Simulation of Trolleybus Traction Induction Drive With Supercapacitor Energy Storage System
NASA Astrophysics Data System (ADS)
Brazis, V.; Latkovskis, L.; Grigans, L.
2010-01-01
The article considers the possibilities of saving the regenerative braking energy in Škoda 24Tr type trolleybuses by installing the onboard supercapacitor energy storage system (ESS) and improving its performance with automated switching to the autonomous traction mode. Proposed is an ESS control system with constant DC bus voltage in the supercapacitor charging mode and supercapacitor current proportional to the AC drive current in the discharging mode. The authors investigate stability of the trolleybus ESS control system operating together with AC traction drive in various overhead voltage failure modes. The co-simulation of ESS operation was done by Matlab/Simulink AC drive and PSIM ESS continuous models.
The life cycle assessment of alternative fuel chains for urban buses and trolleybuses.
Kliucininkas, L; Matulevicius, J; Martuzevicius, D
2012-05-30
This paper describes a comparative analysis of public transport alternatives in the city of Kaunas, Lithuania. An LCA (Life Cycle Assessment) inventory analysis of fuel chains was undertaken using the midi urban bus and a similar type of trolleybus. The inventory analysis of fuel chains followed the guidelines provided by the ISO 14040 and ISO 14044 standards. The ReCiPe Life Cycle Impact Assessment (LCIA) methodology was used to quantify weighted damage originating from five alternative fuel chains. The compressed biogas fuel chain had the lowest weighted damage value, namely 45.7 mPt/km, whereas weighted damage values of the fuel chains based on electricity generation for trolleybuses were 60.6 mPt/km (for natural gas) and 78.9 mPt/km (for heavy fuel oil). The diesel and compressed natural gas fuel chains exhibited considerably higher damage values of 114.2 mPt/km and 132.6 mPt/km, respectively. The comparative life cycle assessment of fuel chains suggested that biogas-powered buses and electric trolleybuses can be considered as the best alternatives to use when modernizing the public transport fleet in Kaunas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Heuristic Optimization Approach to Selecting a Transport Connection in City Public Transport
NASA Astrophysics Data System (ADS)
Kul'ka, Jozef; Mantič, Martin; Kopas, Melichar; Faltinová, Eva; Kachman, Daniel
2017-02-01
The article presents a heuristic optimization approach to select a suitable transport connection in the framework of a city public transport. This methodology was applied on a part of the public transport in Košice, because it is the second largest city in the Slovak Republic and its network of the public transport creates a complex transport system, which consists of three different transport modes, namely from the bus transport, tram transport and trolley-bus transport. This solution focused on examining the individual transport services and their interconnection in relevant interchange points.
Working conditions and health of the employees of public bus and trolleybus transport in Lithuania.
Obelenis, Vytautas; Gedgaudiene, Daiva; Vasilavicius, Paulius
2003-01-01
A questionnaire was used for investigation of 788 workers from three transport enterprises. The questionnaire was used for evaluation of occupational environment, lifestyle, psychosocial factors and self-evaluation of health. The most harmful occupational factors are unsatisfactory microclimatic conditions, diesel fuel, cooling oil, vibration, musculoskeletal load, and mental tension. Worker's lifestyle isn't healthy: 46% of them are smoking, 83% are drinking alcohol, 53% are physically inactive, 82% have bad nutrition regimen, 27% are everyday suffering from stressful situations. Main health impairments are musculoskeletal (46.2%), respiratory tract (22.2%), gastrointestinal (17.3%) and central nervous system (32.2%) diseases. Musculoskeletal disorders are statistically related to bad ergonomic work conditions, long workday hours, aged employees and long work experience of workers (p<0.05-0.002).
Public transport as a reservoir of methicillin-resistant staphylococci.
Stepanović, S; Cirković, I; Djukić, S; Vuković, D; Svabić-Vlahović, M
2008-10-01
The aim of this study was to explore the occurrence of methicillin-resistant staphylococci in a large urban public transport system. Samples were taken from hand rails, which passengers hold onto when they are standing. In total, 1400 swabs taken from 55 vehicles (trolleybuses, trams and buses) were examined. As many as 30.1% samples were positive for the presence of methicillin-resistant coagulase-negative staphylococci (MRCoNS), but none for methicillin-resistant Staphylococcus aureus (MRSA). MRCoNS were isolated from all 55 vehicles. Nearly 50% of MRCoNS isolates displayed resistance not only to beta-lactams, but at least to two or more other classes of antimicrobials as well. This study demonstrated widespread occurrence of MRCoNS on hand rails in public transport vehicles. MRSA was not detected. The recovery of methicillin-resistant staphylococci from public transport system implies a potential risk for transmission of these bacteria in an out-hospital environment.
NASA Astrophysics Data System (ADS)
Ruan, Dianbo; Kim, Myeong-Seong; Yang, Bin; Qin, Jun; Kim, Kwang-Bum; Lee, Sang-Hyun; Liu, Qiuxiang; Tan, Lei; Qiao, Zhijun
2017-10-01
To address the large-scale application demands of high energy density, high power density, and long cycle lifetime, 700-F hybrid capacitor pouch cells have been prepared, comprising ∼240-μm-thick activated carbon cathodes, and ∼60-μm-thick Li4Ti5O12 anodes. Microspherical Li4Ti5O12 (M-LTO) synthesized by spray-drying features 200-400 nm primary particles and interconnected nanopore structures. M-LTO half-cells exhibits high specific capacities (175 mAhh g-1), good rate capabilities (148 mAhh g-1 at 20 C), and ultra-long cycling stabilities (90% specific capacity retention after 10,000 cycles). In addition, the obtained hybrid capacitors comprising activated carbon (AC) and M-LTO shows excellent cell performances, achieving a maximum energy density of 51.65 Wh kg-1, a maximum power density of 2466 W kg-1, and ∼92% capacitance retention after 10,000 cycles, thus meeting the demands for large-scale applications such as trolleybuses.
Substance flow analysis as a tool for urban water management.
Chèvre, N; Guignard, C; Rossi, L; Pfeifer, H-R; Bader, H-P; Scheidegger, R
2011-01-01
Human activity results in the production of a wide range of pollutants that can enter the water cycle through stormwater or wastewater. Among others, heavy metals are still detected in high concentrations around urban areas and their impact on aquatic organisms is of major concern. In this study, we propose to use a substance flow analysis as a tool for heavy metals management in urban areas. We illustrate the approach with the case of copper in Lausanne, Switzerland. The results show that around 1,500 kg of copper enter the aquatic compartment yearly. This amount contributes to sediment enrichment, which may pose a long-term risk for benthic organisms. The major sources of copper in receiving surface water are roofs and catenaries of trolleybuses. They represent 75% of the total input of copper into the urban water system. Actions to reduce copper pollution should therefore focus on these sources. Substance flow analysis also highlights that copper enters surface water mainly during rain events, i.e., without passing through any treatment procedure. A reduction in pollution could also be achieved by improving stormwater management. In conclusion, the study showed that substance flow analysis is a very effective tool for sustainable urban water management.
Micropollutants in urban watersheds : substance flow analysis as management tool
NASA Astrophysics Data System (ADS)
Rossi, L.; Copin, P. J.; Barry, A. D.; Bader, H.-P.; Scheidegger, R.; Chèvre, N.
2009-04-01
Micropollutants released by cities into water are of increasing concern as they are suspected of inducing long-term effects on both aquatic organisms and humans (eg., hormonally active substances). Substances found in the urban water cycle have different sources in the urban area and different fates in this cycle. For example, the pollutants emitted from traffic, like copper or PAHs get to surface water during rain events often without any treatment. Pharmaceuticals resulting from human medical treatments get to surface water mainly through wastewater treatment plants, where they are only partly treated and eliminated. One other source of contamination in urban areas for these compounds are combined sewer overflows (CSOs). Once in the receiving waters (lakes, rivers, groundwater), these substances may re-enter the cycle through drinking water. It is therefore crucial to study the behaviour of micropollutants in the urban water cycle and to get flexible tools for urban water management. Substance flow analysis (SFA) has recently been proposed as instrument for water pollution management in urban water systems. This kind of analysis is an extension of material flow analysis (MFA) originally developed in the economic sector and later adapted to regional investigations. In this study, we propose to test the application of SFA for a large number of classes of micropollutants to evaluate its use for urban water management. We chose the city of Lausanne as case study since the receiving water of this city (Lake Geneva) is an important source of drinking water for the surrounding population. Moreover a profound system-knowledge and many data were available, both on the sewer system and the water quality. We focus our study on one heavy metal (copper) and four pharmaceuticals (diclofenac, ibuprofen, carbamazepine and naproxen). Results conducted on copper reveals that around 1500 kg of copper enter the aquatic compartment yearly. This amount contributes to sediment enrichment, which may pose a long-term risk for the benthic organisms. The major sources (total of 73%) of copper in receiving surface water are roofs and contact lines of trolleybuses. Thus technical solutions have to be found to manage this specific source of contamination. Application of SFA approach to four pharmaceuticals reveals that CSOs represent an important source of contamination: Between 14% (carbamazepine) and 61% (ibuprofen) of the total annual loads of Lausanne city to the Lake are due to CSOs. These results will help in defining the best management strategy to limit Lake Geneva contamination. SFA is thus a promising tool for integrated urban water management.