to predict the shape of isosceles contacting triplet nonequilibrium distributions in the plane of shear than for similar configurations in equilibrium hard-sphere systems; in the sheared case, the discrepancies in magnitudes of distribution peaks are attributable to two interaction effects when pair average trajectories and locations of particles change in response to real, or "hard," and probabilistically favored ("soft") neighboring excluded volumes and, in the case of open triplets, due to changes in the

  10. Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei, E-mail: wei.wu@ucl.ac.uk

    2014-06-14

    Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-1/2 ) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by themore » long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.« less

  11. Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine.

    PubMed

    Wu, Wei

    2014-06-14

    Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-½) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by the long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.

  12. Photoinduced triplet-triplet energy transfer via the 2-ureido-4[1H]-pyrimidinone self-complementary quadruple hydrogen-bonded module.

    PubMed

    Wang, Su-Min; Yu, Mao-Lin; Ding, Jie; Tung, Chen-Ho; Wu, Li-Zhu

    2008-05-01

    Phosphorescence quenching and flash photolysis experiments demonstrate that photoinduced intra-assembly triplet-triplet energy transfer can take place via a 2-ureido-4[1H]-pyrimidinone-bridged benzophenone-naphthalene assembly I with a rate constant of 3.0 x 106 s-1 and an efficiency of 95% in CH2Cl2. This new finding suggests that with high binding strength and directionality, the 2-ureido-4[1H]-pyrimidinone hydrogen-bonded module may serve as a new model to illustrate the fundamental principles governing the triplet-triplet energy-transfer process through hydrogen bonds.

  13. Triplet–triplet energy transfer in artificial and natural photosynthetic antennas

    DOE PAGES

    Ho, Junming; Kish, Elizabeth; Méndez-Hernandez, Dalvin D.; ...

    2017-06-26

    In photosynthetic organisms, protection against photo-oxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll to carotenoid triplet-triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, while it is ultrafast in the oxygen-rich chloroplasts of oxygen evolving photosynthetic organisms. In order to better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomericmore » carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET including a resonance Raman based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by DFT calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). In conclusion, both DFT and EPR analysis further indicates that upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.« less

  14. Triplet–triplet energy transfer in artificial and natural photosynthetic antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Junming; Kish, Elizabeth; Méndez-Hernandez, Dalvin D.

    In photosynthetic organisms, protection against photo-oxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll to carotenoid triplet-triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, while it is ultrafast in the oxygen-rich chloroplasts of oxygen evolving photosynthetic organisms. In order to better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomericmore » carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET including a resonance Raman based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by DFT calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). In conclusion, both DFT and EPR analysis further indicates that upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.« less

  15. Hyperspherical nuclear motion of H3 + and D3 + in the electronic triplet state, a 3Sigmau +.

    PubMed

    Ferreira, Tiago Mendes; Alijah, Alexander; Varandas, António J C

    2008-02-07

    The potential energy surface of H(3) (+) in the lowest electronic triplet state, a (3)Sigma(u) (+), shows three equivalent minima at linear nuclear configurations. The vibrational levels of H(3) (+) and D(3) (+) on this surface can therefore be described as superimposed linear molecule states. Owing to such a superposition, each vibrational state characterized by quantum numbers of an isolated linear molecule obtains a one- and a two-dimensional component. The energy splittings between the two components have now been rationalized within a hyperspherical picture. It is shown that nuclear motion along the hyperangle phi mainly accounts for the splittings and provides upper bounds. This hyperspherical motion can be considered an extension of the antisymmetric stretching motion of the individual linear molecule.

  16. Absolute measurements of the triplet-triplet annihilation rate and the charge-carrier recombination layer thickness in working polymer light-emitting diodes based on polyspirobifluorene

    NASA Astrophysics Data System (ADS)

    Rothe, C.; Al Attar, H. A.; Monkman, A. P.

    2005-10-01

    The triplet exciton densities in electroluminescent devices prepared from two polyspirobifluorene derivatives have been investigated by means of time-resolved transient triplet absorption as a function of optical and electrical excitation power at 20 K. Because of the low mobility of the triplet excitons at this temperature, the triplet generation profile within the active polymer layer is preserved throughout the triplet lifetime and as a consequence the absolute triplet-triplet annihilation efficiency is not homogeneously distributed but depends on position within the active layer. This then gives a method to measure the charge-carrier recombination layer after electrical excitation relative to the light penetration depth, which is identical to the triplet generation layer after optical excitation. With the latter being obtained from ellipsometry, an absolute value of 5 nm is found for the exciton formation layer in polyspirobifluorene devices. This layer increases to 11 nm if the balance between the electron and the hole mobility is improved by chemically modifying the polymer backbone. Also, and consistent with previous work, triplet diffusion is dispersive at low temperature. As a consequence of this, the triplet-triplet annihilation rate is not a constant in the classical sense but depends on the triplet excitation dose. At 20 K and for typical excitation doses, absolute values of the latter rate are of the order of 10-14cm3s-1 .

  17. Triplet exciton dissociation and electron extraction in graphene-templated pentacene observed with ultrafast spectroscopy.

    PubMed

    McDonough, Thomas J; Zhang, Lushuai; Roy, Susmit Singha; Kearns, Nicholas M; Arnold, Michael S; Zanni, Martin T; Andrew, Trisha L

    2017-02-08

    We compare the ultrafast dynamics of singlet fission and charge generation in pentacene films grown on glass and graphene. Pentacene grown on graphene is interesting because it forms large crystals with the long axis of the molecules "lying-down" (parallel to the surface). At low excitation fluence, spectra for pentacene on graphene contain triplet absorptions at 507 and 545 nm and no bleaching at 630 nm, which we show is due to the orientation of the pentacene molecules. We perform the first transient absorption anisotropy measurements on pentacene, observing negative anisotropy of the 507 and 545 nm peaks, consistent with triplet absorption. A broad feature at 853 nm, observed on both glass and graphene, is isotropic, suggesting hole absorption. At high fluence, there are additional features, whose kinetics and anisotropies are not explained by heating, that we assign to charge generation; we propose a polaron pair absorption at 614 nm. The lifetimes are shorter at high fluence for both pentacene on glass and graphene, indicative of triplet-triplet annihilation that likely enhances charge generation. The anisotropy decays more slowly for pentacene on graphene than on glass, in keeping with the smaller domain size observed via atomic force microscopy. Coherent acoustic phonons are observed for pentacene on graphene, which is a consequence of more homogeneous domains. Measuring the ultrafast dynamics of pentacene as a function of molecular orientation, fluence, and polarization provides new insight to previous spectral assignments.

  18. Investigating the intersystem crossing rate and triplet quantum yield of Protoporphyrin IX by means of pulse train fluorescence technique

    NASA Astrophysics Data System (ADS)

    Gotardo, Fernando; Cocca, Leandro H. Z.; Acunha, Thiago V.; Longoni, Ana; Toldo, Josene; Gonçalves, Paulo F. B.; Iglesias, Bernardo A.; De Boni, Leonardo

    2017-04-01

    Photophysical investigations of PPIX were described in order to determine the triplet conversion efficiency. Time resolved fluorescence and pulse train fluorescence were employed to characterize the main mechanism responsible for deactivation of the first singlet excited state (excited singlet and triplet states). Single pulse and Z-Scan analysis were employed to measure the singlet excited state absorption cross-sections. Theoretical calculations were performed in order to get some properties of PPIX in ground state, first singlet and triplet excited state. A TD-DFT result shows a great possibility of ISC associated to out-of-plane distortions in porphyrinic ring. Furthermore, the B and Q bands in the calculated spectrum are assigned to the four frontier molecular orbitals as proposed by Gouterman for free-based porphyrins.

  19. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.

    PubMed

    Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman

    2008-04-24

    We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results

  20. Singlet and triplet excitation management in a bichromophoric near-infrared-phosphorescent BODIPY-benzoporphyrin platinum complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whited, M. T.; Djurovich, P. I.; Roberts, Sean T.

    2011-01-12

    Multichromophoric arrays provide one strategy for assembling molecules with intense absorptions across the visible spectrum but are generally focused on systems that efficiently produce and manipulate singlet excitations and therefore are burdened by the restrictions of (a) unidirectional energy transfer and (b) limited tunability of the lowest molecular excited state. In contrast, we present here a multichromophoric array based on four boron dipyrrins (BODIPY) bound to a platinum benzoporphyrin scaffold that exhibits intense panchromatic absorption and efficiently generates triplets. The spectral complementarity of the BODIPY and porphryin units allows the direct observation of fast bidirectional singlet and triplet energy transfermore » processes (k ST( 1BDP→ 1Por) = 7.8 × 10 11 s -1, k TT( 3Por→ 3BDP) = 1.0 × 10 10 s -1, k TT( 3BDP→ 3Por) = 1.6 × 10 10 s -1), leading to a long-lived equilibrated [ 3BDP][Por]⇌[BDP][ 3Por] state. This equilibrated state contains approximately isoenergetic porphyrin and BODIPY triplets and exhibits efficient near-infrared phosphorescence (λ em = 772 nm, Φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable redistribution of energy from the core back onto the antennae.« less

  1. An ab initio mechanism for efficient population of triplet states in cytotoxic sulfur substituted DNA bases: the case of 6-thioguanine.

    PubMed

    Martínez-Fernández, Lara; González, Leticia; Corral, Inés

    2012-02-18

    The deactivation mechanism of the cytotoxic 6-thioguanine, the 6-sulfur-substituted analogue of the canonical DNA base, is unveiled by ab initio calculations. Oxygen-by-sulfur substitution leads to efficient population of triplet states-the first step for generating singlet oxygen-which is responsible for its cytotoxicity. This journal is © The Royal Society of Chemistry 2012

  2. Analysis of the phosphorescent dye concentration dependence of triplet-triplet annihilation in organic host-guest systems

    NASA Astrophysics Data System (ADS)

    Zhang, L.; van Eersel, H.; Bobbert, P. A.; Coehoorn, R.

    2016-10-01

    Using a novel method for analyzing transient photoluminescence (PL) experiments, a microscopic description is obtained for the dye concentration dependence of triplet-triplet annihilation (TTA) in phosphorescent host-guest systems. It is demonstrated that the TTA-mechanism, which could be a single-step dominated process or a diffusion-mediated multi-step process, can be deduced for any given dye concentration from a recently proposed PL intensity analysis. A comparison with the results of kinetic Monte Carlo simulations provides the TTA-Förster radius and shows that the TTA enhancement due to triplet diffusion can be well described in a microscopic manner assuming Förster- or Dexter-type energy transfer.

  3. Triplet-triplet annihilation photon-upconversion: towards solar energy applications.

    PubMed

    Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper

    2014-06-14

    Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.

  4. The fine tuning of carotenoid-chlorophyll interactions in light-harvesting complexes: an important requisite to guarantee efficient photoprotection via triplet-triplet energy transfer in the complex balance of the energy transfer processes

    NASA Astrophysics Data System (ADS)

    Di Valentin, Marilena; Carbonera, Donatella

    2017-08-01

    Triplet-triplet energy transfer (TTET) from the chlorophyll to the carotenoid triplet state is the process exploited by photosynthetic systems to protect themselves from singlet oxygen formation under light-stress conditions. A deep comprehension of the molecular strategies adopted to guarantee TTET efficiency, while at the same time maintaining minimal energy loss and efficient light-harvesting capability, is still lacking. The paramagnetic nature of the triplet state makes electron paramagnetic resonance (EPR) the method of choice when investigating TTET. In this review, we focus on our extended comparative study of two photosynthetic antenna complexes, the Peridinin-chlorophyll a-protein of dinoflagellates and the light-harvesting complex II of higher plants, in order to point out important aspects of the molecular design adopted in the photoprotection strategy. We have demonstrated that a proper analysis of the EPR data allows one to identify the pigments involved in TTET and, consequently, gain an insight into the structure of the photoprotective sites. The structural information has been complemented by a detailed description of the electronic structure provided by hyperfine spectroscopy. All these elements represent the fundamental building blocks toward a deeper understanding of the requirements for efficient photoprotection, which is fundamental to guarantee the prolonged energy conversion action of photosynthesis.

  5. Enantioselective photochemistry via Lewis acid catalyzed triplet energy transfer

    PubMed Central

    Blum, Travis R.; Miller, Zachary D.; Bates, Desiree M.; Guzei, Ilia A.; Yoon, Tehshik P.

    2017-01-01

    Relatively few catalytic systems are able to control the stereochemistry of electronically excited organic intermediates. Here we report the discovery that a chiral Lewis acid complex can catalyze triplet energy transfer from an electronically excited photosensitizer. This strategy is applied to asymmetric [2+2] photocycloadditions of 2′-hydroxychalcones using tris(bipyridyl) ruthenium(II) as a sensitizer. A variety of electrochemical, computational, and spectroscopic data rule out substrate activation via photoinduced electron transfer and instead support a mechanism in which Lewis acid coordination dramatically lowers the triplet energy of the chalcone substrate. We expect that this approach will enable chemists to more broadly apply their detailed understanding of chiral Lewis acid catalysis to stereocontrol in reactions of electronically excited states. PMID:27980203

  6. Walking Down the Chalcogenic Group of the Periodic Table: From Singlet to Triplet Organic Emitters.

    PubMed

    Kremer, Adrian; Aurisicchio, Claudia; De Leo, Federica; Ventura, Barbara; Wouters, Johan; Armaroli, Nicola; Barbieri, Andrea; Bonifazi, Davide

    2015-10-19

    The synthesis, X-ray crystal structures, ground- and excited-state UV/Vis absorption spectra, and luminescence properties of chalcogen-doped organic emitters equipped on both extremities with benzoxa-, benzothia-, benzoselena- and benzotellurazole (1X and 2X ) moieties have been reported for the first time. The insertion of the four different chalcogen atoms within the same molecular skeleton enables the investigation of only the chalcogenic effect on the organisation and photophysical properties of the material. Detailed crystal-structure analyses provide evidence of similar packing for 2O -2Se , in which the benzoazoles are engaged in π-π stacking and, for the heavier atoms, in secondary X⋅⋅⋅X and X⋅⋅⋅N bonding interactions. Detailed computational analysis shows that the arrangement is essentially governed by the interplay of van der Waals and secondary bonding interactions. Progressive quenching of the fluorescence and concomitant onset of phosphorescence features with gradually shorter lifetimes are detected as the atomic weight of the chalcogen heteroatom increases, with the tellurium-doped derivatives exhibiting only emission from the lowest triplet excited state. Notably, the phosphorescence spectra of the selenium and tellurium derivatives can be recorded even at room temperature; this is a very rare finding for fully organic emitters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Ca II infrared triplet's performance as an activity indicator compared to Ca II H and K. Empirical relations to convert Ca II infrared triplet measurements to common activity indices

    NASA Astrophysics Data System (ADS)

    Martin, J.; Fuhrmeister, B.; Mittag, M.; Schmidt, T. O. B.; Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M.

    2017-09-01

    Aims: A large number of Calcium infrared triplet (IRT) spectra are expected from the Gaia and CARMENES missions. Conversion of these spectra into known activity indicators will allow analysis of their temporal evolution to a better degree. We set out to find such a conversion formula and to determine its robustness. Methods: We have compared 2274 Ca II IRT spectra of active main-sequence F to K stars taken by the TIGRE telescope with those of inactive stars of the same spectral type. After normalizing and applying rotational broadening, we subtracted the comparison spectra to find the chromospheric excess flux caused by activity. We obtained the total excess flux, and compared it to established activity indices derived from the Ca II H and K lines, the spectra of which were obtained simultaneously to the infrared spectra. Results: The excess flux in the Ca II IRT is found to correlate well with R'HK and R+HK, as well as SMWO, if the B - V-dependency is taken into account. We find an empirical conversion formula to calculate the corresponding value of one activity indicator from the measurement of another, by comparing groups of datapoints of stars with similar B - V.

  8. Triplet correlation functions in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhabal, Debdas; Chakravarty, Charusita, E-mail: charus@chemistry.iitd.ac.in; Singh, Murari

    Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M.more » P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O–O–O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O–O–O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.« less

  9. The interaction of the excited states of safranine-O with low generation carboxyl terminated PAMAM dendrimers in an aqueous medium.

    PubMed

    Militello, M Paula; Altamirano, Marcela S; Bertolotti, Sonia G; Previtali, Carlos M

    2018-05-16

    The interaction of the singlet and triplet excited states of the synthetic dye safranine-O with carboxyl-terminated poly(amidoamine) (PAMAM) dendrimers was investigated in a buffer solution at pH 8. Low half-generation PAMAM dendrimers (G -0.5; G +0.5: G 1.5) were employed. The UV-vis absorption spectrum of the dye presents only a very small red shift in the presence of dendrimers. Fluorescence quenching was detected and it was interpreted by a static mechanism in terms of the association of the dye with the dendrimer. Laser flash photolysis experiments were carried out and transient absorption spectra of the triplet and radicals were obtained. The triplet state is quenched by the dendrimers with rate constants well below the diffusional limit. The quenching process was characterized as an electron transfer process and the quantum yield of radicals was estimated. It was found that radicals are formed with a high efficiency in the triplet quenching reaction.

  10. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.

  11. Complete basis set extrapolations for low-lying triplet electronic states of acetylene and vinylidene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherrill, C. David; Byrd, Edward F. C.; Head-Gordon, Martin

    2000-07-22

    A recent study by Ahmed, Peterka, and Suits [J. Chem. Phys. 110, 4248 (1999)] has presented the first experimentally derived estimate of the singlet-triplet gap in the simplest alkyne, acetylene. Their value, T{sub 0}(a(tilde sign) {sup 3}B{sub 2})=28 900 cm{sup -1}, does not agree with previous theoretical predictions using the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] method and a triple-{zeta} plus double polarization plus f-function basis set (TZ2P f ), which yields 30 500{+-}1000 cm{sup -1}. This discrepancy has prompted us to investigate possible deficiencies in this usually-accurate theoretical approach. Employing extrapolations to the complete basis set limit alongmore » with corrections for full connected triple excitations, core correlation, and even relativistic effects, we obtain a value of 30 900 cm-1 (estimated uncertainty {+-}230 cm-1), demonstrating that the experimental value is underestimated. To assist in the interpretation of anticipated future experiments, we also present highly accurate excitation energies for the other three low-lying triplet states of acetylene, a(tilde sign) {sup 3}B{sub u}(33 570{+-}230 cm{sup -1}), b(tilde sign) {sup 3}A{sub u}(36 040{+-}260 cm{sup -1}), and b(tilde sign) {sup 3}A{sub 2}(38 380{+-}260 cm{sup -1}), and the three lowest-lying states of vinylidene, X(tilde sign) {sup 1}A{sub 1}(15 150{+-}230 cm{sup -1}), a(tilde sign) {sup 3}B{sub 2}(31 870{+-}230 cm{sup -1}), and b(tilde sign) {sup 3}A{sub 2}(36 840{+-}350 cm{sup -1}). Finally, we assess the ability of density functional theory (DFT) and the Gaussian-3 method to match our benchmark results for adiabatic excitation energies of C{sub 2}H{sub 2}. (c) 2000 American Institute of Physics.« less

  12. Three-Triplet Model with Double SU(3) Symmetry

    DOE R&D Accomplishments Database

    Han, M. Y.; Nambu, Y.

    1965-01-01

    With a view to avoiding some of the kinematical and dynamical difficulties involved in the single triplet quark model, a model for the low lying baryons and mesons based on three triplets with integral charges is proposed, somewhat similar to the two-triplet model introduced earlier by one of us (Y. N.). It is shown that in a U(3) scheme of triplets with integral charges, one is naturally led to three triplets located symmetrically about the origin of I{sub 3} - Y diagram under the constraint that Nishijima-Gell-Mann relation remains intact. A double SU(3) symmetry scheme is proposed in which the large mass splittings between different representations are ascribed to one of the SU(3), while the other SU(3) is the usual one for the mass splittings within a representation of the first SU(3).

  13. Singlet-to-Triplet Excitations in the Unconventional Spin-Peierls System TiOBr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, James P; Gaulin, Bruce D.; Adams, Carl P

    2011-01-01

    We have performed time-of-flight neutron scattering measurements on powder samples of the unconventional spin-Peierls compound TiOBr using the fine-resolution Fermi chopper spectrometer (SEQUOIA) at the SNS. These measurements reveal two branches of magnetic excitations within the commensurate and incommensurate spin-Peierls phases, which we associate with n = 1 and n = 2 triplet excitations out of the singlet ground state. These measurements represent the first direct measure of the singlet-triplet energy gap in TiOBr, which is found to have a value of Eg 21 meV.

  14. Ultrafast studies of the excited-state dynamics of copper and nickel phthalocyanine tetrasulfonates: potential sensitizers for the two-photon photodynamic therapy of tumors.

    PubMed

    Fournier, Michel; Pépin, Claude; Houde, Daniel; Ouellet, René; van Lier, Johan E

    2004-01-01

    In order to evaluate the potential of copper and nickel phthalocyanine tetrasulfonates as sensitizers for two-photon photodynamic therapy, we conducted kinetic femtosecond measurements of transient absorption and bleaching of their excited state dynamics in aqueous solution. Samples were pumped with 620 nm and 310 nm laser light, which allowed us to study relaxation processes from both the first and second singlet (or doublet for the copper phthalocyanine) excited states. A second excitation from the first excited triplet state, approximately 685 and 105 ps after the first excitation for copper and nickel phthalocyanine tetrasulfonate respectively, was the most efficient way to bring the molecules to an upper triplet state. Presumably this highest triplet state can inflict molecular damage on adjacent biomolecules int eh absence of oxygen, resulting in the desired cytotoxic cellular response. Transient absorption spectra at different fixed delays indicate that optimum efficiency would require that the second photon has a wavelength of approximately 750 nm.

  15. Time-resolved EPR study on the photoexcited triplet state of the electron-donor-acceptor complex formed in the system of fac-tris[2-(4-octyl-phenyl) pyridine] iridium(III) and tetracene.

    PubMed

    Zhebin, Fu; Shuhei, Yoshioka; Hisao, Murai

    2014-01-09

    The physical properties of the phosphorescent organic light-emitting diode material fac-tris(phenylpyridine) iridium(III), Ir(ppy)3, have been reported with experimental and theoretical studies. Here, the photochemical properties of the excited triplet state of partially modified fac-tris[2-(4-octyl-phenyl) pyridine] iridium(III), Ir(C8ppy)3, were investigated using time-resolved electron paramagnetic resonance (tr-EPR) and optical methods by adding tetracene in the toluene solution. The tr-EPR observation at 77 K revealed the following two species: the excited triplet state of tetracene and another triplet species with zero field splitting parameters of |D| = 0.088 cm(-1) and |E| = 0.018 cm(-1) with characteristic spin polarization. The latter species was assigned to the electron-donor-acceptor (EDA) complex formed between Ir(C8ppy)3 and tetracene. The mechanism of formation and the properties of this EDA complex, including the information on the principal axes of (3)Ir(C8ppy)3*, are discussed.

  16. Parent-infant synchrony and the social-emotional development of triplets.

    PubMed

    Feldman, Ruth; Eidelman, Arthur I

    2004-11-01

    To study the social-emotional development of triplets, 23 sets of triplets, 23 sets of twins, and 23 singleton infants (N=138) were followed from birth to 2 years. Maternal depression and social support were assessed in the postpartum period, mother-infant and father-infant interaction and the home environment were observed at 3 months, a separation-reunion episode and a maternal interview were conducted at 12 months, and infant behavior problems were evaluated at 24 months. Lower parent-infant synchrony was observed for triplets. Triplets showed less distress during maternal separation and less approach at reunion. Mothers reported lower adjustment and differentiation among siblings for triplets than for twins. Higher internalizing problems were reported for triplets, and the triplet with intrauterine growth retardation showed the poorest outcomes. Behavior problems were predicted by medical risk, maternal depression, parent-infant synchrony, infant approach, and mother adjustment. Discussion focuses on developmental risk when the exclusivity of the parent-infant relationship is compromised. (c) 2004 APA, all rights reserved

  17. [An analysis of cephalometric polygons in 21 sets of triplets].

    PubMed

    Kosovcević, Z; Marković, M

    1991-01-01

    Lateral cephalometric radiographs of 21 sets of triplets (4 monozygotic, 12 dizygotic and 5 three zygotic) were used for this study. The following two polygons were analysed: SNA and NSAr Go Me. Superimposition of the cephalometric tracings was made on the S-N line with S as the registration point. Intra- and inter-set comparisons between monozygotic (MZ), dizygotic (DZ) and three zygotic (TZ) triplets were made. Members of MZ triplets demonstrated the greatest similarity in size and form of the polygons. The second greatest similarity was found between MZ members of the DZ triplets, while the third DZ member of all such triplets showed much higher difference compared with the MZ members. Finally, triplets of TZ sets demonstrated the greatest difference between each other. The results obtained from this study indicated that genetic factors played a dominant role in growth and development of the craniofacial complex. However, difference found between members of MZ triplets suggested an importance of environmental factors in these processes as well.

  18. Electronic Spectra of Cs2NaYb(NO2)6: Is There Quantum Cutting?

    PubMed

    Luo, Yuxia; Liu, Zhenyu; Hau, Sam Chun-Kit; Yeung, Yau Yuen; Wong, Ka-Leung; Shiu, Kwok Keung; Chen, Xueyuan; Zhu, Haomiao; Bao, Guochen; Tanner, Peter A

    2018-05-03

    The crystal structure and electronic spectra of the T h symmetry hexanitritoytterbate(III) anion have been studied in Cs 2 NaY 0.96 Yb 0.04 (NO 2 ) 6 , which crystallizes in the cubic space group Fm3̅. The emission from Yb 3+ can be excited via the NO 2 - antenna. The latter electronic transition is situated at more than twice the energy of the former, but at room temperature, one photon absorbed at 470 nm in the triplet state produces no more than one photon emitted. Some degree of quantum cutting is observed at 298 K under 420 nm excitation into the singlet state and at 25 K using excitation into either state. The quantum efficiency is ∼10% at 25 K. The energy level scheme of Yb 3+ has been deduced from excitation and emission spectra and calculated by crystal field theory. New improved energy level calculations are also reported for the Cs 2 NaLn(NO 2 ) 6 (Ln = Pr, Eu, Tb) series using the f- Spectra package. The neat crystal Cs 2 NaYb(NO 2 ) 6 has also been studied, but results were unsatisfactory due to sample decomposition, and this chemical instability makes it unsuitable for applications.

  19. Triplet–triplet energy transfer in artificial and natural photosynthetic antennas

    PubMed Central

    Ho, Junming; Kish, Elizabeth; Méndez-Hernández, Dalvin D.; WongCarter, Katherine; Pillai, Smitha; Kodis, Gerdenis; Niklas, Jens; Poluektov, Oleg G.; Gust, Devens; Moore, Thomas A.; Moore, Ana L.; Batista, Victor S.

    2017-01-01

    In photosynthetic organisms, protection against photooxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll-to-carotenoid triplet–triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, whereas it is ultrafast in the oxygen-rich chloroplasts of oxygen-evolving photosynthetic organisms. To better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomeric carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET, including a resonance Raman-based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by density functional theory (DFT) calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light-harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). Both DFT and electron paramagnetic resonance (EPR) analyses further indicate that, upon T-TET, the triplet wave function is localized on the carotenoid in both dyads. PMID:28652359

  20. On static triplet structures in fluids with quantum behavior

    NASA Astrophysics Data System (ADS)

    Sesé, Luis M.

    2018-03-01

    The problem of the equilibrium triplet structures in fluids with quantum behavior is discussed. Theoretical questions of interest to the real space structures are addressed by studying the three types of structures that can be determined via path integrals (instantaneous, centroid, and total thermalized-continuous linear response). The cases of liquid para-H2 and liquid neon on their crystallization lines are examined with path-integral Monte Carlo simulations, the focus being on the instantaneous and the centroid triplet functions (equilateral and isosceles configurations). To analyze the results further, two standard closures, Kirkwood superposition and Jackson-Feenberg convolution, are utilized. In addition, some pilot calculations with path integrals and closures of the instantaneous triplet structure factor of liquid para-H2 are also carried out for the equilateral components. Triplet structural regularities connected to the pair radial structures are identified, a remarkable usefulness of the closures employed is observed (e.g., triplet spatial functions for medium-long distances, triplet structure factors for medium k wave numbers), and physical insight into the role of pair correlations near quantum crystallization is gained.

  1. On static triplet structures in fluids with quantum behavior.

    PubMed

    Sesé, Luis M

    2018-03-14

    The problem of the equilibrium triplet structures in fluids with quantum behavior is discussed. Theoretical questions of interest to the real space structures are addressed by studying the three types of structures that can be determined via path integrals (instantaneous, centroid, and total thermalized-continuous linear response). The cases of liquid para-H 2 and liquid neon on their crystallization lines are examined with path-integral Monte Carlo simulations, the focus being on the instantaneous and the centroid triplet functions (equilateral and isosceles configurations). To analyze the results further, two standard closures, Kirkwood superposition and Jackson-Feenberg convolution, are utilized. In addition, some pilot calculations with path integrals and closures of the instantaneous triplet structure factor of liquid para-H 2 are also carried out for the equilateral components. Triplet structural regularities connected to the pair radial structures are identified, a remarkable usefulness of the closures employed is observed (e.g., triplet spatial functions for medium-long distances, triplet structure factors for medium k wave numbers), and physical insight into the role of pair correlations near quantum crystallization is gained.

  2. Triazatruxene: A Rigid Central Donor Unit for a D-A3 Thermally Activated Delayed Fluorescence Material Exhibiting Sub-Microsecond Reverse Intersystem Crossing and Unity Quantum Yield via Multiple Singlet-Triplet State Pairs.

    PubMed

    Dos Santos, Paloma L; Ward, Jonathan S; Congrave, Daniel G; Batsanov, Andrei S; Eng, Julien; Stacey, Jessica E; Penfold, Thomas J; Monkman, Andrew P; Bryce, Martin R

    2018-06-01

    By inverting the common structural motif of thermally activated delayed fluorescence materials to a rigid donor core and multiple peripheral acceptors, reverse intersystem crossing (rISC) rates are demonstrated in an organic material that enables utilization of triplet excited states at faster rates than Ir-based phosphorescent materials. A combination of the inverted structure and multiple donor-acceptor interactions yields up to 30 vibronically coupled singlet and triplet states within 0.2 eV that are involved in rISC. This gives a significant enhancement to the rISC rate, leading to delayed fluorescence decay times as low as 103.9 ns. This new material also has an emission quantum yield ≈1 and a very small singlet-triplet gap. This work shows that it is possible to achieve both high photoluminescence quantum yield and fast rISC in the same molecule. Green organic light-emitting diode devices with external quantum efficiency >30% are demonstrated at 76 cd m -2 .

  3. Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering

    NASA Astrophysics Data System (ADS)

    Breunig, Daniel; Burset, Pablo; Trauzettel, Björn

    2018-01-01

    In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction—the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.

  4. Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering.

    PubMed

    Breunig, Daniel; Burset, Pablo; Trauzettel, Björn

    2018-01-19

    In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction-the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.

  5. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  6. VizieR Online Data Catalog: Empirical calibration of the near-IR Ca triplet (Cenarro+ 2001)

    NASA Astrophysics Data System (ADS)

    Cenarro; A. J.; Cardiel; N.; Gorgas; J.; Peletier; R. F.; Vazdekis; A.; Prada; F.

    2001-09-01

    File table contains details of the new near-IR stellar library observed to calibrate the Ca II triplet. It includes the indices CaT*, CaT and PaT measured over the final spectra as well as their corresponding errors. The Henry Draper Catalogue number, other names (mainly HR and BD numbers), coordinates, spectral type, luminosity class, apparent magnitude and atmospheric parameters (as derived in Paper II; Cenarro et al., 2001MNRAS.326..981C) are also given. (1 data file).

  7. Singlet and triplet energy transfer in a benzil-doped, light emitting, solid-state conjugated polymer

    NASA Astrophysics Data System (ADS)

    Rothe, C.; Pålsson, L. O.; Monkman, A. P.

    2002-12-01

    The luminescence emitted from pure and benzil-doped thin films of the conjugated polymer polyfluorene [PF2/6] are compared. The prompt fluorescence from the first singlet-excited state of the polymer is quenched by 90% in the presence of 10% per weight benzil. In addition to the prompt fluorescence, time-resolved spectroscopy at low temperature also allows the detection of phosphorescence and delayed fluorescence from the host polymer. Again the delayed fluorescence is strongly quenched but the phosphorescence is enhanced in doped samples. An explanation of the results is given in terms of singlet energy transfer from the host to benzil and triplet energy transfer from the dopant back to PF2/6. We have applied this to enable better understanding of the photophysics in PF2/6 doped with a platinum porphyrin complex.

  8. Mechanism for the Excited-State Multiple Proton Transfer Process of Dihydroxyanthraquinone Chromophores.

    PubMed

    Zhou, Qiao; Du, Can; Yang, Li; Zhao, Meiyu; Dai, Yumei; Song, Peng

    2017-06-22

    The single and dual cooperated proton transfer dynamic process in the excited state of 1,5-dihydroxyanthraquinone (1,5-DHAQ) was theoretically investigated, taking solvent effects (ethanol) into account. The absorption and fluorescence spectra were simulated, and dual fluorescence exhibited, which is consistent with previous experiments. Analysis of the calculated IR and Raman vibration spectra reveals that the intramolecular hydrogen bonding interactions (O 20 -H 21 ···O 24 and O 22 -H 23 ···O 25 ) are strengthened following the excited proton transfer process. Finally, by constructing the potential energy surfaces of the ground state, first excited singlet state, and triplet state, the mechanism of the intramolecular proton transfer of 1,5-DHAQ can be revealed.

  9. Triplet energy differences and the low lying structure of 62Ga

    NASA Astrophysics Data System (ADS)

    Henry, T. W.; Bentley, M. A.; Clark, R. M.; Davies, P. J.; Bader, V. M.; Baugher, T.; Bazin, D.; Beausang, C. W.; Berryman, J. S.; Bruce, A. M.; Campbell, C. M.; Crawford, H. L.; Cromaz, M.; Fallon, P.; Gade, A.; Henderson, J.; Iwasaki, H.; Jenkins, D. G.; Lee, I. Y.; Lemasson, A.; Lenzi, S. M.; Macchiavelli, A. O.; Napoli, D. R.; Nichols, A. J.; Paschalis, S.; Petri, M.; Recchia, F.; Rissanen, J.; Simpson, E. C.; Stroberg, S. R.; Wadsworth, R.; Weisshaar, D.; Wiens, A.; Walz, C.

    2015-08-01

    Background: Triplet energy differences (TED) can be studied to yield information on isospin-non-conserving interactions in nuclei. Purpose: The systematic behavior of triplet energy differences (TED) of T =1 , Jπ=2+ states is examined. The A =62 isobar is identified as having a TED value that deviates significantly from an otherwise very consistent trend. This deviation can be attributed to the tentative assignments of the pertinent states in 62Ga and 62Ge . Methods: An in-beam γ -ray spectroscopy experiment was performed to identify excited states in 62Ga using Gamma-Ray Energy Tracking In-Beam Nuclear Array with the S800 spectrometer at NSCL using a two-nucleon knockout approach. Cross-section calculations for the knockout process and shell-model calculations have been performed to interpret the population and decay properties observed. Results: Using the systematics as a guide, a candidate for the transition from the T =1 , 2+ state is identified. However, previous work has identified similar states with different Jπ assignments. Cross-section calculations indicate that the relevant T =1 , 2+ state should be one of the states directly populated in this reaction. Conclusions: As spins and parities were not measurable, it is concluded that an unambiguous identification of the first T =1 , 2+ state is required to reconcile our understanding of TED systematics.

  10. On stability, chirality measures, and theoretical VCD spectra of the chiral C58X2 fullerenes (X = N, B).

    PubMed

    Ostrowski, Sławomir; Jamróz, Michał H; Rode, Joanna E; Dobrowolski, Jan Cz

    2012-01-12

    The stability of all 23 C(58)N(2) and C(58)B(2) heterofullerenes in the singlet and triplet states was determined at the B3LYP/6-31G** level. In equilibrium mixture the achiral (1,4) C(58)N(2) isomer would be populated in ca. 95.8%, the chiral (1,16) one in ca. 3.3%, and the achiral (1,4) C(58)B(2) in 100%, whereas all triplet state isomers are less stable. Fourteen out of 23 C(58)X(2) are chiral. Four different chirality measures were calculated by our own CHIMEA program: pure geometrical, labeled, mass, and charge. Intercorrelations between the measures for all chiral compounds indicate that the pure geometrical chirality measure is unstable and should not be used in QSAR predictions of the other molecular properties, while the labeled and mass-weighted ones are promising QSAR descriptors. For each chiral C(58)N(2) molecule, some very strong VCD bands, of intensity comparable with that in the IR spectra, can serve in identification and characterization of the isomers.

  11. The spectroscopy of singlets and triplets excites electronic states, spatial and electronic structure of hydrocarbons and quantum classifications in chemmotology

    NASA Astrophysics Data System (ADS)

    Obukhov, A. E.

    2017-01-01

    In this work we demonstrate the physical foundations of the spectroscopy of the grounds states: E- and X-ray, (RR) Raman scattering the NMR 1H and 13C and IR-, EPR- absorption and the singlets and triplets electronic excited states in the multinuclear hydrocarbons in chemmotology. The parameters of UV-absorption, RR-Raman scattering of light, the fluorescence and the phosphorescence and day-lasers at the pumping laser and lamp, OLEDs and OTETs- are measurements. The spectral-energy properties are briefly studied. The quantum-chemical LCAO-MO SCF expanded-CI PPP/S and INDO/S methods in the electronic and spatial structure hidrocarbons are considered.

  12. Production and installation of the LHC low-beta triplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feher, S.; Bossert, R.; DiMarco, J.

    2005-09-01

    The LHC performance depends critically on the low-{beta}, triplets, located on either side of the four interaction points. Each triplet consists of four superconducting quadrupole magnets, which must operate reliably at up to 215 T/m, sustain extremely high heat loads and have an excellent field quality. A collaboration of CERN, Fermilab and KEK was formed in 1996 to design and build the triplet systems, and after nine years of joint effort the production has been completed in 2005. We retrace the main events of the project and present the design features and performance of the low-{beta} quadrupoles, built by KEKmore » and Fermilab, as well as of other vital elements of the triplet. The tunnel installation of the first triplet and plans for commissioning in the LHC are also presented. Apart from the excellent technical results, the construction of the LHC low-{beta} triplets has been a highly enriching experience combining harmoniously the different competences and approaches to engineering in a style reminiscent of high energy physics experiment collaborations, and rarely before achieved in construction of an accelerator.« less

  13. DNA Photosensitization by an "Insider": Photophysics and Triplet Energy Transfer of 5-Methyl-2-pyrimidone Deoxyribonucleoside.

    PubMed

    Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dumont, Elise; Monari, Antonio

    2015-08-03

    The main chromophore of (6-4) photoproducts, namely, 5-methyl-2-pyrimidone (Pyo), is an artificial noncanonical nucleobase. This chromophore has recently been reported as a potential photosensitizer that induces triplet damage in thymine DNA. In this study, we investigate the spectroscopic properties of the Pyo unit embedded in DNA by means of explicit solvent molecular-dynamics simulations coupled to time-dependent DFT and quantum-mechanics/molecular-mechanics techniques. Triplet-state transfer from the Pyo to the thymine unit was monitored in B-DNA by probing the propensity of this photoactive pyrimidine analogue to induce a Dexter-type triplet photosensitization and subsequent DNA damage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    PubMed Central

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-01-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556

  15. Up-Conversion Intersystem Crossing Rates in Organic Emitters for Thermally Activated Delayed Fluorescence: Impact of the Nature of Singlet vs Triplet Excited States.

    PubMed

    Samanta, Pralok K; Kim, Dongwook; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2017-03-22

    The rates for up-conversion intersystem crossing (UISC) from the T 1 state to the S 1 state are calculated for a series of organic emitters with an emphasis on thermally activated delayed fluorescence (TADF) materials. Both the spin-orbit coupling and the energy difference between the S 1 and T 1 states (ΔE ST ) are evaluated, at the density functional theory (DFT) and time-dependent DFT levels. The calculated UISC rates and ΔE ST values are found to be in good agreement with available experimental data. Our results underline that small ΔE ST values and sizable spin-orbit coupling matrix elements have to be simultaneously realized in order to facilitate UISC and ultimately TADF. Importantly, the spatial separation of the highest occupied and lowest unoccupied molecular orbitals of the emitter, a widely accepted strategy for the design of TADF molecules, does not necessarily lead to a sufficient reduction in ΔE ST ; in fact, either a significant charge-transfer (CT) contribution to the T 1 state or a minimal energy difference between the local-excitation and charge-transfer triplet states is required to achieve a small ΔE ST . Also, having S 1 and T 1 states of a different nature is found to strongly enhance spin-orbit coupling, which is consistent with the El-Sayed rule for ISC rates. Overall, our results indicate that having either similar energies for the local-excitation and charge-transfer triplet states or the right balance between a substantial CT contribution to T 1 and somewhat different natures of the S 1 and T 1 states, paves the way toward UISC enhancement and thus TADF efficiency improvement.

  16. Empirical calibration of the near-infrared CaII triplet - IV. The stellar population synthesis models

    NASA Astrophysics Data System (ADS)

    Vazdekis, A.; Cenarro, A. J.; Gorgas, J.; Cardiel, N.; Peletier, R. F.

    2003-04-01

    We present a new evolutionary stellar population synthesis model, which predicts spectral energy distributions for single-age single-metallicity stellar populations (SSPs) at resolution 1.5 Å (FWHM) in the spectral region of the near-infrared CaII triplet feature. The main ingredient of the model is a new extensive empirical stellar spectral library that has been recently presented by Cenarro et al., which is composed of more than 600 stars with an unprecedented coverage of the stellar atmospheric parameters. Two main products of interest for stellar population analysis are presented. The first is a spectral library for SSPs with metallicities -1.7 < [Fe/H] < +0.2, a large range of ages (0.1-18 Gyr) and initial mass function (IMF) types. They are well suited to modelling galaxy data, since the SSP spectra, with flux-calibrated response curves, can be smoothed to the resolution of the observational data, taking into account the internal velocity dispersion of the galaxy, allowing the user to analyse the observed spectrum in its own system. We also produce integrated absorption-line indices (namely CaT*, CaT and PaT) for the same SSPs in the form of equivalent widths. We find the following behaviour for the CaII triplet feature in old-aged SSPs: (i) the strength of the CaT* index does not change much with time for all metallicities for ages larger than ~3 Gyr; (ii) this index shows a strong dependence on metallicity for values below [M/H]~-0.5 and (iii) for larger metallicities this feature does not show a significant dependence either on age or on the metallicity, being more sensitive to changes in the slope of power-like IMF shapes. The SSP spectra have been calibrated with measurements for globular clusters by Armandroff & Zinn, which are well reproduced, probing the validity of using the integrated CaII triplet feature for determining the metallicities of these systems. Fitting the models to two early-type galaxies of different luminosities (NGC 4478 and 4365

  17. 'Blueberry' Triplets Born in Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This microscopic image, taken at the outcrop region dubbed 'Berry Bowl' near the Mars Exploration Rover Opportunity's landing site, shows the sphere-like grains or 'blueberries' that fill Berry Bowl. Of particular interest is the blueberry triplet, which indicates that these geologic features grew in pre-existing wet sediments. Other sphere-like grains that form in the air, such as impact spherules or ejected volcanic material called lapilli, are unlikely to fuse along a line and form triplets. This image was taken by the rover's microscopic imager on the 46th martian day, or sol, of its mission.

  18. Spin-selective coupling to Majorana zero modes in mixed singlet and triplet superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Paul, Ganesh C.; Saha, Arijit; Das, Sourin

    2018-05-01

    We theoretically investigate the transport properties of a quasi-one-dimensional ferromagnet-superconductor junction where the superconductor consists of mixed singlet and triplet pairings. We show that the relative orientation of the Stoner field (h ˜) in the ferromagnetic lead and the d vector of the superconductor acts like a on-off switch for the zero bias conductance of the device. In the regime, where triplet pairing amplitude dominates over the singlet counterpart (topological phase), a pair of Majorana zero modes appear at each end of the superconducting part of the nanowire. When h ˜ is parallel or antiparallel to the d vector, transport gets completely blocked due to blockage in pairing while, when h ˜ and d are perpendicular to each other, the zero energy two terminal differential conductance spectra exhibits sharp transition from 4 e2/h to 2 e2/h as the magnetization strength in the lead becomes larger than the chemical potential indicating the spin-selective coupling of a pair of Majorana zero modes to the lead.

  19. Probing the triplet correlation function in liquid water by experiments and molecular simulations.

    PubMed

    Dhabal, Debdas; Wikfeldt, Kjartan Thor; Skinner, Lawrie B; Chakravarty, Charusita; Kashyap, Hemant K

    2017-01-25

    Despite very significant developments in scattering experiments like X-ray and neutron diffraction, it has been challenging to elucidate the nature of tetrahedral molecular configurations in liquid water. A key question is whether the pair correlation functions, which can be obtained from scattering experiments, are sufficient to describe the tetrahedral ordering of water molecules. In our previous study (Dhabal et al., J. Chem. Phys., 2014, 141, 174504), using data-sets generated from reverse Monte Carlo and molecular dynamics simulations, we showed that the triplet correlation functions contain important information on the tetrahedrality of water in the liquid state. In the present study, X-ray scattering experiments and molecular dynamics (MD) simulations are used to link the isothermal pressure derivative of the structure factor with the triplet correlation functions for water. Triplet functions are determined for water up to 3.3 kbar at 298 K to display the effect of pressure on the water structure. The results suggest that triplet functions (H[combining tilde](q)) obtained using a rigid-body TIP4P/2005 water model are consistent with the experimental results. The triplet functions obtained in experiment as well as in simulations evince that in the case of tetrahedral liquids, exertion of higher pressure leads to a better agreement with the Kirkwood superposition approximation (KSA). We further validate this observation using the triplet correlation functions (g (3) (r,s,t)) calculated directly from simulation trajectory, revealing that both H[combining tilde](q) in q-space and g (3) (r,s,t) in real-space contain similar information on the tetrahedrality of liquids. This study demonstrates that the structure factor, even though it has only pair correlation information of the liquid structure, can shed light on three-body correlations in liquid water through its isothermal pressure derivative term.

  20. Empirical calibration of the near-infrared Ca ii triplet - I. The stellar library and index definition

    NASA Astrophysics Data System (ADS)

    Cenarro, A. J.; Cardiel, N.; Gorgas, J.; Peletier, R. F.; Vazdekis, A.; Prada, F.

    2001-09-01

    A new stellar library at the near-IR spectral region developed for the empirical calibration of the Caii triplet and stellar population synthesis modelling is presented. The library covers the range λλ8348-9020 at 1.5-Å (FWHM) spectral resolution, and consists of 706 stars spanning a wide range in atmospheric parameters. We have defined a new set of near-IR indices, CaT*, CaT and PaT, which mostly overcome the limitations of previous definitions, the former being specially suited for the measurement of the Caii triplet strength corrected for the contamination from Paschen lines. We also present a comparative study of the new and the previous Ca indices, as well as the corresponding transformations between the different systems. A thorough analysis of the sources of index errors and the procedure to calculate them is given. Finally, index and error measurements for the whole stellar library are provided together with the final spectra.

  1. Ribozyme-catalysed RNA synthesis using triplet building blocks.

    PubMed

    Attwater, James; Raguram, Aditya; Morgunov, Alexey S; Gianni, Edoardo; Holliger, Philipp

    2018-05-15

    RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit '+' and '-' strands in segments and assemble them into a new active ribozyme. © 2018, Attwater et al.

  2. Quantum mechanical reaction probability of triplet ketene at the multireference second-order perturbation level of theory.

    PubMed

    Ogihara, Yusuke; Yamamoto, Takeshi; Kato, Shigeki

    2010-09-23

    Triplet ketene exhibits a steplike structure in the experimentally observed dissociation rates, but its mechanism is still unknown despite many theoretical efforts in the past decades. In this paper we revisit this problem by quantum mechanically calculating the reaction probability with multireference-based electronic structure theory. Specifically, we first construct an analytical potential energy surface of triplet state by fitting it to about 6000 ab initio energies computed at the multireference second-order Mller-Plesset perturbation (MRMP2) level. We then evaluate the cumulative reaction probability by using the transition state wave packet method together with an adiabatically constrained Hamiltonian. The result shows that the imaginary barrier frequency on the triplet surface is 328i cm-1, which is close to the CCSD(T) result (321i cm-1) but is likely too large for reproducing the experimentally observed steps. Indeed, our calculated reaction probability exhibits no signature of steps, reflecting too strong tunneling effect along the reaction coordinate. Nevertheless, it is emphasized that the flatness of the potential profile in the transition-state region (which governs the degree of tunneling) depends strongly on the level of electronic structure calculation, thus leaving some possibility that the use of more accurate theories might lead to the observed steps. We also demonstrate that the triplet potential surface differs significantly between the CASSCF and MRMP2 results, particularly in the transition-state region. This fact seems to require more attention when studying the "nonadiabatic" scenario for the steps, in which the crossing seam between S0 and T1 surfaces is assumed to play a central role.

  3. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winghart, Marc-Oliver, E-mail: marc-oliver.winghart@kit.edu; Unterreiner, Andreas-Neil; Yang, Ji-Ping

    2016-02-07

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). Wemore » find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.« less

  4. Weak-triplet, color-octet scalars and the CDF dijet excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrescu, Bogdan A.; Krnjaic, Gordan Z.

    2012-04-24

    We extend the standard model to include a weak-triplet and color-octet scalar. This 'octo-triplet' field consists of three particles, two charged and one neutral, whose masses and renormalizable interactions depend only on two new parameters. The charged octo-triplet decay into a W boson and a gluon is suppressed by a loop factor and an accidental cancellation. Thus, the main decays of the charged octo-triplet may occur through higher-dimensional operators, mediated by a heavy vectorlike fermion, into quark pairs. For an octo-triplet mass below the tb¯ threshold, the decay into Wb b¯ through an off-shell top quark has a width comparablemore » to that into cs¯ or cb¯. Pair production with one octo-triplet decaying to two jets and the other decaying to a W and two soft b jets may explain the dijet-plus-W excess reported by the CDF Collaboration. The same higher-dimensional operators lead to CP violation in B s-B¯ s mixing.« less

  5. Different AIS triplets: Different mortality predictions in identical ISS and NISS.

    PubMed

    Aharonson-Daniel, Limor; Giveon, Adi; Stein, Michael; Peleg, Kobi

    2006-09-01

    Previous studies demonstrated different mortality predictions for identical Injury Severity Scores (ISS) from different Abbreviated Injury Scale (AIS) triplets. This study elaborates in both scope and volume producing results of a larger magnitude, applicable to specific injury subgroups of blunt or penetrating, traumatic brain injury, various age groups, and replicated on NISS. All patients hospitalized after trauma at 10 hospitals, with ISS/NISS (new ISS) generated by two AIS triplets, excluding patients with isolated minor or moderate injuries to a single body region were studied. Patients were separated into two groups based on the different triplets. Inpatient-mortality rates were calculated for each triplet group. Odds ratios were calculated to estimate the risk of dying in one triplet group as compared with the other. The chi test determined whether the difference in mortality rate between the two groups was significantly different. Differences were further explored for various subgroups. There were 35,827 patients who had ISS/NISS scores generated by two different AIS triplets. Significant differences in death rates were noted between triplet groups forming identical ISS/NISS. Odds ratio for being in the second group (always containing the higher AIS score) ranged from 2.3 to 7.4. ISS and NISS that are formed by different AIS triplets have significantly different inpatient-mortality rates. The triplet with the higher AIS score has higher inpatient-mortality rates, overall and in several sub-populations of varying vulnerability. The comparison of populations and the interpretation of ISS/NISS based outcome data should take this important information into account and the components of AIS triplets creating each ISS and NISS should be reported.

  6. Singlet-triplet splittings from the virial theorem and single-particle excitation energies

    NASA Astrophysics Data System (ADS)

    Becke, Axel D.

    2018-01-01

    The zeroth-order (uncorrelated) singlet-triplet energy difference in single-particle excited configurations is 2Kif, where Kif is the Coulomb self-energy of the product of the transition orbitals. Here we present a non-empirical, virial-theorem argument that the correlated singlet-triplet energy difference should be half of this, namely, Kif. This incredibly simple result gives vertical HOMO-LUMO excitation energies in small-molecule benchmarks as good as the popular TD-B3LYP time-dependent approach to excited states. For linear acenes and nonlinear polycyclic aromatic hydrocarbons, the performance is significantly better than TD-B3LYP. In addition to the virial theorem, the derivation borrows intuitive pair-density concepts from density-functional theory.

  7. Vibronic Coupling Investigation to Compute Phosphorescence Spectra of Pt(II) Complexes.

    PubMed

    Vazart, Fanny; Latouche, Camille; Bloino, Julien; Barone, Vincenzo

    2015-06-01

    The present paper reports a comprehensive quantum mechanical investigation on the luminescence properties of several mono- and dinuclear platinum(II) complexes. The electronic structures and geometric parameters are briefly analyzed together with the absorption bands of all complexes. In all cases agreement with experiment is remarkable. Next, emission (phosphorescence) spectra from the first triplet states have been investigated by comparing different computational approaches and taking into account also vibronic effects. Once again, agreement with experiment is good, especially using unrestricted electronic computations coupled to vibronic contributions. Together with the intrinsic interest of the results, the robustness and generality of the approach open the opportunity for computationally oriented chemists to provide accurate results for the screening of large targets which could be of interest in molecular materials design.

  8. Lowest triplet (n, π*) electronic state of acrolein: Determination of structural parameters by cavity ringdown spectroscopy and quantum-chemical methods

    NASA Astrophysics Data System (ADS)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2013-02-01

    The cavity ringdown absorption spectrum of acrolein (propenal, CH2=CH—CH=O) was recorded near 412 nm, under bulk-gas conditions at room temperature and in a free-jet expansion. The measured spectral region includes the 0^0_0 band of the T1(n, π*) ← S0 system. We analyzed the 0^0_0 rotational contour by using the STROTA computer program [R. H. Judge et al., J. Chem. Phys. 103, 5343 (1995)], 10.1063/1.470569, which incorporates an asymmetric rotor Hamiltonian for simulating and fitting singlet-triplet spectra. We used the program to fit T1(n, π*) inertial constants to the room-temperature contour. The determined values (cm-1), with 2σ confidence intervals, are A = 1.662 ± 0.003, B = 0.1485 ± 0.0006, C = 0.1363 ± 0.0004. Linewidth analysis of the jet-cooled spectrum yielded a value of 14 ± 2 ps for the lifetime of isolated acrolein molecules in the T1(n, π*), v = 0 state. We discuss the observed lifetime in the context of previous computational work on acrolein photochemistry. The spectroscopically derived inertial constants for the T1(n, π*) state were used to benchmark a variety of computational methods. One focus was on complete active space methods, such as complete active space self-consistent field (CASSCF) and second-order perturbation theory with a CASSCF reference function (CASPT2), which are applicable to excited states. We also examined the equation-of-motion coupled-cluster and time-dependent density function theory excited-state methods, and finally unrestricted ground-state techniques, including unrestricted density functional theory and unrestricted coupled-cluster theory with single and double and perturbative triple excitations. For each of the above methods, we or others [O. S. Bokareva et al., Int. J. Quantum Chem. 108, 2719 (2008)], 10.1002/qua.21803 used a triple zeta-quality basis set to optimize the T1(n, π*) geometry of acrolein. We find that the multiconfigurational methods provide the best agreement with fitted inertial

  9. Direct Detection of Singlet-Triplet Interconversion in OLED Magnetoelectroluminescence with a Metal-Free Fluorescence-Phosphorescence Dual Emitter

    NASA Astrophysics Data System (ADS)

    Ratzke, Wolfram; Bange, Sebastian; Lupton, John M.

    2018-05-01

    We demonstrate that a simple phenazine derivative can serve as a dual emitter for organic light-emitting diodes, showing simultaneous luminescence from the singlet and triplet excited states at room temperature without the need of heavy-atom substituents. Although devices made with this emitter achieve only low quantum efficiencies of <0.2 % , changes in fluorescence and phosphorescence intensity on the subpercent scale caused by an external magnetic field of up to 30 mT are clearly resolved with an ultra-low-noise optical imaging technique. The results demonstrate the concept of using simple reporter molecules, available commercially, to optically detect the spin of excited states formed in an organic light-emitting diode and thereby probe the underlying spin statistics of recombining electron-hole pairs. A clear anticorrelation of the magnetic-field dependence of singlet and triplet emission shows that it is the spin interconversion between singlet and triplet which dominates the magnetoluminescence response: the phosphorescence intensity decreases by the same amount as the fluorescence intensity increases. The concurrent detection of singlet and triplet emission as well as device resistance at cryogenic and room temperature constitute a useful tool to disentangle the effects of spin-dependent recombination from spin-dependent transport mechanisms.

  10. On the He(plus) triplet line intensities

    NASA Technical Reports Server (NTRS)

    Daltabuit, E.; Cox, D.

    1971-01-01

    The theoretical calculations of helium triplet line strengths, including collisional enhancement, are compared to astronomical observations. Both are plotted on an I(10830)/I(5876) vs I(5876)/I(4471) plane. It appears that the theory of helium triplet line strengths agrees with present observations, and that the question of an additional depopulation mechanism for the 2 3S population is probably predicted correctly within 30%.

  11. Triplet supertree heuristics for the tree of life

    PubMed Central

    Lin, Harris T; Burleigh, J Gordon; Eulenstein, Oliver

    2009-01-01

    Background There is much interest in developing fast and accurate supertree methods to infer the tree of life. Supertree methods combine smaller input trees with overlapping sets of taxa to make a comprehensive phylogenetic tree that contains all of the taxa in the input trees. The intrinsically hard triplet supertree problem takes a collection of input species trees and seeks a species tree (supertree) that maximizes the number of triplet subtrees that it shares with the input trees. However, the utility of this supertree problem has been limited by a lack of efficient and effective heuristics. Results We introduce fast hill-climbing heuristics for the triplet supertree problem that perform a step-wise search of the tree space, where each step is guided by an exact solution to an instance of a local search problem. To realize time efficient heuristics we designed the first nontrivial algorithms for two standard search problems, which greatly improve on the time complexity to the best known (naïve) solutions by a factor of n and n2 (the number of taxa in the supertree). These algorithms enable large-scale supertree analyses based on the triplet supertree problem that were previously not possible. We implemented hill-climbing heuristics that are based on our new algorithms, and in analyses of two published supertree data sets, we demonstrate that our new heuristics outperform other standard supertree methods in maximizing the number of triplets shared with the input trees. Conclusion With our new heuristics, the triplet supertree problem is now computationally more tractable for large-scale supertree analyses, and it provides a potentially more accurate alternative to existing supertree methods. PMID:19208181

  12. Transport of triplet excitons along continuous 100 nm polyfluorene chains

    DOE PAGES

    Xi, Liang; Bird, Matthew; Mauro, Gina; ...

    2014-12-03

    Triplet excitons created in poly-2,7-(9,9-dihexyl)fluorene (pF) chains with end trap groups in solution are efficiently transported to and captured by the end groups. The triplets explore the entire lengths of the chains, even for ~100 nm long chains enabling determination of the completeness of end capping. The results show that the chains continuous: they may contain transient barriers or traps, such as those from fluctuations of dihedral angles, but are free of major defects that stop motion of the triplets. Quantitative determinations are aided by the addition of a strong electron donor, TMPD, which removes absorption bands of the end-trappedmore » triplets. For chains having at least one end trap, triplet capture is quantitative on the 1 µs timescale imposed by the use of the donor. Fractions of chains having no end traps were 0.15 for pF samples with anthraquinone (AQ) end traps and 0.063 with naphthylimide (NI) end traps. These determinations agreed with measurements by NMR for short (<40 polymer repeat units (PRU)) chains, where NMR determinations are accurate. The results find no evidence for traps or barriers to transport of triplets, and places limits on the possible presence of defects as impenetrable barriers to less than one per 300 PRU. The present results present a paradigm different from the current consensus, derived from observations of singlet excitons, that conjugated chains are divided into “segments,” perhaps by some kind of defects. For the present pF chains, the segmentation either does not apply to triplet excitons or is transient so that the defects are healed or surmounted in times much shorter than 1 µs. Triplets on chains without end trap groups transfer to chains with end traps on a slower time scale. Rate constants for these bimolecular triplet transfer reactions were found to increase with the length of the accepting chain, as did rate constants for triplet transfer to the chains from small molecules like biphenyl. As a

  13. Quantum Yield of Cyclobutane Pyrimidine Dimer Formation Via the Triplet Channel Determined by Photosensitization.

    PubMed

    Liu, Lizhe; Pilles, Bert M; Gontcharov, Julia; Bucher, Dominik B; Zinth, Wolfgang

    2016-01-21

    UV-induced formation of the cyclobutane pyrimidine dimer (CPD) lesion is investigated by stationary and time-resolved photosensitization experiments. The photosensitizer 2'-methoxyacetophenone with high intersystem crossing efficiency and large absorption cross-section in the UV-A range was used. A diffusion controlled reaction model is presented. Time-resolved experiments confirmed the validity of the reaction model and provided information on the dynamics of the triplet sensitization process. With a series of concentration dependent stationary illumination experiments, we determined the quantum efficiency for CPD formation from the triplet state of the thymine dinucleotide TpT to be 4 ± 0.2%.

  14. Observation of Mollow Triplets with Tunable Interactions in Double Lambda Systems of Individual Hole Spins

    NASA Astrophysics Data System (ADS)

    Lagoudakis, K. G.; Fischer, K. A.; Sarmiento, T.; McMahon, P. L.; Radulaski, M.; Zhang, J. L.; Kelaita, Y.; Dory, C.; Müller, K.; Vučković, J.

    2017-01-01

    Although individual spins in quantum dots have been studied extensively as qubits, their investigation under strong resonant driving in the scope of accessing Mollow physics is still an open question. Here, we have grown high quality positively charged quantum dots embedded in a planar microcavity that enable enhanced light-matter interactions. Under a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above-band and resonant excitation, we observe the formation of Mollow triplets on all optical transitions. We find that when the strong resonant drive power is used to tune the Mollow-triplet lines through each other, we observe anticrossings. We also demonstrate that the interaction that gives rise to the anticrossings can be controlled in strength by tuning the polarization of the resonant laser drive. Quantum-optical modeling of our system fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of the double lambda system.

  15. Venus - Stein Triplet Crater

    NASA Image and Video Library

    1996-01-29

    NASA Magellan synthetic aperture radar SAR imaged this unique triplet crater, or crater field during orbits 418-421 on Sept. 21, 1990. The three craters appear to have relatively steep walls. http://photojournal.jpl.nasa.gov/catalog/PIA00088

  16. Ultrabright fluorescent OLEDS using triplet sinks

    DOEpatents

    Zhang, Yifan; Forrest, Stephen R; Thompson, Mark

    2013-06-04

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.

  17. Abnormal maternal echocardiographic findings in triplet pregnancies presenting with dyspnoea.

    PubMed

    Elhenicky, Marie; Distelmaier, Klaus; Mailath-Pokorny, Mariella; Worda, Christof; Langer, Martin; Worda, Katharina

    2016-03-01

    The objective of our study was to evaluate the prevalence of abnormal maternal echocardiographic findings in triplet pregnancies presenting with dyspnoea. Between 2003 and 2013, patients' records of 96 triplet pregnancies at our department were analysed including maternal and fetal outcome, echocardiographic parameters and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels. After exclusion of triplet pregnancies with fetal demise before 23 + 0 weeks, selective feticide or missing outcome data, the study population consisted of 60 triplet pregnancies. All women with dyspnoea underwent echocardiography and measurement of NT-proBNP. Dyspnoea towards the end of pregnancy was observed in 13.3% (8/60) of all women with triplet pregnancies, and all of these women underwent echocardiography. The prevalence of abnormal echocardiographic findings in women with dyspnoea was 37.5% (3/8) with peripartum cardiomyopathy in one woman. Median serum NT-proBNP was significantly higher in women with abnormal echocardiographic findings compared with those without (1779 ng/ml, range 1045-6076 ng/ml vs 172 ng/ml, range 50-311 ng/ml; p < 0.001 by Mann-Whitney-U Test). We conclude that triplet pregnancies presenting with dyspnoea show a high prevalence of abnormal echocardiographic findings. Since dyspnoea is a common sign in triplet pregnancies and is associated with a high rate of cardiac involvement, echocardiography and evaluation of maternal NT-proBNP could be considered to improve early diagnosis and perinatal management.

  18. Excited-state decay processes of binuclear rhodium(I) isocyanide complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskowski, V.M.; Rice, S.F.; Gray, H.B.

    1993-04-29

    Emission lifetimes, quantum yields, and polarized excitation spectra of Rh[sub 2]b[sub 4][sup 2+] and Rh[sub 2](TMB)[sub 4][sup 2+] (b = 1,3-diisocyanopropane; TMB = 2,5-diisocyano-2,5-dimethylhexane) have been determined. The singlet and triplet d[sigma]* [yields] p[sigma]([sup 1,3]A[sub 2u]) excited states are luminescent with radiative rates of ca. 10[sup 8] and 10[sup 4] s[sup [minus

  19. Selectively Modulating Triplet Exciton Formation in Host Materials for Highly Efficient Blue Electrophosphorescence.

    PubMed

    Li, Huanhuan; Bi, Ran; Chen, Ting; Yuan, Kai; Chen, Runfeng; Tao, Ye; Zhang, Hongmei; Zheng, Chao; Huang, Wei

    2016-03-23

    The concept of limiting the triplet exciton formation to fundamentally alleviate triplet-involved quenching effects is introduced to construct host materials for highly efficient and stable blue phosphorescent organic light-emitting diodes (PhOLEDs). The low triplet exciton formation is realized by small triplet exciton formation fraction and rate with high binding energy and high reorganization energy of triplet exciton. Demonstrated in two analogue molecules in conventional donor-acceptor molecule structure for bipolar charge injection and transport with nearly the same frontier orbital energy levels and triplet excited energies, the new concept host material shows significantly suppressed triplet exciton formation in the host to avoid quenching effects, leading to much improved device efficiencies and stabilities. The low-voltage-driving blue PhOLED devices exhibit maximum efficiencies of 43.7 cd A(-1) for current efficiency, 32.7 lm W(-1) for power efficiency, and 20.7% for external quantum efficiency with low roll-off and remarkable relative quenching effect reduction ratio up to 41%. Our fundamental solution for preventing quenching effects of long-lived triplet excitons provides exciting opportunities for fabricating high-performance devices using the advanced host materials with intrinsically small triplet exciton formation cross section.

  20. Zethrene biradicals: How pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zafra, José Luis; González Cano, Rafael C.; Ruiz Delgado, M. Carmen

    A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing tomore » singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.« less

  1. Highly efficient visible-light driven photochromism: developments towards a solid-state molecular switch operating through a triplet-sensitised pathway.

    PubMed

    Brayshaw, Simon K; Schiffers, Stephanie; Stevenson, Anna J; Teat, Simon J; Warren, Mark R; Bennett, Robert D; Sazanovich, Igor V; Buckley, Alastair R; Weinstein, Julia A; Raithby, Paul R

    2011-04-11

    We introduce a new highly efficient photochromic organometallic dithienylethene (DTE) complex, the first instance of a DTE core symmetrically modified by two Pt(II) chromophores [Pt(PEt(3))(2)(C≡C)(DTE)(C≡C)Pt(PEt(3))(2)Ph] (1), which undergoes ring-closure when activated by visible light in solvents of different polarity, in thin films and even in the solid state. Complex 1 has been synthesised and fully photophysically characterised by (resonance) Raman and transient absorption spectroscopy complemented by calculations. The ring-closing photoconversion in a single crystal of 1 has been followed by X-ray crystallography. This process occurs with the extremely high yield of 80%--considerably outperforming the other DTE derivatives. Remarkably, the photocyclisation of 1 occurs even under visible light (>400 nm), which is not absorbed by the non-metallated DTE core HC≡C(DTE)C≡CH (2) itself. This unusual behaviour and the high photocyclisation yields in solution are attributed to the presence of a heavy atom in 1 that enables a triplet-sensitised photocyclisation pathway, elucidated by transient absorption spectroscopy and DFT calculations. The results of resonance Raman investigation confirm the involvement of the alkynyl unit in the frontier orbitals of both closed and open forms of 1 in the photocyclisation process. The changes in the Raman spectra upon cyclisation have permitted the identification of Raman marker bands, which include the acetylide stretching vibration. Importantly, these bands occur in the spectral region unobstructed by other vibrations and can be used for non-destructive monitoring of photocyclisation/photoreversion processes and for optical readout in this type of efficiently photochromic thermally stable systems. This study indicates a strategy for generating efficient solid-state photoswitches in which modification of the Pt(II) units has the potential to tune absorption properties and hence operational wavelength across the visible

  2. Investigations on the photoreactions of phenothiazine and phenoxazine in presence of 9-cyanoanthracene by using steady state and time resolved spectroscopic techniques.

    PubMed

    Bardhan, Munmun; Mandal, Paulami; Tzeng, Wen-Bih; Ganguly, Tapan

    2010-09-01

    By using electrochemical, steady state and time resolved (fluorescence lifetime and transient absorption) spectroscopic techniques, detailed investigations were made to reveal the mechanisms of charge separation or forward electron transfer reactions within the electron donor phenothiazine (PTZH) or phenoxazine (PXZH) and well known electron acceptor 9-cyanoanthracene (CNA). The transient absorption spectra suggest that the charge separated species formed in the excited singlet state resulted from intermolecular photoinduced electron transfer reactions within the donor PTZH (or PXZH) and CNA acceptor relaxes to the corresponding triplet state. Though alternative mechanisms of via formations of contact neutral radical by H-transfer reaction have been proposed but the observed results obtained from the time resolved measurements indicate that the regeneration of ground state reactants is primarily responsible due to direct recombination of triplet contact ion-pair (CIP) or solvent-separated ion-pair (SSIP).

  3. Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7.

    PubMed

    Borges, Itamar

    2014-03-01

    Singlet, triplet and ionized states of the energetic molecule 1,1-diamino-2,2-dinitroethylene, known as FOX-7 or DADNE, were investigated using the symmetry-adapted-cluster configuration interaction (SAC-CI) ab initio wave function. The 20 computed singlet transitions, with 2 exceptions, were bright. The most intense singlet transitions were of the n₀→π type-typical of molecules having nitro groups. Fast intersystem crossing (ISC) from the 1¹A, 2¹A and 8¹A bright singlet transitions is possible. Other feasible ISC processes are discussed. The computed singlet and ionization spectra have similar features when compared to nitramide and N,N-dimethylnitramine molecules, which have only a nitro group. The ionization energies of the first 20 states have differences in comparison with Koopmans' energy values that can reach 3 eV. Moreover, the character of the first ionized states, dominated by single ionizations, is not the same when compared with the character resulting from application of Koopmans' theorem.

  4. Relative Pose Estimation Using Image Feature Triplets

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Rottensteiner, F.; Heipke, C.

    2015-03-01

    A fully automated reconstruction of the trajectory of image sequences using point correspondences is turning into a routine practice. However, there are cases in which point features are hardly detectable, cannot be localized in a stable distribution, and consequently lead to an insufficient pose estimation. This paper presents a triplet-wise scheme for calibrated relative pose estimation from image point and line triplets, and investigates the effectiveness of the feature integration upon the relative pose estimation. To this end, we employ an existing point matching technique and propose a method for line triplet matching in which the relative poses are resolved during the matching procedure. The line matching method aims at establishing hypotheses about potential minimal line matches that can be used for determining the parameters of relative orientation (pose estimation) of two images with respect to the reference one; then, quantifying the agreement using the estimated orientation parameters. Rather than randomly choosing the line candidates in the matching process, we generate an associated lookup table to guide the selection of potential line matches. In addition, we integrate the homologous point and line triplets into a common adjustment procedure. In order to be able to also work with image sequences the adjustment is formulated in an incremental manner. The proposed scheme is evaluated with both synthetic and real datasets, demonstrating its satisfactory performance and revealing the effectiveness of image feature integration.

  5. Effect of Förster-mediated triplet-polaron quenching and triplet-triplet annihilation on the efficiency roll-off of organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eersel, H. van; Bobbert, P. A.; Janssen, R. A. J.

    2016-04-28

    We report the results of a systematic study of the interplay of triplet-polaron quenching (TPQ) and triplet-triplet annihilation (TTA) on the efficiency roll-off of organic light-emitting diodes (OLEDs) with increasing current density. First, we focus on OLEDs based on the green phosphorescent emitter tris[2-phenylpyridine]iridium(III) (Ir(ppy){sub 3}) and the red phosphorescent dye platinum octaethylporphyrin. It is found that the experimental data can be reproduced using kinetic Monte Carlo (kMC) simulations within which TPQ and TTA are due to a nearest-neighbor (NN) interaction, or due to a more long-range Förster-type process. Furthermore, we find a subtle interplay between TPQ and TTA: decreasingmore » the contribution of one process can increase the contribution of the other process, so that the roll-off is not significantly reduced. Furthermore, we find that just analyzing the shape of the roll-off is insufficient for determining the relative role of TPQ and TTA. Subsequently, we investigate the wider validity of this picture using kMC simulations for idealized but realistic symmetric OLEDs, with an emissive layer containing a small concentration of phosphorescent dye molecules in a matrix material. Whereas for NN-interactions the roll-off can be reduced when the dye molecules act as shallow hole and electron traps, we find that such an approach becomes counterproductive for long-range TTA and TPQ. Developing well-founded OLED design rules will thus require that more quantitative information is available on the rate and detailed mechanism of the TPQ and TTA processes.« less

  6. Effect of Förster-mediated triplet-polaron quenching and triplet-triplet annihilation on the efficiency roll-off of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    van Eersel, H.; Bobbert, P. A.; Janssen, R. A. J.; Coehoorn, R.

    2016-04-01

    We report the results of a systematic study of the interplay of triplet-polaron quenching (TPQ) and triplet-triplet annihilation (TTA) on the efficiency roll-off of organic light-emitting diodes (OLEDs) with increasing current density. First, we focus on OLEDs based on the green phosphorescent emitter tris[2-phenylpyridine]iridium(III) (Ir(ppy)3) and the red phosphorescent dye platinum octaethylporphyrin. It is found that the experimental data can be reproduced using kinetic Monte Carlo (kMC) simulations within which TPQ and TTA are due to a nearest-neighbor (NN) interaction, or due to a more long-range Förster-type process. Furthermore, we find a subtle interplay between TPQ and TTA: decreasing the contribution of one process can increase the contribution of the other process, so that the roll-off is not significantly reduced. Furthermore, we find that just analyzing the shape of the roll-off is insufficient for determining the relative role of TPQ and TTA. Subsequently, we investigate the wider validity of this picture using kMC simulations for idealized but realistic symmetric OLEDs, with an emissive layer containing a small concentration of phosphorescent dye molecules in a matrix material. Whereas for NN-interactions the roll-off can be reduced when the dye molecules act as shallow hole and electron traps, we find that such an approach becomes counterproductive for long-range TTA and TPQ. Developing well-founded OLED design rules will thus require that more quantitative information is available on the rate and detailed mechanism of the TPQ and TTA processes.

  7. Re-examination of the Cs2 ground singlet X1Σg+ and triplet a3Σu+ states

    NASA Astrophysics Data System (ADS)

    Sovkov, Vladimir B.; Xie, Feng; Lyyra, A. Marjatta; Ahmed, Ergin H.; Ma, Jie; Jia, Suotang

    2017-09-01

    This paper clarifies the disagreement in the depth of the potential energy curve of the cesium dimer singlet ground state which has lasted for nearly a decade. We point out that the origin of this disagreement must be a technical misprint in the values of the three binding energies reported by Danzl et al. [Science 321, 1062 (2008)], while the X1Σg+ state potential reported by Coxon and Hajigeorgiou [J. Chem. Phys. 132, 094105 (2010)], based on experimental data by Amiot and Dulieu [J. Chem. Phys. 117, 5155 (2002)], is quite correct. We have recalculated the potential energy function of the triplet ground state a3Σu+ by using the available experimental data spanning both the attractive and the repulsive branches so that the potential energy function complies asymptotically with the singlet ground state X1Σg+ potential energy function by Coxon and Hajigeorgiou. This is important for the simulation of the near dissociation properties such as Feshbach resonances, which are typically observed in modern experiments with ultracold atoms and molecules.

  8. The Role of Triplet Exciton Diffusion in Light-Upconverting Polymer Glasses.

    PubMed

    Raišys, Steponas; Kazlauskas, Karolis; Juršėnas, Saulius; Simon, Yoan C

    2016-06-22

    Light upconversion (UC) via triplet-triplet annihilation (TTA) by using noncoherent photoexcitation at subsolar irradiance power densities is extremely attractive, particularly for enhanced solar energy harvesting. Unfortunately, practical TTA-UC application is hampered by low UC efficiency of upconverting polymer glasses, which is commonly attributed to poor exciton diffusion of the triplet excitons across emitter molecules. The present study addresses this issue by systematically evaluating triplet exciton diffusion coefficients and diffusion lengths (LD) in a UC model system based on platinum-octaethylporphyrin-sensitized poly(methyl methacrylate)/diphenylanthracene (emitter) films as a function of emitter concentration (15-40 wt %). For this evaluation time-resolved photoluminescence bulk-quenching technique followed by Stern-Volmer-type quenching analysis of experimental data was employed. The key finding is that although increasing emitter concentration in the disordered PMMA/DPA/PtOEP films improves triplet exciton diffusion, and thus LD, this does not result in enhanced UC quantum yield. Conversely, improved LD accompanied by the accelerated decay of UC intensity on millisecond time scale degrades TTA-UC performance at high emitter loadings (>25 wt %) and suggests that diffusion-enhanced nonradiative decay of triplet excitons is the major limiting factor.

  9. Preliminary results for a higher-precision measurement of the helium n=2 triplet P fine structure

    NASA Astrophysics Data System (ADS)

    Kato, K.; Skinner, T. D. G.; George, M. C.; Fitzakerley, D. W.; Vutha, A. C.; Storry, C. H.; Bezginov, N.; Valdez, T.; Hessels, E. A.

    2017-04-01

    Preliminary results for a higher-precision measurement of the n=2 triplet P J=1 to J=2 fine-structure interval in atomic helium are presented. A beam of metastable helium atoms is created in a liquid-nitrogen-cooled dc-discharge source, and is intensified using a 2D-MOT. These atoms are excited to the 2 triplet P state, and undergo a frequency-offset separated-oscillatory-field (FOSOF) microwave experiment. Only atoms which undergo a microwave transition, in the time-separated microwave fields are laser-excited to a Rydberg state and then Stark ionized and counted. Our new experimental design has eliminated the major systematic effects of previous experiments, and has led to a substantial improvement in the signal-to-noise ratio of the collected data. Our final improved measurement (with an expected uncertainty of less than 100 Hz) will allow for a test of 2-electron QED-theory in the helium n=2 triplet P system, and will be an important step towards obtaining a precise determination of the fine-structure constant. This research is supported by NSERC, CRC, CFI and NIST.

  10. Twin and Triplet Drugs in Opioid Research

    NASA Astrophysics Data System (ADS)

    Fujii, Hideaki

    Twin and triplet drugs are defined as compounds that contain respectively two and three pharmacophore components exerting pharmacological effects in a molecule. The twin drug bearing the same pharmacophores is a "symmetrical twin drug", whereas that possessing different pharmacophores is a "nonsymmetrical twin drug." In general, the symmetrical twin drug is expected to produce more potent and/or selective pharmacological effects, whereas the nonsymmetrical twin drug is anticipated to show both pharmacological activities stemming from the individual pharmacophores (dual action). On the other hand, nonsymmetrical triplet drugs, which have two of the same pharmacophores and one different moiety, are expected to elicit both increased pharmacological action and dual action. The two identical portions could bind the same receptor sites simultaneously while the third portion could bind a different receptor site or enzyme. This review will mainly focus on the twin and triplet drugs with an evaluation of their in vivo pharmacological effects, and will also include a description of their pharmacology and synthesis.

  11. Optical image encryption using triplet of functions

    NASA Astrophysics Data System (ADS)

    Yatish; Fatima, Areeba; Nishchal, Naveen Kumar

    2018-03-01

    We propose an image encryption scheme that brings into play a technique using a triplet of functions to manipulate complex-valued functions. Optical cryptosystems using this method are an easier approach toward the ciphertext generation that avoids the use of holographic setup to record phase. The features of this method were shown in the context of double random phase encoding and phase-truncated Fourier transform-based cryptosystems using gyrator transform. In the first step, the complex function is split into two matrices. These matrices are separated, so they contain the real and imaginary parts. In the next step, these two matrices and a random distribution function are acted upon by one of the functions in the triplet. During decryption, the other two functions in the triplet help us retrieve the complex-valued function. The simulation results demonstrate the effectiveness of the proposed idea. To check the robustness of the proposed scheme, attack analyses were carried out.

  12. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    PubMed Central

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  13. Triplet Tellurophene-Based Acceptors for Organic Solar Cells.

    PubMed

    Yang, Lei; Gu, Wenxing; Lv, Lei; Chen, Yusheng; Yang, Yufei; Ye, Pan; Wu, Jianfei; Hong, Ling; Peng, Aidong; Huang, Hui

    2018-01-22

    Triplet materials have been employed to achieve high-performing organic solar cells (OSCs) by extending the exciton lifetime and diffusion distances, while the triplet non-fullerene acceptor materials have never been reported for bulk heterojunction OSCs. Herein, for the first time, three triplet molecular acceptors based on tellurophene with different degrees of ring fusing were designed and synthesized for OSCs. Significantly, these molecules have long exciton lifetime and diffusion lengths, leading to efficient power conversion efficiency (7.52 %), which is the highest value for tellurophene-based OSCs. The influence of the extent of ring fusing on molecular geometry and OSCs performance was investigated to show the power conversion efficiencies (PCEs) continuously increased along with increasing the extent of ring fusing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Transient Kinetics and Quantum Yield Studies of Nanocrystalline α-Phenyl-Substituted Ketones: Sorting Out Reactions from Singlet and Triplet Excited States.

    PubMed

    Park, Jin H; Chung, Tim S; Hipwell, Vince M; Rivera, Edris A; Garcia-Garibay, Miguel A

    2018-06-11

    Recent work has shown that diarylmethyl radicals generated by pulsed laser excitation in nanocrystalline (NC) suspensions of tetraarylacetones constitute a valuable probe for the detailed mechanistic analysis of the solid-state photodecarbonylation reaction. Using a combination of reaction quantum yields and laser flash photolysis in nanocrystalline suspensions of ketones with different substituents on one of the α-carbons we are able to suggest with confidence that a significant fraction of the initial α-cleavage reaction takes place from the ketone singlet excited state, that the originally formed diarylmethyl-acyl radical pair loses CO in the crystal with time constants in the sub-nanosecond regime, and that the secondary bis(diarylmethyl) triplet radical pair has a lifetime limited by the rate of intersystem crossing of ca. 70 ns.

  15. Delocalization of Coherent Triplet Excitons in Linear Rigid Rod Conjugated Oligomers.

    PubMed

    Hintze, Christian; Korf, Patrick; Degen, Frank; Schütze, Friederike; Mecking, Stefan; Steiner, Ulrich E; Drescher, Malte

    2017-02-02

    In this work, the triplet state delocalization in a series of monodisperse oligo(p-phenyleneethynylene)s (OPEs) is studied by pulsed electron paramagnetic resonance (EPR) and pulsed electron nuclear double resonance (ENDOR) determining zero-field splitting, optical spin polarization, and proton hyperfine couplings. Neither the zero-field splitting parameters nor the optical spin polarization change significantly with OPE chain length, in contrast to the hyperfine coupling constants, which showed a systematic decrease with chain length n according to a 2/(1 + n) decay law. The results provide striking evidence for the Frenkel-type nature of the triplet excitons exhibiting full coherent delocalization in the OPEs under investigation with up to five OPE repeat units and with a spin density distribution described by a nodeless particle in the box wave function. The same model is successfully applied to recently published data on π-conjugated porphyrin oligomers.

  16. Mechanism of the photochemical ligand substitution reactions of fac-[Re(bpy)(CO)(3)(PR(3))](+) complexes and the properties of their triplet ligand-field excited states.

    PubMed

    Koike, Kazuhide; Okoshi, Nobuaki; Hori, Hisao; Takeuchi, Koji; Ishitani, Osamu; Tsubaki, Hideaki; Clark, Ian P; George, Michael W; Johnson, Frank P A; Turner, James J

    2002-09-25

    We report herein the mechanism of the photochemical ligand substitution reactions of a series of fac-[Re(X(2)bpy)(CO)(3)(PR(3))](+) complexes (1) and the properties of their triplet ligand-field ((3)LF) excited states. The reason for the photostability of the rhenium complexes [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) was also investigated. Irradiation of an acetonitrile solution of 1 selectively gave the biscarbonyl complexes cis,trans-[Re(X(2)bpy)(CO)(2)(PR(3))(CH(3)CN)](+) (2). Isotope experiments clearly showed that the CO ligand trans to the PR(3) ligand was selectively substituted. The photochemical reactions proceeded via a dissociative mechanism from the (3)LF excited state. The thermodynamical data for the (3)LF excited states of complexes 1 and the corrective nonradiative decay rate constants for the triplet metal-to-ligand charge-transfer ((3)MLCT) states were obtained from temperature-dependence data for the emission lifetimes and for the quantum yields of the photochemical reactions and the emission. Comparison of 1 with [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) indicated that the (3)LF states of some 3- and 4-type complexes are probably accessible from the (3)MLCT state even at ambient temperature, but these complexes were stable to irradiation at 365 nm. The photostability of 3 and 4, in contrast to 1, can be explained by differences in the trans effects of the PR(3), py, and Cl(-) ligands.

  17. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    NASA Astrophysics Data System (ADS)

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-07-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).

  18. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits.

    PubMed

    Shulman, M D; Dial, O E; Harvey, S P; Bluhm, H; Umansky, V; Yacoby, A

    2012-04-13

    Quantum computers have the potential to solve certain problems faster than classical computers. To exploit their power, it is necessary to perform interqubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor because of their potential for scalability and miniaturization. However, their weak interactions with the environment, which lead to their long coherence times, make interqubit operations challenging. We performed a controlled two-qubit operation between singlet-triplet qubits using a dynamically decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its fluctuating environment. Using state tomography, we measured the full density matrix of the system and determined the concurrence and the fidelity of the generated state, providing proof of entanglement.

  19. Fast and long-range triplet exciton diffusion in metal-organic frameworks for photon upconversion at ultralow excitation power.

    PubMed

    Mahato, Prasenjit; Monguzzi, Angelo; Yanai, Nobuhiro; Yamada, Teppei; Kimizuka, Nobuo

    2015-09-01

    The conversion of low-energy light into photons of higher energy based on sensitized triplet-triplet annihilation upconversion (TTA-UC) has emerged as a promising wavelength-shifting methodology because it permits UC at excitation powers as low as the solar irradiance. However, its application has been significantly hampered by the slow diffusion of excited molecules in solid matrices. Here, we introduce metal-organic frameworks (MOFs) that promote TTA-UC by taking advantage of triplet exciton migration among fluorophores that are regularly aligned with spatially controlled chromophore orientations. We synthesized anthracene-containing MOFs with different molecular orientations, and the analysis of TTA-UC emission kinetics unveiled a high triplet diffusion rate with a micrometre-scale diffusion length. Surface modification of MOF nanocrystals with donor molecules and their encapsulation in glassy poly(methyl methacrylate) (PMMA) allowed the construction of molecular-diffusion-free solid-state upconverters, which lead to an unprecedented maximization of overall UC quantum yield at excitation powers comparable to or well below the solar irradiance.

  20. Sulphur abundances in halo giants from the [S I] line at 1082 nm and the [S I] triplet around 1045 nm

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Nissen, P. E.; Collet, R.; Eriksson, K.; Asplund, M.; Gustafsson, B.

    2011-06-01

    Context. It is still debated whether or not the Galactic chemical evolution of sulphur in the halo follows the flat trend with [Fe/H] that is ascribed to the result of explosive nucleosynthesis in type II SNe. It has been suggested that the disagreement between different investigations of sulphur abundances in halo stars might be owing to problems with the diagnostics used, that a new production source of sulphur might be needed in the early Universe, like hypernovae, or that the deposition of supernova ejecta into the interstellar medium is time-delayed. Aims: The aim of this study is to try to clarify this situation by measuring the sulphur abundance in a sample of halo giants using two diagnostics: the S i triplet around 1045 nm and the [S i] line at 1082 nm. The latter of the two is not believed to be sensitive to non-LTE effects. We can thereby minimize the uncertainties in the diagnostic used and estimate the usefulness of the triplet for the sulphur determination in halo K giants. We will also be able to compare our sulphur abundance differences from the two diagnostics with the expected non-LTE effects in the 1045 nm triplet previously calculated by others. Methods: High-resolution near-infrared spectra of ten K giants were recorded using the spectrometer CRIRES mounted at VLT. Two standard settings were used, one covering the S i triplet and one covering the [S i] line. The sulphur abundances were individually determined with equivalent widths and synthetic spectra for the two diagnostics using tailored 1D model atmospheres and relying on non-LTE corrections from the litterature. Effects of convective inhomogeneities in the stellar atmospheres are investigated. Results: The sulphur abundances derived from both the [S i] line and the non-LTE corrected 1045 nm triplet favor a flat trend for the evolution of sulphur. In contrast to some previous studies, we saw no "high" values of [S/Fe] in our sample. Conclusions: We corroborate the flat trend in the [S

  1. Evolution of Triplet Paramagnetic Centers in Diamonds Obtained by Sintering of Detonation Nanodiamonds at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Osipov, V. Yu.; Shames, A. I.; Efimov, N. N.; Shakhov, F. M.; Kidalov, S. V.; Minin, V. V.; Vul', A. Ya.

    2018-04-01

    The electron paramagnetic resonance (EPR) spectra of triplet centers in detonation nanodiamonds (DNDs) and diamond single crystals of submicrometer size, synthesized from those DNDs at high pressures and temperatures, are studied. In the EPR spectra of DNDs, signals from negatively charged nitrogen- vacancy centers (NV)/sup(-) with a g factor of g 1 = 4.24 and multivacancies with g 2 = 4.00 are observed. The signals from (NV)/sup(-) centers disappear in the spectra of diamond single crystals, and a quintet signal with g = 4.00 is detected at the position of the signal from multivacancies. Analysis of the shape and position of the quintet' lines showed that this ESR signal is due to the pairs of nitrogen substitution centers in diamond, separated from each other by distances not exceeding 0.7 nm, between which a strong exchange interaction takes place. A comparison of the experimental data and the simulation results allows determining the spin-Hamiltonian parameters of the exchange-coupled pairs of paramagnetic impurity nitrogen atoms.

  2. Effect of horizontal molecular orientation on triplet-exciton diffusion in amorphous organic films

    NASA Astrophysics Data System (ADS)

    Sawabe, T.; Takasu, I.; Yonehara, T.; Ono, T.; Yoshida, J.; Enomoto, S.; Amemiya, I.; Adachi, C.

    2012-09-01

    Triplet harvesting is a candidate technology for highly efficient and long-life white OLEDs, where green or red phosphorescent emitters are activated by the triplet-excitons diffused from blue fluorescent emitters. We examined two oxadiazole-based electron transport materials with different horizontal molecular orientation as a triplet-exciton diffusion layer (TDL) in triplet-harvesting OLEDs. The device characteristics and the transient electroluminescent analyses of the red phosphorescent emitter showed that the triplet-exciton diffusion was more effective in the highly oriented TDL. The results are ascribed to the strong orbital overlap between the oriented molecules, which provides rapid electron exchange (Dexter energy transfer) in the TDL.

  3. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    PubMed

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  4. Accurate adiabatic singlet-triplet gaps in atoms and molecules employing the third-order spin-flip algebraic diagrammatic construction scheme for the polarization propagator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, Daniel; Dreuw, Andreas, E-mail: dreuw@uni-heidelberg.de; Rehn, Dirk R.

    For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states weremore » performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references.« less

  5. Distinguishing Majorana bound states and Andreev bound states with microwave spectra

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Tao

    2018-04-01

    Majorana fermions are a fascinating and not yet confirmed quasiparticles in condensed matter physics. Here we propose using microwave spectra to distinguish Majorana bound states (MBSs) from topological trivial Andreev bound states. By numerically calculating the transmission and Zeeman field dependence of the many-body excitation spectrum of a 1D Josephson junction, we find that the two kinds of bound states have distinct responses to variations in the related parameters. Furthermore, the singular behaviors of the MBSs spectrum could be attributed to the robust fractional Josephson coupling and nonlocality of MBSs. Our results provide a feasible method to verify the existence of MBSs and could accelerate its application to topological quantum computation.

  6. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen; Agarwal, Girish S.

    2017-02-01

    We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.

  7. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.

    PubMed

    Hughes, Stephen; Agarwal, Girish S

    2017-02-10

    We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.

  8. Zeaxanthin Protects Plant Photosynthesis by Modulating Chlorophyll Triplet Yield in Specific Light-harvesting Antenna Subunits*

    PubMed Central

    Dall'Osto, Luca; Holt, Nancy E.; Kaligotla, Shanti; Fuciman, Marcel; Cazzaniga, Stefano; Carbonera, Donatella; Frank, Harry A.; Alric, Jean; Bassi, Roberto

    2012-01-01

    Plants are particularly prone to photo-oxidative damage caused by excess light. Photoprotection is essential for photosynthesis to proceed in oxygenic environments either by scavenging harmful reactive intermediates or preventing their accumulation to avoid photoinhibition. Carotenoids play a key role in protecting photosynthesis from the toxic effect of over-excitation; under excess light conditions, plants accumulate a specific carotenoid, zeaxanthin, that was shown to increase photoprotection. In this work we genetically dissected different components of zeaxanthin-dependent photoprotection. By using time-resolved differential spectroscopy in vivo, we identified a zeaxanthin-dependent optical signal characterized by a red shift in the carotenoid peak of the triplet-minus-singlet spectrum of leaves and pigment-binding proteins. By fractionating thylakoids into their component pigment binding complexes, the signal was found to originate from the monomeric Lhcb4–6 antenna components of Photosystem II and the Lhca1–4 subunits of Photosystem I. By analyzing mutants based on their sensitivity to excess light, the red-shifted triplet-minus-singlet signal was tightly correlated with photoprotection in the chloroplasts, suggesting the signal implies an increased efficiency of zeaxanthin in controlling chlorophyll triplet formation. Fluorescence-detected magnetic resonance analysis showed a decrease in the amplitude of signals assigned to chlorophyll triplets belonging to the monomeric antenna complexes of Photosystem II upon zeaxanthin binding; however, the amplitude of carotenoid triplet signal does not increase correspondingly. Results show that the high light-induced binding of zeaxanthin to specific proteins plays a major role in enhancing photoprotection by modulating the yield of potentially dangerous chlorophyll-excited states in vivo and preventing the production of singlet oxygen. PMID:23066020

  9. N2 triplet band systems and atomic oxygen in the dayglow

    NASA Astrophysics Data System (ADS)

    Broadfoot, A. L.; Hatfield, D. B.; Anderson, E. R.; Stone, T. C.; Sandel, B. R.; Gardner, J. A.; Murad, E.; Knecht, D. J.; Pike, C. P.; Viereck, R. A.

    1997-06-01

    New spectrographic observations of the Earth's dayglow have been acquired by the Arizona Airglow Experiment (GLO) flown on the space shuttle. GLO is an imaging spectrograph that records simultaneous vertical profiles of prominent Earth limb emissions occurring at wavelengths between 115 and 900 nm. This study addresses the measured emissions from the N2 triplet states (first positive, second positive, and Vegard-Kaplan band systems) and their excitation by the local photoelectron flux. The triplet state population distributions modeled for aurora by Cartwright [1978] are modified for dayglow conditions by changing to a photoelectron-flux energy distribution and including resonance scattering by the first positive system. Modeled and observed intensities are in excellent agreement, in contrast to the well-studied auroral case. This work concentrates on dayglow conditions at 200 km altitude near the subsolar point. Parameters to infer the local photoelectron flux from the emission band intensities are provided. Several atomic oxygen dayglow emission features were analyzed to complement the N2 analysis. The photoelectron-excited O I(135.6, 777.4 nm) lines were found to be 3 to 4 times weaker than predicted while the O I(630.0, 844.6 nm) lines were in close agreement with the model prediction.

  10. Probing Microenvironment in Ionic Liquids by Time-Resolved EPR of Photoexcited Triplets.

    PubMed

    Ivanov, M Yu; Veber, S L; Prikhod'ko, S A; Adonin, N Yu; Bagryanskaya, E G; Fedin, M V

    2015-10-22

    Unusual physicochemical properties of ionic liquids (ILs) open vistas for a variety of new applications. Herewith, we investigate the influence of microviscosity and nanostructuring of ILs on spin dynamics of the dissolved photoexcited molecules. We use two most common ILs [Bmim]PF6 and [Bmim]BF4 (with its close analogue [C10mim]BF4) as solvents and photoexcited Zn tetraphenylporphyrin (ZnTPP) as a probe. Time-resolved electron paramagnetic resonance (TR EPR) is employed to investigate spectra and kinetics of spin-polarized triplet ZnTPP in the temperature range 100-270 K. TR EPR data clearly indicate the presence of two microenvironments of ZnTPP in frozen ILs at 100-200 K, being manifested in different spectral shapes and different spin relaxation rates. For one of these microenvironments TR EPR data is quite similar to those obtained in common frozen organic solvents (toluene, glycerol, N-methyl-2-pyrrolidone). However, the second one favors the remarkably slow relaxation of spin polarization, being much longer than in the case of common solvents. Additional experiments using continuous wave EPR and stable nitroxide as a probe confirmed the formation of heterogeneities upon freezing of ILs and complemented TR EPR results. Thus, TR EPR of photoexcited triplets can be effectively used for probing heterogeneities and nanostructuring in frozen ILs. In addition, the increase of polarization lifetime in frozen ILs is an interesting finding that might allow investigation of short-lived intermediates inaccessible otherwise.

  11. Convergent modulation of singlet and triplet excited states of phosphine-oxide hosts through the management of molecular structure and functional-group linkages for low-voltage-driven electrophosphorescence.

    PubMed

    Han, Chunmiao; Zhang, Zhensong; Xu, Hui; Xie, Guohua; Li, Jing; Zhao, Yi; Deng, Zhaopeng; Liu, Shiyong; Yan, Pengfei

    2013-01-02

    The controllable tuning of the excited states in a series of phosphine-oxide hosts (DPExPOCzn) was realized through introducing carbazolyl and diphenylphosphine-oxide (DPPO) moieties to adjust the frontier molecular orbitals, molecular rigidity, and the location of the triplet excited states by suppressing the intramolecular interplay of the combined multi-insulating and meso linkage. On increasing the number of substituents, simultaneous lowering of the first singlet energy levels (S(1)) and raising of the first triplet energy levels (T(1), about 3.0 eV) were achieved. The former change was mainly due to the contribution of the carbazolyl group to the HOMOs and the extended conjugation. The latter change was due to an enhanced molecular rigidity and the shift of the T(1) states from the diphenylether group to the carbazolyl moieties. This kind of convergent modulation of excited states not only facilitates the exothermic energy transfer to the dopants in phosphorescent organic light-emitting diodes (PHOLEDs), but also realizes the fine-tuning of electrical properties to achieve the balanced carrier injection and transportation in the emitting layers. As the result, the favorable performance of blue-light-emitting PHOLEDs was demonstrated, including much-lower driving voltages of 2.6 V for onset and 3.0 V at 100 cd m(-2), as well as a remarkably improved E.Q.E. of 12.6%. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Superconductivity switch from spin-singlet to -triplet pairing in a topological superconducting junction.

    PubMed

    Tao, Ze; Chen, F J; Zhou, L Y; Li, Bin; Tao, Y C; Wang, J

    2018-06-06

    The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of [Formula: see text] can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.

  13. Superconductivity switch from spin-singlet to -triplet pairing in a topological superconducting junction

    NASA Astrophysics Data System (ADS)

    Tao, Ze; Chen, F. J.; Zhou, L. Y.; Li, Bin; Tao, Y. C.; Wang, J.

    2018-06-01

    The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.

  14. Migration of CT triplet excitons in TCNB-biphenyl and TCNB-HMB crystals

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, BolesAw

    1994-01-01

    Delayed fluorescence decay curves of charge transfer (CT) crystals of tetracyanobenzene with biphenyl (TCNB-B) and with hexamethylbenzene (TCNB-HMB) have been studied over a wide temperature range (5-200 K). The decay curves have been adequately described by decay expressions derived for different mechanisms of triplet-triplet annihilation. This analysis points to one-dimensional, thermally activated motion of CT triplet excitons. The estimated activation energies for the exciton hopping are 360±60 and 650±100 cm -1 (or 550±150 cm -1 depending on the applied model) for the TCNB-B and TCNB-HMB crystals, respectively. The results seem to confirm the self-trapping of triplet CT excitons.

  15. Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states

    NASA Astrophysics Data System (ADS)

    Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao

    2018-05-01

    Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the Osbnd H stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures.

  16. Far infrared spectra of solid state aliphatic amino acids in different protonation states

    NASA Astrophysics Data System (ADS)

    Trivella, Aurélien; Gaillard, Thomas; Stote, Roland H.; Hellwig, Petra

    2010-03-01

    Far infrared spectra of zwitterionic, cationic, and anionic forms of aliphatic amino acids in solid state have been studied experimentally. Measurements were done on glycine, L-alanine, L-valine, L-leucine, and L-isoleucine powder samples and film samples obtained from dried solutions prepared at pH ranging from 1 to 13. Solid state density functional theory calculations were also performed, and detailed potential energy distributions were obtained from normal mode results. A good correspondence between experimental and simulated spectra was achieved and this allowed us to propose an almost complete band assignment for the far infrared spectra of zwitterionic forms. In the 700-50 cm-1 range, three regions were identified, each corresponding to a characteristic set of normal modes. A first region between 700 and 450 cm-1 mainly contained the carboxylate bending, rocking, and wagging modes as well as the ammonium torsional mode. The 450-250 cm-1 region was representative of backbone and sidechain skeletal bending modes. At last, the low wavenumber zone, below 250 cm-1, was characteristic of carboxylate and skeletal torsional modes and of lattice modes. Assignments are also proposed for glycine cationic and anionic forms, but could not be obtained for all aliphatic amino acids due to the lack of structural data. This work is intended to provide fundamental information for the understanding of peptides vibrational properties.

  17. Galaxy triplets in Sloan Digital Sky Survey Data Release 7 - I. Catalogue

    NASA Astrophysics Data System (ADS)

    O'Mill, Ana Laura; Duplancic, Fernanda; García Lambas, Diego; Valotto, Carlos; Sodré, Laerte

    2012-04-01

    We present a new catalogue of galaxy triplets derived from the Sloan Digital Sky Survey (SDSS) Data Release 7. The identification of systems was performed considering galaxies brighter than Mr=-20.5 and imposing constraints over the projected distances, radial velocity differences of neighbouring galaxies and isolation. To improve the identification of triplets, we employed a data pixelization scheme, which allows us to handle large amounts of data as in the SDSS photometric survey. Using spectroscopic and photometric data in the redshift range 0.01 ≤z≤ 0.40, we obtain 5901 triplet candidates. We have used a mock catalogue to analyse the completeness and contamination of our methods. The results show a high level of completeness (˜80 per cent) and low contamination (˜5 per cent). By using photometric and spectroscopic data, we have also addressed the effects of fibre collisions in the spectroscopic sample. We have defined an isolation criterion considering the distance of the triplet brightest galaxy to the closest neighbour cluster, to describe a global environment, as well as the galaxies within a fixed aperture, around the triplet brightest galaxy, to measure the local environment. The final catalogue comprises 1092 isolated triplets of galaxies in the redshift range 0.01 ≤z≤ 0.40. Our results show that photometric redshifts provide very useful information, allowing us to complete the sample of nearby systems whose detection is affected by fibre collisions, as well as extending the detection of triplets to large distances, where spectroscopic redshifts are not available.

  18. Comparison of atmospheric reactions of NH3 and NH2 with hydroxyl radical on the singlet, doublet and triplet potential energy surfaces, kinetic and mechanistic study

    NASA Astrophysics Data System (ADS)

    Vahedpour, Morteza; Douroudgari, Hamed; Afshar, Sheida; Asgharzade, Somaie

    2018-05-01

    The NH2 + OH and NH3 + OH reactions on the singlet, doublet and triplet potential energy surfaces carry out using MP2, QCISD, G3MP2, M06-2X, B3LYP, and CCSD(T)//MP2 levels. Three pre-reactive complexes, 1C1, 3C1 and 3C2 were formed among amidogen and hydroxyl radicals. From variety of the 1C1, four types of products are obtained that 1HNO + H2 is thermodynamically stable and three others are being stable after relaxation to triplet state. On the triplet state, five types of adducts are obtained that four of them have enough thermodynamic stability. Two intersystem crossing are presented among triplet and singlet states of the NH2 + OH reaction. 3NH + H2O adduct is spontaneous and exothermic in standard condition. Results lead to different adducts which are playing significant role in the atmospheric and combustion chemistry. The rate constants of selected pathways are calculated at the 300-2500 K temperature range at M06-2X/aug-ccpvqz and CCSD(T)/6-311++G(3df, 3pd) levels of theory.

  19. Influence of ground-state scattering properties on photoassociation spectra near the intercombination line of bosonic ytterbium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, M.; Ciurylo, R.; Julienne, P. S.

    2010-10-29

    We study theoretically the properties of photoassociation spectra near the {sup 1}S{sub 0}-{sup 3}P{sub 1} inter-combination line of bosonic ytterbium. We construct a mass scaled model of the excited state interaction potential that well describes bound state energies obtained in a previous photoassociation experiment. We then use it to calculate theoretical photoassociation spectra in a range of ultracold temperatures using semianalytical theory developed by Bohn and Julienne.Photoassociation spectra not only give us the energies of excited bound states, but also provide information about the behavior of the ground state wavefunction. In fact, it can be shown that within the so-calledmore » reflection approximation the line intensity is proportional to the ground state wavefunction at the transition's Condon point. We show that in the case of ytterbium, the rotational structure of the photoassociation spectra depends heavily on the behavior of the ground-state wavefunction. The change of the scattering length from one isotope to another and the resulting occurence of shape resonances in higher partial waves determines the appearance and disapperance of rotational components, especially in the deeper lying states, whose respective Condon points lie near the ground state centrifugal barrier. Thus, photoassociation spectra differ qualitatively between isotopes.« less

  20. Identification of redundant and synergetic circuits in triplets of electrophysiological data

    NASA Astrophysics Data System (ADS)

    Erramuzpe, Asier; Ortega, Guillermo J.; Pastor, Jesus; de Sola, Rafael G.; Marinazzo, Daniele; Stramaglia, Sebastiano; Cortes, Jesus M.

    2015-12-01

    Objective. Neural systems are comprised of interacting units, and relevant information regarding their function or malfunction can be inferred by analyzing the statistical dependencies between the activity of each unit. While correlations and mutual information are commonly used to characterize these dependencies, our objective here is to extend interactions to triplets of variables to better detect and characterize dynamic information transfer. Approach. Our approach relies on the measure of interaction information (II). The sign of II provides information as to the extent to which the interaction of variables in triplets is redundant (R) or synergetic (S). Three variables are said to be redundant when a third variable, say Z, added to a pair of variables (X, Y), diminishes the information shared between X and Y. Similarly, the interaction in the triplet is said to be synergetic when conditioning on Z enhances the information shared between X and Y with respect to the unconditioned state. Here, based on this approach, we calculated the R and S status for triplets of electrophysiological data recorded from drug-resistant patients with mesial temporal lobe epilepsy in order to study the spatial organization and dynamics of R and S close to the epileptogenic zone (the area responsible for seizure propagation). Main results. In terms of spatial organization, our results show that R matched the epileptogenic zone while S was distributed more in the surrounding area. In relation to dynamics, R made the largest contribution to high frequency bands (14-100 Hz), while S was expressed more strongly at lower frequencies (1-7 Hz). Thus, applying II to such clinical data reveals new aspects of epileptogenic structure in terms of the nature (redundancy versus synergy) and dynamics (fast versus slow rhythms) of the interactions. Significance. We expect this methodology, robust and simple, can reveal new aspects beyond pair-interactions in networks of interacting units in other

  1. Triplet firing origin in human motor units: emerging hypotheses.

    PubMed

    Kudina, Lydia P; Andreeva, Regina E

    2016-03-01

    A specific feature of motor unit (MU) firing behaviour is rhythmic trains of single discharges at low rate resulting from the prolonged motoneuronal afterhyperpolarization. However, some MUs exhibit occasional doublets with uniquely short interspike intervals (2.5-20.0 ms). Motoneuronal delayed depolarization is commonly accepted to be doublet underlying mechanism. Apart from doublets, much scarcer MU triple discharges were described, but their mechanisms are disputable. The aim of the present study was to analyse MU triplet firing origin in healthy humans. MU triple discharges occasionally arising during gentle voluntary muscle contractions were compared with those arising in axons during motor nerve stimulation. Firing pattern was analysed in 109 MUs of four muscles: the tibialis anterior, the flexor carpi ulnaris, the abductor pollicis brevis, and the abductor digiti minimi. Our findings present evidence that during voluntary contractions two kinds of MU triplet firing can be occasionally observed: "true" motoneuronal triplets (interspike intervals of 3.6-17.3 ms) with the delayed depolarization as the possible underlying mechanism and axonal triple discharges including the M-response and F-wave. The findings can be useful not only for understanding mechanisms of the very rare motoneuronal firing in healthy humans but also for estimation of pathological triplet firing origin.

  2. Plasmon-Enhanced Sub-Bandgap Photocatalysis via Triplet-Triplet Annihilation Upconversion for Volatile Organic Compound Degradation.

    PubMed

    Kim, Hyoung-Il; Weon, Seunghyun; Kang, Homan; Hagstrom, Anna L; Kwon, Oh Seok; Lee, Yoon-Sik; Choi, Wonyong; Kim, Jae-Hong

    2016-10-18

    This study demonstrates the first reported photocatalytic decomposition of an indoor air pollutant, acetaldehyde, using low-energy, sub-bandgap photons harnessed through sensitized triplet-triplet annihilation (TTA) upconversion (UC). To utilize low-intensity noncoherent indoor light and maximize photocatalytic activity, we designed a plasmon-enhanced sub-bandgap photocatalyst device consisting of two main components: (1) TTA-UC rubbery polymer films containing broad-band plasmonic particles (Ag-SiO 2 ) to upconvert sub-bandgap photons, and (2) nanodiamond (ND)-loaded WO 3 as a visible-light photocatalyst composite. Effective decomposition of acetaldehyde was achieved using ND/WO 3 (E g = 2.8 eV) coupled with TTA-UC polymer films that emit blue photons (λ Em = 425 nm, 2.92 eV) upconverted from green photons (λ Ex = 532 nm, 2.33 eV), which are wasted in most environmental photocatalysis. The overall photocatalytic efficiency was amplified by the broad-band surface plasmon resonance of AgNP-SiO 2 particles incorporated into the TTA-UC films.

  3. Parent-Infant Synchrony and the Social-Emotional Development of Triplets

    ERIC Educational Resources Information Center

    Feldman, Ruth; Eidelman, Arthur I.

    2004-01-01

    To study the social-emotional development of triplets, 23 sets of triplets, 23 sets of twins, and 23 singleton infants (N=138) were followed from birth to 2 years. Maternal depression and social support were assessed in the postpartum period, mother-infant and father-infant interaction and the home environment were observed at 3 months, a…

  4. Galaxy triplets in Sloan Digital Sky Survey Data Release 7 - II. A connection with compact groups?

    NASA Astrophysics Data System (ADS)

    Duplancic, Fernanda; O'Mill, Ana Laura; Lambas, Diego G.; Sodré, Laerte; Alonso, Sol

    2013-08-01

    We analyse a sample of 71 triplets of luminous galaxies derived from the work of O'Mill et al. We compare the properties of triplets and their members with those of control samples of compact groups, the 10 brightest members of rich clusters and galaxies in pairs. The triplets are restricted to have members with spectroscopic redshifts in the range 0.01 ≤ z ≤ 0.14 and absolute r-band luminosities brighter than Mr = -20.5. For these member galaxies, we analyse the stellar mass content, the star formation rates, the Dn(4000) parameter and (Mg - Mr) colour index. Since galaxies in triplets may finally merge in a single system, we analyse different global properties of these systems. We calculate the probability that the properties of galaxies in triplets are strongly correlated. We also study total star formation activity and global colours, and define the triplet compactness as a measure of the percentage of the system total area that is filled by the light of member galaxies. We concentrate in the comparison of our results with those of compact groups to assess how the triplets are a natural extension of these compact systems. Our analysis suggests that triplet galaxy members behave similarly to compact group members and galaxies in rich clusters. We also find that systems comprising three blue, star-forming, young stellar population galaxies (blue triplets) are most probably real systems and not a chance configuration of interloping galaxies. The same holds for triplets composed of three red, non-star-forming galaxies, showing the correlation of galaxy properties in these systems. From the analysis of the triplet as a whole, we conclude that, at a given total stellar mass content, triplets show a total star formation activity and global colours similar to compact groups. However, blue triplets show a high total star formation activity with a lower stellar mass content. From an analysis of the compactness parameter of the systems we find that light is even more

  5. Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states.

    PubMed

    Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao

    2018-05-15

    Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the OH stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Analysis of Triplet Exciton Loss Pathways in PTB7:PC71BM Bulk Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Kraus, Hannes; Heiber, Michael C.; Väth, Stefan; Kern, Julia; Deibel, Carsten; Sperlich, Andreas; Dyakonov, Vladimir

    2016-07-01

    A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC71BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC71BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC71BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway.

  7. The Relationship of Assisted Reproductive Technology on Perinatal Outcomes in Triplet Gestations.

    PubMed

    Shah, Jaimin S; Roman, Tania; Viteri, Oscar A; Haidar, Ziad A; Ontiveros, Alejandra; Sibai, Baha M

    2018-06-08

     To assess whether assisted reproductive technology (ART) is associated with increased risk of adverse perinatal outcomes in triplet gestations compared with spontaneous conception.  Secondary analysis of a multicenter randomized trial for the prevention of preterm birth in multiple gestations. Triplets delivered at ≥ 24 weeks were studied. The primary outcome was the rate of composite neonatal morbidity (CNM) that included one or more of the following: bronchopulmonary dysplasia, respiratory distress syndrome, necrotizing enterocolitis, culture proven sepsis, pneumonia, retinopathy of prematurity, intraventricular hemorrhage, periventricular leukomalacia, or perinatal death.  There were 381 triplets (127 women) of which 89 patients conceived via ART and 38 patients spontaneously. Women with ART were more likely to be older, Caucasian, married, nulliparous, have higher level of education, and develop pre-eclampsia. Spontaneously conceived triplets were more likely to delivery at an earlier gestation (31.2 ± 3.5 vs 32.8 ± 2.7 weeks) ( p  = 0.009) with a lower birth weight ( p  < 0.001). After adjusting for confounders, no differences were noted in culture proven sepsis, perinatal death, CNM, respiratory distress syndrome, or Apgar score < 7 at 5 minutes. All remaining perinatal outcomes were similar.  Triplets conceived by ART had similar perinatal outcomes compared with spontaneously conceived triplets. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Potential energy and dipole moment surfaces of the triplet states of the O2(X3Σg-) - O2(X3Σg-,a1Δg,b1Σg+) complex

    NASA Astrophysics Data System (ADS)

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C.

    2017-08-01

    We compute four-dimensional diabatic potential energy surfaces and transition dipole moment surfaces of O2-O2, relevant for the theoretical description of collision-induced absorption in the forbidden X3Σg- → a1Δg and X3Σg- → b1Σg+ bands at 7883 cm-1 and 13 122 cm-1, respectively. We compute potentials at the multi-reference configuration interaction (MRCI) level and dipole surfaces at the MRCI and complete active space self-consistent field (CASSCF) levels of theory. Potentials and dipole surfaces are transformed to a diabatic basis using a recent multiple-property-based diabatization algorithm. We discuss the angular expansion of these surfaces, derive the symmetry constraints on the expansion coefficients, and present working equations for determining the expansion coefficients by numerical integration over the angles. We also present an interpolation scheme with exponential extrapolation to both short and large separations, which is used for representing the O2-O2 distance dependence of the angular expansion coefficients. For the triplet ground state of the complex, the potential energy surface is in reasonable agreement with previous calculations, whereas global excited state potentials are reported here for the first time. The transition dipole moment surfaces are strongly dependent on the level of theory at which they are calculated, as is also shown here by benchmark calculations at high symmetry geometries. Therefore, ab initio calculations of the collision-induced absorption spectra cannot become quantitatively predictive unless more accurate transition dipole surfaces can be computed. This is left as an open question for method development in electronic structure theory. The calculated potential energy and transition dipole moment surfaces are employed in quantum dynamical calculations of collision-induced absorption spectra reported in Paper II [T. Karman et al., J. Chem. Phys. 147, 084307 (2017)].

  9. Potential energy and dipole moment surfaces of the triplet states of the O2(X3Σg-) - O2(X3Σg-,a1Δg,b1Σg+) complex.

    PubMed

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C

    2017-08-28

    We compute four-dimensional diabatic potential energy surfaces and transition dipole moment surfaces of O 2 -O 2 , relevant for the theoretical description of collision-induced absorption in the forbidden X 3 Σ g -  → a 1 Δ g and X 3 Σ g -  → b 1 Σ g + bands at 7883 cm -1 and 13 122 cm -1 , respectively. We compute potentials at the multi-reference configuration interaction (MRCI) level and dipole surfaces at the MRCI and complete active space self-consistent field (CASSCF) levels of theory. Potentials and dipole surfaces are transformed to a diabatic basis using a recent multiple-property-based diabatization algorithm. We discuss the angular expansion of these surfaces, derive the symmetry constraints on the expansion coefficients, and present working equations for determining the expansion coefficients by numerical integration over the angles. We also present an interpolation scheme with exponential extrapolation to both short and large separations, which is used for representing the O 2 -O 2 distance dependence of the angular expansion coefficients. For the triplet ground state of the complex, the potential energy surface is in reasonable agreement with previous calculations, whereas global excited state potentials are reported here for the first time. The transition dipole moment surfaces are strongly dependent on the level of theory at which they are calculated, as is also shown here by benchmark calculations at high symmetry geometries. Therefore, ab initio calculations of the collision-induced absorption spectra cannot become quantitatively predictive unless more accurate transition dipole surfaces can be computed. This is left as an open question for method development in electronic structure theory. The calculated potential energy and transition dipole moment surfaces are employed in quantum dynamical calculations of collision-induced absorption spectra reported in Paper II [T. Karman et al., J. Chem. Phys. 147, 084307 (2017)].

  10. Vibronically coherent ultrafast triplet-pair formation and subsequent thermally activated dissociation control efficient endothermic singlet fission

    NASA Astrophysics Data System (ADS)

    Stern, Hannah L.; Cheminal, Alexandre; Yost, Shane R.; Broch, Katharina; Bayliss, Sam L.; Chen, Kai; Tabachnyk, Maxim; Thorley, Karl; Greenham, Neil; Hodgkiss, Justin M.; Anthony, John; Head-Gordon, Martin; Musser, Andrew J.; Rao, Akshay; Friend, Richard H.

    2017-12-01

    Singlet exciton fission (SF), the conversion of one spin-singlet exciton (S1) into two spin-triplet excitons (T1), could provide a means to overcome the Shockley-Queisser limit in photovoltaics. SF as measured by the decay of S1 has been shown to occur efficiently and independently of temperature, even when the energy of S1 is as much as 200 meV less than that of 2T1. Here we study films of triisopropylsilyltetracene using transient optical spectroscopy and show that the triplet pair state (TT), which has been proposed to mediate singlet fission, forms on ultrafast timescales (in 300 fs) and that its formation is mediated by the strong coupling of electronic and vibrational degrees of freedom. This is followed by a slower loss of singlet character as the excitation evolves to become only TT. We observe the TT to be thermally dissociated on 10-100 ns timescales to form free triplets. This provides a model for 'temperature-independent' efficient TT formation and thermally activated TT separation.

  11. On helium-like 1s2l-1snl prime transitions in solar flare spectra

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Neupert, W. M.; Swartz, M.

    1974-01-01

    Expected wavelengths and intensities are computed for 1s2l-1snl prime transitions in helium-like ions of the abundant elements from oxygen to iron under coronal conditions. Probable observations of some of these lines in the spectra of solar flares are discussed, and attention is called to a possible reversal of singlet and triplet intensities as compared to laboratory observations.

  12. Josephson effect in multiterminal superconductor-ferromagnet junctions coupled via triplet components

    NASA Astrophysics Data System (ADS)

    Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.

    2016-03-01

    On the basis of the Usadel equation we study a multiterminal Josephson junction. This junction is composed by "magnetic" superconductors Sm, which have singlet pairing and are separated from the normal n wire by spin filters so that the Josephson coupling is caused only by fully polarized triplet components. We show that there is no interaction between triplet Cooper pairs with antiparallel total spin orientations. The presence of an additional singlet superconductor S attached to the n wire leads to a finite Josephson current IQ with an unusual current-phase relation. The density of states in the n wire for different orientations of spins of Cooper pairs is calculated. We derive a general formula for the current IQ in a multiterminal Josephson contact and apply this formula for analysis of two four-terminal Josephson junctions of different structures. It is shown in particular that both the "nematic" and the "magnetic" cases can be realized in these junctions. In a two-terminal structure with parallel filter orientations and in a three-terminal structure with antiparallel filter orientations of the "magnetic" superconductors with attached additional singlet superconductor, we find a nonmonotonic temperature dependence of the critical current. Also, in these structures, the critical current shows a Riedel peak like dependence on the exchange field in the "magnetic" superconductors. Although there is no current through the S/n interface due to orthogonality of the singlet and triplet components, the phase of the order parameter in the superconuctor S is shown to affect the Josephson current in a multiterminal structure.

  13. Minimum triplet covers of binary phylogenetic X-trees.

    PubMed

    Huber, K T; Moulton, V; Steel, M

    2017-12-01

    Trees with labelled leaves and with all other vertices of degree three play an important role in systematic biology and other areas of classification. A classical combinatorial result ensures that such trees can be uniquely reconstructed from the distances between the leaves (when the edges are given any strictly positive lengths). Moreover, a linear number of these pairwise distance values suffices to determine both the tree and its edge lengths. A natural set of pairs of leaves is provided by any 'triplet cover' of the tree (based on the fact that each non-leaf vertex is the median vertex of three leaves). In this paper we describe a number of new results concerning triplet covers of minimum size. In particular, we characterize such covers in terms of an associated graph being a 2-tree. Also, we show that minimum triplet covers are 'shellable' and thereby provide a set of pairs for which the inter-leaf distance values will uniquely determine the underlying tree and its associated branch lengths.

  14. Ionic liquid dependence of triplet-sensitized photon upconversion.

    PubMed

    Murakami, Yoichi; Ito, Toshiyuki; Kawai, Akio

    2014-12-11

    Photon upconversion (UC) is a technology used to convert wasted lower energy photons to usable higher energy photons. Triplet-sensitized UC based on the triplet-triplet annihilation (TTA) of organic molecules has recently received attention because of its applicability to noncoherent sunlight. Among the various media proposed for this UC, ionic liquids (ILs) are practically advantageous because of their nonvolatility and nonflammability. However, from previous studies, the efficiency of UC (ΦUC) has been found to depend on the ILs employed. In this article, systematic investigations were carried out on samples made using more than 10 kinds of ILs, all of which were purified before sample fabrication to enhance data reliability. Several clear tendencies were found, and they were all related to the viscosity of the ILs. We also found that the magnitude of their solvatochromic shifts did not correlate to these trends. These results show that the dynamic aspects of the molecules influence the kinetics that govern the magnitude of ΦUC. Along with related discussions and interpretations, these results should provide a guideline toward increasing the ΦUC.

  15. Photosensitized degradation of acetaminophen in natural organic matter solutions: The role of triplet states and oxygen.

    PubMed

    Li, Yanyun; Pan, Yanheng; Lian, Lushi; Yan, Shuwen; Song, Weihua; Yang, Xin

    2017-02-01

    The photolysis of acetaminophen, a widely used pharmaceutical, in simulated natural organic matter solutions was investigated. The triplet states of natural organic matter ( 3 NOM*) were found to play the dominant role in its photodegradation, while the contributions from hydroxyl radicals and singlet oxygen were negligible. Dissolved oxygen (DO) plays a dual role. From anaerobic to microaerobic (0.5 mg/L DO) conditions, the degradation rate of acetaminophen increased by 4-fold. That suggests the involvement of DO in reactions with the degradation intermediates. With increasing oxygen levels to saturated conditions (26 mg/L DO), the degradation rate became slower, mainly due to DO's quenching effect on 3 NOM*. Superoxide radical (O 2 - ) did not react with acetaminophen directly, but possibly quenched the intermediates to reverse the degradation process. The main photochemical pathways were shown to involve phenoxyl radical and N-radical cations, finally yielding hydroxylated derivatives, dimers and nitrosophenol. A reaction mechanism involving 3 NOM*, oxygen and O 2 - is proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  17. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE PAGES

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki; ...

    2018-04-06

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  18. Cooperative Singlet and Triplet Exciton Transport in Tetracene Crystals Visualized by Ultrafast Microscopys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yan; Guo, Zhi; Zhu, Tong

    2015-09-14

    Singlet fission presents an attractive solution to overcome the Shockley–Queisser limit by generating two triplet excitons from one singlet exciton. Although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. We report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. Moreover, these measurements revealmore » a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.« less

  19. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy

    NASA Astrophysics Data System (ADS)

    Wan, Yan; Guo, Zhi; Zhu, Tong; Yan, Suxia; Johnson, Justin; Huang, Libai

    2015-10-01

    Singlet fission presents an attractive solution to overcome the Shockley-Queisser limit by generating two triplet excitons from one singlet exciton. However, although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. Here, we report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. These measurements reveal a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.

  20. Triplet-sensitized photon upconversion in deep eutectic solvents.

    PubMed

    Murakami, Yoichi; Das, Sudhir Kumar; Himuro, Yuki; Maeda, Satoshi

    2017-11-22

    Photon upconversion (UC) is a technology that can increase solar utilization efficiencies in broad photoenergy conversion systems by converting lower-energy photons into usable higher-energy photons. Recently, UC using triplet-triplet annihilation (TTA) of organic molecules has drawn attention because it is presently the only method applicable to weak and noncoherent light. To date, many attempts have been made to realize this UC technology in forms suitable for applications, but they typically suffer from either high cost or insufficient stability and/or safety of materials. Recently, a new class of liquid called deep eutectic solvents (DESs) has emerged as low-cost green fluids that possess low toxicity and vapor pressure, biodegradability, and high thermal stability. DESs have been proposed as an alternative to ionic liquids. This article develops triplet-sensitized UC samples using DESs that are found to be suitable solvents for this purpose, attaining a new materials platform for UC with the aforementioned advantages. The high thermal stability of the samples is qualitatively confirmed and their UC quantum yields are determined to be 0.11-0.21 (based on the definition that the maximum quantum yield is 0.5) depending on the DES composition. The triplet lifetime of the emitter 9,10-diphenylanthracene increases with DES viscosity, resulting in unique kinetics. Analysis of photophysical experimental results allows the relevant physics governing the performance of this sample system to be determined and discussed. Overall, a novel UC platform that simultaneously achieves high thermal stability, low cost, and environmental friendliness is developed using DESs as the solvent.

  1. Thermodynamic contributions for the incorporation of GTA triplets within canonical TAT/TAT and C+GC/C+GC base-triplet stacks of DNA triplexes.

    PubMed

    Soto, Ana Maria; Marky, Luis A

    2002-10-15

    Nucleic acid triple helices may be used in the control of gene expression. One limitation of using triplex-forming oligonucleotides as therapeutic agents is that their target sequences are limited to homopurine tracts. To increase the repertoire of sequences that can be targeted, it has been postulated that a guanine can target a thymidine forming a stable GTA mismatch triplet. In this work, we have used a combination of optical and calorimetric techniques to determine thermodynamic unfolding profiles of two triplexes containing a single GTA triplet, d(A(3)TA(3)C(5)T(3)AT(3)C(5)T(3)GT(3)) (ATA) and d(AGTGAC(5)TCACTC(5)TCGCT) (GTG), and their control triplexes, d(A(7)C(5)T(7)C(5)T(7)) (TAT7) and d(AGAGAC(5)TCTCTC(5)TCTCT) (AG5T). In general, the presence of a GTA mismatch in DNA triplexes is destabilizing; however, this destabilization is greater when placed in a C(+)GC/C(+)GC base-triplet stack than between a TAT/TAT stack. These destabilizations are accompanied by a reduced unfolding enthalpy of approximately 10 kcal/mol, suggesting a decrease in the base stacking contributions surrounding the mismatch. Relative to their corresponding control triplexes, the folding of ATA is accompanied by a lower counterion uptake and a similar proton uptake, while GTG folding is accompanied by an increase in the counterion and proton uptakes. These effects are consistent with the observed decrease in stacking interactions. The overall results indicate that the main difficulty of targeting pyrimidine interruptions is that the decrease in stacking contributions, due to the incorporation of a GTA mismatch, affects the stability of the neighboring base triplets. This suggests that nucleotide analogues that increase the strength of these base-triplet stacks will result in a more effective targeting of pyrimidine interruptions.

  2. Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: Tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet-triplet gaps

    NASA Astrophysics Data System (ADS)

    Brückner, Charlotte; Engels, Bernd

    2017-01-01

    Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.

  3. Leptogenesis, radiative neutrino masses and inert Higgs triplet dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wen-Bin; Gu, Pei-Hong

    2016-05-18

    We extend the standard model by three types of inert fields including Majorana fermion singlets/triplets, real Higgs singlets/triplets and leptonic Higgs doublets. In the presence of a softly broken lepton number and an exactly conserved Z{sub 2} discrete symmetry, these inert fields together can mediate a one-loop diagram for a Majorana neutrino mass generation. The heavier inert fields can decay to realize a successful leptogenesis while the lightest inert field can provide a stable dark matter candidate. As an example, we demonstrate the leptogenesis by the inert Higgs doublet decays. We also perform a systematic study on the inert Higgsmore » triplet dark matter scenario where the interference between the gauge and Higgs portal interactions can significantly affect the dark matter properties.« less

  4. Single and double beta decays in the A=100, A=116 and A=128 triplets of isobars

    NASA Astrophysics Data System (ADS)

    Suhonen, J.; Civitarese, O.

    2014-04-01

    In this paper we analyze the ground-state-to-ground-state two-neutrino double beta (2νββ) decays and single EC and β- decays for the A=100 (100Mo-100Tc-100Ru), A=116 (116Cd-116In-116Sn) and A=128 (128Te-128I-128Xe) triplets of isobars. We use the proton-neutron quasiparticle random-phase approximation (pnQRPA) with realistic G-matrix-derived effective interactions in very large single-particle bases. The purpose is to access the effective value of the axial-vector coupling constant gA in the pnQRPA calculations. We show that the three triplets of isobars represent systems with different characteristics of orbital occupancies and cumulative 2νββ nuclear matrix elements. Our analysis points to a considerably quenched averaged effective value of ≈0.6±0.2 in the pnQRPA calculations.

  5. Effects of Electronic-State-Dependent Solute Polarizability: Application to Solute-Pump/Solvent-Probe Spectra.

    PubMed

    Sun, Xiang; Ladanyi, Branka M; Stratt, Richard M

    2015-07-23

    Experimental studies of solvation dynamics in liquids invariably ask how changing a solute from its electronic ground state to an electronically excited state affects a solution's dynamics. With traditional time-dependent-fluorescence experiments, that means looking for the dynamical consequences of the concomitant change in solute-solvent potential energy. But if one follows the shift in the dynamics through its effects on the macroscopic polarizability, as recent solute-pump/solvent-probe spectra do, there is another effect of the electronic excitation that should be considered: the jump in the solute's own polarizability. We examine the spectroscopic consequences of this solute polarizability change in the classic example of the solvation dye coumarin 153 dissolved in acetonitrile. After demonstrating that standard quantum chemical methods can be used to construct accurate multisite models for the polarizabilities of ground- and excited-state solvation dyes, we show via simulation that this polarizability change acts as a contrast agent, significantly enhancing the observable differences in optical-Kerr spectra between ground- and excited-state solutions. A comparison of our results with experimental solute-pump/solvent-probe spectra supports our interpretation and modeling of this spectroscopy. We predict, in particular, that solute-pump/solvent-probe spectra should be sensitive to changes in both the solvent dynamics near the solute and the electronic-state-dependence of the solute's own rotational dynamics.

  6. Renormalization of the Higgs sector in the triplet model

    NASA Astrophysics Data System (ADS)

    Aoki, Mayumi; Kanemura, Shinya; Kikuchi, Mariko; Yagyu, Kei

    2012-08-01

    We study radiative corrections to the mass spectrum and the triple Higgs boson coupling in the model with an additional Y = 1 triplet field. In this model, the vacuum expectation value for the triplet field is strongly constrained from the electroweak precision data, under which characteristic mass spectrum appear at the tree level; i.e., mH++2 - mH+2 ≃ mH+2 - mA2 and mA2 ≃ mH2, where the CP-even (H), the CP-odd (A) and the doubly-charged (H±±) as well as the singly-charged (H±) Higgs bosons are the triplet-like. We evaluate how the tree-level formulae are modified at the one-loop level. The hhh coupling for the standard model-like Higgs boson (h) is also calculated at the one-loop level. One-loop corrections to these quantities can be large enough for identification of the model by future precision data at the LHC or the International Linear Collider.

  7. Reactive carbon-chain molecules: synthesis of 1-diazo-2,4-pentadiyne and spectroscopic characterization of triplet pentadiynylidene (H-C[triple bond]C-:C-C[triple bond]C-H).

    PubMed

    Bowling, Nathan P; Halter, Robert J; Hodges, Jonathan A; Seburg, Randal A; Thomas, Phillip S; Simmons, Christopher S; Stanton, John F; McMahon, Robert J

    2006-03-15

    1-Diazo-2,4-pentadiyne (6a), along with both monodeuterio isotopomers 6b and 6c, has been synthesized via a route that proceeds through diacetylene, 2,4-pentadiynal, and 2,4-pentadiynal tosylhydrazone. Photolysis of diazo compounds 6a-c (lambda > 444 nm; Ar or N2, 10 K) generates triplet carbenes HC5H (1) and HC5D (1-d), which have been characterized by IR, EPR, and UV/vis spectroscopy. Although many resonance structures contribute to the resonance hybrid for this highly unsaturated carbon-chain molecule, experiment and theory reveal that the structure is best depicted in terms of the dominant resonance contributor of penta-1,4-diyn-3-ylidene (diethynylcarbene, H-C[triple bond]C-:C-C[triple bond]C-H). Theory predicts an axially symmetric (D(infinity h)) structure and a triplet electronic ground state for 1 (CCSD(T)/ANO). Experimental IR frequencies and isotope shifts are in good agreement with computed values. The triplet EPR spectrum of 1 (absolute value(D/hc) = 0.6157 cm(-1), absolute value(E/hc) = 0.0006 cm(-1)) is consistent with an axially symmetric structure, and the Curie law behavior confirms that the triplet state is the ground state. The electronic absorption spectrum of 1 exhibits a weak transition near 400 nm with extensive vibronic coupling. Chemical trapping of triplet HC5H (1) in an O2-doped matrix affords the carbonyl oxide 16 derived exclusively from attack at the central carbon.

  8. Magnetoelectric Andreev Effect due to Proximity-Induced Nonunitary Triplet Superconductivity in Helical Metals

    NASA Astrophysics Data System (ADS)

    Tkachov, G.

    2017-01-01

    Noncentrosymmetric superconductors exhibit the magnetoelectric effect, which manifests itself in the appearance of the magnetic spin polarization in response to a dissipationless electric current (supercurrent). While much attention has been dedicated to the thermodynamic version of this phenomenon (Edelstein effect), nonequilibrium transport magnetoelectric effects have not been explored yet. We propose the magnetoelectric Andreev effect (MAE), which consists in the generation of spin-polarized triplet Andreev conductance by an electric supercurrent. The MAE stems from the spin polarization of the Cooper-pair condensate due to a supercurrent-induced nonunitary triplet pairing. We propose the realization of such a nonunitary pairing and MAE in superconducting proximity structures based on two-dimensional helical metals—strongly spin-orbit-coupled electronic systems with the Dirac spectrum such as the topological surface states. Our results uncover an unexplored route towards electrically controlled superconducting spintronics and are a smoking gun for induced unconventional superconductivity in spin-orbit-coupled materials.

  9. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells.

    PubMed

    Wang, Jennifer T; Kong, Dong; Hoerner, Christian R; Loncarek, Jadranka; Stearns, Tim

    2017-09-14

    Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next.

  10. Effects of triplet Higgs bosons in long baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Huitu, K.; Kärkkäinen, T. J.; Maalampi, J.; Vihonen, S.

    2018-05-01

    The triplet scalars (Δ =Δ++,Δ+,Δ0) utilized in the so-called type-II seesaw model to explain the lightness of neutrinos, would generate nonstandard interactions (NSI) for a neutrino propagating in matter. We investigate the prospects to probe these interactions in long baseline neutrino oscillation experiments. We analyze the upper bounds that the proposed DUNE experiment might set on the nonstandard parameters and numerically derive upper bounds, as a function of the lightest neutrino mass, on the ratio the mass MΔ of the triplet scalars, and the strength |λϕ| of the coupling ϕ ϕ Δ of the triplet Δ and conventional Higgs doublet ϕ . We also discuss the possible misinterpretation of these effects as effects arising from a nonunitarity of the neutrino mixing matrix and compare the results with the bounds that arise from the charged lepton flavor violating processes.

  11. Fermiophobia in a Higgs triplet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akeroyd, A. G.; NExT Institute and School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ; Diaz, Marco A.

    2011-05-01

    A fermiophobic Higgs boson can arise in models with an extended Higgs sector, such as models with scalars in an isospin triplet representation. In a specific model with a scalar triplet and spontaneous violation of lepton number induced by a scalar singlet field, we show that fermiophobia is not a fine-tuned situation, unlike in two higgs doublet models. We study distinctive signals of fermiophobia which can be probed at the LHC. For the case of a small Higgs mass, a characteristic signal would be a moderate B(H{yields}{gamma}{gamma}) accompanied by a large B(H{yields}JJ) (where J is a Majoron), the latter beingmore » an invisible decay. For the case of a large Higgs mass there is the possibility of dominant H{yields}ZZ, WW and suppressed H{yields}JJ decay modes. In this situation, B(H{yields}ZZ) is larger than B(H{yields}WW), which differs from the SM prediction.« less

  12. Chain Length Dependence of Energies of Electron and Triplet Polarons in Oligofluorenes

    DOE PAGES

    Chen, Hung Cheng; Sreearunothai, Paiboon; Cook, Andrew R.; ...

    2017-03-01

    Bimolecular equilibria measured the one-electron reduction potentials and triplet free energies (ΔG° T) of oligo(9,9-dihexyl)fluorenes and a polymer with lengths of n = 1–10 and 57 repeat units. We can accurately measure one-electron potentials electrochemically only for the shorter oligomers. Starting at n = 1 the free energies change rapidly with increasing length and become constant for lengths longer than the delocalization length. Both the reduction potentials and triplet energies can be understood as the sum of a free energy for a fixed polaron and a positional entropy. Furthermore, the positional entropy increases gradually with length beyond the delocalization lengthmore » due to the possible occupation sites of the charge or the triplet exciton. Our results reinforce the view that charges and triplet excitons in conjugated chains exist as polarons and find that positional entropy can replace a popular empirical model of the energetics.« less

  13. Three-dimensional structure of basal body triplet revealed by electron cryo-tomography

    PubMed Central

    Li, Sam; Fernandez, Jose-Jesus; Marshall, Wallace F; Agard, David A

    2012-01-01

    Basal bodies and centrioles play central roles in microtubule (MT)-organizing centres within many eukaryotes. They share a barrel-shaped cylindrical structure composed of nine MT triplet blades. Here, we report the structure of the basal body triplet at 33 Å resolution obtained by electron cryo-tomography and 3D subtomogram averaging. By fitting the atomic structure of tubulin into the EM density, we built a pseudo-atomic model of the tubulin protofilaments at the core of the triplet. The 3D density map reveals additional densities that represent non-tubulin proteins attached to the triplet, including a large inner circular structure in the basal body lumen, which functions as a scaffold to stabilize the entire basal body barrel. We found clear longitudinal structural variations along the basal body, suggesting a sequential and coordinated assembly mechanism. We propose a model in which δ-tubulin and other components participate in the assembly of the basal body. PMID:22157822

  14. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells

    PubMed Central

    Wang, Jennifer T; Kong, Dong; Hoerner, Christian R; Loncarek, Jadranka

    2017-01-01

    Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next. PMID:28906251

  15. Formation of (DNA)2-LNA triplet with recombinant base recognition: A quantum mechanical study

    NASA Astrophysics Data System (ADS)

    Mall, Vijaya Shri; Tiwari, Rakesh Kumar

    2018-05-01

    The formation of DNA triple helix offers the verity of new possibilities in molecular biology. However its applications are limited to purine and pyrimidine rich sequences recognized by forming Hoogsteen/Reverse Hoogsteen triplets in major groove sites of DNA duplex. To overcome this drawback modification in bases backbone and glucose of nucleotide unit of DNA have been proposed so that the third strand base recognized by both the bases of DNA duplex by forming Recombinant type(R-type) of bonding in mixed sequences. Here we performed Quanrum Mechanical (Hartree-Fock and DFT) methodology on natural DNA and Locked Nucleic Acids(LNA) triplets using 6-31G and some other new advance basis sets. Study suggests energetically stable conformation has been observed for recombinant triplets in order of G-C*G > A-T*A > G-C*C > T-A*T for both type of triplets. Interestingly LNA leads to more stable conformation in all set of triplets, clearly suggests an important biological tool to overcome above mentioned drawbacks.

  16. Embryo reduction versus expectant management in triplet pregnancies.

    PubMed

    Antsaklis, A; Souka, A P; Daskalakis, G; Papantoniou, N; Koutra, P; Kavalakis, Y; Mesogitis, S

    2004-10-01

    In triplet pregnancies, to compare pregnancy outcome of expectant management with that after embryo reduction to twins. Retrospective study of 255 trichorionic triplet pregnancies, of which 185 had embryo reduction to twins (reduced group) and 70 were managed expectantly (non-reduced group). Median birth weight was higher by about 500 g and gestation prolonged by about 3 weeks in the reduced pregnancies compared with the expectantly managed pregnancies (2300 vs. 1760 g; 36 vs. 33 weeks). The rates of preterm delivery were significantly lower in the reduced group (11.17 vs. 36.76% for delivery at < or = 32 weeks and 40.58 vs. 83.82% for delivery at < or = 35 weeks, reduced vs. non-reduced group). The percentage of infants born with low birth weight was significantly higher in the expectantly managed triplets (10.98 vs. 28.44% for birth weight < or = 1500 g and 68.55 vs. 92.89% for birth weight < or = 2500 g, reduced vs. non-reduced group). Total fetal loss was significantly higher in the reduced group than in the non-reduced group (15.41 and 4.76%, respectively) and the difference was mainly due to the higher miscarriage rate in the reduced group (8.11 vs. 2.86% in the non-reduced group). With the expected rates of handicap in preterm infants, we would anticipate 0.63% of severely handicapped children due to extreme prematurity in the reduced group and 1.64% in the non-reduced group. In triplet pregnancies, embryo reduction to twins significantly reduces the risk of severe preterm delivery and very low birth weight by about one-third, at the expense of a significant increase in total fetal loss, by about one-quarter. The procedure is likely to reduce the risk of having a severely handicapped child due to extreme prematurity.

  17. Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons?

    PubMed

    Jankus, Vygintas; Chiang, Chien-Jung; Dias, Fernando; Monkman, Andrew P

    2013-03-13

    Simple trilayer, deep blue, fluorescent exciplex organic light-emitting diodes (OLEDs) are reported. These OLEDs emit from an exciplex state formed between the highest occupied molecular orbital (HOMO) of N,N'-bis(1-naphthyl)N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) and lowest unoccupied molecular orbital (LUMO) of 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBi) and the NPB singlet manifold, yielding 2.7% external quantum efficiency at 450 nm. It is shown that the majority of the delayed emission in electroluminescence arises from P-type triplet fusion at NPB sites not E-type reverse intersystem crossing because of the presence of the NPB triplet state acting as a deep trap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Noise filtering of composite pulses for singlet-triplet qubits

    PubMed Central

    Yang, Xu-Chen; Wang, Xin

    2016-01-01

    Semiconductor quantum dot spin qubits are promising candidates for quantum computing. In these systems, the dynamically corrected gates offer considerable reduction of gate errors and are therefore of great interest both theoretically and experimentally. They are, however, designed under the static-noise model and may be considered as low-frequency filters. In this work, we perform a comprehensive theoretical study of the response of a type of dynamically corrected gates, namely the supcode for singlet-triplet qubits, to realistic 1/f noises with frequency spectra 1/ωα. Through randomized benchmarking, we have found that supcode offers improvement of the gate fidelity for α  1 and the improvement becomes exponentially more pronounced with the increase of the noise exponent in the range 1  α ≤ 3 studied. On the other hand, for small α, supcode will not offer any improvement. The δJ-supcode, specifically designed for systems where the nuclear noise is absent, is found to offer additional error reduction than the full supcode for charge noises. The computed filter transfer functions of the supcode gates are also presented. PMID:27383129

  19. Efficient triplet application in exciplex delayed-fluorescence OLEDs using a reverse intersystem crossing mechanism based on a ΔES-T of around zero.

    PubMed

    Zhang, Tianyou; Chu, Bei; Li, Wenlian; Su, Zisheng; Peng, Qi Ming; Zhao, Bo; Luo, Yongshi; Jin, Fangming; Yan, Xingwu; Gao, Yuan; Wu, Hairuo; Zhang, Feng; Fan, Di; Wang, Junbo

    2014-08-13

    We demonstrate highly efficient exciplex delayed-fluorescence organic light-emitting diodes (OLEDs) in which 4,4',4″-tris[3-methylphenyl(phenyl)aminotriphenylamine (m-MTDATA) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were selected as donor and acceptor components, respectively. Our m-MTDATA:Bphen exciplex electroluminescence (EL) mechanism is based on reverse intersystem crossing (RISC) from the triplet to singlet excited states. As a result, an external quantum efficiency (EQE) of 7.79% at 10 mA/cm(2) was observed, which increases by 3.2 and 1.5 times over that reported in Nat. Photonics 2012, 6, 253 and Appl. Phys. Lett. 2012, 101, 023306, respectively. The high EQE would be attributed to a very easy RISC process because the energy difference between the singlet and triplet excited states is almost around zero. The verdict was proven by photoluminescence (PL) rate analysis at different temperatures and time-resolved spectral analysis. Besides, the study of the transient PL process indicates that the presence of an unbalanced charge in exciplex EL devices is responsible for the low EQE and high-efficiency roll-off. When the exciplex devices were placed in a 100 mT magnetic field, the permanently positive magnetoelectroluminescence and magnetoconductivity were observed. The magnetic properties confirm that the efficient exciplex EL only originates from delayed fluorescence via RISC processes but is not related to the triplet-triplet annihilation process.

  20. Remote modulation of singlet-triplet gaps in carbenes

    NASA Astrophysics Data System (ADS)

    Alkorta, Ibon; Montero-Campillo, M. Merced; Elguero, José

    2018-02-01

    The modulation of the singlet-triplet (S/T) gap of phenyl-carbene derivatives by hydrogen bond formation has been studied using the G4(MP2) computational method. The complexation of the aromatic ring substituents (-NH2, -OH, -PH2, -SH) in meta- and para-positions with water and the protonation or deprotonation of such groups have a remarkable influence on the S/T gaps, reaching S/T gap variations from 25.7 to 93.7 kJ mol-1. This variation is linearly related to the binding energy difference of the S/T configurations. Importantly, the triplet and singlet electronic configurations are systematically favored in the protonated and deprotonated forms, respectively, in all cases.

  1. Theoretical studies of ground and excited electronic States in a series of rhenium(i) bipyridine complexes containing diarylethynyl-based structure.

    PubMed

    Yang, Li; Ren, Ai-Min; Feng, Ji-Kang; Liu, Xiao-Dong; Ma, Yu-Guang; Zhang, Hong-Xing

    2004-09-20

    The photophysical properties, which vary as X is varied, of Re(I)-halide complexes (X2-bpy)ReICl(CO)3 (where X=ph, DAE, DNE, and DPE; ph = phenyl (1); DAE = di(amineoethynylbenzene) (2); DPE = di(phenylethynylbenzene) (3); DNE = di(nitroethynylbenzene) (4); bpy=2,2'bipyridine), are investigated using density functional theory (DFT). The electronic properties of the neutral molecules, in addition to the positive and negative ions, are studied using B3LYP functional. Excited singlet and triplet states are examined using time-dependent density functional theory (TDDFT). The low-lying excited-state geometries are optimized at the ab initio configuration interaction singlets level. As shown, the diarylethynyl-based structure is an integral component of the bpy pi-conjugated network, which results in a good planar structure. The occupied orbitals involved in the transitions have a significant mixture of metal Re and group Cl, and the lowest unoccupied orbital is a pi orbital, which extends from ligand bpy to diarylethynyl-based substituents. The luminescence for each complex originates from the lowest triplet excited states and is assigned to the mixing of MLCT and LLCT characters. Significant insights on the effects of these diarylethynyl conjugated structure and ending substituents (NH2, ph, and NO2) on absorption and emission spectra are observed by analysis of the results of the TDDFT method. The diarylethynyl-based pi-conjugated network makes both the absorption and emission spectra red-shifted compared with simple complex (bpy)ReICl(CO)3. Furthermore, an electron-releasing group (NH2) makes absorption and emission spectra blue-shift and an electron-withdrawing group (NO2) makes them red-shift. Copyright 2004 American Chemical Society

  2. One Interesting Family of Diophantine Triplets

    ERIC Educational Resources Information Center

    Deshpande, M. N.

    2002-01-01

    In this note properties of two sequences generated by the recurrence relation G[subscript n] +2 = 4 G[subscript n] +1 - G[subscript n], are studied. It is shown that one of the sequences leads to a family of diophantine triplets. Some interesting properties of these sequences are also established.

  3. A Search for X-ray Emission in Isolated Compact Triplets

    NASA Technical Reports Server (NTRS)

    Brown, Beth A.; Williams, Barbara

    2006-01-01

    We describe preliminary results of an exploratory search for diffuse X-ray emission in a sample of the poorest galaxy groups, i.e., isolated compact triplets of galaxies. These systems represent the simplest forms of galaxy clustering while manifesting all the complexities inherent in other groups. We have selected 20 compact triplets for this initial study. The component galaxies are expected to interact with each other and with the group's intergalactic medium, if present, in complex ways that trigger high-energy processes.

  4. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Jie, J.; Fox, G. E.; Gao, X.

    1995-01-01

    DNA triplet repeats, 5'-d(CTG)n and 5'-d(CAG)n, are present in genes which have been implicated in several neurodegenerative disorders. To investigate possible stable structures formed by these repeating sequences, we have examined d(CTG)n, d(CAG)n and d(CTG).d(CAG)n (n = 2 and 3) using NMR and UV optical spectroscopy. These studies reveal that single stranded (CTG)n (n > 2) forms stable, antiparallel helical duplexes, while the single stranded (CAG)n requires at least three repeating units to form a duplex. NMR and UV melting experiments show that the Tm increases in the order of [(CAG)3]2 < [(CTG)3]2 << (CAG)3.(CTG)3. The (CTG)3 duplex is stable and exhibits similar NMR spectra in solutions containing 0.1-4 M NaCl and at a pH range from 4.6 to 8.8. The (CTG)3 duplex, which contains multiple-T.T mismatches, displays many NMR spectral characteristics similar to those of B-form DNA. However, unique NOE and 1H-31P coupling patterns associated with the repetitive T.T mismatches in the CTG repeats are discerned. These results, in conjunction with recent in vitro studies suggest that longer CTG repeats may form hairpin structures, which can potentially cause interruption in replication, leading to dynamic expansion or deletion of triplet repeats.

  5. Spin-orbit signatures in the dynamics of singlet-triplet qubits in double quantum dots

    NASA Astrophysics Data System (ADS)

    Rolon, Juan E.; Cota, Ernesto; Ulloa, Sergio E.

    2017-05-01

    We characterize numerically and analytically the signatures of the spin-orbit interaction in a two-electron GaAs double quantum dot in the presence of an external magnetic field. In particular, we obtain the return probability of the singlet state by simulating Landau-Zener voltage detuning sweeps which traverse the singlet-triplet (S -T+ ) resonance. Our results indicate that non-spin-conserving interdot tunneling processes arising from the spin-orbit interaction have well defined signatures. These allow direct access to the spin-orbit interaction scales and are characterized by a frequency shift and Fourier amplitude modulation of the Rabi flopping dynamics of the singlet-triplet qubits S -T0 and S -T+ . By applying the Bloch-Feshbach projection formalism, we demonstrate analytically that the aforementioned effects originate from the interplay between spin-orbit interaction and processes driven by the hyperfine interaction between the electron spins and those of the GaAs nuclei.

  6. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    DTIC Science & Technology

    2016-06-03

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9681 Calculation of Vibrational and Electronic Excited-State Absorption Spectra...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using...Unclassified Unlimited Unclassified Unlimited 59 Samuel G. Lambrakos (202) 767-2601 Calculations are presented of vibrational and electronic excited-state

  7. A benchmark theoretical study of the electronic ground state and of the singlet-triplet split of benzene and linear acenes

    NASA Astrophysics Data System (ADS)

    Hajgató, B.; Szieberth, D.; Geerlings, P.; De Proft, F.; Deleuze, M. S.

    2009-12-01

    A benchmark theoretical study of the electronic ground state and of the vertical and adiabatic singlet-triplet (ST) excitation energies of benzene (n =1) and n-acenes (C4n+2H2n+4) ranging from naphthalene (n =2) to heptacene (n =7) is presented, on the ground of single- and multireference calculations based on restricted or unrestricted zero-order wave functions. High-level and large scale treatments of electronic correlation in the ground state are found to be necessary for compensating giant but unphysical symmetry-breaking effects in unrestricted single-reference treatments. The composition of multiconfigurational wave functions, the topologies of natural orbitals in symmetry-unrestricted CASSCF calculations, the T1 diagnostics of coupled cluster theory, and further energy-based criteria demonstrate that all investigated systems exhibit a A1g singlet closed-shell electronic ground state. Singlet-triplet (S0-T1) energy gaps can therefore be very accurately determined by applying the principles of a focal point analysis onto the results of a series of single-point and symmetry-restricted calculations employing correlation consistent cc-pVXZ basis sets (X=D, T, Q, 5) and single-reference methods [HF, MP2, MP3, MP4SDQ, CCSD, CCSD(T)] of improving quality. According to our best estimates, which amount to a dual extrapolation of energy differences to the level of coupled cluster theory including single, double, and perturbative estimates of connected triple excitations [CCSD(T)] in the limit of an asymptotically complete basis set (cc-pV∞Z), the S0-T1 vertical excitation energies of benzene (n =1) and n-acenes (n =2-7) amount to 100.79, 76.28, 56.97, 40.69, 31.51, 22.96, and 18.16 kcal/mol, respectively. Values of 87.02, 62.87, 46.22, 32.23, 24.19, 16.79, and 12.56 kcal/mol are correspondingly obtained at the CCSD(T)/cc-pV∞Z level for the S0-T1 adiabatic excitation energies, upon including B3LYP/cc-PVTZ corrections for zero-point vibrational energies. In line with

  8. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers

    NASA Astrophysics Data System (ADS)

    Yu, Hongyi; Liu, Gui-Bin; Yao, Wang

    2018-07-01

    We investigate the optical properties of spin-triplet interlayer excitons in heterobilayer transition metal dichalcogenides in comparison with the spin-singlet ones. Surprisingly, the optical transition dipole of the spin-triplet exciton is found to be in the same order of magnitude to that of the spin-singlet exciton, in sharp contrast to the monolayer excitons where the spin-triplet species is considered as dark compared to the singlet. Unlike the monolayer excitons whose spin-conserved (spin-flip) transition dipole can only couple to light of in-plane (out-of-plane) polarisation, such restriction is removed for the interlayer excitons due to the breaking of the out-of-plane mirror symmetry. We find that as the interlayer atomic registry changes, the optical transition dipole of interlayer exciton crosses between in-plane ones of opposite circular polarizations and the out-of-plane one for both the spin-triplet and spin-singlet species. As a result, excitons of both species have non-negligible coupling into photon modes of both in-plane and out-of-plane propagations, another sharp difference from the monolayers where the exciton couples predominantly into the out-of-plane propagation channel. At given atomic registry, the spin-triplet and spin-singlet excitons have distinct valley polarisation selection rules, allowing the selective optical addressing of both the valley configuration and the spin-singlet/triplet configuration of interlayer excitons.

  9. Singlet-triplet energy differences in divalent five membered cyclic conjugated Arduengo-type carbenes XC2HN2M (M = C, Si, Ge, Sn, and Pb; X = F, Cl, Br, and I)

    NASA Astrophysics Data System (ADS)

    Vessally, Esmail; Dehbandi, Behnam; Ahmadi, Elaheh

    2016-09-01

    Singlet-triplet energy differences in Arduengo-type carbenes XC2HN2C compared and contrasted with their sila, germa, stana and plumba analogues; at B3LYP/6-311++G** level of theory. Free Gibbs energy differences between triplet (t) and singlet (s) states (Δ G(t-s)) change in the following order: plumbylenes > stannylenes > germylenes > silylenes > carbenes. The singlet states in XC2HN2C are generally more stable when the electron withdrawing groups such as-F was used at β-position. However, the singlet states in XC2N2HM (M = Si, Ge, Sn, and Pb) are generally more stable when the withdrawing groups such as-F was placed. The puckering energy is investigated for each the singlet and triplet states. The DFT calculations found the linear correlation to size of the group 14 divalent element (M), the ∠N-M-N angle, and the Δ(LUMO-HOMO) of XC2HN2M.

  10. Distribución Espacial de Ancho Equivalente del Triplete del CaII a partir de Imágenes GMOS

    NASA Astrophysics Data System (ADS)

    Díaz, R. J.; Mast, D.

    Using Gemini+GMOS imagery obtained through the filters i, z and CaT, we developed a technique for estimating the value of the Ca II triplet (CaT) equivalent width (EW). The map generated through arithmetic operations with the near infrared images was calibrated with long slit spectra obtained with REOSC spectrograph at CASLEO. We apply this technique to the study of M 83 central region and present the preliminary results on the spatial distribution of the EW(CaT) within an area of 40 per 40 square arcsec around the double nucleus of M 83, with a spatial resolution of 0.8 arcsec. FULL TEXT IN SPANISH.

  11. The supersonic triplet - A new aerodynamic panel singularity with directional properties. [internal wave elimination

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.; Landrum, E. J.

    1979-01-01

    A new supersonic triplet singularity has been developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which provides the desired directional properties in the flow field surrounding the panel. The theoretical development of the triplet is described, together with its application to the calculation of surface pressure on arbitrary body shapes. Examples are presented comparing the results of the new method with other supersonic panel methods and with experimental data.

  12. Triplet exciton diffusion in fac-tris(2-phenylpyridine) iridium(III)-cored electroluminescent dendrimers

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Ruseckas, Arvydas; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.

    2005-02-01

    We have studied triplet-triplet annihilation in neat films of electrophosphorescent fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3]-cored dendrimers containing phenylene- and carbazole-based dendrons with 2-ethylhexyloxy surface groups using time-resolved photoluminescence. From measured annihilation rates, the limiting current densities above which annihilation would dominate in dendrimer light-emitting devices are found to be >1A/cm2. The triplet exciton diffusion length varies in the range of 2-10 nm depending on the dendron size. The distance dependence of the nearest-neighbor hopping rate shows that energy transfer is dominated by the exchange mechanism.

  13. Effect of xenon on the excited states of phototropic receptor flavin in corn seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vierstra, R.D.; Poff, K.L.; Walker, E.B.

    1981-05-01

    The chemically inert, water-soluble heavy atom gas, xenon, at millimolar concentrations specifically quenches the triplet excited state of flavin in solution without quenching the flavin singlet excited state. The preferential quenching of the flavin triplet over the singlet excited state by Xe has been established by showing that the flavin triplet-sensitized photooxidation of NADH is inhibited while the fluorescence intensity and lifetime of flavin are not affected by Xe. No significant inhibition of phototropism and geotropism by Xe was observed, suggesting that a flavin singlet state is more likely involved than the triplet state in the primary photoprocess of phototropismmore » in corn.« less

  14. Determination of the spin triplet p Λ scattering length from the final state interaction in the p ⃗p →p K+Λ reaction

    NASA Astrophysics Data System (ADS)

    Hauenstein, F.; Borodina, E.; Clement, H.; Doroshkevich, E.; Dzhygadlo, R.; Ehrhardt, K.; Eyrich, W.; Gast, W.; Gillitzer, A.; Grzonka, D.; Haidenbauer, J.; Hanhart, C.; Jowzaee, S.; Kilian, K.; Klaja, P.; Kober, L.; Krapp, M.; Mertens, M.; Moskal, P.; Ritman, J.; Roderburg, E.; Röder, M.; Schroeder, W.; Sefzick, T.; Wintz, P.; Wüstner, P.; COSY-TOF Collaboration

    2017-03-01

    The p ⃗p →p K+Λ reaction has been measured with the COSY-TOF detector at a beam momentum of 2.7 GeV /c . The polarized proton beam enables the measurement of the beam analyzing power by the asymmetry of the produced kaon (ANK). This observable allows the p Λ spin triplet scattering length to be extracted for the first time model independently from the final state interaction in the reaction. The obtained value is at=(-2 .55-1.39+0.72stat .±0 .6syst .±0 .3theo .) fm . This value is compatible with theoretical predictions and results from model-dependent analyses.

  15. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    PubMed

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  16. Amplitude control of the spin-triplet supercurrent in S / F / S Josephson junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, William M.; Pratt, Jr., W. P.; Birge, Norman O.

    Josephson junctions made with conventional s-wave superconductors and containing multiple layers of ferromagnetic materials can carry spin-triplet supercurrent in the presence of certain types of magnetic inhomogeneity. In junctions containing three ferromagnetic layers, the triplet supercurrent is predicted to be maximal when the magnetizations of the adjacent layers are orthogonal, and zero when the magnetizations of any two adjacent layers are parallel. Here we demonstrate on-off control of the spin-triplet supercurrent in such junctions, achieved by rotating the magnetization direction of one of the three layers by 90°. We obtain “on-off” ratios of 5, 7, and 19 for the supercurrentmore » in the three samples that have been studied so far. In conclusion, these observations directly confirm one of the most salient predictions of the theory, and they pave the way for applications of spin-triplet Josephson junctions in the nascent area of “superconducting spintronics”.« less

  17. Amplitude control of the spin-triplet supercurrent in S / F / S Josephson junctions

    DOE PAGES

    Martinez, William M.; Pratt, Jr., W. P.; Birge, Norman O.

    2016-02-17

    Josephson junctions made with conventional s-wave superconductors and containing multiple layers of ferromagnetic materials can carry spin-triplet supercurrent in the presence of certain types of magnetic inhomogeneity. In junctions containing three ferromagnetic layers, the triplet supercurrent is predicted to be maximal when the magnetizations of the adjacent layers are orthogonal, and zero when the magnetizations of any two adjacent layers are parallel. Here we demonstrate on-off control of the spin-triplet supercurrent in such junctions, achieved by rotating the magnetization direction of one of the three layers by 90°. We obtain “on-off” ratios of 5, 7, and 19 for the supercurrentmore » in the three samples that have been studied so far. In conclusion, these observations directly confirm one of the most salient predictions of the theory, and they pave the way for applications of spin-triplet Josephson junctions in the nascent area of “superconducting spintronics”.« less

  18. Magnetoanisotropic spin-triplet Andreev reflection in ferromagnet-Ising superconductor junctions

    NASA Astrophysics Data System (ADS)

    Lv, Peng; Zhou, Yan-Feng; Yang, Ning-Xuan; Sun, Qing-Feng

    2018-04-01

    We theoretically study the electronic transport through a ferromagnet-Ising superconductor junction. A tight-binding Hamiltonian describing the Ising superconductor is presented. Then by combining the nonequilibrium Green's function method, the expressions of Andreev reflection coefficient and conductance are obtained. A strong magnetoanisotropic spin-triplet Andreev reflection is shown, and the magnetoanisotropic period is π instead of 2 π as in the conventional magnetoanisotropic system. We demonstrate a significant increase of the spin-triplet Andreev reflection for the single-band Ising superconductor. Furthermore, the dependence of the Andreev reflection on the incident energy and incident angle are also investigated. A complete Andreev reflection can occur when the incident energy is equal to the superconducting gap, regardless of the Fermi energy (spin polarization) of the ferromagnet. For the suitable oblique incidence, the spin-triplet Andreev reflection can be strongly enhanced. In addition, the conductance spectroscopies of both zero bias and finite bias are studied, and the influence of gate voltage, exchange energy, and spin-orbit coupling on the conductance spectroscopy are discussed in detail. The conductance exhibits a strong magnetoanisotropy with period π as the Andreev reflection coefficient. When the magnetization direction is parallel to the junction plane, a large conductance peak always emerges at the superconducting gap. This work offers a comprehensive and systematic study of the spin-triplet Andreev reflection and has an underlying application of π -periodic spin valve in spintronics.

  19. Understanding the Control of Singlet-Triplet Splitting for Organic Exciton Manipulating: A Combined Theoretical and Experimental Approach

    PubMed Central

    Chen, Ting; Zheng, Lei; Yuan, Jie; An, Zhongfu; Chen, Runfeng; Tao, Ye; Li, Huanhuan; Xie, Xiaoji; Huang, Wei

    2015-01-01

    Developing organic optoelectronic materials with desired photophysical properties has always been at the forefront of organic electronics. The variation of singlet-triplet splitting (ΔEST) can provide useful means in modulating organic excitons for diversified photophysical phenomena, but controlling ΔEST in a desired manner within a large tuning scope remains a daunting challenge. Here, we demonstrate a convenient and quantitative approach to relate ΔEST to the frontier orbital overlap and separation distance via a set of newly developed parameters using natural transition orbital analysis to consider whole pictures of electron transitions for both the lowest singlet (S1) and triplet (T1) excited states. These critical parameters revealed that both separated S1 and T1 states leads to ultralow ΔEST; separated S1 and overlapped T1 states results in small ΔEST; and both overlapped S1 and T1 states induces large ΔEST. Importantly, we realized a widely-tuned ΔEST in a range from ultralow (0.0003 eV) to extra-large (1.47 eV) via a subtle symmetric control of triazine molecules, based on time-dependent density functional theory calculations combined with experimental explorations. These findings provide keen insights into ΔEST control for feasible excited state tuning, offering valuable guidelines for the construction of molecules with desired optoelectronic properties. PMID:26161684

  20. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesniková, L.; Alonso, E. R.; Mata, S.

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  1. Evidence for triplet superconductivity in a superconductor-ferromagnet spin valve.

    PubMed

    Leksin, P V; Garif'yanov, N N; Garifullin, I A; Fominov, Ya V; Schumann, J; Krupskaya, Y; Kataev, V; Schmidt, O G; Büchner, B

    2012-08-03

    We have studied the dependence of the superconducting (SC) transition temperature on the mutual orientation of magnetizations of Fe1 and Fe2 layers in the spin valve system CoO(x)/Fe1/Cu/Fe2/Pb. We find that this dependence is nonmonotonic when passing from the parallel to the antiparallel case and reveals a distinct minimum near the orthogonal configuration. The analysis of the data in the framework of the SC triplet spin valve theory gives direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the two magnetizations.

  2. Symmetry breaking gives rise to energy spectra of three states of matter

    PubMed Central

    Bolmatov, Dima; Musaev, Edvard T.; Trachenko, K.

    2013-01-01

    A fundamental task of statistical physics is to start with a microscopic Hamiltonian, predict the system's statistical properties and compare them with observable data. A notable current fundamental challenge is to tell whether and how an interacting Hamiltonian predicts different energy spectra, including solid, liquid and gas phases. Here, we propose a new idea that enables a unified description of all three states of matter. We introduce a generic form of an interacting phonon Hamiltonian with ground state configurations minimising the potential. Symmetry breaking SO(3) to SO(2), from the group of rotations in reciprocal space to its subgroup, leads to emergence of energy gaps of shear excitations as a consequence of the Goldstone theorem, and readily results in the emergence of energy spectra of solid, liquid and gas phases. PMID:24077388

  3. Twofold spin-triplet pairing states and tunneling conductance in ferromagnet/ferromagnet/iron pnictide superconductor heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.; Tao, Y.C., E-mail: yctao88@163.com; Dong, Z.C.

    By applying an extended eight-component Bogoliubov–de Gennes equation, we study theoretically the tunneling conductance in clean ferromagnet/ferromagnet/iron pnictide superconductor (FM/FM/iron-based SC) heterojunctions. Under the condition of noncollinear magnetizations, twofold novel Andreev reflections exist due to the existence of two bands in the SC, in which the incident electron and the two Andreev-reflected holes, belonging to the same spin subband, form twofold spin-triplet pairing states near the FM/iron-based SC interface. It is shown that the conversions of the conductance not only between the zero-bias peak and valley at zero energy but also between the peaks and dips at two gap energiesmore » are strongly dependent on both the interband coupling strength in the SC and the spin polarization in the FM. The qualitative differences from tunneling into a conventional s-wave SC are also presented, which may help with experimentally probing and identifying the antiphase s-wave pairing symmetry in the iron-based SC. -- Highlights: •An eight-component Bogoliubov–de Gennes (BDG) equation. •Twofold novel ARs and twofold usual ARs. •Conversions of conductance between the zero-bias peak and valley at zero energy. •Conversions of conductance between peaks and dips at two gap energies. •The importance of the interband coupling strength in the SC.« less

  4. High-Resolution Study of the Perturbation in the CO Triplet Band

    NASA Astrophysics Data System (ADS)

    Momona, M.; Kanamori, H.; Sakurai, K.

    1993-05-01

    Seven hundred absorption lines have been observed in the discharge plasma of He and CO in the 12600-12 800 cm-1 region with Doppler-limited resolution by a near-infrared diode laser spectrometer. Out of complex spectral patterns, more than 400 lines were assigned to the CO triplet band, d3Δ(v‧ = 2) - a3Π (v″ = 1). The upper state of this transition is known to be severely perturbed. The measurement of all the spin subbands of the 3Δ - 3Π transition allowed us to reanalyze the perturbation of the d3Δ (v = 2) state with the highly vibrationally excited state, v = 9, in the a3Π state. Diode laser spectroscopy with high sensitivity and Doppler-limited resolution revealed the overtone band transition from v = 1 to v = 9 within the a3Π state and the Λ-type doubling in the d3Δ state. Those interesting phenomena can be understood as a result of the perturbation and were successfully reproduced by the eigenvectors determined in this analysis.

  5. Field Tolerances for the Triplet Quadrupoles of the LHC High Luminosity Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosochkov, Yuri; Cai, Y.; Jiao, Y.

    2012-06-25

    It has been proposed to implement the so-called Achromatic Telescopic Squeezing (ATS) scheme in the LHC high luminosity (HL) lattice to reduce beta functions at the Interaction Points (IP) up to a factor of 8. As a result, the nominal 4.5 km peak beta functions reached in the Inner Triplets (IT) at collision will be increased by the same factor. This, therefore, justifies the installation of new, larger aperture, superconducting IT quadrupoles. The higher beta functions will enhance the effects of the triplet quadrupole field errors leading to smaller beam dynamic aperture (DA). To maintain the acceptable DA, the effectsmore » of the triplet field errors must be re-evaluated, thus specifying new tolerances. Such a study has been performed for the so-called '4444' collision option of the HL-LHC layout version SLHCV3.01, where the IP beta functions are reduced by a factor of 4 in both planes with respect to a pre-squeezed value of 60 cm at two collision points. The dynamic aperture calculations were performed using SixTrack. The impact on the triplet field quality is presented.« less

  6. Triplet exciton confinement for enhanced fluorescent organic light-emitting diodes using a co-host system

    NASA Astrophysics Data System (ADS)

    Yoo, Han Kyu; Lee, Ho Won; Lee, Song Eun; Kim, Young Kwan; Kim, Se Hyun; Yoon, Seung Soo; Park, Jaehoon

    2016-05-01

    In this work, the co-host system within an emitting layer (EML) consists of the host and triplet managing (TM) host materials. A set of EML structures was fabricated with various concentrations of the TM host (0, 10, 30, 50, and 70%). The TM host triplet energy level is lower than the energy levels of the host and the guest, which leads to a reduction in the triplet exciton density and the singlet-triplet annihilation of the guest. Blue fluorescent organic light-emitting diodes exhibit a maximum luminous efficiency (LE) and an external quantum efficiency (EQE) of 9.74 cd/A and 4.92%, respectively. In addition, the efficiency roll-off ratios of the LE and the EQE are 14.25 and 13.16%, respectively.

  7. Photophysical properties of hexyl diethylaminohydroxybenzoylbenzoate (Uvinul A Plus), a UV-A absorber.

    PubMed

    Shamoto, Yuta; Yagi, Mikio; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Kikuchi, Azusa

    2017-09-13

    Hexyl diethylaminohydroxybenzoylbenzoate (DHHB, Uvinul A Plus) is a photostable UV-A absorber. The photophysical properties of DHHB have been studied by obtaining the transient absorption, total emission, phosphorescence and electron paramagnetic resonance spectra. DHHB exhibits an intense phosphorescence in a hydrogen-bonding solvent (e.g., ethanol) at 77 K, whereas it is weakly phosphorescent in a non-hydrogen-bonding solvent (e.g., 3-methylpentane). The triplet-triplet absorption and EPR spectra for the lowest excited triplet state of DHHB were observed in ethanol, while they were not observed in 3-methylpentane. These results are explained by the proposal that in the benzophenone derivatives possessing an intramolecular hydrogen bond, intramolecular proton transfer is an efficient mechanism of the very fast radiationless decay from the excited singlet state. The energy level of the lowest excited triplet state of DHHB is higher than those of the most widely used UV-B absorbers, octyl methoxycinnamate (OMC) and octocrylene (OCR). DHHB may act as a triplet energy donor for OMC and OCR in the mixtures of UV-A and UV-B absorbers. The bimolecular rate constant for the quenching of singlet oxygen by DHHB was determined by measuring the near-IR phosphorescence of singlet oxygen. The photophysical properties of diethylaminohydroxybenzoylbenzoic acid (DHBA) have been studied for comparison. It is a closely related building block to assist in interpreting the observed data.

  8. Spectra of random operators with absolutely continuous integrated density of states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rio, Rafael del, E-mail: delrio@iimas.unam.mx, E-mail: delriomagia@gmail.com

    2014-04-15

    The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.

  9. Study of rare encounters in a membrane using quenching of cascade reaction between triplet and photochrome probes with nitroxide radicals.

    PubMed

    Medvedeva, Nataly; Papper, Vladislav; Likhtenshtein, Gertz I

    2005-09-21

    Measurements of active encounters between molecules in native membranes containing ingredients, including proteins, are of prime importance. To estimate rare encounters in a high range of rate constants (rate coefficients) and distances between interacting molecules in membranes, a cascade of photochemical reactions for molecules diffusing in multilamellar liposomes was investigated. The sensitised cascade triplet cis-trans photoisomerisation of the excited stilbene involves the use of a triplet sensitiser (Erythrosin B), a photochrome stilbene-derivative probe (4-dimethylamino-4'-aminostilbene) exhibiting the phenomenon of trans-cis photoisomerisation, and nitroxide radicals (5-doxyl stearic acid) to quench the excited triplet state of the sensitiser. Measurement of the phosphorescence lifetime of Erythrosin B and the fluorescence enhancement of the stilbene-derivative photochrome probe, at various concentrations of the nitroxide probe, made it possible to calculate the quenching rate constant k(q)= 1.1 x 10(15) cm2 M(-1) s(-1) and the rate constant of the triplet-triplet energy transfer between the sensitiser and stilbene probe k(T)= 1.0 x 10(12) cm2 M(-1) s(-1). These values, together with the data on diffusion rate constant, obtained by methods utilising various theoretical characteristic times of about seven orders of magnitude and the experimental rate constants of about five orders of magnitude, were found to be in good agreement with the advanced theory of diffusion-controlled reactions in two dimensions. Because the characteristic time of the proposed cascade method is relatively large (0.1 s), it is possible to follow rare collisions between molecules and free radicals in model and biological membranes with a very sensitive fluorescence spectroscopy technique, using a relatively low concentration of probes.

  10. Toward Designed Singlet Fission: Electronic States and Photophysics of 1,3-Diphenylisobenzofuran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerin, A.F.; Miller, J.; Johnson, J.C.

    2009-12-21

    Single crystal molecular structure and solution photophysical properties are reported for 1,3-diphenylisobenzofuran (1), of interest as a model compound in studies of singlet fission. For the ground state of 1 and of its radical cation (1{sup +{sm_bullet}}) and anion (1{sup -{sm_bullet}}), we report the UV-visible absorption spectra, and for neutral 1, also the magnetic circular dichroism (MCD) and the decomposition of the absorption spectrum into purely polarized components, deduced from fluorescence polarization. These results were used to identify a series of singlet excited states. For the first excited singlet and triplet states of 1, the transient visible absorption spectra, S{submore » 1} {yields} S{sub x} and sensitized T{sub 1} {yields} T{sub x}, and single exponential lifetimes, {tau}{sub F} = {approx} 5.3 ns and {tau}{sub T} = {approx}200 {mu}s, are reported. The spectra and lifetimes of S{sub 1} {yields} S{sub 0} fluorescence and sensitized T{sub 1} {yields} T{sub x} absorption of 1 were obtained in a series of solvents, as was the fluorescence quantum yield, {Phi}{sub F} = 0.95-0.99. No phosphorescence has been detected. The first triplet excitation energy of solid 1 (11,400 cm{sup -1}) was obtained by electron energy loss spectroscopy, in agreement with previously reported solution values. The fluorescence excitation spectrum suggests an onset of a nonradiative channel at {approx} 37,000 cm{sup -1}. Excitation energies and relative transition intensities are in agreement with those of ab initio (CC2) calculations after an empirical 3000 cm{sup -1} adjustment of the initial state energy to correct differentially for a better quality description of the initial relative to the terminal state of an absorption transition. The interpretation of the MCD spectrum used the semiempirical PPP method, whose results for the S{sub 0} {yields} S{sub x} spectrum require no empirical adjustment and are otherwise nearly identical with the CC2 results in all respects

  11. Development of the triplet singularity for the analysis of wings and bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.

    1981-01-01

    A supersonic triplet singularity was developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which gives directional properties to the perturbation flow field surrounding the panel. The theoretical development of the triplet singularity is described together with its application to the calculation of surface pressures on wings and bodies. Examples are presented comparing the results of the new method with other supersonic methods and with experimental data.

  12. Theoretical descriptions of novel triplet germylenes M1-Ge-M2-M3 (M1 = H, Li, Na, K; M2 = Be, Mg, Ca; M3 = H, F, Cl, Br).

    PubMed

    Kassaee, Mohamad Zaman; Ashenagar, Samaneh

    2018-02-06

    In a quest to identify new ground-state triplet germylenes, the stabilities (singlet-triplet energy differences, ΔE S-T ) of 96 singlet (s) and triplet (t) M 1 -Ge-M 2 -M 3 species were compared and contrasted at the B3LYP/6-311++G**, QCISD(T)/6-311++G**, and CCSD(T)/6-311++G** levels of theory (M 1  = H, Li, Na, K; M 2  = Be, Mg, Ca; M 3  = H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M 3  = F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M 3  = Cl or Br). Triplets with M 1  = K (i.e., the K-Ge-M 2 -M 3 series) seem to be more stable than the corresponding triplets with M 1  = H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M 3  = Cl behave similarly to those with M 3  = Br. Conversely, triplets with M 3  = H show similar stabilities and linearities to those with M 3  = F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M 1 -Ge-M 2 -M 3 become more stable as the electropositivities of the α-substituents (M 1 and M 2 ) and the electronegativity of the β-substituent (M 3 ) increase.

  13. Spectral diffusion in poly(para-phenylene)-type polymers with different energetic disorder

    NASA Astrophysics Data System (ADS)

    Hoffmann, Sebastian T.; Bässler, Heinz; Koenen, Jan-Moritz; Forster, Michael; Scherf, Ullrich; Scheler, Esther; Strohriegl, Peter; Köhler, Anna

    2010-03-01

    We have employed quasicontinuous fluorescence and phosphorescence spectroscopy within a temperature range between 10 and 500 K to monitor the spectral diffusion of singlet and triplet excitons in a series of π -conjugated polymers. We investigated (i) how spectral diffusion is controlled by the degree of energetic disorder present in the amorphous film (that is reflected by the inhomogeneous broadening of the photoluminescence spectra) and (ii) how this process depends on the range of the electronic coupling (by comparing singlet exciton diffusion via long-range Förster transfer against triplet exciton diffusion by short-range Dexter transfer). For singlets, we find that the fluorescence spectra bear out a bathochromic shift upon cooling the sample down to a critical temperature below which the shift saturates. This bathochromic shift is a signature of spectral relaxation. Random-walk theory applied to excitation transport within a Gaussian density-of-states distribution is both necessary and sufficient to rationalize the experimental results in a quantitative fashion. The same behavior is observed for triplets in weakly disordered systems, such as in a polymer containing platinum in the main chain and a ladder-type polyphenylene. In contrast we observe a hypsochromic shift of the phosphorescence spectra below a characteristic temperature for triplets in systems with at least moderate energetic disorder. The hypsochromic shift proves that triplet exciton relaxation becomes frustrated because thermally activated exciton jumps that otherwise promote spectral diffusion become progressively frozen out. The frustration effect is controlled by the jump distance and thus it is specific for triplet excitations that migrate via short-range coupling among strongly localized states as compared to singlet excitons.

  14. Photochemistry and photooxidation of tetraphenyl-p-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, M.V.; Kumar, C.V.; Scaiano, J.C.

    1979-09-20

    Laser flash photolysis studies of tetraphenyl-p-dioxin have led to the characterization of its triplet state. The T-T absorption spectra shows maxima at 350 and 545 nm; the triplet has a lifetime of 535 ns in methanol and can be quenched by di-tert-butyl nitroxide, paraquat dications, oxygen, and di-tert-butyl selenoketone. The interaction of the triplet with oxygen leads to the formation of singlet oxygen which in turn reacts with the title compound to yield benzil.

  15. Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria.

    PubMed

    Klenina, I B; Makhneva, Z K; Moskalenko, A A; Gudkov, N D; Bolshakov, M A; Pavlova, E A; Proskuryakov, I I

    2014-03-01

    The current generally accepted structure of light-harvesting LH2 complexes from purple phototrophic bacteria conflicts with the observation of singlet-triplet carotenoid excitation fission in these complexes. In LH2 complexes from the purple bacterium Allochromatium minutissimum, a drop in the efficiency of carotenoid triplet generation is demonstrated, which correlates with the extent of selective photooxidation of bacteriochlorophylls absorbing at ~850 nm. We conclude that singlet-triplet fission of carotenoid excitation proceeds with participation of these excitonically coupled bacteriochlorophylls. In the framework of the proposed mechanism, the contradiction between LH2 structure and photophysical properties of carotenoids is eliminated. The possibility of singlet-triplet excitation fission involving a third mediator molecule was not considered earlier.

  16. Numerical investigation on the viewing angle of a lenticular three-dimensional display with a triplet lens array.

    PubMed

    Kim, Hwi; Hahn, Joonku; Choi, Hee-Jin

    2011-04-10

    We investigate the viewing angle enhancement of a lenticular three-dimensional (3D) display with a triplet lens array. The theoretical limitations of the viewing angle and view number of the lenticular 3D display with the triplet lens array are analyzed numerically. For this, the genetic-algorithm-based design method of the triplet lens is developed. We show that a lenticular 3D display with viewing angle of 120° and 144 views without interview cross talk can be realized with the use of an optimally designed triplet lens array. © 2011 Optical Society of America

  17. New anthracene derivatives as triplet acceptors for efficient green-to-blue low-power upconversion.

    PubMed

    Liang, Zuo-Qin; Sun, Bin; Ye, Chang-Qing; Wang, Xiao-Mei; Tao, Xu-Tang; Wang, Qin-Hua; Ding, Ping; Wang, Bao; Wang, Jing-Jing

    2013-10-21

    Three new anthracene derivatives [2-chloro-9,10-dip-tolylanthracene (DTACl), 9,10-dip-tolylanthracene-2-carbonitrile (DTACN), and 9,10-di(naphthalen-1-yl)anthracene-2-carbonitrile (DNACN)] were synthesized as triplet acceptors for low-power upconversion. Their linear absorption, single-photon-excited fluorescence, and upconversion fluorescence properties were studied. The acceptors exhibit high fluorescence yields in DMF. Selective excitation of the sensitizer Pd(II)octaethylporphyrin (PdOEP) in solution containing DTACl, DTACN, or DNA-CN at 532 nm with an ultralow excitation power density of 0.5 W cm(-2) results in anti-Stokes blue emission. The maximum upconversion quantum yield (Φ(UC) =17.4%) was obtained for the couple PdOEP/DTACl. In addition, the efficiency of the triplet-triplet energy transfer process was quantitatively studied by quenching experiments. Experimental results revealed that a highly effective acceptor for upconversion should combine high fluorescence quantum yields with efficient quenching of the sensitizer triplet. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Intensity formulas for triplet bands

    NASA Technical Reports Server (NTRS)

    Budo, A.

    1982-01-01

    Previous work in this area is surveyed and the mathematics involved in determining the quantitative intensity measurements in triplet bands is presented. Explicit expressions for the intensity distribution in the branches of the 3 Sigma-3 Pi and 1 Sigma-3Pi bands valid for all values of the coupling constant Y of the 3 Pi terms are given. The intensity distribution calculated according to the formulas given is compared with measurements of PH, 3 Pi-3 Sigma. Good quantitative agreement is obtained.

  19. The use of dendrimers as high-performance shells for round-trip energy transfer: efficient trans-cis photoisomerization from an excited triplet state produced within a dendrimer shell.

    PubMed

    Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo

    2011-01-01

    A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.

  20. Optimization of hybrid blue organic light-emitting diodes based on singlet and triplet exciton diffusion length

    NASA Astrophysics Data System (ADS)

    Lee, Song Eun; Lee, Ho Won; Lee, Jae Woo; Hwang, Kyo Min; Park, Soo Na; Yoon, Seung Soo; Kim, Young Kwan

    2015-06-01

    The hybrid blue organic light-emitting diodes (HB OLEDs) with triplet harvesting (TH) structures within an emitting layer (EML) are fabricated with fluorescent and phosphorescent EMLs. The TH is to transfer triplet excitons from fluorescence to phosphorescence, where they can decay radiatively. Remarkably, the half-decay lifetime of a hybrid blue device with fluorescent and phosphorescent EML thickness of 5 and 25 nm, measured at an initial luminance of 500 cd/m2, has improved twice than that of using a conventional structure. Additionally, the blue device’s efficiency improved. We attribute this improvement to the efficient triplet excitons energy transfer and the optimized distribution of the EML which depends on singlet and triplet excitons diffusion length that occurs within each the EML.

  1. Coherent manipulation of a Si/SiGe-based singlet-triplet qubit

    NASA Astrophysics Data System (ADS)

    Gyure, Mark

    2012-02-01

    Electrically defined silicon-based qubits are expected to show improved quantum memory characteristics in comparison to GaAs-based devices due to reduced hyperfine interactions with nuclear spins. Silicon-based qubit devices have proved more challenging to build than their GaAs-based counterparts, but recently several groups have reported substantial progress in single-qubit initialization, measurement, and coherent operation. We report [1] coherent control of electron spins in two coupled quantum dots in an undoped Si/SiGe heterostructure, forming two levels of a singlet-triplet qubit. We measure a nuclei-induced T2^* of 360 ns, an increase over similar measurements in GaAs-based quantum dots by nearly two orders of magnitude. We also describe the results from detailed modeling of our materials and devices that show this value for T2^* is consistent with theoretical expectations for our estimated dot sizes and a natural abundance of ^29Si. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the United States Department of Defense or the U.S. Government. Approved for public release, distribution unlimited.[4pt] [1] B. M. Maune et al., ``Coherent Singlet-Triplet Oscillations in a Silicon-based Double Quantum Dot,'' accepted by Nature.

  2. Aggressive posterior retinopathy of prematurity in two of the triplets: a case report.

    PubMed

    Wang, Dan; Zhang, Bo; Dong, Yu; Song, E

    2015-02-01

    Aggressive posterior retinopathy of prematurity is identified as a rare, rapidly progressing and severe form of retinopathy of prematurity (ROP). Here, we report the diagnosis and treatment of aggressive posterior retinopathy of prematurity (APROP) in two of the triplets born at low birth weight and small gestational age. A case concerning two triplets who were born at 31 weeks' gestational age with low birth weight and reached bilateral threshold APROP was reported. The ROP of triplets A and B had the characteristic features of aggressive diseases, which were posterior location, prominence of plus disease and rapid progression. Low birth weight and small gestational age, multiple pregnancies, pregnancy-induced hypertension and older age of the mother might account for the presentations of APROP. These cases demonstrate the importance of early screening and diagnosis in APROP infants. Prompt and adequate laser photocoagulation with a large number of high-intensity closely performed spots and early retreatment could be effective and safe for preventing the progression of APROP with plus disease in zone 1 or 2 in premature triplets. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Temperature dependence of the triplet diffusion and quenching rates in films of an Ir(ppy)3 -cored dendrimer

    NASA Astrophysics Data System (ADS)

    Ribierre, J. C.; Ruseckas, A.; Samuel, I. D. W.; Staton, S. V.; Burn, P. L.

    2008-02-01

    We study photoluminescence and triplet-triplet exciton annihilation in a neat film of a fac-tris(2-phenylpyridyl)iridium(III) [Ir(ppy)3] -cored dendrimer and in its blend with a 4,4' -bis( N -carbazolyl)biphenyl host for the temperature range of 77-300K . The nearest neighbor hopping rate of triplet excitons is found to increase by a factor of 2 with temperature between 150 and 300K and is temperature independent at lower temperature. The intermolecular quenching rate follows the Arrhenius law with an activation energy of 7meV , which can be explained by stronger dipole-dipole interactions with the donor molecule in the higher triplet substate. The results indicate that energy disorder has no significant effect on triplet transport and quenching in these materials.

  4. Reactivity of Triplet Excited States of Dissolved Natural Organic Matter in Stormflow from Mixed-Use Watersheds.

    PubMed

    McCabe, Andrew J; Arnold, William A

    2017-09-05

    Dissolved organic matter (DOM) quantity and composition control the rate of formation (R f,T ) of triplet excited states of dissolved natural organic matter ( 3 DOM*) and the efficiency of 3 DOM* formation (the apparent quantum yield, AQY T ). Here, the reactivity of 3 DOM* in stormflow samples collected from watersheds with variable land covers is examined. Stormflow DOM reflects variability in DOM quantity and composition as a function of land cover and may be important in controlling the fate of cotransported pollutants. R f,T and AQY T were measured using 2,4,6-trimethylphenol in stormflow samples under simulated sunlight. The DOM source and composition was characterized using absorbance and fluorescence spectroscopies and high-resolution mass spectrometry. R f,T and the total rate of light absorption by the water samples (R a ) increased with the dissolved organic carbon (DOC) concentration. AQY T was independent of DOC concentration, but varied with DOM source: developed land cover (4-6%) ≈ open water > vegetated land cover (3%). AQY T was positively related to an index for microbial/algal DOM content and negatively related to DOM molecular weight, DOM aromaticity, and the content of polyphenols. This work demonstrates that TMP is an effective probe for the determination of R f,T and AQY T in whole water samples after accounting for the inhibition of TMP photodegradation by DOM.

  5. NON-LTE INVERSIONS OF THE Mg ii h and k AND UV TRIPLET LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De la Cruz Rodríguez, Jaime; Leenaarts, Jorrit; Ramos, Andrés Asensio

    The Mg ii h and k lines are powerful diagnostics for studying the solar chromosphere. They have become particularly popular with the launch of the Interface Region Imaging Spectrograph ( IRIS ) satellite, and a number of studies that include these lines have lead to great progress in understanding chromospheric heating, in many cases thanks to the support from 3D MHD simulations. In this study, we utilize another approach to analyze observations: non-LTE inversions of the Mg ii h and k and UV triplet lines including the effects of partial redistribution. Our inversion code attempts to construct a model atmospheremore » that is compatible with the observed spectra. We have assessed the capabilities and limitations of the inversions using the FALC atmosphere and a snapshot from a 3D radiation-MHD simulation. We find that Mg ii h and k allow reconstructing a model atmosphere from the middle photosphere to the transition region. We have also explored the capabilities of a multi-line/multi-atom setup, including the Mg ii h and k, the Ca ii 854.2 nm, and the Fe i 630.25 lines to recover the full stratification of physical parameters, including the magnetic field vector, from the photosphere to the chromosphere. Finally, we present the first inversions of observed IRIS spectra from quiet-Sun, plage, and sunspot, with very promising results.« less

  6. The cognitive, behavioral, and personality profiles of a male monozygotic triplet set discordant for sexual orientation.

    PubMed

    Hershberger, Scott L; Segal, Nancy L

    2004-10-01

    The neurohormonal theory of sexual orientation proposes that homosexual men and homosexual women are exposed prenatally to a hormonal environment that is similar to that of the other sex. Prenatal exposure to an opposite-sex hormonal environment may lead the nervous system to develop in a manner consistent with the opposite sex. If this cross-sex exposure occurs, one prediction would be that the cognitive ability profile of homosexual men would be similar to that of heterosexual women. This study examined a set of male monozygotic triplets, aged 21 years, discordant for sexual orientation: 2 of the triplets were heterosexual, 1 was homosexual. The triplets were administered measures of 23 domains of cognitive ability, as well as measures of sexual orientation and masculinity/femininity. On the measures of cognitive ability, the triplets performed similarly, yet consistent differences were found between the 2 heterosexual triplets and the 1 homosexual cotriplet. Differences having the same pattern were found for the number of Schafer homosexuality signs on the Rorschach, and on a homosexuality scale derived from items on the Minnesota Multiphasic Personality Inventory--2 (MMPI-2). Responses from the homosexual triplet were in a more feminine direction than responses from his 2 heterosexual cotriplets on measures of masculinity-femininity, which included measures derived from Rorschach responses, the MMPI-2 Masculinity-Femininity scale, the Bem Sex Role Inventory, and the Boyhood Gender Conformity Scale. Responses to the 16 Personality Factor Questionnaire also distinguished the 1 homosexual triplet from the 2 heterosexual cotriplets. These findings support the view that the prenatal hormonal environment may have enduring effects on selected behavioral traits. Copyright 2004 Springer Science + Business Media, Inc.

  7. Narrow chaotic compound autoionizing states in atomic spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flambaum, V.V.; Gribakina, A.A.; Gribakin, G.F.

    1996-09-01

    Simultaneous excitation of several valence electrons in atoms gives rise to a dense spectrum of compound autoionizing states (AIS). These states are almost chaotic superpositions of large numbers of many-electron basis states built of single-electron orbitals. The mean level spacing {ital D} between such states is very small (e.g., {ital D}{lt}0.01 eV for the numerical example of {ital J}{sup {pi}}=4{sup {minus}} states of Ce just above the ionization threshold). The autoionization widths of these states estimated by perturbations, {gamma}=2{pi}{vert_bar}{ital W}{vert_bar}{sup 2}, where {ital W} is the Coulomb matrix element coupling the AIS to the continuum, are also small, but comparablemore » with {ital D} in magnitude: {gamma}{approximately}{ital D}. Hence the nonperturbative interaction of AIS with each other via the continuum is very essential. It suppresses greatly the widths of the autoionizing resonances ({Gamma}{approx_equal}{ital D}{sup 2}/3{gamma}{lt}{ital D}), and leads to the emergence of a {open_quote}{open_quote}collective{close_quote}{close_quote} doorway state which accumulates a large share of the total width. This state is in essence a modified single-particle continuum decoupled from the resonances due to its large width. Narrow compound AIS should be a common feature of atomic spectra at energies sufficient for excitation of several electrons above the ground-state configuration. The narrow resonances can be observed as peaks in the photoabsorption, or, in electron-ion scattering, as Fano-type profiles on the background provided by the wide doorway-state resonance. It is also shown that the statistics of electromagnetic and autoionization amplitudes involving compound states are close to Gaussian. {copyright} {ital 1996 The American Physical Society.}« less

  8. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotoh, Hideki, E-mail: gotoh.hideki@lab.ntt.co.jp; Sanada, Haruki; Yamaguchi, Hiroshi

    2014-10-15

    Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicatemore » that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.« less

  9. Asymmetric Andreev resonant state with a magnetic exchange field in spin-triplet superconducting monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Goudarzi, H.; Khezerlou, M.; Ebadzadeh, S. F.

    2018-03-01

    We study the influence of magnetic exchange field (MEF) on the chirality of Andreev resonant state (ARS) appearing at the relating monolayer MoS2 ferromagnet/superconductor interface, in which the induced pairing order parameter is chiral p-wave symmetry. Transmission of low-energy Dirac-like electron (hole) quasiparticles through a ferromagnet/superconductor (F/S) interface is considered based on Dirac-Bogoliubov-de Gennes Hamiltonian and, of course, Andreev reflection process. The magnetic exchange field of a ferromagnetic section on top of ML-MDS may affect the electron (hole) excitations for spin-up and spin-down electrons, differently. We find the chirality symmetry of ARS to be conserved in the absence of MEF, whereas it is broken in the presence of MEF. Tuning the MEF enables one to control either electrical properties (such as band gap, SOC and etc.) or spin-polarized transport. The resulting normal conductance is found to be more sensitive to the magnitude of MEF and doping regime of F region. Unconventional spin-triplet p-wave symmetry features the zero-bias conductance, which strongly depends on p-doping level of F region in the relating NFS junction. A sharp conductance switching in zero is achieved in the absence of SOC.

  10. Powering the High-Luminosity Triplets

    NASA Astrophysics Data System (ADS)

    Ballarino, A.; Burnet, J. P.

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  11. Rotational spectra of the X 2Sigma(+) states of CaH and CaD

    NASA Technical Reports Server (NTRS)

    Frum, C. I.; Oh, J. J.; Cohen, E. A.; Pickett, H. M.

    1993-01-01

    The rotational spectra of the 2Sigma(2+) ground states of calcium monohydride and monodeuteride have been recorded in absorption between 250 and 700 GHz. The gas phase free radicals have been produced in a ceramic furnace by the reaction of elemental calcium with molecular hydrogen or deuterium in the presence of an electrical discharge. The molecular constants including the rotational constant, centrifugal distortion constants, spin-rotation constants, and magnetic hyperfine interaction constants have been extracted from the spectra.

  12. Photoprotection and triplet energy transfer in higher plants: the role of electronic and nuclear fluctuations.

    PubMed

    Cupellini, Lorenzo; Jurinovich, Sandro; Prandi, Ingrid G; Caprasecca, Stefano; Mennucci, Benedetta

    2016-04-28

    Photosynthetic organisms employ several photoprotection strategies to avoid damage due to the excess energy in high light conditions. Among these, quenching of triplet chlorophylls by neighboring carotenoids (Cars) is fundamental in preventing the formation of singlet oxygen. Cars are able to accept the triplets from chlorophylls by triplet energy transfer (TET). We have here studied TET rates in CP29, a minor light-harvesting complex (LHC) of the Photosystem II in plants. A fully atomistic strategy combining classical molecular dynamics of the LHC in its natural environment with a hybrid time-dependent density functional theory/polarizable MM description of the TET is used. We find that the structural fluctuations of the pigment-protein complex can largely enhance the transfer rates with respect to those predicted using the crystal structure, reducing the triplet quenching times in the subnanosecond scale. These findings add a new perspective for the interpretation of the photoprotection function and its relation with structural motions of the LHC.

  13. Resolution of Port/Starboard Ambiguity Using a Linear Array of Triplets and a Twin-Line Planar Array

    DTIC Science & Technology

    2016-06-01

    STARBOARD AMBIGUITY USING A LINEAR ARRAY OF TRIPLETS AND A TWIN- LINE PLANAR ARRAY by Stilson Veras Cardoso June 2016 Thesis Advisor...OF TRIPLETS AND A TWIN-LINE PLANAR ARRAY 5. FUNDING NUMBERS 6. AUTHOR(S) Stilson Veras Cardoso 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...A LINEAR ARRAY OF TRIPLETS AND A TWIN-LINE PLANAR ARRAY Stilson Veras Cardoso Civilian, Brazilian Navy B.S., University of Brasília, 1993

  14. q-triplet for Brazos River discharge: The edge of chaos?

    NASA Astrophysics Data System (ADS)

    Stosic, Tatijana; Stosic, Borko; Singh, Vijay P.

    2018-04-01

    We study the daily discharge data of Brazos River in Texas, USA, from 1900 to 2017, in terms of concepts drawn from the non-extensive statistics recently introduced by Tsallis. We find that the Brazos River discharge indeed follows non-extensive statistics regarding equilibrium, relaxation and sensitivity. Besides being the first such finding of a full-fledged q-triplet in hydrological data with possible future impact on water resources management, the fact that all three Tsallis q-triplet values are remarkably close to those of the logistic map at the onset of chaos opens up new questions towards a deeper understanding of the Brazos River dynamics, that may prove relevant for hydrological research in a more general sense.

  15. Singlet-triplet fermionic dark matter and LHC phenomenology

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya; Khan, Sarif; Mitra, Manimala; Mondal, Subhadeep

    2018-04-01

    It is well known that for the pure standard model triplet fermionic WIMP-type dark matter (DM), the relic density is satisfied around 2 TeV. For such a heavy mass particle, the production cross-section at 13 TeV run of LHC will be very small. Extending the model further with a singlet fermion and a triplet scalar, DM relic density can be satisfied for even much lower masses. The lower mass DM can be copiously produced at LHC and hence the model can be tested at collider. For the present model we have studied the multi jet (≥ 2 j) + missing energy ([InlineEquation not available: see fulltext.]) signal and show that this can be detected in the near future of the LHC 13 TeV run. We also predict that the present model is testable by the earth based DM direct detection experiments like Xenon-1T and in future by Darwin.

  16. T.C.G triplet in an antiparallel purine.purine.pyrimidine DNA triplex. Conformational studies by NMR.

    PubMed

    Dittrich, K; Gu, J; Tinder, R; Hogan, M; Gao, X

    1994-04-12

    The antiparallel purine.purine.pyrimidine DNA triplex, RRY6, which contains a T.C.G inverted triplet in the center of the sequence, was examined by proton and phosphorous two-dimensional NMR spectroscopy. The local conformation of the T.C.G triplet (T4.C11.G18) and the effect of this triplet on the global helical structure were analyzed in detail. The formation of the T.C.G triplet is confirmed by a set of cross-strand NOEs, including unusual cross-strand NOEs between the third strand and the pyrimidine strand as opposed to the purine strand of the duplex. NMR data suggest that the T.C.G triplet may be present in an equilibrium between a non-hydrogen-bonded form and a T(O4)-C(NH2) hydrogen-bonded form and that there is a distortion of the in-plane alignment of the three bases. The flanking G.G.C base triplets are well-defined on the 5'-side of T4, but somewhat interrupted on the 3'-side of T4. The effect of the third strand binding on the Watson-Crick duplex was probed by an NMR study of the free duplex RY6. NMR parameters are affected mostly around the T.C.G inversion site. The perturbations extend to at least two adjacent base triplets on either side. The binding of the third purine strand and the accommodation of a central T.C.G inversion in RRY6 does not require a readjustment in sugar pucker, which remains in the range of C2'-endo. 31P resonances of RRY6 distribute over a range of 2.2 ppm. The H-P coupling patterns of the third strand differ from those of the duplex. General spectral patterns defined by the marker protons of the RRY and YRY triplexes are compared.

  17. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target

    PubMed Central

    Krzyzosiak, Wlodzimierz J.; Sobczak, Krzysztof; Wojciechowska, Marzena; Fiszer, Agnieszka; Mykowska, Agnieszka; Kozlowski, Piotr

    2012-01-01

    This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases. PMID:21908410

  18. Distribution of Localized States from Fine Analysis of Electron Spin Resonance Spectra in Organic Transistors

    NASA Astrophysics Data System (ADS)

    Matsui, Hiroyuki; Mishchenko, Andrei S.; Hasegawa, Tatsuo

    2010-02-01

    We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.

  19. Distribution of localized states from fine analysis of electron spin resonance spectra in organic transistors.

    PubMed

    Matsui, Hiroyuki; Mishchenko, Andrei S; Hasegawa, Tatsuo

    2010-02-05

    We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.

  20. On the Effect of Triplet or Doublet Chemotherapy in Advanced Gastric Cancer: Results From a National Cancer Registry.

    PubMed

    Carmona-Bayonas, Alberto; Jiménez-Fonseca, Paula; Lorenzo, Maria Luisa Sánchez; Ramchandani, Avinash; Martínez, Elena Asensio; Custodio, Ana; Garrido, Marcelo; Echavarría, Isabel; Cano, Juana María; Barreto, Jose Enrique Lorenzo; García, Teresa García; Manceñido, Felipe Álvarez; Lacalle, Alejandra; Cardona, Marta Ferrer; Mangas, Monserrat; Visa, Laura; Buxó, Elvira; Azkarate, Aitor; Díaz-Serrano, Asunción; Montes, Ana Fernández; Rivera, Fernando

    2016-11-01

    There is currently no consensus regarding first-line chemotherapy for patients with advanced gastric cancer (AGC) who are ineligible to receive trastuzumab. The objective of this study was to evaluate the efficacy and tolerance of triplets versus doublets by analyzing a national gastric cancer registry. Patients with AGC treated with polychemotherapy without associating trastuzumab were included from 2008 through 2016. The effect of triplets versus doublets was compared using 3 methods: Cox proportional hazards regression, propensity score matching (PSM), and coarsened exact matching (CEM). A total of 970 patients were recruited (doublets: n=569; triplets: n=401). In the multivariate Cox model, the use of triplets was associated with better overall survival (OS), with a hazard ratio (HR) of 0.84 (95% CI, 0.72-0.98; P=.035). After PSM, the sample contained 340 pairs. A significant increase in OS, 11.14 months (95% CI, 9.60-12.68) versus 9.60 months (95% CI, 8.44-10.75), was seen in favor of triplets (HR, 0.77; 95% CI, 0.65-0.92; stratified log-rank test, P=.004). The effect appeared to be comparable for anthracycline-based (HR, 0.78; 95% CI, 0.64-0.94) or docetaxel-based triplets (HR, 0.78; 95% CI, 0.60-1.009). The trend was similar after applying the CEM algorithm, with an HR of 0.78 (95% CI, 0.63-0.97; P=.03). Triplet therapy was viable and relative dose intensities exceeded 85%, except for cisplatin in DCX (docetaxel, cisplatin, capecitabine). Triplets had more severe toxicity overall, especially hematologic, hepatic, and mucosal adverse events. With the limitations of a retrospective study that examines a heterogeneous set of chemotherapy regimens, we found that triplets are feasible in daily practice and are associated with a discreet benefit in efficacy at the expense of a moderate increase in toxicity. Copyright © 2016 by the National Comprehensive Cancer Network.

  1. Energies and excited-state dynamics of 1Bu+, 1Bu- and 3Ag- states of carotenoids bound to LH2 antenna complexes from purple photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Christiana, Rebecca; Miki, Takeshi; Kakitani, Yoshinori; Aoyagi, Shiho; Koyama, Yasushi; Limantara, Leenawaty

    2009-10-01

    Time-resolved pump-probe stimulated-emission and transient-absorption spectra were recorded after excitation with ˜30 fs pulses to the 1Bu+(0) and optically-forbidden diabatic levels of carotenoids, neurosporene, spheroidene and lycopene having n = 9-11 double bonds, bound to LH2 antenna complexes from Rhodobacter sphaeroides G1C, 2.4.1 and Rhodospirillum molischianum. The low-energy shift of stimulated emission from the covalent 1Bu-(0) and 3Ag-(0) levels slightly larger than that from the ionic 1Bu+(0) state suggests the polarization, whereas more efficient triplet generation suggests the twisting of the conjugated chain in Cars bound to the LH2 complexes, when compared to Cars free in solution.

  2. Measurement of the dipole moments of excited states and photochemical transients by microwave dielectric absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fessenden, R.W.; Carton, P.M.; Shimamori, H.

    1982-09-16

    Time-resolved changes in microwave dielectric absorption have been used to study transients formed by laser flash photolysis. Details of the method and apparatus are given. Applications both to the measurements of the dipole moments of transients and to decay kinetics are given. The dipole moments of the lowest triplet states of a number of aromatic compounds (mostly ketones) have been measured in benzene solution at room temperature. States of n..pi..* character generally possess smaller dipole moments than the corresponding ground states while states of ..pi pi..* character (for example, fluorenone) have larger values than the ground state. The triplets ofmore » 4-(dimethylamino)benzaldehyde and 4,4'-bis(dimethylamino)benzophenone have rather high values of dipole moment (10.5 and 8.4 D, respectively) showing their charge-transfer character. The triplet state of benzil was found to have zero or near-zero dipole moment, thus confirming that the triplet state is of a transstructure. 7 figures, 1 table.« less

  3. Two-axis control of a singlet-triplet qubit with an integrated micromagnet.

    DOE PAGES

    Wu, Xian; Ward, D. R.; Prance, J. R.; ...

    2014-08-04

    The qubit is the fundamental building block of a quantum computer. We fabricate a qubit in a silicon double-quantum dot with an integrated micromagnet in which the qubit basis states are the singlet state and the spin-zero triplet state of two electrons. Because of the micromagnet, the magnetic field difference ΔB between the two sides of the double dot is large enough to enable the achievement of coherent rotation of the qubit’s Bloch vector around two different axes of the Bloch sphere. By measuring the decay of the quantum oscillations, the inhomogeneous spin coherence time T*2 is determined. By measuringmore » T*2 at many different values of the exchange coupling J and at two different values of ΔB, we provide evidence that the micromagnet does not limit decoherence, with the dominant limits on T*2 arising from charge noise and from coupling to nuclear spins.« less

  4. Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Tong; Wan, Yan; Guo, Zhi

    2016-06-27

    By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells.

  5. A Theoretical Study of the Photodissociation Mechanism of Cyanoacetylene in Its Lowest Singlet and Triplet Excited States

    NASA Astrophysics Data System (ADS)

    Luo, Cheng; Du, Wei-Na; Duan, Xue-Mei; Li, Ze-Sheng

    2008-11-01

    Cyanoacetylene (H5-C4 ≡ C3-C2 ≡ N1) is a minor constituent of the atmosphere of Titan, and its photochemistry plays an important role in the formation of the haze surrounding the satellite. In this paper, the complete active space self-consistent field (CASSCF) and multiconfigurational second-order perturbation (CASPT2) approaches are employed to investigate the photochemical processes for cyanoacetylene in its first singlet and triplet excited states with the cc-pVTZ basis set. Fissions of the C4-H5 and C2-C3 bonds in S1 yield H(2S) + CCCN(A2Π) and HCC(A2Π) + CN(X2Σ+), respectively. In T1, the corresponding dissociation products are H(2S) + CCCN(X2Σ+) and HCC(X2Σ) + CN(X2Σ+). At the CASPT2(14,13)//CASSCF(14,13) + ZPE level, the barriers for the adiabatic dissociation of the C4-H5 and C2-C3 bonds are 6.11 and 6.94 eV in S1 and 5.71 and 6.39 eV in T1, respectively, taking the energy of S0 minimum as reference. Based on the calculated potential energy surfaces, the existence of a metastable excited molecule is anticipated upon 260-230 nm photoexcitation, which provides a probable approach for cyanoacetylene to polymerize. The internal conversion (IC) process through vibronic interaction followed by C4-H5 fission in the ground state is found to account for the observed diffuse character in the UV absorption spectrum below 240 nm.

  6. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    NASA Astrophysics Data System (ADS)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  7. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing.

    PubMed

    Saveliev, Alexander; Everett, Christopher; Sharpe, Tammy; Webster, Zoë; Festenstein, Richard

    2003-04-24

    Gene repression is crucial to the maintenance of differentiated cell types in multicellular organisms, whereas aberrant silencing can lead to disease. The organization of DNA into chromatin and heterochromatin is implicated in gene silencing. In chromatin, DNA wraps around histones, creating nucleosomes. Further condensation of chromatin, associated with large blocks of repetitive DNA sequences, is known as heterochromatin. Position effect variegation (PEV) occurs when a gene is located abnormally close to heterochromatin, silencing the affected gene in a proportion of cells. Here we show that the relatively short triplet-repeat expansions found in myotonic dystrophy and Friedreich's ataxia confer variegation of expression on a linked transgene in mice. Silencing was correlated with a decrease in promoter accessibility and was enhanced by the classical PEV modifier heterochromatin protein 1 (HP1). Notably, triplet-repeat-associated variegation was not restricted to classical heterochromatic regions but occurred irrespective of chromosomal location. Because the phenomenon described here shares important features with PEV, the mechanisms underlying heterochromatin-mediated silencing might have a role in gene regulation at many sites throughout the mammalian genome and modulate the extent of gene silencing and hence severity in several triplet-repeat diseases.

  8. Tsallis q-triplet, intermittent turbulence and Portevin-Le Chatelier effect

    NASA Astrophysics Data System (ADS)

    Iliopoulos, A. C.; Aifantis, E. C.

    2018-05-01

    In this paper, we extend a previous study concerning Portevin-LeChatelier (PLC) effect and Tsallis statistics (Iliopoulos et al., 2015). In particular, we estimate Tsallis' q-triplet, namely {qstat, qsens, qrel} for two sets of stress serration time series concerning the deformation of Cu-15%Al alloy corresponding to different deformation temperatures and thus types (A and B) of PLC bands. The results concerning the stress serrations analysis reveal that Tsallis q- triplet attains values different from unity ({qstat, qsens, qrel} ≠ {1,1,1}). In particular, PLC type A bands' serrations were found to follow Tsallis super-q-Gaussian, non-extensive, sub-additive, multifractal statistics indicating that the underlying dynamics are at the edge of chaos, characterized by global long range correlations and power law scaling. For PLC type B bands' serrations, the results revealed a Tsallis sub-q-Gaussian, non-extensive, super-additive, multifractal statistical profile. In addition, our results reveal also significant differences in statistical and dynamical features, indicating important variations of the stress field dynamics in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states. We also estimate parameters commonly used for characterizing fully developed turbulence, such as structure functions and flatness coefficient (F), in order to provide further information about jerky flow underlying dynamics. Finally, we use two multifractal models developed to describe turbulence, namely Arimitsu and Arimitsu (A&A) [2000, 2001] theoretical model which is based on Tsallis statistics and p-model to estimate theoretical multifractal spectrums f(a). Furthermore, we estimate flatness coefficient (F) using a theoretical formula based on Tsallis statistics. The theoretical results are compared with the experimental ones showing a remarkable agreement between modeling and experiment. Finally, the results of this study verify, as

  9. Exploring the hyperchargeless Higgs triplet model up to the Planck scale

    NASA Astrophysics Data System (ADS)

    Khan, Najimuddin

    2018-04-01

    We examine an extension of the SM Higgs sector by a Higgs triplet taking into consideration the discovery of a Higgs-like particle at the LHC with mass around 125 GeV. We evaluate the bounds on the scalar potential through the unitarity of the scattering matrix. Considering the cases with and without Z_2-symmetry of the extra triplet, we derive constraints on the parameter space. We identify the region of the parameter space that corresponds to the stability and metastability of the electroweak vacuum. We also show that at large field values the scalar potential of this model is suitable to explain inflation.

  10. Non-Adiabatic Effects on Excited States of Vinylidene Observed with Slow Photoelectron Velocity-Map Imaging.

    PubMed

    DeVine, Jessalyn A; Weichman, Marissa L; Zhou, Xueyao; Ma, Jianyi; Jiang, Bin; Guo, Hua; Neumark, Daniel M

    2016-12-21

    High-resolution slow photoelectron velocity-map imaging spectra of cryogenically cooled X̃ 2 B 2 H 2 CC - and D 2 CC - in the region of the vinylidene triplet excited states are reported. Three electronic bands are observed and, with the assistance of electronic structure calculations and quantum dynamics on ab initio-based near-equilibrium potential energy surfaces, are assigned as detachment to the [Formula: see text] 3 B 2 (T 1 ), b̃ 3 A 2 (T 2 ), and à 1 A 2 (S 1 ) excited states of neutral vinylidene. This work provides the first experimental observation of the à singlet excited state of H 2 CC. While regular vibrational structure is observed for the ã and à electronic bands, a number of irregular features are resolved in the vicinity of the b̃ band vibrational origin. High-level ab initio calculations suggest that this anomalous structure arises from a conical intersection between the ã and b̃ triplet states near the b̃ state minimum, which strongly perturbs the vibrational levels in the two electronic states through nonadiabatic coupling. Using the adiabatic electron affinity of H 2 CC previously measured to be 0.490(6) eV by Ervin and co-workers [J. Chem. Phys. 1989, 91, 5974], term energies for the excited neutral states of H 2 CC are found to be T 0 (ã 3 B 2 ) = 2.064(6), T 0 (b̃ 3 A 2 ) = 2.738(6), and T 0 (à 1 A 2 ) = 2.991(6) eV.

  11. Excitation of lowest electronic states of thymine by slow electrons

    NASA Astrophysics Data System (ADS)

    Chernyshova, I. V.; Kontros, E. J.; Markush, P. P.; Shpenik, O. B.

    2013-11-01

    Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A' (π → π*) and 13 A″ ( n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A'(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A'(π → π*) state is excited with almost identical efficiency at different residual energies.

  12. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  13. Photoinduced Electron Transfer-based Halogen-free Photosensitizers: Covalent meso-Aryl (Phenyl, Naphthyl, Anthryl, and Pyrenyl) as Electron Donors to Effectively Induce the Formation of the Excited Triplet State and Singlet Oxygen for BODIPY Compounds.

    PubMed

    Zhang, Xian-Fu; Feng, Nan

    2017-09-19

    Pristine BODIPY compounds have negligible efficiency to generate the excited triplet state and singlet oxygen. In this report, we show that attaching a good electron donor to the BODIPY core can lead to singlet oxygen formation with up to 58 % quantum efficiency. For this purpose, BODIPYs with meso-aryl groups (phenyl, naphthyl, anthryl, and pyrenyl) were synthesized and characterized. The fluorescence, excited triplet state, and singlet oxygen formation properties for these compounds were measured in various solvents by UV/Vis absorption, steady-state and time-resolved fluorescence methods, as well as laser flash photolysis technique. In particular, the presence of anthryl and pyrenyl showed substantial enhancement on the singlet oxygen formation ability of BODIPY with up to 58 % and 34 % quantum efficiency, respectively, owing to their stronger electron-donating ability. Upon the increase in singlet oxygen formation, the fluorescence quantum yield and lifetime values of the aryl-BODIPY showed a concomitant decrease. The increase in solvent polarity enhances the singlet oxygen generation but decreases the fluorescence quantum yield. The results are explained by the presence of intramolecular photoinduced electron transfer from the aryl moiety to BODIPY core. This method of promoting T 1 formation is very different from the traditional heavy atom effect by I, Br, or transition metal atoms. This type of novel photosensitizers may find important applications in organic oxygenation reactions and photodynamic therapy of tumors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Excited State Intramolecular Proton Transfer of 2,5-bis(5-ethyl-2-benzoxazolyl)-hydroquinone and its OH/OD-isotopomers studied in supersonic jets

    NASA Astrophysics Data System (ADS)

    Peukert, Sebastian; Gil, Michał; Kijak, Michał; Sepioł, Jerzy

    2015-11-01

    The Excited State Intramolecular Proton Transfer (ESIPT) reactions of dually fluorescent 2,5-bis(5-ethyl-2-benzoxazolyl)-hydroquinone (DE-BBHQ) and its isotopomers have been studied in the supersonic jet applying laser induced fluorescence (LIF) and fluorescence-depletion (F-D) spectroscopy. LIF-spectra measured at photo-tautomeric (red) fluorescence exhibit a characteristic triplet pattern of vibronic bands, which gradually collapses upon successive deuteration. Complementary TDDFT calculations indicate the possibility of 2 consecutive ESIPT reactions yielding an excited state diketo-tautomer. However, concerning this matter the present experimental results are not unambiguous and could be also rationalized without assuming the formation of an additional photo-tautomer.

  15. The Trouble with Triplets in Biodiversity Informatics: A Data-Driven Case against Current Identifier Practices

    PubMed Central

    Guralnick, Robert; Conlin, Tom; Deck, John; Stucky, Brian J.; Cellinese, Nico

    2014-01-01

    The biodiversity informatics community has discussed aspirations and approaches for assigning globally unique identifiers (GUIDs) to biocollections for nearly a decade. During that time, and despite misgivings, the de facto standard identifier has become the “Darwin Core Triplet”, which is a concatenation of values for institution code, collection code, and catalog number associated with biocollections material. Our aim is not to rehash the challenging discussions regarding which GUID system in theory best supports the biodiversity informatics use case of discovering and linking digital data across the Internet, but how well we can link those data together at this moment, utilizing the current identifier schemes that have already been deployed. We gathered Darwin Core Triplets from a subset of VertNet records, along with vertebrate records from GenBank and the Barcode of Life Data System, in order to determine how Darwin Core Triplets are deployed “in the wild”. We asked if those triplets follow the recommended structure and whether they provide an easy and unambiguous means to track from specimen records to genetic sequence records. We show that Darwin Core Triplets are often riddled with semantic and syntactic errors when deployed and curated in practice, despite specifications about how to construct them. Our results strongly suggest that Darwin Core Triplets that have not been carefully curated are not currently serving a useful role for relinking data. We briefly consider needed next steps to overcome current limitations. PMID:25470125

  16. Indirect detection of infinite-speed MAS solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.; Goh, Tian Wei; Huang, Wenyu; Rossini, Aaron J.; Pruski, Marek

    2017-03-01

    Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. To address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic "infinite-MAS" spectra of heavy spin-1/2 nuclides. For these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.

  17. Triplet Excitation Transfer between Carotenoids in the LH2 Complex from Photosynthetic Bacterium Rhodopseudomonas palustris.

    PubMed

    Feng, Juan; Wang, Qian; Wu, Yi-Shi; Ai, Xi-Cheng; Zhang, Xu-Jia; Huang, You-Guo; Zhang, Xing-Kang; Zhang, Jian-Ping

    2004-01-01

    We have studied, by means of sub-microsecond time-resolved absorption spectroscopy, the triplet-excited state dynamics of carotenoids (Cars) in the intermediate-light adapted LH2 complex (ML-LH2) from Rhodopseudomonas palustris containing Cars with different numbers of conjugated double bonds. Following pulsed photo-excitation at 590 nm at room temperature, rapid spectral equilibration was observed either as a red shift of the isosbestic wavelength on a time scale of 0.6-1.0 mus, or as a fast decay in the shorter-wavelength side of the T(n)<--T(1) absorption of Cars with a time constant of 0.5-0.8 mus. Two major spectral components assignable to Cars with 11 and 12 conjugated double bonds were identified. The equilibration was not observed in the ML-LH2 at 77 K, or in the LH2 complex from Rhodobacter sphaeroides G1C containing a single type of Car. The unique spectral equilibration was ascribed to temperature-dependent triplet excitation transfer among different Car compositions. The results suggest that Cars of 11 and 12 conjugated bonds, both in close proximity of BChls, may coexist in an alpha,beta-subunit of the ML-LH2 complex.

  18. EPR spectra induced by gamma-irradiation of some dry medical herbs

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Lagunov, O.; Dimov, K.

    2009-04-01

    The radiation-induced EPR spectra in some medical herbs are reported. The samples studied are: (i) leaves of nettle, common balm, peppermint and thyme; (ii) stalks of common balm, thyme, milfoil, yarrow and marigold; (iii) blossoms of yarrow and marigold; (iv) blossoms and leaves of hawthorn and tutsan; and (v) roots of common valerian, nettle, elecampane (black and white), restharrows and carlina. Before irradiation all samples exhibit one weak anisotropic singlet EPR line with effective g-value of 2.0050±0.0002. The radiation-induced spectra fall into three groups. EPR spectra of irradiated blossoms of yarrow and marigold, stalks of common balm, thyme, tutsan and yarrow as well as roots of common valerian, nettle and elecampane (black and white) show "cellulose-like" EPR spectrum typical for irradiated plants. It is characterized by one intense central line with g=2.0050±0.0005 and two weak satellite lines situated ca. 30 G left and right to it. EPR spectra of gamma-irradiated restharrows and carlina are complex. They may be represented by one triplet corresponding to the "cellulose-like" EPR spectrum, one relatively intense singlet, situated in the center of the spectrum, and five weak additional satellite lines left and right to the center. The last spectrum was assigned as "carbohydrate-like" type. Only one intense EPR singlet with g=2.0048±0.0005 was recorded after irradiation of leaves of nettle and common balm. The lifetime of the radiation-induced EPR spectra was followed for a period of 3 months.

  19. Enhancing the resolution of 1H and 13C solid-state NMR spectra by reduction of anisotropic bulk magnetic susceptibility broadening.

    PubMed

    Hanrahan, Michael P; Venkatesh, Amrit; Carnahan, Scott L; Calahan, Julie L; Lubach, Joseph W; Munson, Eric J; Rossini, Aaron J

    2017-10-25

    We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H- 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H- 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H- 13 C

  20. Ultra-narrow EIA spectra of 85Rb atom in a degenerate Zeeman multiplet system

    NASA Astrophysics Data System (ADS)

    Rehman, Hafeez Ur; Qureshi, Muhammad Mohsin; Noh, Heung-Ryoul; Kim, Jin-Tae

    2015-05-01

    Ultra-narrow EIA spectral features of thermal 85Rb atom with respect to coupling Rabi frequencies in a degenerate Zeeman multiplet system have been unraveled in the cases of same (σ+ -σ+ , π ∥ π) and orthogonal (σ+ -σ- , π ⊥ π)polarization configurations. The EIA signals with subnatural linewidth of ~ 100 kHz even in the cases of same circular and linear polarizations of coupling and probe laser have been obtained for the first time theoretically and experimentally. In weak coupling power limit of orthogonal polarization configurations, time-dependent transfer of coherence plays major role in the splitting of the EIA spectra while in strong coupling power, Mollow triplet-like mechanism due to strong power bring into broad split feature. The experimental ultra-narrow EIA features using one laser combined with an AOM match well with simulated spectra obtained by using generalized time-dependent optical Bloch equations.

  1. Triplets of galaxies: Their dynamics, evolution, and the origin of chaos in them

    NASA Technical Reports Server (NTRS)

    Chernin, Arthur D.; Ivanov, Alexei V.

    1990-01-01

    Recently Karachentsev's group at The Smithsonian Astrophysical Observatory (SAO) (6-meter Telescope Observatory) published a list of 84 triple systems of galaxies with their distances, radial (line of sight) velocities, and angular sizes (Karachentseva et al., 1988). This gives a new ground for studies of the dark matter problem which fills the gap between the large cosmic scales (White, 1987; Dekel and Rees, 1987, and Einasto et al., 1977) and the scale of individual galaxies (Erickson et al., 1987). The data on the typical velocity dispersions and linear dimension of the triplets indicate that they contain considerable amounts of dark matter (see also earlier work of Karachentseva et al., 1979). Numerical simulations show that the statistical characteristics of the Karachentsev triplets can be imitated by model ensembles of triple systems with dark matter masses M sub d = (1-3 x 10(exp 12) M sub O, which is almost ten times greater than the typical mass of stellar galaxies estimated by the standard mass-to-luminosity ration (Kiseleva and Chernin, 1988). Here, the authors report that important information can be drawn from the data on the visible configurations of these systems. The statistics of configurations provide an independent evidence for dark matter in the triplets; moreover, it enables one to argue that dark matter seems to be distributed over the whole volume of the typical triplet forming its common corona rather than concentrated within individual coronae (or haloes) of the member galaxies.

  2. The nature of trapping sites and recombination centres in PVK and PVK-PBD electroluminescent matrices seen by spectrally resolved thermoluminescence

    NASA Astrophysics Data System (ADS)

    Glowacki, Ireneusz; Szamel, Zbigniew

    2010-07-01

    Two electroluminescent polymer matrices poly(N-vinylcarbazole) (PVK) and PVK with 40 wt% of 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) were studied using spectrally resolved thermoluminescence (SRTL) in the temperature range 15-325 K. The comparison of the SRTL results with the electroluminescence (EL) spectra has allowed identification of the localized (trapping) sites and the radiative recombination centres present in the investigated matrices. In the neat PVK films deep traps with a depth about 200 meV, related to triplet excimers dominate, while in the PVK-PBD (40 wt%) blend films the traps that are related to triplet exciplexes formed by the carbazole groups and the PBD molecules dominate. Depth of the traps in the PVK-PBD blend is somewhat lower than that in the neat PVK. An analysis of the EL spectra shows that in the PVK and in the PVK-PBD blend the dominant radiative centres are singlet excimers and singlet exciplexes, respectively. However, in the neat PVK some contributions of the triplet monomer and the triplet excimer states in the EL were also detected.

  3. Quenching of cascade reaction between triplet and photochrome probes with nitroxide radicals. A novel labeling method in study of membranes and surface systems.

    PubMed

    Papper, V; Medvedeva, N; Fishov, I; Likhtenshtein, G I

    2000-01-01

    We proposed a new method for the study of molecular dynamics and fluidity of the living and model biomembranes and surface systems. The method is based on the measurements of the sensitized photoisomerization kinetics of a photochrome probe. The cascade triplet cis-trans photoisomerization of the excited stilbene derivative sensitized with the excited triplet Erythrosin B has been studied in a model liposome membrane. The photoisomerization reaction is depressed with nitroxide radicals quenching the excited triplet state of the sensitizer. The enhanced fluorescence polarization of the stilbene probe incorporated into liposome membranes indicates that the stilbene molecules are squeezed in a relatively viscous media of the phospholipids. Calibration of the "triple" cascade system is based on a previously proposed method that allows the measurement of the product of the quenching rate constant and the sensitizer's triplet lifetime, as well as the quantitative detection of the nitroxide radicals in the vicinity of the membrane surface. The experiment was conducted using the constant-illumination fluorescence technique. Sensitivity of the method using a standard commercial spectrofluorimeter is about 10(-12) mol of fluorescence molecules per sample and can be improved using an advanced fluorescence technique. The minimal local concentration of nitroxide radicals or any other quenchers being detected is about 10(-5) M. This method enables the investigation of any chemical and biological surface processes of microscopic scale when the minimal volume is about 10(-3) microL or less.

  4. Thermal Hall conductivity in the spin-triplet superconductor with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred

    2017-01-01

    Motivated by the spin-triplet superconductor Sr2RuO4 , the thermal Hall conductivity is investigated for several pairing symmetries with broken time-reversal symmetry. In the chiral p -wave phase with a fully opened quasiparticle excitation gap, the temperature dependence of the thermal Hall conductivity has a temperature linear term associated with the topological property directly and an exponential term, which shows a drastic change around the Lifshitz transition. Examining f -wave states as alternative candidates with d =Δ0z ̂(kx2-ky2) (kx±i ky) and Δ0z ̂kxky(kx±i ky) with gapless quasiparticle excitations, we study the temperature dependence of the thermal Hall conductivity, where for the former state the thermal Hall conductivity has a quadratic dependence on temperature, originating from the linear dispersions, in addition to linear and exponential behavior. The obtained result may enable us to distinguish between the chiral p -wave and f -wave states in Sr2RuO4 .

  5. Isolation of EPR spectra and estimation of spin-states in two-component mixtures of paramagnets.

    PubMed

    Chabbra, Sonia; Smith, David M; Bode, Bela E

    2018-04-26

    The presence of multiple paramagnetic species can lead to overlapping electron paramagnetic resonance (EPR) signals. This complication can be a critical obstacle for the use of EPR to unravel mechanisms and aid the understanding of earth abundant metal catalysis. Furthermore, redox or spin-crossover processes can result in the simultaneous presence of metal centres in different oxidation or spin states. In this contribution, pulse EPR experiments on model systems containing discrete mixtures of Cr(i) and Cr(iii) or Cu(ii) and Mn(ii) complexes demonstrate the feasibility of the separation of the EPR spectra of these species by inversion recovery filters and the identification of the relevant spin states by transient nutation experiments. We demonstrate the isolation of component spectra and identification of spin states in a mixture of catalyst precursors. The usefulness of the approach is emphasised by monitoring the fate of the chromium species upon activation of an industrially used precatalyst system.

  6. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2'-bipyridine) 2(CN) 2

    DOE PAGES

    Kjaer, Kasper S.; Zhang, Wenkai; Alonso-Mori, Roberto; ...

    2017-07-06

    Here, we have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy) 2(CN) 2], where bpy=2,2'-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2'-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy) 2(CN) 2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a shortmore » lived metal-centered triplet transient species. These measurements of [Fe(bpy) 2(CN) 2] complement prior measurement performed on [Fe(bpy) 3] 2+ and [Fe(bpy)(CN) 4] 2– in dimethylsulfoxide solution and help complete the chemical series [Fe(bpy) N(CN) 6–2N] 2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3 d transition metal complexes.« less

  7. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2'-bipyridine) 2(CN) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjaer, Kasper S.; Zhang, Wenkai; Alonso-Mori, Roberto

    Here, we have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy) 2(CN) 2], where bpy=2,2'-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2'-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy) 2(CN) 2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a shortmore » lived metal-centered triplet transient species. These measurements of [Fe(bpy) 2(CN) 2] complement prior measurement performed on [Fe(bpy) 3] 2+ and [Fe(bpy)(CN) 4] 2– in dimethylsulfoxide solution and help complete the chemical series [Fe(bpy) N(CN) 6–2N] 2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3 d transition metal complexes.« less

  8. Double-Resonance Facilitated Decomposion of Emission Spectra

    NASA Astrophysics Data System (ADS)

    Kato, Ryota; Ishikawa, Haruki

    2016-06-01

    Emission spectra provide us with rich information about the excited-state processes such as proton-transfer, charge-transfer and so on. In the cases that more than one excited states are involved, emission spectra from different excited states sometimes overlap and a decomposition of the overlapped spectra is desired. One of the methods to perform a decomposition is a time-resolved fluorescence technique. It uses a difference in time evolutions of components involved. However, in the gas-phase, a concentration of the sample is frequently too small to carry out this method. On the other hand, double-resonance technique is a very powerful tool to discriminate or identify a common species in the spectra in the gas-phase. Thus, in the present study, we applied the double-resonance technique to resolve the overlapped emission spectra. When transient IR absorption spectra of the excited state are available, we can label the population of the certain species by the IR excitation with a proper selection of the IR wavenumbers. Thus, we can obtain the emission spectra of labeled species by subtracting the emission spectra with IR labeling from that without IR. In the present study, we chose the charge-transfer emission spectra of cyanophenyldisilane (CPDS) as a test system. One of us reported that two charge-transfer (CT) states are involved in the intramolecular charge-transfer (ICT) process of CPDS-water cluster and recorded the transient IR spectra. As expected, we have succeeded in resolving the CT emission spectra of CPDS-water cluster by the double resonance facilitated decomposion technique. In the present paper, we will report the details of the experimental scheme and the results of the decomposition of the emission spectra. H. Ishikawa, et al., Chem. Phys. Phys. Chem., 9, 117 (2007).

  9. Pair and triplet approximation of a spatial lattice population model with multiscale dispersal using Markov chains for estimating spatial autocorrelation.

    PubMed

    Hiebeler, David E; Millett, Nicholas E

    2011-06-21

    We investigate a spatial lattice model of a population employing dispersal to nearest and second-nearest neighbors, as well as long-distance dispersal across the landscape. The model is studied via stochastic spatial simulations, ordinary pair approximation, and triplet approximation. The latter method, which uses the probabilities of state configurations of contiguous blocks of three sites as its state variables, is demonstrated to be greatly superior to pair approximations for estimating spatial correlation information at various scales. Correlations between pairs of sites separated by arbitrary distances are estimated by constructing spatial Markov processes using the information from both approximations. These correlations demonstrate why pair approximation misses basic qualitative features of the model, such as decreasing population density as a large proportion of offspring are dropped on second-nearest neighbors, and why triplet approximation is able to include them. Analytical and numerical results show that, excluding long-distance dispersal, the initial growth rate of an invading population is maximized and the equilibrium population density is also roughly maximized when the population spreads its offspring evenly over nearest and second-nearest neighboring sites. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. CW and pulsed electrically detected magnetic resonance spectroscopy at 263 GHz/12 T on operating amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Akhtar, W.; Schnegg, A.; Veber, S.; Meier, C.; Fehr, M.; Lips, K.

    2015-08-01

    Here we describe a new high frequency/high field continuous wave and pulsed electrically detected magnetic resonance (CW EDMR and pEDMR) setup, operating at 263 GHz and resonance fields between 0 and 12 T. Spin dependent transport in illuminated hydrogenated amorphous silicon p-i-n solar cells at 5 K and 90 K was studied by in operando 263 GHz CW and pEDMR alongside complementary X-band CW EDMR. Benefiting from the superior resolution at 263 GHz, we were able to better resolve EDMR signals originating from spin dependent hopping and recombination processes. 5 K EDMR spectra were found to be dominated by conduction and valence band tail states involved in spin dependent hopping, with additional contributions from triplet exciton states. 90 K EDMR spectra could be assigned to spin pair recombination involving conduction band tail states and dangling bonds as the dominating spin dependent transport process, with additional contributions from valence band tail and triplet exciton states.

  11. Energy deposition studies for the high-luminosity Large Hadron Collider inner triplet magnets

    NASA Astrophysics Data System (ADS)

    Mokhov, N. V.; Rakhno, I. L.; Tropin, I. S.; Cerutti, F.; Esposito, L. S.; Lechner, A.

    2015-05-01

    A detailed model of the high-luminosity LHC inner triplet region with new large-aperture Nb3Sn magnets, field maps, corrector packages, and segmented tungsten inner absorbers was built and implemented into the fluka and mars15 codes. Detailed simulations have been performed coherently with the codes on the impact of particle debris from the 14-TeV center-of-mass pp-collisions on the short- and long-term stability of the inner triplet magnets. After optimizing the absorber configuration, the peak power density averaged over the magnet inner cable width is found to be safely below the quench limit at the luminosity of 5 ×1034 cm-2 s-1 . For the anticipated lifetime integrated luminosity of 3000 fb-1 , the peak dose calculated for the innermost magnet insulator ranges from 20 to 35 MGy, a figure close to the commonly accepted limit. Dynamic heat loads to the triplet magnet cold mass are calculated to evaluate the cryogenic capability. fluka and mars results on energy deposition are in very good agreement.

  12. Energy deposition studies for the high-luminosity Large Hadron Collider inner triplet magnets

    DOE PAGES

    Mokhov, N. V.; Rakhno, I. L.; Tropin, I. S.; ...

    2015-05-06

    A detailed model of the high-luminosity LHC inner triplet region with new large-aperture Nb 3Sn magnets, field maps, corrector packages, and segmented tungsten inner absorbers was built and implemented into the fluka and mars15 codes. Detailed simulations have been performed coherently with the codes on the impact of particle debris from the 14-TeV center-of-mass pp-collisions on the short- and long-term stability of the inner triplet magnets. After optimizing the absorber configuration, the peak power density averaged over the magnet inner cable width is found to be safely below the quench limit at the luminosity of 5×10 34 cm -2s -1.more » For the anticipated lifetime integrated luminosity of 3000 fb -1, the peak dose calculated for the innermost magnet insulator ranges from 20 to 35 MGy, a figure close to the commonly accepted limit. Dynamic heat loads to the triplet magnet cold mass are calculated to evaluate the cryogenic capability. fluka and mars results on energy deposition are in very good agreement.« less

  13. Structure-Kinetics Correlations in Isostructural Crystals of α-(ortho-Tolyl)-acetophenones: Pinning Down Electronic Effects Using Laser-Flash Photolysis in the Solid State.

    PubMed

    Ayitou, Anoklase J-L; Flynn, Kristen; Jockusch, Steffen; Khan, Saeed I; Garcia-Garibay, Miguel A

    2016-03-02

    Aqueous suspensions of nanocrystals in the 200-500 nm size range of isostructural α-(ortho-tolyl)-acetophenone (1a) and α-(ortho-tolyl)-para-methylacetophenone (1b) displayed good absorption characteristics for flash photolysis experiments in a flow system, with transient spectra and decay kinetics with a quality that is similar to that recorded in solution. In contrast to solution measurements, reactions in the solid state were characterized by a rate limiting hydrogen transfer reaction from the triplet excited state and a very short-lived biradical intermediate, which does not accumulate. Notably, the rate for δ-hydrogen atom transfer of 1a (2.7 × 10(7) s(-1)) in the crystalline phase is 18-fold larger than that of 1b (1.5 × 10(6) s(-1)). With nearly identical molecular and crystal structures, this decrease in the rate of δ-hydrogen abstraction can be assigned unambiguously to an electronic effect by the para-methyl group in 1b, which increases the contribution of the (3)π,π* configuration relative to the reactive (3)n,π* configuration in the lowest triplet excited state. These results highlight the potential of relating single crystal X-ray structural data with absolute kinetics from laser flash photolysis.

  14. Indirect detection of infinite-speed MAS solid-state NMR spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.

    Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. In order to address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic “infinite-MAS” spectra of heavy spin-1/2more » nuclides. Furthermore, for these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.« less

  15. Indirect detection of infinite-speed MAS solid-state NMR spectra

    DOE PAGES

    Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.; ...

    2017-01-18

    Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. In order to address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic “infinite-MAS” spectra of heavy spin-1/2more » nuclides. Furthermore, for these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.« less

  16. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine)2(CN)2

    PubMed Central

    Kjær, Kasper S.; Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe; Chollet, Matthieu; Hadt, Ryan G.; Hartsock, Robert W.; Harlang, Tobias; Kroll, Thomas; Kubiček, Katharina; Lemke, Henrik T.; Liang, Huiyang W.; Liu, Yizhu; Nielsen, Martin M.; Robinson, Joseph S.; Solomon, Edward I.; Sokaras, Dimosthenis; van Driel, Tim B.; Weng, Tsu-Chien; Zhu, Diling; Persson, Petter; Wärnmark, Kenneth; Sundström, Villy; Gaffney, Kelly J.

    2017-01-01

    We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy)2(CN)2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy)2(CN)2] complement prior measurement performed on [Fe(bpy)3]2+ and [Fe(bpy)(CN)4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpy)N(CN)6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes. PMID:28653021

  17. Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for High-Efficiency Polymer Solar Cells.

    PubMed

    Xue, Lingwei; Yang, Yankang; Xu, Jianqiu; Zhang, Chunfeng; Bin, Haijun; Zhang, Zhi-Guo; Qiu, Beibei; Li, Xiaojun; Sun, Chenkai; Gao, Liang; Yao, Jia; Chen, Xiaofeng; Yang, Yunxu; Xiao, Min; Li, Yongfang

    2017-10-01

    Suppression of carrier recombination is critically important in realizing high-efficiency polymer solar cells. Herein, it is demonstrated difluoro-substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination. A new medium bandgap 2D-conjugated D-A copolymer J91 is designed and synthesized with bi(alkyl-difluorothienyl)-benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit, for taking the advantages of the synergistic fluorination on the backbone and thiophene side chain. J91 demonstrates enhanced absorption, low-lying highest occupied molecular orbital energy level, and higher hole mobility, in comparison with its control polymer J52 without fluorination on the thiophene side chains. The transient absorption spectra indicate that J91 can suppress the triplet formation in its blend film with n-type organic semiconductor acceptor m-ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(3-hexylphenyl)-dithieno[2,3-d:2,3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene). With these favorable properties, a higher power conversion efficiency of 11.63% with high V OC of 0.984 V and high J SC of 18.03 mA cm -2 is obtained for the polymer solar cells based on J91/m-ITIC with thermal annealing. The improved photovoltaic performance by thermal annealing is explained from the morphology change upon thermal annealing as revealed by photoinduced force microscopy. The results indicate that side chain engineering can provide a new solution to suppress carrier recombination toward high efficiency, thus deserves further attention. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Constructing diabatic states from adiabatic states: Extending generalized Mulliken-Hush to multiple charge centers with Boys localization

    NASA Astrophysics Data System (ADS)

    Subotnik, Joseph E.; Yeganeh, Sina; Cave, Robert J.; Ratner, Mark A.

    2008-12-01

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  19. Constructing diabatic states from adiabatic states: extending generalized Mulliken-Hush to multiple charge centers with boys localization.

    PubMed

    Subotnik, Joseph E; Yeganeh, Sina; Cave, Robert J; Ratner, Mark A

    2008-12-28

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  20. Three-Nucleon Forces and Triplet Pairing in Neutron Matter

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, P.; Clark, J. W.

    2017-12-01

    The existence of superfluidity of the neutron component in the core of a neutron star, associated specifically with triplet P-wave pairing, is currently an open question that is central to interpretation of the observed cooling curves and other neutron-star observables. Ab initio theoretical calculations aimed at resolving this issue face unique challenges in the relevant high-density domain, which reaches beyond the saturation density of symmetrical nuclear matter. These issues include uncertainties in the three-nucleon (3N) interaction and in the effects of strong short-range correlations—and more generally of in-medium modification of nucleonic self-energies and interactions. A survey of existing solutions of the gap equations in the triplet channel demonstrates that the net impact on the gap magnitude of 3N forces, coupled channels, and mass renormalization shows extreme variation dependent on specific theoretical inputs, in some cases even pointing to the absence of a triplet gap, thus motivating a detailed analysis of competing effects within a well-controlled model. In the present study, we track the effects of the 3N force and in-medium modifications in the representative case of the ^3P_2 channel, based on the Argonne v_{18} two-nucleon (2N) interaction supplemented by 3N interactions of the Urbana IX family. Sensitivity of the results to the input interaction is clearly demonstrated. We point out consistency issues with respect to the simultaneous treatment of 3N forces and in-medium effects, which warrant further investigation. We consider this pilot study as the first step toward a systematic and comprehensive exploration of coupled-channel ^3P F_2 pairing using a broad range of 2N and 3N interactions from the current generation of refined semi-phenomenological models and models derived from chiral effective field theory.

  1. Importance of semicore states in GW calculations for simulating accurately the photoemission spectra of metal phthalocyanine molecules.

    PubMed

    Umari, P; Fabris, S

    2012-05-07

    The quasi-particle energy levels of the Zn-Phthalocyanine (ZnPc) molecule calculated with the GW approximation are shown to depend sensitively on the explicit description of the metal-center semicore states. We find that the calculated GW energy levels are in good agreement with the measured experimental photoemission spectra only when explicitly including the Zn 3s and 3p semicore states in the valence. The main origin of this effect is traced back to the exchange term in the self-energy GW approximation. Based on this finding, we propose a simplified approach for correcting GW calculations of metal phthalocyanine molecules that avoids the time-consuming explicit treatment of the metal semicore states. Our method allows for speeding up the calculations without compromising the accuracy of the computed spectra.

  2. Rotational spectra in the ν2 vibrationally excited states of MgNC

    NASA Astrophysics Data System (ADS)

    Kagi, E.; Kawaguchi, K.; Takano, S.; Hirano, T.

    1996-01-01

    The pure rotational spectra of MgNC in the ν2 (bending) vibrationally excited states were observed in the 310-380 GHz region to study the linearity of the molecule. The observed 90 spectral lines were assigned to the transitions in the v2=1-5 states and analyzed to determine a set of molecular constants in each state. The bending vibrational frequency was estimated to be 86 cm-1 from the l-type doubling constant of the v2=1 state. The interval of the Φ and Π states in v2=3 was determined to be 29.2280(24) cm-1, giving the anharmonicity constant xll=3.8611(9) cm-1 with one standard deviation in parentheses, which indicates that the molecule has a linear form. However, somewhat peculiar properties were recognized in dependence of the observed l-type resonance and vibration-rotation constants on the v2 vibrational quantum number, suggesting an effect of anharmonicity.

  3. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation.

    PubMed

    Jiang, Zhen; Xu, Ming; Li, Fuyou; Yu, Yanlei

    2013-11-06

    A red-light-controllable soft actuator has been achieved, driven by low-power excited triplet-triplet annihilation-based upconversion luminescence (TTA-UCL). First, a red-to-blue TTA-based upconversion system with a high absolute quantum yield of 9.3 ± 0.5% was prepared by utilizing platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP) as the sensitizer and 9,10-bis(diphenylphosphoryl)anthracene (BDPPA) as the annihilator. In order to be employed as a highly effective phototrigger of photodeformable cross-linked liquid-crystal polymers (CLCPs), the PtTPBP&BDPPA system was incorporated into a rubbery polyurethane film and then assembled with an azotolane-containing CLCP film. The generating assembly film bent toward the light source when irradiated with a 635 nm laser at low power density of 200 mW cm(-2) because the TTA-UCL was effectively utilized by the azotolane moieties in the CLCP film, inducing their trans-cis photoisomerization and an alignment change of the mesogens via an emission-reabsorption process. It is the first example of a soft actuator in which the TTA-UCL is trapped and utilized to create photomechanical effect. Such advantages of using this novel red-light-controllable soft actuator in potential biological applications have also been demonstrated as negligible thermal effect and its excellent penetration ability into tissues. This work not only provides a novel photomanipulated soft actuation material system based on the TTA-UCL technology but also introduces a new technological application of the TTA-based upconversion system in photonic devices.

  4. Multichannel-quantum-defect-theory treatment of preionized and predissociated triplet gerade levels of H2

    NASA Astrophysics Data System (ADS)

    Matzkin, A.; Jungen, Ch.; Ross, S. C.

    2000-12-01

    Multichannel quantum defect theory (MQDT) is used to calculate highly excited predissociated and preionized triplet gerade states of H2. The treatment is ab initio and is based on the clamped-nuclei quantum-defect matrices and dipole transition moments derived from quantum-chemical potential energy curves by Ross et al. [Can. J. Phys. (to be published)]. Level positions, predissociation or preionization widths and relative intensities are found to be in good agreement with those observed by Lembo et al. [Phys. Rev. A 38, 3447 (1988); J. Chem. Phys. 92, 2219 (1990)] by an optical-optical double resonance photoionization or depletion technique.

  5. AssignFit: a program for simultaneous assignment and structure refinement from solid-state NMR spectra

    PubMed Central

    Tian, Ye; Schwieters, Charles D.; Opella, Stanley J.; Marassi, Francesca M.

    2011-01-01

    AssignFit is a computer program developed within the XPLOR-NIH package for the assignment of dipolar coupling (DC) and chemical shift anisotropy (CSA) restraints derived from the solid-state NMR spectra of protein samples with uniaxial order. The method is based on minimizing the difference between experimentally observed solid-state NMR spectra and the frequencies back calculated from a structural model. Starting with a structural model and a set of DC and CSA restraints grouped only by amino acid type, as would be obtained by selective isotopic labeling, AssignFit generates all of the possible assignment permutations and calculates the corresponding atomic coordinates oriented in the alignment frame, together with the associated set of NMR frequencies, which are then compared with the experimental data for best fit. Incorporation of AssignFit in a simulated annealing refinement cycle provides an approach for simultaneous assignment and structure refinement (SASR) of proteins from solid-state NMR orientation restraints. The methods are demonstrated with data from two integral membrane proteins, one α-helical and one β-barrel, embedded in phospholipid bilayer membranes. PMID:22036904

  6. Bound States in Dimerized and Frustrated Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Bouzerar, G.; Sil, S.

    Using the Bond-Operator Technique (BOT), we have studied the low energy excitation spectrum of a frustrated dimerized antiferromagnetic Heisenberg chain. In particular, we have compared our analytical results with previous Exact Diagonalization (ED) data. Qualitatively, the BOT results are in good agreement with the ED data. And even a very good quantitative agreement is obtained in some parameter region. It is clearly shown that there is only one elementary excitation branch (lowest triplet branch) and that the two other well defined excitations which appear below the continuum, one singlet and one triplet, are bound states of two elementary triplets.

  7. Verification of the electron/proton coupled mechanism for phenolic H-atom transfer using a triplet π,π ∗ carbonyl

    NASA Astrophysics Data System (ADS)

    Yamaji, Minoru; Oshima, Juro; Hidaka, Motohiko

    2009-06-01

    Evidence for the coupled electron/proton transfer mechanism of the phenolic H-atom transfer between triplet π,π ∗ 3,3'-carbonylbis(7-diethylaminocoumarin) and phenol derivatives is obtained by using laser photolysis techniques. It was confirmed that the quenching rate constants of triplet CBC by phenols having positive Hammett constants do not follow the Rehm-Weller equation for electron transfer while those by phenols with negative Hammett constants do it. From the viewpoint of thermodynamic parameters for electron transfer, the crucial factors for phenolic H-atom transfer to π,π ∗ triplet are discussed.

  8. Solid-state NMR covariance of homonuclear correlation spectra.

    PubMed

    Hu, Bingwen; Amoureux, Jean-Paul; Trebosc, Julien; Deschamps, Michael; Tricot, Gregory

    2008-04-07

    Direct covariance NMR spectroscopy, which does not involve a Fourier transformation along the indirect dimension, is demonstrated to obtain homonuclear correlation two-dimensional (2D) spectra in the solid state. In contrast to the usual 2D Fourier transform (2D-FT) NMR, in a 2D covariance (2D-Cov) spectrum the spectral resolution in the indirect dimension is determined by the resolution along the detection dimension, thereby largely reducing the time-consuming indirect sampling requirement. The covariance method does not need any separate phase correction or apodization along the indirect dimension because it uses those applied in the detection dimension. We compare in detail the specifications obtained with 2D-FT and 2D-Cov, for narrow and broad resonances. The efficiency of the covariance data treatment is demonstrated in organic and inorganic samples that are both well crystallized and amorphous, for spin -1/2 nuclei with 13C, 29Si, and 31P through-space or through-bond homonuclear 2D correlation spectra. In all cases, the experimental time has been reduced by at least a factor of 10, without any loss of resolution and signal to noise ratio, with respect to what is necessary with the 2D-FT NMR. According to this method, we have been able to study the silicate network of glasses by 2D NMR within reasonable experimental time despite the very long relaxation time of the 29Si nucleus. The main limitation of the 2D-Cov data treatment is related to the introduction of autocorrelated peaks onto the diagonal, which does not represent any actual connectivity.

  9. SU(2) slave-boson formulation of spin nematic states in S=(1)/(2) frustrated ferromagnets

    NASA Astrophysics Data System (ADS)

    Shindou, Ryuichi; Momoi, Tsutomu

    2009-08-01

    An SU(2) slave-boson formulation of bond-type spin nematic orders is developed in frustrated ferromagnets, where the spin nematic states are described as the resonating spin-triplet valence bond (RVB) states. The d vectors of spin-triplet pairing ansatzes play the role of the directors in the bond-type spin-quadrupolar states. The low-energy excitations around such spin-triplet RVB ansatzes generally comprise the (potentially massless) gauge bosons, massless Goldstone bosons, and spinon individual excitations. Extending the projective symmetry-group argument to the spin-triplet ansatzes, we show how to identify the number of massless gauge bosons efficiently. Applying this formulation, we next (i) enumerate possible mean-field solutions for the S=(1)/(2) ferromagnetic J1-J2 Heisenberg model on the square lattice, with ferromagnetic nearest neighbor J1 and competing antiferromagnetic next-nearest neighbor J2 and (ii) argue their stability against small gauge fluctuations. As a result, two stable spin-triplet RVB ansatzes are found in the intermediate coupling regime around J1:J2≃1:0.4 . One is the Z2 Balian-Werthamer (BW) state stabilized by the Higgs mechanism and the other is the SU(2) chiral p -wave (Anderson-Brinkman-Morel) state stabilized by the Chern-Simon mechanism. The former Z2 BW state in fact shows the same bond-type spin-quadrupolar order as found in the previous exact diagonalization study [Shannon , Phys. Rev. Lett. 96, 027213 (2006)].

  10. Photophysical and Photochemical Properties of Some Fluorescent Derivatives of Vitamin B1

    NASA Astrophysics Data System (ADS)

    Marciniak, B.

    1987-05-01

    Absorption and emission spectra, depopulation kinetics of the lowest excited singlet and triplet states and acid-base equilibria of two fluorescent vitamin B, derivatives, the products I and II of the reaction of N-methylated vitamine B, with cytidine and adenosine, respectively, were investigated. Analysis of the lifetime and quantum yield data indicate that at 77 K emissions are the main processes of deactivation of the S1 and T1 states for the free ion and protonated forms. The pKa values indicate a much higher acidity in the excited singlet and triplet states than in the ground state. I and II undergo very slow photochemical reactions in solution in the presence of oxygen (Φ ~ 10-4).

  11. Estimation of exciton reverse transfer for variable spectra and high efficiency in interlayer-based organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Liu, Shengqiang; Zhao, Juan; Huang, Jiang; Yu, Junsheng

    2016-12-01

    Organic light-emitting devices (OLEDs) with three different exciton adjusting interlayers (EALs), which are inserted between two complementary blue and yellow emitting layers, are fabricated to demonstrate the relationship between the EAL and device performance. The results show that the variations of type and thickness of EAL have different adjusting capability and distribution control on excitons. However, we also find that the reverse Dexter transfer of triplet exciton from the light-emitting layer to the EAL is an energy loss path, which detrimentally affects electroluminescent (EL) spectral performance and device efficiency in different EAL-based devices. Based on exciton distribution and integration, an estimation of exciton reverse transfer is developed through a triplet energy level barrier to simulate the exciton behavior. Meanwhile, the estimation results also demonstrate the relationship between the EAL and device efficiency by a parameter of exciton reverse transfer probability. The estimation of exciton reverse transfer discloses a crucial role of the EALs in the interlayer-based OLEDs to achieve variable EL spectra and high efficiency.

  12. Analysis of PANDA Passive Containment Cooling Steady-State Tests with the Spectra Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stempniewicz, Marek M

    2000-07-15

    Results of post test simulation of the PANDA passive containment cooling (PCC) steady-state tests (S-series tests), performed at the PANDA facility at the Paul Scherrer Institute, Switzerland, are presented. The simulation has been performed using the computer code SPECTRA, a thermal-hydraulic code, designed specifically for analyzing containment behavior of nuclear power plants.Results of the present calculations are compared to the measurement data as well as the results obtained earlier with the codes MELCOR, TRAC-BF1, and TRACG. The calculated PCC efficiencies are somewhat lower than the measured values. Similar underestimation of PCC efficiencies had been obtained in the past, with themore » other computer codes. To explain this difference, it is postulated that condensate coming into the tubes forms a stream of liquid in one or two tubes, leaving most of the tubes unaffected. The condensate entering the water box is assumed to fall down in the form of droplets. With these assumptions, the results calculated with SPECTRA are close to the experimental data.It is concluded that the SPECTRA code is a suitable tool for analyzing containments of advanced reactors, equipped with passive containment cooling systems.« less

  13. α decay of the T = 1 ,   2 + state in B 10 and isospin symmetry breaking in the A = 10 triplet

    DOE PAGES

    Kuvin, S. A.; Wuosmaa, A. H.; Lister, C. J.; ...

    2017-10-03

    Here, the rate of the T=1, 2+ to T=1, 0 + transition in 10B ( T=1, T z=0) is compared to the analog transitions in 10Be ( T=1, T z=–1) and 10C ( T=1, T z=+1) to provide constraints on ab initio calculations using realistic nuclear forces. The relevant state in 10B, at E x=5.164 MeV, is particle unbound. Therefore, a determination of the B( E2) electromagnetic transition rate requires a precise and accurate determination of the width of the state, as well as the α-particle and γ-ray branching ratios. Previous measurements of the α-particle branching ratio are just barelymore » in agreement. We report on a new study of the α-particle branch by studying the 10B(p,p') 10B* reaction in inverse kinematics with the HELIOS spectrometer. The α-particle branching ratio that we observe, 0.144±0.027, is in good agreement with the evaluated value and improves the associated uncertainty. The resulting experimental B( E2) value is 7.0±2.2 e 2fm 4 and is more consistent with a flat trend across the A=10 triplet than previously reported. This is inconsistent with Green's function Monte Carlo predictions using realistic three-nucleon Hamiltonians, which overpredict the B(E2) value in 10C and 10B.« less

  14. Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion.

    PubMed

    Li, Wei; Wang, Li Xian; Hofmann, Werner; Zhu, Ning Hua; Bimberg, Dieter

    2012-08-27

    We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.

  15. Effects of the Hydration State on the Mid-Infrared Spectra of Urea and Creatinine in Relation to Urine Analyses

    PubMed Central

    Oliver, Katherine V.; Maréchal, Amandine

    2016-01-01

    When analyzing solutes by Fourier transform infrared (FT-IR) spectroscopy in attenuated total reflection (ATR) mode, drying of samples onto the ATR crystal surface can greatly increase solute band intensities and, therefore, aid detection of minor components. However, analysis of such spectra is complicated by the existence of alternative partial hydration states of some substances that can significantly alter their infrared signatures. This is illustrated here with urea, which is a dominant component of urine. The effects of hydration state on its infrared spectrum were investigated both by incubation in atmospheres of fixed relative humidities and by recording serial spectra during the drying process. Significant changes of absorption band positions and shapes were observed. Decomposition of the CN antisymmetric stretching (νas) band in all states was possible with four components whose relative intensities varied with hydration state. These correspond to the solution (1468 cm–1) and dry (1464 cm–1) states and two intermediate (1454 cm–1 and 1443 cm–1) forms that arise from specific urea–water and/or urea–urea interactions. Such intermediate forms of other compounds can also be formed, as demonstrated here with creatinine. Recognition of these states and their accommodation in analyses of materials such as dried urine allows more precise decomposition of spectra so that weaker bands of diagnostic interest can be more accurately defined. PMID:27170705

  16. Effects of the Hydration State on the Mid-Infrared Spectra of Urea and Creatinine in Relation to Urine Analyses.

    PubMed

    Oliver, Katherine V; Maréchal, Amandine; Rich, Peter R

    2016-06-01

    When analyzing solutes by Fourier transform infrared (FT-IR) spectroscopy in attenuated total reflection (ATR) mode, drying of samples onto the ATR crystal surface can greatly increase solute band intensities and, therefore, aid detection of minor components. However, analysis of such spectra is complicated by the existence of alternative partial hydration states of some substances that can significantly alter their infrared signatures. This is illustrated here with urea, which is a dominant component of urine. The effects of hydration state on its infrared spectrum were investigated both by incubation in atmospheres of fixed relative humidities and by recording serial spectra during the drying process. Significant changes of absorption band positions and shapes were observed. Decomposition of the CN antisymmetric stretching (νas) band in all states was possible with four components whose relative intensities varied with hydration state. These correspond to the solution (1468 cm(-1)) and dry (1464 cm(-1)) states and two intermediate (1454 cm(-1) and 1443 cm(-1)) forms that arise from specific urea-water and/or urea-urea interactions. Such intermediate forms of other compounds can also be formed, as demonstrated here with creatinine. Recognition of these states and their accommodation in analyses of materials such as dried urine allows more precise decomposition of spectra so that weaker bands of diagnostic interest can be more accurately defined. © The Author(s) 2016.

  17. Ab initio calculation of potential energy surfaces for the three lowest triplet states (1 3A'',1 3A,2 3A'') of PH(X,A)-He

    NASA Astrophysics Data System (ADS)

    Kolczewski, Ch.; Fink, K.; Staemmler, V.; Neitsch, L.

    1997-05-01

    Quantum chemical ab initio calculations at the complete active space SCF level and with inclusion of correlation effects have been performed for the potential energy surfaces of PH in its X 3Σ- ground state and its first excited triplet state, A 3Π, colliding with He atoms. The PH distance was fixed at its experimental value (of the A 3Π state), the PH-He distance and the HePH angle were varied. All three potential energy surfaces [1 3A'' for PH(X)-He and 1 3A,2 3A'' for the two components of PH(A)-He] are purely repulsive, except for very shallow van der Waals minima with well depths of about 15-40 cm-1. The interaction potentials decay approximately exponentially with increasing PH-He distance and show large angular anisotropies. Legendre expansions for the angular dependence of the potential surfaces converge slowly for V(1 3A'') and the sum potential 1/2[V(2 3A'')+V(1 3A)], but rapidly for the corresponding difference potential 1/2[V(2 3A'')-V(1 3A)]. The present PH(A)-He potentials have been used in the companion paper by Neitsch et al. [J. Chem. Phys. 106, 7642 (1997)], for the calculation of thermal state-to-state rate constants for inelastic PH(A)-He collisions.

  18. Dispersion tuning in sub-micron tapers for third-harmonic and photon triplet generation.

    PubMed

    Hammer, Jonas; Cavanna, Andrea; Pennetta, Riccardo; Chekhova, Maria V; Russell, Philip St J; Joly, Nicolas Y

    2018-05-15

    Precise control of the dispersion landscape is of crucial importance if optical fibers are to be successfully used for the generation of three-photon states of light-the inverse of third-harmonic generation (THG). Here we report gas-tuning of intermodal phase-matched THG in sub-micron-diameter tapered optical fiber. By adjusting the pressure of the surrounding argon gas up to 50 bars, intermodally phase-matched third-harmonic light can be generated for pump wavelengths within a 15 nm range around 1.38 μm. We also measure the infrared fluorescence generated in the fiber when pumped in the visible and estimate that the accidental coincidence rate in this signal is lower than the predicted detection rate of photon triplets.

  19. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state

    NASA Astrophysics Data System (ADS)

    Hanuza, J.; Godlewska, P.; Lisiecki, R.; Ryba-Romanowski, W.; Kadłubański, P.; Lorenc, J.; Łukowiak, A.; Macalik, L.; Gerasymchuk, Yu.; Legendziewicz, J.

    2018-05-01

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln = Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass.

  20. Unveiling Singlet Fission Mediating States in TIPS-pentacene and its Aza Derivatives.

    PubMed

    Herz, Julia; Buckup, Tiago; Paulus, Fabian; Engelhart, Jens U; Bunz, Uwe H F; Motzkus, Marcus

    2015-06-25

    Femtosecond pump-depletion-probe experiments were carried out in order to shed light on the ultrafast excited-state dynamics of triisopropylsilylethynyl (TIPS)-pentacene and two nitrogen-containing derivatives, namely, diaza-TIPS-pentacene and tetraaza-TIPS-pentacene. Measurements performed in the visible and near-infrared spectral range in combination with rate model simulations reveal that singlet fission proceeds via the extremely short-lived intermediate (1)TT state, which absorbs in the near-infrared spectral region only. The T1 → T3 transition probed in the visible region shows a rise time that comprises two components according to a consecutive reaction (S1 → (1)TT → T1). The incorporation of nitrogen atoms into the acene structure leads to shorter dynamics, but the overall triplet formation follows the same kinetic model. This is of particular importance, since experiments on tetraaza-TIPS-pentacene allow for investigation of the triplet state in the visible range without an overlapping singlet contribution. In addition, the pump-depletion-probe experiments show that the triplet absorption in the visible (T1 → T3) and near-infrared (T1 → T2) regions occurs from the same initial state, which was questioned in previous studies. Furthermore, an additional ultrafast transfer between the excited triplet states (T3 → T2) is identified, which is also in agreement with the rate model simulation. By applying depletion pulses, which are resonant with higher vibrational levels, we gain insight into internal vibrational energy redistribution processes within the triplet manifold. This additional information is of great relevance regarding the study of loss channels within these materials.

  1. Triplet pregnancy after intracytoplasmic sperm injection of cryopreserved oocytes: case report.

    PubMed

    Young, E; Kenny, A; Puigdomenech, E; Van Thillo, G; Tiverón, M; Piazza, A

    1998-08-01

    To report a triplet pregnancy that occurred after intracytoplasmic injection of sperm into cryopreserved oocytes. Case report. Instituto de Ginecología y Fertilidad (IFER), Buenos Aires, Argentina. A 36-year-old infertile patient with premature ovarian failure and a previous term pregnancy with fresh donated oocytes. We administered leuprolide acetate for pituitary down-regulation followed by E2 valerianate in incremental doses until an endometrial lining of >8 mm was observed by ultrasound. Thawing of frozen donated oocytes, intracytoplasmic sperm injection (ICSI), and translaparoscopic fallopian tube ET also were performed. Natural micronized progesterone was administered intravaginally (600 mg/d) before ET. Ultrasound at the 8th week of gestation revealed a triplet pregnancy with active fetal heartbeats. A triple intrauterine gestation was achieved with the use of microinjection into cryopreserved oocytes. This case illustrates the feasibility of oocyte cryopreservation for clinical use in the era of ICSI.

  2. Cytomegalovirus infection in preterm triplets transmitted via breast milk.

    PubMed

    Demirel, Gamze; Celik, Istemi Han; Canpolat, Fuat Emre; Dilmen, Ugur

    2014-04-01

    Cytomegalovirus (CMV) may transmit perinatally or from breast milk. The risk for development of symptomatic CMV disease in very-low-birth-weight premature infants after transmission from maternal breast milk is not clear. There are scarce data in the literature about congenital CMV infection in multiple pregnancies, being mostly with twin gestations. Here we present a unique case of triplets with CMV infection transmitted via breast milk.

  3. Di-nuclear Cu(I) Complex with Combined Bright TADF and Phosphorescence. Zero-Field Splitting and Spin-Lattice Relaxation Effects of the Triplet State.

    PubMed

    Schinabeck, Alexander; Leitl, Markus J; Yersin, Hartmut

    2018-05-11

    The three-fold bridged di-nuclear Cu(I) complex Cu 2 (µ-I) 2 (1N-n-butyl-5-diphenyl-phosphino-1,2,4-triazole) 3 , Cu 2 I 2 (P^N) 3 , shows bright thermally activated delayed fluorescence (TADF) as well as phosphorescence at ambient temperature with a total quantum yield of 85 % at an emission decay time of 7 μs. The singlet(S 1 )-triplet(T 1 ) energy gap is as small as only 430 cm -1 (54 meV). Spin-orbit-coupling induces a short-lived phosphorescence with a decay time of 52 μs (T = 77 K) and a distinct zero-field splitting (ZFS) of T 1 into substates by ≈ 2.5 cm -1 (0.3 meV). Below T ≈ 10 K, effects of spin-lattice relaxation (SLR) are observed and agree with the size of ZFS. According to the combined phosphorescence and TADF, the overall emission decay time is reduced by ≈ 13 % as compared to the TADF-only process. The compound may potentially be applied in solution-processed OLEDs exploiting both the singlet and triplet harvesting mechanisms.

  4. The structure of BPS spectra

    NASA Astrophysics Data System (ADS)

    Longhi, Pietro

    In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for

  5. Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Park, Young-Seo; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2013-04-01

    Efficient triplet harvesting from exciplexes by reverse intersystem crossing (RISC) is reported using a fluorescent molecular system composed of the 4,4',4″-tris(N-carbazolyl)-triphenylamine and bis-4,6-(3,5-di-3-pyridylphenyl)-2-methylpyrimidine. The exciplex forming material system shows the efficient delayed fluorescence emission. As a result, almost 100% PL efficiency at 35 K and 10% external quantum efficiency at 195 K are achieved from the exciplex. The delayed fluorescence of the exciplex clearly demonstrates that a significant proportion of the triplet exciplexes is harvested through the RISC.

  6. Photochemically Switching Diamidocarbene Spin States Leads to Reversible Büchner Ring Expansions.

    PubMed

    Perera, Tharushi A; Reinheimer, Eric W; Hudnall, Todd W

    2017-10-18

    The discovery of thermal and photochemical control by Woodward and Hoffmann revolutionized how we understand chemical reactivity. Similarly, we now describe the first example of a carbene that exhibits differing thermal and photochemical reactivity. When a singlet ground-state N,N'-diamidocarbene 1 was photolyzed at 380 nm, excitation to a triplet state was observed. The triplet-state electronic structure was characteristic of the expected biradical σ 1 p π 1 spin configuration according to a combination of spectroscopic and computational methods. Surprisingly, the triplet state of 1 was found to engage a series of arenes in thermally reversible Büchner ring expansion reactions, marking the first examples where both cyclopropanation and ring expansion of arenes were rendered reversible. Not only are these photochemical reactions different from the known thermal chemistry of 1, but the reversibility enabled us to perform the first examples of photochemically induced arene exchange/expansion reactions at a single carbon center.

  7. Genetic algorithm in the structural design of Cooke triplet lenses

    NASA Astrophysics Data System (ADS)

    Hazra, Lakshminarayan; Banerjee, Saswatee

    1999-08-01

    This paper is in tune with our efforts to develop a systematic method for multicomponent lens design. Our aim is to find a suitable starting point in the final configuration space, so that popular local search methods like damped least squares (DLS) may directly lead to a useful solution. For 'ab initio' design problems, a thin lens layout specifying the powers of the individual components and the intercomponent separations are worked out analytically. Requirements of central aberration targets for the individual components in order to satisfy the prespecified primary aberration targets for the overall system are then determined by nonlinear optimization. The next step involves structural design of the individual components by optimization techniques. This general method may be adapted for the design of triplets and their derivatives. However, for the thin lens design of a Cooke triplet composed of three airspaced singlets, the two steps of optimization mentioned above may be combined into a single optimization procedure. The optimum configuration for each of the single set, catering to the required Gaussian specification and primary aberration targets for the Cooke triplet, are determined by an application of genetic algorithm (GA). Our implementation of this algorithm is based on simulations of some complex tools of natural evolution, like selection, crossover and mutation. Our version of GA may or may not converge to a unique optimum, depending on some of the algorithm specific parameter values. With our algorithm, practically useful solutions are always available, although convergence to a global optimum can not be guaranteed. This is perfectly in keeping with our need to allow 'floating' of aberration targets in the subproblem level. Some numerical results dealing with our preliminary investigations on this problem are presented.

  8. Parenting Stress, Infant Emotion Regulation, Maternal Sensitivity, and the Cognitive Development of Triplets: A Model for Parent and Child Influences in a Unique Ecology

    ERIC Educational Resources Information Center

    Feldman, Ruth; Eidelman, Arthur I.; Rotenberg, Noa

    2004-01-01

    To examine the development of triplets, 23 sets of triplets were matched with 23 sets of twins and 23 singletons (N138). Maternal sensitivity was observed at newborn, 3, 6, and 12 months, and infants' cognitive and symbolic skills at 1 year. Triplets received lower maternal sensitivity across infancy and exhibited poorer cognitive competencies…

  9. Absence of Intramolecular Singlet Fission in Pentacene-Perylenediimide Heterodimers: The Role of Charge Transfer State.

    PubMed

    Wang, Long; Wu, Yishi; Chen, Jianwei; Wang, Lanfen; Liu, Yanping; Yu, Zhenyi; Yao, Jiannian; Fu, Hongbing

    2017-11-16

    A new class of donor-acceptor heterodimers based on two singlet fission (SF)-active chromophores, i.e., pentacene (Pc) and perylenediimide (PDI), was developed to investigate the role of charge transfer (CT) state on the excitonic dynamics. The CT state is efficiently generated upon photoexcitation. However, the resulting CT state decays to different energy states depending on the energy levels of the CT state. It undergoes extremely rapid deactivation to the ground state in polar CH 2 Cl 2 , whereas it undergoes transformation to a Pc triplet in nonpolar toluene. The efficient triplet generation in toluene is not due to SF but CT-mediated intersystem crossing. In light of the energy landscape, it is suggested that the deep energy level of the CT state relative to that of the triplet pair state makes the CT state actually serve as a trap state that cannot undergoes an intramolecular singlet fission process. These results provide guidance for the design of SF materials and highlight the requisite for more widely applicable design principles.

  10. VizieR Online Data Catalog: Isolated galaxies, pairs and triplets (Argudo-Fernandez+, 2015)

    NASA Astrophysics Data System (ADS)

    Argudo-Fernandez, M.; Verley, S.; Bergond, G.; Duarte Puertas, S.; Ramos Carmona, E.; Sabater, J.; Fernandez, Lorenzo M.; Espada, D.; Sulentic, J.; Ruiz, J. E.; Leon, S.

    2015-04-01

    Catalogues of isolated galaxies, isolated pairs, and isolated triplets in the local Universe with positions, redshifts, and degrees of relation with their physical and large-scale environments. (5 data files).

  11. Non-Markovian Quantum State Diffusion for temperature-dependent linear spectra of light harvesting aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritschel, Gerhard; Möbius, Sebastian; Eisfeld, Alexander, E-mail: eisfeld@mpipks-dresden.mpg.de

    2015-01-21

    Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an efficient method to calculate excitonic properties of aggregates composed of organic chromophores, taking into account the coupling of electronic transitions to vibrational modes of the chromophores. NMQSD is an open quantum system approach that incorporates environmental degrees of freedom (the vibrations in our case) in a stochastic way. We show in this paper that for linear optical spectra (absorption, circular dichroism), no stochastics is needed, even for finite temperatures. Thus, the spectra can be obtained by propagating a single trajectory. To this end, we map a finite temperature environmentmore » to the zero temperature case using the so-called thermofield method. The resulting equations can then be solved efficiently by standard integrators.« less

  12. Efficient Generation of Long-Lived Triplet Excitons in 2D Hybrid Perovskite.

    PubMed

    Younts, Robert; Duan, Hsin-Sheng; Gautam, Bhoj; Saparov, Bayrammurad; Liu, Jie; Mongin, Cedric; Castellano, Felix N; Mitzi, David B; Gundogdu, Kenan

    2017-03-01

    Triplet excitons form in quasi-2D hybrid inorganic-organic perovskites and diffuse over 100 nm before radiating with >11% photoluminescence quantum efficiency (PLQE) at low temperatures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Singlet-triplet splittings and their relevance to the spin-dependent exciton formation in light-emitting polymers: an EOM/CCSD study.

    PubMed

    Chen, Liping; Zhu, Lingyun; Shuai, Zhigang

    2006-12-21

    By employing the coupled-cluster equation of motion method (EOM/CCSD) for excited-state structures, we have investigated the structure dependence of the singlet and triplet exciton splittings, through extensive calculations for polythiophene (PT), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(thienylenevinylene) (PTV), polyparaphenylene vinylene (PPV), MEHPPV, polyparaphenylene ethylene (PPE), polyfluorene (PFO), and ladder-type polyparaphenylene (mLPPP). The results for the polymer are extrapolated through computations for the oligomers with increasing length. Recent investigations have been quite controversial about whether the internal quantum efficiency of electroluminescence could be higher than the 25% spin statistics limit or not in polymeric materials. Using a simple relationship between the exciton formation rate and the excitation energy level, we have discussed the material-dependent ratios of singlet and triplet exciton formation, which are in good agreement with the magnetic-field resonance detected transient spectroscopy measurement by Wohlgenannt et al. for a series of electronic polymers. This provides another piece of evidence to support the view that the internal quantum efficiency for conjugated polymers can exceed the 25% limit.

  14. Optimal design of FIR triplet halfband filter bank and application in image coding.

    PubMed

    Kha, H H; Tuan, H D; Nguyen, T Q

    2011-02-01

    This correspondence proposes an efficient semidefinite programming (SDP) method for the design of a class of linear phase finite impulse response triplet halfband filter banks whose filters have optimal frequency selectivity for a prescribed regularity order. The design problem is formulated as the minimization of the least square error subject to peak error constraints and regularity constraints. By using the linear matrix inequality characterization of the trigonometric semi-infinite constraints, it can then be exactly cast as a SDP problem with a small number of variables and, hence, can be solved efficiently. Several design examples of the triplet halfband filter bank are provided for illustration and comparison with previous works. Finally, the image coding performance of the filter bank is presented.

  15. Exact solution of the PPP model for correlated electronic states of tetracene and substituted tetracene.

    PubMed

    Pati, Y Anusooya; Ramasesha, S

    2014-06-12

    Tetracene is an important conjugated molecule for device applications. We have used the diagrammatic valence bond method to obtain the desired states, in a Hilbert space of about 450 million singlets and 902 million triplets. We have also studied the donor/acceptor (D/A)-substituted tetracenes with D and A groups placed symmetrically about the long axis of the molecule. In these cases, by exploiting a new symmetry, which is a combination of C2 symmetry and electron-hole symmetry, we are able to obtain their low-lying states. In the case of substituted tetracene, we find that optically allowed one-photon excitation gaps reduce with increasing D/A strength, while the lowest singlet-triplet gap is only weakly affected. In all the systems we have studied, the excited singlet state, S1, is at more than twice the energy of the lowest triplet state and the second triplet is very close to the S1 state. Thus, donor-acceptor-substituted tetracene could be a good candidate in photovoltaic device application as it satisfies energy criteria for singlet fission. We have also obtained the model exact second harmonic generation (SHG) coefficients using the correction vector method, and we find that the SHG responses increase with the increase in D/A strength.

  16. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state.

    PubMed

    Hanuza, J; Godlewska, P; Lisiecki, R; Ryba-Romanowski, W; Kadłubański, P; Lorenc, J; Łukowiak, A; Macalik, L; Gerasymchuk, Yu; Legendziewicz, J

    2018-05-05

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln=Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass. Copyright © 2018. Published by Elsevier B.V.

  17. Fluorescence and picosecond induced absorption from the lowest singlet excited states of quercetin in solutions and polymer films

    NASA Astrophysics Data System (ADS)

    Bondarev, S. L.; Tikhomirov, S. A.; Buganov, O. V.; Knyukshto, V. N.; Raichenok, T. F.

    2017-03-01

    The spectroscopic and photophysical properties of the biologically important plant antioxidant quercetin in organic solvents, polymer films of polyvinyl alcohol, and a buffer solution at pH 7.0 are studied by stationary luminescence and femtosecond laser spectroscopy at room temperature and 77 K. The large magnitude of the dipole moment of the quercetin molecule in the excited Franck-Condon state μ e FC = 52.8 C m indicates the dipolar nature of quercetin in this excited state. The transient induced absorption spectra S 1→ S n in all solvents are characterized by a short-wave band at λ abs max = 460 nm with exponential decay times in the range of 10.0-20.0 ps. In the entire spectral range at times of >100 ps, no residual induced absorption was observed that could be attributed to the triplet-triplet transitions T 1 → T k in quercetin. In polar solvents, two-band fluorescence was also recorded at room temperature, which is due to the luminescence of the initial enol form of quercetin ( 415 nm) and its keto form with a transferred proton (550 nm). The short-wave band is absent in nonpolar 2-methyltetrahydrofuran (2-MTHF). The spectra of fluorescence and fluorescence excitation exhibit a low dependence on the wavelength of excitation and detection, which may be related to the solvation and conformational changes in the quercetin molecule. Decreasing the temperature of a glassy-like freezing quercetin solution in ethanol and 2-MTHF to 77 K leads to a strong increase in the intensity (by a factor of 100) of both bands. The energy circuits for the proton transfer process are proposed depending on the polarity of the medium. The main channel for the exchange of electronic excitation energy in the quercetin molecule at room temperature is the internal conversion S 1 ⇝ S 0, induced by the state with a proton transfer.

  18. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.

    PubMed

    Smith, Jeremy D; Kinney, Haley; Anastasio, Cort

    2015-04-21

    Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.

  19. Phonon spectra and the one-phonon and two-phonon densities of states of UO2 and PuO2

    NASA Astrophysics Data System (ADS)

    Poplavnoi, A. S.; Fedorova, T. P.; Fedorov, I. A.

    2017-04-01

    The vibrational spectra of uranium dioxide UO2 and plutonium dioxide PuO2, as well as the one-phonon densities of states and thermal occupation number weighted two-phonon densities of states, have been calculated within the framework of the phenomenological rigid ion model. It has been shown that the acoustic and optical branches of the spectra are predominantly determined by vibrations of the metal and oxygen atoms, respectively, because the atomic masses of the metal and oxygen differ from each other by an order of magnitude. On this basis, the vibrational spectra can be represented in two Brillouin zones, i.e., in the Brillouin zone of the crystal and the Brillouin zone of the oxygen sublattice. In this case, the number of optical branches decreases by a factor of two. The two-phonon densities of states consist of two broad structured peaks. The temperature dependences of the upper peak exhibit a thermal broadening of the phonon lines L01 and L02 in the upper part of the optical branches. The lower peak is responsible for the thermal broadening of the lowest two optical (T02, T01) and acoustic (LA, TA) branches.

  20. Spectral Assignments and Analysis of the Ground State of Nitromethane in High-Resolution FTIR Synchrotron Spectra

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Sylvestre; Billinghurst, Brant E.; May, Tim E.; Dawadi, Mahesh B.; Perry, David S.

    2014-06-01

    The Fourier Transform infrared spectra of CH3NO2, have been recorded, in the 400-950 wn spectral region, at a resolution of 0.00096 wn, using the Far-Infrared Beamline at Canadian Light Source. The observed spectra contain four fundamental vibrations: the NO2 in-plane rock (475.2 wn), the NO2 out-of-plane rock (604.9 wn), the NO2 symmetric bend (657.1 wn), and the CN-stretch (917.2 wn). For the lowest torsional state of CN-stretch and NO2 in-plane rock, transitions involving quantum numbers, " = 0; " {≤ 50} and {_a}" {≤ 10}, have been assigned with the aid of an automated ground state combination difference program together with a traditional Loomis Wood approach Ground state combination differences derived from more than 2100 infrared transitions have been fit with the six-fold torsion-rotation program developed by Ilyushin et al. Additional sextic and octic centrifugal distortion parameters are derived for the ground vibrational state. C. F. Neese., An Interactive Loomis-Wood Package, V2.0, {56th},OSU Interanational Symposium on Molecular Spectroscopy (2001). V. V. Ilyushin, Z. Kisiel, L. Pszczolkowski, H. Mader, and J. T. Hougen, J. Mol. Spectrosc., 259, 26, (2010).

  1. Laser photolysis studies of the phenolic H-atom transfer mechanism for a triplet π,π ∗ ketone in solution revisited

    NASA Astrophysics Data System (ADS)

    Yamaji, Minoru; Aoyama, Yutaka; Furukawa, Takashi; Itoh, Takao; Tobita, Seiji

    2006-03-01

    The mechanism of the H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-naphthacenequinone (5,12-NQ) has been examined by means of laser flash photolysis at 295 K. Based on the Hammett plots and the Rehm-Weller equation for the quenching rate constants, the phenolic H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-NQ is shown to proceed via the electron transfer followed by proton transfer. The previously proposed mechanism for H-atom transfer of π,π ∗ triplets, that proton transfer is followed by electron transfer, was not verified in the present systems.

  2. Spectra of Lorentz-violating Dirac bound states in a cylindrical well

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi

    2016-12-01

    In the presence of the Lorentz-violating bμ coefficient, the spectra of bound states for a Dirac particle in a cylindric well are changed. Compared to the Lorentz invariant (LI) spectrum, the Lorentz violation deviation becomes significant when eigenenergy E is sufficiently close to the critical values ±m , where m is the particle's mass. The detailed profile of the deviation depends on the observer Lorentz nature of bμ. We discussed three types of bμ configuration. When bμ=(0 ,0 ,0 ,bZ) is parallel to the well axis, the would be degenerate LI spectra split into two subspectra, reminiscent of the Zeeman splitting in the presence of a weak magnetic field. Depending on the relative sign of bZ accompanying mass m in the dispersion relation, the spectrum extends or shrinks in the allowed eigenenergy region. When bμ is a radial [bμ=(0 ,b cos ϕ ,b sin ϕ ,0 ) ] or purely timelike vector [bμ=(bT,0 →)], the spin-up and down components are coupled together, and there is no splitting. However, the monotonic increasing behavior of well depth V0 with the decrease of eigenenergy E is slightly changed when E is sufficiently close to -m .

  3. Implications of a electroweak triplet scalar leptoquark on the ultra-high energy neutrino events at IceCube

    NASA Astrophysics Data System (ADS)

    Mileo, Nicolas; de la Puente, Alejandro; Szynkman, Alejandro

    2016-11-01

    We study the production of scalar leptoquarks at IceCube, in particular, a particle transforming as a triplet under the weak interaction. The existence of electroweak-triplet scalars is highly motivated by models of grand unification and also within radiative seesaw models for neutrino mass generation. In our framework, we extend the Standard Model by a single colored electroweak-triplet scalar leptoquark and analyze its implications on the excess of ultra-high energy neutrino events observed by the IceCube collaboration. We consider only couplings between the leptoquark to first generation of quarks and first and second generations of leptons, and carry out a statistical analysis to determine the parameters that best describe the IceCube data as well as set 95% CL upper bounds. We analyze whether this study is still consistent with most up-to-date LHC data and various low energy observables.

  4. An LDA+U study of the photoemission spectra of ground state phase of americium and curium

    NASA Astrophysics Data System (ADS)

    Islam, Md; Ray, Asok

    2009-03-01

    We have investigated the photoemission spectra and other ground state properties such as equilibrium volume and bulk modulus of dhcp americium and the density of states and magnetic properties of dhcp curium using LDA+U method. Our calculations show that spin polarized americium is energetically favorable but spin degenerate configuration produces experimental quantities much better than that calculated using spin polarized configuration. The DOS calculated using LDA+U with both non-magnetic and spin polarized configurations is compared and the non-magnetic DOS is shown to be in good agreement with experimental photoemission spectra when U=4.5 eV. In spin polarized case, U is observed to increase the splitting between occupied and unoccupied bands by enhancing Stoner parameter. The results are shown to be in good agreement with that calculated using dynamical mean field theory for these two heavy actinides. For curium, exchange interaction appears to play the dominant role in its magnetic stability.

  5. Spectral Characterization of a Novel Luminescent Organogel

    ERIC Educational Resources Information Center

    Waguespack, Yan; White, Shawn R.

    2007-01-01

    The spectroscopic-based luminescence experiments were designed to expose the students to various concepts of single-triplet excited states, electron spin, vibrational relaxation, fluorescence-phosphorescence lifetimes and quenching. The students were able to learn about luminescence spectra of the gel and have the experience of synthesizing a…

  6. Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Wei; Bi, Xiao-Jun; Xiang, Qian-Fei; Yin, Peng-Fei; Yu, Zhao-Huan

    2018-02-01

    We study the signatures of the triplet-quadruplet dark matter model at the LHC and future colliders, including the 100 TeV Super Proton-Proton Collider and the 240 GeV Circular Electron Positron Collider. The dark sector in this model contains one fermionic electroweak triplet and two fermionic quadruplets, which have two kinds of Yukawa couplings to the Higgs doublet. Electroweak production signals of the dark sector fermions in the monojet+ ET, disappearing track, and multilepton+ET channels at the LHC and the Super Proton-Proton Collider are investigated. Moreover, we study the loop effects of this model on the Circular Electron Positron Collider precision measurements of e+e-→Z h and h →γ γ . We find that most of the parameter regions allowed by the observed dark matter relic density will be well explored by such direct and indirect searches at future colliders.

  7. Macro, Submicro, and Symbolic: The Many Faces of the Chemistry "Triplet"

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2011-01-01

    The idea that chemical knowledge can be represented in three main ways: macro, submicro, and symbolic (chemistry triplet) has become paradigmatic in chemistry and science education. It has served both as the base of theoretical frameworks that guide research in chemical education and as a central idea in various curriculum projects. However, this…

  8. Caught in the act: discovery of a physical quasar triplet

    NASA Astrophysics Data System (ADS)

    Farina, E. P.; Montuori, C.; Decarli, R.; Fumagalli, M.

    2013-05-01

    We present the discovery of a triplet of quasars at z ≈ 1.51. The whole system is well accommodated within 25 arcsec (i.e. 200 kpc in projected distance). The velocity differences among the three objects (as measured through the broad Mg II emission line) are <1000 km s-1, suggesting that the quasars belong to the same physical structure. Broad-band near-infrared (NIR) images of the field do not reveal evidence of galaxies or galaxy clusters that could act as a gravitational lens, ruling out the possibility that two or all the three quasars are multiple images of a single, strongly lensed source. QQQ J1519+0627 is the second triplet of quasars known up to date. We estimate that these systems are extremely rare in terms of simple accidental superposition. The lack of strong galaxy overdensity suggests that this peculiar system is harboured in the seeds of a yet-to-be-formed massive structure. Based on observations collected at the La Silla Observatory with the New Technology Telescope of the European Southern Observatory and at the Calar Alto Observatory with the 3.5 m telescope of the Centro Astrónmico Hispano Alemán.

  9. Mapping the conduction band edge density of states of γ-In2Se3 by diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Vedeshwar, Agnikumar G.

    2018-03-01

    It is demonstrated that the measured diffuse reflectance spectra of γ-In2Se3 can be used to map the conduction band edge density of states through Kubelka-Munk analysis. The Kubelka-Munk function derived from the measured spectra almost mimics the calculated density of states in the vicinity of conduction band edge. The calculation of density of states was carried out using first-principles approach yielding the structural, electronic, and optical properties. The calculations were carried out implementing various functionals and only modified Tran and Blaha (TB-MBJ) results tally closest with the experimental result of band gap. The electronic and optical properties were calculated using FP-LAPW + lo approach based on the Density Functional Theory formalism implementing only TB-mBJ functional. The electron and hole effective masses have been calculated as me * = 0.25 m 0 and mh * = 1.11 m 0 , respectively. The optical properties clearly indicate the anisotropic nature of γ-In2Se3.

  10. Absorption and Luminescence Studies of Some Highly Fluorescent Derivatives of Vitamin B1; Solvent and pH Effects

    NASA Astrophysics Data System (ADS)

    Marciniak, B.; Koput, J.; Kozubek, H.

    1990-08-01

    The influence of solvent on the UV-visible absorption and luminescence spectra of some highly fluorescent vitamin B1 derivatives, the products of the reaction of N-methylated vitamin B1 with cytidine (I), adenosine (II) and 2-amino-4-methylpyridine (III) is studied. Spectroscopic manifestations of protonation of I and II are also investigated using a semiempirical INDO/S CI method. Singlet and triplet energy levels of the free ion and several protonated species are calculated, and transition energies and oscillator strengths are compared with the experimental spectra. Calculated charge densities on heteroatoms in the ground and excited singlet and triplet states are correlated with changes of the experimental pKa values with excitation. The results for I and II are compared with those for the trimethylated pyrichrominium ion (III) previously studied

  11. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  12. Donor-Acceptor-Collector Ternary Crystalline Films for Efficient Solid-State Photon Upconversion.

    PubMed

    Ogawa, Taku; Hosoyamada, Masanori; Yurash, Brett; Nguyen, Thuc-Quyen; Yanai, Nobuhiro; Kimizuka, Nobuo

    2018-06-25

    It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores, and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.e., triplet energy migration for TTA-UC and succeeding singlet energy migration for transferring energy to a collector, takes place. To demonstrate this scheme, a highly fluorescent singlet energy collector was added as the third component of donor-doped acceptor crystalline films. An anthracene-based acceptor containing alkyl chains and a carboxylic moiety is mixed with the triplet donor Pt(II) octaethylporphyrin (PtOEP) and the energy collector 2,5,8,11-tetra- tert-butylperylene (TTBP) in solution, and spin-coating of the mixed solution gives acceptor films of nanofibrous crystals homogeneously doped with PtOEP and TTBP. Interestingly, delocalized singlet excitons in acceptor crystals are found to diffuse effectively over the distance of ~37 nm. Thanks to this high diffusivity, only 0.5 mol% of doped TTBP can harvest most of the singlet excitons, which successfully doubles the solid-state fluorescent quantum yield of acceptor/TTBP blend films to 76%. Furthermore, since the donor PtOEP and the collector TTBP are separately isolated in the nanofibrous acceptor crystals, the singlet back energy transfer from the collector to the donor is effectively avoided. Such efficient singlet energy collection and inhibited back energy transfer processes result in a large increase of UC efficiency up to 9

  13. Electron impact excitation of the electronic states of N2. III - Transitions in the 12.5-14.2-eV energy-loss region at incident energies of 40 and 60 eV

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Trajmar, S.; Cartwright, D. C.

    1977-01-01

    Analysis of electron energy-loss data at incident electron energies of 40 and 60 eV has led to the determination of normalized absolute differential cross sections for electron-impact excitation of five optically-allowed singlet states, two known triplet states, and two unknown triplet-like states of N2, lying in the energy-loss range 12.5-14.2 eV. The range of scattering angles was 5 to 138 deg. The optically allowed transitions and the known triplet excitations are identified. Cross sections for excitation to two unidentified triplet-like states at 13.155 and 13.395 eV were also obtained. The relationship of the generalized oscillator strength for the dipole-allowed states obtained from the described data to known optical oscillator strengths is discussed.

  14. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): Heavy atom effect

    NASA Astrophysics Data System (ADS)

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2013-12-01

    In this study the effect of carboxylic group substitution in the 2 and 5 position of indole ring on the photophysics of the parent indole chromophore has been studied. The photophysical parameters crucial in triplet state decay mechanism of aqueous indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C) have been determined applying our previously proposed methodology based on the heavy atom effect and fluorescence and phosphorescence decay kinetics [Kowalska-Baron et al., 2012]. The determined time-resolved phosphorescence spectra of I2C and I5C are red-shifted as compared to that of the parent indole. This red-shift was especially evident in the case of I2C and may indicate the possibility of hydrogen bonded complex formation incorporating carbonyl Cdbnd O, the NH group of I2C and, possibly, surrounding water molecules. The possibility of the excited state charge transfer process and the subsequent electronic charge redistribution in such a hydrogen bonded complex may also be postulated. The resulting stabilization of the I2C triplet state is manifested by its relatively long phosphorescence lifetime in aqueous solution (912 μs). The relatively short phosphorescence lifetime of I5C (56 μs) may be the consequence of more effective ground-state quenching of I5C triplet state. This hypothesis may be strengthened by the significantly larger value of the determined rate constant of I5C triplet state quenching by its ground-state (4.4 × 108 M-1 s-1) as compared to that for indole (6.8 × 107 M-1 s-1) and I2C (2.3 × 107 M-1 s-1). The determined bimolecular rate constant for triplet state quenching by iodide kqT1 is equal to 1 × 104 M-1 s-1; 6 × 103 M-1 s-1 and 2.7 × 104 M-1 s-1 for indole, I2C and I5C, respectively. In order to obtain a better insight into iodide quenching of I2C and I5C triplet states in aqueous solution, the temperature dependence of the bimolecular rate constants for iodide quenching of the triplet states has been expressed in

  15. Computation of geometries and frequencies of singlet and triplet nitromethane with density functional theory byusing gaussian type orbitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jursic, B.S.

    1996-12-31

    The results of the computational study of the structures, energies, dipole moments and IR spectra for a singlet and a triplet nitromethane are presented. Five different hybrids (BHandH, BHandHLYP, B3LYP, B3P86 and B3PW91), local (SVWN), and nonlocal (BLYP) DFT methods are used with various sizes of the gaussian type of basis set. The obtained results are compared to the HF, MP2, and MCSCF ab initio calculations, as well as, to the experimental results. Becke`s three functional based hybrid DFT methods outperform the following: the ab initio (HF, MP2 and MCSCF), the Becke`s half-and-half based DFT methods, and the local (SVWNmore » or LSDA) and nonlocal (BLYP) DFT methods. The computed nitromethane geometry, the dipole moment, the energy difference, and the IR frequency are in extraordinary agreement with the experimental results. Thus, we are recommending the B3LYP and the B3PW91 as the methods of choice when the computational study of small {open_quotes}difficult{close_quotes} molecules is considered.« less

  16. Tri-P-LETS: Changing the Face of High School Computer Science

    ERIC Educational Resources Information Center

    Sherrell, Linda; Malasri, Kriangsiri; Mills, David; Thomas, Allen; Greer, James

    2012-01-01

    From 2004-2007, the University of Memphis carried out the NSF-funded Tri-P-LETS (Three P Learning Environment for Teachers and Students) project to improve local high-school computer science curricula. The project reached a total of 58 classrooms in eleven high schools emphasizing problem solving skills, programming concepts as opposed to syntax,…

  17. Full-switching FSF-type superconducting spin-triplet magnetic random access memory element

    NASA Astrophysics Data System (ADS)

    Lenk, D.; Morari, R.; Zdravkov, V. I.; Ullrich, A.; Khaydukov, Yu.; Obermeier, G.; Müller, C.; Sidorenko, A. S.; von Nidda, H.-A. Krug; Horn, S.; Tagirov, L. R.; Tidecks, R.

    2017-11-01

    In the present work a superconducting Co/CoOx/Cu41Ni59 /Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.

  18. Local conformational dynamics in alpha-helices measured by fast triplet transfer.

    PubMed

    Fierz, Beat; Reiner, Andreas; Kiefhaber, Thomas

    2009-01-27

    Coupling fast triplet-triplet energy transfer (TTET) between xanthone and naphthylalanine to the helix-coil equilibrium in alanine-based peptides allowed the observation of local equilibrium fluctuations in alpha-helices on the nanoseconds to microseconds time scale. The experiments revealed faster helix unfolding in the terminal regions compared with the central parts of the helix with time constants varying from 250 ns to 1.4 micros at 5 degrees C. Local helix formation occurs with a time constant of approximately 400 ns, independent of the position in the helix. Comparing the experimental data with simulations using a kinetic Ising model showed that the experimentally observed dynamics can be explained by a 1-dimensional boundary diffusion with position-independent elementary time constants of approximately 50 ns for the addition and of approximately 65 ns for the removal of an alpha-helical segment. The elementary time constant for helix growth agrees well with previously measured time constants for formation of short loops in unfolded polypeptide chains, suggesting that helix elongation is mainly limited by a conformational search.

  19. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Chen; Yung, Man-Hong; Wang, Xin

    2018-04-01

    Composite pulses are essential for universal manipulation of singlet-triplet spin qubits. In the absence of noise, they are required to perform arbitrary single-qubit operations due to the special control constraint of a singlet-triplet qubit, while in a noisy environment, more complicated sequences have been developed to dynamically correct the error. Tailoring these sequences typically requires numerically solving a set of nonlinear equations. Here we demonstrate that these pulse sequences can be generated by a well-trained, double-layer neural network. For sequences designed for the noise-free case, the trained neural network is capable of producing almost exactly the same pulses known in the literature. For more complicated noise-correcting sequences, the neural network produces pulses with slightly different line shapes, but the robustness against noises remains comparable. These results indicate that the neural network can be a judicious and powerful alternative to existing techniques in developing pulse sequences for universal fault-tolerant quantum computation.

  20. Tunneling Spectra of a Quasifreestanding Graphene Monolayer

    NASA Astrophysics Data System (ADS)

    Li, Si-Yu; Bai, Ke-Ke; Zuo, Wei-Jie; Liu, Yi-Wen; Fu, Zhong-Qiu; Wang, Wen-Xiao; Zhang, Yu; Yin, Long-Jing; Qiao, Jia-Bin; He, Lin

    2018-05-01

    Considering the great success of scanning-tunneling-microscopy (STM) studies of graphene in the past ten years, it is quite surprising to notice that there is still a fundamental contradiction in the reported tunneling spectra of the quasifreestanding graphene monolayer. Many groups observed "V -shaped" spectra with linearly vanishing density of states at the Dirac point, whereas others reported spectra with a gap of ±60 meV pinned to the Fermi level in the quasifreestanding graphene monolayer. Here, we systematically study the two contradicting tunneling spectra of the quasifreestanding graphene monolayer on various substrates in the presence of different magnetic fields and demonstrate that both spectra are the "correct" spectra. However, the V -shaped spectrum exhibits only the contribution of the low-energy Dirac fermions, whereas the gapped spectrum is contributed by both the low-energy Dirac fermions and the high-energy nearly free-electron states due to the existence of the inelastic tunneling process. Our results indicate that interaction with substrates plays a vital role in affecting the spectra of graphene. We also show that it is possible to switch the tunneling spectra between the two distinct features at the nanoscale through voltage pulses applied to the STM tip.

  1. Luminescence spectra of a cholesteric photonic crystal

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.

    2017-05-01

    The transmission and luminescence spectra of a cholesteric photonic crystal doped with an organic dye are measured. The density of photon states is calculated using the material parameters obtained from the comparison of the experimental and theoretical spectra. The shape of the luminescence spectra is modified with respect to the density of photon states owing to the difference in the structure of the normal modes of the photonic crystal near the short-wavelength and long-wavelength edges of the photonic quasi-band gap upon the "pushing" of the photon states from the gap and to the nonvanishing orientation ordering of the luminescent molecules. The luminescence spectrum calculated taking into account the chiral structure of the photonic crystal agrees with the experimental spectrum.

  2. Theoretical and experimental study of the electronic states and spectra of LiSb

    NASA Astrophysics Data System (ADS)

    Setzer, K. D.; Fink, E. H.; Alekseyev, A. B.; Liebermann, H.-P.; Buenker, R. J.

    2018-05-01

    Gas phase emission spectra of the hitherto unknown free radical LiSb were measured in the NIR range with a Fourier-transform spectrometer. The emissions were observed from a fast-flow system in which antimony vapor in argon carrier gas was passed through a microwave discharge and mixed with lithium vapor in an observation tube. A number of blue-degraded bands observed in the range 6200-7800 cm-1 are assigned to transitions from four excited states A21, A30+, A40- and a2 to the X10+ and/or X21 components of the X3Σ- ground state. The 0-0 bands of six transitions were measured at high spectral resolution and rotationally analysed. The rotational and vibrational analyses have yielded the spectroscopic parameters of all six states. In order to aid in the analysis of the experimental data, a series of relativistic configuration interaction calculations has been carried out to obtain potential energy curves and spectroscopic constants for the low-lying states of LiSb as well as electric-dipole transition moments and radiative lifetimes.

  3. The NIR Ca ii triplet at low metallicity. Searching for extremely low-metallicity stars in classical dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Starkenburg, E.; Hill, V.; Tolstoy, E.; González Hernández, J. I.; Irwin, M.; Helmi, A.; Battaglia, G.; Jablonka, P.; Tafelmeyer, M.; Shetrone, M.; Venn, K.; de Boer, T.

    2010-04-01

    The NIR Ca ii triplet absorption lines have proven to be an important tool for quantitative spectroscopy of individual red giant branch stars in the Local Group, providing a better understanding of metallicities of stars in the Milky Way and dwarf galaxies and thereby an opportunity to constrain their chemical evolution processes. An interesting puzzle in this field is the significant lack of extremely metal-poor stars, below [Fe/H] = -3, found in classical dwarf galaxies around the Milky Way using this technique. The question arises whether these stars are really absent, or if the empirical Ca ii triplet method used to study these systems is biased in the low-metallicity regime. Here we present results of synthetic spectral analysis of the Ca ii triplet, that is focused on a better understanding of spectroscopic measurements of low-metallicity giant stars. Our results start to deviate strongly from the widely-used and linear empirical calibrations at [Fe/H] < -2. We provide a new calibration for Ca ii triplet studies which is valid for -0.5 ≥ [Fe/H] ≥ -4. We subsequently apply this new calibration to current data sets and suggest that the classical dwarf galaxies are not so devoid of extremely low-metallicity stars as was previously thought. Using observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile proposal 171.B-0588.

  4. Observation of Mollow Triplets with Tunable Interactions in Double Lambda Systems of Individual Hole Spins.

    NASA Astrophysics Data System (ADS)

    Lagoudakis, K. G.; Fischer, K. A.; Sarmiento, T.; McMahon, P. L.; Radulaski, M.; Zhang, J. L.; Kelaita, Y.; Dory, C.; Mueller, K. M.; Vuckovic, J.

    Although individual spins in quantum dots have been extensively used as qubits, their investigation under strong resonant driving in view of accessing Mollow physics is still an open question. We have grown high quality positively charged quantum dots (QD) embedded in a planar microcavity that enable enhanced light matter interactions. Applying a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above band and resonant excitation, we observe the formation of Mollow triplets. We investigate the regime where the Mollow sideband splittings are equal to the Zeeman splitting; we observe strong interactions between the Mollow sidebands of the inner transitions and the outer transitions in the form of very clear anticrossings. We investigated these anticrossings and we were able to modify the observed anticrossing splittings on demand by rotating the polarization of the resonant laser. We also developed a quantum-optical model of our system that fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of our positively charged quantum dot. The authors acknowledge financial support from the Army Research Office (Grant No. W911NF1310309) and support from the National Science Foundation, Division of Materials Research (Grant No. 1503759).

  5. [Effect of ascorbic acid (vitamin C) on the EPR spectra from the black and red hair].

    PubMed

    Chikvaidze, E; Miminoshvili, A; Gogoladze, T; Kiparoidze, S

    2012-02-01

    The EPR spectra of melanin's free radicals in natural black and red hair have been investigated. It is show that the EPR spectrum of black hair is slightly asymmetric singlet with g=2,0035 and ΔH=0,5 mTl. The EPR spectrum of red hair with g=2,0053 differs from the spectrum of black hair. Under the influence of visible (blue with λ(max)=450 nm) in both types of hair (black and red), the protoinduced free radicals appear, which indicates an increase in the intensity of already existing EPR spectrum of hair. It should be noted that the EPR spectra of red hair from various donors are different. The antioxidant ascorbic acid has the different effect on the photoinduced free radicals. In particular, in the case of black hair, the concentration of photoinduced free radicals is slightly reduced, whereas in red hair, the disappearance of the triplet in the spectrum is observed, and at the same time, the spectrum becomes a singlet, the intensity of which increases sharply.

  6. "Triplet" polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectors.

    PubMed

    Mathison, Megumi; Singh, Vivek P; Gersch, Robert P; Ramirez, Maricela O; Cooney, Austin; Kaminsky, Stephen M; Chiuchiolo, Maria J; Nasser, Ahmed; Yang, Jianchang; Crystal, Ronald G; Rosengart, Todd K

    2014-10-01

    The in situ reprogramming of cardiac fibroblasts into induced cardiomyocytes by the administration of gene transfer vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) has been shown to improve ventricular function in myocardial infarction models. The efficacy of this strategy could, however, be limited by the need for fibroblast targets to be infected 3 times--once by each of the 3 transgene vectors. We hypothesized that a polycistronic "triplet" vector encoding all 3 transgenes would enhance postinfarct ventricular function compared with use of "singlet" vectors. After validation of the polycistronic vector expression in vitro, adult male Fischer 344 rats (n=6) underwent coronary ligation with or without intramyocardial administration of an adenovirus encoding all 3 major vascular endothelial growth factor (VEGF) isoforms (AdVEGF-All6A positive), followed 3 weeks later by the administration to AdVEGF-All6A-positive treated rats of singlet lentivirus encoding G, M, or T (1×10(5) transducing units each) or the same total dose of a GMT "triplet" lentivirus vector. Western blots demonstrated that triplet and singlet vectors yielded equivalent GMT transgene expression, and fluorescence activated cell sorting demonstrated that triplet vectors were nearly twice as potent as singlet vectors in generating induced cardiomyocytes from cardiac fibroblasts. Echocardiography demonstrated that GMT triplet vectors were more effective than the 3 combined singlet vectors in enhancing ventricular function from postinfarct baselines (triplet, 37%±10%; singlet, 13%±7%; negative control, 9%±5%; P<.05). These data have confirmed that the in situ administration of G, M, and T induces postinfarct ventricular functional improvement and that GMT polycistronic vectors enhance the efficacy of this strategy. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  7. Dichorionic triamniotic triplet pregnancy complicated by twin anemia polycythemia sequence: the place of fetal therapy.

    PubMed

    Griersmith, Thérèse H; Fung, Alison M; Walker, Susan P

    2014-12-01

    Monochorionic twins as part of a high order multiple pregnancy can be an unintended consequence of the increasingly common practice of blastocyst transfer for couples requiring in vitro fertilisation (IVF) for infertility. Dichorionic triamniotic (DCTA) triplets is the most common presentation, and these pregnancies are particularly high risk because of the additional risks associated with monochorionicity. Surveillance for twin-to-twin transfusion syndrome, including twin anemia polycythemia sequence, may be more difficult, and any intervention to treat the monochorionic pair needs to balance the proposed benefits against the risks posed to the unaffected singleton. Counseling of families with DCTA triplets is therefore complex. Here, we report a case of DCTA triplets, where the pregnancy was complicated by threatened preterm labour, and twin anemia polycythemia sequence (TAPS) was later diagnosed at 28 weeks. The TAPS was managed with a single intraperitoneal transfusion, enabling safe prolongation of the pregnancy for over 2 weeks until recurrence of TAPS and preterm labour supervened. Postnatal TAPS was confirmed, and all three infants were later discharged home at term corrected age, and were normal at follow-up. This case highlights that in utero therapy has an important role in multiple pregnancies of mixed chorionicity, and can achieve safe prolongation of pregnancy at critical gestations.

  8. Excited electronic states of the methyl radical. Ab initio molecular orbital study of geometries, excitation energies and vibronic spectra

    NASA Astrophysics Data System (ADS)

    Mebel, Alexander M.; Lin, Sheng-Hsien

    1997-03-01

    The geometries, vibrational frequencies and vertical and adiabatic excitation energies of the excited valence and Rydberg 3s, 3p, 3d, and 4s electronic states of CH 3 have been studied using ab initio molecular orbital multiconfigurational SCF (CASSCF), internally contracted multireference configuration interaction (MRCI) and equation-of-motion coupled cluster (EOM-CCSD) methods. The vibronic spectra are determined through the calculation of Franck-Condon factors. Close agreement between theory and experiment has been found for the excitation energies, vibrational frequencies and vibronic spectra. The adiabatic excitation energies of the Rydberg 3s B˜ 2A' 1 and 3p 2 2A″ 2 states are calculated to be 46435 and 60065 cm -1 compared to the experimental values of 46300 and 59972 cm -1, respectively. The valence 2A″ excited state of CH 3 has been found to have a pyramidal geometry within C s symmetry and to be adiabatically by 97 kcal/mol higher in energy than the ground state. The 2A″ state is predicted to be stable by 9 and 13 kcal/mol with respect to H 2 and H elimination.

  9. Heat of formation determination of the ground and excited state of cyanomethylene (HCCN) radical

    NASA Technical Reports Server (NTRS)

    Francisco, Joseph S.

    1994-01-01

    Ab initio electronic structure theory has been used to characterize the structure of the ground triplet and lowest singlet excited states of cyanomethylene. The geometries, vibrational frequencies, and heats of formation have been determined using second-order Moller-Plesset perturbation, single and double excitation configuration interaction, and quadratic configuration interaction theory. The heat of formation is predicted with isodesmic reaction and Gaussian-2 theory (G2) for the ground triplet and first excited singlet states of cyanomethylene. For the ground state Delta-H(sub 0)(sup f,0) is 114.8+/-2 kcal/mol while for the excited single state it is 126.5+/-2 kcal/mol.

  10. Effects of charge noise on a pulse-gated singlet-triplet S - T_ qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Zhenyi; Wu, X.; Ward, D. R.

    Here, we study the dynamics of a pulse-gated semiconductor double-quantum-dot qubit. In our experiments, the qubit coherence times are relatively long, but the visibility of the quantum oscillations is low. We also show that these observations are consistent with a theory that incorporates decoherence arising from charge noise that gives rise to detuning fluctuations of the double dot. Because effects from charge noise are largest near the singlet-triplet avoided level crossing, the visibility of the oscillations is low when the singlet-triplet avoided level crossing occurs in the vicinity of the charge degeneracy point crossed during the manipulation, but there ismore » only modest dephasing at the large detuning value at which the quantum phase accumulates. This theory also agrees with experimental data and predicts that the visibility can be increased greatly by appropriate tuning of the interdot tunneling rate.« less

  11. Effects of charge noise on a pulse-gated singlet-triplet S - T_ qubit

    DOE PAGES

    Qi, Zhenyi; Wu, X.; Ward, D. R.; ...

    2017-09-11

    Here, we study the dynamics of a pulse-gated semiconductor double-quantum-dot qubit. In our experiments, the qubit coherence times are relatively long, but the visibility of the quantum oscillations is low. We also show that these observations are consistent with a theory that incorporates decoherence arising from charge noise that gives rise to detuning fluctuations of the double dot. Because effects from charge noise are largest near the singlet-triplet avoided level crossing, the visibility of the oscillations is low when the singlet-triplet avoided level crossing occurs in the vicinity of the charge degeneracy point crossed during the manipulation, but there ismore » only modest dephasing at the large detuning value at which the quantum phase accumulates. This theory also agrees with experimental data and predicts that the visibility can be increased greatly by appropriate tuning of the interdot tunneling rate.« less

  12. Simulation of femtosecond two-dimensional electronic spectra of conical intersections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krčmář, Jindřich; Gelin, Maxim F.; Domcke, Wolfgang

    2015-08-21

    We have simulated femtosecond two-dimensional (2D) electronic spectra for an excited-state conical intersection using the wave-function version of the equation-of-motion phase-matching approach. We show that 2D spectra at fixed values of the waiting time provide information on the structure of the vibronic eigenstates of the conical intersection, while the evolution of the spectra with the waiting time reveals predominantly ground-state wave-packet dynamics. The results show that 2D spectra of conical intersection systems differ significantly from those obtained for chromophores with well separated excited-state potential-energy surfaces. The spectral signatures which can be attributed to conical intersections are discussed.

  13. Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures.

    PubMed

    Niedzwiedzki, Dariusz; Koscielecki, Jeremy F; Cong, Hong; Sullivan, James O; Gibson, George N; Birge, Robert R; Frank, Harry A

    2007-05-31

    Many of the spectroscopic features and photophysical properties of carotenoids are explained using a three-state model in which the strong visible absorption of the molecules is associated with an S0 (1(1)Ag-) --> S2 (1(1)Bu+) transition, and the lowest lying singlet state, S1 (2(1)Ag-), is a state into which absorption from the ground state is forbidden by symmetry. However, semiempirical and ab initio quantum calculations have suggested additional excited singlet states may lie either between or in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+), and some ultrafast spectroscopic studies have reported evidence for these states. One such state, denoted S*, has been implicated as an intermediate in the depopulation of S2 (1(1)Bu+) and as a pathway for the formation of carotenoid triplet states in light-harvesting complexes. In this work, we present the results of an ultrafast, time-resolved spectroscopic investigation of a series of open-chain carotenoids derived from photosynthetic bacteria and systematically increasing in their number of pi-electron carbon-carbon double bonds (n). The molecules are neurosporene (n = 9), spheroidene (n = 10), rhodopin glucoside (n = 11), rhodovibrin (n = 12), and spirilloxanthin (n = 13). The molecules were studied in acetone and CS2 solvents at room temperature. These experiments explore the effect of solvent polarity and polarizability on the spectroscopic and kinetic behavior of the molecules. The molecules were also studied in ether/isopentane/ethanol (EPA) glasses at 77 K, in which the spectral resolution is greatly enhanced. Analysis of the data using global fitting techniques has revealed the ultrafast dynamics of the excited states and spectral changes associated with their decay, including spectroscopic features not previously reported. The data are consistent with S* being identified with a twisted conformational structure, the yield of which is increased in molecules having longer pi-electron conjugations. In particular

  14. Carbon dioxide photolysis from 150 to 210 nm: singlet and triplet channel dynamics, UV-spectrum, and isotope effects.

    PubMed

    Schmidt, Johan A; Johnson, Matthew S; Schinke, Reinhard

    2013-10-29

    We present a first principles study of the carbon dioxide (CO2) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + singlet channel threshold at ~167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ~0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the and potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO2 isotopologues ((12)C(16)O2, (12)C(17)O(16)O, (12)C(18)O(16)O, (13)C(16)O2, and (13)C(18)O(16)O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO2 photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of (17)O containing CO2 more efficient.

  15. Carbon dioxide photolysis from 150 to 210 nm: Singlet and triplet channel dynamics, UV-spectrum, and isotope effects

    PubMed Central

    Schmidt, Johan A.; Johnson, Matthew S.; Schinke, Reinhard

    2013-01-01

    We present a first principles study of the carbon dioxide (CO2) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the and potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO2 isotopologues (12C16O2, 12C17O16O, 12C18O16O, 13C16O2, and 13C18O16O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO2 photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of 17O containing CO2 more efficient. PMID:23776249

  16. Photo-degradation behaviour of roseoflavin in some aqueous solutions

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2010-03-01

    An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.

  17. What can Andreev bound states tell us about superconductors?

    PubMed

    Millo, Oded; Koren, Gad

    2018-08-06

    Zero-energy Andreev bound states, which manifest themselves in the tunnelling spectra as zero-bias conductance peaks (ZBCPs), are abundant at interfaces between superconductors and other materials and on the nodal surface of high-temperature superconductors. In this review, we focus on the information such excitations can provide on the properties of superconductor systems. First, a general introduction to the physics of Andreev bound states in superconductor/normal metal interfaces is given with a particular emphasis on why they appear at zero energy in d -wave superconductors. Then, specific spectroscopic tunnelling studies of thin films, bilayers and junctions are described, focusing on the corresponding ZBCP features. Scanning tunnelling spectroscopy (STS) studies show that the ZBCPs on the c -axis YBa 2 Cu 3 O 7- δ (YBCO) films are correlated with the surface morphology and appear only in proximity to (110) facets. STS on c -axis La 1.88 Sr 0.12 CuO 4 (LSCO) films exhibiting the 1/8 anomaly shows spatially modulated peaks near zero bias associated with the anti-phase ordering of the d -wave order parameter predicted at this doping level. ZBCPs were also found in micrometre-size edge junctions of YBCO/SrRuO 3 /YBCO, where SrRuO 3 is ferromagnetic. Here, the results are consistent with a crossed Andreev reflection effect (CARE) at the narrow domain walls of the SrRuO 3 ZBCPs measured in STS studies of manganite/cuprate bilayers could not be attributed to CARE because the manganite's domain wall is much larger than the coherence length in YBCO, and instead are attributed to proximity-induced triplet-pairing superconductivity with non-conventional symmetry. And finally, ZBCPs found in junctions of non-intentionally doped topological insulator films of Bi 2 Se 3 and the s -wave superconductor NbN are attributed to proximity-induced p x  + ip y triplet order parameter in the topological material.This article is part of the theme issue 'Andreev bound states'.

  18. Theoretical and experimental study of the electronic states and spectra of KBi and KSb

    NASA Astrophysics Data System (ADS)

    Setzer, K. D.; Fink, E. H.; Alekseyev, A. B.; Liebermann, H.-P.; Buenker, R. J.

    2017-03-01

    Gas phase emission spectra of the hitherto unknown free radicals KBi and KSb were measured in the NIR range with a Fourier-transform spectrometer. The emissions were observed from a fast-flow system in which bismuth or antimony vapor in argon carrier gas was passed through a microwave discharge and mixed with potassium vapor in an observation tube. For KBi, two systems of blue-degraded bands observed in the range 5800-7700 cm-1 are assigned to the transitions A3Π (A20+) → X3Σ-(X10+, X21). Nine bands of the A20+ → X10+ and three bands of the A20+ → X21 system were measured at high spectral resolution and rotationally analysed. The rotational and vibrational analyses yielded the spectroscopic parameters of the X10+, X21, and A20+ states. For KSb, in the range of the sensitive Ge detector, only one sequence of bands was measured near 6880 cm-1. By analogy with the previously observed spectra of NaSb and NaAs these bands were identified to be the Δv = 0 sequence of the a2 → X21 transition of KSb. Some very weak bands observed at low resolution in the range 3800-5200 cm-1 are assigned to the transitions A3Π (A21) → X3Σ -(X10+, X21). To aid in the analysis of the experimental data, a series of relativistic configuration interaction calculations has been carried out to obtain potential energy curves for the low-lying states of KBi and KSb, vibrational constants, equilibrium internuclear distances, and also electric dipole transition moments connecting the states.

  19. Molecular beam study of the a 3Σ+ state of NaK up to the dissociation limit

    NASA Astrophysics Data System (ADS)

    Temelkov, I.; Knöckel, H.; Pashov, A.; Tiemann, E.

    2015-03-01

    We provide spectroscopic data for the a 3Σ+ state of the 23Na39K molecule. The experiment is done in an ultrasonic beam apparatus, starting from the ground state X 1Σ+and driving the population to the a 3Σ+ state, using a Λ scheme with fixed pump and scanning dump laser. The signals are observed as dips of the total fluorescence. The intermediate level is chosen to be strongly perturbed by the B 1Π/c 3Σ+ states mixing to overcome the singlet-triplet transfer prohibition. We observed highly resolved hyperfine spectra of various rovibrational levels of the a 3Σ+state from va=2 up to the highest vibrational levels for rotational quantum numbers Na=4 ,6 ,8 . By the typical experimental linewidth of 17 MHz, the vibrational dependence of the hyperfine splitting is clearly revealed for NaK. The absolute frequency measurements of the vibrational levels are used for improvement of the a 3Σ+ potential curve and of the derived scattering length of all natural isotope combinations. Applying the Λ scheme in the reverse direction can provide a pathway for efficient transfer of ultracold 23Na39K molecules from the Na(3 s )+K(4 s ) asymptote to the lowest levels of the ground state. We show spectra that couple the absolute ground state vX=0 ,J =0 with an appropriate intermediate state for direct realization of the reverse path. The refined theoretical model of the coupled excited states of the Na(3 s )+K(4 p ) asymptote allows predictions of efficient paths for 23Na40K ; one example is calculated.

  20. Kinetics of photoinduced electron transfer between DNA bases and triplet 3,3',4,4'-benzophenone tetracarboxylic acid in aqueous solution of different pH's: proton-coupled electron transfer?

    PubMed

    Nguyen, Truong X; Kattnig, Daniel; Mansha, Asim; Grampp, Günter; Yurkovskaya, Alexandra V; Lukzen, Nikita

    2012-11-08

    The kinetics of triplet state quenching of 3,3',4,4'-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λ(max) = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence of the quenching rate constants is measured in detail. As a result, the chemical reactivity of the reactants is assigned. The bimolecular rate constants of the quenching reactions between triplet BPTC and adenine, adenosine, thymine, and thymidine are k(q) = 2.3 × 10(9) (4.7 < pH < 9.9), k(q) = 4.0 × 10(9) (3.5 < pH < 4.7), k(q) = 1.0 × 10(9) (4.7 < pH < 9.9), and k(q) = 4.0 × 10(8) M(-1) s(-1) (4.7 < pH < 9.8), respectively. Moreover, it reveals that in strong basic medium (pH = 12.0) a keto-enol tautomerism of thymine inhibits its reaction with triplet BPTC. Such a behavior is not possible for thymidine because of its deoxyribose group. In addition, the pH-dependence of the apparent electrochemical standard potential of thymine in aqueous solution was investigated by cyclic voltammetry. The ΔE/ΔpH ≈ -59 mV/pH result is characteristic of proton-coupled electron transfer. This behavior, together with the kinetic analysis, leads to the conclusion that the quenching reactions between triplet BPTC and thymine involve one proton-coupled electron transfer.