Sample records for trona

  1. Purification of trona ores by conditioning with an oil-in-water emulsion

    DOEpatents

    Miller, J. D.; Wang, Xuming; Li, Minhua

    2009-04-14

    The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material. Thus, the floated gangue material can be readily separated from the trona to form a purified trona concentrate without requirements of additional heat or other expensive processing steps.

  2. Studies of quaternary saline lakes-I. Hydrogen isotope fractionation in saline minerals

    USGS Publications Warehouse

    Matsuo, S.; Friedman, I.; Smith, G.I.

    1972-01-01

    Borax, gaylussite, nahcolite and trona were synthesized in aqueous solution at temperatures ranging from 8?? to 35??C. Except for borax, deuterium was always depleted in these hydrated minerals relative to the solutions from which they were crystallized. In borax, no significant fractionation was found. The fractionation factor of D H for the trona-water system exhibited a marked temperature dependence. By combining the deuterium contents of trona and the solution from which trona was crystallized, the following thermometer scale was obtained: In ( D H) trona ( D H)water = 1.420 ?? 104 T2 + 23.56 T (1). An attempt to establish a geothermometer based on C13 C12 fractionation between carbonate minerals and carbonate ions in aqueous solution was not successful. ?? 1972.

  3. Wet calcining of trona (sodium sesquicarbonate) and bicarbonate in a mixed solvent

    NASA Astrophysics Data System (ADS)

    Gärtner, R. S.; Witkamp, G. J.

    2002-04-01

    Trona ore is used in large amounts for the production of soda ash. A key step in this process is the conversion of trona (sodium sesquicarbonate: Na 2CO 3·NaHCO 3·2H 2O) into soda (sodium carbonate anhydrate: Na 2CO 3). Currently, this conversion is done industrially by calcining of the raw ore in rotary calciners at ca. 120°C or higher (Natural Soda Ash—Occurrences, Processing, and Use, Van Nostrand Reinhold, New York, 1991, p. 267). Trona can however be converted at lower temperatures by using a "wet calcining" technique. In this technique, trona is contacted with an organic or mixed organic-aqueous solvent at a conversion temperature that depends on the water activity of the used solvent. In pure ethylene glycol this temperature can be as low as 55°C. The conversion by "wet calcining" occurs very similar to that in the regular dry calcining process via a solid phase conversion. The anhydrate crystals form directly from the solid trona. This produces pseudomorphs (J. Chem. Eng. Data 8(3) (1963) 301), i.e. agglomerates of fine anhydrate crystals (1-10 μm). At high temperatures, dense, finely pored agglomerates are formed, while the outer shape of the agglomerate retains the prism shape of the trona crystal. At low conversion temperatures, loosely packed or even unstable agglomerates are found.

  4. Antispermatogenic Mechanism of Trona is Associated with Lipid Peroxidation but Not Testosterone Suppression.

    PubMed

    Ajayi, Ayodeji F; Akhigbe, Roland E

    2017-01-01

    About half of the cases of infertility in couples have been attributed to male factor. Despite the claim in folklore medicine that trona (a sesquicarbonate or hydrated carbonate of sodium) causes fetal loss, its effect on male reproductive function has not been investigated. This study sought to provide scientific evidence on the effect of trona on sperm characteristics, male reproductive hormones and organs, and lipid peroxidation. Forty male Wistar rats of comparable weights were used for the study. Rats were randomized into four different groups. The control received 1 mL of distilled water orally, whereas those in groups 1, 2, and 3 (test groups) received orally, same volume of trona preparation corresponding to 100, 200, and 400 mg/kg body weight, respectively, for 28 days. Body weight was monitored throughout the study period, and at the end of the experiment, testicular morphometry, sperm characteristic, reproductive hormones, and malondialdehyde (MDA), an index of lipid peroxidation, were determined. Sperm count, motility, progressibility, and percentage of normal sperm were significantly decreased in the trona-treated rats ( P < 0.05). The percentage of abnormal sperm, luteinizing hormone, follicle stimulating hormone, and MDA were significantly increased in the treated rats ( P < 0.05). Body weight, testicular morphometry, and testosterone level were comparable across all groups ( P > 0.05). The study showed that trona has a dose-dependent deleterious effect on sperm characteristic. The antispermatogenic effect of trona was associated with lipid peroxidation but not testosterone.

  5. East African magadi (trona): flouride concentration and mineralogical composition

    NASA Astrophysics Data System (ADS)

    Nielsen, Joan M.

    1999-08-01

    Magadi from Lake Magadi, Kenya, Lake Natron, Tanzania, Lake Katwe, Uganda, El-Atrun, Sudan and efflorescent crust from the soil surface (scooped magadi) from northern Tanzania have been analysed chemically to determine fluoride and carbonates concentrations and by X-ray diffraction to determine the mineralogical composition. Magadi from Lake Natron and Lake Magadi are found to be very similar consisting mainly of trona (CO 32- + HCO 3- > 10.4 meq [g magadi] -1) mixed with halite and either kogarkoite or villaumite, respectively, resulting in fluoride concentrations up to 8.7 mg F - [g magadi] -1. The scooped magadi is not as pure with respect to trona as the crystalline magadi, but the fluoride content is of same order of magnitude (0.23-5.1 mg F - [g magadi] -1). The scooped magadi consists of trona (CO 32- + HCO 3 = 3.5-9.5 meq [g magadi] -1) with different mixtures of halite, quartz, villiaumite, kogarkoite and thermonatrite. No fluoride containing minerals are identified in magadi from Uganda and Sudan, probably due to the very low fluoride concentrations of 0.02 and < O.24 mg (g magadi) -1, respectively, indicating that these samples are not contaminated with fluoride. The Sudanese magadi is a different mixture of trona, halite and quartz resulting in a variation in the carbonate concentration of 4.6-11.9 meq (g magadi) -1. The magadi from Lake Katwe consists of trona (CO 32- + HCO 3- = 7.0 meq [g magadi] -1) mixed with burkeite and halite.

  6. The estimation of uniaxial compressive strength conversion factor of trona and interbeds from point load tests and numerical modeling

    NASA Astrophysics Data System (ADS)

    Ozturk, H.; Altinpinar, M.

    2017-07-01

    The point load (PL) test is generally used for estimation of uniaxial compressive strength (UCS) of rocks because of its economic advantages and simplicity in testing. If the PL index of a specimen is known, the UCS can be estimated using conversion factors. Several conversion factors have been proposed by various researchers and they are dependent upon the rock type. In the literature, conversion factors on different sedimentary, igneous and metamorphic rocks can be found, but no study exists on trona. In this study, laboratory UCS and field PL tests were carried out on trona and interbeds of volcano-sedimentary rocks. Based on these tests, PL to UCS conversion factors of trona and interbeds are proposed. The tests were modeled numerically using a distinct element method (DEM) software, particle flow code (PFC), in an attempt to guide researchers having various types of modeling problems (excavation, cavern design, hydraulic fracturing, etc.) of the abovementioned rock types. Average PFC parallel bond contact model micro properties for the trona and interbeds were determined within this study so that future researchers can use them to avoid the rigorous PFC calibration procedure. It was observed that PFC overestimates the tensile strength of the rocks by a factor that ranges from 22 to 106.

  7. 40 CFR 98.296 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of trona or liquid alkaline feedstock for each manufacturing line (tons). (2) Annual production of... trona or liquid alkaline feedstock for each manufacturing line (tons). (6) Monthly production of soda... manufacturing lines located used to produce soda ash. (10) If you produce soda ash using the liquid alkaline...

  8. 40 CFR 98.296 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of trona or liquid alkaline feedstock for each manufacturing line (tons). (2) Annual production of... trona or liquid alkaline feedstock for each manufacturing line (tons). (6) Monthly production of soda... manufacturing lines located used to produce soda ash. (10) If you produce soda ash using the liquid alkaline...

  9. Image shows Trona Pinnacles near California's NASA Armstrong Flight Research Center during Jan. 31 Super Blue Blood Moon. Trona Pinnacles is an unusual geological feature of the state's Desert National Conservation.

    NASA Image and Video Library

    2017-01-31

    NASA Armstrong Flight Research Center photographer Lauren Hughes takes photos of the Super Blue Blood Moon eclipse from California's Trona Pinnacles Desert National Conservation for the Jan. 31 of the total lunar eclipse that provided a rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).

  10. Production of novel microbial flocculants by Klebsiella sp. TG-1 using waste residue from the food industry and its use in defecating the trona suspension.

    PubMed

    Liu, Zhan-Ying; Hu, Zhi-Quan; Wang, Tao; Chen, Yan-Ying; Zhang, Jianbin; Yu, Jing-Ran; Zhang, Tong; Zhang, Yong-Feng; Li, Yong-Li

    2013-07-01

    A microbial-flocculants-producing (MBF-producing) bacterium, named TG-1, was isolated from waste water of a starch factory, and identified as Klebsiella sp. TG-1. The microbial flocculants (MBF) produced by TG-1, named as MBF-TG-1, was applied to defecating the strong basic trona suspension in the trona industry. After optimizing medium and culturing conditions with single-factor and orthogonal designs, the highest flocculation rate of 86.9% was achieved. Chemical analysis showed that the purified microbial flocculants (MBF-TG-1) was mainly composed of polysaccharides (84.6%), with a small amount of protein or amino acid (11.1%). Bridging mechanism was supposed as the main flocculation mechanism by analyzing the flocculation process and the biochemistry properties of MBF-TG-1. The high flocculation rate (84%) was also achieved with a low-cost medium (the solid residue of tofu production from food industry). Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Image shows Trona Pinnacles near California’s NASA Armstrong Flight Research Center during Jan. 31 Super Blue Blood Moon. Trona Pinnacles is an unusual geological feature of the state’s Desert National Conservation.

    NASA Image and Video Library

    2017-01-31

    NASA Armstrong Flight Research Center photographer Lauren Hughes takes photos of the Super Blue Blood Moon eclipse from California’s Trona Pinnacles Desert National Conservation for the Jan. 31 of the total lunar eclipse that provided a rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth’s shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).

  12. Mineral resource of the month: soda ash

    USGS Publications Warehouse

    Kostic, Dennis S.

    2006-01-01

    Soda ash, also known as sodium carbonate, is an alkali chemical that can be refined from the mineral trona and from sodium carbonate-bearing brines. Several chemical processes exist for manufacturing synthetic soda ash.

  13. 40 CFR 98.294 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... designed to measure the total alkalinity in soda ash not in trona. The modified method referred to above... requirements. Section 98.293 provides three different procedures for emission calculations. The appropriate...

  14. 40 CFR 98.294 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... designed to measure the total alkalinity in soda ash not in trona. The modified method referred to above... requirements. Section 98.293 provides three different procedures for emission calculations. The appropriate...

  15. 40 CFR 98.294 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... designed to measure the total alkalinity in soda ash not in trona. The modified method referred to above... requirements. Section 98.293 provides three different procedures for emission calculations. The appropriate...

  16. 40 CFR 98.294 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... designed to measure the total alkalinity in soda ash not in trona. The modified method referred to above... requirements. Section 98.293 provides three different procedures for emission calculations. The appropriate...

  17. 40 CFR 98.297 - Records that must be retained.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... production of soda ash (tons) (2) Monthly consumption of trona or liquid alkaline feedstock (tons) (3) Annual... technical basis for these estimates must be provided. (5) If you produce soda ash using the liquid alkaline...

  18. 40 CFR 98.297 - Records that must be retained.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... production of soda ash (tons) (2) Monthly consumption of trona or liquid alkaline feedstock (tons) (3) Annual... technical basis for these estimates must be provided. (5) If you produce soda ash using the liquid alkaline...

  19. 40 CFR 98.297 - Records that must be retained.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... production of soda ash (tons) (2) Monthly consumption of trona or liquid alkaline feedstock (tons) (3) Annual... technical basis for these estimates must be provided. (5) If you produce soda ash using the liquid alkaline...

  20. 40 CFR 98.297 - Records that must be retained.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... production of soda ash (tons) (2) Monthly consumption of trona or liquid alkaline feedstock (tons) (3) Annual... technical basis for these estimates must be provided. (5) If you produce soda ash using the liquid alkaline...

  1. 40 CFR 98.297 - Records that must be retained.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... production of soda ash (tons) (2) Monthly consumption of trona or liquid alkaline feedstock (tons) (3) Annual... technical basis for these estimates must be provided. (5) If you produce soda ash using the liquid alkaline...

  2. 40 CFR 415.270 - Applicability; description of the borax production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... borax production subcategory. 415.270 Section 415.270 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Borax Production Subcategory § 415.270 Applicability; description of the borax production... borax by the ore-mining process and by the Trona process. ...

  3. Leaching behavior of coal combustion products and the environmental implication in road construction.

    DOT National Transportation Integrated Search

    2011-10-01

    This project assessed the physical and chemical characteristics of fly ashes produced from trona injection plants (used for SO2 : emission control), and investigated the leaching of a group of concerned inorganic contaminants from these fly ashes. A ...

  4. 47 CFR 73.202 - Table of Allotments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Tecopa 288A, 291A Trona 247A Twentynine Palms 270A Wasco 224A Waterford 294A Westley *238A Willow Creek... Marlinton 292A St Marys *287A Wardensville 239A White Sulphur Springs 227A WISCONSIN Ashland *275A Augusta...

  5. Effect of Trona on the leaching of trace elements from coal fly ash.

    DOT National Transportation Integrated Search

    2013-07-01

    Fly ashes were sampled from the ESPs by on-site contractors during air emission control tests. The injection tests were short-term, : lasting approximately three hours per test condition. EPRI received three batches of samples since November 2011, re...

  6. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    EPA Science Inventory

    Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental ...

  7. Use of absorption mechanisms to decrease heavy metal mobility.

    DOT National Transportation Integrated Search

    2014-02-01

    The objective of this project is to reduce the toxic heavy metal leaching from coal fly ash so that the fly ash may be used for road : surface or related applications. Trona (trisodium hydrogendicarbonate dihydrate, Na3HCO3CO32H2O) is injected into...

  8. 40 CFR 98.294 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scales or methods used for accounting purposes. (3) Document the procedures used to ensure the accuracy of the monthly measurements of trona consumed. (b) If you calculate CO2 process emissions based on... your facility, or methods used for accounting purposes. (3) Document the procedures used to ensure the...

  9. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boric acid production subcategory. 415.280 Section 415.280 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ...

  10. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the boric...

  11. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the boric...

  12. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the boric...

  13. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the boric...

  14. 40 CFR 415.282 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...

  15. 40 CFR 415.282 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...

  16. 40 CFR 415.282 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...

  17. 40 CFR 415.282 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...

  18. 40 CFR 415.282 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...

  19. Trona-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1988-03-01

    In a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location, which process includes injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in the reservoir oil, and (b) at leastmore » one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant, an improvement is described comprising: using as the water soluble alkaline material, a material consisting essentially of a substantially equal molar mixture of alkali metal carbonates and bicarbonates which is, or is substantially equivalent to, trona.« less

  20. Preliminary digital geologic maps of the Mariposa, Kingman, Trona, and Death Valley Sheets, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1995-10-01

    Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35{degree}N; Long. 115{degree}W and lat. 38{degree}N, long. 118{degree}W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. Themore » procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute`s ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado.« less

  1. 47 CFR 73.202 - Table of Allotments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Tecopa 288A, 291A Trona 247A Twentynine Palms 270A Wasco 224A Waterford 294A Westley *238A Willow Creek 253A, 258A Willows 292A Wofford Heights 251A COLORADO Akron 279C1 Arriba 240A Aspen 228A Blanca 249C2... Wardensville 239A White Sulphur Springs 227A WISCONSIN Ashland *275A Augusta *268C3 Boscobel 244C3 Crandon 276A...

  2. 47 CFR 73.202 - Table of Allotments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Tecopa 288A, 291A Trona 247A Twentynine Palms 270A Wasco 224A Waterford 294A Westley *238A Willow Creek 253A, 258A Willows 292A Wofford Heights 251A COLORADO Akron 279C1 Arriba 240A Aspen 228A Blanca 249C2... Glenville 299A Marlinton 292A St Marys *287A Wardensville 239A White Sulphur Springs 227A WISCONSIN Ashland...

  3. 47 CFR 73.202 - Table of Allotments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... *298A Tecopa 288A Trona 247A Twentynine Palms 270A Wasco 224A Waterford 294A Westley *238A Willow Creek 258A Willows 292A Wofford Heights 251A COLORADO Akron 279C1 Blanca 249C2 Crested Butte 246C3 Dinosaur... 292A St Marys *287A Wardensville 239A White Sulphur Springs 227A WISCONSIN Ashland *275A Augusta *268C3...

  4. Development of a carbonate crust on alkaline nuclear waste sludge at the Hanford site.

    PubMed

    Page, Jason S; Reynolds, Jacob G; Ely, Tom M; Cooke, Gary A

    2018-01-15

    Hard crusts on aging plutonium production waste have hindered the remediation of the Hanford Site in southeastern Washington, USA. In this study, samples were analyzed to determine the cause of a hard crust that developed on the highly radioactive sludge during 20 years of inactivity in one of the underground tanks (tank 241-C-105). Samples recently taken from the crust were compared with those acquired before the crust appeared. X-ray diffraction and scanning electron microscopy (SEM) indicated that aluminum and uranium phases at the surface had converted from (hydr)oxides (gibbsite and clarkeite) into carbonates (dawsonite and cejkaite) and identified trona as the cementing phase, a bicarbonate that formed at the expense of thermonatrite. Since trona is more stable at lower pH values than thermonatrite, the pH of the surface decreased over time, suggesting that CO 2 from the atmosphere lowered the pH. Thus, a likely cause of crust formation was the absorption of CO 2 from the air, leading to a reduction of the pH and carbonation of the waste surface. The results presented here help establish a model for how nuclear process waste can age and can be used to aid future remediation and retrieval activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.; Renaut, R.W.

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In somemore » cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.« less

  6. Final Report of Tank 241-C-105 Dissolution, the Phase 2 Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meznarich, Huei K.; bolling, Stacey D.; Cooke, Gary A.

    2016-10-01

    Three clamshell grab samples were taken from Tank 241-C-105 in October 2015 in accordance with RPP-PLAN-60011. Analytical results of those samples were issued in the report RPP-RPT-59115 by Wastren Advantage, Inc., Hanford Laboratory. Solid phase characterization results were reported separately in LAB-RPT-15-00011 and in RPP-RPT-59147. The major solid phases reported to be present were dawsonite [NaAlCO 3(OH) 2], trona [Na 3(HCO 3)(CO 3)·2H 2O], cejkaite [Na 4(UO 2)(CO 3) 3], and an unidentified organic solid, with minor amounts of gibbsite [Al(OH) 3], natrophosphate [Na 7F(PO 4) 2·19H 2O], and traces of unidentified iron-rich and manganese-rich phases. Note that the presencemore » of dawsonite, trona, and cejkaite requires a relatively low pH, likely around pH 9 to 10. One aliquot of each grab sample was provided to 222-S Laboratory Process Chemistry for dissolution studies. Phase 1 of the dissolution testing followed the approved test plan, WRPS-1404813, Rev. 3, and examined the behavior of the Tank 241-C-105 solids treated with water, 19M sodium hydroxide, 2M nitric acid, and 0.5M oxalic acid/2M nitric acid. Phase 2 of the testing was conducted in accordance with instructions from the client and emphasized treatment with 19M sodium hydroxide followed by water washing. This is the report of the Phase 2 testing.« less

  7. Technology could deliver 90% Hg reduction from coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maize, K.

    2009-07-15

    Reducing mercury emissions at coal-fired power plants by 90% has been considered the holy grail of mercury control. A new technology promises to get used there, but at a price. This is a mixture of chemical approaches, including activated carbon injection into the gases coming off the combustor along with injection of trona or calcium carbonate to reduce sulfur trioxide in the exhaust gases. The trick according to Babcock and Wilcox's manager Sam Kumar, to 'capture the mercury as a particulate on the carbon and then capture the particulate' in an electrostatic precipitator or a fabric filter baghouse. 2 figs.

  8. Case study of controlled recirculation at a Wyoming trona mine

    PubMed Central

    Pritchard, C.; Scott, D.; Frey, G.

    2015-01-01

    Controlled recirculation has been used in the metal/nonmetal mining industry for energy savings when heating and cooling air, in undersea mining and for increasing airflow to mining areas. For safe and effective use of controlled district recirculation, adequate airflow to dilute contaminants must exist prior to implementation, ventilation circuit parameters must be accurately quantified, ventilation network modeling must be up to date, emergency planning scenarios must be performed and effective monitoring and control systems must be installed and used. Safety and health issues that must be considered and may be improved through the use of controlled district recirculation include blasting fumes, dust, diesel emissions, radon and contaminants from mine fires. Controlled recirculation methods are expected to become more widely used as mines reach greater working depths, requiring that these health and safety issues be well understood. The U.S. National Institute for Occupational Safety and Health (NIOSH) conducted two controlled recirculation tests over three days at a Wyoming trona mine, utilizing an inline booster fan to improve airflow to a remote and difficult-to-ventilate development section. Test results were used to determine the effect that recirculation had on air qualities and quantities measured in that section and in other adjacent areas. Pre-test conditions, including ventilation quantities and pressures, were modeled using VnetPC. During each test, ventilation quantities and pressures were measured, as well as levels of total dust. Sulfur hexafluoride (SF6) tracer gas was used to simulate a mine contaminant to monitor recirculation wave cycles. Results showed good correlation between the model results and measured values for airflows, pressure differentials, tracer gas arrival times, mine gasses and dust levels. PMID:26251567

  9. Ameliorer les performances environnementales des centrales a charbon pulverise via la co-combustion de combustible derive de dechets

    NASA Astrophysics Data System (ADS)

    Vekemans, Odile Geraldine

    Coal supplies around 28% of the world's energy needs and produces some 40% of the world's electricity. In the United States, close to 650 coal power plants currently produce electricity from coal, the majority of witch are equipped with pulverized coal boilers build in the 80's. Due to coal's intrinsic content in nitrogen and sulfur, its combustion is associated with high levels of NOx and SO2 emissions, that are responsible, among other thing, for acid rains. In order to help reduce SO2 emissions of coal power plant, this thesis focuses on the behaviour of a novel feedstock called ReEF(TM) or ReEngineered Feedstock(TM), developed by the company Accordant Energy LLCRTM, that combines non recyclable waste and alkaline sorbent. Since waste have a high calorific value and do not contain sulfur, and since alkaline sorbents (such as limestone) are able to react with SO2 and capture it in solid state, co-combustion of ReEF(TM) and coal could reduce SO2 emissions inside the furnace chamber itself. This technology easy to implement, as it requires a limited initial investment and limited additional space, could help avoid the construction of costly flue gas treatment unit downstream from the furnace. However, careless combustion of this engineered fuel could have disastrous consequences for the coal power plant owners. This thesis, then, deliver one among the first experimental study of co-combustion of coal and ReEF(TM) in conditions characteristic of pulverized coal boilers. As a first step, in order to get familiarize with the feedstock under study, the thermal degradation of a ReEF(TM) without sorbent and of its components is analyzed by thermogravimetry. With the analysis of more than 70 samples at heating rates ranging from 5°C/min to 400°C/min we are able to conclude that ReEF(TM) thermal degradation can be seen as the independent thermal degradation of its components, as long as heat transfer limitations are taken into account. Thus, no substantial chemical interactions between ReEF(TM) components take place during its devolatilization. During the second step of this study, performances of the co-firing of coal and sorbent are compared to that of co-combustion of coal and ReEF(TM) without sorbent. This is carried out in a reactor specially build for this study, capable of reproducing the contact mode between gas and particles, the concentrations, the temperature gradient and the pressure typical of pulverized coal boiler. SO2 emissions reduction around 20% are observed in presence of CaCO3 and of Ca(OH)2 compared to the coal baseline, reduction that generally increased with the increase of sorbent molar ratio compared to sulfur (also called stoic). As for the co-combustion of 20%th of ReEF(TM) and coal, a SO2 emission reduction around 20% is also measured, with no clear effect of ReEF(TM) composition (fiber to plastic ratio). On the other hand, the HCl level that is negligible during coal combustion with and without sorbent, reaches around 20ppm in presence of ReEF(TM), and increases proportionally with the ReEF(TM) plastic content. The first step of this work consists in the study of the co-combustion of coal and ReEF(TM) containing limestone (CaCO3), a mix of sodium bicarbonate (NaHCO3) and limestone, as well as a mix of trona (Na2CO3.NaHCO3.H2O) and limestone. The amount of sorbent in the ReEF(TM) as well as the feeding parameters are adjusted to reach a 20%th feeding of ReEF(TM) compared to coal, to inject sorbents at a stoic of 1, 2 and 2.5 and to obtain Na/Ca molar ratios of 0, 0.1 with trona and NaHCO3, and 0.5 with NaHCO 3 only. Globally, as in the case of sorbent alone, the increase of the total stoic of the feed leads to increased SO2 capture. For a given stoic, to combine waste and limestone in the ReEF(TM), compared to using limestone alone, allows to reach higher levels of SO2 emissions reduction. The combination of sodium-based and calcium-based sorbent even leads to record SO2 emissions reduction of more than 50% with trona, and more than 40% with NaHCO3, at gas residence time in the reactor four time smaller than typical residence time of PCB. Furthermore, the lower fuel-N content of the ReEF(TM), compared to coal, also leads to lower NOx emissions. Combustion of ReEF(TM) with trona is even associated with NOx emissions reduction of more than 50%, possibly due to sodium induced NO reduction. Finally, regarding HCl emissions, chlorine capture by the sorbents leads to HCl levels comparable to that of coal alone. Even if, from the point of view of pollutant emissions, the results are promising, co-feeding ReEF(TM) with sorbent was nonetheless associated with heavy formation of melted ash deposits in the reactor. Deposition probes are used to compare the magnitude of the deposition in function of the ReEF(TM) sorbent composition. With those probes, we are able to figure out that slag formation is quite severe in presence of NaHCO3, and all the more that the Na/Ca ratio is high, but is less severe in presence of limestone alone, and isn't at all problematic in presence of trona. Those results all seem to indicate that co-combustion of coal and 20%th ReEF(TM) containing limestone and trona at a Na/Ca ratio of 0.1 and at a total stoic of 2 is the most adequate composition for application in existing PCB. In all those experiments a single measure of the emissions at the exit of the reactor is conducted, the emissions being associated with a federate of gas and solid and a temperature profile along the reactor. In order to gain insight regarding the behaviour of the gas and the particles inside the reactor, a phenomenological model combining more than 30 reaction kinetics is developed. This model allows us, without any fitting parameter, to predict the CO2, SO2 and NOx emissions measured at the outlet of the reactor. This model is easily adapted to the different ReEF(TM) compositions and was able to take into account the various particle sizes. The model is then used to evaluate potential SO2 emissions reduction that could be obtain with ReEF(TM) co-combustion for a residence time and a temperature profile measured in an existing pulverized coal boiler. Those simulations indicate that SO2 emissions reduction up to 85% could be obtain at the exit of the furnace chamber with a 20%th coal feed substitution by ReEF(TM) containing limestone and trona. Co-combustion of ReEF(TM) in pulverized coal boiler is therefore sensible from the point of view of pulverized coal boiler environmental performances, as long as the ReEF(TM) composition is chosen wisely and is tested beforehand in conditions similar to that of PCB. Furthermore, since ReEF(TM) co-combustion allows electricity production at high efficiency from waste, it is also sensible in terms of waste energetic valorization.

  10. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  11. Mechanism of groundwater inrush hazard caused by solution mining in a multilayered rock-salt-mining area: a case study in Tongbai, China

    NASA Astrophysics Data System (ADS)

    Zeng, Bin; Shi, Tingting; Chen, Zhihua; Xiang, Liu; Xiang, Shaopeng; Yang, Muyi

    2018-01-01

    The solution mining of salt mineral resources may contaminate groundwater and lead to water inrush out of the ground due to brine leakage. Through the example of a serious groundwater inrush hazard in a large salt-mining area in Tongbai County, China, this study mainly aims to analyse the source and channel of the inrushing water. The mining area has three different types of ore beds including trona (trisodium hydrogendicarbonate dihydrate, also sodium sesquicarbonate dihydrate, with the formula Na2CO3 × NaHCO3 × 2H2O, it is a non-marine evaporite mineral), glauber (sodium sulfate, it is the inorganic compound with the formula Na2SO4 as well as several related hydrates) and gypsum (a soft sulfate mineral composed of calcium sulfate dihydrate, with chemical formula CaSO4 × 2H2O). Based on characterisation of the geological and hydrogeological conditions, the hydrochemical data of the groundwater at different points and depths were used to analyse the pollution source and the pollutant component from single or mixed brine by using physical-chemical reaction principle analysis and hydrogeochemical simulation method. Finally, a possible brine leakage connecting the channel to the ground was discussed from both the geological and artificial perspectives. The results reveal that the brine from the trona mine is the major pollution source; there is a NW-SE fissure zone controlled by the geological structure that provides the main channels through which brine can flow into the aquifer around the water inrush regions, with a large number of waste gypsum exploration boreholes channelling the polluted groundwater inrush out of the ground. This research can be a valuable reference for avoiding and assessing groundwater inrush hazards in similar rock-salt-mining areas, which is advantageous for both groundwater quality protection and public health.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liolios, Konstantinos; Abt, Birte; Scheuner, Carmen

    Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacte- rium that is motile via periplasmic flagella. The type strain of the species, Z-7692T, was iso- lated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Considering the pending reclassification of S. caldaria to the genus Treponema, S. africana is only the second 'true' member of the genus Spirochaeta with a genome-sequenced type strainmore » to be pub- lished. The 3,285,855 bp long genome of strain Z-7692T with its 2,817 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  13. Effects of processing and in vitro proteolytic digestion on soybean and yambean hemagglutinins.

    PubMed

    Ojimelukwe, P C; Onuoha, C C; Obanu, Z A

    1995-06-01

    Some conventional processing methods were applied on yambean and soybean seeds and flour samples. They include soaking fermentation, cooking whole seeds in the presence and absence of trona, autoclaving and dry heat treatment of flour samples. Hemagglutinating activity was assayed for after processing treatments. The hemagglutinating proteins from these seeds were classified based on their solubility properties. Effects of the presence of 0.01% concentration of trypsin, pepsin and proteases on agglutination of human red blood cells were also evaluated. Most processing methods, particularly cooking whole seeds for 1-2 h, soaking and fermentation, reduced hemagglutinating activity on cow red blood cells. Size reduction accompanied by heat treatment was effective in eliminating hemagglutination. Both the albumin and globulin fractions of the soybean showed hemagglutinating activity but only the albumin fraction of the yambean had agglutinating properties. Proteolytic action of proteases was more effective in reduction of hemagglutinating activity than that of trypsin and pepsin.

  14. Thermally decarboxylated sodium bicarbonate: Interactions with water vapour, calorimetric study

    PubMed Central

    Volkova, Natalia; Hansson, Henri; Ljunggren, Lennart

    2012-01-01

    Isothermal titration calorimetry (ITC) was used to study interactions between water vapour and the surface of thermally converted sodium bicarbonate (NaHCO3). The decarboxylation degree of the samples was varied from 3% to 35% and the humidity range was 54–100%. The obtained enthalpy values were all exothermic and showed a positive linear correlation with decarboxylation degrees for each humidity studied. The critical humidity, 75% (RHo), was determined as the inflection point on a plot of the mean−ΔH kJ/mole Na2CO3 against RH. Humidities above the critical humidity lead to complete surface dissolution. The water uptake (m) was determined after each calorimetric experiment, complementing the enthalpy data. A mechanism of water vapour interaction with decarboxylated samples, including the formation of trona and Wegscheider’s salt on the bicarbonate surface is proposed for humidities below RHo. PMID:29403816

  15. Thermodynamic Analysis of Secondary Minerals Stability in Altered Carbonatites of the Oldoinyo Lengai Volcano, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Perova, E. N.; Zaitsev, A. N.

    2017-12-01

    Carbonatites from the Oldoinyo Lengai volcano, northern Tanzania, are unstable under normal atmospheric conditions. Owing to carbonatite interaction with water, the major minerals—gregoryite Na2(CO3), nyerereite Na2Ca(CO3)2, and sylvite KCl—are dissolved and replaced with secondary low-temperature minerals: thermonatrite Na2(CO3) · H2O, trona Na3(CO3)(HCO3) · 2H2O, nahcolite Na(HCO3), pirssonite Na2Ca(CO3)2 · 2H2O, calcite Ca(CO3), and shortite Na2Ca2(CO3)3. Thermodynamic calculations show that the formation of secondary minerals in Oldoinyo Lengai carbonatites are controlled by the pH of the pore solution, H2O and CO2 fugacity, and the ratio of Ca and Na activity in the Na2O-CaO-CO2-H2O system.

  16. Understanding the role of ion interactions in soluble salt flotation with alkylammonium and alkylsulfate collectors.

    PubMed

    Ozdemir, Orhan; Du, Hao; Karakashev, Stoyan I; Nguyen, Anh V; Celik, M S; Miller, Jan D

    2011-03-15

    There is anecdotal evidence for the significant effects of salt ions on the flotation separation of minerals using process water of high salt content. Examples include flotation of soluble salt minerals such as potash, trona and borax in brine solutions using alkylammonium and alkylsulfate collectors such as dodecylamine hydrochloride and sodium dodecylsulfate. Although some of the effects are expected, some do not seem to be encompassed by classical theories of colloid science. Several experimental and modeling techniques for determining solution viscosity, surface tension, bubble-particle attachment time, contact angle, and molecular dynamics simulation have been used to provide further information on air-solution and solid-solution interfacial phenomena, especially with respect to the interfacial water structure due to the presence of dissolved ions. In addition atomic force microscopy, and sum frequency generation vibrational spectroscopy have been used to provide further information on surface states. These studies indicate that the ion specificity effect is the most significant factor influencing flotation in brine solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Characterization of brines and evaporites of Lake Katwe, Uganda

    NASA Astrophysics Data System (ADS)

    Kasedde, Hillary; Kirabira, John Baptist; Bäbler, Matthäus U.; Tilliander, Anders; Jonsson, Stefan

    2014-03-01

    Lake Katwe brines and evaporites were investigated to determine their chemical, mineralogical and morphological composition. 30 brine samples and 3 solid salt samples (evaporites) were collected from different locations of the lake deposit. Several analytical techniques were used to determine the chemical composition of the samples including Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-SFMS), ion chromatography, and potentiometric titration. The mineralogical composition and morphology of the evaporites was determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Physical parameters of the lake brines such as density, electrical conductivity, pH, and salinity were also studied. The results show that the lake brines are highly alkaline and rich in Na+, Cl-, CO32-, SO42-, and HCO3- with lesser amounts of K+, Mg2+, Ca2+, Br-, and F- ions. The brines show an intermediate transition between Na-Cl and Na-HCO3 water types. Among the trace metals, the lake brines were found to be enriched in B, I, Sr, Fe, Mo, Ba, and Mn. The solid salts are composed of halite mixed with other salts such as hanksite, burkeite and trona. It was also observed that the composition of the salts varies considerably even within the same grades.

  18. Water structure and its influence on the flotation of carbonate and bicarbonate salts.

    PubMed

    Ozdemir, O; Celik, M S; Nickolov, Z S; Miller, J D

    2007-10-15

    Interfacial water structure is a most important parameter that influences the collector adsorption by salt minerals such as borax, potash and trona. According to previous studies, salts can be classified as water structure makers and water structure breakers. Water structure making and breaking properties of salt minerals in their saturated brine solutions are essential to explain their flotation behavior. In this work, water structure making-breaking studies in solutions of carbonate and bicarbonate salts (Na(2)CO(3), K(2)CO(3), NaHCO(3) and NH(4)HCO(3)) in 4 wt% D(2)O in H(2)O mixtures have been performed by FTIR analysis of the OD stretching band. This method reveals a microscopic picture of the water structure making/breaking character of the salts in terms of the hydrogen bonding between the water molecules in solution. The results from the vibrational spectroscopic studies demonstrate that carbonate salts (Na(2)CO(3) and K(2)CO(3)) act as strong structure makers, whereas bicarbonate salts (NaHCO(3) and NH(4)HCO(3)) act as weak structure makers. In addition, the changes in the OD band parameters of carbonate and bicarbonate salt solutions are in agreement with the viscosity characteristics of their solutions.

  19. Hydrochemistry of the Lake Magadi basin, Kenya

    USGS Publications Warehouse

    Jones, B.F.; Eugster, H.P.; Rettig, S.L.

    1977-01-01

    New and more complete compositional data are presented for a large number of water samples from the Lake Magadi area, Kenya. These water samples range from dilute inflow (300 g/kg dissolved solids). Five distinct hydrologic stages can be recognized in the evolution of the water compositions: dilute streamflow, dilute ground water, saline ground water (or hot spring reservoir), saturated brines, and residual brines. Based on the assumption that chloride is conserved in the waters during evaporative concentration, these stages are related to each other by the concentration factors of about 1:28:870:7600:16,800. Dilute streamflow is represented by perennial streams entering the Rift Valley from the west. All but one (Ewaso Ngiro) of these streams disappear in the alluvium and do not reach the valley floor. Dilute ground water was collected from shallow pits and wells dug into lake sediments and alluvial channels. Saline ground water is roughly equivalent to the hot springs reservoir postulated by Eugster (1970) and is represented by the hottest of the major springs. Saturated brines represent surficial lake brines just at the point of saturation with respect to trona (Na2CO3.NaHCO3.2H2O), while residual brines are essentially interstitial to the evaporite deposit and have been subjected to a complex history of precipitation and re-solution. The new data confirm the basic hydrologic model presented by Eugster (1970) which has now been refined, particularly with respect to the early stages of evaporative concentration. Budget calculations show that only bromide is conserved as completely as chloride. Sodium follows chloride closely until trona precipitation, whereas silica and sulfate are largely lost during the very first concentration' step (dilute streamflow-dilute ground water). A large fraction of potassium and all calcium plus magnesium are removed during the first two concentration steps (dilute streamflow-dilute ground water-saline ground water). Carbonate and bicarbonate are the dominant anions, and mechanisms by which they are extracted from the solution include precipitation of alkali and alkaline-earth carbonates, and degassing, as well as precipitation and re-solution of efflorescent crusts. Much sulfate is apparently lost from solution by sorption as well as subsurface reduction. Seasonal runoff, principally from the valley floor north of Lake Magadi, is considered to be the principal recharge to the Magadi ground water system. Evaporative concentration is the overall process responsible for the chemical evolution of the brines. This includes not only simple evaporation, but also mineral precipitation as films and cements in the unsaturated zone, re-solution, and reprecipitation of efflorescent crusts, with consequent recycling of salts. In fact, a large fraction of the solutes are acquired through dissolution of efflorescent crusts. Data were obtained for borehole brines from as deep as 297 m. They show the existence of two distinct brine bodies below the present lake, one shallow, coexistent with bedded salts, and highly concentrated (260 g/kg average dissolved solids), and the other deeper in lacustrine sediments or fractured lavas, and only half as concentrated. ?? 1977.

  20. Mining the hydrosphere

    NASA Astrophysics Data System (ADS)

    Petersen, Ulrich

    1994-05-01

    Rapid technological progress over the past two decades has significantly lowered the cost of water desalination and has spurred an impressive growth of this industry. About half of the desalination capacity uses seawater, the other half uses continental brackish water. Most of the desalted water is consumed for domestic and municipal purposes. However, some of it, especially that derived from brackish water, is also competitive for irrigation of high-value crops, and for some industrial purposes, particularly in water-deficient regions. In addition to fresh water, at present only halite, magnesium, and bromine are commercially obtained from seawater. These commodities plus sodium carbonate (trona), sodium sulfate, I, Li, B, and potash are also produced from natural brines. Prior attempts to obtain potash, U, Au, and other mineral commodities from seawater failed because the market value of the recovered products was too low to cover the capital and operating costs of processing plants exclusively dedicated to recover them separately. The economics are more favorable if these and/or other elements or compounds are obtained as byproducts of seawater desalination, especially when combined with cogeneration of electricity. Under these circumstances the major capital and operating costs for pumping seawater and for disposing of the reject brine are absorbed mostly by the proceeds from freshwater production. The byproducts need only to pay for the additional recovery processes. One advantage of this strategy is to reduce the environmental impact of reject brine disposal. Another is to reduce the environmental, safety, and health impacts of land-based mining. Furthermore, obtaining nonmetallic mineral commodities from seawater at a number of localities scattered over the Earth can significantly reduce their transportation costs, which is a major proportion of their cost to nations lacking these resources. This is particularly pertinent for common salt (halite), potash, sodium carbonate (trona), sodium sulfate, S, and gypsum. These compounds, plus B, Cl, Calcium chloride, Li, and Sr (perhaps also F and U) are the best candidates for recovery from seawater because their value per ton of seawater is greater than that of other products. Further research aimed at recovering the aforementioned elements and compounds from seawater is justified and recommended. Given the many uncertainties involved, it is beyond the scope of this paper to present specific flow sheets and estimates of capital and operating costs for byproduct recovery. Rather, the purpose of this contribution is to provide a general overview of the potential benefits and problems, so that future research can be directed more fruitfully to the recovery of certain sets of elements or compounds under specific circumstances. Once a mineral commodity can be economically obtained from seawater, there is no further need to mine it on land from lower grade, deeper or more distant ore deposits (or to mine it in ecologically sensitive areas). Current producers need not excessively fear the proposed new supplies because in the past high transportation costs often prevented their nonmetallic commodities from reaching the distant potential markets that would be served by many byproduct-producing seawater processing plants. In addition, population growth and rising standards of living may well absorb much of the feared overcapacity in their spheres of influence. For traditional metals, such as Fe, Al, Cu, Pb, Zn, Au, and Ag, byproduct recovery from seawater desalination appears to be out of reach for a long time.

  1. Selective Preservation of Fossil Ghost Fish

    NASA Astrophysics Data System (ADS)

    Meacham, Amanda

    2016-04-01

    A unique type of fossil fish preservation has been discovered in the Angelo Member (Fossil Lake) of the Green River Formation. The Angelo Member is a predominately evaporative deposit dominated by dolomite, but contains facies of fossiliferous laminated calcimicrite. Fossil fish occurring in two beds conspicuously lack bones. Fish in the lower bed are only preserved as organic material, including skin, pigments, and eyes. Fish in the upper bed have three-dimensional etching where bones once existed but also contain skin, pigments, and eyes. The top third of the upper bed often contains calcite crystals that are pseudomorphs after trona and possibly halite. Preliminary mineralogical analysis and mapping of evaporate facies suggests that this unique preservation may be related to lake geochemical conditions, such as high pH and alkalinity. To our knowledge, this is the first time this type of preservation has been observed and studied. Fossils and sediments within these beds are being studied both vertically and laterally through the one-meter thick sequence containing the fossil fish using XRD, isotopic, SEM, thin section, and total organic carbon analysis. Nine quarries, 0.5-1 meter square, were excavated for both fossils and rock samples along with 17 additional rock sample locations across an approximately 25-kilometer square region. This investigation has the capability of reconstructing the paleoenvironment and lake chemistry of Fossil Lake during the deposition of the "ghost-fish" beds and solving the mystery of the "missing bones" and the unusual process of preservation.

  2. Earth Obsersation taken by the Expedition 11 crew

    NASA Image and Video Library

    2005-06-27

    ISS011-E-09680 (27 June 2005) --- Searles Lake, California is featured in this image photographed by an Expedition 11 crewmember on the International Space Station. Searles Lake is known for the abundance of rare elements and evaporite minerals, such as trona, hanksite, and halite formed within its sediments. These minerals dissolve in water or very humid environments. According to NASA scientists who are studying the Space Station photography, during the Pleistocene Epoch (beginning approximately two million years ago), Searles Lake was one of a chain of lakes fed by streamflow from the Sierra Nevada to the west. Lake levels rose and fell dependant on glacial outwash from the Sierra Nevada as climates shifted. Successive layers of sediment were deposited as lake levels fluctuated, preserving an important record of regional climate change. The lakes gradually dried up completely as climatic conditions became hotter and drier (as today), forming a string of enclosed basins with no outlets (playas). This photograph depicts the Searles Lake playa (characterized by white surface mineral deposits) bounded by the Argus and Slate Mountains. The width of the playa is approximately 10 kilometers. The center of the image is dominated by mining operations that extract sodium- and potassium-rich minerals (primarily borax and salt) for industrial use. Minerals are primarily in naturally-occurring brines that are pumped to the surface and evaporated to crystallize the minerals. A large evaporation pond (black) is visible in the center of the image. Further processing concentrates the minerals and removes excess water.

  3. Studies of quaternary saline lakes-II. Isotopic and compositional changes during desiccation of the brines in Owens Lake, California, 1969-1971

    USGS Publications Warehouse

    Friedman, I.; Smith, G.I.; Hardcastle, Kenneth G.

    1976-01-01

    Owens Lake is an alkaline salt lake in a closed basin in southeast California. It is normally nearly dry, but in early 1969, an abnormal runoff from the Sierra Nevada flooded it to a maximum depth of 2??4 m. By late summer of 1971, the lake was again nearly dry and the dissolved salts recrystallized. Changes in the chemistry, pH, and deuterium content were monitored during desiccation. During flooding, salts (mostly trona, halite, and burkeite) dissolved slowly from the lake floor. Their concentration in the lake waters increased as evaporation removed water and salts again crystallized, but winter temperatures caused precipitation of some salts and the following summer warming caused their solution, resulting in seasonal variations in the concentration patterns of some ions. The pH values (9??4-10??4) changed with time but showed no detectable diurnal pattern. The deuterium concentration increased during evaporation and appeared to be in equilibrium with vapor leaving the lake according to the Rayleigh equation. The effective ??(D/H in liquid/D/H in vapor) decreased as salinity increased; the earliest measured value was 1??069 [as total dissolved solids (TDS) of lake waters changed from 136,200 to 250,400 mg/1]and the last value (calc.) was 1??025 (as TDS changed from 450,000 to 470,300 mg/1). Deuterium exchange with the atmosphere was apparently small except during late desiccation stages when the isotopic contrast became great. Eventually, atmospheric exchange, combined with decreasing ?? and lake size and increasing salinity, stopped further deuterium concentration in the lake. The maximum contrast between atmospheric vapor and lake deuterium contents was about 110%. ?? 1976.

  4. Borax in the supraglacial moraine of the Lewis Cliff, Buckley Island quadrangle--first Antarctic occurrence

    USGS Publications Warehouse

    Fitzpatrick, J.J.; Muhs, D.R.

    1989-01-01

    During the 1987-1988 austral summer field season, membersof the south party of the antarctic search for meteorites south-ern team* working in the Lewis Cliff/Colbert Hills region dis-covered several areas of unusual mineralization within theLewis Cliff ice tongue and its associated moraine field (figure1). The Lewis Cliff ice tongue (84°15'S 161°25'E) is a meteorite-stranding surface of ablating blue ice, about 2.3 by 7.0 kilo-meters, bounded on the west by the Lewis Cliff, on the northand northeast by a large supraglacial moraine, and on the eastby the Colbert Hills. To the south it opens to the Walcott Névé.Because it is a meteorite-stranding surface, the major component of ice motion in the area is believed to be vertical(Whillans and Cassidy 1983). The presence of Thule-Baffinmoraines at the northern terminus of the blue ice tends tosupport the hypothesis that the area underlying the moraineis essentially stagnant and that ice arriving from the south ispiling up against it. Areas containing mineral deposits werefound within the moraine field to the north and east of theblue ice margin and also along the east margins of the blue iceitself. Subsequent X-ray diffraction analyses of these depositshave shown that they are composed predominantly of nah-colite (NaHCO3), trona [Na3(CO3)(HCO3) · 2H20], borax[Na2B405(OH)4 · 8H20], and a new hexagonal hydrous sulfatespecies. This paper reports the details of the borax occurrence,because it is the first known on the continent.

  5. Hot spring deposits on a cliff face: A case study from Jifei, Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Jones, Brian; Peng, Xiaotong

    2014-04-01

    A cliff face in the Jifei karst area, southwest China, is covered by a spectacular succession of precipitates that formed from the hot spring water that once flowed down its surface. This layered succession is formed of aragonite layers that are formed largely of “fountain dendrites”, calcite layers that are formed mostly of “cone dendrites”, and microlaminated layers that contain numerous microbes and extracellular polymeric substances (EPS). Many of the aragonite crystals are hollow due to preferential dissolution of their cores. The calcite cone dendrites are commonly covered with biofilms, reticulate Si-Mg coatings, and other precipitates. The microbial layers include dodecahedral calcite crystals and accessory minerals that include opal-A, amorphous Si-Mg coatings, trona, barite, potassium sulfate crystals, mirabillite, and gaylussite. Interpretation of the δ18O(calcite) and δ18O(aragonite) indicates precipitation from water with a temperature of 54 to 66 °C. The active hot spring at the top of the cliff presently ejects water at a temperature of 65 °C. Layers, 1 mm to 6 cm thick, record temporal changes in the fluids from which the precipitates formed. This succession is not, however, formed of recurring cycles that can be linked to diurnal or seasonal changes in the local climate. Indeed, it appears that the climatic contrast between the wet season and the dry season had little impact on precipitation from the spring waters that flowed down the cliff face. Integration of currently available evidence suggests that the primary driving force was aperiodic changes in the CO2 content of the spring waters because that seems to be the prime control on the saturation levels that underpinned precipitation of the calcite and aragonite as well as the dissolution of the aragonite. Such variations in the CO2 content of the spring water were probably due to changes that took place in the subterranean plumbing system of the spring.

  6. Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris.

    PubMed

    Lohman, Egan J; Gardner, Robert D; Pedersen, Todd; Peyton, Brent M; Cooksey, Keith E; Gerlach, Robin

    2015-01-01

    Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2. Life cycle analyses have concluded that costs associated with supplying CO2 to algal cultures are significant contributors to the overall energy consumption. A two-phase optimal growth and lipid accumulation scenario is presented, which (1) enhances the growth rate and (2) the triacylglyceride (TAG) accumulation rate in the oleaginous Chlorophyte Chlorella vulgaris strain UTEX 395, by growing the organism in the presence of low concentrations of NaHCO3 (5 mM) and controlling the pH of the system with a periodic gas sparge of 5 % CO2 (v/v). Once cultures reached the desired cell densities, which can be "fine-tuned" based on initial nutrient concentrations, cultures were switched to a lipid accumulation metabolism through the addition of 50 mM NaHCO3. This two-phase approach increased the specific growth rate of C. vulgaris by 69 % compared to cultures sparged continuously with 5 % CO2 (v/v); further, biomass productivity (g L(-1) day(-1)) was increased by 27 %. Total biodiesel potential [assessed as total fatty acid methyl ester (FAME) produced] was increased from 53.3 to 61 % (FAME biomass(-1)) under the optimized conditions; biodiesel productivity (g FAME L(-1) day(-1)) was increased by 7.7 %. A bicarbonate salt screen revealed that American Chemical Society (ACS) and industrial grade NaHCO3 induced the highest TAG accumulation (% w/w), whereas Na2CO3 did not induce significant TAG accumulation. NH4HCO3 had a negative effect on cell health presumably due to ammonia toxicity. The raw, unrefined form of trona, NaHCO3∙Na2CO3 (sodium sesquicarbonate) induced TAG accumulation, albeit to a slightly lower extent than the more refined forms of sodium bicarbonate. The strategic addition of sodium bicarbonate was found to enhance growth and lipid accumulation rates in cultures of C. vulgaris, when compared to traditional culturing strategies, which rely on continuously sparging algal cultures with elevated concentrations of CO2(g). This work presents a two-phased, improved photoautotrophic growth and lipid accumulation approach, which may result in an overall increase in algal biofuel productivity.

  7. Sedimentary record of seismic events in the Eocene Green River Formation and its implications for regional tectonics on lake evolution (Bridger Basin, Wyoming)

    NASA Astrophysics Data System (ADS)

    Törő, Balázs; Pratt, Brian R.

    2016-10-01

    Outcrops and cores from the top of the lacustrine Tipton Member and the base of the Wilkins Peak Member ( 51.5 Ma) of the Eocene Green River Formation, Bridger Basin in southwestern Wyoming yield a wide variety of sedimentary deformation features many of which are laterally extensive for more than 50 km. They include various types of folds, load structures, pinch-and-swell structures, microfaults, breccias and sedimentary dikes. In most cases deformation is represented by hybrid brittle-ductile structures exhibiting lateral variation in deformation style. These occur in low-energy, profundal organic-rich carbonate mudstones (oil shales), trona beds, tuffs, and profundal to sublittoral silty carbonate deposited in paleolake Gosiute. The deformation is not specific to the depositional environment because sedimentary units stratigraphically higher with similar facies show no deformation. The studied interval lacks any evidence for possible trigger mechanisms intrinsic to the depositional environment, such as strong wave action, rapid sediment loading, evaporite dissolution and collapse, or desiccation, so 'endogenic' causes are ruled out. Thus, the deformation features are interpreted as seismites, and change in deformation style and inferred increase in intensity towards the south suggest that the earthquakes were sourced from the nearby Uinta Fault System. The 22 levels exhibiting seismites recognized in cores indicate earthquakes with minimum magnitudes between 6 and 7, minimum epicentral intensity (MCS) of 9, and varying recurrence intervals in the seismic history of the Uinta Fault System, with a mean apparent recurrence period of 8.1 k.y. using average sedimentation rates and dated tuffs; in detail, however, there are two noticeably active periods followed by relative quiescence. The stratigraphic position of these deformed intervals also marks the transition between two distinct stages in lake evolution, from the balanced-filled Tipton Member to the overlying, underfilled Wilkins Peak Member. Thus, these seismites are evidence for regional-scale changes in lacustrine sedimentation of Eocene Lake Gosiute in response to syndepositional tectonic activity. Analysis of synsedimentary deformation features is, therefore, a promising yet under-utilized tool to trace the tectonic evolution of lacustrine deposits of the Green River Formation and other tectonically active marine and non-marine basins.

  8. Studies of Quaternary saline lakes-III. Mineral, chemical, and isotopic evidence of salt solution and crystallization processes in Owens Lake, California, 1969-1971

    USGS Publications Warehouse

    Smith, G.I.; Friedman, I.; McLaughlin, R.J.

    1987-01-01

    As a consequence of the 1969-1970 flooding of normally dry Owens Lake, a 2.4-m-deep lake formed and 20% of the 2-m-thick salt bed dissolved in it. Its desiccation began August 1969, and salts started crystallizing September 1970, ending August 1971. Mineralogic, brine-composition, and stable-isotope data plus field observations showed that while the evolving brine composition established the general crystallization timetable and range of primary and secondary mineral assemblages, it was the daily, monthly, and seasonal temperature changes that controlled the details of timing and mineralogy during this depositional process. Deuterium analyses of lake brine, interstitial brine, and hydrated saline phases helped confirm the sequence of mineral crystallizations and transformations, and they documented the sources and temperatures of waters involved in the reactions. Salts first crystallized as floating rafts on the lake surface. Natron and mirabilite, salts whose solubilities decrease greatly with lowering temperatures, crystallized late at night in winter, when surface-water temperatures reached their minima; trona, nahcolite, burkeite, and halite, salts with solubilities less sensitive to temperature, crystallized during the afternoon in summer, when surface salinities reached their maxima. However, different temperatures were generally associated with crystallization (at the surface) and accumulation (on the lake floor) because short-term temperature changes were transmitted to surface and bottom waters at different rates. Consequently, even when solubilities were exceeded at the surface, salts were preserved or not as a function of bottom-water temperatures. Halite, a nearly temperature-insensitive salt, was always preserved. Monitoring the lake-brine chemistry and mineralogy of the accumulating salts shows: (1) An estimated 0.9 ?? 106 tons of CO2 was released to the atmosphere or consumed by the lake's biomass prior to most salt crystallization. (2) After deposition, some salts reacted in situ to form other minerals in less than one month, and all salts (except halite) decomposed or recrystallized at least once in response to seasons. (3) Warming in early 1971 caused solution of all the mirabilite and some of the natron deposited a few months earlier, a deepening of the lake (though the lake-surface lowered), and an increase in dissolved solids. (4) Phase and solubility-index data suggest that at the close of desiccation, Na2CO3??7H2O, never reported as a mineral, could have been the next phase to crystallize. ?? 1987.

  9. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, U.S.A.

    USGS Publications Warehouse

    Ericksen, G.E.; Hosterman, J.W.; St., Amand

    1988-01-01

    The clay-hill nitrate deposits of the Amargosa River valley, California, are caliche-type accumulations of water-soluble saline minerals in clay-rich soils on saline lake beds of Miocene, Pliocene(?) and Pleistocene age. The soils have a maximum thickness of ??? 50 cm, and commonly consist of three layers: (1) an upper 5-10 cm of saline-free soil; (2) an underlying 15-20 cm of rubbly saline soil; and (3) a hard nitrate-rich caliche, 10-20 cm thick, at the bottom of the soil profile. The saline constituents, which make up as much as 50% of the caliche, are chiefly Cl-, NO-3, SO2-4 and Na+. In addition are minor amounts of K+, Mg2+ and Ca2+, varying, though generally minor, amounts of B2O3 and CO2-3, and trace amounts of I (probably as IO-3), NO-2, CrO2-4 and Mo (probably as MoO2-4). The water-soluble saline materials have an I/Br ratio of ??? 1, which is much higher than nearly all other saline depostis. The principal saline minerals of the caliche are halite (NaCl), nitratite (NaNO3), darapskite (Na3(SO4)(NO3)??H2O), glauberite (Na2Ca(SO4)2), gypsum (CaSO4??2H2O) and anhydrite (CaSO4). Borax (Na2B4O5(OH)4??8H2O), tincalconite (Na2B4O5(OH)4??3H2O) and trona (Na3(CO3)(HCO3)??2H2O) are abundant locally. The clay-hill nitrate deposits are analogous to the well-known Chilean nitrate deposits, and probably are of similar origin. Whereas the Chilean deposits are in permeable soils of the nearly rainless Atacama Desert, the clay-hill deposits are in relatively impervious clay-rich soils that inhibited leaching by rain water. The annual rainfall in the Death Valley region of ??? 5 cm is sufficient to leach water-soluble minerals from the more permeable soils. The clay-hill deposits contain saline materials from the lake beds beneath the nitrate deposits are well as wind-transported materials from nearby clay-hill soils, playas and salt marshes. The nitrate is probably of organic origin, consisting of atmospheric nitrogen fixed as protein by photoautotrophic blue-green algae, which are thought to form crusts on soils at the sites of the deposits when moistened by rainfall. The protein is subsequently transformed to nitrate by autotophic bacteria. ?? 1988.

  10. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Derenne; Robin Stewart

    2009-09-30

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{submore » x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.« less

  11. Basaltic caves at Craters of the Moon National Monument and Preserve as analogs for Mars

    NASA Astrophysics Data System (ADS)

    Hinman, N. W.; Richardson, C. D.; McHenry, L.; Scott, J. R.

    2010-12-01

    Basaltic caves and lava tubes offer stable physicochemical conditions for formation of secondary minerals. Such features, putatively observed on Mars, intercept groundwater to weather country rock, leading to formation of secondary minerals. Further, caves are stable environments to search for evidence of past life, as they could offer protection from the oxidizing martian atmosphere. Searching for signs of life in a cave that could protect bio/organic compounds would preclude the need for risky drilling on Mars. Craters of the Moon National Monument (COM) offers an opportunity to study caves in Holocene iron-rich basalt flows to characterize secondary mineral deposits and search for organic compounds associated with secondary minerals; COM basalts are a good analog for martian basalts because of their high iron but other elements are higher at COM than on Mars. The Blue Dragon flow (~2.1 ka) contains the majority of the accessible caves and lava tubes. Two types of secondary mineral deposits were observed in these caves: ceiling coatings and crack or floor precipitates. Hematite, silica, and calcite comprise ceiling coatings. The crack and floor precipitates are white, efflorescent deposits in cavities along cave walls and ceilings or in localized mounds on cave floors. The secondary minerals in crack and floor precipitates are mainly thenardite and mirabilite with some minor concentrations of trona and/or burkeite. Organic compounds were found associated with the efflorescent deposits. Formation of the deposits is likely due to chemical leaching of basalt by meteoritic water. To test this, fluids collected from the ceiling and walls of the caves were analyzed. Solutions were modeled with the geochemical code, PHREEQC. The model tracked composition as water evaporated. Selected minerals were allowed to precipitate as they became oversaturated. Among the first minerals to become oversaturated were quartz and calcite, which are observed in ceiling deposits. Iron minerals were not included as no iron was detected in solution. Results compared well with evaporation of solutions generated by simulating chemical weathering of minerals found in the basalt; this approach allowed iron minerals to precipitate during evaporation because minerals in the basalt contained iron. The minerals modeled upon evaporation included the minerals observed in the actual deposits - hematite, calcite, and quartz. Na-minerals neared saturation in simulations but were normally not saturated, leaving open the question of their origin. One possible explanation for the presence of Na-minerals could be seasonal ice formation in the caves followed by sublimation, leaving more concentrated solutions behind than were sampled here. A seasonal model for mineral deposition in caves could be relevant to deposits in martian caves. While the formation mechanism for the secondary minerals at COM is not completely understood, the presence of secondary minerals that harbor organic compounds in a cave environment that may be analogous to Mar has implications for where to search for signs of martian life.

  12. Ecological Constraints on Hydrology in Early Hominid Environments

    NASA Astrophysics Data System (ADS)

    Magill, C.; Ashley, G. M.; Freeman, K. H.

    2010-12-01

    Paleoclimate studies increasingly apply the hydrogen isotopic composition of individual biomarkers as a proxy for the composition of environmental waters. However, the environmental, physical and ecologic influences on hydrologic signatures are complex. Here, we separate the influences of climate and physiology on the hydrogen isotopic compositions of plant and algae lipids in order to reconstruct ancient precipitation and lake waters in semi-arid East Africa using Plio-Pleistocene lake sediments from Olduvai Gorge (2°48'S, 35°06'E). We measured bulk organic δ13C and molecular δ13C and δD from perennial lacustrine sediments dated between ~1.79 and 1.95 million years ago, a time slice with recognized hominid diversification events. During this interval, bulk organic δ13C varies ~10‰ and correlates strongly with molecular δ13C signatures of alkane biomarkers derived from terrestrial plants (n-C31), which range between -20‰ and -36‰ (PDB). Molecular δD signatures of n-C31 range between ~-125‰ and -165‰ (SMOW). The δD of algal biomarkers (n-C17) range between ~-85‰ and -135‰ (SMOW). To account for physiological effects, we used the δ13C of n-C31 to estimate relative C4 monocot versus C3 dicot abundance in the Olduvai watershed, establishing a mixing line for deuterium fractionation between rainwater and plant lipids. This approach is based on models of modern ecologic succession in East Africa, where C4 monocots and C3 dicots dominate landscape biomass. In the present day, the isotopic composition of mean annual precipitation in East Africa is controlled by the ‘amount effect.’ Olduvai currently receives ~550 mm yr-1 of precipitation and δD = -10‰, with an average ‘amount effect’ of 32 mm per 7‰ change in δD, albeit based on sparse sampling. Using these constraints and assuming negligible evapotranspiration, we conservatively calculate that Olduvai experienced ~440 mm of precipitation during arid times and nearly 800 mm during wetter times - a reconstruction that is strikingly similar to regional estimations for the early Pleistocene derived from pollen spectra and pedogenic carbonates. We estimated the paleochemistry of paleolake Olduvai using lake-sediment outcrops, faunal remains and analogous modern lakes in East Africa. We used the percent total organic carbon in Olduvai sediments as a relative indication of depth within the constraints of previously published depth boundaries. Fossil remains of tilapia and catfish constrain a lower lake salinity level of 10-30‰, while the presence of trona and gaylussite indicate hypersaline conditions in a framework of modern East African alkaline lakes. We then accounted for fractionation variability in algae due to changes in salinity, calculating that δD ranged between ~+80‰ and 0‰ in paleolake Olduvai waters - values within the modern range of δD for lake waters. In summary, our results indicate that Olduvai experienced essentially complete transitions between C4 monocot and C3 dicot landscape dominance, accompanied by a doubling of mean annual rainfall. Consequent salinity changes in paleolake Olduvai resulted in algal hydrogen isotopic fractionation factors that varied by ~40‰.

Top