Sample records for tritides

  1. The evolution of helium from aged Zr tritides: A thermal helium desorption spectrometry study

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Huang, G.; Chen, M.; Zhou, X. S.; Liu, J. H.; Peng, S. M.; Ding, W.; Wang, H. F.; Shi, L. Q.

    2018-02-01

    The evolution of He from Zr-tritides was investigated for aging times up to about 6.5 years using analytical thermal helium desorption spectrometry (THDS). Zr films were deposited onto Mo substrates and then converted into Zr-tritides (ZrT1.70∼1.95) inside a tritiding apparatus loaded with pure tritium gas. During aging, there are at least five forms of He in Zr-tritides, and more than 99% of He atoms are in the form of He bubbles. The isolated He bubbles in lattices begin to link with each other when the He/Zr atom ratio reaches about 0.21, and are connected to grain boundaries or dislocation networks at He concentration of He/Zr ≈ 0.26. An interconnected system of channels decorated by bubbles evolves from the network dislocations, dislocation loops and internal boundaries. These He filled networks are formed completely when the He/Zr atom ratio is about 0.38. Once the He/Zr reached about 0.45, the networks of He bubble penetrate to the film surface and He begins an "accelerated release". This critical ratio of He to Zr for He accelerated release is much greater than that found previously for Ti-tritides (0.23-0.30). The difference of He retention in Zr-tritides and Ti-tritides was also discussed in this paper.

  2. Dissolution and clearance of titanium tritide particles in the lungs of F344/Crl rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yung-Sung; Snipes, M.B.; Wang, Yansheng

    1995-12-01

    Metal tritides are compounds in which the radioactive isotope tritium, following adsorption onto the metal, forms a stable chemical compound with the metal. When particles of tritiated metals become airborne, they can be inhaled by workers. Because the particles may be retained in the lung for extended periods, the resulting dose will be greater than doses following exposure to tritium gas or tritium oxide (HTO). Particles of triated metals may be dispersed into the air during routine handling, disruption of contaminated metals, or as a result of spontaneous radioactive decay processes. Unlike metal hydrides and deuterides, tritides are radioactive, andmore » the decay of the tritium atoms affects the metal. Because helium is a product of the decay, helium bubbles form within the metal tritide matrix. The pressure from these bubbles leads to respirable particles breaking off from the tritide surface. Our results show that a substantial amount of titanium tritide remains in the rat lung 10 d after intratracheal instillation, confirming results previously obtain in an in vitro dissolution study.« less

  3. Development of bubble microstructure in ErT2 films during aging

    NASA Astrophysics Data System (ADS)

    Bond, Gillian M.; Browning, James F.; Snow, Clark S.

    2010-04-01

    Helium bubbles form in metal tritide films as tritium decays into H3e, influencing mechanical properties and long-term film stability. The bubble nucleation and growth mechanisms comprise an active research area, but there has been only one previous systematic experimental study of helium bubble growth in metal tritides, on zirconium tritides. There have been no such studies on tritides such as ErT2 that form platelike bubbles and lack a secondary bubble population on a network of line dislocations, and yet such a study is needed to inform the modeling of helium bubble microstructure development in a broader range of metal tritides. Transmission electron microscopy has been used to study the growth and evolution of helium bubbles in ErT2 films over a four-year period. The results have been used to test the present models of helium bubble nucleation and growth in metal tritides, particularly those forming platelike bubbles. The results support the models of Trinkaus and Cowgill. The observations of nonuniform bubble thicknesses and the pattern of grain-boundary bubble formation, however, indicate that these models could be strengthened by closer attention to details of interfacial energy. It is strongly recommended that efforts be made (either experimentally or by calculation) to determine anisotropy of tritide/helium interfacial energy, both for clean, stoichiometric interfaces, and also allowing for such factors as nonstoichiometry and segregation.

  4. Investigation of fusion reactions in palladium and titanium tritide using galvanostatic, coulometric, and hydrogen permeation techniques

    NASA Astrophysics Data System (ADS)

    Guilinger, T. R.; Kelly, M. J.; Scully, J. R.; Christensen, T. M.; Ingersoll, D.; Knapp, J. A.; Ewing, R. I.; Casey, W. H.; Tsao, S. S.

    1990-09-01

    We describe several electrochemical methods used to investigate the possibility of cold fusion phenomena in palladium and titanium tritide cathodes. We performed long-term (up to 77 days) electrolysis experiments with electrochemical cells of the University of Utah type at current densities as high as 1 A/cm2, while monitoring neutron and tritium levels. With some cells, we pulsed the current to determine if neutron bursts would result. In another cell, we used titanium tritide as the cathode to determine if D-T reactions yielding neutrons would occur. In no instance were levels of neutrons or tritium significantly above background except in the titanium tritide cell where isotopic exchange, occcurring between the electrode and the electrolyte, resulted in significant tritium levels. We also combined x-ray photoelectron spectroscopy (XPS) and electrochemical hydrogen permeation experiments to determine the effectiveness of various Pd surface treatment procedures on the resultant electrochemical hydrogen absorption efficiency. Electroanalytical and thermal desorption/gas analysis techniques indicated the maximum loading of H in Pd was to a ratio of H∶Pd=0.8.

  5. A high yield neutron target for cancer therapy

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    A rotating target was developed that has the potential for providing an initial yield of 10 to the 13th power neutrons per second by the T(d,n)He-4 reaction, and a useable lifetime in excess of 600 hours. This yield and lifetime are indicated for a 300 Kv and 30 mA deuteron accelerator and a 30 microns thick titanium tritide film formed of the stoichiometric compound TiT2. The potential for extended lifetime is made possible by incorporating a sputtering electrode that permits use of titanium tritide thicknesses much greater than the deuteron range. The electrode is used to remove in situ depleted titanium layers to expose fresh tritide beneath. The utilization of the rotating target as a source of fast neutrons for cancer therapy is discussed.

  6. Biokinetics and internal dosimetry of inhaled metal tritide particles

    NASA Astrophysics Data System (ADS)

    Wang, Yansheng

    1998-12-01

    Metal tritides (MT), stable chemical compounds of tritium, are widely used in nuclear engineering facilities. MT particles can be released as aerosols. Inhaling MT particles is a potential occupational radiation hazard. Little information is available on their dissolution behavior, biokinetics, and dosimetry. The objectives of present dissertation are to estimate dissolution rates, to develop biokinetic models, to improve internal dosimetric considerations, and to classify MT materials. This study consisted of three phases: In vitro dissolution in a simulated lung fluid, In vivo rat experiments on retention and clearance, and biokinetic modeling and dosimetric evaluation. There was a supporting study on self- absorption of tritium beta in MT particles. MT materials used in this study were titanium (Ti) and zirconium (Zr) tritides. Results shows considerable self-absorption of beta particles and their energy, even for respirable MT particles smaller than 5 μm. The self-absorption factors should be required for counting MT particle samples and for estimating absorbed dose to tissues. In vitro and in vivo dissolution data indicate that Ti and Zr tritides are poorly soluble materials. Ti tritide belongs to the W class or M type while Zr tritide can be classified as Y class or S type. Due to long retention time of the MT particles, tritium betas directly from the particles contribute over 90% of the absorbed dose to lung. The lung dose contributes most of the effective dose to the whole body. Dissolved tritium including tritiated water (HTO) and organically bound tritium (OBT) has less effect on the lung dose and effective dose. Results on the annual limit on intake (ALI) indicate that the current radiation protection guideline based on HTO is not adequate for inhalation exposure to MT particles and needs to be modified. The biokinetic models developed in this study have predictive powers to estimate the consequences of a human inhalation exposure to MT aerosols. The animal excretory patterns found from in vivo rat studies may provide useful information for nuclear engineering facilities to setup bioassay program in workplace. The applications of the results from this research are limited in their scopes.

  7. An X-ray monitor for measurement of a titanium tritide target thickness

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 micrometers has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.

  8. Betavoltaics using scandium tritide and contact potential difference

    NASA Astrophysics Data System (ADS)

    Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan; Antoniazzi, Armando B.

    2008-02-01

    Tritium-powered betavoltaic micropower sources using contact potential difference (CPD) are demonstrated. Thermally stable scandium tritide thin films with a surface activity of 15mCi/cm2 were used as the beta particle source. The electrical field created by the work function difference between the ScT film and a platinum or copper electrode was used to separate the beta-generated electrical charge carriers. Open circuit voltages of 0.5 and 0.16V and short circuit current densities of 2.7 and 5.3nA/cm2 were achieved for gaseous and solid dielectric media-based CPD cells, respectively.

  9. Direct LiT Electrolysis in a Metallic Fusion Blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Luke

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium formore » the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.« less

  10. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colon-Mercado, H.; Babineau, D.; Elvington, M.

    2015-10-13

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed.  The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations.  This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This workmore » identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. « less

  11. A high yield neutron target

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.; Weisenbach, P.

    1974-01-01

    Target, in cylinder form, rotates rapidly in front of beam. Titanium tritide film is much thicker than range of accelerated deutron. Sputtering electrode permits full use of thick film. Stream of high-velocity coolant provides efficient transfer of heat from target.

  12. Methods for tritium labeling

    DOEpatents

    Andres, Hendrik; Morimoto, Hiromi; Williams, Philip G.

    1993-01-01

    Reagents and processes for reductively introducing deuterium or tritium into organic molecules are described. The reagents are deuterium or tritium analogs of trialkyl boranes, borane or alkali metal aluminum hydrides. The process involves forming these reagents in situ from alkali metal tritides or deuterides.

  13. Tritium contamination at EG&G/EM in North Las Vegas, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, C.V.; Arent, L.J.

    1996-06-01

    The tritium contamination discovered at the EG&G Energy Measurements (EG&G/EM) facility in North Las Vegas, Nevada, on 20 April 1995, could have been averted by good health physics practices and/or adequate management oversight. Scandium tritide (ScT{sub 3}) targets were installed for use in sealed tube neutron generators at EG&G/EM. In addition, EG&G/EM was also storing zirconium tritide (ZrT{sub 3}) and titanium tritide (TiT{sub 3}) foils. Since the targets were classified as sealed sources, the appropriate administrative and engineering control measures such as relocating targets/sources, air monitoring, bioassay, waste stream management, labeling/posting and training were not implemented. In all there weremore » six unreported incidents of tritium contamination from March 1994 to July 1995. Swipe surveys revealed areas exceeding the action level of 10,000 dpm/100 cm{sup 2} by up to three orders of magnitude. After reclassifying the targets as unsealed sources, a bioassay program was instituted, and the results were higher than expected for three employees. The doses assigned to the three individuals working in the contaminated area were 35, 58, and 61 mrem committed effective dose equivalent. Though the doses were low, the decontamination costs were in excess of $350,000.00. An investigation, was initiated by the U.S. Department of Energy Nevada Operations Office to analyze the events that led to the tritium contamination and recommend actions to prevent recurrence. Event and causal factor charting, Project Evaluation Tree (PET) analysis techniques, and root cause analysis, were used to evaluate management systems, causal sequences, and systems factors contributing to the tritium release.« less

  14. Determination of in vitro lung solubility and intake-to-dose conversion factor for tritiated lanthanum nickel aluminum alloy.

    PubMed

    Farfán, Eduardo B; Labone, Thomas R; Staack, Gregory C; Cheng, Yung-Sung; Zhou, Yue; Varallo, Thomas P

    2012-09-01

    A sample of tritiated lanthanum nickel aluminum alloy (LaNi4.25Al0.75 or LANA.75) similar to that used at the Savannah River Site Tritium Facilities was analyzed to estimate the particle size distribution of this metal tritide powder and the rate at which this material dissolves in the human respiratory tract after it is inhaled. This information is used to calculate the committed effective dose received by a worker after inhaling the material. These doses, which were calculated using the same methodology given in the U.S. Department of Energy Tritium Handbook, are presented as inhalation intake-to-dose conversion factors (DCF). The DCF for this metal tritide was determined to be 9.4 × 10 Sv Bq, which is less than the DCF for tritiated water. Therefore, the radiation worker bioassay programs designed for tritiated water are adequate to monitor for intakes of this material.

  15. Thermal desorption behavior of helium in aged titanium tritide films

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.

    2015-11-01

    The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.

  16. Development of an inter-atomic potential for the Pd-H binary system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Jonathan A.; Hoyt, Jeffrey John; Leonard, Francois Leonard

    2007-09-01

    Ongoing research at Sandia National Laboratories has been in the area of developing models and simulation methods that can be used to uncover and illuminate the material defects created during He bubble growth in aging bulk metal tritides. Previous efforts have used molecular dynamics calculations to examine the physical mechanisms by which growing He bubbles in a Pd metal lattice create material defects. However, these efforts focused only on the growth of He bubbles in pure Pd and not on bubble growth in the material of interest, palladium tritide (PdT), or its non-radioactive isotope palladium hydride (PdH). The reason formore » this is that existing inter-atomic potentials do not adequately describe the thermodynamics of the Pd-H system, which includes a miscibility gap that leads to phase separation of the dilute (alpha) and concentrated (beta) alloys of H in Pd at room temperature. This document will report the results of research to either find or develop inter-atomic potentials for the Pd-H and Pd-T systems, including our efforts to use experimental data and density functional theory calculations to create an inter-atomic potential for this unique metal alloy system.« less

  17. Preparation of tritium- or deuterium-labeled vitamin D analogs by a convenient general method*

    PubMed Central

    Paaren, Herbert E.; Fivizzani, Mary A.; Schnoes, Heinrich K.; DeLuca, Hector F.

    1981-01-01

    The three-step conversion of vitamin D analogs to 6-oxo-3,5-cyclovitamin D derivatives followed by reduction with a tritide or deuteride reagent and subsequent cycloreversion gives 6-tritio(deutero)vitamin D derivatives and corresponding 5,6-trans-analogs. The method is general and affords the 6-labeled-vitamin D analogs in ≈20% overall yield. PMID:6273856

  18. Hydrogen isotope and light element profiling in solid tritium targets used for neutron production

    NASA Astrophysics Data System (ADS)

    Earwaker, L. G.; England, J. B. A.; Goldie, D. J.

    1987-04-01

    Five targets consisting of titanium tritide layers on copper backings have been investigated using nuclear reaction analysis. As these targets are commonly used to produce monoenergetic neutrons via the T(p, n) 3 He and T(d, n) 4 He reactions, it is important to know of the presence of other elements which may produce neutrons at different energies. The thicknesses of the titanium tritide layers were measured by observing the T(p, n) 3 He threshold yield curve and also the energy spread of the neutrons using a 3He-filled gridded ion chamber. Elastic recoil analysis with a particle identifying system was used to measure the hydrogen, deuterium, tritium and 3He content, and elastic scattering was used to study the carbon and oxygen. Surprisingly high concentrations of both hydrogen and oxygen were found on all targets, including the three which had never been used. Also surprising was the 3He content which was approximately the same for targets of all ages and conditions of use. As expected, the carbon content increased strongly with use, originating no doubt, from vacuum pump oil. Up to 3% deuterium atoms were observed in unused targets with much higher contents being recorded in used targets.

  19. Process for recovering tritium from molten lithium metal

    DOEpatents

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  20. The 3 H(d , γ) Reaction at Ec . m . <= 300 keV

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Brune, C. R.; Massey, T. N.; O'Donnell, J. E.; Richard, A. L.; Sayre, D. B.

    2015-04-01

    The 3 H(d , γ) 5He reaction has been measured using a 500-keV pulsed deuteron beam incident on a stopping titanium tritide target at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the γ-rays from neutrons in the bismuth germinate (BGO) γ-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3 H(d , n) α reaction using both the pulse-shape discrimination and time-of-flight techniques. A newly designed target holder with a silicon surface barrier detector to simultaneously measure α-particles to normalize the number of neutrons, along with a new titanium tritide target, was incorporated for subsequent measurements. The γ-rays have been measured at laboratory angles of 0 °, 45 °, 90 °, and 135 °. Information about the γ-ray energy distribution for the unbound ground state and first excited state of 5He can be obtained experimentally by comparing the BGO data to Monte Carlo simulations. The 3 H(d , γ) /3 H(d , n) branching ratio has also been measured. Data analysis is currently underway for the subsequent measurements. This work is supported in part by Lawrence Livermore National Laboratory and the U.S. D.O.E. (NNSA) through Grant No. DE-NA0001837.

  1. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOEpatents

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  2. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; Portnoff, Samuel; Spencer, M. G.

    2016-01-01

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P+N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH3x) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm2. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm2, fill factor of 0.86, and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 105-106 cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P+N junction structure can mitigate some of the negative effects.

  3. Optimisation of the manufacturing process of tritide and deuteride targets used for neutron production

    NASA Astrophysics Data System (ADS)

    Monnin, Carole; Bach, Pierre; Tulle, Pierre Alain; van Rompay, Marc; Ballanger, Anne

    2002-03-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium targets on copper substrates, and going to more sophisticated devices. The range of possible uses is wide, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets or large size rotating targets for higher lifetimes. The activity of the targets ranges from 3.7×10 10 to 3.7×10 13 Bq (1-1000 Ci), the diameter being up to 30 cm. Sodern and the CEA/Valduc centre have developed different technologies for tritium target manufacture, allowing the selection of the best configuration for each kind of use. In order to optimize the production of high energy neutrons, the performance of tritide and deuteride titanium targets made by different processes has been studied experimentally by bombardment with 120 and 350 kV deuterons provided by electrostatic accelerators. It is then possible to optimize either neutron output or lifetime and stability or thermal behaviour. The importance of the deposit evaporation conditions on the efficiency of neutron emission is clearly demonstrated, as well as the thermomechanical stability of the Ti thin film under deuteron bombardment. The main parameters involved in the target performance are discussed from a thermodynamical approach.

  4. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Christopher; Portnoff, Samuel; Spencer, M. G.

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P{sup +}N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH{sup 3}{sub x}) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm{sup 2}. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm{sup 2}, fill factor of 0.86,more » and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 10{sup 5}–10{sup 6 }cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P{sup +}N junction structure can mitigate some of the negative effects.« less

  5. Power-scaling performance of a three-dimensional tritium betavoltaic diode

    NASA Astrophysics Data System (ADS)

    Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan

    2009-12-01

    Three-dimensional diodes fabricated by electrochemical etching are exposed to tritium gas at pressures from 0.05 to 33 atm at room temperature to examine its power scaling performance. It is shown that the three-dimensional microporous structure overcomes the self-absorption limited saturation of beta flux at high tritium pressures. These results are contrasted against the three-dimensional device powered in one instance by tritium absorbed in the near surface region of the three-dimensional microporous network, and in another by a planar scandium tritide foil. These findings suggest that direct tritium occlusion in the near surface of three-dimensional diode can improve the specific power production.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.

    Tritium-handling apparatus has been decontaminated as part of the downsizing of the LLNL Tritium Facility. Two stainless-steel glove boxes that had been used to process lithium deuteride-tritide (LiDT) slat were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. In this paper the details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium, in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculationalmore » method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.« less

  7. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activationa)

    NASA Astrophysics Data System (ADS)

    Ruiz, C. L.; Chandler, G. A.; Cooper, G. W.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; McWatters, B. R.; Nelson, A. J.; Smelser, R. M.; Snow, C. S.; Torres, J. A.

    2012-10-01

    The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the 63Cu(n,2n)62Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)4He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced 62Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

  8. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activation.

    PubMed

    Ruiz, C L; Chandler, G A; Cooper, G W; Fehl, D L; Hahn, K D; Leeper, R J; McWatters, B R; Nelson, A J; Smelser, R M; Snow, C S; Torres, J A

    2012-10-01

    The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the (63)Cu(n,2n)(62)Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)(4)He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced (62)Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish{trademark}. The surface contamination, as shown by swipe surveys, was reduced from 4{times}10{sup 4}--10{sup 6} disintegrations per minute (dpm)/cm{sup 2} to 2{times}10{sup 2}--4{times}10{sup 4} dpm/cm{sup 2}. Details on the decontamination operation are provided. A seriesmore » of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.« less

  10. Hydrogen loading system development and evaluation of tritiated substrates to optimize performance in tritium based betavoltaics

    NASA Astrophysics Data System (ADS)

    Adams, Thomas E.

    State-of-the-art hydrogen loading system onto thin metallic films based on differential pressure in calibrated chambers has been developed for conditions pressures and temperatures up to 69 bar and 500°C, respectively. Experiments on hydrogen loading on to palladium films of thickness 50 and 250 nm were conducted at pressure ranging from 0.2 bar to 10 bar at temperature 310°C. For first time film hydrogen loading was carried out at 1 bar and at room temperature which temperature. Beta flux exiting surface of metal tritide films has been modeled with MC-SET (Monte Carlo Simulation of Electron Trajectories in solids). Surface beta flux simulations have been improved to account for density changes from tritium loading and decay. Simulation results indicate a 300 nm slab of MgT2 has a surface flux three times higher than in ScT2, and six times higher than in TiT2. Commercial betavoltaic cells were tested at different temperature environment for their evaluation and characterization.

  11. The 3H(d,γ)5He Reaction for Ec.m. ≤ 300 keV

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Brune, C. R.; Massey, T. N.; O'Donnell, J. E.; Richard, A. L.; Sayre, D. B.

    2016-03-01

    The 3H(d, γ)5He reaction has been measured using a 500-keV pulsed deuteron beam incident on a stopping titanium tritide target at Ohio University's Edwards Accelerator Laboratory. The time-of-flight (TOF) technique has been used to distinguish the γ-rays from neutrons detected in the bismuth germinate (BGO) γ-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3H(d, n)4He reaction using both the pulse-shape discrimination and TOF techniques. A newly-designed target holder with a silicon surface barrier detector to simultaneously measure α-particles to normalize the neutron count was incorporated for subsequent measurements. The γ-rays have been measured at laboratory angles of 0°, 45°, 90°, and 135°. Information about the γ-ray energy distribution for the unbound ground state and first excited state of 5He can be obtained experimentally by comparing the BGO data to Monte Carlo simulations. The 3H(d, γ)/3H(d, n) branching ratio has also been determined.

  12. Technique for Forming Solid D2 and D-T Layers for Shock Timing Experiments at the National Ignition Facility

    DOE PAGES

    Sater, J. D.; Espinosa-Loza, F.; Kozioziemski, B.; ...

    2016-07-11

    Capsule implosion experiments on the National Ignition Facility (NIF) are driven with a carefully tailored laser pulse that delivers a sequence of shocks to the ablator and fuel. In order to ensure the shocks converge at the desired position, the shock strength and velocity are measured in experimental platforms referred to as keyhole targets. We made shock measurements on capsules completely filled with liquid deuterium for the solid deuterium tritide (D-T) layer campaigns. Modeling has been used to extend these results to form an estimate of the shock properties in solid D-T layers. Furthermore, to verify and improve the surrogacymore » of the liquid-filled keyhole measurements, we have developed a technique to form a solid layer inside the keyhole capsule. The layer is typically uniform over a 400-μm-diameter area. This is sufficient to allow direct measurement of the shock velocity. This layering technique has been successfully applied to 13 experiments on the NIF. The technique may also be applicable to fast-igniter experiments since some proposed designs resemble keyhole targets. We discuss our method in detail and give representative results.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelles, D. S.; Browning, James Frederick; Snow, Clark Sheldon

    Er(D,T){sub 2-x} {sup 3}He{sub x}, erbium di-tritide, films of thicknesses 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm were grown and analyzed by Transmission Electron Microscopy, X-Ray Diffraction, and Ion Beam Analysis to determine variations in film microstructure as a function of film thickness and age, due to the time-dependent build-up of {sup 3}He in the film from the radioactive decay of tritium. Several interesting features were observed: One, the amount of helium released as a function of film thickness is relatively constant. This suggests that the helium is being released only from the near surface regionmore » and that the helium is not diffusing to the surface from the bulk of the film. Two, lenticular helium bubbles are observed as a result of the radioactive decay of tritium into {sup 3}He. These bubbles grow along the [111] crystallographic direction. Three, a helium bubble free zone, or 'denuded zone' is observed near the surface. The size of this region is independent of film thickness. Four, an analysis of secondary diffraction spots in the Transmission Electron Microscopy study indicate that small erbium oxide precipitates, 5-10 nm in size, exist throughout the film. Further, all of the films had large erbium oxide inclusions, in many cases these inclusions span the depth of the film.« less

  14. The 3H(d,gamma) Reaction and the 3 H(d,gamma)/ 3H(d, n) Branching Ratio for Ec.m. 300 keV

    NASA Astrophysics Data System (ADS)

    Parker, Cody E.

    The 3H(d, gamma)5He reaction and the 3H(d, gamma)/3H(d, n) branching ratio have been measured using a 500-keV pulsed deuteron beam incident on a titanium tritide target of stopping thickness at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the gamma-rays from neutrons in the bismuth germinate (BGO) gamma-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3H(d, n)alpha reaction using both the pulse-shape discrimination and time-of-flight techniques. A target holder with an ion-implanted silicon detector at a fixed angle of 135° to the beam axis to simultaneously measure alpha-particles as a normalization for the number of neutrons was incorporated to reduce the uncertainty in the neutron yield over the preliminary measurement. The gamma-rays have been measured at laboratory angles of 0°, 4°, 9°, and 15°. Information about the gamma-ray energy distribution for the unbound ground state and first excited state of 5He have been obtained experimentally by comparing the BGO data to Monte Carlo simulations. The reported branching ratios for each angle contain only contributions from the ground-state gamma-ray branch.

  15. Mechanical properties of metal dihydrides

    DOE PAGES

    Schultz, Peter A.; Snow, Clark S.

    2016-02-04

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides,more » $$\\text{M}{{\\text{H}}_{2}}$$ {$$\\text{M}$$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.« less

Top