Hills, Melissa J; Hall, Linda M; Messenger, Doug F; Graf, Robert J; Beres, Brian L; Eudes, François
2007-01-01
Development of transgenic triticale as a platform for novel bio-industrial products is predicated on an environmental biosafety assessment that quantifies the potential risks associated with its release. Pollen-mediated gene flow to related species and conventional triticale varieties is one pathway for transgene movement. A tier 1 quantification of triticale hybridization was conducted by emasculating and hand pollinating flowers under greenhouse conditions. Approximately 2000 manual pollinations were conducted for each cross and its reciprocal between two triticale genotypes: a modern triticale cultivar (AC Alta) and primary triticale (89TT108), and common wheat, durum wheat and rye. The frequency of outcrossing, hybrid seed appearance and weight, and F(1) emergence and fertility were recorded. Outcrossing, F(1) emergence and fertility rates were high from crosses between triticale genotypes. Outcrossing in inter-specific crosses was influenced by the species, and the genotype and gender of the triticale parent. In crosses to common and durum wheat where triticale was the male parent, outcrossing was > or =73.0% and > or =69.5%, respectively, but < or =23.9% and < or =3.0% when triticale was the female parent. Overall, outcrossing with rye was lower than with common and durum wheat. F(1) hybrid emergence was greater when triticale was the female parent. With the exception of a single seed, all wheat-triticale F(1) hybrid seeds were non-viable when triticale was the male parent in the cross. Only seven durum wheat-triticale F(1) hybrids emerged from 163 seeds sown, and all were produced with triticale 89TT108 as female parent. With rye, 8 F(1) hybrids emerged from 38 seeds sown, and all were produced from crosses to AC Alta; five with AC Alta as the female parent and three as the male. Interspecific F(1) hybrids were self-sterile, with the exception of those produced in crosses between common wheat and triticale where triticale was the female parent. Tier 2 hybridization quantification will be conducted under field conditions.
Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota
2016-10-18
Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain.
Góral, Tomasz; Wiśniewska, Halina; Ochodzki, Piotr; Walentyn-Góral, Dorota
2016-01-01
Resistance to Fusarium head blight in 32 winter triticale and 34 winter wheat accessions was evaluated. Triticale and wheat were sown in field experiments in two locations. At the time of flowering, heads were inoculated with three Fusarium culmorum isolates. Fusarium head blight index was scored and after the harvest percentage of Fusarium damaged kernels was assessed. Grain was analysed for type B trichothecenes (deoxynivalenol and derivatives, nivalenol) and zearalenone (ZEN) content. The average Fusarium head blight indexes were 28.0% for wheat and 19.2% for triticale accessions. The percentage of Fusarium damaged kernels was also higher for wheat and came to 55.6%, while for triticale this figure was 40.2%. The average content of deoxynivalenol (DON) for wheat amounted to 11.65 mg/kg and was lower than the result for triticale which was 14.12 mg/kg. The average contents of nivalenol were similar in both cereals: 4.13 mg/kg and 5.19 mg/kg for wheat and triticale respectively. Considerable amounts of DON derivatives in the cereals were also detected. The ZEN content in the grain was 0.60 mg/kg for wheat and 0.66 mg/kg for triticale. Relationships between Fusarium head blight index, Fusarium damaged kernels and mycotoxin contents were statistically significant for wheat and mostly insignificant for triticale. Triticale proved to have less infected heads and kernels than wheat. However, the content of type B trichothecenes was higher in triticale grain than in wheat grain. PMID:27763547
Genome Variation Within Triticale in Comparison to its Wheat and Rye Progenitors
USDA-ARS?s Scientific Manuscript database
Genome variation in the intergeneric wheat-rye hybrid triticale (X Triticosecale Wittmack) has been a puzzle to scientists and plant breeders since the first triticale was synthesized. The existence of unexplained genetic variation in triticale as compared to the parents has been a hindrance to bre...
Triticale powdery mildew: population characterization and wheat gene efficiency.
Bouguennec, Annaig; Trottet, Maxime; du Cheyron, Philippe; Lonnet, Philippe
2014-01-01
Powdery mildew has emerged on triticale in the early 2000s in many locations, probably due to a host range expansion of the wheat formae speciales, Blumeria graminis f.sp. tritici. Many triticale cultivars are highly susceptible to powdery mildew, mainly in seedling stage, revealing a probably narrow genetic basis for powdery mildew resistance genes (Pm). Moreover, as Blumeria graminis is an obligate biotrophic fungus, it is very time consuming and difficult to maintain powdery mildew isolates for a non-specialized laboratory and populations can evolve. In order to identify wheat Pm genes efficient against natural populations of powdery mildew, wheat differential hosts and triticale seedlings were inoculated below susceptible triticale crop naturally contaminated by mildew, in several locations and several years. Symptoms on seedlings were measured after approximately two weeks of incubation in favorable fungus growth conditions. According to these data, we classified the Pm genes presents in our wheat differential hosts set in 3 classes: Pm already overcame by triticale powdery mildew, Pm having variable effects and Pm still efficient against triticale mildew. Data on triticale seedlings allowed us to identify some few triticale cultivars resistant to Blumeria graminis in seedling stage. We will try to identify Pm genes present in those cultivars next year by testing them with the characterized isolates of powdery mildew from Gent University. Nevertheless, interspecific crossing of wheat, resistant to powdery mildew in seedling stage, and rye have been initiated to introduce potentially interesting genes for resistance in triticale.
An effective increase in milk production through triticale feeding.
Derbal, Nora; Benbelkacem, A; Dib, Y
2014-01-01
Since the first studies in Algeria in 1999, 2002 and 2005, triticale has been used in arid and semi-arid areas mainly for livestock production. Efforts have been done for the utilization of triticale as hay, silage and hole grain to feed dairy cattle and small ruminants (sheep). Studies have shown that triticale could be easily integrated in the existing crop-livestock system of northern Algeria. In spite of the good results in the yield performance and adaptation to diverse environments, decision makers are not giving the necessary attention to triticale. Dairy cattle holders that tested the crop have adopted it quickly and developed it in an informal way. Now, more than 90% of the triticale seed business is in the hands of private farmers without any help or subsidies nor a good price policy to develop strongly this crop. The utilization of triticale in Algeria is roughly as follow: human consumption 5%, forage crop (hay or silage) 60% and 30% as feed grain, the remaining 5% are kept for sowing seed. In our studies we have compared different feed sources (barley, triticale, concentrate diet and mixtures) to dairy cattle and sheep. Triticale showed highly significantly better results for meat production and gave also an amazing response for dairy and sheep milk production in Algeria. Milk production of animals fed with triticale over exceeded the other feed sources by 26% to 53%; mean weight gain exhibited the same rates.
Huang, Juan; Wang, Yujie; Li, Daiyan; Diao, Chengdou; Zhu, Wei; Tang, Yao; Wang, Yi; Fan, Xing; Zeng, Jian; Xu, Lili; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong
2016-01-01
Hexaploid triticale is an important forage crop and a promising energy plant. Some forms were previously reported for developing the hexaploid triticale, such as crossing tetraploid wheat or hexaploid wheat with rye, crossing hexaploid triticale and/or hexaploid wheat with octoploid triticale, and spontaneously appearing in the selfed progenies of octoploid triticale. In the present study, we developed an effective method for production of diverse types of hexaploid triticale via wheat—rye—Psathyrostachys huashanica trigeneric hybrid. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) karyotyping revealed that D genome chromosomes were completely eliminated and the whole A, B, and R genome chromosomes were retained in three lines. More interestingly, the composite genome of the line K14-489-2 consisted of complete A and B genomes and chromosomes 1D, 2R, 3R, 4R, 5R, 6R, and 7R, that of line K14-491-2 was 12 A-genome (1A-6A), 14 B-genome (1B-7B), 12 R-genome (1R-3R, 5R-7R), and chromosomes 1D and 3D, and that of the line K14-547-1 had 26A/B and 14R chromosomes, plus one pair of centric 6BL/2DS translocations. This finding implies that some of D genome chromosomes can be spontaneously and stably incorporated into the hexaploid triticale. Additionally, a variety of high-molecular-weight glutenin subunits (HMW-GS) compositions were detected in the six hexaploid triticale lines, respectively. Besides, compared with its recurrent triticale parent Zhongsi828, these lines showed high level of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, including V26/Gui 22. These new hexaploid triticales not only enhanced diversification of triticale but also could be utilized as valuable germplasm for wheat improvement. PMID:27182983
The heavy metal ions (Cu2+, Zn2+, Cd+) toxic compounds influence on triticale plants growth
NASA Astrophysics Data System (ADS)
Brezoczki, V. M.; Filip, G. M.
2017-05-01
The presence of the heavy metals toxic compounds (CuSO4 · 5H2O, ZnSO4 · 7H2O and 3CdSO4·8H2O) in water and soil can be observed by their negative effects on the germination and growth process for different vegetable (barley, oat, maize) who are used for human and animal consumption. This paper it aims the determination of germination and growth inhibition negative effects for triticale plants in the heavy metals ions presence by ecotoxicological laboratory tests. The triticale plants was chosen for their different characteristics to the other grasses respectively: a very good resistance for a wide range of diseases, an accelerated growth and a very good tolerance for aluminum ions presents in acid soils. The determinations were conducted step by step, first, we put the triticale grains in contact with the heavy metal solutions with different concentration then for 3 days we noticed the triticale germination inhibition effects and finally we noticed the growth inhibition process for triticale plants respectively in 7th and 9th day from the start of the experiment. At the end of the tests we can conclude that the triticale roots have a very great sensibility to a CuSO4 solutions compared to the effects for their stalks. A positive effect for triticale stalks we can see for low CuSO4 solution concentrations thus for 5 mg Cu/l the growth is 19,44%. A positive effect for triticale roots it can see for low ZnSO4 solution concentrations so for 5 - 15 mg Zn/l the growth is 24,4%. In the presence of the CdSO4 solution all the processes are inhibited (germination and growth for triticale plants) even for a low concentrations for this toxic.
Porcine intestinal microbiota is shaped by diet composition based on rye or triticale.
Burbach, K; Strang, E J P; Mosenthin, R; Camarinha-Silva, A; Seifert, J
2017-12-01
The present study aimed to compare the microbiota composition from pigs fed different cereal grain types, either rye or triticale, as sole energy source. Ileal digesta and faeces were sampled from eight pigs of each experiment. Illumina amplicon sequencing of the 16S rRNA gene was used to analyse the microbiota. Concentrations of short-chain fatty acids and ammonia were determined from faecal samples. The grain type revealed significant alterations in the overall microbiota structure. The rye-based diet was associated with an increased abundance of Lactobacillus in ileal digesta and Streptococcus in faeces and significantly higher concentrations of faecal short-chain fatty acids and ammonia compared to triticale. However, triticale significantly promoted the abundance of Streptococcus in ileal digesta and Clostridium sensu stricto in faeces. Diets based on rye or triticale affect varying intestinal microbiota, both of taxonomical and metabolic structure, with rye indicating an enhanced saccharolytic potential and triticale a more cellulolytic potential. Nutrient composition of rye and triticale are attractive for porcine nutrition. Both cereal grains show varying stimuli on the microbiota composition and microbial products of the ileum and faeces. © 2017 The Society for Applied Microbiology.
Salmanowicz, Bolesław P.; Langner, Monika; Wiśniewska, Halina; Apolinarska, Barbara; Kwiatek, Michał; Błaszczyk, Lidia
2013-01-01
Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat) genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8). Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW) glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number) of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax), and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement. PMID:23896593
Inclusion of wheat and triticale silage in the diet of lactating dairy cows.
Harper, M T; Oh, J; Giallongo, F; Roth, G W; Hristov, A N
2017-08-01
The objective of this experiment was to partially replace corn silage with 2 alternative forages, wheat (Triticum aestivum) or triticale (X Triticosecale) silages at 10% of the diet dry matter (DM), and investigate the effects on dairy cow productivity, nutrient utilization, enteric CH 4 emissions, and farm income over feed costs. Wheat and triticale were planted in the fall as cover crops and harvested in the spring at the boot stage. Neutral- and acid-detergent fiber and lignin concentrations were higher in the wheat and triticale silages compared with corn silage. The forages had similar ruminal in situ effective degradability of DM. Both alternative forages had 1% starch or less compared with the approximately 35% starch in corn silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, wheat or triticale silages were included at 10% of dietary DM, replacing corn silage. Dry matter intake was not affected by diet, but both wheat and triticale silage decreased yield of milk (41.4 and 41.2 vs. 42.7 ± 5.18 kg/d) and milk components, compared with corn silage. Milk fat from cows fed the alternative forage diets contained higher concentrations of 4:0, 6:0, and 18:0 and tended to have lower concentrations of total trans fatty acids. Apparent total-tract digestibility of DM and organic matter was decreased in the wheat silage diet, and digestibility of neutral-and acid-detergent fiber was increased in the triticale silage diet. The wheat and triticale silage diets resulted in higher excretion of urinary urea, higher milk urea N, and lower milk N efficiency compared with the corn silage diet. Enteric CH 4 emission per kilogram of energy-corrected milk was highest in the triticale silage diet, whereas CO 2 emission was decreased by both wheat and triticale silage. This study showed that, at milk production of around 42 kg/d, wheat silage and triticale silage can partially replace corn silage DM and not affect DM intake, but milk yield may decrease slightly. For dairy farms in need of more forage, triticale or wheat double cropped with corn silage may be an appropriate cropping strategy. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effects of growth stage on quality characteristics of triticale forages
USDA-ARS?s Scientific Manuscript database
The use of triticale (X Triticosecale Wittmack) in dairy-cropping systems has expanded greatly in recent years, partly to improve land stewardship by providing winter ground cover. Our objectives were to relate the nutritive value of triticale forages grown in central Wisconsin with plant growth sta...
Protein and Quality Characterization of Triticale Translocation Lines in Bread Making
USDA-ARS?s Scientific Manuscript database
Introduction of high molecular weight glutenin subunits (HMW-GS) from the Glu-Did locus of wheat into triticale restores the genetic constitution of storage protein loci to that of wheat and subsequently improves the bread making quality of triticale. One means to achieve such restoration of the gen...
Protein and quality characterization of triticale translocation lines in breadmaking
USDA-ARS?s Scientific Manuscript database
Introduction of high molecular weight glutenin subunits (HMW-GS) from the Glu-D1d locus of wheat into triticale restores the genetic constitution of high molecular weight glutenin loci to that of wheat and subsequently improves the breadmaking quality of triticale. One means of achieving such restor...
Rheological characterisation of gluten from triticale (x Triticosecale Wittmack).
Pruska-Kędzior, Anna; Makowska, Agnieszka; Kędzior, Zenon; Salmanowicz, Bolesław P
2017-11-01
Triticale gluten still remains very poorly characterised rheologically. In this study the mechanical spectra of gluten isolated from four triticale cultivars were registered and fitted with Cole-Cole functions yielding the visco-elastic plateau parameters. Master spectra were calculated. A retardation test was performed and used to calculate the composite mechanical spectra and the width of visco-elastic plateau l. Protein fractional composition of triticale flour and gluten was studied using capillary zone electrophoresis. Differentiated HMW-GS/SS compositions were identified in the triticale cultivars studied. The rheological parameters reached the following values: J N 0 1.05·10 -3 to 2.69·10 -3 Pa -1 , G N 0 372 to 956 Pa, ω 0 0.003 to 0.06 rad s -1 , l 169 to 3121, J e 0 1.57·10 -3 to 5.03·10 -3 Pa -1 , G e 0 199 to 637 Pa and η 0 1.06·10 7 to 3.93·10 7 Pa s. Visco-elastic properties of triticale gluten correspond to the lower end of medium visco-elasticity shown by common wheat gluten. Master spectra and the composite mechanical spectra prove that four triticale glutens exhibit practically an identical type of visco-elastic behaviour of a biopolymeric visco-elastic liquid similar to wheat gluten. The visco-elastic plateau parameters G N 0 , J N 0 , ω 0 and l appeared significantly correlated with the contents of prolamins and secaloglutenins in triticale flours and glutens. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Dastranj, M; Borzoui, E; Bandani, A R; Franco, O L
2018-06-01
The diamondback moth (Plutella xylostella) and small white cabbage butterfly (Pieris rapae) are the two main serious pests of cruciferous crops (Brassicaceae) that have developed resistance to chemical control methods. In order to avoid such resistance and also the adverse effects of chemical pesticides on the environment, alternative methods have usually been suggested, including the use of plant enzyme inhibitors. Here, the inhibitory effects of proteinaceous inhibitors extracted from wheat, canola, sesame, bean and triticale were evaluated against the digestive α-amylases, larval growth, development and nutritional indecs of the diamondback moth and small white cabbage butterfly. Our results indicated that triticale and wheat extracts inhibited α-amylolytic activity in an alkaline pH, which is in accordance with the moth and butterfly gut α-amylase optimum pH. Dose-dependent inhibition of two crucifer pests by triticale and wheat was observed using spectrophotometry and gel electrophoresis. Implementation of specificity studies showed that wheat and triticale-proteinaceous extract were inactive against Chinese and purple cabbage amylase. Triticale and wheat were resistant against insects' gut proteases. Results of the feeding bioassay indicated that triticale-proteinaceous extract could cause a significant reduction in survival and larval body mass. The results of the nutritional indecs also showed larvae of both species that fed on a Triticale proteinaceous inhibitor-treated diet had the lowest values for the efficiency of conversion of ingested food and relative growth rate. Our observations suggested that triticale shows promise for use in the management of crucifer pests.
7 CFR 1421.302 - Eligible producer and eligible land.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the 2008 Through 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.302 Eligible producer and... producer of wheat, barley, oats, or triticale in the 2008 through 2012 crop years. Also, to be an eligible...) Producers who elect to graze 2008 through 2012 crop wheat, barley, oats, or triticale will not be eligible...
Xue, P C; Adeola, O
2015-02-01
An experiment was conducted in growing pigs to determine the true total-tract digestibility (TTTD) of P in triticale distillers' dried grains with solubles (DDGS) with or without phytase using the regression method. Six diets were formulated in a 3 × 2 factorial arrangement, including 3 levels of triticale DDGS (300, 400, or 500 g/kg) and phytase (0 or 500 phytase units [FTU]/kg of diet). A total of 48 barrows (initial BW 22.2 ± 1.3 kg) were assigned to the 6 diets in a randomized complete block design. There was a 5-d adjustment period followed by a 5-d total collection of feces. The results show that P intake, fecal P output, and digested P increased linearly ( < 0.01) with increasing level of DDGS in diets. There was a main effect ( < 0.001) of phytase on apparent total-tract digestibility (ATTD) of P. In diets without added phytase, the ATTD of P in triticale DDGS was 65.0, 67.7, and 63.2% for the diets with 300, 400, and 500 g/kg triticale DDGS, respectively; the corresponding values for diets with added phytase were 77.3, 76.3, and 75.7%. By regressing daily digested P against daily P intake, the TTTD of P was estimated at 75.4% for triticale DDGS or 81.1% with added phytase, respectively. In conclusion, the TTTD of P in triticale DDGS without supplemental phytase was 75.4%, and it was 81.1% in the presence of phytase at 500 FTU/kg of the diet, but the difference was not statistically significant. For triticale DDGS, the supplementation of 500 FTU/kg phytase in diet could increase the ATTD of P ( < 0.001) but not the TTTD of P.
Genetic architecture of fusarium head blight resistance in four winter triticale populations.
Kalih, R; Maurer, H P; Miedaner, T
2015-03-01
Fusarium head blight (FHB) is a devastating disease that causes significant reductions in yield and quality in wheat, rye, and triticale. In triticale, knowledge of the genetic architecture of FHB resistance is missing but essential due to modern breeding requirements. In our study, four doubled-haploid triticale populations (N=120 to 200) were evaluated for resistance to FHB caused by artificial inoculation with Fusarium culmorum in four environments. DArT markers were used to genotype triticale populations. Seventeen quantitative trait loci (QTL) for FHB resistance were detected across all populations; six of them were derived from rye genome and located on chromosomes 4R, 5R, and 7R, which are here reported for the first time. The total cross-validated ratio of the explained phenotypic variance for all detected QTL in each population was 41 to 68%. In all, 17 QTL for plant height and 18 QTL for heading stage were also detected across all populations; 3 and 5 of them, respectively, were overlapping with QTL for FHB. In conclusion, FHB resistance in triticale is caused by a multitude of QTL, and pyramiding them contributes to higher resistance.
Praz, Coraline R; Menardo, Fabrizio; Robinson, Mark D; Müller, Marion C; Wicker, Thomas; Bourras, Salim; Keller, Beat
2018-01-01
Powdery mildew is an important disease of cereals. It is caused by one species, Blumeria graminis , which is divided into formae speciales each of which is highly specialized to one host. Recently, a new form capable of growing on triticale ( B.g. triticale ) has emerged through hybridization between wheat and rye mildews ( B.g. tritici and B.g. secalis , respectively). In this work, we used RNA sequencing to study the molecular basis of host adaptation in B.g. triticale . We analyzed gene expression in three B.g. tritici isolates, two B.g. secalis isolates and two B.g. triticale isolates and identified a core set of putative effector genes that are highly expressed in all formae speciales . We also found that the genes differentially expressed between isolates of the same form as well as between different formae speciales were enriched in putative effectors. Their coding genes belong to several families including some which contain known members of mildew avirulence ( Avr ) and suppressor ( Svr ) genes. Based on these findings we propose that effectors play an important role in host adaptation that is mechanistically based on Avr-Resistance gene-Svr interactions. We also found that gene expression in the B.g. triticale hybrid is mostly conserved with the parent-of-origin, but some genes inherited from B.g. tritici showed a B.g. secalis -like expression. Finally, we identified 11 unambiguous cases of putative effector genes with hybrid-specific, non-parent of origin gene expression, and we propose that they are possible determinants of host specialization in triticale mildew. These data suggest that altered expression of multiple effector genes, in particular Avr and Svr related factors, might play a role in mildew host adaptation based on hybridization.
Mehrabadi, Mohammad; Bandani, Ali R; Saadati, Fatemeh
2010-01-01
The effect of triticale α-amylases inhibitors on starch hydrolysis catalyzed by the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) midgut amylases was examined. Biochemical studgawies showed that inhibitors from Triticale (a hybrid of wheat and rye) had inhibitiory effects on E. integriceps α-amylases. The effects of the triticale α-amylase inhibitor (T-αAI) on α-amylase of E. integriceps showed a dose dependent manner of inhibition, e.g. less inhibition of enzyme activity (around 10%) with a lower dose (0.25 mg protein) and high inhibition of enzyme activity (around 80%) when a high dose of inhibitor was used (1.5 mg protein). The enzyme kinetic studies using Michaelis-Menten and Lineweaver-Burk equations showed the K(m) remained constant (0.58%) but the maximum velocity (V(max)) decreased in the presence of a crude extract of Triticale inhibitors, indicating mixed inhibition. The temperature giving 50% inactivation of enzyme (T(50)) during a 30-min incubation at pH 7.0 was 73° C. The maximum inhibitory activity was achieved at 35° C and pH 5.0. Gel assays showed the meaningful inhibition of E. integriceps α-amylases by various concentrations of Triticale inhibitors. Based on the data presented in this study, it could be said that the T-αAI has good inhibitory activity on E. integriceps gut α-amylase.
Mehrabadi, Mohammad; Bandani, Ali R.; Saadati, Fatemeh
2010-01-01
The effect of triticale α-amylases inhibitors on starch hydrolysis catalyzed by the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) midgut amylases was examined. Biochemical studgawies showed that inhibitors from Triticale (a hybrid of wheat and rye) had inhibitiory effects on E. integriceps α-amylases. The effects of the triticale α-amylase inhibitor (T-αAI) on α-amylase of E. integriceps showed a dose dependent manner of inhibition, e.g. less inhibition of enzyme activity (around 10%) with a lower dose (0.25 mg protein) and high inhibition of enzyme activity (around 80%) when a high dose of inhibitor was used (1.5 mg protein). The enzyme kinetic studies using Michaelis-Menten and Lineweaver-Burk equations showed the Km remained constant (0.58%) but the maximum velocity (Vmax) decreased in the presence of a crude extract of Triticale inhibitors, indicating mixed inhibition. The temperature giving 50% inactivation of enzyme (T50) during a 30-min incubation at pH 7.0 was 73° C. The maximum inhibitory activity was achieved at 35° C and pH 5.0. Gel assays showed the meaningful inhibition of E. integriceps α-amylases by various concentrations of Triticale inhibitors. Based on the data presented in this study, it could be said that the T-αAI has good inhibitory activity on E. integriceps gut α-amylase. PMID:21062146
Waitman, B.A.; Draper, T.M.; Esque, T.C.
2009-01-01
Post-fire seeding with grasses is a common practice for emergency rehabilitation of burned woodlands. However, most post-seeding monitoring does not address consequences to native flora. In November 2004, the US Forest Service hand-seeded triticale (Triticosecale Wittm. ex A. Camus), a sterile wheatrye hybrid, on a small burned area in the Spring Mountains of southern Nevada, United States. A monitoring project using paired plots was designed to quantify the effects of seeding triticale on density and species richness of native annual and perennial plants, cover of perennial plants, and aboveground production of annual plants. We did not find any effects of triticale seeding on annual plant species or most responses of perennial plants. However, the density of woody perennial seedlings was significantly lower 2 years after triticale was added. Although we found a smaller impact from seeding with exotic grass than other studies, quantifiable costs to native vegetation were observed. We caution against the use of non-native grass for seeding in areas with naturally low perennial recruitment. ?? IAWF 2009.
Zuber, T; Maurer, H P; Möhring, J; Nautscher, N; Siegert, W; Rosenfelder, P; Rodehutscord, M
2016-12-01
Triticale, an anthropogenic hybrid grain, is increasing in importance as a feed grain for laying hens. However, our limited knowledge of its nutritional qualities and their impact on hen performance prevents optimization of its use. The present study investigated the digestibility of amino acids ( AA: ) in triticale grain in laying hens, and additionally examined relationships between AA digestibility and chemical and physical characteristics of the grain. Twenty genotypes of triticale were grown under standardized agronomic and environmental conditions and were characterized according to their physical properties (thousand-seed weight, test weight, falling number, extract viscoelasticity), chemical composition (proximate nutrients, non-starch polysaccharides, AA, minerals, inositol phosphates) and gross energy concentration. Additionally, the in vitro solubility of nitrogen was determined. The animal trial comprised 4 Latin Squares (6 × 6) distributed among 2 subsequent runs. Twelve cecectomized LSL-Classic hens were individually housed in metabolism cages and either fed a basal diet containing 500 g/kg cornstarch or one of 20 triticale diets, each replacing the cornstarch with one triticale genotype, for 8 d. During the last 4 d, feed intake was recorded and excreta were collected quantitatively. Amino acid digestibility of the triticale genotypes was calculated by linear regression. The digestibility of all AA differed significantly between the 20 genotypes, including Lys (digestibility range 68 to 80%), Met (77 to 86%), Thr (68 to 78%) and Trp (74 to 83%). However, AA digestibility only correlated with characteristics of the grain in few cases, without a consistent pattern among AA. Equations to predict AA digestibility based on the grain's physical and chemical characteristics were calculated by multiple linear regression. The explanatory power (adjusted R 2 ;) of these prediction equations was below 0.7 for most AA and thus not sufficiently precise to be suitable for practical application. In conclusion, AA digestibility of triticale grain is high overall in laying hens but varies significantly between crop genotypes. This variation could not be well explained by physical and chemical characteristics of the grain. © 2016 Poultry Science Association Inc.
Gumienna, Małgorzata; Lasik, Małgorzata; Szambelan, Katarzyna; Czarnecki, Zbigniew
2011-01-01
The distillery stillage is a major and arduous byproduct generated during ethanol production in distilleries. The aim of this study was to evaluate the possibility of the stillage recirculation in the mashing process of triticale for non-byproducts production and reducing the fresh water consumption. The number of recirculation cycles which can be applied without disturbances in the ethanol fermentation process was investigated. Winter triticale BOGO and "Ethanol Red" Saccharomyces cerevisiae yeast were used in the experiments. The method of non-pressure cooking was used for gelatinizingthe triticale, commercial α-amylase SPEZYME ETHYL and glucoamylase FERMENZYME L-400 were applied for starch liquefaction and saccharification. The process was conducted at 30°C for 72 h, next after distillation the stillage was centrifuged and the liquid fraction was used instead of 75% of process water. Ethanol yield from triticale fermentations during 40 cycles ranged between 82% and 95% of theoretical yield preserving yeast vitality and quantity on the same level. The obtained distillates were characterized with enhanced volatile compounds (fusel oil, esters, aldehydes, methanol) as well as protein and potassium concentrations. The liquid part of stillage was proved that can be reused instead of water in bioethanol production from triticale, without disturbing the fermentation process. This investigated solution of distillery byproducts utilization (liquid phase of stillage) constitutes the way which could significantly decrease the bioethanol production costs by reducing the water consumption, as well as wastewater production.
Majka, M; Kwiatek, M; Belter, J; Wiśniewska, H
2016-10-01
Allocation of the chromosome 2D of Ae. tauschii in triticale background resulted in changes of its organization, what is related to varied expression of genes determining agronomically important traits. Monosomic alien addition lines (MAALs) are crucial for transfer of genes from wild relatives into cultivated varieties. This kind of genetic stocks is used for physical mapping of specific chromosomes and analyzing alien genes expression. The main aim of our study is to improve hexaploid triticale by transferring D-genome chromatin from Aegilops tauschii × Secale cereale (2n = 4x = 28, DDRR). In this paper, we demonstrate the molecular cytogenetics analysis and SSR markers screening combined with phenotype analysis and evaluation of powdery mildew infection of triticale monosomic addition lines carrying chromosome 2D of Ae. tauschii. We confirmed the inheritance of chromosome 2D from the BC2F4 to the BC2F6 generation of triticale hybrids. Moreover, we unveiled a high variable region on the short arm of chromosome 2D, where chromosome rearrangements were mapped. These events had direct influence on plant height of hybrids what might be connected with changes at Rht8 loci. We obtained 20 semi-dwarf plants of BC2F6 generation carrying 2D chromosome with the powdery mildew resistance, without changes in spike morphology, which can be used in the triticale breeding programs.
Praz, Coraline R.; Menardo, Fabrizio; Robinson, Mark D.; Müller, Marion C.; Wicker, Thomas; Bourras, Salim; Keller, Beat
2018-01-01
Powdery mildew is an important disease of cereals. It is caused by one species, Blumeria graminis, which is divided into formae speciales each of which is highly specialized to one host. Recently, a new form capable of growing on triticale (B.g. triticale) has emerged through hybridization between wheat and rye mildews (B.g. tritici and B.g. secalis, respectively). In this work, we used RNA sequencing to study the molecular basis of host adaptation in B.g. triticale. We analyzed gene expression in three B.g. tritici isolates, two B.g. secalis isolates and two B.g. triticale isolates and identified a core set of putative effector genes that are highly expressed in all formae speciales. We also found that the genes differentially expressed between isolates of the same form as well as between different formae speciales were enriched in putative effectors. Their coding genes belong to several families including some which contain known members of mildew avirulence (Avr) and suppressor (Svr) genes. Based on these findings we propose that effectors play an important role in host adaptation that is mechanistically based on Avr-Resistance gene-Svr interactions. We also found that gene expression in the B.g. triticale hybrid is mostly conserved with the parent-of-origin, but some genes inherited from B.g. tritici showed a B.g. secalis-like expression. Finally, we identified 11 unambiguous cases of putative effector genes with hybrid-specific, non-parent of origin gene expression, and we propose that they are possible determinants of host specialization in triticale mildew. These data suggest that altered expression of multiple effector genes, in particular Avr and Svr related factors, might play a role in mildew host adaptation based on hybridization. PMID:29441081
Gasparis, Sebastian; Kała, Maciej; Przyborowski, Mateusz; Orczyk, Waclaw; Nadolska-Orczyk, Anna
2017-01-01
Gene silencing by RNA interference is a particularly important tool in the study of gene function in polyploid cereal species for which the collections of natural or induced mutants are very limited. Previously we have been testing small interfering RNA-based approach of gene silencing in wheat and triticale. In this research, artificial microRNAs (amiRs) were studied in the same species and the same target genes to compare effectiveness of both gene silencing pathways. amiR cassettes were designed to silence Puroindoline a (Pina) and Puroindoline b (Pinb) hardness genes in wheat and their orthologues Secaloindoline a (Sina) and Secaloindoline b (Sinb) genes in triticale. Each of the two cassettes contained 21 nt microRNA (miR) precursor derived from conserved regions of Pina/Sina or Pinb/Sinb genes, respectively. Transgenic plants were obtained with high efficiency in two cultivars of wheat and one cultivar of triticale after using the Pinb-derived amiR vector for silencing of Pinb or Sinb, respectively. Lack of transgenic plants in wheat or very low transformation efficiency in triticale was observed using the Pina-derived amiR cassette, despite large numbers of embryos attempted. Silencing of Pinb in wheat and Sinb in triticale was highly efficient in the T1 generation. The transcript level of Pinb in wheat was reduced up to 92% and Sinb in triticale was reduced up to 98%. Moreover, intended silencing of Pinb/Sinb with Pinb-derived amiR cassette was highly correlated with simultaneous silencing of Pina/Sina in the same transgenic plants. High downregulation of Pinb/Pina genes in T1 plants of wheat and Sinb/Sina genes in T1 plants of triticale was associated with strong expression of Pinb-derived amiR. Silencing of the target genes correlated with increased grain hardness in both species. Total protein content in the grains of transgenic wheat was significantly lower. Although, the Pinb-derived amiR cassette was stably inherited in the T2 generation of wheat and triticale the silencing effect including strongly decreased expression of silenced genes as well as strong expression of Pinb-derived amiR was not transmitted. Advantages and disadvantages of posttranscriptional silencing of target genes by means of amiR and siRNA-based approaches in polyploid cereals are discussed. PMID:28119710
Wierenga, K T; McAllister, T A; Gibb, D J; Chaves, A V; Okine, E K; Beauchemin, K A; Oba, M
2010-09-01
The objective of this study was to assess the value of triticale dried distillers grains with solubles (DDGS) as a replacement for barley silage in addition to a portion of the dry-rolled barley (DRB) in a grain-based feedlot finishing diet. The trial used 160 crossbred yearling steers: 144 noncannulated (478 +/- 84 kg) in a complete randomized design, and 16 ruminally cannulated (494 +/- 50 kg) in a replicated 4 x 4 Latin square design. The noncannulated steers were assigned to 8 standard pens (10 per pen) and 8 pens equipped with the GrowSafe system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada; 8 per pen). The cannulated steers were placed (2 per pen) in the 8 GrowSafe pens and moved between pens at 28-d intervals. Each of 4 experimental diets was fed in 2 standard and 2 GrowSafe pens. The diets contained (DM basis) 1) 85% DRB and 10% barley silage (CON); 2) 65% DRB, 20% triticale DDGS, and 10% barley silage (D-10S), 3) 65% DRB, 25% triticale DDGS, and 5% barley silage, and 4) 65% DRB, 30% triticale DDGS, and no barley silage. Supplement (5% of dietary DM) was included in all diets. Ruminal pH was measured over four 7-d periods using indwelling electrodes. Replacing barley silage with triticale DDGS linearly decreased mean ruminal pH (P = 0.006), linearly increased duration (P = 0.006 and P = 0.01) and area under the curve (P = 0.02 and P = 0.05) below pH 5.5 and 5.2, and linearly increased the frequency of subacute (P = 0.005) and acute (P = 0.05) bouts of ruminal acidosis. Variation in mean ruminal pH decreased (P = 0.008) in steers fed D-10S compared with CON. Similarly, variation in DMI was less for steers fed triticale DDGS compared with CON. Steers fed D-10S tended to have greater DMI (P = 0.08) but similar ADG and G:F compared with CON steers. Replacing barley silage with triticale DDGS tended to linearly decrease DMI (P = 0.10) and increase (P = 0.06) G:F. Compared with CON, steers fed D-10S tended to have greater backfat thickness (P = 0.10) and decreased dressing percentage (P = 0.06), ribeye area (P = 0.10), and meat yield (P = 0.06). Severity and number of abscessed livers was greater (P = 0.006) in steers fed D-10S compared with those fed CON. Although mean ruminal pH decreased as barley silage was replaced with triticale DDGS, the trend for improved growth suggests that reduced ruminal pH did not affect animal performance. Triticale DDGS can be substituted for barley silage in finishing diets in addition to a portion of barley grain without affecting growth performance or carcass quality, but it is recommended that an antimicrobial be included in the diet to reduce liver abscesses.
Triticale for dairy forage systems
USDA-ARS?s Scientific Manuscript database
Triticale forages have become increasingly important components of dairy-cropping systems. In part, this trend has occurred in response to environmental pressures, specifically a desire to capture N and other nutrients from land-applied manure, and/or to improve stewardship of the land by providing ...
Perlikowski, Dawid; Wiśniewska, Halina; Kaczmarek, Joanna; Góral, Tomasz; Ochodzki, Piotr; Kwiatek, Michał; Majka, Maciej; Augustyniak, Adam; Kosmala, Arkadiusz
2016-01-01
Highlight: The level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to Fusarium head blight. Triticale was used here as a model to recognize new components of molecular mechanism of resistance to Fusarium head blight (FHB) in cereals. Fusarium-damaged kernels (FDK) of two lines distinct in levels of resistance to FHB were applied into a proteome profiling using two-dimensional gel electrophoresis (2-DE) to create protein maps and mass spectrometry (MS) to identify the proteins differentially accumulated between the analyzed lines. This proteomic research was supported by a measurement of alpha- and beta-amylase activities, mycotoxin content, and fungal biomass in the analyzed kernels. The 2-DE analysis indicated a total of 23 spots with clear differences in a protein content between the more resistant and more susceptible triticale lines after infection with Fusarium culmorum. A majority of the proteins were involved in a cell carbohydrate metabolism, stressing the importance of this protein group in a plant response to Fusarium infection. The increased accumulation levels of different isoforms of plant beta-amylase were observed for a more susceptible triticale line after inoculation but these were not supported by a total level of beta-amylase activity, showing the highest value in the control conditions. The more resistant line was characterized by a higher abundance of alpha-amylase inhibitor CM2 subunit and simultaneously a lower activity of alpha-amylase after inoculation. We suggest that the level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to FHB. PMID:27582751
Miocinovic, Jelena; Tomic, Nikola; Dojnov, Biljana; Tomasevic, Igor; Stojanovic, Sanja; Djekic, Ilija; Vujcic, Zoran
2018-03-01
The need to increase the daily intake of dietary fibres opens a new chapter in the research of functional foods enriched with fibres. The potential application of an innovative product - insoluble dietary fibres from triticale in yoghurts - was deployed by characterising their food application and evaluating physico-chemical, rheological and sensory properties and was the aim of this research. Detailed characterisations of these fibres are presented for the first time and showed very good hydration properties, optimal pH (slightly acidic), optimal chemical composition, high antioxidant capacity which was proven by phenolics contents. Besides, these fibres showed negligible calorific value, with no phytates and high antioxidant capacity, mainly from ferulic acid. Therefore they could be successfully added to yoghurt. Enrichment of yoghurt having different milk fat content (1.5 and 2.8% w/w) with triticale insoluble fibre (1.5% and 3.0% w/w) significantly influenced the syneresis level, its apparent viscosity, yield stress and thixotropic behaviour. The overall sensory quality scores indicated that yoghurt enriched with 1.5% triticale insoluble fibres was recognised as 'excellent' and had enhanced antioxidant activity. Insoluble triticale fibre could therefore be used as a supplement to produce functional yoghurt. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Siegert, Wolfgang; Boguhn, Jeannette; Maurer, Hans Peter; Weiss, Jochen; Zuber, Tobias; Möhring, Jens; Rodehutscord, Markus
2017-01-01
The influence of nitrogen fertilisation and genotype on the amino acid (AA) digestibility of triticale grain was investigated in caecectomised laying hens. Three genotypes, Grenado, EAW6002 and Lasko, were cultivated with and without nitrogen fertilisation at the end of the heading stage. The six triticale variants as well as a basal diet were each used to feed seven laying hens in a 7 × 7 Latin square design. Nitrogen fertilisation influenced the digestibility of Cys, Glu, Phe and Ser in some triticale genotypes and reduced Ala, Ile, Lys, Met and Val digestibility in all genotypes (P < 0.05). Nitrogen fertilisation increased the concentration of all AAs in the grain. Consequently, the concentration of digestible AAs in the grains was increased for most AAs upon nitrogen fertilisation. Overall, Lys had the lowest digestibility, whereas that of Glu and Pro was the highest. For the triticale genotypes, the level of AA digestibility was highest for EAW6002 followed by Lasko and Grenado, with significant differences (P < 0.05) between genotypes for some but not all AAs. The results indicated that the accuracy of the digestible AA supply for hen feeding might benefit from considering fertilisation and genotype-specific digestibility data in feed formulation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
7 CFR 1421.304 - Payment amount.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.304 Payment amount. (a) The grazing payment rate... payment rate in effect for the predominant class of wheat in the county where the farm is located as of... three (3) similar farms. For triticale, the payment yield shall be the yield for wheat from three (3...
Dhariwal, Raman; Fedak, George; Dion, Yves; Pozniak, Curtis; Laroche, André; Eudes, François; Randhawa, Harpinder Singh
2018-01-01
Triticale (xTriticosecale Wittmack) is an important feed crop which suffers severe yield, grade and end-use quality losses due to Fusarium head blight (FHB). Development of resistant triticale cultivars is hindered by lack of effective genetic resistance sources. To dissect FHB resistance, a doubled haploid spring triticale population produced from the cross TMP16315/AC Ultima using a microspore culture method, was phenotyped for FHB incidence, severity, visual rating index (VRI), deoxynivalenol (DON) and some associated traits (ergot, grain protein content, test weight, yield, plant height and lodging) followed by single nucleotide polymorphism (SNP) genotyping. A high-density map consisting of 5274 SNPs, mapped on all 21 chromosomes with a map density of 0.48 cM/SNP, was constructed. Together, 17 major quantitative trait loci were identified for FHB on chromosomes 1A, 2B, 3A, 4A, 4R, 5A, 5R and 6B; two of incidence loci (on 2B and 5R) also co-located with loci for severity and VRI, and two other loci of VRI (on 1A and 4R) with DON accumulation. Major and minor loci were also identified for all other traits in addition to many epistasis loci. This study provides new insight into the genetic basis of FHB resistance and their association with other traits in triticale. PMID:29304028
Steam explosion pretreatment of triticale (× Triticosecale Wittmack) straw for sugar production.
Agudelo, Roberto A; García-Aparicio, María P; Görgens, Johann F
2016-01-25
Triticale, a non-food based, low-cost and well-adapted crop in marginal lands has been considered as a potential 1G and 2G feedstock for bio-ethanol production. In this work, triticale straw was evaluated as a source of fermentable sugars by combination of uncatalyzed steam explosion and enzymatic hydrolysis. Pretreatment conditions with severities from 3.05 to 4.12 were compared in order to identify conditions that favour the recovery of hemicellulose-derived sugars, cellulose digestibility or the combined sugars yield (CSY) from the pretreatment-enzymatic hydrolysis. Xylose oligosaccharide was the major sugar in hydrolysates from all pretreatment conditions. Maximum hemicellulose-sugars recovery (52% of the feedstock content) was obtained at 200 °C and 5 min. The highest cellulose digestibility (95%) was found at 200 °C - 15 min, although glucose recovery from hydrolysis was maximised at 200 °C - 10 min (digestibility >92%) due to higher mass yield of pretreated solids. The maximum CSY (nearly 77% of theoretical content) was obtained at 200 °C - 5 min. Sugar loss after pretreatment was observed to higher extent at harsher severities. However, the concentrations of sugar degradation products and acetic acid were at levels below tolerance limits of the downstream biological conversions. Steam explosion pretreatment without acid impregnation is a good technology for production of fermentable sugars from triticale straw. This work provides foundation for future autohydrolysis steam explosion optimization studies to enhanced sugars recovery and digestibility of triticale straw. Copyright © 2015. Published by Elsevier B.V.
Bińka, Agnieszka; Orczyk, Wacław; Nadolska-Orczyk, Anna
2012-02-01
The influence of two binary vector systems, pGreen and pCAMBIA, on the Agrobacterium-mediated transformation ability of wheat and triticale was studied. Both vectors carried selection cassettes with bar or nptII driven by different promoters. Two cultivars of wheat, Kontesa and Torka, and one cultivar of triticale, Wanad, were tested. The transformation rates for the wheat cultivars ranged from 0.00 to 3.58% and from 0.00 to 6.79% for triticale. The best values for wheat were 3.58% for Kontesa and 3.14% for Torka, and these were obtained after transformation with the pGreen vector carrying the nptII selection gene under the control of 35S promoter. In the case of the bar selection system, the best transformation rates were, respectively, 1.46 and 1.79%. Such rates were obtained when the 35S::bar cassette was carried by the pCAMBIA vector; they were significantly lower with the pGreen vector. The triticale cultivar Wanad had its highest transformation rate after transformation with nptII driven by 35S in pCAMBIA. The bar selection system for the same triticale cultivar was better when the gene was driven by nos and the selection cassette was carried by pGreen. The integration of the transgenes was confirmed with at least three pairs of specific starters amplifying the fragments of nptII, bar, or gus. The expression of selection genes, measured by reverse transcriptase polymerase chain reaction (RT-PCR) in relation to the actin gene, was low, ranging from 0.00 to 0.63 for nptII and from 0.00 to 0.33 for bar. The highest relative transcript accumulation was observed for nptII driven by 35S and expressed in Kontesa that had been transformed with pGreen.
Moeinoddini, H R; Alikhani, M; Ahmadi, F; Ghorbani, G R; Rezamand, P
2017-01-01
The primary objective of this study was to examine the effects of different inclusion rates of dietary triticale replacing corn grain in starter rations of dairy calves on feed intake, average daily gain (ADG), feed efficiency, skeletal growth, fecal score, and selected blood and ruminal parameters. In all, 30 4-day-old Holstein calves (15 female and 15 male) were blocked by gender and birth weight, and then randomly allotted to three treatment groups (n=10 calves/treatment) and received either a corn-based diet without triticale (T0), or a diet containing 16% (T16) or 32% (T32) triticale (25% and 50% corn replaced by triticale, respectively) for 10 weeks. Calves were weaned on day 43 of study and remained on the study until day 70. During post-weaning period, calves fed T32 had the lowest starter intake (1.78 kg/day; P=0.02). In contrast, ADG was not affected in pre-weaning and overall periods, but calves fed T32 had a lower ADG (P=0.04) as compared with calves fed T0 in post-weaning period. No dietary effect was detected for feed efficiency. Dietary treatment did not affect heart girth and body length; however, height at wither and hip at weaning increased in calves fed triticale compared with T0. No detectable effects were observed in serum glucose and β-hydroxybutyrate. No difference was detected in blood urea nitrogen on day 35 either but on day 50 and day 70 the greatest concentration was recorded for calves fed T16. Compared with the control, ruminal ammonia concentration was increased for calves fed T32 (4.34 v. 7.50 mmol/l) and T16 (4.01 v. 8.12 mmol/l) on day 35 and day 50. No difference was detected in ruminal pH on day 35 or day 50; however, calves fed T32 had the lowest pH (6.11) at 70 days. No significant effect was detected in days scoured, respiratory score and general appearance. Under our experimental conditions, it appears that triticale at 16% dry matter (i.e. replacing corn grain up to 25%) in the starter diet does not have adverse effects on the performance and intake of calves. Therefore, substituting corn partially with triticale in calf starter diets may prove beneficial in places where corn is less abundant or its price is prohibitive. The low number of calves per treatment however may have limited the statistical power to detect significant differences among treatments, possibly affecting the results, which should be interpreted with caution.
The nitrogen efficiency of MSW composts as measured by triticale uptake in a 3-year field experiment
NASA Astrophysics Data System (ADS)
Weber, Jerzy; Licznar, Michal; Bekier, Jakub; Drozd, Jerzy; Jamroz, Elzbieta; Kocowicz, Andrzej; Parylak, Danuta; Kordas, Leszek; Licznar, Stanislawa
2010-05-01
This paper presents results of three year field experiment, where two different composts produced from municipal solid wastes were applied to sandy soil. The experiment was established on soil developed from loam sand, according to U.S.D.A. textural classes (81% of sand, 12% of silt, and 7% of clay), of a slightly acidic reaction (pH KCl 6.05 - 6.44). The plough layer (0 - 25 cm) contained about 5.0 g/kg of organic carbon. Both composts were alkaline in reaction and contained high amounts of plant available forms of phosphorus, potassium and magnesium. Composts were used non-recurrently in rates of 18, 36, and 72 t/ha, calculated on dry matter basis. Control objects (0 and NPK) were plots without fertilization, as well as plots fertilized each year with mineral forms of NPK. Field experiment was conducted in 15 m2 plots, using five replications in a randomized block design. Spring triticale (x Triticosecale Wittm.) cultivated in a 3-year monoculture was used as the experiment plant. Soil samples were collected each year after harvesting. Changes in triticale yield were considered in relation to soil properties and nitrogen content in triticale straw and grain. Application of composts caused beneficial changes in soil fertility, connected mainly with an increase of soil organic matter and content of available forms of P, K, and Mg. These effects were observed throughout three years of the experiment. However, significantly higher values of organic carbon - as compared to control (0 and NPK) - were observed only in plots with medium and highest compost doses. This effect was very clear in the first year, while significant differences in soil carbon content were still observed in next two years. The yield of triticale straw and grain depended significantly on fertilization with composts, but beneficial effect of compost was observed only in the first year. Yield similar to NPK control was found only on plots where the highest dose of compost was applied. Next two years, all compost amended plots indicated distinctly lower yield than that on NPK control. Decrease of yield was accompanied by decreased level of nitrogen in triticale straw and grain, although soil of compost amended and NPK fertilized plots indicated the same level of total nitrogen. In the third year dramatic decrease of soil total nitrogen was observed in (0) control, as result of exhausting available nitrogen, while soil amended with composts still contained nitrogen present in non-mineralized organic matter. The yield of triticale grown on soil amended with compost produced from municipal solid wastes was limited by not sufficient amount of plant available nitrogen. Nitrogen efficiency measured as amount of N taken up by triticale grain and straw - after depriving N uptake by triticale grown on control (0) - was very low, around 3 % in the first year and around 1% in the third year. Application of MSW composts is a good alternative for mineral fertilization, however supplementary fertilization with mineral nitrogen is necessary, depending on compost dose and quality.
7 CFR 810.2005 - Special grades and special grade requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... contains in a 1,000 gram portion more than six green garlic bulblets or an equivalent quantity of dry or partly dry bulblets. (c) Light garlicky triticale. Triticale that contains in a 1,000 gram portion two or... a 250 gram portion smut balls, portions of smut balls, or spores of smut in excess of a quantity...
7 CFR 810.2005 - Special grades and special grade requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... contains in a 1,000 gram portion more than six green garlic bulblets or an equivalent quantity of dry or partly dry bulblets. (c) Light garlicky triticale. Triticale that contains in a 1,000 gram portion two or... a 250 gram portion smut balls, portions of smut balls, or spores of smut in excess of a quantity...
7 CFR 810.2005 - Special grades and special grade requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... contains in a 1,000 gram portion more than six green garlic bulblets or an equivalent quantity of dry or partly dry bulblets. (c) Light garlicky triticale. Triticale that contains in a 1,000 gram portion two or... a 250 gram portion smut balls, portions of smut balls, or spores of smut in excess of a quantity...
7 CFR 810.2005 - Special grades and special grade requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... contains in a 1,000 gram portion more than six green garlic bulblets or an equivalent quantity of dry or partly dry bulblets. (c) Light garlicky triticale. Triticale that contains in a 1,000 gram portion two or... a 250 gram portion smut balls, portions of smut balls, or spores of smut in excess of a quantity...
7 CFR 810.2005 - Special grades and special grade requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... contains in a 1,000 gram portion more than six green garlic bulblets or an equivalent quantity of dry or partly dry bulblets. (c) Light garlicky triticale. Triticale that contains in a 1,000 gram portion two or... a 250 gram portion smut balls, portions of smut balls, or spores of smut in excess of a quantity...
USDA-ARS?s Scientific Manuscript database
The use of winter triticale (X Triticosecale Wittmack) in dairy-cropping systems has expanded greatly in recent years, partly because of its value as a forage crop, but also to improve land stewardship by providing winter ground cover. Our objectives were to use 2-pool and 3-pool nonlinear models to...
USDA-ARS?s Scientific Manuscript database
The use of triticale (X Triticosecale Wittmack) in dairy-cropping systems has expanded greatly in recent years, partly to improve land stewardship by providing winter ground cover. Our objectives were to establish relationships relating indices of nutritive value with growth stage or accumulated gro...
7 CFR 800.86 - Inspection of shiplot, unit train, and lash barge grain in single lots.
Code of Federal Regulations, 2011 CFR
2011-01-01
... More than 0.20% 0.06 Garlicky 3 or more in 500 grams 21/3 Ergoty More than 0.10% 0.13 Infested Same as... or factor Grade limit Breakpoint Smutty 15 or more in 250 grams (wheat, rye, or triticale... More than 0.10% (all other mixtures) 0 Garlicky 2 or more per 1,000 grams (wheat, rye, or triticale...
7 CFR 800.86 - Inspection of shiplot, unit train, and lash barge grain in single lots.
Code of Federal Regulations, 2012 CFR
2012-01-01
... More than 0.20% 0.06 Garlicky 3 or more in 500 grams 21/3 Ergoty More than 0.10% 0.13 Infested Same as... or factor Grade limit Breakpoint Smutty 15 or more in 250 grams (wheat, rye, or triticale... More than 0.10% (all other mixtures) 0 Garlicky 2 or more per 1,000 grams (wheat, rye, or triticale...
7 CFR 800.86 - Inspection of shiplot, unit train, and lash barge grain in single lots.
Code of Federal Regulations, 2013 CFR
2013-01-01
... More than 0.20% 0.06 Garlicky 3 or more in 500 grams 21/3 Ergoty More than 0.10% 0.13 Infested Same as... or factor Grade limit Breakpoint Smutty 15 or more in 250 grams (wheat, rye, or triticale... More than 0.10% (all other mixtures) 0 Garlicky 2 or more per 1,000 grams (wheat, rye, or triticale...
7 CFR 800.86 - Inspection of shiplot, unit train, and lash barge grain in single lots.
Code of Federal Regulations, 2014 CFR
2014-01-01
... More than 0.20% 0.06 Garlicky 3 or more in 500 grams 21/3 Ergoty More than 0.10% 0.13 Infested Same as... or factor Grade limit Breakpoint Smutty 15 or more in 250 grams (wheat, rye, or triticale... More than 0.10% (all other mixtures) 0 Garlicky 2 or more per 1,000 grams (wheat, rye, or triticale...
Genetic variations in the digestibility in sheep of selected whole-crop cereals used as silages.
Emile, J C; Jobim, C C; Surault, F; Barrière, Y
2007-09-01
Whole-plant winter cereals could be of great interest if used as silages for ruminant feeding as opposed to summer crops in that they would spare water resources or valorize low-input management. This study aimed to compare the feeding value of rye, barley, wheat (two genotypes) and triticale (six genotypes). The cereals were sown in October and harvested as silage in June. Forages were offered to Texel castrated sheep in order to evaluate the organic matter digestibility (OMd). The OMd of the wheat cultivars was higher (61.6%, P<0.05) than those of barley (57.2%) and rye (54.7%) but no different from that of triticale (60.6%). Within the triticale genotypes, OMd ranged from 54.7 to 62.3%. The presence of rough barbs should explain the relatively low intake of the cereals with the exception of wheat. Winter cereals provide good-quality forage for feeding ruminants. Wheat has a higher nutritional value than barley and rye and a wide variability for digestibility seems to exist within the triticale cultivars. Such variability in a species known for its ability to be cropped under limiting conditions should be explored in much greater depth as it could result in providing farmers with genotypes of good quality with an acceptable yield at a lower cost.
Mikuła, R; Nowak, W; Jaśkowski, J M; Maćkowiak, P; Oszmałek, E Pruszyńska
2011-01-01
The objective of the study was to determine the effect of replacing triticale (high rumen degradable starch) with maize grain (low rumen degradable starch) during the transition period and the first 120 days of lactation on metabolic and hormonal profile indices, milk production and fertility performance in cows. Forty-eight Holstein-Friesian dairy cows were divided into 4 groups: TT (2.5 kg triticale grain/cow per day supplemented from 14 days prepartum to day 120 postpartum), TM (2.5 kg triticale grain/cow per day supplemented from day 14 before parturition to calving, and then 2.5 kg maize grain to 120 days of lactation), MT (2.5 kg maize grain/cow per day supplemented from day 14 before parturition to calving, and then 2.5 kg triticale grain to 120 days of lactation), MM (2.5 kg maize grain/cow per day supplemented from 14 days prepartum to day 120 postpartum). Blood samples were collected 3 weeks and 1 week before calving and on days 14, 56 and 70 of lactation, and they were analyzed in terms of concentrations of glucose, insulin, leptin, insulin-like growth factor I, nonesterified fatty acids, triglycerides, cholesterol, blood urea nitrogen and activities of aspartate aminotransferase and gamma glutamyl transpeptidase. Milk samples were collected twice a day at weekly intervals and analyzed for fat, protein and lactose. Milk yield and individual dry mater intake were recorded at weekly intervals. Body condition was estimated 3 weeks before calving, on parturition day and on days 14, 56 and 120 of lactation. Replacing triticale grain with maize grain in the transition period and during lactation positively affected fertility of lactating cows. An increased first service conception rate and shortening of the days open period was observed in MM and TM groups in comparison to those found in group MT (P < or = 0.05). The lowest number of services per conception was recorded in groups MM and TM (P < or = 0.05). Although the impact of milk production and the most of the blood indices were not significantly affected by this treatment, the results of the study suggest that maize grain in the transition period and lactation might be a more effective energy source for dairy cows than triticale grain.
Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M.; Kościelniak, Janusz
2015-01-01
OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold. PMID:26230839
2012-01-01
Background While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Results Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. Conclusions The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants. PMID:23006412
Hensel, Goetz; Oleszczuk, Sylwia; Daghma, Diaa Eldin S; Zimny, Janusz; Melzer, Michael; Kumlehn, Jochen
2012-09-25
While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants.
Borzoui, E; Naseri, B; Nouri-Ganbalani, G
2017-02-01
Biology and physiological traits of Sitotroga cerealella Olivier, a world-wide insect pest of cereals, were investigated on different grains (barley, maize, rye, sorghum, triticale, and wheat). Larval and pupal duration was the shortest on wheat and triticale, and the longest on sorghum. There were significant differences in survival rate of immature stages on grains with different seed hardness. The highest realized fecundity and egg fertility was observed on triticale and the lowest was seen on sorghum. Larvae fed on triticale and wheat showed higher amount of α-amylase activity than larvae fed on other grains. Maximum Vmax/KM ratio was determined for the midgut α-amylase of S. cerealella larvae fed on wheat. Whole-body protein, lipid, and glycogen contents of pupae reared on sorghum and rye were significantly lower than those reared on other grains. The statistical analysis showed that the clear correlation could be drawn between the biological characteristics and energy contents of S. cerealella on one side and seed hardness, amylolytic activity, and food consumed on the other. According to the findings of this study, the variable responses of S. cerealella to feeding on different host grains could be attributed to the quality of diets tested. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M; Kościelniak, Janusz
2015-01-01
OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold.
Losert, Dominik; Maurer, Hans Peter; Leiser, Willmar L; Würschum, Tobias
2017-04-01
Genome-wide association mapping of resistance against the novel, aggressive 'Warrior' race of yellow rust in triticale revealed a genetic architecture with some medium-effect QTL and a quantitative component, which in combination confer high levels of resistance on both leaves and ears. Yellow rust is an important destructive fungal disease in small grain cereals and the exotic 'Warrior' race has recently conquered Europe. The aim of this study was to investigate the genetic architecture of yellow rust resistance in hexaploid winter triticale as the basis for a successful resistance breeding. To this end, a diverse panel of 919 genotypes was evaluated for yellow rust infection on leaves and ears in multi-location field trials and genotyped by genotyping-by-sequencing as well as for known Yr resistance loci. Genome-wide association mapping identified ten quantitative trait loci (QTL) for yellow rust resistance on the leaves and seven of these also for ear resistance. The total genotypic variance explained by the QTL amounted to 44.0% for leaf and 26.0% for ear resistance. The same three medium-effect QTL were identified for both traits on chromosomes 1B, 2B, and 7B. Interestingly, plants pyramiding the resistance allele of all three medium-effect QTL were generally most resistant, but constitute less than 5% of the investigated triticale breeding material. Nevertheless, a genome-wide prediction yielded a higher predictive ability than prediction based on these three QTL. Taken together, our results show that yellow rust resistance in winter triticale is genetically complex, including both medium-effect QTL as well as a quantitative resistance component. Resistance to the novel 'Warrior' race of this fungal pathogen is consequently best achieved by recurrent selection in the field based on identified resistant lines and can potentially be assisted by genomic approaches.
Patika, V P; Nadkernichna, O V; Shahovnina, O O
2015-01-01
It is shown, that the perspective Ukrainian sorts of spring triticale characterizes by considerable polymorphism by associative N2-fixing ability in root zone of plants. Application of active strain Azospirillum brasilense 10/1 promotes the decline of variability of this sign within the limits of sort, increase potential nitrogen activity is on the average in 3,2-4,7 times and also distributing normalizations in the selections of the inoculated plants.
Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species.
Menardo, Fabrizio; Praz, Coraline R; Wyder, Stefan; Ben-David, Roi; Bourras, Salim; Matsumae, Hiromi; McNally, Kaitlin E; Parlange, Francis; Riba, Andrea; Roffler, Stefan; Schaefer, Luisa K; Shimizu, Kentaro K; Valenti, Luca; Zbinden, Helen; Wicker, Thomas; Keller, Beat
2016-02-01
Throughout the history of agriculture, many new crop species (polyploids or artificial hybrids) have been introduced to diversify products or to increase yield. However, little is known about how these new crops influence the evolution of new pathogens and diseases. Triticale is an artificial hybrid of wheat and rye, and it was resistant to the fungal pathogen powdery mildew (Blumeria graminis) until 2001 (refs. 1,2,3). We sequenced and compared the genomes of 46 powdery mildew isolates covering several formae speciales. We found that B. graminis f. sp. triticale, which grows on triticale and wheat, is a hybrid between wheat powdery mildew (B. graminis f. sp. tritici) and mildew specialized on rye (B. graminis f. sp. secalis). Our data show that the hybrid of the two mildews specialized on two different hosts can infect the hybrid plant species originating from those two hosts. We conclude that hybridization between mildews specialized on different species is a mechanism of adaptation to new crops introduced by agriculture.
NASA Astrophysics Data System (ADS)
László Phd, M., ,, Dr.
2009-04-01
Some trace elements are dangerous because they tend to bioaccumulate in food chain. Bioaccumulation means an increase in the concentration of a chemical in a biological organism over time, compared to the chemical's concentration in they environment. Compounds accumulate in living things any time they are taken up and stored faster han they are broken down (metabolize) or extreted. Triticale is the stabilized man-made hybrid of wheat (Triticum eastivum L.) and rye (Secale cereale L.). Wheat-rye hybrids date back to 1875, it was only in 1953 that the first North American triticale breeding programme was initiated at the University Manitoba. Globally, triticale is used primary for livestock feed today. NPKCaMg fertilization effects were estimated on trace element bioavailability by Triticale in a long-term field experiment on a Haplic Luvisol (acidic sandy brown forest soil) at Nyírlugos in East-Hungary in 1998. Soil geochemical parameters were as follow: humus 0.6%, pH (H2O) 5.8, pH (KCl) 4.6, total N 32.8 mg . kg-1, AL (ammonium lactate soluble)- P2O5 43 mg . kg-1, AL-K2O 52 mg . kg-1. The experiments involved 32 NPKCaMg treatments and their combinations in 4 replications giving a total of 128 plots from 1980. N levels were 0, 50, 100, 150 kg . ha-1 . yr-1, P2O5 and K2O 0, 60, 120, 180 kg . ha-1 . yr-1, CaCO3 0, 250, 500, 1000 kg . ha-1 . yr-1 and MgCO3 doses were 0, 140, 280 kg . ha-1 . yr-1. Plot brutto size was 50 m2. The main results were as follows. Main soil chemical parameters depend on NPKCaMg treatments. Soil pH (H2O) and pH (KCl) values ranged from 4.6 to 6.3 and from 3.5 to 5.8 indicating wide range from extremely acidic to slightly acidic. Ca, Fe, Mg, Mn and Al element concentrations shown a large variability too in interaction with fertilization doses and pH values (Ca 36-594 mg . kg-1, Fe 61-90 mg . kg-1, Mg 5-42 mg . kg-1, Mn 16-36 mg . kg-1, Al 79-118 mg . kg-1). The better soil pH (H2O), pH (KCl) and Ca parameters resulted by NPKCaMg combinations [pH (H2O) 6.3, pH (KCl) 5.8, Ca 596 mg . kg-1]. Fe, Zn, B, Pb, Cr and Cd leaf+straw status was not influenced hardly by N treatments, but in case of the leaf+straw Co, concentration was significantly increasing. NP combination effects on Fe, Zn, B, Co, Pb, Cr and Cd were similar to N fertilization. Fe leafe+straw contents decreased strongly by NK effects. NPK and NPKCaMg nutrition growing up Pb accumulation to 1.5 mg . kg-1 [cereal average content (CAC) 0.3-0.6 mg . kg-1]. The experimental Zn, Cr, and Cd leaf+straw values not were on higher level than the CAC. The yield ranged from 0.9 t . ha-1 to 7.9 t . ha-1 on dependence of fertilization treatments. The NPKCaMg combinations yielded more around 9 times than the non fertilized plots. Fe, Zn, B, Co, Al, Sr and Cu grain status was not influenced significantly by N and NK treatments. The NP combination effects on Fe, Zn, B, Co, Al and Cu were similar to N fertilization, but in case of the Sr, concentration was dramatically increasing. Triticale seed Zn values not were on higher level than the CAC. Fe actual transfer index (ATI)(Márton, 2004) values are shown N and NPKCaMg fertilization plus effects on Fe translocation from soils to triticale grain. The Al ATI datas were on low level. These results shown Triticale have ability to Co, Pb and Sr accumulation from soil to crop and food chain to a different degree. Key words: trace element, bioavailability, Haplic Luvisol, triticale Introduction: Triticale is the stabilized man-made hybrid of wheat (Triticum eastivum L.) and rye (Secale cereale L.). Wheat-rye hybrids date back to 1875, it was only in 1953 that the first North American triticale breeding programme was initiated at the University Manitoba. Globally, triticale is used primary for livestock feed (Oelke et al. 1989). In Mexico, which grows the crop triticale is used mostly for whole-grain triticale breads and tortillas. In the US, triticale is harvested mostly for forage but there is a small market for pancake mixes and crackers due to a savory, nutty flavor. Etanol plants will pay a premium for triticale over barley since it has more starch and no hull, making alcohol production more efficient. Germany, France, China, Poland and Hungary account for nearly 90 percent of world triticale production (Donald et al. 2001). Heavy metals are dangerous because they tend to bioaccumulate in food chain. Bioaccumulation means an increase in the concentration of a chemical in a biological organism over time, compared to the chemical`s concentration in they environment. Compounds accumulate in living things any time they are taken up and stored faster han they are broken down (metabolize) or extreted. Crops have ability to heavy metal accumulation from fertilizers such as Cd, Pb, Cu, Zn etc. to a different degree (Lee et al. 2001, Scholz and Ellerbrock 2004). The main purposes of this study was to determine the triticale toxic element upptake by the soil, triticale leaf+straw and grain element concentrations on acid sandy soil in a long-term field fertilization experiment at Nyirlugos, Hungary in 1998. Material and Methods: Field experiments were carried out on an acidic sandy brown forest soil at Nyírlugos in East-Hungary from 1962 to 2005. Soil geochemical parameters were as follow: humus 0.6%, pH (H2O) 5.8, pH (KCl) 4.6, total N 32.8 mg/kg, AL (ammonium lactate soluble)- P2O5 43 mg/kg, AL-K2O 52 mg/kg. The experiments involved 32 NPKCaMg treatments in 4 replications giving a total of 128 plots. N levels were 0, 50, 100, 150 kg/ha/yr, P2O5 and K2O 0, 60, 120, 180 kg/ha/yr, CaCO3 0, 250, 500, 1000 kg/ha/yr and MgCO3 doses were 0, 140, 280 kg/ha/yr. Plot brutto size was 50 m2. Composite soil samples consisting of 25 subsamples collected at before flowering time from the ploughed layer of each plot. The so-called "mobile" fraction was extracted by ammonium-acetate+EDTA (AAc+EDTA, Lakanen and Ervio 1971) and the heavy metal determination by ICP-AES technic. Plant leaf+straw and seed samples taken at before flowering and at harvest time. Total element content measured after microwave digestion using cc. HNO3 + cc. H2O2 by ICP-AES technic. Actual translocation indexes (ATI=plant metal c./soil metal c.) determinated by Márton 2004. Datamatrixes estimated by SPSS biometrichal method. Results: Depend on NPKCaMg treatments soil pH (H2O) and pH (KCl) values ranged from 4.6 to 6.3 and from 3.5 to 5.8 indicating wide range from extremely acidic to slightly acidic. Ca, Fe, Mg, Mn and Al element concentrations shown a large variability too in interaction with fertilization doses and pH values (Ca 36-594 mg/kg, Fe 61-90 mg/kg, Mg 5-42 mg/kg, Mn 16-36 mg/kg, Al 79-118 mg/kg). The better soil pH (H2O), pH (KCl) and Ca parameters resulted by NPKCaMg combinations [pH (H2O) 6.3, pH (KCl) 5.8, Ca 596 mg/kg]. Fe, Zn, B, Co, Pb, Cr, and Cd element contents of triticale leaf+straw before flowering time presented in Table 2. Fe, Zn, B, Pb, Cr and Cd leaf+straw status was not influenced hardly by N treatments, but in case of the leaf+straw Co, concentration was significantly increasing. NP combination effects on Fe, Zn, B, Co, Pb, Cr and Cd were similar to N fertilization. Fe leafe+straw contents decreased strongly by NK effects. NPK and NPKCaMg nutrition growing up Pb accumulation to 1.5 mg/kg [cereal average content (CAC) 0.3-0.6 mg/kg. The experimental Zn, Cr, and Cd leaf+straw values not were on higher level than the CAC. The yield ranged from 0.9 t/ha to 7.9 t/ha on dependence of fertilization treatments. The NPKCaMg combinations yielded more around 9 times than the non fertilized plots. Fe, Zn, B, Co, Al, Sr and Cu grain status was not influenced significantly by N and NK treatments. The NP combination effects on Fe, Zn, B, Co, Al and Cu were similar to N fertilization, but in case of the Sr, concentration was dramatically increasing. Triticale seed Zn values not were on higher level than the CAC. Conclusions: Depend on NPKCaMg treatments soil pH (H2O) and pH (KCl) values ranged from 4.6-6.3 and 3.5-5.8 indicating wide range from extremely acidic to slightly acidic. The leaf+straw Co concentrations increased hardly by N treatment effects. NPK and NPKCaMg nutrition growing up Pb accumulation to 1.5 mg/kg [cereal average content (CAC) 0.3-0.6 mg/kg) in leaf+straw. The NPKCaMg combinations yielded more around 9 times than the non fertilized plots. The NP combination effects in case of the grain Sr concentration was dramatically increasing. These experimental results have demonstrated that triticale has a gerat ability to leaf+straw`s Co, Pb and grain`s Sr bioaccumulation. By this way Co, Pb and Sr can be enter to food chain. Acknowledgements: This study was supported by Applied Geochemistry and Geochemical Engineering School of Civil, Urban and Geosystem Engineering College of Engineering Seoul National University Seoul, Research Institute for Soil Sience and Agricultural Chemistry of the Hungarian Academy of Sciences Budapest and No.: E-2/04 Hungarian & Spanish International Project by Hungarian Technology & Sciences Foundation, Budapest. References Donald, S., Murray, McL., Trevor, S., Patricia, J. 2001. Triticale. Food and Rural Development Lacombe. Alberta Lee, C. G., Chon, H. T., Jung, M. C. 2001. Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Applied Geochemistry, 16:1377-1386. Márton, L. 2004. Research report for 2004. RISSAC-HAS, Budapest Oelke, E. A., Oplinger, E. S., Brinkman M. A. 1989. Alternative field crops manual. University Minnesota, University Visconsin. St. Paul, Madison Scholz, V., Ellerbrock, R. 2004. Environment friendly and energetically efficient cultivation of energy plants on sandy soil. IAB, ZAL. Potsdam
Possibilities to use tank-mix adjuvants for better fungicide spreading on triticale ears.
Ryckaert, Bert; Spanoghe, Pieter; Heremans, Betty; Haesaert, Geert; Steurbaut, Walter
2008-09-10
Tank-mix adjuvants can increase the overall performance of plant protection products. Their most important ways of action are the improved retention, spreading, wetting, and penetration of the pesticide on the target and the reduction of fine droplets. In this paper, deposition and spreading of the systemic fungicide propiconazole on triticale ears were quantified. A better deposition and spreading of fungicide on the ear may be a possible help for the Fusarium problem in triticale, wheat, and other cereals. Triticale ears were applied with propiconazole in combination with 11 different tank-mix adjuvants. Vegetable oil, alcohol ethoxylates, lactate ester, trisiloxanes, and an amphoteric molecule were included in this experiment. When no tank-mix adjuvant was used, the lower part of the ear was reached five times less by the propiconazole spray than the upper part of the ear. When the tank-mix adjuvant was combined with the propiconazole formulation, an increase in residue on both the upper and the lower part of the ear was observed. A higher residue on the upper half of the ear means a better deposition, while a higher residue on the lower part of the ear is related to a better downward spreading over the grains and the needles of the ear. The combination of those two observations makes it interesting to use tank-mix adjuvants for the prevention of mycotoxin-producing Fusarium species. The advantages are emphasized even more when cost effectiveness was calculated. The use of a proper tank-mix adjuvant can result in 40% lower cost per application per hectare.
Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz
2015-10-01
Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.
Kwiatek, M; Belter, J; Majka, M; Wiśniewska, H
2016-03-01
It has been hypothesized that the powdery mildew adult plant resistance (APR) controlled by the Pm13 gene in Aegilops longissima Schweinf. & Muschl. (S(l)S(l)) has been evolutionary transferred to Aegilops variabilis Eig. (UUSS). The molecular marker analysis and the visual evaluation of powdery mildew symptoms in Ae. variabilis and the Ae. variabilis × Secale cereale amphiploid forms (2n = 6x = 42, UUSSRR) showed the presence of product that corresponded to Pm13 marker and the lower infection level compared to susceptible model, respectively. This study also describes the transfer of Ae. variabilis Eig. (2n = 4x = 28, U(v)U(v)S(v)S(v)) chromosomes, carrying powdery mildew resistance, into triticale (× Triticosecale Wittm., 2n = 6x = 42, AABBRR) using Ae. variabilis × S. cereale amphiploid forms. The individual chromosomes of Ae. variabilis, triticale 'Lamberto' and hybrids were characterized by genomic and fluorescence in situ hybridization (GISH/FISH). The chromosome configurations of obtained hybrid forms were studied at first metaphase of meiosis of pollen mother cells (PMCs) using GISH. The statistical analysis showed that the way of S-genome chromosome pairing and transmission to subsequent hybrid generations was diploid-like and had no influence on chromosome pairing of triticale chromosomes. The cytogenetic study of hybrid forms were supported by the marker-assisted selection using Pm13 marker and visual evaluation of natural infection by Blumeria graminis, that allowed to select the addition or substitution lines of hybrids carrying chromosome 3S(v) which were tolerant to the powdery mildew infection.
Introgression of A- and B-genome of tetraploid triticale chromatin into tetraploid rye.
Wiśniewska, H; Kwiatek, M; Kulak-Książczyk, S; Apolinarska, B
2013-11-01
An improvement of rye is one of the mainstream goals of current breeding. Our study is concerned with the introduction of the tetraploid triticale (ABRR) into the 4x rye (RRRR) using classical methods of distant crossing. One hundred fifty BC1F9 hybrid plants [(4x rye × 4x triticales) × 4x rye] obtained from a backcrossing program were studied. The major aim of this work was to verify the presence of an introgressed A- and B- genome chromatin of triticale in a collection of the 4x rye-tiritcale hybrids and to determine their chromosome compositions. In the present study, karyotypes of the previously reported BC1F2s and BC1F3s were compared with that of the BC1F9 generation as obtained after several subsequent open pollinations. The genomic in situ hybridisation (GISH) allowed us to identify 133 introgression forms in which chromosome numbers ranged between 26 and 32. Using four DNA probes (5S rDNA, 25S rDNA, pSc119.2 and pAs1), the fluorescence in situ hybridisation (FISH) was carried out to facilitate an exact chromosome identification in the hybrid plants. The combination of the multi-colour GISH with the repetitive DNA FISH singled out five types of translocated chromosomes: 2A.2R, 4A.4R, 5A.5R, 5B.5R and 7A.7R among the examined BC1F9s. The reported translocation lines could serve as valuable sources of wheat chromatin suitable for further improvements of rye.
Yield performance and stability of CMS-based triticale hybrids.
Mühleisen, Jonathan; Piepho, Hans-Peter; Maurer, Hans Peter; Reif, Jochen Christoph
2015-02-01
CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.
Different allocation of carbohydrates and phenolics in dehydrated leaves of triticale.
Hura, Tomasz; Dziurka, Michał; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga
2016-09-01
Carbohydrates are used in plant growth processes, osmotic regulation and secondary metabolism. A study of the allocation of carbohydrates to a target set of metabolites during triticale acclimation to soil drought was performed. The study included a semi-dwarf cultivar 'Woltario' and a long-stemmed cultivar 'Moderato', differing in the activity of the photosynthetic apparatus under optimum growth conditions. Differences were found in the quantitative and qualitative composition of individual carbohydrates and phenolic compounds, depending on the developmental stage and water availability. Soluble carbohydrates in the semi-dwarf 'Woltario' cv. under soil drought were utilized for synthesis of starch, soluble phenolic compounds and an accumulation of cell wall carbohydrates. In the typical 'Moderato' cv., soluble carbohydrates were primarily used for the synthesis of phenolic compounds that were then incorporated into cell wall structures. Increased content of cell wall-bound phenolics in 'Moderato' cv. improved the cell wall tightness and reduced the rate of leaf water loss. In 'Woltario' cv., the increase in cell osmotic potential due to an enhanced concentration of carbohydrates and proline was insufficient to slow down the rate of leaf water loss. The mechanism of cell wall tightening in response to leaf desiccation may be the main key in the process of triticale acclimation to soil drought. Copyright © 2016 Elsevier GmbH. All rights reserved.
Triticale Bran Alkylresorcinols Enhance Resistance to Oxidative Stress in Mice Fed a High-Fat Diet
Agil, Rania; Patterson, Zachary R.; Mackay, Harry; Abizaid, Alfonso; Hosseinian, Farah
2016-01-01
Triticale (× Triticosecale Whitm.) is a cereal grain with high levels of alkyresorcinols (AR) concentrated in the bran. These phenolic lipids have been shown to reduce or inhibit triglyceride accumulation and protect against oxidation; however, their biological effects have yet to be evaluated in vivo. The purpose of this study was to determine the effects of ARs extracted from triticale bran (TB) added to a high–fat diet on the development of obesity and oxidative stress. CF-1 mice were fed a standard low-fat (LF) diet, a 60% high-fat diet (HF) and HF diets containing either 0.5% AR extract (HF-AR), 10% TB (HF-TB), or 0.5% vitamin E (HF-VE). Energy intake, weight gain, glucose tolerance, fasting blood glucose (FBG) levels, and body composition were determined. Oxygen radical absorbance capacity (ORAC), superoxide dismutase (SOD) activity, and glutathione (GSH) assays were performed on mice liver and heart tissues. The findings suggest that ARs may serve as a preventative measure against risks of oxidative damage associated with high-fat diets and obesity through their application as functional foods and neutraceuticals. Future studies aim to identify the in vivo mechanisms of action of ARs and the individual homologs involved in their favorable biological effects. PMID:28231100
Bednarek, Piotr T; Orłowska, Renata; Niedziela, Agnieszka
2017-04-21
We present a new methylation-sensitive amplified polymorphism (MSAP) approach for the evaluation of relative quantitative characteristics such as demethylation, de novo methylation, and preservation of methylation status of CCGG sequences, which are recognized by the isoschizomers HpaII and MspI. We applied the technique to analyze aluminum (Al)-tolerant and non-tolerant control and Al-stressed inbred triticale lines. The approach is based on detailed analysis of events affecting HpaII and MspI restriction sites in control and stressed samples, and takes advantage of molecular marker profiles generated by EcoRI/HpaII and EcoRI/MspI MSAP platforms. Five Al-tolerant and five non-tolerant triticale lines were exposed to aluminum stress using the physiologicaltest. Total genomic DNA was isolated from root tips of all tolerant and non-tolerant lines before and after Al stress following metAFLP and MSAP approaches. Based on codes reflecting events affecting cytosines within a given restriction site recognized by HpaII and MspI in control and stressed samples demethylation (DM), de novo methylation (DNM), preservation of methylated sites (MSP), and preservation of nonmethylatedsites (NMSP) were evaluated. MSAP profiles were used for Agglomerative hierarchicalclustering (AHC) based on Squared Euclidean distance and Ward's Agglomeration method whereas MSAP characteristics for ANOVA. Relative quantitative MSAP analysis revealed that both Al-tolerant and non-tolerant triticale lines subjected to Al stress underwent demethylation, with demethylation of CG predominating over CHG. The rate of de novo methylation in the CG context was ~3-fold lower than demethylation, whereas de novo methylation of CHG was observed only in Al-tolerant lines. Our relative quantitative MSAP approach, based on methylation events affecting cytosines within HpaII-MspI recognition sequences, was capable of quantifying de novo methylation, demethylation, methylation, and non-methylated status in control and stressed Al-tolerant and non-tolerant triticale inbred lines. The method could also be used to analyze methylation events affecting CG and CHG contexts, which were differentially methylated under Al stress. We cannot exclude that the methylation changes revealed among lines as well as between Al-tolerant and non-tolerant groups of lines were due to some experimental errors or that the number of lines was too small for ANOVA to prove the influence of Al stress. Nevertheless, we suspect that Al tolerance in triticale could be partly regulated by epigenetic factors acting at the level of DNA methylation. This method provides a valuable tool for studies of abiotic stresses in plants.
Santos, F B O; Sheldon, B W; Santos, A A; Ferket, P R
2008-03-01
Salmonella colonization in poultry may be influenced by grain type and particle size. Broilers reared either in nonlitter cage-based housing or in a conventionally floored litter house from 0 to 42 d were assigned to 1 of 4 dietary treatments: 1) ground corn-soybean meal (C, 560 microm), 2) coarsely ground corn-soybean meal (CC, >1,700 microm), 3) ground triticale-soybean meal (T, 560 microm), or 4) whole triticale-soybean meal (WT). A 4-strain cocktail of Salmonella enterica was orally gavaged into each chick at placement. Growth performance, cecal and fecal Salmonella populations, gizzard and proventriculus pH, intestinal size, jejunum histomorphometry, and carcass yields were measured. Broilers responded differently to the dietary treatments according to the housing system used. At 42 d, birds reared on litter and fed ground grain had greater BW than those fed coarse grain (2.87 vs. 2.71 kg), whereas cage-reared broilers fed ground triticale were heavier than those fed corn (2.75 vs. 2.64 kg). Broilers raised on litter had a better feed conversion ratio than those raised in cages (1.71 vs. 1.81 g/g). Independent of the housing system, relative eviscerated carcass weights of birds fed T and C were heavier than those of CC- and WT-fed broilers (762 vs. 752 g/kg). Generally, the jejunum villus area and mucosal depth were larger, whereas the small intestine was lighter and shorter in broilers raised on litter. Relative gizzard weights of broilers raised on litter and fed the coarser diets were heavier than those of broilers reared in cages and fed finely ground diets. Feeding whole or coarsely ground grains decreased cecal Salmonella populations in 42-d-old broilers (3.8, 3.9, 4.4, and 4.4 log most probable number/g for CC, WT, C, and T, respectively). Additionally, 42-d-old broilers reared on litter had lower cecal Salmonella populations than those in cages (3.8 vs. 4.4 log most probable number/g). In conclusion, as a feed ingredient, triticale is a good alternative to corn, resulting in improved BW and reduced Salmonella colonization. Broilers raised on litter may have achieved lower cecal Salmonella populations than caged birds because access to litter may have modulated the intestinal microflora by increasing competitive exclusion microorganisms, which discouraged Salmonella colonization.
7 CFR 810.602 - Definition of other terms.
Code of Federal Regulations, 2011 CFR
2011-01-01
...-less barley, nongrain sorghum, oats, Polish wheat, popcorn, poulard wheat, rice, rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. Principles...
7 CFR 810.602 - Definition of other terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-less barley, nongrain sorghum, oats, Polish wheat, popcorn, poulard wheat, rice, rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. Principles...
7 CFR 810.602 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-less barley, nongrain sorghum, oats, Polish wheat, popcorn, poulard wheat, rice, rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. Principles...
Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt
NASA Astrophysics Data System (ADS)
Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.
2013-09-01
While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.
Energy crops cultivated on the slag from incineration of the sewage sludge energy value assessment
NASA Astrophysics Data System (ADS)
Głowacka, Anna; Tarnowski, Krzysztof; Bering, Sławomira; Mazur, Jacek; Kiper, Justyna; Wołoszyk, Czesław
2017-11-01
In 2011-2013, research on the fertilizer value of slag from the incineration of municipal sewage sludge as an alternative source of phosphorus was carried out. The research scheme included 5 variants (in 4 repetitions) fertilization cultivated for grain with mineral fertilizers and ash. (P1, P2 and P3 - consecutive doses of phosphorus from ash) from municipal sewage sludge combustion: NK, NPK, NK+P1, NK+P2 and NK+P3. The obtained results indicate that the average of the three years of research, the value for the straw spring rape heat of combustion was 15.99 MJ/kg d.m., corn straw 16.20 MJ/kg d.m., triticale straw 17.06 MJ/kg d.m. and Miscanthus 17.34 MJ/kg d.m. The highest value of combustion heat for spring rape straw and miscanthus performed for objects fertilized with NK + P3 - 16.08 MJ/kg d.m. (Spring rape) and 17.57 MJ/kg d.m. (Miscanthus); For corn straw objects fertilized with nitrogen and potassium - 16.35 MJ/kg d.m. and triticale straw objects fertilized with NPK and NK + P2 - 17.10 MJ/kg d.m. Straw calorific value of tested plants was lower than the combustion heat by an average of 6.97% (triticale) to 7.38% (spring rape).
Schelfhout, Stephanie; De Schrijver, An; Verheyen, Kris; De Beelde, Robbe; Haesaert, Geert; Mertens, Jan
2018-07-29
High soil P concentrations hinder ecological restoration of biological communities typical for nutrient-poor soils. Phosphorus mining, i.e., growing crops with fertilization other than P, might reduce soil P concentrations. However, crop species have different P-uptake rates and can affect subsequent P removal in crop rotation, both of which may also vary with soil P concentration. In a pot experiment with three soil-P-levels (High-P: 125-155 mg P Olsen /kg; Mid-P: 51-70 mg P Olsen /kg; Low-P: 6-21 mg P Olsen /kg), we measured how much P was removed by five crop species (buckwheat, maize, sunflower, flax, and triticale). Total P removal decreased with soil-P-level and depended upon crop identity. Buckwheat and maize removed most P from High-P and Mid-P soils and triticale removed less P than buckwheat, maize, and sunflower at every soil-P-level. The difference in P removal between crops was, however, almost absent in Low-P soils. Absolute and relative P removal with seeds depended upon crop species and, for maize and triticale, also upon soil-P-level. None of the previously grown crop species significantly affected P removal by the follow-up crop (perennial ryegrass). We can conclude that for maximizing P removal, buckwheat or maize could be grown.
... the ingestion of gluten (a protein found in wheat, rye and barley) in susceptible individuals. This response ... Malt and Malt Extract Rye Semolina Spelt Triticale Wheat Wheat Germ Wheat Starch Gluten Intolerance Group (GIG) ...
Arroyo, J; Fortun-Lamothe, L; Dubois, J P; Lavigne, F; Bijja, M; Molette, C
2014-09-01
The aim of this trial was to study the influence of choice feeding and cereal type (corn or triticale) during the finishing period on performance of ducks. In total, 624 one-day-old male mule ducks (Cairina moschata × Anas platyrhynchos) were divided into 3 groups differing in the diet they received between 56 and 84 d of age: a commercial complete pelleted diet (control group; AMEn 12.1 MJ/kg, CP 15%), or corn whole seeds (AMEn 14.4 MJ/kg, CP 7.3%) and protein-rich pellets (AMEn 9.9 MJ/kg, CP 22.7%) in 2 separated feeders [choice feeding with corn (CFC) group]; or triticale whole seeds (AMEn 13.0 MJ/kg, CP 10.5%) and protein-rich pellets (AMEn 11.2 MJ/kg, CP 19.5%) in 2 separated feeders [choice feeding with triticale (CFT) group]. From 85 to 96 d, 96 birds/group were overfed with corn. Feed intake (complete pellets or cereal and protein-rich pellets) per pen was measured at 60, 62, 65, 69, 78, and 84 d of age. Body weight and body traits were measured at 56 to 84 d of age. Over the entire period, from 56 to 84 d, the feed intake of the CFC group was 7% lower than the control group, and 5% lower than that in the CFT group (P = 0.002). Whatever the diet tested, at 56 and 84 d of age, the BW (4,099 and 4,779 g, P = 0.42 and P = 0.35, respectively) and the carcass traits (P > 0.05) of ducks were similar in the 3 groups. During and after overfeeding, the performances of the ducks were also similar (P > 0.05). The present results suggest that CFC during the finishing period is a solution to reduce the cost of diet destined to ducks. Indeed, using locally grown grains could reduce the economic and environmental impacts of duck feeding, reducing the transportation and crushing processes. © 2014 Poultry Science Association Inc.
Occurrence of 26 Mycotoxins in the Grain of Cereals Cultivated in Poland
Bryła, Marcin; Waśkiewicz, Agnieszka; Podolska, Grażyna; Szymczyk, Krystyna; Jędrzejczak, Renata; Damaziak, Krzysztof; Sułek, Alicja
2016-01-01
The levels of 26 mycotoxins were determined in 147 samples of the grain of cereals cultivated in five regions of Poland during the 2014 growing season. The HPLC-HRMS (time-of-flight) analytical technique was used. An analytical procedure to simultaneously determine 26 mycotoxins in grain was developed, tested and verified. Samples from eastern and southern Poland were more contaminated with mycotoxins than the samples from northern and western Poland. Toxins produced by Fusarium fungi were the main contaminants found. Some deoxynivalenol (DON) was found in 100% of the tested samples of wheat (Osiny, Borusowa, Werbkowice), triticale, winter barley and oats, while the maximum permissible DON level (as defined in the EU Commission Regulation No. 1881/2006) was exceeded in 10 samples. Zearalenone (ZEN), DON metabolites and enniatins were also commonly found. The presence of mycotoxins in grain reflected the prevailing weather conditions during the plant flowering/earing stages, which were favorable for the development of blight. Among all investigated wheat genotypes, cv. Fidelius was the least contaminated, while Bamberka, Forkida and Kampana were the most contaminated. However, the single-factor ANOVA analysis of variance did not reveal (at a statistical significance level α = 0.05) any differences between levels of mycotoxins in individual genotypes. Triticale was the most contaminated grain among all of the tested varieties. ZEN, DON and the sum of 3-acetyldexynivalenol and 15-acetyldeoxynivalenol (3- and 15-ADON) were found in 100% of the tested triticale samples at concentrations within the 4–86, 196–1326 and 36–374 µg·kg−1 range, respectively. Of particular concern was the fact that some “emerging mycotoxins” (enniatins) (in addition to commonly-known and legally-regulated mycotoxins) were also found in the tested triticale samples (enniatin B (Enn-B), enniatin B1 (Enn-B1), enniatin A-1 (Enn-A1), 100% of samples, and enniatin A (Enn-A), 70% of samples). Depending on the toxin, they were found at levels between 8 and 3328 µg·kg−1. PMID:27231939
7 CFR 1421.300 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.300 Applicability. (a) The regulations in this subpart are applicable to the 2008 through 2012 crops of eligible acreage planted to wheat, barley, oats...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Karnal Bunt § 301.89-4 Planting. Any wheat, durum wheat, or triticale that originates within a regulated area must be tested and found free from bunted wheat...
Zwane, Eunice N; van Zyl, Petrus J; Duodu, Kwaku G; Rose, Shaunita H; Rumbold, Karl; van Zyl, Willem H; Viljoen-Bloom, Marinda
2017-03-01
Ferulic acid is a natural antioxidant found in various plants and serves as a precursor for various fine chemicals, including the flavouring agent vanillin. However, expensive extraction methods have limited the commercial application of ferulic acid, in particular for the enrichment of food substrates. A recombinant Aspergillus tubingensis ferulic acid esterase Type A (FAEA) was expressed in Aspergillus niger D15#26 and purified with anion-exchange chromatography (3487 U/mg, K m = 0.43 mM, K cat = 0.48/min on methyl ferulate). The 36-kDa At FAEA protein showed maximum ferulic acid esterase activity at 50 °C and pH 6, suggesting potential application in industrial processes. A crude At FAEA preparation extracted 26.56 and 8.86 mg/g ferulic acid from maize bran and triticale bran, respectively, and also significantly increased the levels of p -coumaric and caffeic acid from triticale bran. The cost-effective production of At FAEA could therefore allow for the enrichment of brans generally used as food and fodder, or for the production of fine chemicals (such as ferulic and p -coumaric acid) from plant substrates. The potential for larger-scale production of At FAEA was demonstrated with the A. niger D15[ AtfaeA ] strain yielding a higher enzyme activity (185.14 vs. 83.48 U/ml) and volumetric productivity (3.86 vs. 1.74 U/ml/h) in fed-batch than batch fermentation.
Makowska, Agnieszka; Majcher, Małgorzata; Mildner-Szkudlarz, Sylwia; Jedrusek-Golinska, Anna; Przygoński, Krzysztof
2017-09-01
The effect of selected plant additives (couch grass, artichoke, kale, nettle, ground buckwheat husks, broad beans, fenugreek seeds, and extracts of yellow tea and mulberry leaf) on the volatile compounds, color, texture, sensory attributes, polyphenols, and antioxidant properties of triticale crisp bread was studied. The volatile profile of control bread was dominated by lipid oxidation products with hexanal and (E)-2-nonenal predominant. The additives strongly modified the volatile profile of the extruded crisp bread. The greatest differences were recorded in the case of products with artichoke and kale additions, which had respectively about 12 and 8 times higher levels of total volatile compounds than the control crisp bread. The samples containing kale, buckwheat, and fenugreek as well as yellow tea extract characterized high levels of sulfur compounds, with methanethiol predominant. The additives, especially kale, nettle, and artichoke affected the color of the crisp breads, in most cases making them darker. In terms of texture only the crisp bread with addition of buckwheat husk was significantly harder than the control sample. On the basis of sensory evaluation it was stated that among all the additives, the artichoke and fenugreek resulted in dramatic deterioration in the extruded product taste. The used additives also affected the antioxidant properties of triticale crisp bread. The greatest content of total phenolic compounds and the highest antioxidant activity were observed for the bread with yellow tea extract addition (3.5- and 6.5-fold higher, respectively, than in control sample).
7 CFR 810.2004 - Grades and grade requirements for triticale.
Code of Federal Regulations, 2010 CFR
2010-01-01
... material Material other than wheat or rye (percent) Total 2 (percent) Shrunken and broken kernels (percent... than wheat or rye. 3 Defects include damaged kernels (total), foreign material (total) and shrunken and...
7 CFR 810.2004 - Grades and grade requirements for triticale.
Code of Federal Regulations, 2014 CFR
2014-01-01
... material Material other than wheat or rye (percent) Total 2 (percent) Shrunken and broken kernels (percent... than wheat or rye. 3 Defects include damaged kernels (total), foreign material (total) and shrunken and...
7 CFR 810.2004 - Grades and grade requirements for triticale.
Code of Federal Regulations, 2012 CFR
2012-01-01
... material Material other than wheat or rye (percent) Total 2 (percent) Shrunken and broken kernels (percent... than wheat or rye. 3 Defects include damaged kernels (total), foreign material (total) and shrunken and...
7 CFR 810.2004 - Grades and grade requirements for triticale.
Code of Federal Regulations, 2011 CFR
2011-01-01
... material Material other than wheat or rye (percent) Total 2 (percent) Shrunken and broken kernels (percent... than wheat or rye. 3 Defects include damaged kernels (total), foreign material (total) and shrunken and...
7 CFR 810.2004 - Grades and grade requirements for triticale.
Code of Federal Regulations, 2013 CFR
2013-01-01
... material Material other than wheat or rye (percent) Total 2 (percent) Shrunken and broken kernels (percent... than wheat or rye. 3 Defects include damaged kernels (total), foreign material (total) and shrunken and...
Zinc absorption in humans from meals based on rye, barley, oatmeal, triticale and whole wheat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandstroem, B.A.; Almgren, A.; Kivistoe, B.C.
The absorption of zinc from meals based on 60 g of rye, barley, oatmeal, triticale or whole wheat was studied by use of extrinsic labelling with /sup 65/Zn and measurement of the whole-body retention of the radionuclide. The cereals were prepared in the form of bread or porridge and were served with 200 mL of milk. The oatmeal flakes were also served without further preparation. The absorption of zinc was negatively correlated to the phytic acid content of the meal with the highest absorption, 26.8 +/- 7.4%, from the rye bread meal containing 100 mumol of phytic acid and themore » lowest, 8.4 +/- 1.0%, from oatmeal porridge with a phytic acid content of 600 mumol. It is concluded that food preparation that decreases the phytic acid content improves zinc absorption.« less
Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E
2018-04-05
Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.
Ates, S; Keles, G; Demirci, U; Dogan, S; Ben Salem, H
2017-11-01
Dual-purpose management of winter cereals for grazing and grain production provides highly nutritive forage for ruminants in the spring and may positively affect straw feeding value. A 2-yr study investigated the effect of spring defoliation of triticale, wheat, and rye at the tillering and stem elongation stages on total biomass, grain yields, and straw quality. Furthermore, straws of spring-defoliated and undefoliated (control) cereal crops were evaluated for nutritional value and voluntary intake as a means of assessing the efficiency of dual-purpose management systems from the winter feeding context as well. The feeding study consisted of 9 total mixed rations (TMR), each containing 35% triticale, rye, or wheat straw obtained under 3 spring-defoliation regimens. The TMR were individually fed to fifty-four 1-yr-old Anatolian Merino ewes for 28 d. Defoliation of the crops at tillering did not affect the total biomass production or grain yields. However, biomass and grain yields were reduced ( < 0.01) by 55 and 52%, respectively, in crops defoliated at stem elongation. Straw of spring-defoliated cereals had less NDF and ADF concentrations ( < 0.01) but greater CP ( < 0.01), nonfiber carbohydrates ( < 0.01), and ME concentrations ( < 0.01) compared with straw from undefoliated crops. The increase in the nutritive value of straw led to greater nutrient digestion ( < 0.01) and intake of DM and OM of ewes ( < 0.01). However, sheep live weight gain did not differ among treatments ( > 0.77). This study indicated that straw feeding value and digestibility can be increased through spring defoliation.
Reorganization of wheat and rye genomes in octoploid triticale (× Triticosecale).
Kalinka, Anna; Achrem, Magdalena
2018-04-01
The analysis of early generations of triticale showed numerous rearrangements of the genome. Complexed transformation included loss of chromosomes, t-heterochromatin content changes and the emergence of retrotransposons in new locations. This study investigated certain aspects of genomic transformations in the early generations (F5 and F8) of the primary octoploid triticale derived from the cross of hexaploid wheat with the diploid rye. Most of the plants tested were hypoploid; among eliminated chromosomes were rye chromosomes 4R and 5R and variable number of wheat chromosomes. Wheat chromosomes were eliminated to a higher extent. The lower content of telomeric heterochromatin was also found in rye chromosomes in comparison with parental rye. Studying the location of selected retrotransposons from Ty1-copia and Ty3-gypsy families using fluorescence in situ hybridization revealed additional locations of these retrotransposons that were not present in chromosomes of parental species. ISSR, IRAP and REMAP analyses showed significant changes at the level of specific DNA nucleotide sequences. In most cases, the disappearance of certain types of bands was observed, less frequently new types of bands appeared, not present in parental species. This demonstrates the scale of genome rearrangement and, above all, the elimination of wheat and rye sequences, largely due to the reduction of chromosome number. With regard to the proportion of wheat to rye genome, the rye genome was more affected by the changes, thus this study was focused more on the rye genome. Observations suggest that genome reorganization is not finished in the F5 generation but is still ongoing in the F8 generation.
2013-01-01
Background Secaloindoline a (Sina) and secaloindoline b (Sinb) genes of hexaploid triticale (x Triticosecale Wittmack) are orthologs of puroindoline a (Pina) and puroindoline b (Pinb) in hexaploid wheat (Triticum aestivum L.). It has already been proven that RNA interference (RNAi)-based silencing of Pina and Pinb genes significantly decreased the puroindoline a and puroindoline b proteins in wheat and essentially increased grain hardness (J Exp Bot 62:4025-4036, 2011). The function of Sina and Sinb in triticale was tested by means of RNAi silencing and compared to wheat. Results Novel Sina and Sinb alleles in wild-type plants of cv. Wanad were identified and their expression profiles characterized. Alignment with wheat Pina-D1a and Pinb-D1a alleles showed 95% and 93.3% homology with Sina and Sinb coding sequences. Twenty transgenic lines transformed with two hpRNA silencing cassettes directed to silence Sina or Sinb were obtained by the Agrobacterium-mediated method. A significant decrease of expression of both Sin genes in segregating progeny of tested T1 lines was observed independent of the silencing cassette used. The silencing was transmitted to the T4 kernel generation. The relative transcript level was reduced by up to 99% in T3 progeny with the mean for the sublines being around 90%. Silencing of the Sin genes resulted in a substantial decrease of secaloindoline a and secaloindoline b content. The identity of SIN peptides was confirmed by mass spectrometry. The hardness index, measured by the SKCS (Single Kernel Characterization System) method, ranged from 22 to 56 in silent lines and from 37 to 49 in the control, and the mean values were insignificantly lower in the silent ones, proving increased softness. Additionally, the mean total seed protein content of silenced lines was about 6% lower compared with control lines. Correlation coefficients between hardness and transcript level were weakly positive. Conclusions We documented that RNAi-based silencing of Sin genes resulted in significant decrease of their transcripts and the level of both secaloindoline proteins, however did not affect grain hardness. The unexpected, functional differences of Sin genes from triticale compared with their orthologs, Pin of wheat, are discussed. PMID:24279512
Gasparis, Sebastian; Orczyk, Waclaw; Nadolska-Orczyk, Anna
2013-11-26
Secaloindoline a (Sina) and secaloindoline b (Sinb) genes of hexaploid triticale (x Triticosecale Wittmack) are orthologs of puroindoline a (Pina) and puroindoline b (Pinb) in hexaploid wheat (Triticum aestivum L.). It has already been proven that RNA interference (RNAi)-based silencing of Pina and Pinb genes significantly decreased the puroindoline a and puroindoline b proteins in wheat and essentially increased grain hardness (J Exp Bot 62:4025-4036, 2011). The function of Sina and Sinb in triticale was tested by means of RNAi silencing and compared to wheat. Novel Sina and Sinb alleles in wild-type plants of cv. Wanad were identified and their expression profiles characterized. Alignment with wheat Pina-D1a and Pinb-D1a alleles showed 95% and 93.3% homology with Sina and Sinb coding sequences. Twenty transgenic lines transformed with two hpRNA silencing cassettes directed to silence Sina or Sinb were obtained by the Agrobacterium-mediated method. A significant decrease of expression of both Sin genes in segregating progeny of tested T1 lines was observed independent of the silencing cassette used. The silencing was transmitted to the T4 kernel generation. The relative transcript level was reduced by up to 99% in T3 progeny with the mean for the sublines being around 90%. Silencing of the Sin genes resulted in a substantial decrease of secaloindoline a and secaloindoline b content. The identity of SIN peptides was confirmed by mass spectrometry. The hardness index, measured by the SKCS (Single Kernel Characterization System) method, ranged from 22 to 56 in silent lines and from 37 to 49 in the control, and the mean values were insignificantly lower in the silent ones, proving increased softness. Additionally, the mean total seed protein content of silenced lines was about 6% lower compared with control lines. Correlation coefficients between hardness and transcript level were weakly positive. We documented that RNAi-based silencing of Sin genes resulted in significant decrease of their transcripts and the level of both secaloindoline proteins, however did not affect grain hardness. The unexpected, functional differences of Sin genes from triticale compared with their orthologs, Pin of wheat, are discussed.
Szostek, Radosław; Ciećko, Zdzisław
2017-03-01
The research was based on a pot experiment, in which the response of eight species of crops to soil contamination with fluorine was investigated. In parallel, some inactivating substances were tested in terms of their potential use for the neutralization of the harmful influence of fluorine on plants. The response of crops to soil contamination with fluorine was assessed according to the volume of biomass produced by aerial organs and roots as well as their content of N-total, N-protein, and N-NO 3 - . The following crops were tested: maize, yellow lupine, winter oilseed rape, spring triticale, narrow-leaf lupine, black radish, phacelia, and lucerne. In most cases, soil pollution with fluorine stimulated the volume of biomass produced by the plants. The exceptions included grain and straw of spring triticale, maize roots, and aerial parts of lucerne, where the volume of harvested biomass was smaller in treatments with fluorine-polluted soil. Among the eight plant species, lucerne was most sensitive to the pollution despite smaller doses of fluorine in treatments with this plant. The other species were more tolerant to elevated concentrations of fluorine in soil. In most of the tested plants, the analyzed organs contained more total nitrogen, especially aerial organs and roots of black radish, grain and straw of spring triticale, and aerial biomass of lucerne. A decrease in the total nitrogen content due to soil contamination with fluorine was detected only in the aerial mass of yellow lupine. With respect to protein nitrogen, its increase in response to fluorine as a soil pollutant was found in grain of spring triticale and roots of black radish, whereas the aerial biomass of winter oilseed rape contained less of this nutrient. Among the analyzed neutralizing substances, lime most effectively alleviated the negative effect of soil pollution with fluorine. The second most effective substance was loam, while charcoal was the least effective in this respect. Our results showed the effect of soil contamination with fluorine on the yield and chemical composition of fluorine depended on the species and organ of a tested plant, on the rate of the xenobotic element and on the substance added to soil in order to neutralize fluorine.
75 FR 31785 - Pesticide Products; Registration Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
... 5.96%. Propose uses: Barley, corn, dried shelled peas and beans, edible podded legumes vegetables... peas and beans, edible podded legume vegetables, oat, peanut, rye, sorghum, soybean, sunflower, wheat..., edible podded legume vegetables, oat, peanut, rye, sorghum, soybean, sunflower, wheat, and triticale seed...
7 CFR 1421.301 - Administration.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Administration. 1421.301 Section 1421.301 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.301 Administration. (a) This subpart shall be...
7 CFR 1421.301 - Administration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 10 2014-01-01 2014-01-01 false Administration. 1421.301 Section 1421.301 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.301 Administration. (a) This subpart shall be...
7 CFR 1421.301 - Administration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 10 2013-01-01 2013-01-01 false Administration. 1421.301 Section 1421.301 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.301 Administration. (a) This subpart shall be...
7 CFR 1421.301 - Administration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 10 2011-01-01 2011-01-01 false Administration. 1421.301 Section 1421.301 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF... 2012 Crop of Wheat, Barley, Oats, and Triticale § 1421.301 Administration. (a) This subpart shall be...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., and triticale used for propagation. Soil. The loose surface material of the earth in which plants grow, in most cases consisting of disintegrated rock with an admixture of organic material. Soil-moving... harvesting equipment. Mechanized equipment used for soil tillage, including tillage attachments for farm...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., and triticale used for propagation. Soil. The loose surface material of the earth in which plants grow, in most cases consisting of disintegrated rock with an admixture of organic material. Soil-moving... harvesting equipment. Mechanized equipment used for soil tillage, including tillage attachments for farm...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., and triticale used for propagation. Soil. The loose surface material of the earth in which plants grow, in most cases consisting of disintegrated rock with an admixture of organic material. Soil-moving... harvesting equipment. Mechanized equipment used for soil tillage, including tillage attachments for farm...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., and triticale used for propagation. Soil. The loose surface material of the earth in which plants grow, in most cases consisting of disintegrated rock with an admixture of organic material. Soil-moving... harvesting equipment. Mechanized equipment used for soil tillage, including tillage attachments for farm...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., and triticale used for propagation. Soil. The loose surface material of the earth in which plants grow, in most cases consisting of disintegrated rock with an admixture of organic material. Soil-moving... harvesting equipment. Mechanized equipment used for soil tillage, including tillage attachments for farm...
Fidler, Justyna; Zdunek-Zastocka, Edyta; Prabucka, Beata; Bielawski, Wiesław
2016-12-01
Abscisic acid (ABA) is a plant hormone that plays a predominant role in the onset and maintenance of primary dormancy. Peak ABA accumulation in embryos of triticale grains was observed before any significant loss of water and was higher in Fredro, a cultivar less susceptible to pre-harvest sprouting (PHS), than in Leontino, a cultivar more sensitive to PHS. At full maturity, embryonic ABA content in Fredro was twice as high as in Leontino. Two full-length cDNAs of 9-cis-epoxycarotenoid dioxygenase (TsNCED1, TsNCED2), an enzyme involved in ABA biosynthesis, and two full-length cDNAs of ABA 8'-hydroxylase (TsABA8'OH1 and TsABA8'OH2), an enzyme involved in ABA catabolism, were identified in triticale grains and characterized. The maximum transcript level of both TsNCED1 and TsNCED2 preceded the peak of ABA accumulation, suggesting that both TsNCEDs contribute to reach this peak, although the expression of TsNCED1 was significantly higher in Fredro than in Leontino. High expression of TsABA8'OH2 and TsABA8'OH1 was observed long before and at the end of the ABA accumulation peak, respectively, but no differences were observed between cultivars. The obtained results suggest that mainly TsNCED1 might be related to the higher ABA content and higher resistance of Fredro to PHS. However, Fredro embryos not only have higher ABA content, but also exhibit greater sensitivity to ABA, which may also have a significant effect on grain dormancy and lower susceptibility to PHS for grains of this cultivar. Copyright © 2016 Elsevier GmbH. All rights reserved.
Aranjuelo, I; Cabrera-Bosquet, L; Araus, J L; Nogués, S
2013-01-01
Further knowledge of the processes conditioning nitrogen use efficiency (NUE) is of great relevance to crop productivity. The aim of this paper was characterise C and N partitioning during grain filling and their implications for NUE. Cereals such as bread wheat (Triticum aestivum L. cv Califa sur), triticale (× Triticosecale Wittmack cv. Imperioso) and tritordeum (× Tritordeum Asch. & Graebn line HT 621) were grown under low (LN, 5 mm NH(4) NO(3)) and high (HN, 15 mm NH(4)NO(3)) N conditions. We conducted simultaneous double labelling ((12)CO(2) and (15)NH(4) (15)NO(3)) in order to characterise C and N partitioning during grain filling. Although triticale plants showed the largest total and ear dry matter values in HN conditions, the large investment in shoot and root biomass negatively affected ear NUE. Tritordeum was the only genotype that increased NUE in both N treatments (NUE(total)), whereas in wheat, no significant effect was detected. N labelling revealed that N fertilisation during post-anthesis was more relevant for wheat and tritordeum grain filling than for triticale. The study also revealed that the investments of C and N in flag leaves and shoots, together with the 'waste' of photoassimilates in respiration, conditioned the NUE of plants, and especially under LN. These results suggest that C and N use by these plants needs to be improved in order to increase ear C and N sinks, especially under LN. It is also remarkable that even though tritordeum shows the largest increase in NUE, the low yield of this cereal limits its agronomic value. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Bauböck, Roland; Karpenstein-Machan, Marianne; Kappas, Martin
2014-01-01
Lower Saxony (Germany) has the highest installed electric capacity from biogas in Germany. Most of this electricity is generated with maize. Reasons for this are the high yields and the economic incentive. In parts of Lower Saxony, an expansion of maize cultivation has led to ecological problems and a negative image of bioenergy as such. Winter triticale and cup plant have both shown their suitability as alternative energy crops for biogas production and could help to reduce maize cultivation. The model Biomass Simulation Tool for Agricultural Resources (BioSTAR) has been validated with observed yield data from the region of Hannover for the cultures maize and winter wheat. Predicted yields for the cultures show satisfactory error values of 9.36% (maize) and 11.5% (winter wheat). Correlations with observed data are significant ( P < 0.01) with R = 0.75 for maize and 0.6 for winter wheat. Biomass potential calculations for triticale and cup plant have shown both crops to be high yielding and a promising alternative to maize in the region of Hanover and other places in Lower Saxony. The model BioSTAR simulated yields for maize and winter wheat in the region of Hannover at a good overall level of accuracy (combined error 10.4%). Due to input data aggregation, individual years show high errors though (up to 30%). Nevertheless, the BioSTAR crop model has proven to be a functioning tool for the prediction of agricultural biomass potentials under varying environmental and crop management frame conditions.
Hackl, W; Pieper, B; Pieper, R; Korn, U; Zeyner, A
2010-12-01
Inclemency of weather frequently causes critical water contents in cereal grains above 15%. Ensiling in pre-mature condition may be an alternative to other techniques of preservation. Aim of this study was to compare apparent total tract digestibility (D(t) ; barley, wheat, triticale, rye) of proximate nutrients and pre-caecal digestibility (D(pc); barley, wheat) of amino acids (AA), respectively, from cereal grains in ensiled and almost dry condition. Moistly harvested cereal grains (67-73% dry matter) were milled through a 4-mm sieve and ensiled with lactic acid bacteria (LAB, 3 × 10(5) colony forming units/g Lactobacillus plantarum DSMZ 8862 and 8866). To investigate D(t), two trials were conducted with six Mini-Lewe pigs and four German Landrace pigs, respectively. D(pc) of AA was determined using four German Landrace pigs with ileo-rectal anastomosis. D(t) of proximate nutrients did not differ between cereal grains and their silages, except for ether extract, which was more digestible in ensiled than dry wheat, triticale and rye (p < 0.05). Lysine content was lower in ensiled than dry barley and wheat. In barley, ensiling was accompanied by reduced D(pc) of lysine and histidine (p < 0.05). In wheat, ensiling increased D(pc) of lysine, methionine, threonine and leucin (p < 0.05). Ensiling of pre-mature cereal grains with LAB can serve as a reasonable storage alternative. However, as limited data are yet available, further research is required to understand completely the impact of ensiling on nutritional value as indicated, for example, by the lysine content and the D(pc) of certain AA. © 2010 Blackwell Verlag GmbH.
Boguhn, Jeannette; Neumann, Dominik; Helm, André; Strobel, Egbert; Tebbe, Christoph C; Dänicke, Sven; Rodehutscorda, Markus
2010-12-01
The objective of this study was to investigate the effects of the concentrate proportion and Fusarium toxin-contaminated triticale (FCT) in the diet on nutrient degradation, microbial protein synthesis and structure of the microbial community, utilising a rumen simulation technique and single-strand conformation polymorphism (SSCP) profiles based on PCR-amplified small subunit ribosomal RNA genes. Four diets containing 60% or 30% concentrates on a dry matter basis with or without FCT were incubated. The fermentation of nutrients and microbial protein synthesis was measured. On the last day of incubation, microbial mass was obtained from the vessel liquid, DNA was extracted and PCR-primers targeting archaea, fibrobacter, clostridia, bifidobacteria, bacillii, fungi, and bacteria were applied to separately study the individual taxonomic groups with SSCP. The concentrate proportion affected the fermentation and the microbial community, but not the efficiency of microbial protein synthesis. Neither the fermentation of organic matter nor the synthesis and composition of microbial protein was affected by FCT. The fermentation of detergent fibre fractions was lower in diets containing FCT compared to diets with uncontaminated triticale. Except for the clostridia group, none of the microbial groups were affected by presence of FCT. In conclusion, our results give no indication that the supplementation of FCT up to a deoxynivalenol concentration in the diet of 5 mg per kg dry matter affects the fermentation of organic matter and microbial protein synthesis. These findings are independent of the concentrate level in the diets. A change in the microbial community composition of the genus Clostridia may be the reason for a reduction in the cellulolytic activity.
Stuper-Szablewska, Kinga; Perkowski, Juliusz
2017-03-01
The risk of cereal exposure to microbial contamination is high and possible at any time, starting from the period of plant vegetation, through harvest, up to the processing, storage and transport of the final product. Contents of mycotoxins in grain are inseparably connected with the presence of fungal biomass, the presence of which may indicate the occurrence of a fungus, and indirectly also products of its metabolism. Analyses were conducted on 378 grain samples of wheat, triticale, barley, rye and oats collected from grain silos located at grain purchase stations and at mills in Poland in 2006, 2007 and 2008. The concentrations of ERG and mycotoxins from the group of trichothecenes, as well as CFU numbers were analysed. The tested cereals were characterised by similarly low concentrations of both the investigated fungal metabolites and the level of microscopic fungi. However, conducted statistical analyses showed significant variation between tested treatments. Oat and rye grain contained the highest amounts of ERG, total toxins and CFU. In turn, the lowest values of investigated parameters were found in grain of wheat and triticale. Chemometric analyses, based on the results of chemical and microbiological tests, showed slight differences between contents of analysed metabolites between the years of the study, and do not confirm the observations on the significance of the effect of weather conditions on the development of mycobiota and production of mycotoxins; however, it does pertain to treatments showing no significant infestation. Highly significant correlations between contents of trichothecenes and ERG concentration (higher than in the case of the correlation of the total toxin concentrations/log cfu/g), indicate that the level of this metabolite is inseparably connected with mycotoxin contents in grain.
Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques
NASA Astrophysics Data System (ADS)
Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.
2015-06-01
Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.
Code of Federal Regulations, 2014 CFR
2014-01-01
... processing. Hay. Host crops cut and dried for feeding to livestock. Hay cut after reaching the dough stage may contain mature kernels of the host crop. Host crops. Plants or plant parts, including grain, seed..., and a seed. Seed. Wheat (Triticum aestivum), durum wheat (Triticum durum), and triticale (Triticum...
7 CFR 810.1002 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves—(1) 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular...
7 CFR 810.1002 - Definition of other terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves—(1) 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular...
7 CFR 810.1002 - Definition of other terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves—(1) 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular...
Wheat streak mosaic virus coat protein is a host-specific long-distance transport determinant in oat
USDA-ARS?s Scientific Manuscript database
Viral determinants involved in systemic infection of hosts by monocot-infecting plant viruses are poorly understood. Wheat streak mosaic virus (WSMV, genus Tritimovirus, family Potyviridae) exclusively infects monocotyledonous crops such as wheat, oat, barley, maize, triticale, and rye. Previously, ...
Usman Anwar; Lisa A. Schulte; Matthew Helmers; Randall K. Kolka
2017-01-01
Understanding the environmental impact of bioenergy crops is needed to inform bioenergy policy development. We determined the effects of five biomass cropping systemsâcontinuous maize (Zea mays), soybean (Glycine max)-triticale (Triticosecale Ã)/soybean-maize, maize-switchgrass (Panicum virgatum...
Code of Federal Regulations, 2011 CFR
2011-01-01
... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...
Code of Federal Regulations, 2010 CFR
2010-01-01
... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...
Code of Federal Regulations, 2012 CFR
2012-01-01
... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...
Code of Federal Regulations, 2013 CFR
2013-01-01
... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...
7 CFR 810.1002 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures...-damaged, or otherwise materially damaged. (g) Wild oats. Seeds of Avena fatua L. and A. sterillis L...
7 CFR 810.1002 - Definition of other terms.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures...-damaged, or otherwise materially damaged. (g) Wild oats. Seeds of Avena fatua L. and A. sterillis L...
Evaluation of fodder production systems for dairy farms
USDA-ARS?s Scientific Manuscript database
This study evaluated the feasibility and challenges of implementing sprouted fodder on dairy farms. In Study 1, five grains (barley, oats, wheat, rye and triticale) were sprouted for 7 d and analyzed for yield and nutritional content. In Study 2, lactating cows were fed a TMR during winter and suppl...
Discriminating oat and groat kernels from other grains using near infrared spectroscopy
USDA-ARS?s Scientific Manuscript database
Oat and groats can be discriminated from other grains such as barley, wheat, rye, and triticale (non-oats) using near infrared spectroscopy. The two instruments tested were the manual version of the ARS-USDA Single Kernel Near Infrared (SKNIR) and the automated QualySense QSorter Explorer high-speed...
Potential for increased use of cereal grain forages on dairy operations
USDA-ARS?s Scientific Manuscript database
Farmers are increasingly using cereal grain cover crops, which allows them to take advantage of additional growing days in early spring and late fall. The use of cereal grain forages, such as rye, wheat, or triticale as cover crops helps to reduce soil and nutrient losses, and also allows for addit...
Canopy cover and leaf area index relationships for wheat, triticale, and corn
USDA-ARS?s Scientific Manuscript database
The AquaCrop model requires canopy cover (CC) measurements to define crop growth and development. Some previously collected data sets that would be useful for calibrating and validating AquaCrop contain only leaf area index (LAI) data, but could be used if relationships were available relating LAI t...
Topographic and soil influences on root productivity of three bioenergy cropping systems
Todd A. Ontl; Kirsten S. Hofmockel; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka
2013-01-01
Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this need by quantifying annual root production of three bioenergy systems (continuous corn, triticale/sorghum, switchgrass) in response to variation in soil properties across a toposequence within a Midwestern...
Replacing fallow with forage triticale in dryland crop rotations increases profitability
USDA-ARS?s Scientific Manuscript database
A common dryland rotational cropping system in the semi-arid central Great Plains of the U.S. is wheat (Triticum aestivum L.)-corn (Zea mays L.)-fallow (WCF). However, the 12-month fallow period following corn production has been shown to be relatively inefficient in storing precipitation during the...
75 FR 68942 - Karnal Bunt; Regulated Areas in Arizona, California, and Texas
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
... bunt, a fungal disease of wheat. We are adding the Buckeye/Pretoria area of Maricopa County, AZ, to the... INFORMATION: Background Karnal bunt is a fungal disease of wheat (Triticum aestivum), durum wheat (Triticum durum), and triticale (Triticum aestivum X Secale cereale), a hybrid of wheat and rye. Karnal bunt is...
76 FR 44454 - Karnal Bunt; Regulated Areas in Arizona, California, and Texas
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... fields regulated because of Karnal bunt, a fungal disease of wheat. Specifically, the interim rule added... disease of wheat (Triticum aestivum), durum wheat (Triticum durum), and triticale (Triticum aestivum X Secale cereale), a hybrid of wheat and rye. Karnal bunt is caused by the fungus Tilletia indica (Mitra...
Rodehutscord, Markus; Rückert, Christine; Maurer, Hans Peter; Schenkel, Hans; Schipprack, Wolfgang; Bach Knudsen, Knud Erik; Schollenberger, Margit; Laux, Meike; Eklund, Meike; Siegert, Wolfgang; Mosenthin, Rainer
2016-01-01
Genotypes of cereal grains, including winter barley (n = 21), maize (n = 27), oats (n = 14), winter rye (n = 22), winter triticale (n = 21) and winter wheat (n = 29), were assayed for their chemical composition and physical characteristics as part of the collaborative research project referred to as GrainUp. Genotypes of one grain species were grown on the same site, except maize. In general, concentrations of proximate nutrients were not largely different from feed tables. The coefficient of variation (CV) for the ether extract concentration of maize was high because the data pool comprised speciality maize bred for its high oil content. A subset of 8 barley, 20 rye, 20 triticale and 20 wheat samples was analysed to differ significantly in several carbohydrate fractions. Gross energy concentration of cereal grains could be predicted from proximate nutrient concentration with good accuracy. The mean lysine concentration of protein was the highest in oats (4.2 g/16 g N) and the lowest in wheat (2.7 g/16 g N). Significant differences were also detected in the concentrations of macro elements as well as iron, manganese, zinc and copper. Concentrations of arsenic, cadmium and lead were below the limit of detection. The concentration of lower inositol phosphates was low, but some inositol pentaphosphates were detected in all grains. In barley, relatively high inositol tetraphosphate concentration also was found. Intrinsic phytase activity was the highest in rye, followed by triticale, wheat, barley and maize, and it was not detectable in oats. Substantial differences were seen in the thousand seed weight, test weight, falling number and extract viscoelasticity characteristics. The study is a comprehensive overview of the composition of different cereal grain genotypes when grown on the same location. The relevance of the variation in composition for digestibility in different animal species will be subject of other communications.
Kwiatek, Michał T.; Wiśniewska, Halina; Ślusarkiewicz-Jarzina, Aurelia; Majka, Joanna; Majka, Maciej; Belter, Jolanta; Pudelska, Hanna
2017-01-01
Segregation distorters are curious, evolutionarily selfish genetic elements, which distort Mendelian segregation in their favor at the expense of others. Those agents include gametocidal factors (Gc), which ensure their preferential transmission by triggering damages in cells lacking them via chromosome break induction. Hence, we hypothesized that the gametocidal system can be adapted for chromosome manipulations between Triticum and Secale chromosomes in hexaploid triticale (×Triticosecale Wittmack). In this work we studied the little-known gametocidal action of a Gc factor located on Aegilops geniculata Roth chromosome 4Mg. Our results indicate that the initiation of the gametocidal action takes place at anaphase II of meiosis of pollen mother cells. Hence, we induced androgenesis at postmeiotic pollen divisions (via anther cultures) in monosomic 4Mg addition plants of hexaploid triticale (AABBRR) followed by production of doubled haploids, to maintain the chromosome aberrations caused by the gametocidal action. This approach enabled us to obtain a large number of plants with two copies of particular chromosome translocations, which were identified by the use of cytomolecular methods. We obtained 41 doubled haploid triticale lines and 17 of them carried chromosome aberrations that included plants with the following chromosome sets: 40T+Dt2RS+Dt2RL (5 lines), 40T+N2R (1), 38T+D4RS.4BL (3), 38T+D5BS-5BL.5RL (5), and 38T+D7RS.3AL (3). The results show that the application of the Gc mechanism in combination with production of doubled haploid lines provides a sufficiently large population of homozygous doubled haploid individuals with two identical copies of translocation chromosomes. In our opinion, this approach will be a valuable tool for the production of novel plant material, which could be used for gene tracking studies, genetic mapping, and finally to enhance the diversity of cereals. PMID:28396677
USDA-ARS?s Scientific Manuscript database
Dryland farming strategies in the High Plains must make efficient use of limited and variable precipitation and stored water in the soil profile for stable and sustainable farm productivity. Current research efforts focus on replacing summer fallow in the region with more profitable and environmenta...
Aspen-triticale alleycropping system: effects of landscape position and fertilizer rate
W.L. Headlee; R.B. Hall; R.S. Jr. Zalesny
2010-01-01
Short-rotation woody crops offer several key advantages over other potential bioenergy feedstocks, particularly with regard to nutrient inputs and biomass storage. However, a key disadvantage is a lack of income for the grower early in the rotation. Alleycropping offers the opportunity to grow annual crops for income while the trees become established.
7 CFR 810.805 - Special grades and special grade requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... grain. Mixed grain in which barley predominates and that contains more than 4.0 percent of fungus-damaged and/or mold-damaged barley kernels. (b) Ergoty mixed grain. (1) Mixed grain in which rye or wheat... than 0.10 percent ergot. (c) Garlicky mixed grain. (1) Mixed grain in which wheat, rye, or triticale...
7 CFR 810.1202 - Definition of other terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. (f) Sieve—0.064 × 3/8 oblong-hole sieve. A metal sieve 0.032 inch thick with oblong perforations 0.064 by 0.375 (3/8) inch. (g) Thin rye. Rye and other matter that passes through a 0.064 × 3/8 oblong-hole sieve after...
7 CFR 810.1202 - Definition of other terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. (f) Sieve—0.064 × 3/8 oblong-hole sieve. A metal sieve 0.032 inch thick with oblong perforations 0.064 by 0.375 (3/8) inch. (g) Thin rye. Rye and other matter that passes through a 0.064 × 3/8 oblong-hole sieve after...
7 CFR 810.1202 - Definition of other terms.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. (f) Sieve—0.064 × 3/8 oblong-hole sieve. A metal sieve 0.032 inch thick with oblong perforations 0.064 by 0.375 (3/8) inch. (g) Thin rye. Rye and other matter that passes through a 0.064 × 3/8 oblong-hole sieve after...
7 CFR 810.1202 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, wheat, and wild oats. (f) Sieve—0.064 × 3/8 oblong-hole sieve. A metal sieve 0.032 inch thick with oblong perforations 0.064 by 0.375 (3/8) inch. (g) Thin rye. Rye and other matter that passes through a 0.064 × 3/8 oblong-hole sieve after...
Accumulation of biomass and bioenergy in culms of cereals as a factor of straw cutting height
NASA Astrophysics Data System (ADS)
Zając, Tomasz; Synowiec, Agnieszka; Oleksy, Andrzej; Macuda, Jan; Klimek-Kopyra, Agnieszka; Borowiec, Franciszek
2017-04-01
Cereal straw is an important biomass source in Europe. This work assessed: 1) the morphological and energetic characteristics of culms of spring and winter cereals, 2) the energy deposited in the different aboveground parts of cereals, 3) losses of energy due to different cutting heights. The straw of winter and spring cereals was collected from arable fields during the seasons 2009/10 and 2010/11 in southern Poland. Detailed biometric measurements of culms and internodes were performed. The losses of straw biomass and energy were assessed during simulation of cutting the culm at different heights, up to 50 cm. Longer and heavier culms were developed by winter wheat and triticale and oat. Cutting of straw up to 10 cm did not lead to significant losses in straw yield. The total amount of energy in the culms was as follows: triticale > winter wheat > oat > spring wheat > winter barley > spring barley. Cutting the culms above 20 cm led to significant differences in terms of biomass energy between cereal species. The smallest losses of energy were recorded for spring and winter barley. Oat and barley accumulated the highest energy in grains.
Productivity and nutrient cycling in bioenergy cropping systems
NASA Astrophysics Data System (ADS)
Heggenstaller, Andrew Howard
One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem (Andropogon geradii Vitman), switchgrass (Panicum virgatum L.), indiangrass [ Sorghastrum nutans (L.) Nash], and eastern gamagrass (Tripsacum dactyloides L.). Generally, the optimum rate of fertilization for biomass yield by the grasses was 140 kg N ha-1. Nitrogen inputs also had pronounced but grass-specific effects on biomass and nutrient partitioning, and on carbon storage. For big bluestem and switchgrass, 140 kg N ha -1. maximized root biomass, favored allocation of nutrients to roots over shoots, and led to net increases in carbon storage over the study duration. In contrast, for indiangrass and eastern gamagrass, root biomass and root nutrient allocation were generally adversely affected by N fertilization and carbon storage increased only with 0 or 65 kg N ha-1. For all grasses, 220 kg N ha -1 tended to shift allocation of nutrients to shoots over roots and resulted in no net increase in carbon storage. Optimal nitrogen management strategies for perennial, warm-season grass energy crops should take into consideration the effects of N on biomass yield as well as factors such as nutrient and carbon balance that will also impact economic feasibility and environmental sustainability.
USDA-ARS?s Scientific Manuscript database
Rye is a diploid crop species with many outstanding qualities, and is also important as a source of new traits for wheat and triticale improvement. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies. The library provides a 6 × genome ...
Morant-Manceau, Annick; Pradier, Elisabeth; Tremblin, Gérard
2004-01-01
The effect of salt stress (NaCl 85.7 or 110 mmol/L) was investigated in the triticale T300 and its parental species, Triticum dicoccum farrum (Triticum df) and Secale cereale cv. Petkus. Triticum df and T300 were more salt-tolerant than the rye (110 mmol/L NaCl was the highest concentration allowing rye growth to the three-leaf stage). Na+, K+ and Cl- ions accounted for almost half of the osmotic adjustment in Triticum df and T300, and up to 90% in rye. Salinity decreased the net photosynthesis and transpiration rates of the three cereals as compared to control plants, but induced no significant change in chlorophyll a fluorescence parameters. Water-use efficiency (WUE) increased with salinity. In the presence of 110 mmol/L NaCl, the K+/Na+ ratio decreased markedly in rye as compared to the other two cereals. Proline concentration, which increased in Triticum df and T300, could have protected membrane selectivity in favour of K+. Proline content remained low in rye, and increasing soluble sugar content did not appear to prevent competition between Na+ and K+. The salt sensitivity of rye could be due to low K+ uptake in the presence of a high NaCl concentration.
Net summertime emission of ammonia from corn and triticale fields
NASA Astrophysics Data System (ADS)
Richter, Undine; Smith, Jeremy; Brümmer, Christian
2016-04-01
Recent advancements in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we used a quantum cascade laser (QCL) absorption spectrometer to continuously measure high-frequency concentrations of ammonia and the net exchange between an agricultural site and the atmosphere based on the eddy-covariance approach. The footprint was split into two main sectors, one planted with corn (Zea mays) and the other one with triticale. Ammonia concentrations were highly variable between 2 and almost 100 ppb with an average value of 8.1 ppb during the observation period from April to September 2015. While both deposition and emission of ammonia was observed, the total campaign exchange resulted in a loss of 3.3 kg NH3-N ha-1. Highest average emission fluxes of 65 ng N m-2 s-1 were recorded after fertilization at the beginning of the campaign in April and May. Afterwards the exchange of ammonia with the atmosphere decreased considerably, but the site remained on average a consistent source with sporadic lower peaks and an average flux of 13 ng N m-2 s-1. While management in the form of fertilization was the main driver for ammonia concentration and exchange at the site, biophysical controls from temperature, wind regime, and surface wetness are also presented.
Butnaru, Gallia; Sarac, Ioan; Ciulca, Sorin
2014-01-01
The paper assesses the behavior of triticale genotypes in the evolution of the environment in Timisoara area during 2001 - 2011. The triticale varieties and lines were bred in the Eastern part of Romania [RICIC Fundulea] with a different climate pattern than Timisoara. We intended to see the yield evolution during a long period of cultivation [10 years--3 varieties bred before 2000; Group 1] and the new genotypes bred after 2000; Group 2] cultivated during 6 - 2 years. Each year, new different varieties (in total 32) and new lines (in total 78) were also under observation. For 10 years, the best variety from the first Group was Titan [5643.2 ± 710.2 kg/ha; CV% = 39.8]. From the second Group, the highest yield average revealed Haiduc variety [6207.2 ± 715.0 kg/ha; CV% = 34.6. During 3 years of cultivation Nera, Matroz and Negoiu pointed out 7936 kg/ha, 7542 kg/ha and 7266 kg/ha respectively. Nedeea and Oda overpasses 8500 and 7500 kg/ha during 2010 - 2011 respectively. The 2011 agricultural year was improper for cereals. It was affected by high temperature, and small amounts of precipitations. Only 64.16% of the average amounts of precipitation were accumulated. In these conditions the best varieties were Gorun and Haiduc performing 7190 kg/ha and 7058 kg/ha respectively. 40% of the tested varieties yielded less than 4500 kg/ha. From the farmers' point of view the best varieties were Titan and Gorun. In terms of the eight plant traits studied in 2011, the phenotypic similarity [ps] between varieties was variable. According to obtained results, we advise the farmers to compose a complex of varieties that should be proper for their specific environment. The favorable combination for cultivation in a stable environmental condition are Gorun [7190 kg/ha] and Matroz [6863 kg/ha] with ps = 93.23% revealing a high similarity. In an unstable environment, the best variety combination for cultivation are: Titan [6025 kg/ha] and Haiduc [7058 kg/ha] [ps = 49.94%], Titan [6025 kg/ha] and Gorun [7190 kg/ha] [ps = 47.93%]. The biplot analysis for the quantitative and qualitative traits highlighted the significant contribution of the number of spikes per unit area.
Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains.
Hachmeister, K A; Fung, D Y
1993-01-01
A variety of indigenous fermented foods exist today; however, tempeh has been one of the most widely accepted and researched mold-modified fermented products. Tempeh is a traditional fermented food made from soaked and cooked soybeans inoculated with a mold, usually of the genus Rhizopus. After fermentation has occurred, the soybeans are bound together into a compact cake by dense cottony mycelium. An important function of the mold in the fermentation process is the synthesis of enzymes, which hydrolyze soybean constituents and contribute to the development of a desirable texture, flavor, and aroma of the product. Enzymatic hydrolysis also may decrease or eliminate antinutritional constituents; consequently, the nutritional quality of the fermented product may be improved. Current technology and new scientific advancements have enabled researchers to examine specific strains of Rhizopus and new substrates such as cereal grains. Because Kansas produces numerous cereal grains, production of a fermented tempeh-like product using wheat, sorghum (milo), oats, rye, barley, corn, and triticale is a definite possibility for generating a Kansas Value-Added Product. In this study, several different tempeh-like products were produced using various cereal grains inoculated with Rhizopus oligosporus NRRL 2549 or R. oligosporus NRRL 2710. Grains used included hard red winter wheat, triticale, yellow sorghum (milo), and red sorghum (milo). The grain source as well as the strain of R. oligosporus used influenced the product's appearance, flavor, and patty integrity. Results showed that R. oligosporus NRRL 2549 produced more mycelium at a more rapid rate than did the R. oligosporus NRRL 2710 strain. The combination of red sorghum and R. oligosporus NRRL 2549 yielded a product with good patty texture, aroma, and appearance. Furthermore, the red sorghum fermented product was well suited for slicing. On the other hand, yellow sorghum inoculated with either R. oligosporus NRRL 2549 or R. oligosporus NRRL 2710 failed to produce an organoleptically suitable product. Triticale also was found to be an unacceptable substrate for the production of a tempeh-like product. Although the fermented wheat product had a desirable aroma and flavor, it lacked patty integrity and crumbled when sliced. Further research is needed to evaluate the economic significance and industrial applications of these tempeh-like products.
Hura, Tomasz; Hura, Katarzyna; Grzesiak, Maciej
2010-12-02
In the presented work an attempt has been made to estimate the phenolics content and its implication for the protection of the photosynthetic apparatus in course of a plant's de-etiolation. The experiments were carried out on two genotypes of winter triticale varying in their resistance to drought. The activity of the photosynthetic apparatus was monitored by taking measurements of chlorophyll fluorescence and chlorophyll/carotenoids content. Analyses of the total pool of phenolic compounds and ferulic acid as well as l-phenylalanine ammonia lyase activity were completed. The first illuminations of etiolated seedlings induced a chlorophyll synthesis, which was followed by the increasing activity of the photosynthetic apparatus in both studied genotypes. Piano exhibited a higher values of the maximum quantum efficiency of photosystem II primary photochemistry during de-etiolation than Imperial. These results may just indicate that for Imperial, the delivery of photons to the reaction centres exceeded the capacity of the photosynthetic apparatus to transduce this energy via electron transport. An increase in the content of ferulic acid was more noticeable for Piano and seems to be a consequence of adaptation to the new light conditions. It should be taken into account, that an increase of ferulic acid content during early stage of de-etiolation, may limit the photoinhibition of photosynthesis whenever radiation is excessive for the photosynthetic apparatus. Copyright © 2010 Elsevier B.V. All rights reserved.
Vrešak, Martina; Halkjaer Olesen, Merete; Gislum, René; Bavec, Franc; Ravn Jørgensen, Johannes
2016-01-01
Application of rapid and time-efficient health diagnostic and identification technology in the seed industry chain could accelerate required analysis, characteristic description and also ultimately availability of new desired varieties. The aim of the study was to evaluate the potential of multispectral imaging and single kernel near-infrared spectroscopy (SKNIR) for determination of seed health and variety separation of winter wheat (Triticum aestivum L.) and winter triticale (Triticosecale Wittm. & Camus). The analysis, carried out in autumn 2013 at AU-Flakkebjerg, Denmark, included nine winter triticale varieties and 27 wheat varieties provided by the Faculty of Agriculture and Life Sciences Maribor, Slovenia. Fusarium sp. and black point disease-infected parts of the seed surface could successfully be distinguished from uninfected parts with use of a multispectral imaging device (405–970 nm wavelengths). SKNIR was applied in this research to differentiate all 36 involved varieties based on spectral differences due to variation in the chemical composition. The study produced an interesting result of successful distinguishing between the infected and uninfected parts of the seed surface. Furthermore, the study was able to distinguish between varieties. Together these components could be used in further studies for the development of a sorting model by combining data from multispectral imaging and SKNIR for identifying disease(s) and varieties. PMID:27010656
Agil, Rania; Hosseinian, Farah
2012-03-01
The objectives of this study were to: (i) define the optimum concentration of triticale bran (TB) that can be incorporated in yogurt, (ii) evaluate the prebiotic effects of TB on microbial viability, pH and total titratable acidity (TTA) in yogurt across 28 days of cold storage, and (iii) measure the oxygen radical absorbance capacity (ORAC) of water-extractable polysaccharides (WEP) in TB. Lactobacillus bulgaricus and Streptococcus thermophilus were used as starter cultures. Lactobacillus acidophilus and Bifidobacterium lactis were used as probiotics. A concentration of 4% TB in yogurt was determined to be the maximum amount that could be added without causing synersis. By day 7, the number of bacteria greatly increased in yogurt samples containing TB and maintained higher viable bacteria counts at the end of the cold storage period, in comparison to controls (P ≤ 0.05). Confirming this data was the lower pH levels and higher TTA values of TB yogurt samples exhibited throughout 28 days (P ≤ 0.05). Polysaccharide extracts of TB exhibited strong antioxidant activity with an ORAC value of 33.86 ± 2.30 μmol trolox equivalents (TE)/g of bran. Results of this study suggest that TB may serve as a new prebiotic and antioxidant source for functional foods and nutraceutical applications.
Li, Feng; Li, Yinghui; Cao, Lirong; Liu, Peiyuan; Geng, Miaomiao; Zhang, Qiang; Qiu, Lina; Sun, Qixin; Xie, Chaojie
2018-01-01
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, and wheat leaf rust, caused by Puccinia triticina Eriks, are two important diseases that severely threaten wheat production. Sorento, a hexaploid triticale cultivar from Poland, shows high resistance to the wheat powdery mildew isolate E09 and the leaf rust isolate PHT in Beijing, China. To introduce resistance genes into common wheat, Sorento was crossed with wheat line Xuezao, which is susceptible to both diseases, and the F1 hybrids were then backcrossed with Xuezao as the recurrent male parent. By marker analysis, we demonstrate that the long arm of the 2R (2RL) chromosome confers resistance to both the leaf rust and powdery mildew isolates at adult-plant and seedling stages, while the long arm of 4R (4RL) confers resistance only to powdery mildew at both stages. The chromosomal composition of BC2F3 plants containing 2R or 2RL and 4R or 4RL in the form of substitution and translocation were confirmed by GISH (genomic in situ hybridization) and FISH (fluorescence in situ hybridization). Monosomic and disomic substitutions of a wheat chromosome with chromosome 2R or 4R, as well as one 4RS-4DL/4DS-4RL reciprocal translocation homozigote and one 2RL-1DL translocation hemizigote, were recovered. Such germplasms are of great value in wheat improvement. PMID:29459877
Li, Feng; Li, Yinghui; Cao, Lirong; Liu, Peiyuan; Geng, Miaomiao; Zhang, Qiang; Qiu, Lina; Sun, Qixin; Xie, Chaojie
2018-01-01
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici , and wheat leaf rust, caused by Puccinia triticina Eriks, are two important diseases that severely threaten wheat production. Sorento, a hexaploid triticale cultivar from Poland, shows high resistance to the wheat powdery mildew isolate E09 and the leaf rust isolate PHT in Beijing, China. To introduce resistance genes into common wheat, Sorento was crossed with wheat line Xuezao, which is susceptible to both diseases, and the F 1 hybrids were then backcrossed with Xuezao as the recurrent male parent. By marker analysis, we demonstrate that the long arm of the 2R (2RL) chromosome confers resistance to both the leaf rust and powdery mildew isolates at adult-plant and seedling stages, while the long arm of 4R (4RL) confers resistance only to powdery mildew at both stages. The chromosomal composition of BC 2 F 3 plants containing 2R or 2RL and 4R or 4RL in the form of substitution and translocation were confirmed by GISH (genomic in situ hybridization) and FISH (fluorescence in situ hybridization). Monosomic and disomic substitutions of a wheat chromosome with chromosome 2R or 4R, as well as one 4RS-4DL/4DS-4RL reciprocal translocation homozigote and one 2RL-1DL translocation hemizigote, were recovered. Such germplasms are of great value in wheat improvement.
Graves, Emily E; Holyoak, Marcel; Rodd Kelsey, T; Meese, Robert J
2013-01-01
Population trends represent a minimum amount of information required to assess the conservation status of a species. However, understanding and detecting trends can be complicated by variation among habitats and regions, and by dispersal connecting habitats through source-sink dynamics. We analyzed trends in breeding populations between habitats and regions to better understand the overall dynamics of a species' decline. Specifically, we analyzed historical trends in breeding populations of tricolored blackbirds (Agelaius tricolor) using breeding records from 1907 to 2009. The species breeds itinerantly and ephemerally uses multiple habitat types and breeding areas, which make interpretation of trends complex. We found overall abundance declines of 63% between 1935 and 1975. Since 1980 overall declines became nonsignificant and obscure despite large amounts of data from 1980 to 2009. Temporal trends differed between breeding habitat types and were associated with regional differences in population declines. A new habitat, triticale crops (a wheat-rye hybrid grain) produced colonies 40× larger, on average, than other breeding habitats, and contributed to a change in regional distribution since it primarily occurred in a single region. The mechanism for such an effect is not clear, but could represent the local availability of foodstuffs in the landscape rather than something specific to triticale crops. While variation in trends among habitats clearly occurred, they could not easily be ascribed to source-sink dynamics, ecological traps, habitat selection or other detailed ecological mechanisms. Nonetheless, such exchanges provide valuable information to guide management of dynamic systems. PMID:24101977
Li, Jianbo; Lang, Tao; Li, Bin; Yu, Zhihui; Wang, Hongjin; Li, Guangrong; Yang, Ennian; Yang, Zujun
2017-06-01
Fluorescence in situ hybridization and molecular markers have confirmed that several chromosomes from Thinopyrum intermedium ssp. trichophorum have been added to a wheat background, which originated from a cross between a wheat- Thinopyrum partial amphiploid and triticale. The lines displayed blue grains and resistance to wheat stripe rust. Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. With the aim to transfer novel genetic variation from Th. intermedium species for sustainable wheat breeding, a new trigeneric hybrid was produced by crossing an octoploid wheat-Th. intermedium ssp. trichophorum partial amphiploid with hexaploid triticale. Fluorescence in situ hybridization (FISH) revealed that Thinopyrum chromosomes were transmitted preferably and the number of rye chromosomes tended to decrease gradually in the selfed derivatives of the trigeneric hybrids. Four stable wheat-Th. intermedium chromosome substitution, addition and translocation lines were selected, and a 2J S addition line, two substitution lines of 4J S (4B) and 4J(4B), and a small 4J.4B translocation line were identified by FISH and molecular markers. It was revealed that the gene(s) responsible for blue grains may located on the FL0.60-1.00 of long arm of Th. intermedium-derived 4J chromosome. Disease resistance screenings indicated that chromosomes 4J S and 2J S appear to enhance the resistance to stripe rust in the adult plant stage. The new germplasm with Th. intermedium introgression shows promise for utilization of Thinopyrum chromosome segments in future wheat improvement.
Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines
Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang
2013-01-01
Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213
Ragaee, S M; Campbell, G L; Scoles, G J; McLeod, J G; Tyler, R T
2001-05-01
Five rye lines exhibiting a wide range of extract viscosities were evaluated for the rheological and baking properties of their flours, individually and in blends with hard red spring wheat flour. Commercial cultivars of rye and triticale were included in the study as controls. Extract viscosities of rye flours were higher than those of corresponding wholemeals, indicating shifting of water-extractable arabinoxylan into flour during roller milling. Falling numbers of the rye flours correlated positively with their extract viscosities in the presence (r = 0.73, p < 0.05) or absence (r = 0.65, p < 0.05) of an enzyme inhibitor. Farinograms revealed the weakness of rye and triticale flours compared to wheat flour. Extract viscosities of rye flours were negatively correlated (r = -0.65, p < 0.05) with mixing tolerance index and positively correlated (r = 0.64, p < 0.05) with dough stability, suggesting a positive impact of extract viscosity on dough strength. Extract viscosity was negatively correlated (r = -0.74, p < 0.05) with loaf volume and specific volume (r = -0.73, p < 0.05) and positively correlated (r = 0.73, p < 0.05) with loaf weight of rye/wheat bread. Overall, the results indicated that 30% of flour from high or low extract viscosity rye could be incorporated into rye/wheat breads without seriously compromising bread quality. Inclusion of rye, particularly high extract viscosity rye, in chick diets seriously impeded growth performance and feed efficiency. Part of the arabinoxylan survived bread-making and exerted an effect on chicks, although substantially lower digesta viscosities were observed in chicks fed rye bread diets than in those fed rye wholemeals.
Tran, Frances; Penniket, Carolyn; Patel, Rohan V; Provart, Nicholas J; Laroche, André; Rowland, Owen; Robert, Laurian S
2013-06-01
Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser. © 2013 Her Majesty the Queen in Right of Canada as represented by the Minister of Agriculture and Agri-Food Canada.
Climate and N-Mineral Fertilization Changes on Triticale (XTriticosecale W.) Yield
NASA Astrophysics Data System (ADS)
László, Márton, ,, Dr.
2010-05-01
Ecological quality has a well established dependence on climate-rainfall changes because the water problems are pressing. There is, therefore, growing concern about the potentially wide ranging risks that climate change would have on these key industries as the nature and extent of anticipated changes have become more evident. It also includes changes in land use and in plant production and their management. These changes are unprecedented in terms of both their rate and their spatial extent. Changes in land use (agrotechnics, soil, cultivation, fertility, quality, protection etc.) and in plant production (plant nutrition-, rotation-, protection-, etc.) are currently the main manifestations. As an interdisciplinary problem it is necessary to study such a complex matter in terms of agricultural production. Generally among natural catastrophes, droughts and floods cause the greatest problems in field crop production. The droughts and the floods that were experienced in Hungary in the early 1980's have drawn renewed attention to the analyses of these problems. New research on climate change-soil-plant systems are focused on yield and yield quality. This paper reports the climate change (rainfall) x soil (acidic sandy brown forest) x mineral N-fertilisation x plant interactions on triticale yields in a long term field experiment set up at Nyírlugos in north-eastern Hungary under temperate climate conditions in 1962. The agrochemical parameters of the soil were as follows: pH (H2O) 5.9, pH (KCl) 4.7, hydrolytic acidity 8.4, hy1 0.3, humus 0.7%, CEC 5-10 mgeq 100*g-1, total N 34 mg*kg-1, AL-P2O5 43 mg*kg-1, AL-K2O 60 mg*kg-1. From 1962 to 1980 the experiment consisted of 2x16x4x4=512 plots and from 1980 of 32x4=128 plots in split-split plot and factorial random block design. The gross plot size was 10x5=50 m2. The average fertiliser rates in kg*ha-1*year-1 were nitrogen 45, phosphorus 24 (P2O5), potassium 40 (K2O), magnesium 7.5 (MgO) until 1980 and nitrogen 75, phosphorus 90 (P2O5), potassium 90 (K2O), calcium 175 (Ca) and magnesium 40 (Mg) after 1980. Nitrogen results are summarised from 1990 to 2001. Main conclusions were as follows: 1. On the basis of "general" (Harnos 1993) and triticale-specific rainfall deficiency values (Márton 2003) the years could be classified as average (1991, 1995, 2000), dry (1993), droughty (1992, 1994, 1996), wet (1997, 1998, 2001) and over wet (1999). 2. In average years the yield of the control plots became stabilised at the 1.4 t*ha-1 level. In the fertilised treatments the highest yield (4.0 t*ha-1) was more than two times the lowest yield (1.9 t*ha-1). N fertilisation resulted in an increase of around 1.0 t*ha-1 in the main yield compared with the control. The triticale yields could only be enhanced economically by full treatment with NPK (3.3 t*ha-1) or NPKCa-, NPKMg-, NPKCaMg (3.9 t*ha-1). 3. Without fertilisation the yield in the dry and drought years was decreased 14% and 36% to that in the average year. In case of the nitrogen treatmets the yield was decreased 45% and 24%. 4. In the wet years on the unfertilised plots the yield declined 14% and in the case of the nitrogen fertilisation the yield no changed than in the average years. In the over wet year the plots yielded similar than in the average years. 5. The relationships between rainfall during the vegetation period, N, P, K, Ca and Mg fertilisation and yield were characterised by second-degree correlation depending on the level of nutrition (R: 0=0.3455**, N=0.2779+, NP=0.4722***, NK=0.3739***, NPK=0.6311***, NPKCa=0.6673***, NPKMg=0.6734***, NPKCaMg=0.6232***). The maximum yield (5.0-6.0 t*ha-1) was yielded at 550-600 mm growth period rainfall. This paper summarises quantified results of triticale research with regarding to interaction effects and relationships between climate (rainfall)-mineral nutrition-crop production changes in Hungary during a long term field experiment to agricultural sustainability. Introduction "Climate Change" are recognized as a serious environmental issues (Johnston, 2000). Presently the build up of greenhouse gases in the atmosphere and the inertia in trends in emissions means that we can expect significant changes for at least the next few decades and probably for the 21th century as well (Márton, 2001a., b). It would badly need to understand what might be involved in adapting to the new climates. A decade ago, researchers asked the "what if" question. For example, what will be the impact if climate changes. Now, we must increasingly address the following question: how do we respond effectivelly to prevent damaging impacts and take advantage of new climatic opportunities. This question requires detailed in information regarding expected impacts and effectíve adaptive measures. Information on adaptation is required for governments, landscape planners, stakeholders, farmers, producers, processors, supermarkets and consumers. Not only the local effects and options, but also the spatial implications must be understood. Will yields be maintained on the present range of farms. Where will new crops be grown. Will new processing plants be required. Will there be competition for water. Most recent agricultural impact studies have concentrated on the effects of mean changes in climate on crop production, whilst only limited investigations into the effects of climate variability on agriculture have been undertaken. The paucity of studies in this area is not least due to the considerable uncertainty regarding how climate variability may change in the future in response to greenhouse gas induced warming but also as a result of the uncertainty in the response of agricultural crops to changes in climate variability, effected most probably through changes in the frequency of extreme climatic events. Showed that changes in variance have a greater effect on the frequency of extreme climatic events than do changes in the mean values. Hence, it is important to attempt to include changes in variability in scenarios of climate change. Weather change at Hungary was started about of 1850. Among the natural catastrophes, drought and flooding caused by over-abundant rainfall cause the greatest problem in plant nutrition and in field crop production nowadays too (José et al., 2001). It is why we found it necessary to revise and to analyse this problem. The triticale is most important crop of many World countries (Márton and Pekli, 2003) but little research in the field of climate change impact assessment has been undertaken. These plant is sensitive to the prevailing weather conditions (rainfall) and, hence, it is important to evaluate the effects of anthropogenic climate change on her production. The crop is demanding indicator of soil nutrient status also. Have a particularly high requirement for supply of soil nitrogen, phosphorus, potassium, calcium and magnesium. From 1990 to 2001 this paper describes climate-rainfall-change and N-mineral fertilisation effects on triticale yield on a acidic sandy brown forest soil at long term experiment scale under temperate climate conditions at Hungary. Material and Method The effect of rainfall quantity and distribution on certain crop fertilisation factors (N, P, K, Ca, Mg and yield) were studied in a long- term field experiment on acidic sandy brown forest soil at North- Eastern Hungary set up in 1962 and 2003. The agrochemical parameters of the soil were as follows: pH (H2O) 5.9, pH (KCl) 4.7, hydrolytic acidity 8.4, hy1 0.3, humus 0.7%, CEC 5-10 mgeq 100*g-1, total N 34 mg*kg-1, AL-P2O5 43 mg*kg-1, AL-K2O 60 mg*kg-1. From 1962 to 1980 the experiment consisted of 2x16x4x4=512 plots and from 1980 of 32x4=128 plots in split-split plot and factorial random block design. The gross plot size was 10x5=50 m2. The average fertiliser rates in kg*ha-1*year-1 were nitrogen 45, phosphorus 24 (P2O5), potassium 40 (K2O), magnesium 7.5 (MgO) until 1980 and nitrogen 75, phosphorus 90 (P2O5), potassium 90 (K2O), calcium 175 (Ca) and magnesium 40 (Mg) after 1980 in the form of 25 % calcium ammonium nitrate, 18 % superphosphate, 40 % potassium chloride, calcium carbonate and magnesium sulphate. The groundwater table was at a depth of 2 - 3 m. Ecological (rainfall) and experimental data bases were estimated by Hungarian traditional (Harnos, 1993) and RISSAC-HAS (Márton, 2003) standards, MANOVA (SPSS) and regression analysis (SPSS). Results and Discussion Nitrogen results are summarised from 1990 to 2001. 1. On the basis of "general" (Harnos, 1993) and triticale-specific rainfall deficiency values (Márton, 2003) the years could be classified as average (1991, 1995, 2000), dry (1993), droughty (1992, 1994, 1996), wet (1997, 1998, 2001) and over wet (1999). 2. In average years the yield of the control plots became stabilised at the 1.4 t*ha-1 level. In the fertilised treatments the highest yield (4.0 t*ha-1) was more than two times the lowest yield (1.9 t*ha-1). N fertilisation resulted in an increase of around 1.0 t*ha-1 in the main yield compared with the control. The triticale yields could only be enhanced economically by full treatment with NPK (3.3 t*ha-1) or NPKCa-, NPKMg-, NPKCaMg (3.9 t*ha-1). 3. Without fertilisation the yield in the dry and drought years was decreased 14% and 36% to that in the average year. In case of the nitrogen treatmets the yield was decreased 45% and 24%. 4. In the wet years on the unfertilised plots the yield declined 14% and in the case of the nitrogen fertilisation the yield no changed than in the average years. In the over wet year the plots yielded similar than in the average years. 5. The relationships between rainfall during the vegetation period, N, P, K, Ca and Mg fertilisation and yield were characterised by second-degree correlation depending on the level of nutrition (R: 0=0.3455**, N=0.2779+, NP=0.4722***, NK=0.3739***, NPK=0.6311***, NPKCa=0.6673***, NPKMg=0.6734***, NPKCaMg=0.6232***). The maximum yield (5.0-6.0 t*ha-1) was yielded at 550-600 mm growth period rainfall. References Harnos, Zs. 1993. Időjárás és időjárás-termés összefüggéseinek idősoros elemzése. In: Aszály 1983 (Szerk.: Baráth, Cs-né., Győrffy, B., és Harnos, Zs.). KÉE. Budapest Johnston, A. E. 2000. Some aspects of nitrogen use efficiency in arable agriculture. K. Scogs-o. Lantbr. Akad. Tidskr. 139: 8. José, A. B., Estáquio, M. J., and Márton, L. 2001. Results of Crotalaria ssp. effects on soil conservation. In: Congress on Conservation Agriculture, (Eds Armando, M. V.), ECAF., Madrid, 5, pp 1-4. Márton, L. 2001a. Climate change and N, P, K, Mg fertilization effect analysis at Tisza-river basin in a long term field experiment. Szent István University, Gödöllő, p. 9. Márton, L. 2001b. Climate change, N-fertilisation effect on rye (Secale cereale L.) yield in a long term field experiment. In: Rural development-Ecologically farming-Agriculture, (Eds Palkovics, M.), University Veszprém, Keszthely, pp 924-929. Márton, L. 2002a. Climate-Rainfall Change (CRC) and mineral fertilisation (MF) effects on different crop production. In: Challenges of the new millennium our joint responsibility. (Eds A. Borhidi). MTA ÖBKI. Budapest. 1, pp 110-111. Márton, L. 2002b. Relationships between rainfall, nutrient supplies and the yield of winter wheat (Triticum aestivum L.). Plant Production 51: 529-542. Márton, L. 2003. Relationships between rainfall, nutrient supplies and the yield of triticale. Plant Production. In press Márton, L., and Pekli, J. 2003. Plant production under sub-arctical and temperate climate conditions. SZIU. Gödöllő Acknowledgement This research was supported by Hungarian Academy of Sciences, H-Budapest Adderss of the author Dr. Márton László Ph.D Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, 1022 H-Budapest, Herman O. u. 15. E-mail:marton@rissac.hu
Influence of Salt Stress on Growth and Frost Resistance of Three Winter Cereals
NASA Astrophysics Data System (ADS)
Matuszak-Slamani, Renata; Brzóstowicz, Aleksander
2015-04-01
This paper presents results of a study on the influence of 0-150 mmol NaCl dm-3 Hoagland solution on growth, chlorophyll content, photosynthesis and frost resistance of seedlings of three winter cereals: wheat - cv. Almari, rye - cv. Amilo, and triticale - cv. Tornado. Sodium chloride at 25 mmol dm-3 caused better growth of wheat shoots and roots, both of fresh and dry matter. Higher concentrations of NaCl in the medium decreased the biomass of the tested seedlings. The influence of NaCl on the chlorophyll content in the seedlings varied. The conductometry method showed that the resistance of the cell walls of wheat and rye to low temperature decreased in the presence of NaCl in the growth medium. Luminescence has shown that seedlings that grew in NaCl-containing medium indicated an impediment of electron flow at a lower temperature than the control plants.
Research in biomass production and utilization: Systems simulation and analysis
NASA Astrophysics Data System (ADS)
Bennett, Albert Stewart
There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept of a mobile juice harvester is not economically viable due to low sugar recovery. The addition of front-end stalk processing/pressing equipment into existing ethanol facilities was found to be economically viable when combined with the plants' use of residuals as a natural gas fuel replacement. Because of high loss of fermentable carbohydrates during ensilage, storage of sweet sorghum in bunkers was not found to be economically viable. The fourth section looks at double cropping winter triticale with late-planted summer corn and compares these scenarios to traditional single cropped corn. Double cropping systems show particular promise for co-production of grain and biomass feedstocks and potentially can allow for greater utilization of grain crop residues. However, additional costs and risks associated with producing two crops instead of one could make biomass-double crops less attractive for producers despite productivity advantages. Detailed evaluation and comparisons show double cropped triticale-corn to be at a significant economic disadvantage relative to single crop corn. The cost benefits associated with using less equipment combined with availability of risk mitigating crop insurance and government subsidies will likely limit farmer interest and clearly indicate that traditional single-crop corn will provide greater financial returns to management. To evaluate the various sweet sorghum, single crop corn and double cropped triticale-corn production scenarios, a detailed but generic model was developed. The primary goal of this generic approach was to develop a modeling foundation that can be rapidly adapted, by an experienced user, to describe new and existing biomass and crop production scenarios that may be of interest to researchers. The foundation model allows input of management practices, crop production characteristics and utilizes standardized machinery performance and cost information, including farm-owned machinery and implements, and machinery and farm production operations provided by custom operators. (Abstract shortened by UMI.)
[What medication should be prescribed to a patient with coeliac disease?
Pérez-Diez, C; Guillén-Lorente, S; Palomo-Palomo, P
2018-03-01
Coeliac disease is a permanent intolerance to gluten proteins from wheat, rye, barley and triticale. Although strict adherence is complicated, the only effective treatment is a gluten-free diet throughout life. Some drugs contain starch as an excipient, and there is a risk related to the gluten content, which must be avoided in these patients. Current legislation requires the analysis of the protein content of wheat starch, or the absence of starches from another source where rice, maize, or potato starches are used as excipients. But, it does not specify that reference should be made to traces of gluten that are residues of the process of production of the active ingredient. As regards the case described, there needs to be awareness of the importance of adequately informing patients and reviewing/updating current legislation to ensure the safe use of drugs. Copyright © 2017 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.
Negri, Marco; Bacenetti, Jacopo; Fiala, Marco; Bocchi, Stefano
2016-06-01
In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets.
Knudsen, Knud Erik Bach
2014-09-01
The current paper reviews content and variation in fiber and nonstarch polysaccharides (NSP) of common crops used in broiler diets. The cereal grain is a complex structure, and its cell walls (CW) differ in their composition and hence properties. Arabinoxylan (AX), mixed linkage (1→3; 1→4)-β-glucan (β-glucan), cellulose, and the noncarbohydrate component lignin are the predominant polymers in cereals. They occur in different proportions depending on the species and tissue type. Rye, triticale, wheat, corn, and sorghum are all rich in AX, whereas barley and oats contain a high level of β-glucan. The AX from rye, wheat, and triticale and β-glucan from barley and oats are to a large extent soluble, whereas the solubility of AX found in corn and sorghum is lower than the other cereals. The ratio of arabinose to xylose gives a crude indication of the AX structure, which varies between the endosperm, the aleurone and the outer grain layers as well as between the same tissues from different grains. Varietal differences in AX structure of the endosperm are also identified. From the analysis of the released oligomers after hydrolysis with a specific (1→3,1→4)-β-d-glucan hydrolase, it is found that the ratio of trisaccharides (degree of polymerization 3) and tetrasaccharides (degree of polymerization 4) varies depending on the source, being higher in barley than in oats but lower than in wheat. The molecular weight of β-glucan is higher than that of AX, and both polymers contribute to the viscosity of the extract. However, because AX molecules are more resistant to degradation than β-glucan, the use of AX rich grains in broiler diets is usually more problematic than those containing high concentrations of β-glucan. The cereal coproducts (brans and hulls) are concentrated sources of cellulose, lignin, and insoluble AX, but β-glucan can also be present mainly in rye and wheat brans. The CW composition of seeds and grains of protein crops and feedstuffs are different from that of cereals. The main CW polymers are pectic substances (homogalacturonan, rhamnogalacturonan type I and II, xylogalacturonan, and arabinogalactans type I and II), xyloglucans, and cellulose, but there are significant differences in the composition of the parenchymatous (cotyledon) tissues and that of the hulls. In the hulls, cellulose is the predominant polysaccharide, followed by acidic xylans and pectic substances. The implications of the heterogeneous CW for the action of exogenous enzymes are discussed. © 2014 Poultry Science Association Inc.
In vivo indices for predicting acidosis risk of grains in cattle: Comparison with in vitro methods.
Lean, I J; Golder, H M; Black, J L; King, R; Rabiee, A R
2013-06-01
Our objective was to evaluate a near-infrared reflectance spectroscopy (NIRS) used in the feed industry to estimate the potential for grains to increase the risk of ruminal acidosis. The existing NIRS calibration was developed from in sacco and in vitro measures in cattle and grain chemical composition measurements. To evaluate the existing model, 20 cultivars of 5 grain types were fed to 40 Holstein heifers using a grain challenge protocol and changes in rumen VFA, ammonia, lactic acids, and pH that are associated with acidosis were measured. A method development study was performed to determine a grain feeding rate sufficient to induce non-life threatening but substantial ruminal changes during grain challenge. Feeding grain at a rate of 1.2% of BW met these criteria, lowering rumen pH (P = 0.01) and increasing valerate (P < 0.01) and propionate concentrations (P = 0.01). Valerate was the most discriminatory measure indicating ruminal change during challenge. Heifers were assigned using a row by column design in an in vivo study to 1 of 20 grain cultivars and were reassigned after a 9 d period (n = 4 cattle/treatment). The test grains were dry rolled oats (n = 3), wheat (n = 6), barley (n = 4), triticale (n = 4), and sorghum (n = 3) cultivars. Cattle were adapted to the test grain and had ad libitum access to grass silage 11 d before the challenge. Feed was withheld for 14 h before challenge feeding with 0.3 kg DM of silage followed by the respective test grain fed at 1.2% of BW. A rumen sample was taken by stomach tube 5, 65, 110, 155, and 200 min after grain consumption. The rumen is not homogenous and samples of rumen fluid obtained by stomach tube will differ from those gained by other methods. Rumen pH was measured immediately; individual VFA, ammonia, and D- and L-lactate concentrations were analyzed later. Rumen pH (P = 0.002) and all concentrations of fermentation products differed among grains (P = 0.001). A previously defined discriminant score calculated at 200 min after challenge was used to rank grains for acidosis risk. A significant correlation between the discriminant score and the NIRS ranking (r = 0.731, P = 0.003) demonstrated the potential for using NIRS calibrations for predicting acidosis risk of grains in cattle. The overall rankings of grains for acidosis risk were wheat > triticale > barley > oats > sorghum.
Comparison of quantitative NMR and IRMS spectrometry for the authentication of "Polish Vodka".
Ciepielowski, Grzegorz; Pacholczyk-Sienicka, Barbara; Frączek, Tomasz; Klajman, Kamila; Paneth, Piotr; Albrecht, Łukasz
2018-05-31
The production of "Polish Vodka" is restricted by law to the ethyl alcohol of agricultural origins obtained from rye, wheat, barley, oat, triticale and potatoes grown on the territory of the Republic of Poland. The current labeling system should guarantee that the spirit is authentic and of good quality but not all producers are honest. Unfortunately, the authentic "Polish Vodka" is the most often counterfeited by the addition of cheaper and more accessible maize spirits. These illegal practices significantly reduce costs of the spirit production. Therefore, the determination of the botanical origin of alcohol in Poland is highly relevant. The quantitative 2 H NMR and isotope ratio mass spectrometry (IRMS) were used to investigate the authenticity of 30 samples of Polish spirits. Several isotopic parameters were used to determine the botanical origin of 10 unknown samples. Both approaches lead to the same conclusions regarding the percentage of maize-derived ethanol addition. Applied techniques are a valuable tool in the fight against counterfeiting of products. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Dai, Yi; Duan, Yamei; Chi, Dawn; Liu, Huiping; Huang, Shuai; Cao, Wenguang; Gao, Yong; Fedak, George; Chen, Jianmin
2017-08-01
It is very important to use chromosome-specific markers for identifying alien chromosomes in advanced generations of distant hybridization. The chromosome-specific markers of rye and Thinopyrum elongatum, as well as genomic in situ hybridization, were used to identify the alien chromosomes in eight lines that were derived from the crossing between Triticum trititrigia (AABBEE) and triticale (AABBRR). The results showed that four lines contained all rye chromosomes but no Th. elongatum chromosomes. The line RE36-1 contained all of the rye chromosomes except for chromosome 2R. The lines RE33-2 and RE62-1 contained all rye chromosomes and 1E and 5E translocated chromosome, respectively. The line RE24-4 contained 12 rye chromosomes plus a 7E chromosome or 12 rye chromosomes plus one R-E translocated chromosome. Chromosome identification in the above lines was consistent using chromosome-specific markers and genomic in situ hybridization. These chromosome-specific markers provide useful tools for detecting alien chromosomes in trigeneric hybrids, and these lines could be utilized as valuable germplasm in wheat improvement.
Storage changes in the quality of sound and sprouted flour.
Sur, R; Nagi, H P; Sharma, S; Sekhon, K S
1993-07-01
Sound and sprouted flours (24 and 48 hr) from bread wheat (WL-1562), durum wheat (PBW-34) and triticale (TL-1210) were stored at room temperature (34.8 degrees C) and relative humidity (66.7%) for 0, 45, 90 and 135 days to assess the changes in physico-chemical and baking properties. Protein, gluten, sedimentation value, starch and crude fat decreased during storage in all the samples; however, the decrease was more in sprouted flours. Free amino acids, proteolytic activity, diastatic activity and damaged starch decreased with increase in storage period. Total sugars and free fatty acids increased more rapidly in the flours of sprouted wheats during 135 days of storage. Loaf volume of breads decreased during storage in both sound and sprouted flour but the mean percent decrease in loaf volume was more in stored sound flours. Aging of sprouted flour for 45 days improved the cookie and cake making properties but further storage was of no value for these baked products. Chapati making properties of stored sound and sprouted flour were inferior to that of fresh counterparts.
Starch-Branching Enzymes Preferentially Associated with A-Type Starch Granules in Wheat Endosperm1
Peng, Mingsheng; Gao, Ming; Båga, Monica; Hucl, Pierre; Chibbar, Ravindra N.
2000-01-01
Two starch granule-bound proteins (SGP), SGP-140 and SGP-145, were preferentially associated with A-type starch granules (>10 μm) in developing and mature wheat (Triticum aestivum) kernels. Immunoblotting and N-terminal sequencing suggested that the two proteins were different variants of SBEIc, a 152-kD isoform of wheat starch-branching enzyme. Both SGP-140 and SGP-145 were localized to the endosperm starch granules but were not found in the endosperm soluble fraction or pericarp starch granules younger than 15 d post anthesis (DPA). Small-size starch granules (<10 μm) initiated before 15 DPA incorporated SGP-140 and SGP-145 throughout endosperm development and grew into full-size A-type starch granules (>10 μm). In contrast, small-size starch granules harvested after 15 DPA contained only low amounts of SGP-140 and SGP-145 and developed mainly into B-type starch granules (<10 μm). Polypeptides of similar mass and immunologically related to SGP-140 and/or SGP-145 were also preferentially incorporated into A-type starch granules of barley (Hordeum vulgare), rye (Secale cereale), and triticale (× Triticosecale Wittmack) endosperm, which like wheat endosperm have a bimodal starch granule size distribution. PMID:10982441
Wenzl, Peter; Patiño, Gloria M.; Chaves, Alba L.; Mayer, Jorge E.; Rao, Idupulapati M.
2001-01-01
Al resistance of signalgrass (Brachiaria decumbens Stapf cv Basilisk), a widely sown tropical forage grass, is outstanding compared with the closely related ruzigrass (Brachiaria ruziziensis Germain and Evrard cv Common) and Al-resistant genotypes of graminaceous crops such as wheat, triticale, and maize. Secretion of organic acids and phosphate by root apices and alkalinization of the apical rhizosphere are commonly believed to be important mechanisms of Al resistance. However, root apices of signalgrass secreted only moderately larger quantities of organic acids than did those of ruzigrass, and efflux from signalgrass apices was three to 30 times smaller than from apices of Al-resistant genotypes of buckwheat, maize, and wheat (all much more sensitive to Al than signalgrass). In the presence, but not absence, of Al, root apices of signalgrass alkalinized the rhizosphere more than did those of ruzigrass. The latter was associated with a shortening of the alkalinizing zone in Al-intoxicated apices of ruzigrass, indicating that differences in alkalinizing power were a consequence, not a cause of, differential Al resistance. These data indicate that the main mechanism of Al resistance in signalgrass does not involve external detoxification of Al. Therefore, highly effective resistance mechanisms based on different physiological strategies appear to operate in this species. PMID:11244126
Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y
2016-06-17
The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition.
Agomoh, Ikechukwu; Hao, Xiying; Zvomuya, Francis
2018-01-02
Phytoextraction of excess nutrients by crops in soils with a long history of manure application may be a viable option for reducing the nutrient levels. This greenhouse study examined the effectiveness of six growth cycles (40 d each) of barley, canola, corn, oat, pea, soybean, and triticale at extracting nitrogen (N) and phosphorus (P) from a Dark Brown Chernozem that had received 180 Mg ha -1 (wet wt.) of beef cattle feedlot manure annually for 38 years. Moisture content during the study was maintained at either 100% or 50% soil field capacity (SFC). Repeated cropping resulted in an overall decrease in dry matter yield (DMY). The decrease in N and P uptake relative to Cycle 1 was fastest for the cereal grains and less pronounced for the two legumes. However, cumulative N uptake values were significantly greater for corn than the other crops under both moisture regimes. The reduction in soil N was greater under the 100% than the 50% SFC. These results indicate that repeated cropping can be a useful management practice for reducing N and P levels in a heavily manured soil. The extent of reduction will be greater for crops with high biomass production under adequate moisture supply.
Deacclimation may be crucial for winter survival of cereals under warming climate.
Rapacz, Marcin; Jurczyk, Barbara; Sasal, Monika
2017-03-01
Climate warming can change the winter weather patterns. Warmer temperatures during winter result in a lower risk of extreme freezing events. On the other hand the predicted warm gaps during winter will decrease their freezing tolerance. Both contradict effects will affect winter survival but their resultant effect is unclear. In this paper, we demonstrate that climate warming may result in a decrease in winter survival of plants. A field study of winterhardiness of common wheat and triticale was established at 11 locations and repeated during three subsequent winters. The freezing tolerance of the plants was studied after controlled cold acclimation and de-acclimation using both plant survival analysis and chlorophyll fluorescence measurements. Cold deacclimation resistance was shown to be independent from cold acclimation ability. Further, cold deacclimation resistance appeared to be crucial for overwintering when deacclimation conditions occurred in the field. The shortening of uninterrupted cold acclimation may increase cold deacclimation efficiency, which could threaten plant survival during warmer winters. Measurements of chlorophyll fluorescence transient showed some differences triggered by freezing before and after deacclimation. We conclude that cold deacclimation resistance should be considered in the breeding of winter cereals and in future models of winter damage risk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Schneider, Hannah M; Wojciechowski, Tobias; Postma, Johannes A; Brown, Kathleen M; Lücke, Andreas; Zeisler, Viktoria; Schreiber, Lukas; Lynch, Jonathan P
2017-08-01
The functional implications of root cortical senescence (RCS) are poorly understood. We tested the hypotheses that RCS in barley (1) reduces the respiration and nutrient content of root tissue; (2) decreases radial water and nutrient transport; and (3) is accompanied by increased suberization to protect the stele. Genetic variation for RCS exists between modern germplasm and landraces. Nitrogen and phosphorus deficiency increased the rate of RCS. Maximal RCS, defined as the disappearance of the entire root cortex, reduced root nitrogen content by 66%, phosphorus content by 63% and respiration by 87% compared with root segments with no RCS. Roots with maximal RCS had 90, 92 and 84% less radial water, nitrate and phosphorus transport, respectively, compared with segments with no RCS. The onset of RCS coincided with 30% greater aliphatic suberin in the endodermis. These results support the hypothesis that RCS reduces root carbon and nutrient costs and may therefore have adaptive significance for soil resource acquisition. By reducing root respiration and nutrient content, RCS could permit greater root growth, soil resource acquisition and resource allocation to other plant processes. RCS merits investigation as a trait for improving the performance of barley, wheat, triticale and rye under edaphic stress. © 2017 John Wiley & Sons Ltd.
Ibrahim, I K; Lewis, S A; Harshman, D C
1993-12-01
Twenty-two graminaceous plant cultivars were evaluated in the greenhouse for host suitability for three South Carolina isolates of Meloidogyne arenaria race 2 (Ma-R2) designated as Florence, Govan, and Pelion, a Florida isolate of M. arenaria race 1 (Ma-R1), and a South Carolina M. incognita race 3. Host suitability was determined by calculating egg mass index (EMI) reproduction factor (RF) (final egg numbers/initial egg numbers), and number of eggs per gram fresh root. Corn hybrids Pioneer 3147 and Northrup King 508 and oat cv. Florida 502 were nonhosts to all nematode isolates, as no egg masses or eggs were found in roots grown in infested soils. Oat cv. Coker 716 and grain sorghum cvs. Cherokee, Northrup King 2660, and Pioneer 8333 were poor hosts (RF < 1). Good (RF = 1.1-5.0) or excellent (RF > 5.0) hosts for both Ma-R1 and three Ma-R2 isolates included the following: barley cvs. Boone, Keowee, and Redhill; corn hybrid Pioneer 3389; oat cvs. Brooks and Coker 820; rye cvs. Bonel, Florida 401, and Wrens Abruzzi; triticale cvs. Beagle 82 and Florida 201 ; and wheat cvs. Coker 983, Florida 302, and Williams. All cultivars except Coker 716 oat were good or excellent hosts of M. incognita.
Irakli, Maria N; Samanidou, Victoria F; Biliaderis, Costas G; Papadoyannis, Ioannis N
2012-10-01
Whole cereal grains are a good source of phenolic acids associated with reduced risk of chronic diseases. This paper reports the development and validation of a high-performance liquid chromatography-diode array detection (HPLC-DAD) method for the determination of phenolic acids in cereals in either free or bound form. Extraction of free phenolic acids and clean-up was performed by an optimised solid-phase extraction (SPE) protocol on Oasis HLB cartridges using aqueous methanol as eluant. The mean recovery of analytes ranged between 84% and 106%. Bound phenolic acids were extracted using alkaline hydrolysis with mean recoveries of 80-95%, except for gallic acid, caffeic acid and protocatechuic acid. Both free and bound phenolic extracts were separated on a Nucleosil 100 C18 column, 5 μm (250 mm × 4.6 mm) thermostated at 30 °C, using a linear gradient elution system consisting of 1% (v/v) acetic acid in methanol. Method validation was performed by means of linearity, accuracy, intra-day and inter-day precision and sensitivity. Detection limits ranged between 0.13 and 0.18 μg/g. The method was applied to the analysis of free and bound phenolic acids contents in durum wheat, bread wheat, barley, oat, rice, rye, corn and triticale. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa
2012-01-01
Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kaur, Amrit Pal; Nocek, Boguslaw P.; Xu, Xiaohui; ...
2015-05-01
The genome of the thermophilic fungus Scytalidium thermophilum (strain CBS 625.91) harbours a wide range of genes involved in carbohydrate degradation, including three genes, abf62A, abf62B and abf62C, predicted to encode glycoside hydrolase family 62 (GH62) enzymes. Transcriptome analysis showed that only abf62A and abf62C are actively expressed during growth on diverse substrates including straws from barley, alfalfa, triticale and canola. The abf62A and abf62C genes were expressed in Escherichia coli and the resulting recombinant proteins were characterized. Calcium-free crystal structures of Abf62C in apo and xylotriose bound forms were determined to 1.23 and 1.48 Å resolution respectively. Site-directed mutagenesismore » confirmed Asp55, Asp171 and Glu230 as catalytic triad residues, and revealed the critical role of non-catalytic residues Asp194, Trp229 and Tyr338 in positioning the scissile α-L-arabinofuranoside bond at the catalytic site. Further, the +2R substrate-binding site residues Tyr168 and Asn339, as well as the +2NR residue Tyr226, are involved in accommodating long-chain xylan polymers. Overall, our structural and functional analysis highlights characteristic differences between Abf62A and Abf62C, which represent divergent subgroups in the GH62 family.« less
The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers
Ceglińska, Alicja; Reder, Magdalena; Ciemniewska-Żytkiewicz, Hanna
2017-01-01
Samples of wheat, spelt, rye, and triticale flours produced by different Polish mills were studied by both classic chemical methods and FT-IR MIR spectroscopy. An attempt was made to statistically correlate FT-IR spectral data with reference data with regard to content of various components, for example, proteins, fats, ash, and fatty acids as well as properties such as moisture, falling number, and energetic value. This correlation resulted in calibrated and validated statistical models for versatile evaluation of unknown flour samples. The calibration data set was used to construct calibration models with use of the CSR and the PLS with the leave one-out, cross-validation techniques. The calibrated models were validated with a validation data set. The results obtained confirmed that application of statistical models based on MIR spectral data is a robust, accurate, precise, rapid, inexpensive, and convenient methodology for determination of flour characteristics, as well as for detection of content of selected flour ingredients. The obtained models' characteristics were as follows: R2 = 0.97, PRESS = 2.14; R2 = 0.96, PRESS = 0.69; R2 = 0.95, PRESS = 1.27; R2 = 0.94, PRESS = 0.76, for content of proteins, lipids, ash, and moisture level, respectively. Best results of CSR models were obtained for protein, ash, and crude fat (R2 = 0.86; 0.82; and 0.78, resp.). PMID:28243483
NASA Astrophysics Data System (ADS)
Nyckowiak, Jedrzej; Lesny, Jacek; Haas, Edwin; Juszczak, Radoslaw; Kiese, Ralf; Butterbach-Bahl, Klaus; Olejnik, Janusz
2014-05-01
Modeling of nitrous oxide emissions from soil is very complex. Many different biological and chemical processes take place in soils which determine the amount of emitted nitrous oxide. Additionaly, biogeochemical models contain many detailed factors which may determine fluxes and other simulated variables. We used the LandscapeDNDC model in order to simulate N2O emissions, crop yields and soil physical properties from mineral cultivated soils in Poland. Nitrous oxide emissions from soils were modeled for fields with winter wheat, winter rye, spring barley, triticale, potatoes and alfalfa crops. Simulations were carried out for the plots of the Brody arable experimental station of Poznan University of Life Science in western Poland and covered the period 2003 - 2012. The model accuracy and its efficiency was determined by comparing simulations result with measurements of nitrous oxide emissions (measured with static chambers) from about 40 field campaigns. N2O emissions are strongly dependent on temperature and soil water content, hence we compared also simulated soil temperature at 10cm depth and soil water content at the same depth with the daily measured values of these driving variables. We compared also simulated yield quantities for each individual experimental plots with yield quantities which were measured in the period 2003-2012. We conclude that the LandscapeDNDC model is capable to simulate soil N2O emissions, crop yields and physical properties of soil with satisfactorily good accuracy and efficiency.
Irakli, Maria N; Samanidou, Victoria F; Papadoyannis, Ioannis N
2011-06-01
The increasing interest in antioxidant properties of cereal and cereal-based products has prompted the development of a simple and reliable HPLC method for the simultaneous determination of important phytochemicals like tocopherols (T), tocotrienols (T3) and carotenoids. Separation was carried out on a Nucleosil 100 C(18) column, 5 μm (250 mm × 4.6 mm) thermostated at 25 °C, using a linear gradient elution system starting with methanol and ending with a mixture of methanol-isopropanol-acetonitrile. All separated compounds including the internal standard (α-tocopherol acetate) were eluted within 16 min and detected by dual detection: fluorescence for tocopherols and tocotrienols at 290 nm excitation and 320 nm emission and UV-vis photodiode array detection for lutein and β-carotene at 450 nm. Detection limits ranged from 0.2 μg/g (β-carotene) to 1.60 μg/g (α-tocopherol). The intra- and inter-assay coefficients of variation were calculated by using cereals with different levels of lipophilic antioxidants. The extraction method involved sample saponification and clean-up by solid-phase extraction (SPE). The extraction recoveries obtained using OASIS HLB SPE cartridges and dichloromethane as eluent were in the range of 90.2-110.1%, with RSD lower than 10%. The method was successfully applied to cereals: durum wheat, bread wheat, rice, barley, oat, rye, corn and triticale. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zwane, Eunice N; Rose, Shaunita H; van Zyl, Willem H; Rumbold, Karl; Viljoen-Bloom, Marinda
2014-06-01
The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material.
Božić, Nataša; Slavić, Marinela Šokarda; Gavrilović, Anja; Vujčić, Zoran
2014-07-01
α-Amylase production by solid-state fermentation of different Bacillus sp. was studied previously on different fermentation media. However, no study has been reported on the influence of selected media on expression of desired amylase isoforms such as raw-starch-digesting amylase (RSDA). In this paper, the influence of different inexpensive and available agro-resources as solid media (corn, wheat and triticale) on α-amylase isoform induction from three wild-type Bacillus sp., selected among one hundred strains tested, namely 9B, 12B and 24A was investigated. For all three strains, tested amylases were detected in the multiple forms; however, number and intensity of each form differed depending on the solid media used for growth. To determine which isoform from Bacillus sp. 12B was RSDA, the suspected isoform was purified. The optimum pH for the purified α-amylase isoform was 6.0-8.0, while the optimum temperature was 60-90 °C. Isoform was considerably thermostable and Ca(2+)-independent, and actually the only α-amylase active towards raw starch. Purification and characterization of RSDA showed that not all of the solid media tested induced RSDA. From an economic point of view, it might be significant to obtain pure isoenzyme for potential use in the raw-starch hydrolysis, since it was 5 times more efficient in raw corn starch hydrolysis than the crude amylase preparation.
Liming and Fertilization Effects on Triticale (XTriticosecale W.) Yield Between 1999 and 2006
NASA Astrophysics Data System (ADS)
László Phd, M., ,, Dr.
2009-04-01
Precipitation amount, distribution and nitrogen (N)-, phosphorus (P2O5)-, potassium (K2O)-, calcium (CaO)-, and magnesium (MgO) fertilization interaction effects were studied on a sandy acidic lessivated brown forest soil; WRB: Haplic Luvisol in the 44 year old Nyírlugos Field Trial (NYFT) in a Hungarian fragile agro-ecosystem in Nyírség region (N: 470 41' 60'' and E: 220 2' 80'') on triticale (X Triticosecale W.) yield from 1999 to 2006. At the trial set up in 1962, the soil had the following agrochemical properties: pH (H2O) 5.9, pH (KCl) 4.7, hydrolytic acidity 8.4, hy1 0.3, humus 0.7%, total N 34 mg kg-1, ammonlactate (AL) soluble-P2O5 43 mg kg-1, AL-K2O 60 mg kg-1 in the plowed (0-25 cm) layer. From 1980 to 2006, the experiment consisted of 32x4=128 plots in randomised block design. The gross plot size was 10x5=50 m2. The average fertilizer rates in kg ha-1 year-1 were nitrogen 75, phosphorus 90 (P2O5), potassium 90 (K2O), calcium 437.5 (CaCO3) and magnesium 140 (MgCO3). The groundwater table has had at a depth of 2-3 m below the surface. The main results are as follows. During drought conditions the respective yield of the control areas was -25% less than for average years. The application of N alone, or of NP and NK treatments, led to yield reduction of -19.7%, while that of NPK, NPKCa, NPKMg or NPKCaMg caused an -28.3% drop during these types of years. In the wet years, the yield decreased by -22.2% on the unfertilized soils; in the case of N, NP, or NK nutrition with an -14.1%; and increased at 13.8% on NPK, NPKCa, NPKMg and NPKCaMg treated plots. In the very wettest year, the yields were dropped -43.1% on control soils, -39.3% of N, NP, or NK loadings and -35.8% on NPK, NPKCa, NPKMg and NPKCaMg treatments to those in the average year. The relationships between rainfall quantitiy during the vegetation period N, P, K, Ca and Mg nutrition and yield were characterised by polynomial correlations (control: R= 0.7212***, N: R = 0.7410***, NP: R = 0.6452***, NK: R = 0.6998***, NPK: R = 0.5555***, NPKCa: R = 0.5578***, NPKMg: R = 0.4869**, NPKCaMg: R = 0.4341**). However, the total regression coefficients ranged from 0.43 to 0.74 in depence on the different nutrient application. Maximum yields of 5.8-6.0 t . ha-1 were achieved in the rainfall range of 580-620 mm. At values above and below this domain of the precipitation the grain yield reduced quadratically. So, it can be stated that both, drought and excess rainfall conditions resulted dramatically in significant negative effects between fertilization (N, P, K, Ca, Mg) and triticale yield. Keywords: precipitation, fertilization, liming, triticale, yield Introduction: The hazards associated with climate change are depend on the interaction of several systems with many variables (Johnston, 2000). Accummulation of carbon dioxide, methane, water vapor, ozone, nitrous oxide, sulfur hexafluoride, hydrofluorocarbons, perfluorocarbons, chlorofluorocarbons (build-up of greenhouse gases) in the atmosphere and trends in their emissions suggest that we can expect significant environmental changes in the 21th century (Cynthia and Ana, 2006; Eric 2006). However, a recent consensus has emerged that between the greenhouse gases rising of atmospheric concentrations of carbon dioxide could become the more dangerous bacause it causing the global warming (Láng, 2005). Today, most researchers believe that higher temperature, drought and rainfall excess caused by climate change will depress crop yields in many places in the coming decades (Kádár et al., 2000; Jolánkai, 2005). Thus, in the last decades many agricultural investigations focused on understanding the relation between mean climate change and crop production (Runge, 1968; Várallyay, 1992). Changes in weather patterns were observed thoughout Europe including Hungary as early as 1850. Among the natural consequences of changing weather patterns, years of drought (rainfall deficit) and wet (rainfall excess) conditions, resulted in problems among plant nutrition and field crop production (EU, 2003). Triticale (Kádár et al., 1999; Márton, 2002) is a crop of worldwide importance, limited research exists about the effects of climate change on these crop. The crop is sensitive to the prevailing weather conditions (such as rainfall) and, for this reason, understanding the effects of anthropogenic climate change on it's production is important (Márton, 2006). In addition to growing season triticale conditions (e.g., soil agrochemical properties, fertilization, liming) affect the growth and yield of crop (Lobell and Asner, 2003) and cause yield variations. Understanding the fertilization, liming and rainfall effects have been a continuous endeavor toward improving farming technology and management strategy to reduce the negative impacts of fertilization, liming and rainfall and to increase crop yield (Kádár and Szemes 1994; Várallyay 1994; among others). Our main objective of this research it was study and clarify the precipitation amount and distribution and nitrogen (N)-, phosphorus (P2O5)-, potassium (K2O)-, calcium (CaO)-, and magnesium (MgO) fertilization interaction effects on a sandy acidic lessivated brown forest soil; WRB: Haplic Luvisol in the 44 year old Nyírlugos field trial in a Hungarian fragile agro-ecosystem in Nyírség region on triticale (X Triticosecale W.) yield from 1999 to 2006. Furthermore, it was our intent to emphasize that the net effect of multiple environmental changes is far more important than the effect of a single factor on the crop. Materials and Methods: The net-influence of rainfall (quantity, distribution) and mineral fertilization (N, P2O5, K2O, CaO, MgO) were studied in a long term field experiment established at the Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences Experiment Station (RISSAC-HAS ET) in Hungary on a Haplic Luvisol (sandy acidic lessivated brown forest soil) with triticale (X Triticosecale W.) indicator crop under fragile agro-ecological circumstances at Nyírlugos for 8 years from 1999 to 2006. The main experiment's soil agrochemical characteristics in the plowed (0-25 cm) layer are presented in Table 1. at the experimental set up in 1962 (Láng, 1973). From 1980 to 2006 the experiment consisted of 32x4=128 plots in randomized block designs. The gross plot size has been having 10x5=50 m2. The experimental treatments and combinations are shown in Table 2. The fertilizers were applied in the form of 25% calcium ammonium nitrate, 18% superphosphate, 40% potassium chloride, calcium carbonate and magnesium sulphate. The groundwater table has had at a depth of 2-3 m below the surface. The plant samples had had taken by manually at the harvest time. Rainfall amounts (deviation in rainfall from the average over many years: dry year -10 - -20%, drought year -20% over, wet year +10 - +20%, year with excess rainfall +20% over) and other related data determined on traditional Hungarian (Harnos, 1993) and Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (Márton, 2004) standards, and MANOVA (Multivariate Analysis of Variance) by SPSS test (SPSS Inc., 2000). Table 1: The main soil agrochemical properties in the plowed (0-25 cm) layer at the experiment set up. (Brown forest soil, acid sand; WRB: Haplic Luvisol, Nyírség region Nyírlugos 1962) Content PH HA* Hy1 Humus Total AL** (H2O) (KCl) nitrogen P2O5 K2O 5.9 4.7 8.4 0.3 % 0.7 mg . kg-1 34 43 60 * Hydrolytic acidity, ** ammoniumlactate (AL) soluble Table 2: Fertilization and liming treatments in the experiments, kg ha-1 year-1 (Brown forest soil, acid sand; WRB: Haplic Luvisol, Nyírség region Nyírlugos) TreatmentLevels Applied kg ha-1 yr-1 N P2O5 K2O CaCO3 MgCO3 0 0 0 0 0 0 1 50 60 60 250 140 2 100 120 120 500 280 3 150 180 180 1000 - Note: In the form of Ca-ammonium-nitrate, Superphosphate, potassium cloride, powdered limestone and dolomite. Results and Discussion: During drought conditions, in conformity with Adams et al. (1995), Rosenzweig and Tubiello (1997) and McMaster (1999) the respective yield of the control areas was -25% less than for average years. The application of N alone, or of NP and NK treatments, led to yield losses of -19.6%, while that of NPK, NPKCa, NPKMg or NPKCaMg caused an -28.3% drop during these types of years. In the wet years, the yield decreased by -22.2% in the unfertilized plots; in the case of N, NP, or NK nutrition with an -14.1%; and increased at 13.8% on NPK, NPKCa, NPKMg and NPKCaMg treatments. In the very wettest year, the yields were dropped -43.1% on control soils, -39.3% of N, NP, or NK loadings and -35.8% on NPK, NPKCa, NPKMg and NPKCaMg treatments to those in the average year, reverse of Asbjorn et al. (2004). The relationships between rainfall quantitiy during the vegetation period N, P, K, Ca and Mg nutrition and yield were characterised by polynomial correlations (control: R= 0.7212***, N: R = 0.7410***, NP: R = 0.6452***, NK: R = 0.6998***, NPK: R = 0.5555***, NPKCa: R = 0.5578***, NPKMg: R = 0.4869**, NPKCaMg: R = 0.4341**). However, the total regression coefficients ranged from 0.43 to 0.74 in depence on the different nutrient application. Maximum yields of 5.8-6.0 t . ha-1 were achieved in the rainfall range of 580-620 mm. At values above and below this range the grain yield reduced quadratically. To sum up we can say climate change will gradually and, at some point, be even abruptly affects Europa and Hungary agriculture. Warming temperatures and a greather incidence and intensity of extreme weather events possible lead to significant reductions in triticale yield. Expanded ranges of crop agrochemicals and altered transmission dynamics of different irrigation solutions might exacarbate these reductions. Since farmers' strategies grow out of experience, they can find that the past will be a less reliable predictor of the future. Acknowledgements: This research was supported by Hungarian Academy of Sciences, H-Budapest and the Hungarian and Spanish Intergovernmental S & T Cooperation Project of E-2/04-OMFB-00112/2005 and Hungarian and Indian Intergovernmental S & T Cooperation Project of IND-3/03/2006. References Adams, R. M., Fleming, R. A., Chang, C. C., McCarl, B. A. and Rosenzweig, C. 1995. A reassessment of the economic effects of global climate change on U.S. agriculture. Climatic Change, Vol. 30, pp. 147-167. Asbjorn, T., Michelle, T. and Bárd, R. 2004. Climate Change Impacts on Agricultural Productivity in Norway. CICERO. Oslo Cynthia, R. & Ana, I. 2006. Potential impact of climate change on world food supply. Data sets from a major crop modeling study. Socioeconomic Data and Applications Center. Columbia University. New York Eric La F. 2006. Adapting crops for climate change. UBC Botanical Garden and Centre for Plant Researches. EU (European Union). 2003. Drought costs EU farmers euro of 11 billion. European Report, Brussels Harnos, Zs. 1993. Weather and weather-yield interaction analysis. (In Hungarian) In: Aszály 1983 (Szerk.: Baráth Cs-né., Győrffy B., Harnos Zs.). KÉE. Budapest Johnston, A. E. 2000. Some aspects of nitrogen use efficiency in arable agriculture. K. Scogs-o. Lantbr. Akad. Tidskr. 139:8. Jolánkai M. 2005. Effect of climate change on plant cultivation. (In Hungarian) In: „AGRO-21" Füzetek. 41. 47-58. Kádár I. - Németh T. - Szemes I. (1999): Triticale trágyareakciója a nyírlugosi tartamkísérletben. Növénytermelés. 48:647-661. Kádár I. - Szemes I. (1994): A nyírlugosi tartamkísérlet 30 éve. MTA Talajtani és Agrokémiai Kutató Intézete. Budapest. Láng I. (1973): Műtrágyázási tartamkísérletek homoktalajokon. Akad. Doktori Disszertáció. Kézirat. MTA. Budapest. Láng I., 2005. Weather and climate change: change-effect-response. (In Hungarian) In: „AGRO-21" Füzetek. 43. 3-10. Márton L. (2002): A csapadék és tápanyagellátottság hatásának vizsgálata a tritikale termésére tartamkísérletben. Növénytermelés. 51:687-701. Márton L. 2004. Rainfall and fertilization effects on crops yield in a global climate change. In: Proc. 4th Agroenviron Symposium. Role of Multipurpose Agriculture in Sustaining Global Environment-AGROENVIRON 2004 (Udine, 20-24 Oct., 2004). Part 3. 451-456. DPVTA. Udine Márton L. 2006. Ecological changes of rainfall and artificial fertilization on crop yield formation. ESA, Memphis, Tenesse McMaster, H. J. 1999. The potential impact of global warming on Hail Losses to winter crops in New South Wales. Climatic Change, Vol. 43, No. 2, October, pp. 455-476. Németh I. 2004. A klímaváltozás és a magyarországi mezőgazdaság. "AGRO-21" Füzetek. "AGRO-21" Kutatási Programiroda. 33:65-69. Németh, T. 2004. MTA Talajtani és Agrokémiai Kutatóintézet (MTA TAKI) tudományos programjának megvalósítására vonatkozó koncepció (2005-2010). Scientific Programme Conception of RISSAC-HAS from 2005 to 2010. MTA TAKI., Budapest Pilar, M.-Arriaga, H.-Salcedo, G.-Márton L.-Pinto, M. 2006. Diet influence on ammonia emission in lactaing dairy cows. NEIKER, Bilbao, Spain Rajendra, K. P. 2004. Foreword. In: Proc. 22nd Session of the Intergovernmental Panel on Climate Change (New Delhi, 9-11 November, 2004). 7-8. IPCC. New Delhi Reilly, J. F. T., McCarl, B., Abler, D., Darwin, R. et al. 2003. U.S. Agriculture and cimate change: New results. Climatic Change, Vol. 57, pp. 43-69. Rosenzweig, C. P., and Parry, M. L. 1994. Potential impact of climate change on world food supply. Nature, 367:133-137. Rosenzweig, C. P., Phillips, J., Goldberg, R., Caroll, J. and Hodges, T. 1996. Potential impacts of climate change on citrus and potato production in the US. Agricultural Systems, Vol. 52, pp. 455-479. Rosenzweig, C. P. and F. N. Tubiello. 1997. Impacts of global climate change on Mediterranean agriculture: Current methodologies and future directions: An introductory essay. Mitigation and Adaptation Strategies for Global Change, Vol. 1, pp. 219-232. RS (Royal Society). 2005. Climate change warming over food production. Web address: http://www.newscientist.com Runge, E. C. 1968. Effect of rainfall and temperature interaction during the growing season on corn yield. Agron. J, 60:503-507. Russell, C. M.-Jennifer, A. B. 1991. Climatic Risk in Crop Production: Models and Management for the Semiarid Tropics and Subtropics. C. A. B. International, Wallingford Semenov, M. A. and Porter, J. R. 1995. Climatic variability and modeling of crop yields. Agric. For Meteorol. 73:265-283. Seth, G. P. & Yeffrey, S. A. 2005. Crops and Environmental Change. Food Product Press. New York-London-Oxford Schulze, R. E., Gregory, A. K. and Richard, P. K. 1993. Global climate change and agricultural productivity in southern Africa. Global Environmental Change, Vol. 3, No. 4, December, pp. 330-349 Smith, W. J. 1920. Agricultural meteorology. The effect of weather on crops. Macmillan Comp., New York. Singh, B., Mustapha, E. M., Pierre A., Christopher, R. B. and Jean, P. T. 1998. Impacts of a Ghg-induced climate change on crop yields: Efects of acceleration in maturation, moisture stress and optimal temperature. Climatic change, Vol. 38, No. 1, January, pp. 51-86. SPSS. 2000. SigmaPlot for Windows. Ver. 3.2, Chicago, III.: SPSS, Inc Szász G. 2005. Climatic instability causing variability in crop output in the Carpathian Basin. (In Hungarian) In: „AGRO-21" Füzetek. 40. 33-69. Tubiello, F. N., Rosenzweig, C., Goldberg, R. A. Jagtap, S. and Jones, J. W. 2002. Effects of climate change on U.S. crop production: Simulation results using two different GCM scenarios. Part I: Wheat, potato, maize and citrus. Climate Research, Vol. 20, pp. 259-270. Uprety, D. C. 1999. Global change series. IARI, New Delhi Vesselin, A., Eitzinger, J., Vesna, C. and Michael, O. 2002. Potential impact of climate change on selected agricultural crops in north-eastern Austria. Global Change Biology. 8:372. Várallyay, Gy. 1992. Globális klímaváltozások hatása a talajra. Effect of Global Climate Change to soil. Magyar Tudomány, 9:1071-1076. Várallyay Gy.: 1994. A nyírlugosi tartamkísérlet talajszelvényeinek leírása és laborvizs-gálati eredményei. In: A nyírlugosi tartamkísérlet 30 éve. 216-226. (Kádár I.- Szemes I.) MTA Talajtani és Agrokémiai Kutató Intézete. Budapest. Várallyay Gy. 2005. Possible pedological effects of climate changes in the Kisalföld. (In Hungarian) In: „AGRO-21" Füzetek. 43. 11-23. Voss, R. E.-Hanway, J. J.-Fuller, W. A. 1970. Influence of soil management and climatic factors on the yield response by corn to N, P and K fertilizer. Agron, J, 62:736-740. Walter, R. 1973. Soil conditions and plant growth. Longman, London Weber, M. and Grant, H. 2003. A regional analysis of climate change impacts on Canadian agriculture, Canadian Public Policy, Vol. 29. No. 2, June, pp. 163-179. Wetherald, R. T.-Manabe, S. 1995. The mechanism of summer dryness induced by greenhouse warming. J. Climate, 8:3096-3108. Wigley, T. M. L. 1999. The science of climate change: Global and U.S. Perspectives. Pew Center on Global Climate Change, 48 pp. Woodruff, C. M., Mudrick, S.E. 1998. Interdecadal variations of annual precipitation in the central United States. Bull. Amer. Meteor. Soc. 79:212-219.
Álvarez-Alfageme, Fernando; von Burg, Simone; Romeis, Jörg
2011-01-01
A concern associated with the growing of genetically modified (GM) crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L.) and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low. PMID:21829479
Effect of Mixed Systems on Crop Productivity
NASA Astrophysics Data System (ADS)
Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric
2017-04-01
The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.
NASA Astrophysics Data System (ADS)
Brückner, Lisa; Klammler, Gernot; Schuhmann, Andrea; Kupfersberger, Hans; Fank, Johann
2017-04-01
A lysimeter experiment was conducted at the agricultural test site in Wagna, Austria, where clayey-sandy cambisol are predominant. The pesticides chloridazon and s-metolachlor were applied between 2010 and 2014 and the concentration of the active ingredients and their metabolites were measured regularly in the soil and the leachate in different depths (Schuhmann et al. 2016). During the lysimeter experiment maize, pumpkin and triticale were cultivated, which are the main field crops in that region. Beside this data, precise measurements of the soil hydrology parameters as well as meteorological data are available. Average annual precipitation at this site is 972 mm, mean annual groundwater recharge is 358 mm (2005-2014). Based on this data and the different breakthrough curves a comparison of the three different pesticide fate models PEARL, PELMO and MACRO is carried out for the pesticides s-metolachlor and chloridazon and their metabolites metolachlor oxanilic acid, metolachlor ethane sulfonic acid, desphenyl-chloridazon and methyl-desphenyl-chloridazon. The results of the modeling of the water movement and pesticide fate are evaluated and discussed. This work will contribute to a better understanding of the performance of this pesticide fate models for the above mentioned soil and hydrologic conditions. Schuhmann, A; Gans, O; Weiss, S; Fank, J; Klammler, G; Haberhauer, G; Gerzabek, MH (2016): A long-term lysimeter experiment to investigate the environmental dispersion of the herbicide chloridazon and its metabolites - comparison of lysimeter types. J SOIL SEDIMENT. 2016; 16(3): 1032-1045
Praz, Coraline R; Bourras, Salim; Zeng, Fansong; Sánchez-Martín, Javier; Menardo, Fabrizio; Xue, Minfeng; Yang, Lijun; Roffler, Stefan; Böni, Rainer; Herren, Gerard; McNally, Kaitlin E; Ben-David, Roi; Parlange, Francis; Oberhaensli, Simone; Flückiger, Simon; Schäfer, Luisa K; Wicker, Thomas; Yu, Dazhao; Keller, Beat
2017-02-01
There is a large diversity of genetically defined resistance genes in bread wheat against the powdery mildew pathogen Blumeria graminis (B. g.) f. sp. tritici. Many confer race-specific resistance to this pathogen, but until now only the mildew avirulence gene AvrPm3 a2/f2 that is recognized by Pm3a/f was known molecularly. We performed map-based cloning and genome-wide association studies to isolate a candidate for the mildew avirulence gene AvrPm2. We then used transient expression assays in Nicotiana benthamiana to demonstrate specific and strong recognition of AvrPm2 by Pm2. The virulent AvrPm2 allele arose from a conserved 12 kb deletion, while there is no protein sequence diversity in the gene pool of avirulent B. g. tritici isolates. We found one polymorphic AvrPm2 allele in B. g. triticale and one orthologue in B. g. secalis and both are recognized by Pm2. AvrPm2 belongs to a small gene family encoding structurally conserved RNase-like effectors, including Avr a13 from B. g. hordei, the cognate Avr of the barley resistance gene Mla13. These results demonstrate the conservation of functional avirulence genes in two cereal powdery mildews specialized on different hosts, thus providing a possible explanation for successful introgression of resistance genes from rye or other grass relatives to wheat. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Álvarez-Alfageme, Fernando; von Burg, Simone; Romeis, Jörg
2011-01-01
A concern associated with the growing of genetically modified (GM) crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L.) and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low.
DOP-PCR based painting of rye chromosomes in a wheat background.
Deng, Chuanliang; Bai, Lili; Li, Shufen; Zhang, Yingxin; Li, Xiang; Chen, Yuhong; Wang, Richard R-C; Han, Fangpu; Hu, Zanmin
2014-09-01
To determine the appropriateness of chromosome painting for identifying genomic elements in rye, we microdissected the 1R and 1RS chromosomes from rye (Secale cereale L. var. King II) and wheat-rye addition line 1RS, respectively. Degenerate oligonucleotide primed - polymerase chain reaction (DOP-PCR) amplification of 1R and 1RS products from dissected chromosomes were used as probes to hybridize to metaphase chromosomes of rye, wheat-rye addition lines 1R and 1RS, translocation line 1RS.1BL, and allohexaploid triticale. The results showed that (i) the hybridization signal distribution patterns on rye chromosomes using 1R-derived DOP-PCR products as the probe were similar to those using 1RS-derived DOP-PCR products as the probe; (ii) 1R and (or) 1RS could not be distinguished from other rye chromosomes solely by the hybridization patterns using 1R- and (or) 1RS-derived DOP-PCR products as the probe; (iii) rye chromosomes and (or) rye chromosome fragments could be clearly identified in wheat-rye hybrids using either 1R- or 1RS-derived DOP-PCR products as the probe and could be more accurate in the nontelomeric region than using genomic in situ hybridization (GISH). Our results suggested that 1R- and (or) 1RS-derived DOP-PCR products contain many repetitive DNA sequences, are similar on different rye chromosomes, are R-genome specific, and can be used to identify rye chromosomes and chromosome fragments in wheat-rye hybrids. Our research widens the application range of chromosome painting in plants.
Dai, Yi; Duan, Yamei; Liu, Huiping; Chi, Dawn; Cao, Wenguang; Xue, Allen; Gao, Yong; Fedak, George; Chen, Jianmin
2017-01-01
Fusarium head blight (FHB), leaf rust, and stem rust are the most destructive fungal diseases in current world wheat production. The diploid wheatgrass, Thinopyrum elongatum (Host) Dewey (2 n = 2 x = 14, EE) is an excellent source of disease resistance genes. Two new Triticum-Secale-Thinopyrum trigeneric hybrids were derived from a cross between a hexaploid triticale (X Triticosecale Wittmack, 2 n = 6 x = 42, AABBRR) and a hexaploid Triticum trititrigia (2 n = 6 x = 42, AABBEE), were produced and analyzed using genomic in situ hybridization and molecular markers. The results indicated that line RE21 contained 14 A-chromosomes, 14 B-chromosomes, three pairs of R-chromosomes (4R, 6R, and 7R), and four pairs of E-chromosomes (1E, 2E, 3E, and 5E) for a total chromosome number of 2 n = 42. Line RE62 contained 14 A-chromosomes, 14 B-chromosomes, six pairs of R-chromosomes, and one pair of translocation chromosomes between chromosome 5R and 5E, for a total chromosome number of 2 n = 42. At the seedling and adult growth stages under greenhouse conditions, line RE21 showed high levels of resistance to FHB, leaf rust, and stem rust race Ug99, and line RE62 was highly resistant to leaf rust and stem rust race Ug99. These two lines (RE21 and RE62) display superior disease resistance characteristics and have the potential to be utilized as valuable germplasm sources for future wheat improvement.
NASA Astrophysics Data System (ADS)
Prabhakara, Kusuma; Hively, W. Dean; McCarty, Gregory W.
2015-07-01
Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012-2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.
Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages.
Ali, Sajid; Rodriguez-Algaba, Julian; Thach, Tine; Sørensen, Chris K; Hansen, Jens G; Lassen, Poul; Nazari, Kumarse; Hodson, David P; Justesen, Annemarie F; Hovmøller, Mogens S
2017-01-01
We investigated whether the recent worldwide epidemics of wheat yellow rust were driven by races of few clonal lineage(s) or populations of divergent races. Race phenotyping of 887 genetically diverse Puccinia striiformis isolates sampled in 35 countries during 2009-2015 revealed that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent in Europe, corresponding to widely deployed resistance genes. The highest diversity was observed in South Asian populations, where frequent recombination has been reported, and no particular race was predominant in this area. The results are discussed in light of the role of invasions in shaping pathogen population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease vulnerability of host varieties prior to their deployment at larger scales.
Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages
Ali, Sajid; Rodriguez-Algaba, Julian; Thach, Tine; Sørensen, Chris K.; Hansen, Jens G.; Lassen, Poul; Nazari, Kumarse; Hodson, David P.; Justesen, Annemarie F.; Hovmøller, Mogens S.
2017-01-01
We investigated whether the recent worldwide epidemics of wheat yellow rust were driven by races of few clonal lineage(s) or populations of divergent races. Race phenotyping of 887 genetically diverse Puccinia striiformis isolates sampled in 35 countries during 2009–2015 revealed that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent in Europe, corresponding to widely deployed resistance genes. The highest diversity was observed in South Asian populations, where frequent recombination has been reported, and no particular race was predominant in this area. The results are discussed in light of the role of invasions in shaping pathogen population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease vulnerability of host varieties prior to their deployment at larger scales. PMID:28676811
A High Density Consensus Map of Rye (Secale cereale L.) Based on DArT Markers
Myśków, Beata; Stojałowski, Stefan; Heller-Uszyńska, Katarzyna; Góralska, Magdalena; Brągoszewski, Piotr; Uszyński, Grzegorz; Kilian, Andrzej; Rakoczy-Trojanowska, Monika
2011-01-01
Background Rye (Secale cereale L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance. The genomic resources currently available for rye are underdeveloped in comparison with other crops of similar economic importance. The aim of this study was to create a highly saturated, multilocus linkage map of rye via consensus mapping, based on Diversity Arrays Technology (DArT) markers. Methodology/Principal Findings Recombinant inbred lines (RILs) from 5 populations (564 in total) were genotyped using DArT markers and subjected to linkage analysis using Join Map 4.0 and Multipoint Consensus 2.2 software. A consensus map was constructed using a total of 9703 segregating markers. The average chromosome map length ranged from 199.9 cM (2R) to 251.4 cM (4R) and the average map density was 1.1 cM. The integrated map comprised 4048 loci with the number of markers per chromosome ranging from 454 for 7R to 805 for 4R. In comparison with previously published studies on rye, this represents an eight-fold increase in the number of loci placed on a consensus map and a more than two-fold increase in the number of genetically mapped DArT markers. Conclusions/Significance Through the careful choice of marker type, mapping populations and the use of software packages implementing powerful algorithms for map order optimization, we produced a valuable resource for rye and triticale genomics and breeding, which provides an excellent starting point for more in-depth studies on rye genome organization. PMID:22163026
Chiumenti, Alessandro; da Borso, Francesco; Limina, Sonia
2018-01-01
For years, anaerobic digestion processes have been implemented for the management of organic wastes, agricultural residues, and animal manure. Wet anaerobic digestion still represents the most common technology, while dry fermentation, dedicated to the treatment of solid inputs (TS>20%) can be considered as an emerging technology, not in terms of technological maturity, but of diffusion. The first agricultural dry anaerobic digestion plant constructed in Italy was monitored from the start-up, for over a year. The plant was fed with manure and agricultural products, such as corn silage, triticale, ryegrass, alfalfa, and straw. Three Combined Heat and Power units, for a total installed power of 910kW e , converted biogas into thermal and electric energy. The monitoring included the determination of quality and quantity of input feedstocks, of digestate (including recirculation rate), of leachate, biogas quality (CH 4 , CO 2 , H 2 S), biogas yield, energy production, labor requirement for loading, and unloading operations. The results of the monitoring were compared to performance data obtained in several full scale wet digestion plants. The dry fermentation plant revealed a start-up phase that lasted several months, during which the average power resulted in 641kW e (70.4% of nominal power), and the last period the power resulted in 788kW e (86.6% of installed power). Improving the balance of the input, the dry fermentation process demonstrated biogas yields similar to wet anaerobic digestion, congruent to the energy potential of the biomasses used in the process. Furthermore, the operation of the plant required significant man labor, mainly related to loading and unloading of the anaerobic cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prabhakara, Kusuma; Hively, W. Dean; McCarty, Greg W.
2015-01-01
Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012–2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.
Wu, Jason H Y; Neal, Bruce; Trevena, Helen; Crino, Michelle; Stuart-Smith, Wendy; Faulkner-Hogg, Kim; Yu Louie, Jimmy Chun; Dunford, Elizabeth
2015-08-14
Despite tremendous growth in the consumption of gluten-free (GF) foods, there is a lack of evaluation of their nutritional profile and how they compare with non-GF foods. The present study evaluated the nutritional quality of GF and non-GF foods in core food groups, and a wide range of discretionary products in Australian supermarkets. Nutritional information on the Nutrition Information Panel was systematically obtained from all packaged foods at four large supermarkets in Sydney, Australia in 2013. Food products were classified as GF if a GF declaration appeared anywhere on the product packaging, or non-GF if they contained gluten, wheat, rye, triticale, barley, oats or spelt. The primary outcome was the 'Health Star Rating' (HSR: lowest score 0.5; optimal score 5), a nutrient profiling scheme endorsed by the Australian Government. Differences in the content of individual nutrients were explored in secondary analyses. A total of 3213 food products across ten food categories were included. On average, GF plain dry pasta scored nearly 0.5 stars less (P< 0.001) compared with non-GF products; however, there were no significant differences in the mean HSR for breads or ready-to-eat breakfast cereals (P≥ 0.42 for both). Relative to non-GF foods, GF products had consistently lower average protein content across all the three core food groups, in particular for pasta and breads (52 and 32% less, P< 0.001 for both). A substantial proportion of foods in discretionary categories carried GF labels (e.g., 87% of processed meats), and the average HSR of GF discretionary foods were not systematically superior to those of non-GF products. The consumption of GF products is unlikely to confer health benefits, unless there is clear evidence of gluten intolerance.
BreedVision--a multi-sensor platform for non-destructive field-based phenotyping in plant breeding.
Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno
2013-02-27
To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies.
Wagatsuma, Tadao; Khan, Md Shahadat Hossain; Watanabe, Toshihiro; Maejima, Eriko; Sekimoto, Hitoshi; Yokota, Takao; Nakano, Takeshi; Toyomasu, Tomonobu; Tawaraya, Keitaro; Koyama, Hiroyuki; Uemura, Matsuo; Ishikawa, Satoru; Ikka, Takashi; Ishikawa, Akifumi; Kawamura, Takeshi; Murakami, Satoshi; Ueki, Nozomi; Umetsu, Asami; Kannari, Takayuki
2015-02-01
Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14α-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
BreedVision — A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding
Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C.; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno
2013-01-01
To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies. PMID:23447014
Zdunek-Zastocka, Edyta; Grabowska, Agnieszka; Branicki, Tomasz; Michniewska, Beata
2017-07-01
Proline aminopeptidase (PAP, EC 3.4.11.5) is the only enzyme that effectively releases proline from the N-termini of peptides. The amino acid sequence of the PAP from Triticosecale, TsPAP1, comprises conserved regions, characteristic of the monomeric forms of PAP found in bacteria but not yet identified in plants. Therefore, we aimed to obtain and biochemically characterize the TsPAP1 protein. The recombinant TsPAP1 protein was received through heterologous expression of the TsPAP1 coding sequence in a bacterial expression system and purified with affinity chromatography. Gel filtration chromatography and SDS electrophoresis revealed that TsPAP1 is a monomer with a molecular mass of 37.5 kDa. TsPAP1 prefers substrates with proline at the N-terminus but is also capable of hydrolyzing β-naphthylamides of hydroxyproline and alanine. Among the peptides tested, the most preferred were di- and tripeptides, especially those with glycine in the Y position. The use of diagnostic inhibitors indicated that TsPAP1 is a serine peptidase; however, further characterization revealed that the SH residues are also important for maintaining its activity. To examine the role of TsPAP1 under physiological conditions, we developed transgenic Arabidopsis plants overexpressing TsPAP1. Compared with wild-type plants, the transgenic lines accumulated more proline, flowered an average of 3.5 days earlier, and developed more siliques than did untransformed controls. Our paper is the first to describe the biochemical properties of a novel monomeric plant PAP and contributes to the functional characterization of PAP proteins in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Basso, Bruno; Giola, Pietro; Dumont, Benjamin; Migliorati, Massimiliano De Antoni; Cammarano, Davide; Pruneddu, Giovanni; Giunta, Francesco
2016-01-01
Future climatic changes may have profound impacts on cropping systems and affect the agronomic and environmental sustainability of current N management practices. The objectives of this work were to i) evaluate the ability of the SALUS crop model to reproduce experimental crop yield and soil nitrate dynamics results under different N fertilizer treatments in a farmer’s field, ii) use the SALUS model to estimate the impacts of different N fertilizer treatments on NO3- leaching under future climate scenarios generated by twenty nine different global circulation models, and iii) identify the management system that best minimizes NO3- leaching and maximizes yield under projected future climate conditions. A field experiment (maize-triticale rotation) was conducted in a nitrate vulnerable zone on the west coast of Sardinia, Italy to evaluate N management strategies that include urea fertilization (NMIN), conventional fertilization with dairy slurry and urea (CONV), and no fertilization (N0). An ensemble of 29 global circulation models (GCM) was used to simulate different climate scenarios for two Representative Circulation Pathways (RCP6.0 and RCP8.5) and evaluate potential nitrate leaching and biomass production in this region over the next 50 years. Data collected from two growing seasons showed that the SALUS model adequately simulated both nitrate leaching and crop yield, with a relative error that ranged between 0.4% and 13%. Nitrate losses under RCP8.5 were lower than under RCP6.0 only for NMIN. Accordingly, levels of plant N uptake, N use efficiency and biomass production were higher under RCP8.5 than RCP6.0. Simulations under both RCP scenarios indicated that the NMIN treatment demonstrated both the highest biomass production and NO3- losses. The newly proposed best management practice (BMP), developed from crop N uptake data, was identified as the optimal N fertilizer management practice since it minimized NO3- leaching and maximized biomass production over the long term. PMID:26784113
Amon, Thomas; Amon, Barbara; Kryvoruchko, Vitaliy; Machmüller, Andrea; Hopfner-Sixt, Katharina; Bodiroza, Vitomir; Hrbek, Regina; Friedel, Jürgen; Pötsch, Erich; Wagentristl, Helmut; Schreiner, Matthias; Zollitsch, Werner
2007-12-01
Biogas production is of major importance for the sustainable use of agrarian biomass as renewable energy source. Economic biogas production depends on high biogas yields. The project aimed at optimising anaerobic digestion of energy crops. The following aspects were investigated: suitability of different crop species and varieties, optimum time of harvesting, specific methane yield and methane yield per hectare. The experiments covered 7 maize, 2 winter wheat, 2 triticale varieties, 1 winter rye, and 2 sunflower varieties and 6 variants with permanent grassland. In the course of the vegetation period, biomass yield and biomass composition were measured. Anaerobic digestion was carried out in eudiometer batch digesters. The highest methane yields of 7500-10200 m(N)(3)ha(-1) were achieved from maize varieties with FAO numbers (value for the maturity of the maize) of 300 to 600 harvested at "wax ripeness". Methane yields of cereals ranged from 3200 to 4500 m(N)(3)ha(-1). Cereals should be harvested at "grain in the milk stage" to "grain in the dough stage". With sunflowers, methane yields between 2600 and 4550 m(N)(3)ha(-1) were achieved. There were distinct differences between the investigated sunflower varieties. Alpine grassland can yield 2700-3500 m(N)(3)CH(4)ha(-1). The methane energy value model (MEVM) was developed for the different energy crops. It estimates the specific methane yield from the nutrient composition of the energy crops. Energy crops for biogas production need to be grown in sustainable crop rotations. The paper outlines possibilities for optimising methane yield from versatile crop rotations that integrate the production of food, feed, raw materials and energy. These integrated crop rotations are highly efficient and can provide up to 320 million t COE which is 96% of the total energy demand of the road traffic of the EU-25 (the 25 Member States of the European Union).
Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf
2011-01-01
Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached. PMID:21611171
Fungi producing significant mycotoxins.
2012-01-01
Mycotoxins are secondary metabolites of microfungi that are known to cause sickness or death in humans or animals. Although many such toxic metabolites are known, it is generally agreed that only a few are significant in causing disease: aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, zearalenone, and ergot alkaloids. These toxins are produced by just a few species from the common genera Aspergillus, Penicillium, Fusarium, and Claviceps. All Aspergillus and Penicillium species either are commensals, growing in crops without obvious signs of pathogenicity, or invade crops after harvest and produce toxins during drying and storage. In contrast, the important Fusarium and Claviceps species infect crops before harvest. The most important Aspergillus species, occurring in warmer climates, are A. flavus and A. parasiticus, which produce aflatoxins in maize, groundnuts, tree nuts, and, less frequently, other commodities. The main ochratoxin A producers, A. ochraceus and A. carbonarius, commonly occur in grapes, dried vine fruits, wine, and coffee. Penicillium verrucosum also produces ochratoxin A but occurs only in cool temperate climates, where it infects small grains. F. verticillioides is ubiquitous in maize, with an endophytic nature, and produces fumonisins, which are generally more prevalent when crops are under drought stress or suffer excessive insect damage. It has recently been shown that Aspergillus niger also produces fumonisins, and several commodities may be affected. F. graminearum, which is the major producer of deoxynivalenol and zearalenone, is pathogenic on maize, wheat, and barley and produces these toxins whenever it infects these grains before harvest. Also included is a short section on Claviceps purpurea, which produces sclerotia among the seeds in grasses, including wheat, barley, and triticale. The main thrust of the chapter contains information on the identification of these fungi and their morphological characteristics, as well as factors influencing their growth and the various susceptible commodities that are contaminated. Finally, decision trees are included to assist the user in making informed choices about the likely mycotoxins present in the various crops.
Golder, H M; Celi, P; Rabiee, A R; Heuer, C; Bramley, E; Miller, D W; King, R; Lean, I J
2012-04-01
The effects of grain, fructose, and histidine on ruminal pH and fermentation products were studied in dairy cattle during an induced subacute acidosis protocol. Thirty Holstein heifers were randomly allocated to 5 treatment groups: (1) control (no grain); (2) grain [fed at a crushed triticale dry matter intake (DMI) of 1.2% of body weight (BW)]; (3) grain (0.8% of BW DMI)+fructose (0.4% of BW DMI); (4) grain (1.2% of BW DMI)+histidine (6 g/head); and (5) grain (0.8% of BW DMI)+fructose (0.4% of BW DMI)+histidine (6 g/head) in a partial factorial arrangement. Heifers were fed 1 kg of grain daily with ad libitum access to ryegrass silage and alfalfa hay for 10 d. Feed was withheld for 14 h before challenge day, on which heifers were fed 200 g of alfalfa hay and then the treatment diets immediately thereafter. Rumen samples were collected 5 min after diet ingestion, 60 min later, and at 3 subsequent 50-min intervals. Grain decreased ruminal pH and increased ammonia, total volatile fatty acid (VFA), acetate, butyrate, propionate, and valerate concentrations compared with controls. The addition of grain had no effect on ruminal D- and L-lactate concentrations. Fructose markedly decreased ruminal pH and markedly increased D- and L-lactate concentrations. Fructose increased total VFA and butyrate and decreased valerate concentrations. Although histidine did not have a marked effect on ruminal fermentation, increased concentrations of histamine were observed following feeding. This study demonstrates that the substitution of some grain for fructose can lower ruminal pH and increase VFA and lactate concentrations, warranting further investigation into the role of sugars on the risk of acidosis in dairy cattle. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf
2011-01-01
Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached.
Duniere, Lysiane; Xu, Shanwei; Long, Jin; Elekwachi, Chijioke; Wang, Yuxi; Turkington, Kelly; Forster, Robert; McAllister, Tim A
2017-03-03
Describing the microbial populations present in small grain silage and understanding their changes during ensiling is of interest for improving the nutrient value of these important forage crops. Barley, oat and triticale forages as well as an intercropped mixture of the 3 crops were harvested and ensiled in mini silos for a period of 90 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics and nutritive value were assessed in terminal silages and bacterial and fungal communities during ensiling and aerobic exposure were described using 16S and 18S rDNA sequencing, respectively. All small grain silages exhibited chemical traits that were associated with well ensiled forages, such as low pH value (4.09 ± 0.28) and high levels of lactic acid (59.8 ± 14.59 mg/g DM). The number of microbial core genome operational taxonomic units (OTUs) decreased with time of ensiling. Taxonomic bacterial community profiles were dominated by the Lactobacillales after fermentation, with a notable increase in Bacillales as a result of aerobic exposure. Diversity of the fungal core microbiome was shown to also be reduced during ensiling. Operational taxonomic units assigned to filamentous fungi were found in the core microbiome at ensiling and after aerobic exposure, whereas the Saccharomycetales were the dominate yeast population after 90 days of ensiling and aerobic exposure. Bacterial and fungal orders typically associated with silage spoilage were identified in the core microbiome after aerobic exposure. Next Generation Sequencing was successfully used to describe bacterial communities and the first record of fungal communities throughout the process of ensiling and utilization. Adequately describing the microbial ecology of silages could lead to improved ensiling practices and the selection of silage inoculants that act synergistically with the natural forage microbiome.
Genc, Yusuf; Humphries, Julia M; Lyons, Graham H; Graham, Robin D
2005-01-01
More than 2 billion people consume diets that are less diverse than 30 years ago, leading to deficiencies in micronutrients, especially iron (Fe), zinc (Zn), selenium (Se), iodine (I), and also vitamin A. A strategy that exploits genetic variability to breed staple crops with enhanced ability to fortify themselves with micronutrients (genetic biofortification) offers a sustainable, cost-effective alternative to conventional supplementation and fortification programs. This is more likely to reach those most in need, has the added advantages of requiring no change in current consumer behaviour to be effective, and is transportable to a range of countries. Research by our group, along with studies elsewhere, has demonstrated conclusively that substantial genotypic variation exists in nutrient (e.g. Fe, Zn) and nutrient promotor (e.g. inulin) concentrations in wheat and other staple foods. A rapid screening technique has been developed for lutein content of wheat and triticale, and also for pro-vitamin A carotenoids in bread wheat. This will allow cost-effective screening of a wider range of genotypes that may reveal greater genotypic variation in these traits. Moreover, deeper understanding of genetic control mechanisms and development of molecular markers will facilitate breeding programs. We suggest that a combined strategy utilising plant breeding for higher micronutrient density; maximising the effects of nutritional promoters (e.g. inulin, vitamin C) by promoting favourable dietary combinations, as well as by plant breeding; and agronomic biofortification (e.g. adding iodide or iodate as fertiliser; applying selenate to cereal crops by spraying or adding to fertiliser) is likely to be the most effective way to improve the nutrition of populations. Furthermore, the importance of detecting and exploiting beneficial interactions is illustrated by our discovery that in Fe-deficient chickens, circulating Fe concentrations can be restored to normal levels by lutein supplementation. Further bioavailability/bioefficacy trials with animals and humans are needed, using varying dietary concentrations of Fe, Zn, carotenoids, inulin, Se and I to elucidate other important interactions in order to optimise delivery in biofortification programs.
Majka, Maciej; Kwiatek, Michał T; Majka, Joanna; Wiśniewska, Halina
2017-01-01
Aegilops tauschii (2n = 2x = 14) is a diploid wild species which is reported as a donor of the D-genome of cultivated bread wheat. The main goal of this study was to examine the differences and similarities in chromosomes organization among accessions of Ae. tauschii with geographically diversed origin, which is believed as a potential source of genes, especially determining resistance to fungal diseases (i.e., leaf rust and powdery mildew) for breeding of cereals. We established and compared the fluorescence in situ hybridization patterns of 21 accessions of Ae. tauschii using various repetitive sequences mainly from the BAC library of wheat cultivar Chinese Spring. Results obtained for Ae. tauschii chromosomes revealed many similarities between analyzed accessions, however, some hybridization patterns were specific for accessions, which become from cognate regions of the World. The most noticeable differences were observed for accessions from China which were characterized by presence of distinct signals of pTa-535 in the interstitial region of chromosome 3D, less intensity of pTa-86 signals in chromosome 2D, as well as lack of additional signals of pTa-86 in chromosomes 1D, 5D, or 6D. Ae. tauschii of Chinese origin appeared homogeneous and separate from landraces that originated in western Asia. Ae. tauschii chromosomes showed similar hybridization patterns to wheat D-genome chromosomes, but some differences were also observed among both species. What is more, we identified reciprocal translocation between short arm of chromosome 1D and long arm of chromosome 7D in accession with Iranian origin. High polymorphism between analyzed accessions and extensive allelic variation were revealed using molecular markers associated with resistance genes. Majority of the markers localized in chromosomes 1D and 2D showed the diversity of banding patterns between accessions. Obtained results imply, that there is a moderate or high level of polymorphism in the genome of Ae . tauschii determined by a geographical origin, which we proved by cytogenetic and molecular markers analysis. Therefore, selected accessions might constitute an accessible source of variation for improvement of Triticeae species like wheat and triticale.
Canty, Mary J; Fogarty, Ursula; Sheridan, Michael K; Ensley, Steve M; Schrunk, Dwayne E; More, Simon J
2014-01-01
Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as 'ergot alkaloid intoxication'. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of a small number of equine and bovine farms where poor animal health and performance had been reported. Additionally, in some circumstances changes to the diet, where animals were fed primarily herbage, were sufficient to reverse adverse effects. Pending additional information, these results suggest that Irish farm advisors and veterinarians should be aware of the potential adverse role on animal health and performance of ergot alkaloids from perennial ryegrass infected with endophytic fungi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se; Escobar, Federico; Fu Xinmei
2012-01-15
Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competitionmore » for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.« less
2014-01-01
Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as ‘ergot alkaloid intoxication’. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of a small number of equine and bovine farms where poor animal health and performance had been reported. Additionally, in some circumstances changes to the diet, where animals were fed primarily herbage, were sufficient to reverse adverse effects. Pending additional information, these results suggest that Irish farm advisors and veterinarians should be aware of the potential adverse role on animal health and performance of ergot alkaloids from perennial ryegrass infected with endophytic fungi. PMID:25295161
Krieg, J; Koenzen, E; Seifried, N; Steingass, H; Schenkel, H; Rodehutscord, M
2018-03-01
Ruminal in situ incubations are widely used to assess the nutritional value of feedstuffs for ruminants. In in situ methods, feed samples are ruminally incubated in indigestible bags over a predefined timespan and the disappearance of nutrients from the bags is recorded. To describe the degradation of specific nutrients, information on the concentration of feed samples and undegraded feed after in situ incubation ('bag residues') is needed. For cereal and pea grains, CP and starch (ST) analyses are of interest. The numerous analyses of residues following ruminal incubation contribute greatly to the substantial investments in labour and money, and faster methods would be beneficial. Therefore, calibrations were developed to estimate CP and ST concentrations in grains and bag residues following in situ incubations by using their near-infrared spectra recorded from 680 to 2500 nm. The samples comprised rye, triticale, barley, wheat, and maize grains (20 genotypes each), and 15 durum wheat and 13 pea grains. In addition, residues after ruminal incubation were included (at least from four samples per species for various incubation times). To establish CP and ST calibrations, 620 and 610 samples (grains and bag residues after incubation, respectively) were chemically analysed for their CP and ST concentration. Calibrations using wavelengths from 1250 to 2450 nm and the first derivative of the spectra produced the best results (R 2 Validation=0.99 for CP and ST; standard error of prediction=0.47 and 2.10% DM for CP and ST, respectively). Hence, CP and ST concentration in cereal grains and peas and their bag residues could be predicted with high precision by NIRS for use in in situ studies. No differences were found between the effective ruminal degradation calculated from NIRS estimations and those calculated from chemical analyses (P>0.70). Calibrations were also calculated to predict ruminal degradation kinetics of cereal grains from the spectra of ground grains. Estimation of the effective ruminal degradation of CP and ST from the near-infrared spectra of cereal grains showed promising results (R 2>0.90), but the database needs to be extended to obtain more stable calibrations for routine use.
NASA Astrophysics Data System (ADS)
Hoffmann, Mathias; Albiac Borraz, Elisa; Garcia Alba, Juana; Augustin, Jürgen; Sommer, Michael
2015-04-01
Agriculture in the hummocky ground moraine landscape of NE-Germany is characterized by an increase in energy crop cultivation, like maize or sorghum. Both enhance lateral C fluxes by erosion and induce feedbacks on C dynamics of agroecosystems as a result of reduced wintertime plant cover and vigorous crop growth during summer. However, the actual impact of these phenomena on the CO2-sink/-source function of agricultural landscapes, is still not clear. Therefore, the interdisciplinary project "CarboZALF" was established in Dedelow/Prenzlau (NE-Germany) in 2009. Within the field experiment CarboZALF-D, CO2 fluxes for the soil-plant systems were monitored, covering typical landscape relevant soil states in respect to erosion and deposition, like Calcic Cutanic Luvisol and Endogleyic Colluvic Regosol. Automated chamber systems, each consisting of four transparent chambers (2.5 m height, basal area 2.25 m2), were placed along gradients at both measurement sites. Monitored CO2 fluxes were gap-filled on a high-temporal resolution by modelling ecosystem respiration (Reco), gross primary productivity (GPP) and net ecosystem exchange (NEE) based on parallel and continuous measurements of the CO2 exchange, soil and air temperatures as well as photosynthetic active radiation (PAR). Gap-filling was e.g. needed in case of chamber malfunctions and abrupt disturbances by farming practice. The monitored crop rotation was corn-winter wheat (2 a), sorghum-winter triticale and alfalfa (1.5 a). In our presentation we would like to show insights from a 4 years observation period, with prounounced differences between the eroded and the colluvial soil: The Endogleyic Colluvic Regosol showed higher flux rates for Reco, GPP and NEE compared to the Calcic Cutanic Luvisol. Site-specific NEE and C-balances were positively related to soil C-stocks as well as biomass production, and generated a minor C-sink in case of the Calcic Cutanic Luvisol and a highly variable C-source in case of the Endogleyic Colluvic Regosol. Moreover, obtained high local variability in CO2 fluxes and C-balances at both sites, can be interpreted in terms of relevant drivers.
Hansen, C F; Phillips, N D; La, T; Hernandez, A; Mansfield, J; Kim, J C; Mullan, B P; Hampson, D J; Pluske, J R
2010-10-01
Swine dysentery is a contagious mucohemorrhagic diarrheal disease caused by the intestinal spirochete Brachyspira hyodysenteriae that colonizes and induces inflammation of the cecum and colon. It has been reported that a diet containing chicory root and sweet lupin can prevent swine dysentery. This experiment was conducted to test the hypothesis that inulin in the chicory root rather than galactans in lupins was responsible for protective effects. An experiment with a 2 × 2 factorial arrangement of treatments was undertaken using pigs fed barley- and triticale-based diets, with the main effects being protein source [185 g/kg of canola meal (decreased galactans) or 220 g/kg of lupins (greater galactans)] and inulin supplementation (0 or 80 g/kg). Forty Large White × Landrace pigs weighing 21 ± 3 kg, with 10 pigs per diet, were allowed to adapt to the diets for 2 wk, and then each pig was challenged orally 4 times with a broth culture containing B. hyodysenteriae on consecutive days. Pigs were killed when they showed clinical signs of dysentery or 6 wk postchallenge. Pigs fed diets without inulin had 8.3 times greater risk (P = 0.017) of developing swine dysentery and were 16 times more likely (P = 0.004) to have colon contents that were culture-positive for B. hyodysenteriae, compared with the pigs fed a diet with 80 g/kg of inulin. Diets containing lupins did not prevent pigs from developing clinical swine dysentery; however, inclusion of lupins or inulin or both in the diets delayed the onset of disease compared with the diet based mainly on canola meal (P < 0.05). Diet did not influence the total concentration of organic acids in the ileum, cecum, or upper and lower colon; however, the molar proportions of the organic acids were influenced (P < 0.05). Consequently the pH values in the cecum, and upper and lower colon were not influenced (P > 0.05) by diet. However the pH values of the ileal digesta were decreased in pigs fed the diet with both lupins and inulin compared with the diet containing only lupins (P < 0.05). In conclusion, this study shows that diets supplemented with highly fermentable carbohydrates from inulin protected pigs against developing swine dysentery.
Treatment of celiac disease: from gluten-free diet to novel therapies.
Francavilla, R; Cristofori, F; Stella, M; Borrelli, G; Naspi, G; Castellaneta, S
2014-10-01
Gluten-free diet (GFD) is the cornerstone treatment for celiac disease (CD). This diet excludes the protein gluten a protein forum in in grains such as wheat, barley, rye and triticale. Gluten causes small intestines inflammation in patients with CD and eating a GFD helps these patients in controlling signs and symptoms and prevent complications. Following a GFD may be frustrating, however, it is important to know that plenty of foods are naturally gluten-free and nowadays is relatively easy to find substitutes for gluten-containing foods. Certain grains, such as oats, are generally safe but can be contaminated with wheat during growing and processing stages of production. For this reason, it is generally recommended avoiding oats unless they are specifically labelled gluten-free. Other products that may contain gluten include food additives, such as malt flavouring, modified food starch and some supplement and/or vitamins that use gluten as a binding agent. Cross-contamination occurs when gluten-free foods come into contact with foods that contain gluten. It can happen during the manufacturing process or if the same equipment is used to make a variety of products. Cross-contamination can also occur at home if foods are prepared on common surfaces or with utensils that have not been cleaned after being used to prepare gluten-containing foods (using a toaster for gluten-free and regular bread). Although safe and effective, the GFD is not ideal: it is expensive, of limited nutritional value, and not readily available in many countries. Consequently, a need exists for novel, non-dietary therapies for celiac disease. Advances in understanding the immunopathogenesis of CD have suggested several types of therapeutic strategies alternative to the GFD. Some of these strategies attempt to decrease the immunogenicity of gluten-containing grains by manipulating the grain itself or by using oral enzymes to break down immunogenic peptides that normally remain intact during digestion. Other strategies focus on preventing the absorption of these peptides, preventing tissue transglutaminase from rendering gluten peptides more immunogenic, or inhibiting their binding to CD-specific antigen-presenting molecules. Strategies that limit T cell migration to the small intestine or that re-establish mucosal homeostasis and tolerance to gluten antigens are also being explored.
Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna
2015-01-01
Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four-field crop rotation. The content of T-2/HT-2 toxins was the highest in 2010 in grain from the three-field crop rotation and it was correlated with the isolation frequency of F. langsethiae.
Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops.
Brown, A N; Ferreira, G; Teets, C L; Thomason, W E; Teutsch, C D
2018-03-01
In dairy farming systems, growing winter crops for forage is frequently limited to annual grasses grown in monoculture. The objectives of this study were to determine how cropping grasses alone or in mixtures with legumes affects the yield, nutritional composition, and in vitro digestibility of fresh and ensiled winter crops and the yield, nutritional composition, and in vitro digestibility of the subsequent summer crops. Experimental plots were planted with 15 different winter crops at 3 locations in Virginia. At each site, 4 plots of each treatment were planted in a randomized complete block design. The 15 treatments included 5 winter annual grasses [barley (BA), ryegrass (RG), rye (RY), triticale (TR), and wheat (WT)] in monoculture [i.e., no legumes (NO)] or with 1 of 2 winter annual legumes [crimson clover (CC) and hairy vetch (HV)]. After harvesting the winter crops, corn and forage sorghum were planted within the same plots perpendicular to the winter crop plantings. The nutritional composition and the in vitro digestibility of winter and summer crops were determined for fresh and ensiled samples. Growing grasses in mixtures with CC increased forage dry matter (DM) yield (2.84 Mg/ha), but the yield of mixtures with HV (2.47 Mg/ha) was similar to that of grasses grown in monoculture (2.40 Mg/ha). Growing grasses in mixtures with legumes increased the crude protein concentration of the fresh forage from 13.0% to 15.5% for CC and to 17.3% for HV. For neutral detergent fiber (NDF) concentrations, the interaction between grasses and legumes was significant for both fresh and ensiled forages. Growing BA, RY, and TR in mixtures with legumes decreased NDF concentrations, whereas growing RG and WT with legumes did not affect the NDF concentrations of either the fresh or the ensiled forages. Growing grasses in mixtures with legumes decreased the concentration of sugars of fresh forages relative to grasses grown in monoculture. Primarily, this decrease can be attributed to low concentrations of sugars of mixtures with HV (10.5%). Growing grasses in mixtures with legumes reduced the fiber digestibility of both winter crops (75.7% to 72.8% NDF). Growing grasses in mixtures with legumes did not affect estimated DM yield, nutritional composition, or digestibility of the succeeding summer crops. In conclusion, growing grasses in mixtures with legumes as winter forage crops can increase forage estimated DM yields and its nutritional quality in dairy farming sytems. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Laarman, A H; Sugino, T; Oba, M
2012-08-01
The objective of this study was to evaluate the effects of substituting high fiber byproducts for dry ground corn in calf starter on growth and rumen pH during the weaning transition. Holstein bull calves were raised on an intensified nursing program using milk replacer containing 26% CP and 18% fat. Calves were fed a texturized calf starter containing either dry ground corn at 18.8% of dry matter (DM; CRN), beet pulp replacing dry ground corn at 10.2% dietary DM (BP), or triticale dried distillers grains with solubles replacing dry ground corn and high-protein feedstuffs at 18.6% of dietary DM (DDGS) in the pellet; treatment calf starters differed only in the pellet portion. Starch concentrations of CRN, BP, and DDGS were 35.3, 33.4, and 31.4%, respectively. After a calf consumed 2.50 kg of starter for 3 consecutive days, a small ruminant rumen pH data logger was inserted orally and rumen pH was measured continuously for 4d. Calves were then killed and rumen fluid was sampled to determine volatile fatty acid profile. No difference was found in overall average daily gain or growth rates of hip height, withers height, and heart girth. During the weaning transition, rate of increase in calf starter intake was greater for calves fed DDGS compared with those fed CRN (87.7 vs. 77.5 g/d), but lower for calves fed BP compared with CRN (68.1 vs. 77.5 g/d). The area under pH 5.8 (470 vs. 295 min × pH/d) or pH 5.2 (72.7 vs. 16.4 min × pH/d) was greater for calves fed DDGS than those fed CRN. Rumen pH profile was not affected by BP treatment compared with CRN, but calves fed BP tended to have greater water intake than those fed CRN (6.6 vs. 5.8 L/d). Volatile fatty acid profile was not affected by treatment with the exception of molar proportion of butyrate, which tended to be lower for calves fed BP compared with those fed CRN (15.0 vs. 16.6%). Hay intake was positively correlated to mean rumen pH for calves used in this study (r=0.48). Decreasing dietary starch concentration did not mitigate rumen acidosis in calves during weaning transition, and low rumen pH did not adversely affect growth during the weaning transition. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Berti, Marisol; Samarappuli, Dulan
2017-04-01
Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize-soybean-wheat cropping systems. The objectives of this study were to determine the agronomic performance and nutrient scavenging potential of winter camelina in comparison with other common cover crops. Experiments were conducted in Fargo, ND in 2015 and 2016, and in Prosper, ND in 2015. The experimental design was a randomized complete block design with a split-plot arrangement with three replicates. The main plot was the sowing date and the subplot were camelina cultivars as well as other common cover crops in the area. Sowing dates were targeted to 15 August and September 1, although the final dates varied slightly each year. Biomass yield, N content of the biomass N uptake and P uptake was evaluated. Winter camelina N and P uptake ranged between 21 and 30.5 kg N ha-1 and 3.4 to 5.3 kg P ha-1. The nutrient scavenging potential of winter camelina was similar to other cover crops although slightly lower than turnip (Brassica rapa L.), radish (Raphanus sativus L.), and rape (Brassica napus L.) cultivars which had significantly higher P uptake than winter camelina and the other cover crops in the study. An evaluation of spring regrowth and cover indicated that only rye, winter camelina, and pennycress (Thlaspi arvense L.) survived the winter, although a few plants of triticale (x Trticosecale Witt.) and rape were found on a few plots. Because of the high variability on the plots there were no significant differences among the surviving cover crops on soil coverage. The soil coverage for rye cultivars was 25 and 35% and for camelina cv. Bison was 27%.In 2016, biomass yield was not significant for sowing date, cultivars, or their interaction. Winter camelina cultivars biomass yield fluctuated between 1.15 and 2.33 Mg dry matter ha-1 on the first sowing date while pennycress biomass yield was 1.40 Mg ha-1. In the second sowing date all crops had about half the biomass yield than the first sowing date. In conclusion, even though winter camelina may not provide much soil cover in the fall, the ability to survive the winter and scavenge nutrients in the autummn and spring gives this crop an excellent potential to be integrated as a cover crop in maize-soybean-wheat cropping systems in the US Midwest.
NASA Astrophysics Data System (ADS)
Augustin, Juergen; Fiedler, Sebastian; Heintze, Gawan; Rohwer, Marcus; Prescher, Anne-Katrin; Pohl, Madlen; Jurisch, Nicole; Hagemann, Ulrike
2017-04-01
In Germany, agricultural production accounts for approx. 15% of total anthropogenic greenhouse gas emissions. The cultivation of energy crops is thus considered an important option to reduce the climate impact and maintain or increase soil organic carbon (SOC) stocks. In particular, this applies to the continuously expanding cultivation of energy crops for biogas production and the associated use of residues from anaerobic digestion (digestates) as organic fertilizer. To date, there is only limited and contradicting evidence on the impacts of this management practice on the CO2 exchange as well as the change of SOC stocks. We will present results from a 4-year field study at 5 sites in Germany using identical methods to investigate the interacting effects of i) 3 N-fertilizer treatments including calcium ammonium nitrate and digestates and ii) a crop rotation of 7 energy crops like maize, sorghum, triticale, and wheat on net ecosystem CO2 exchange (NEE) and the change of SOC stocks. We used the manual chamber approach for measuring NEE as the difference between gross primary production and ecosystem respiration. The determination of SOC stock changes was based on a C budget approach, which includes the cumulated annual NEE, the C export by harvest, and the C import by application of anaerobic digestates. The CO2 exchange and the change of SOC stocks were influenced by multiple factors like crop, site, fertilization, and climate, as well as their complex interactions. A large proportion of the variability of the CO2 exchange can be attributed to interannual climatic variability. Productive crops like maize and sorghum generally feature the most intensive CO2 exchange, while less productive crops can compensate for this by means of longer cultivation times. Regardless of the extreme variability, pronounced and partly significant differences of NEE and C budgets between sites were observed. On average, SOC stocks declined over a full crop rotation, but with highly variable positive and negative C budgets. This indicates that, in most cases, neither the selected crops nor the application of anaerobic digestates were sufficient to compensate for SOC losses. Apparently, the potential of anaerobic digestates to maintain or increase SOC stocks is considerably smaller than expected. If continuous decreases of SOC stocks due to energy crop cultivation are to be avoided, additional studies on the optimization of crop rotations (selection of plants with high C input), and digestate fertilization (type of digestate, amount and application technique) are required. A continuously improved version of the methodology used in this study promises faster and more precise results than classic long-term field trials.
Effect of different forage sources on performance and feeding behavior of Holstein calves.
Castells, Ll; Bach, A; Araujo, G; Montoro, C; Terré, M
2012-01-01
One hundred seventy-nine Holstein male calves [44.7 kg of body weight (BW) and 8.3 d of age] participated in a series of 3 experiments to evaluate the effect of different forage sources on performance, apparent digestibility, and feeding behavior. Animals in each study were randomly assigned to 1 of 3 different dietary treatments: control (CON) calves were fed starter feed without any forage provision (this treatment was repeated in each of the 3 experiments), and the 2 other treatments consisted of the same starter feed plus a forage source: chopped alfalfa (AH) or rye-grass hay (RH) in the first study; chopped oat hay (OH) or chopped barley straw (BS) in the second study; corn silage (CS) or triticale silage (TS) in the third study. All calves were offered 2L of milk replacer (MR) at 12.5% dry matter (DM) twice daily via a bottle until 50 d of age, and 2L of MR at 12.5% DM during the week before weaning (57 d of age). The study finished when calves were 71 d old. Starter feed, MR, and forage intakes were recorded daily and BW weekly. Calves were individually housed and bedded with wood shavings. Compared with CON, animals receiving OH, TS, and BS consumed more starter feed (0.88 vs. 1.14, 1.17, 1.06 kg/d, respectively) and had greater average daily gain (0.72 vs. 0.93, 0.88, 0.88 kg/d, respectively). Animals in treatments RH, BS, CS, and TS consumed less forage (51 g/d) than AH (120 g/d) and OH (101 g/d) calves. Apparent organic matter, DM, and neutral detergent fiber digestibilities did not differ among treatments (81.5, 81.1, and 54.4%, respectively). Apparent crude protein digestibility was greater in RH, CS, and AH treatments than in CON (80.5 vs. 76.4%, respectively). Compared with CON calves, animals in the AH treatment spent less time eating starter feed and lying, animals in AH and RH treatments spent more time ruminating, with odds ratios (OR) of 5.24 and 5.40, respectively. The AH and RH calves devoted less time to performing nonnutritive oral behaviors (OR: 0.38 and 0.34, respectively), and TS calves tended to devote less time to perform nonnutritive oral behaviors (OR: 0.21) 1h after being offered MR and solid feed. In conclusion, free-choice provision of a forage source to young calves improves feed intake and performance without impairing digestibilities of DM, organic matter, crude protein, and neutral detergent fiber, and, depending on forage source, reduces nonnutritive oral behaviors and stimulates rumination. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Enhancing Soil Productivity Using a Multi-Crop Rotation and Beef Cattle Grazing
NASA Astrophysics Data System (ADS)
Şentürklü, Songül; Landblom, Douglas; Cihacek, Larry; Brevik, Eric
2016-04-01
Agricultural production systems that include complimentary plant, soil and animal interaction contribute to sustainability. In sustainable livestock systems integrated with crop production, the soil resource is impacted positively. The goal of this research was to maximize beef cattle and crop economic yield, while improving the soil resource by increasing soil organic matter (SOM) and subsequently seasonal soil nitrogen fertility over a 5-year period (2011-2015). Each experimental crop field used in the study was 1.74 ha. Small-seeded crops were planted using a JD 1590 No-Till drill. Corn (C) and sunflowers (SF) were planted using a JD 7000 No-Till planter. The cropping sequence used in the study was SF, hard red spring wheat (HRSW), fall seeded winter triticale-hairy vetch (T-HV), spring harvested for hay/mid-June seeded 7-species cover crop (CC; SF, Everleaf Oat, Flex Winter Pea, HV, Winfred Forage Rape, Ethiopian Cabbage, Hunter Leaf Turnip), C (85-day var.), and field pea-barley intercrop (PBY). The HRSW and SF were harvested as cash crops and the PBY, C, and CC were harvested by grazing cattle. In the system, yearling beef steers grazed PBY and unharvested C before feedlot entry, and after weaning, gestating cows grazed CC. Seasonal soil nitrogen fertility was measured at 0-15, 15-30, and 30-61 cm depths approximately every two weeks from June to October, 2014. The regression illustrating the relationship between SOM and average seasonal available mineral nitrogen shows that for each percentage increase in SOM there is a corresponding N increase of 1.47 kg/ha. Nitrogen fertilizer applications for the 5-year period of the study were variable; however, the overall trend was for reduced fertilizer requirement as SOM increased. At the same time, grain, oilseed, and annual forage crop yields increased year over year (2011-2015) except for the 2014 crop year, when above average precipitation delayed seeding and early frost killed the C and SF crops prematurely. Crop yields were as follows for the 5 crop years in the study (2011-2015): (1) CC was 0.25, 10.5, 8.03, 1.53, and 7.22t/ha, (2) C silage was 4.08, 9.04, 9.91, 8.65, and 14.4 t/ha, (3) C grain was 1.04, 3.81, 6.09, 3.11, and 5.1 t/ha, (4) SF was 1.10, 1.96, 2.42, 1.31, and 2.29 t/ha, (5) PBY forage was 0.0, 7.68, 11.2, 9.3, and 8.72 t/ha. When cattle grazed annual forage crops (C, PBY, and CC), animal manure and trampling contributed to the overall improvement of soil fertility. These data suggest that the combined effect of a multi-crop rotation that includes animal grazing enhances soil fertility and subsequently crop yields, and animal production for a sustainable integrated agricultural system.
NASA Astrophysics Data System (ADS)
Gabrielle, B.; Gagnaire, N.; Massad, R.; Prieur, V.; Python, Y.
2012-04-01
The potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy sources by bioenergy mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions from arable soils occuring during feedstock production. These emissions are broadly related to fertilizer nitrogen input rates, but largely controlled by soil and climate factors which makes their estimation highly uncertain. Here, we set out to improve estimates of N2O emissions from bioenergy feedstocks by using ecosystem models and measurements and modeling of atmospheric N2O in the greater Paris (France) area. Ground fluxes were measured in two locations to assess the effect of soil type and management, crop type (including lignocellulosics such as triticale, switchgrass and miscanthus), and climate on N2O emission rates and dynamics. High-resolution maps of N2O emissions were generated over the Ile-de-France region (around Paris) with two ecosystem models using geographical databases on soils, weather data, land-use and crop management. The models were tested against ground flux measurements and the emission maps were fed into the atmospheric chemistry-transport model CHIMERE. The maps were tested by comparing the CHIMERE simulations with time series of N2O concentrations measured at various heights above the ground in two locations in 2007. The emissions of N2O, as integrated over the region, were used in a life-cycle assessment of representative biofuel pathways: bioethanol from wheat and sugar-beet (1st generation), and miscanthus (2nd generation chain); bio-diesel from oilseed rape. Effects related to direct and indirect land-use changes (in particular on soil carbon stocks) were also included in the assessment based on various land-use scenarios and literature references. The potential deployment of miscanthus was simulated by assuming it would be grown on the current sugar-beet growing area in Ile-de-France, or by converting land currently under permanent fallow. Compared to the standard methodology currently used in LCA, based on fixed emissions for N2O, the use of model-derived estimates leads to a 10 to 40% reduction in the overall life-cycle GHG emissions of biofuels. This emphasizes the importance of regional factors in the relationship between agricultural inputs and emissions (altogether with biomass yields) in the outcome of LCAs. When excluding indirect land-use change effects (iLUC), 1st generation pathways enabled GHG savings ranging from 50 to 73% compared to fossile-derived equivalents, while this figure reached 88% for 2nd generation bioethanol from miscanthus. Including iLUC reduced the savings to less than 5% for bio-diesel from rapeseed, 10 to 45% for 1st generation bioethanol and to 60% for miscanthus. These figures apply to the year 2007 and should be extended to a larger number of years, but the magnitude of N2O emissions was similar between 2007, 2008 and 2009 over the Ile de France region.
NASA Astrophysics Data System (ADS)
Juszczak, Radoslaw; Sakowska, Karolina; Ziemblinska, Klaudia; Uzdzicka, Bogna; Strozecki, Marcin; Polmanska, Daria; Chojnicki, Bogdan; Urbaniak, Marek; Augustin, Juergen; Necki, Jarek; Olejnik, Janusz
2014-05-01
Greenhouse gases fluxes were measured with chambers on the selected plots of the experimental arable station of Poznan University of Life Sciences in Brody (52o26'N, 16o18'E), Poland. This is a long term experiment, where the same crops are cultivated under the same fertilization treatment schemes (eleven combinations) since 1957. At the blocks of the full 7-year rotation, there are cultivated in permanent rotation: winter wheat ->winter rye -> potato ->spring barley -> triticale and alfalfa (till the second year). GHG fluxes have been measured on plots with the same fertilization level (Nmin-90kg, K2O-120 kg/ha, P2O5-60 kg/ha and Ca), which is very close to the average amount of mineral fertilization applied in western Poland. No catch crops were cultivated between the main crops. The soil was classified as Albic Luviosols according to FAO 2006 classification. CO2 fluxes have been measured monthly since March 2011, while N2O and CH4 fluxes since March 2012 (weekly) and measurements were continued till October 2013. CO2 fluxes were measured with dynamic chambers, while N2O and CH4 fluxes were measured with both static and dynamic chambers approaches (using LOSGATOS gas analyser). Carbon net ecosystem exchange (NEE) and ecosystem respiration (Reco) have been modelled for the entire period based on the measured fluxes (different management treatments were included in the model), while N2O and CH4 fluxes were linearly interpolated between campaigns. Taking into account the accumulation periods between 15th of October and 14th of October of the next year the cumulated NEE was negative only in case of alfalfa, winter rye and winter wheat, reaching in average -3.5 tCO2-C ha-1 for alfalfa and winter rye fields and around -0.4 tCO2-C ha-1 for winter wheat in seasons 2011-2012 and 2012-2013. While, cumulated NEE for spring crops (potato and spring barley) was positive for the same periods and reached in average 1.1 tCO2-C ha-1 and 2.5 tCO2-C ha-1 for spring barley and potatoes, respectively. The fields with spring crops have positive NEE, and hence negative climatic impact, because by more than half of the year the soil was bared and no catch crops were cultivated between main crops. For the entire 12-months period the highest N2O emission rates were recorded at plots of winter wheat and winter rye and reached 2.2 kgN2O-N ha-1 and 2.0 kgN2O-N ha-1, respectively. At plots of alfalfa and potatoes the emission rates were close to 1.5 kgN2O-N ha-1, while at spring barley plots the emission did not exceed 1.1 kgN2O-N ha-1. At the same time, the yearly CH4 uptake reached from -0.9 kgCH4-C ha-1 at plots of alfalfa, -1.5 kgCH4-C ha-1 at plots of winter wheat to around -1.7 kgCH4-C ha-1 at winter rye, potato and spring barley plots.
NASA Astrophysics Data System (ADS)
Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.
2015-04-01
Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation pipes were pressed into the soil as enclosures to restrict root access to soil nitrogen. Soil samples were taken as close to 2-week intervals as possible from both inside and outside the enclosures. The crop rotation N values were also compared to triple replicated perennial native grassland plot areas (predominate sp. Western wheatgrass - Pascopyrum smithii, Blue grama - Bouteloua gracilis, Little bluestem - Schizachyrium scoparium, Switchgrass - Panicum virgatum). Trends identified for both NH4-N and NO3-N indicate that the values are relatively similar with respect to seasonal change over time. There was a greater amount of soil nitrogen accumulation inside the enclosures indicating that outside the enclosures roots scavenge nitrogen for plant growth and production. Seasonally, comparing the cropping system crops, NO3-N declined mid-July and then rebounded by mid-August and continued to increase until leveling off in September. Corn NO3-N, however, did not follow this pattern, but increased from early June to the end of June and remained high until the first of September. We will present the results of bulk density data and seasonal N fertility data providing evidence for the impact of previous CC on corn production. Probable explanation for the mid-summer nitrogen decline will be presented and justification for reduced fertilizer application will be discussed.
NASA Astrophysics Data System (ADS)
Senturklu, Songul; Landblom, Douglas; Brevik, Eric C.
2015-04-01
Soil, water, soil microbes, and solar energy are the main sources that sustain life on this planet. Without them working in concert, neither plants nor animals would survive. Considering the efficiency of animal production targets, soil must be protected and improved. Therefore, through our sustainable integrated crop and livestock research, we are studying animal and soil interactions from the soil to the plate. Integrating beef cattle systems into a diverse cropping system is providing a living laboratory for education beyond the traditional classroom setting. To establish the living learning laboratory at the Dickinson Research Extension Center, a five-crop rotation was established that included adapted cool and warm season grasses and broadleaf crops. The crop rotation is: sunflower > hard red spring wheat > fall seeded winter triticale-hairy vetch (hay)/spring seeded 7-species cover crop > Corn (85-95 day varieties) > field pea-barley intercrop. Sunflower and spring wheat are harvested for cash crop income in the rotation. Livestock integration occurs when yearling steers that had previously grazed perennial pastures until mid-August graze field pea-barley and subsequently unharvested corn. Average grazing days for field pea-barley and unharvested corn is 30 and 70 days, respectively. At the end of the grazing period, the yearling steers average 499-544 kg and are moved to a feedlot and fed an additional 75 days until slaughter. Maximizing grazing days and extending the grazing season through integration with the cropping system reduces custom feeding costs and enhances animal profit. Beef cows do not require high quality feed after their calves have been weaned. Therefore, gestating beef cows are an ideal animal to graze cover crops and crop aftermath (residue) after yearling steer grazing and farming operations have been completed. Extending the grazing season for beef cows by grazing cover crops and residues reduces winter feed cost, which is one of the highest expenses in beef cattle production. Senior research investigating the impact of livestock integration and multi-species cover crop grown within the crop rotation is studying changes in soil attributes resulting from the crop-animal integration by measuring bulk density and in-season soil fertility in the crop rotation. These responses are further contrasted with results from within the crop rotation and responses from perennial native range. Students that become engaged in the research represent a broad cross section of the consuming public and include high school junior and senior students, college undergraduate students that conduct research projects, postdoctoral research scientists engaged in senior level research, agricultural extension educators, and finally, farmer and rancher businessmen. The integrated nature of the research provides a wealth of learning opportunities for these various groups. For the high school students, visits to the living laboratory increase awareness and introduces students to a potential career path in agriculture, natural resource fields, and the many allied vocational fields that support agriculture. When college undergraduate students visit the living laboratory, they seek to address a researchable question or a problem in agriculture, while fulfilling requirements for graduation by conducting a research project. Because postdoctoral students want to be actively engaged in research and advanced learning, they are interested in conducting research in the living laboratory that can be published in peer reviewed journals. Agricultural extension educators, who advise farmers and ranchers, are looking for research results from the living laboratory that can be convey to their constituents. Farmers and ranchers participate in workshop events that give them face-to-face learning opportunities that they can use to effect change in their farm and ranch businesses. Each of these demographic groups are unique in their interest in the interaction between agricultural production and soil science. The authors will describe and discuss how each of these very different research consumers have been assisted during their experience and involvement in the living laboratory.
NASA Astrophysics Data System (ADS)
Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric
2016-04-01
The objectives of this non-irrigated cropping study was to employ the principles of soil health and determine the effect of rotation on seasonal mineral N, HRSW production, protein, test weight, and economics. Prior to the initiation of this research, the cropping study area had been previously seeded to hard red spring wheat (HRSW). The cropping systems consisted of a continuous HRSW control (C) compared to HRSW grown in a multi-crop 5-year rotation (R). The 5-yr rotation consisted of HRSW, cover crop (dual crop winter triticale-hairy vetch harvested for hay in June and immediately reseeded to a 7-species cover crop mix grazed by cows after weaning from mid-November to mid-December), forage corn, field pea-forage barley, and sunflower. The cereal grains, cover crops, and pea-barley intercrop were seeded using a JD 1590 no-till drill, 19 cm row spacing, and seed depth of 2.54 cm Cereal grain plant population was 3,088,750 plants/ha. The row crops were planted using a JD 7000 no-till planter, 76.2 cm row spacing, and seed depth of 5.08 cm. Plant population for the row crops was 46,947 plants/ha. Weeds were controlled using a pre-plant burn down and post-emergence control except for cover crops and pea-barley where a pre-plant burn down was the only chemical applied. Fertilizer application was based on soil test results and recommendations from the North Dakota State University Soil Testing Laboratory. During the 1st three years of the study 31.8 kg of N was applied to the C HRSW and then none the last two years of the 5-year period. The R HRSW was fertilized with 13.6 kg of N the 1st two years of the study and none the remaining three years of the 5-year period. However, chloride was low; therefore, 40.7-56.1 kg/ha were applied each year to both the C and R treatments. Based on 2014 and 2015 seasonal mineral N values, the data suggests that N levels were adequate to meet the 2690 kg/ha yield goal. In 2015, however, the R yield goal was exceeded by 673 kg/ha whereas the C yield goal of 2690 kg/ha was not achieved indicating that the multi-crop rotation enhanced soil quality and increased N cycling within the rotation management system. The 5-year average HRSW yield (C: 2690 vs. R: 2757 kg/ha; P=0.76), protein (C: 13.9 vs. R: 13.3%; P=0.06), and test weight (C: 28.1 vs. R: 28.0 kg/bu; P=0.81) did not differ between management treatments. Improved production is the result of enhanced nutrient cycling of available nutrients. Yields for crop years 1-5 were the same year 1, but in year 2, C wheat yield was 24.4% higher than R wheat (3,766 vs. 3,026 kg/ha). Change that started when the rotation was initiated became more evident in year three, when the yield margin between the two management practices began to narrow, but remained 20.5% higher for the C (3,161 vs. 2,623 kg/ha). Yield reversal became fully realized by year 4, when the R wheat yield was 9.1% higher (2,959 vs. 3,228 kg/ha), and by the 5th crop year R wheat yield was 38.9% higher than the C wheat yield (2,421 vs. 3,363 kg/ha). The 5-yr average input cost (C: 477 vs. R: 440/ha) and gross return (C: 650 vs. R: 638/ha) resulted in a net return that was 25 higher for R HRSW compared to the C HRSW (CTRL 173 vs. ROT 198/ha). The 5-yr net return from the C, R, and combination of all of the R crops was 173, 198, and 213/ha suggesting that growing continuous HRSW is less intensive, but also 14.5% less profitable.