How does predation affect the bioaccumulation of hydrophobic organic compounds in aquatic organisms?
Xia, Xinghui; Li, Husheng; Yang, Zhifeng; Zhang, Xiaotian; Wang, Haotian
2015-04-21
It is well-known that the body burden of hydrophobic organic compounds (HOCs) increases with the trophic level of aquatic organisms. However, the mechanism of HOC biomagnification is not fully understood. To fill this gap, this study investigated the effect of predation on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), one type of HOC, in low-to-high aquatic trophic levels under constant freely dissolved PAH concentrations (1, 5, or 10 μg L(-1)) maintained by passive dosing systems. The tested PAHs included phenanthrene, anthracene, fluoranthene, and pyrene. The test organisms included zebrafish, which prey on Daphnia magna, and cichlids, which prey on zebrafish. The results revealed that for both zebrafish and cichlids, predation elevated the uptake and elimination rates of PAHs. The increase of uptake rate constant ranged from 20.8% to 39.4% in zebrafish with the amount of predation of 5 daphnids per fish per day, and the PAH uptake rate constant increased with the amount of predation. However, predation did not change the final bioaccumulation equilibrium; the equilibrium concentrations of PAHs in fish only depended on the freely dissolved concentration in water. Furthermore, the lipid-normalized water-based bioaccumulation factor of each PAH was constant for fish at different trophic levels. These findings infer that the final bioaccumulation equilibrium of PAHs is related to a partition between water and lipids in aquatic organisms, and predation between trophic levels does not change bioaccumulation equilibrium but bioaccumulation kinetics at stable freely dissolved PAH concentrations. This study suggests that if HOCs have not reached bioaccumulation equilibrium, biomagnification occurs due to enhanced uptake rates caused by predation in addition to higher lipid contents in higher trophic organisms. Otherwise, it is only due to the higher lipid contents in higher trophic organisms.
Aquatic mesocosms were dosed with an environmentally relevant concentration of 17-a-ethinyl estradiol (EE2) to study the significance of trophic status (N, P levels) on the attenuation and bioavailability of synthetic estrogens in aquatic ecosystems. Estrogenic activity was asse...
Tao, Lin; Wu, Jiang-Ping; Zhi, Hui; Zhang, Ying; Ren, Zi-He; Luo, Xiao-Jun; Mai, Bi-Xian
2016-07-01
While the flame retardant chemical, tetrabromobisphenol-A (TBBP-A), has been frequently detected in the environment, knowledge regarding its species-specific bioaccumulation and trophic transfer is limited, especially in the highly contaminated sites. In this study, the components of an aquatic food web, including two invertebrates, two prey fish, and one predator fish, collected from a natural pond at an electronic waste (e-waste) recycling site in South China were analyzed for TBBP-A, using liquid chromatography-tandem mass spectrometry. The aquatic species had TBBP-A concentrations ranging from 350 to 1970 pg/g wet weight, with higher concentrations in the invertebrates relative to the fish species. Field-determined bioaccumulation factors of TBBP-A in the two aquatic invertebrates were nearly or greater than 5000, suggesting that TBBP-A is highly bioaccumulative in the two species. The lipid-normalized concentrations of TBBP-A in the aquatic species were negatively correlated with the trophic levels determined from stable nitrogen isotope (δ(15)N) (r = -0.82, p = 0.09), indicating that this compound experienced trophic dilution in the current food web.
Powell, David E; Schøyen, Merete; Øxnevad, Sigurd; Gerhards, Reinhard; Böhmer, Thomas; Koerner, Martin; Durham, Jeremy; Huff, Darren W
2018-05-01
The trophic transfer of cyclic methylsiloxanes (cVMS) in aquatic ecosystems is an important criterion for assessing bioaccumulation and ecological risk. Bioaccumulation and trophic transfer of cVMS, specifically octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were evaluated for the marine food webs of the Inner and Outer Oslofjord, Norway. The sampled food webs included zooplankton, benthic macroinvertebrates, shellfish, and finfish species. Zooplankton, benthic macroinvertebrates, and shellfish occupied the lowest trophic levels (TL ≈2 to 3); northern shrimp (Pandalus borealis) and Atlantic herring (Clupea harengus) occupied the middle trophic levels (TL ≈3 to 4), and Atlantic cod (Gadus morhua) occupied the highest tropic level (TL>4.0). Trophic dynamics in the Oslofjord were best described as a compressed food web defined by demersal and pelagic components that were confounded by a diversity in prey organisms and feeding relationships. Lipid-normalized concentrations of D4, D5, and D6 were greatest in the lowest trophic levels and significantly decreased up the food web, with the lowest concentrations being observed in the highest trophic level species. Trophic magnification factors (TMF) for D4, D5, and D6 were <1.0 (range 0.3 to 0.9) and were consistent between the Inner and Outer Oslofjord, indicating that exposure did not impact TMF across the marine food web. There was no evidence to suggest biomagnification of cVMS in the Oslofjord. Rather, results indicated that trophic dilution of cVMS, not trophic magnification, occurred across the sampled food webs. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Orias, Frédéric; Simon, Laurent; Perrodin, Yves
2015-12-01
Nowadays, pharmaceuticals (PCs) are ubiquitous in aquatic ecosystems. It is known that these compounds have ecotoxic effects on aquatic organisms at low concentrations. Moreover, some of them can bioaccumulate inside organisms or trophic webs exposed at environmental concentrations and amplify ecotoxic impacts. PCs can bioaccumulate in two ways: exposure to a medium (e.g., respiration, diffusion, etc.) and/or through the dietary route. Here, we try to assess the respective contributions of these two forms of contamination of the first two levels of an aquatic trophic web. We exposed Daphnia magna for 5 days to 0, 5, and 50 μg/L (15)N-tamoxifen and then fed them with control and contaminated diets. We used an isotopic method to measure the tamoxifen content inside the daphnids after several minutes' exposure and every day before and after feeding. We found that tamoxifen is very bioaccumulative inside daphnids (BCF up to 12,000) and that the dietary route has a significant impact on contamination by tamoxifen (BAF up to 22,000), especially at low concentrations in medium.
Zainordin, ‘Amila Faqhira; Ab Hamid, Suhaila
2017-01-01
Stable isotope analysis has been used extensively to establish trophic relationships in many ecosystems. Present study utilised stable isotope signatures of carbon and nitrogen to identify trophic structure of aquatic food web in river and rice field ecosystems in Perak, northern peninsular Malaysia. The mean δ13C values of all producers ranged from −35.29 ± 0.21 to −26.00 ± 0.050‰. The greatest δ15N values noted was in zenarchopterid fish with 9.68 ± 0.020‰. The δ15N values of aquatic insects ranged between 2.59 ± 0.107 in Elmidae (Coleoptera) and 8.11 ± 0.022‰ in Nepidae (Hemiptera). Correspondingly, with all the δ13C and δ15N values recorded, it can be deduced that there are four trophic levels existed in the freshwater ecosystems which started with the producer (plants), followed by primary consumer (aquatic insects and non-predatory fish), secondary consumer (invertebrate predators) and lastly tertiary consumer (vertebrate predators). PMID:28890758
Zheng, Guomao; Wan, Yi; Shi, Sainan; Zhao, Haoqi; Gao, Shixiong; Zhang, Shiyi; An, Lihui; Zhang, Zhaobin
2018-04-17
Despite the increasing use and discharge of novel brominated flame retardants, little information is available about their trophodynamics in the aquatic food web, and their subsequent relationships to compound metabolism. In this study, concentrations of 2,4,6-tribromophenyl allyl ether (ATE), 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromo- o-chlorotoluene (TBCT), pentabromobenzyl acrylate (PBBA), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (TBPH), and decabromodiphenyl ethane (DBDPE) were measured in 17 species, including plankton, invertebrates, and fish from Lake Taihu, South China. Trophodynamics of the compounds were assessed, and metabolic rates were measured in the liver microsomes of crucian (trophic level [TL]: 2.93), catfish (TL: 3.86), and yellow-head catfish (TL: 4.3). Significantly positive relationships were found between trophic levels and lipid-normalized concentrations of ATE, BTBPE, and TBPH; their trophic magnification factors (TMFs) were 2.85, 2.83, and 2.42, respectively. Consistently, the three chemicals were resistant to metabolism in all fish microsomes. No significant relationship was observed for βTBECH ( p = 0.116), and DBDPE underwent trophic dilution in the food web (TMFs = 0.37, p = 0.021). Moreover, these two chemicals showed steady metabolism with incubation time in all fish microsomes. TBCT and PBBA exhibited significant trophic magnifications in the food web (TMF = 4.56, 2.01). Though different metabolic rates were observed for the two compounds among the tested fish species, TBCT and PBBA both showed metabolic resistance in high-trophic-level fish. These results indicated that metabolism of organisms at high trophic levels plays an important role in the assessment of trophic magnification potentials of these flame retardant chemicals.
Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia
2013-05-01
Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs. Copyright © 2013 Elsevier Inc. All rights reserved.
Ecological and ecosystem-level impacts of aquatic invasive species in Lake Michigan were examined using the Lake Michigan Ecosystem Model (LM-Eco). The LM-Eco model includes a detailed description of trophic levels and their interactions within the lower food web of Lake Michiga...
Production of EPA and DHA in aquatic ecosystems and their transfer to the land.
Gladyshev, Michail I; Sushchik, Nadezhda N; Makhutova, Olesia N
2013-12-01
Most omnivorous animals, including humans, have to some degree relied on physiologically important polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from food. Only some taxa of microalgae, rather than higher plants can synthesize de novo high amounts of EPA and DHA. Once synthesized by microalgae, PUFA are transferred through trophic chain to organisms of higher levels. Thus, aquatic ecosystems play the unique role in the Biosphere as the principal source of EPA and DHA for most omnivorous animals, including inhabitants of terrestrial ecosystems. PUFA are transferred from aquatic to terrestrial ecosystems through riparian predators, drift of carrion and seaweeds, emergence of amphibiotic insects, and water birds. The essential PUFA are transferred through trophic chains with about twice higher efficiency than bulk carbon. Thereby, PUFA are accumulated, rather than diluted in biomass of organisms of higher trophic levels, e.g., in fish. Mankind is faced with a severe deficiency of EPA and DHA in diet. Although additional sources of PUFA supply for humans, such as aquaculture, biotechnology of microorganisms and transgenic terrestrial oil-seed producing plants are developed, natural fish production of aquatic ecosystems will remain one of the main sources of EPA and DHA for humans. Aquatic ecosystems have to be protected from anthropogenic impacts, such as eutrophication, pollution and warming, which reduce PUFA production. Copyright © 2013 Elsevier Inc. All rights reserved.
Moring, J. Bruce
2010-01-01
During 2007-08 the U.S. Geological Survey, in cooperation with the U.S. Air Force, evaluated the concentration of polychlorinated biphenyls (PCBs) in aquatic invertebrates and fish from one site in the main body of Lake Worth, two sites in a small inlet in Lake Worth (upper and lower Woods Inlet), and one site in Meandering Road Creek in Fort Worth, Texas. The four sites sampled during 2007-08 were located at or near sites where surficial bed-sediment samples had been collected and analyzed for PCBs during previous U.S. Geological Survey studies so that PCB concentrations in aquatic invertebrates and fish and PCB concentrations in surficial bed-sediment samples could be compared. Stable nitrogen and carbon isotopes were used to help assess differences in the amount of these isotopes by species and sampling location. The sum of 15 PCB-congener concentrations was highest for aquatic invertebrates and fish from the upper Woods Inlet site and lowest for the same aquatic invertebrates and fish from Lake Worth site, where PCBs historically had not been detected in lake bed sediment. An increase in the ratio of the heavier nitrogen-15 (15N) isotope to the lighter nitrogen-14 (14N) isotope, referred to as enrichment of 15N, was highest in largemouth bass (representing the highest trophic level sampled) at all sites and lowest for true midge larvae inhabiting surficial bed sediment in the lake (representing the lowest trophic level sampled). Enrichment of 15N was less variable in largemouth bass and other fish from the highest trophic level compared with shorter lived, primary consumer invertebrates from lower trophic levels, such as true midge larvae, mayfly nymphs, and zooplankton. The delta carbon-13 (delta13C) values measured in true midge larvae collected at the Lake Worth and upper and lower Woods Inlet sites were more negative compared with the delta13C values measured for all other taxa, indicating true midge larvae were more depleted of carbon-13 (13C) compared with all other aquatic invertebrate and fish. The relative depletion of 13C might indicate the carbon sources consumed by true midge larvae are different from the carbon sources consumed by all other taxon that were sampled. Ratios of stable nitrogen isotopes nitrogen-15 to nitrogen-14 (delta15N) were similar between taxa from the Lake Worth site and Woods Inlet sites. The sum of 15 PCB-congener concentrations, however, was an order of magnitude higher in largemouth bass from the upper Woods Inlet site, indicating that PCB-congener concentrations in lake bed sediment likely controls biomagnification within the lake because of the similarities in trophic structure of the resident aquatic community. The biota at the Lake Worth reference site, where PCBs were not detected in the surficial sediment during previous studies, were less contaminated than the biota at sites where PCBs had been detected in the surficial sediment. The highest trophic-level consumers (as evidenced by the most 15N-enriched delta15N values) showed the maximum bioaccumulation.
Information relevant to KABAM and explanations of default parameters used to define the 7 trophic levels. KABAM is a simulation model used to predict pesticide concentrations in aquatic regions for use in exposure assessments.
The Value of Using Multiple Metrics to Evaluate PCB Exposure.
Archer, Megan C; Harwood, Amanda D; Nutile, Samuel A; Hartz, Kara E Huff; Mills, Marc A; Garvey, Jim E; Lydy, Michael J
2018-04-01
Current methods for evaluating exposure in ecosystems contaminated with hydrophobic organic contaminants typically focus on sediment exposure. However, a comprehensive environmental assessment requires a more holistic approach that not only estimates sediment concentrations, but also accounts for exposure by quantifying other pathways, such as bioavailability, bioaccumulation, trophic transfer potential, and transport of hydrophobic organic contaminants within and outside of the aquatic system. The current study evaluated the ability of multiple metrics to estimate exposure in an aquatic ecosystem. This study utilized a small lake contaminated with polychlorinated biphenyls (PCBs) to evaluate exposure to multiple trophic levels as well as the transport of these contaminants within and outside of the lake. The PCBs were localized to sediments in one area of the lake, yet this area served as the source of PCBs to aquatic invertebrates, emerging insects, and fish and terrestrial spiders in the riparian ecosystem. The Tenax extractable and biota PCB concentrations indicated tissue concentrations were localized to benthic invertebrates and riparian spiders in a specific cove. Fish data, however, demonstrated that fish throughout the lake had PCB tissue concentrations, leading to wider exposure risk. The inclusion of PCB exposure measures at several trophic levels provided multiple lines of evidence to the scope of exposure through the aquatic and riparian food web, which aids in assessing risk and developing potential future remediation strategies.
Understanding food webs in the Chesapeake Bay
Keough, J.R.; Haramis, G.M.; Perry, M.C.; Perry, M.C.
2002-01-01
Approaches to predictive modeling and to management of the Chesapeake Bay ecosystem are 'bottom up' (i.e., approaches involve the control of nutrient inputs in attempts to manage plankton productivity) and 'top down' (i.e., approaches involve controls on harvest of fisheries and wildlife in attempts to manage vertebrate populations). Both approaches are limited by a lack of understanding of trophic connections between nutrient inputs, primary producers, and higher trophic level consumers. This project is aimed at identifying trophic structure for the submersed aquatic vegetation habitat of the Chesapeake Bay. We are employing analysis of stable isotope ratios of plant and animal tissues to identify trophic levels and traditional food habits analysis to identify the foods of a number of species of waterfowl.
Trophic transfer of microplastics in aquatic ecosystems: Identifying critical research needs.
Au, Sarah Y; Lee, Cindy M; Weinstein, John E; van den Hurk, Peter; Klaine, Stephen J
2017-05-01
To evaluate the process of trophic transfer of microplastics, it is important to consider various abiotic and biotic factors involved in their ingestion, egestion, bioaccumulation, and biomagnification. Toward this end, a review of the literature on microplastics has been conducted to identify factors influencing their uptake and absorption; their residence times in organisms and bioaccumulation; the physical effects of their aggregation in gastrointestinal tracts; and their potential to act as vectors for the transfer of other contaminants. Limited field evidence from higher trophic level organisms in a variety of habitats suggests that trophic transfer of microplastics may be a common phenomenon and occurs concurrently with direct ingestion. Critical research needs include standardizing methods of field characterization of microplastics, quantifying uptake and depuration rates in organisms at different trophic levels, quantifying the influence that microplastics have on the uptake and/or depuration of environmental contaminants among different trophic levels, and investigating the potential for biomagnification of microplastic-associated chemicals. More integrated approaches involving computational modeling are required to fully assess trophic transfer of microplastics. Integr Environ Assess Manag 2017;13:505-509. © 2017 SETAC. © 2017 SETAC.
Zeng, Lixi; Wang, Thanh; Wang, Pu; Liu, Qian; Han, Shanlong; Yuan, Bo; Zhu, Nali; Wang, Yawei; Jiang, Guibin
2011-07-01
Short-chain chlorinated paraffins (SCCPs) are an extremely complex group of industrial chemicals and found to be potential persistent organic pollutants (POPs), and thus have attracted extensive concern worldwide. In this study, influent, effluent, and sludge were collected from a large sewage treatment plant (STP) in Beijing, China. Water, sediment, and aquatic species were also collected from a recipient lake that receives effluents discharged from the STP. These samples were then analyzed to investigate the effect of STP effluent on distribution and trophic transfer of SCCPs in the local aquatic ecosystem. Concentrations of total SCCPs (ΣSCCPs) in lake water and surface sediments were found in the range 162-176 ng/L and 1.1-8.7 μg/g (dry weight, dw), respectively. Vertical concentration profiles of sediment cores showed ΣSCCPs decreased exponentially with increasing depth. Specific congener composition analysis in sediment layers indicated possible in situ biodegradation might be occurring. High bioaccumulation of SCCPs was observed in the sampled aquatic species. The bioaccumulation factor (BAF) generally increased with the number of chlorines in the SCCP congeners. A significantly positive correlation between lipid-normalized ΣSCCPs concentration and trophic levels (R(2) = 0.65, p < 0.05) indicate that SCCPs can biomagnify through the food chain in the effluent-receiving aquatic ecosystem.
40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.
Code of Federal Regulations, 2012 CFR
2012-07-01
... levels of suspended particulates, reduction in food supply, or alteration of the substrate upon which... consumers to higher trophic levels. The reduction or potential elimination of food chain organism...
40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.
Code of Federal Regulations, 2013 CFR
2013-07-01
... levels of suspended particulates, reduction in food supply, or alteration of the substrate upon which... consumers to higher trophic levels. The reduction or potential elimination of food chain organism...
40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.
Code of Federal Regulations, 2014 CFR
2014-07-01
... levels of suspended particulates, reduction in food supply, or alteration of the substrate upon which... consumers to higher trophic levels. The reduction or potential elimination of food chain organism...
40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.
Code of Federal Regulations, 2011 CFR
2011-07-01
... levels of suspended particulates, reduction in food supply, or alteration of the substrate upon which... consumers to higher trophic levels. The reduction or potential elimination of food chain organism...
40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.
Code of Federal Regulations, 2010 CFR
2010-07-01
... levels of suspended particulates, reduction in food supply, or alteration of the substrate upon which... consumers to higher trophic levels. The reduction or potential elimination of food chain organism...
First direct evidence of a vertebrate three-level trophic chain in the fossil record
Kriwet, Jürgen; Witzmann, Florian; Klug, Stefanie; Heidtke, Ulrich H.J
2007-01-01
We describe the first known occurrence of a Permian shark specimen preserving two temnospondyl amphibians in its digestive tract as well as the remains of an acanthodian fish, which was ingested by one of the temnospondyls. This exceptional find provides for the first time direct evidence of a vertebrate three-level food chain in the fossil record with the simultaneous preservation of three trophic levels. Our analysis shows that small-sized Lower Permian xenacanthid sharks of the genus Triodus preyed on larval piscivorous amphibians. The recorded trophic interaction can be explained by the adaptation of certain xenacanthids to fully freshwater environments and the fact that in these same environments, large temnospondyls occupied the niche of modern crocodiles. This unique faunal association has not been documented after the Permian and Triassic. Therefore, this Palaeozoic three-level food chain provides strong and independent support for changes in aquatic trophic chain structures through time. PMID:17971323
First direct evidence of a vertebrate three-level trophic chain in the fossil record.
Kriwet, Jürgen; Witzmann, Florian; Klug, Stefanie; Heidtke, Ulrich H J
2008-01-22
We describe the first known occurrence of a Permian shark specimen preserving two temnospondyl amphibians in its digestive tract as well as the remains of an acanthodian fish, which was ingested by one of the temnospondyls. This exceptional find provides for the first time direct evidence of a vertebrate three-level food chain in the fossil record with the simultaneous preservation of three trophic levels. Our analysis shows that small-sized Lower Permian xenacanthid sharks of the genus Triodus preyed on larval piscivorous amphibians. The recorded trophic interaction can be explained by the adaptation of certain xenacanthids to fully freshwater environments and the fact that in these same environments, large temnospondyls occupied the niche of modern crocodiles. This unique faunal association has not been documented after the Permian and Triassic. Therefore, this Palaeozoic three-level food chain provides strong and independent support for changes in aquatic trophic chain structures through time.
Use of mesocosm data to predict effects in aquatic ecosystems: Limits to interpretation: Chapter 16
La Point, Thomas W.; Fairchild, James F.; Graney, Robert L.; Kennedy, James H.; Rodgers, John H.
1993-01-01
Aquatic mesocosm studies are being used to refute a presumption of risk derived from laboratory toxicity tests conducted under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). Mesocosm studies incorporate many biological, chemical and physical characteristics of natural ecosystems. Hence, they serve as realistic surrogates of natural ecosystems and allow tests of pesticide effect at the population, community, and ecosystem level. We discuss two factors, ecosystem trophic status and organism life history, which influence the results derived from aquatic mesocosm studies. Trophic status influences the fat and effects of chemicals which strongly sorb or biologically degrade, yet may not be as important in the fate and effects of more water soluble chemicals. Life history traits of organisms and the intensity, frequency, and duration of the pesticide disturbance also determine the mesocosm response pattern.
The paradox of enrichment in phytoplankton by induced competitive interactions
Tubay, Jerrold M.; Ito, Hiromu; Uehara, Takashi; Kakishima, Satoshi; Morita, Satoru; Togashi, Tatsuya; Tainaka, Kei-ichi; Niraula, Mohan P.; Casareto, Beatriz E.; Suzuki, Yoshimi; Yoshimura, Jin
2013-01-01
The biodiversity loss of phytoplankton with eutrophication has been reported in many aquatic ecosystems, e.g., water pollution and red tides. This phenomenon seems similar, but different from the paradox of enrichment via trophic interactions, e.g., predator-prey systems. We here propose the paradox of enrichment by induced competitive interactions using multiple contact process (a lattice Lotka-Volterra competition model). Simulation results demonstrate how eutrophication invokes more competitions in a competitive ecosystem resulting in the loss of phytoplankton diversity in ecological time. The paradox is enhanced under local interactions, indicating that the limited dispersal of phytoplankton reduces interspecific competition greatly. Thus, the paradox of enrichment appears when eutrophication destroys an ecosystem either by elevated interspecific competition within a trophic level and/or destabilization by trophic interactions. Unless eutrophication due to human activities is ceased, the world's aquatic ecosystems will be at risk. PMID:24089056
Croteau, M.-N.; Luoma, S.N.; Stewart, A.R.
2005-01-01
We conducted a study with cadmium (Cd) and copper (Cu) in the delta of San Francisco Bay, using nitrogen and carbon stable isotopes to identify trophic position and food web structure. Cadmium is progressively enriched among trophic levels in discrete epiphyte-based food webs composed of macrophyte-dwelling invertebrates (the first link being epiphytic algae) and fishes (the first link being gobies). Cadmium concentrations were biomagnified 15 times within the scope of two trophic links in both food webs. Trophic enrichment in invertebrates was twice that of fishes. No tendency toward trophic-level enrichment was observed for Cu, regardless of whether organisms were sorted by food web or treated on a taxonomic basis within discrete food webs. The greatest toxic effects of Cd are likely to occur with increasing trophic positions, where animals are ingesting Cd-rich prey (or food). In Franks Tract this occurs within discrete food chains composed of macrophyte-dwelling invertebrates or fishes inhabiting submerged aquatic vegetation. Unraveling ecosystem complexity is necessary before species most exposed and at risk can be identified. ?? 2005, by the American Society of Limnology and Oceanography, Inc.
Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory
USDA-ARS?s Scientific Manuscript database
Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (= ‘brown’) food-webs has remained impenetrable. Measurement of detritivore trophic position is complicated by the fact that detritu...
Multi-trophic resilience of boreal lake ecosystems to forest fires
Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Bertram, M.R.
2014-01-01
Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.
Multi-trophic resilience of boreal lake ecosystems to forest fires.
Lewis, Tyler L; Lindberg, Mark S; Schmutz, Joel A; Bertram, Mark R
2014-05-01
Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll a levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.
Self-organization of dissolved organic matter to micelle-like microparticles in river water.
Kerner, Martin; Hohenberg, Heinz; Ertl, Siegmund; Reckermann, Marcus; Spitzy, Alejandro
2003-03-13
In aquatic systems, the concept of the 'microbial loop' is invoked to describe the conversion of dissolved organic matter to particulate organic matter by bacteria. This process mediates the transfer of energy and matter from dissolved organic matter to higher trophic levels, and therefore controls (together with primary production) the productivity of aquatic systems. Here we report experiments on laboratory incubations of sterile filtered river water in which we find that up to 25% of the dissolved organic carbon (DOC) aggregates abiotically to particles of diameter 0.4-0.8 micrometres, at rates similar to bacterial growth. Diffusion drives aggregation of low- to high-molecular-mass DOC and further to larger micelle-like microparticles. The chemical composition of these microparticles suggests their potential use as food by planktonic bacterivores. This pathway is apparent from differences in the stable carbon isotope compositions of picoplankton and the microparticles. A large fraction of dissolved organic matter might therefore be channelled through microparticles directly to higher trophic levels--bypassing the microbial loop--suggesting that current concepts of carbon conversion in aquatic systems require revision.
Integrating microbes into food-chains: Insect trophic identity reflects rampant microbivory
USDA-ARS?s Scientific Manuscript database
Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (= ‘brown’) food-webs has remained relatively impenetrable. Measurement of detritivore trophic position is complicated by the fact t...
Application of a Lower Food Resulting from Aquatic Invasive Species in Lake Michigan
Lake Michigan Ecosystem Model (LM-Eco) that includes a detailed description of trophic levels and their interactions was developed for Lake Michigan. The LM-Eco model construct has been applied in two phases to investigate ecosystem-level responses and effects corresponding with...
Mesoscale Eddies Are Oases for Higher Trophic Marine Life
Godø, Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.
2012-01-01
Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. PMID:22272294
Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium?
Kovářová, Jana; Svobodová, Zdeňka
2009-01-01
Due to anthropogenic activities, heavy metals still represent a threat for various trophic levels. If aquatic animals are exposed to heavy metals we can obviously observe considerable toxicity. It is well known that an organism affected by cadmium (Cd) synthesize low molecular mass thiol compounds rich in cysteine (Cys), such as metallothioneins (MT) and glutathione (GSH/GSSG). The aim of this study was to summarize the effect of Cd on level of thiol compounds in aquatic organisms, and evaluate that the concentrations of thiol compounds are effective indicators of Cd water pollution and explain their potential use in biomonitoring applications. PMID:21217850
Summers, Jamie C; Kurek, Joshua; Rühland, Kathleen M; Neville, Erin E; Smol, John P
2017-08-15
The Athabasca Oil Sands Region (AOSR) has been intensely developed for industrial bitumen extraction and upgrading since the 1980s. A paucity of environmental monitoring prior to development raises questions about baseline conditions in freshwater systems in the region and ecological responses to industrial activities. Further, climatic changes prompt questions about the relative roles of climate and industry in shaping aquatic ecosystems through time. We use aquatic bioindicators from multiple trophic levels, concentrations of petrogenic contaminants (dibenzothiophenes), and spectrally-inferred chlorophyll-a preserved in well-dated sediments of a closed-basin, shallow lake ~50km away from the main area of industry, in conjunction with climate observations, to assess how the biotic assemblages of a typical AOSR lake have changed during the past ~75years. We examine the contributions of the area's stressors in structuring aquatic communities. Increases in sedimentary measures of petrogenic contaminants provide clear evidence of aerial contaminant deposition from local industry since its establishment, while climate records demonstrate consistent warming and a recent period of reduced precipitation. Quantitative comparisons of biological assemblages from before and after the establishment of regional industry find significant (p<0.05) differences; however, the magnitude and overall timing of the changes are not consistent with a threshold-type shift in response to the onset of regional industry. Rather, biotic assemblages from multiple trophic levels suggest transitions to an increasingly complex benthic environment and relatively warmer waters, which, like the increasing trends in inferred primary production, are consistent with a changing climate. These findings highlight the important role of climate conditions in regulating primary production and structuring aquatic communities in these shallow systems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Morgalev, S.; Morgaleva, T.; Gosteva, I.; Morgalev, Yu
2015-11-01
We assessed ecological and biological effects caused by the physical and chemical properties of nanomaterials on the basis of the laboratory researches into water test-organisms of different trophic levels. We studied the physiological functions of water organisms on adding into the environment superfine materials of various chemical nature and structural characteristics: metallic nanoparticles of nikel (nNi), argentum (nAg), platinum (nPt), aurum (nAu), binary NPs (powder of titanium dioxide - nTiO2, aluminum oxide - nAl2O3, zink oxide - nZnO, silicon nitride - nSi3N4, silicon carbide (nSiC) and carbon nanotubes (BT-50, MCD- material). We observed the dependence of developing the complex of unfavourable biological effects in water plants and entomostracans’ organisms on the physical and chemical properties of superfine materials. We determined the values of NOEC, L(E)C20 and L(E)C50 for aquatic organisms of various regular groups. We found out the most vulnerable elements of the communities’ trophic structure and the possibility of a breakdown in the water ecosystem food pyramid.
Phenological sensitivity to climate across taxa and trophic levels.
Thackeray, Stephen J; Henrys, Peter A; Hemming, Deborah; Bell, James R; Botham, Marc S; Burthe, Sarah; Helaouet, Pierre; Johns, David G; Jones, Ian D; Leech, David I; Mackay, Eleanor B; Massimino, Dario; Atkinson, Sian; Bacon, Philip J; Brereton, Tom M; Carvalho, Laurence; Clutton-Brock, Tim H; Duck, Callan; Edwards, Martin; Elliott, J Malcolm; Hall, Stephen J G; Harrington, Richard; Pearce-Higgins, James W; Høye, Toke T; Kruuk, Loeske E B; Pemberton, Josephine M; Sparks, Tim H; Thompson, Paul M; White, Ian; Winfield, Ian J; Wanless, Sarah
2016-07-14
Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).
Dong, Shipeng; Xia, Tian; Yang, Yu; Lin, Sijie; Mao, Liang
2018-01-16
The growing applications of graphene materials warrant a careful evaluation of their environmental fate in aquatic food webs. Escherichia coli (Bacteria), Tetrahymena thermophila (protozoa), Daphnia magna (zooplankton), and Danio rerio (vertebrate) were used to build aquatic food chains to investigate the waterborne uptake and trophic transfer of 14 C-labeled graphene. Body burden factor (BBF) and trophic transfer factor (TTF) were analyzed for each organism and food chain to assess the bioaccumulation and biomagnification of graphene. The test organisms have high potential of accumulating graphene via direct uptake from culture medium with log-transformed BBF (log BBF) values of 3.66, 5.1, 3.9, and 1.62 for each organism, respectively. In the food chain from E. coli to T. thermophila, the calculated TTFs of 0.2 to 8.6 indicate the high trophic transfer potential in this aquatic food chain. However, the TTFs calculated for the food chain from T. thermophila to D. magna and from D. magna to D. rerio are much lower than 1, indicating that biomagnification was unlikely to occur in these food chains. Body burden measured for dietary uptake by T. thermophila, D. magna, and D. rerio are higher than that via waterborne exposure in a similar nominal concentration, respectively, indicating that trophic transfer is a nonnegligible route for the bioaccumulation of graphene in organisms.
Common carp disrupt ecosystem structure and function through middle-out effects
Kaemingk, Mark A.; Jolley, Jeffrey C.; Paukert, Craig P.; Willis, David W.; Henderson, Kjetil R.; Holland, Richard S.; Wanner, Greg A.; Lindvall, Mark L.
2016-01-01
Middle-out effects or a combination of top-down and bottom-up processes create many theoretical and empirical challenges in the realm of trophic ecology. We propose using specific autecology or species trait (i.e. behavioural) information to help explain and understand trophic dynamics that may involve complicated and non-unidirectional trophic interactions. The common carp (Cyprinus carpio) served as our model species for whole-lake observational and experimental studies; four trophic levels were measured to assess common carp-mediated middle-out effects across multiple lakes. We hypothesised that common carp could influence aquatic ecosystems through multiple pathways (i.e. abiotic and biotic foraging, early life feeding, nutrient). Both studies revealed most trophic levels were affected by common carp, highlighting strong middle-out effects likely caused by common carp foraging activities and abiotic influence (i.e. sediment resuspension). The loss of water transparency, submersed vegetation and a shift in zooplankton dynamics were the strongest effects. Trophic levels furthest from direct pathway effects were also affected (fish life history traits). The present study demonstrates that common carp can exert substantial effects on ecosystem structure and function. Species capable of middle-out effects can greatly modify communities through a variety of available pathways and are not confined to traditional top-down or bottom-up processes.
Williams, Natalia; Rizzo, Andrea; Arribére, María A; Suárez, Diego Añón; Guevara, Sergio Ribeiro
2018-01-01
Silver (Ag) is a pollutant of high concern in aquatic ecosystems, considered among the most toxic metallic ions. In lacustrine environments, contaminated sediments are a source of Ag for the food web. Chironomidae (Insecta: Diptera) are the most abundant, diverse, and representative insect groups in aquatic ecosystems. Chironomid larvae are closely associated to benthic substrates and link primary producers and secondary consumers. Given their trophic position and their life habits, these larvae can be considered the entry point for the transference of Ag, from the benthic deposit to the higher trophic levels of the food web. Previous studies in lakes from Nahuel Huapi National Park (Northern Patagonia) showed Ag enrichment over background levels (0.04-0.1 μg g -1 dry weight) both in biota (bivalves and fish liver) and sediments from sites near human settlements. The aim of this study was to analyze the role of chironomids in the transference of Ag from the benthic reservoir of Lake Moreno Oeste to the food web. The concentration of Ag in chironomid larvae tissue ranged from 0.1 to 1.5 μg g -1 dry weight, reaching a bioaccumulation factor up to 17 over substrates and depending on the associated substrate type, feeding habitats, larval stage, and season. The main Ag transfer to higher trophic levels by chironomids occurs in the littoral zone, mostly from larvae inhabiting submerged vegetation (Myriophyllum quitense) and sediment from vegetated zones. This study presents novel evidence of the doorway role played by chironomid larvae in Ag pathways from the sediments into food webs of freshwater ecosystems.
Accumulation and fate of mercury in an Everglades aquatic food web
Loftus, William F.
2000-01-01
This project examined the pathways of mercury (Hg) bioaccumulation and its relation to trophic position and hydroperiod in the Everglades. I described fish-diet differences across habitats and seasons by analyzing stomach contents of 4,000 fishes of 32 native and introduced species. Major foods included periphyton, detritus/algal conglomerate, small invertebrates, aquatic insects, decapods, and fishes. Florida gar, largemouth bass, pike killifish, and bowfin were at the top of the piscine food web. Using prey volumes, I quantitatively classified the fishes into trophic groups of herbivores, omnivores, and carnivores. Stable-isotope analysis of fishes and invertebrates gave an independent and similar assessment of trophic placement. Trophic patterns were similar to those from tropical communities. I tested for correlations of trophic position and total mercury. Over 4,000 fish, 620 invertebrate, and 46 plant samples were analyzed for mercury with an atomic-fluorescence spectrometer. Mercury varied within and among taxa. Invertebrates ranged from 25–200 ng g −1 ww. Small-bodied fishes varied from 78–>400 ng g −1 ww. Large predatory fishes were highest, reaching a maximum of 1,515 ng−1 ww. Hg concentrations in both fishes and invertebrates were positively correlated with trophic position. I examined the effects of season and hydroperiod on mercury in wild and caged mosquitofish at three pairs of marshes. Nine monthly collections of wild mosquitofish were analyzed. Hydroperiod-within-site significantly affected concentrations but it interacted with sampling period. To control for wild-fish dispersal, and to measure in situ uptake and growth, I placed captive-reared, neonate mosquitofish with mercury levels from 7–14 ng g−1 ww into field cages in the six study marshes in six trials. Uptake rates ranged from 0.25–3.61 ng g−1 ww d −1. As with the wild fish, hydroperiod-within-site was a significant main effect that also interacted with sampling period. Survival exceeded 80%. Growth varied with season and hydroperiod, with greatest growth in short-hydroperiod marshes. The results suggest that dietary bioaccumulation determined mercury levels in Everglades aquatic animals, and that, although hydroperiod affected mercury uptake, its effect varied with season.
Powell, David E; Suganuma, Noriyuki; Kobayashi, Keiji; Nakamura, Tsutomu; Ninomiya, Kouzo; Matsumura, Kozaburo; Omura, Naoki; Ushioka, Satoshi
2017-02-01
Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS), specifically octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were evaluated in the pelagic marine food web of Tokyo Bay, Japan. Polychlorinated biphenyl (PCB) congeners that are "legacy" chemicals known to bioaccumulate in aquatic organisms and biomagnify across aquatic food webs were used as a benchmark chemical (CB-180) to calibrate the sampled food web and as a reference chemical (CB-153) to validate the results. Trophic magnification factors (TMFs) were calculated from slopes of ordinary least-squares (OLS) regression models and slopes of bootstrap regression models, which were used as robust alternatives to the OLS models. Various regression models were developed that incorporated benchmarking to control bias associated with experimental design, food web dynamics, and trophic level structure. There was no evidence from any of the regression models to suggest biomagnification of cVMS in Tokyo Bay. Rather, the regression models indicated that trophic dilution of cVMS, not trophic magnification, occurred across the sampled food web. Comparison of results for Tokyo Bay to results from other studies indicated that bioaccumulation of cVMS was not related to type of food web (pelagic vs demersal), environment (marine vs freshwater), species composition, or location. Rather, results suggested that differences between study areas was likely related to food web dynamics and variable conditions of exposure resulting from non-uniform patterns of organism movement across spatial concentration gradients. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem.
Amundrud, Sarah L; Srivastava, Diane S
2015-07-01
Species and trophic richness often increase with habitat size. Although many ecological processes have been evoked to explain both patterns, the environmental stress associated with small habitats has rarely been considered. We propose that larger habitats may be species rich simply because their environmental conditions are within the fundamental niche of more species; larger habitats may also have more trophic levels if traits of predators render them vulnerable to environmental stress. We test this hypothesis using the aquatic insect larvae in water-filled bromeliads. In bromeliads, the probability of desiccation is greatest in small plants. For the 10 most common bromeliad insect taxa, we ask whether differences in drought tolerance and regional abundances between taxa predict community and trophic composition over a gradient of bromeliad size. First, we used bromeliad survey data to calculate the mean habitat size of occurrence of each taxon. Comparing the observed mean habitat size of occurrence to that expected from random species assembly based on differences in their regional abundances allowed us to obtain habitat size sensitivity indices (as Z scores) for the various insect taxa. Second, we obtained drought sensitivity indices by subjecting individual insects to drought and measuring the effects on relative growth rates in a mesocosm experiment. We found that drought sensitivity strongly, predicts habitat size sensitivity in bromeliad insects. However, an increase in trophic richness with habitat size could not be explained by an increased sensitivity of predators to drought, but rather by sampling effects, as predators were rare compared to lower trophic levels. This finding suggests that physiological tolerance to environmental stress can be relevant in explaining the universal increase in species with habitat size.
Use of stable isotope analysis in determining aquatic food webs
Stable isotope analysis is a useful tool for describing resource-consumer dynamics in ecosystems. In general, organisms of a given trophic level or functional feeding group will have a stable isotope ratio identifiable different than their prey because of preferential use of one ...
Effects of ultraviolet radiation and contaminant-related stressors on arctic freshwater ecosystems.
Wrona, Frederick J; Prowse, Terry D; Reist, James D; Hobbie, John E; Lévesque, Lucie M J; Macdonald, Robie W; Vincent, Warwick F
2006-11-01
Climate change is likely to act as a multiple stressor, leading to cumulative and/or synergistic impacts on aquatic systems. Projected increases in temperature and corresponding alterations in precipitation regimes will enhance contaminant influxes to aquatic systems, and independently increase the susceptibility of aquatic organisms to contaminant exposure and effects. The consequences for the biota will in most cases be additive (cumulative) and multiplicative (synergistic). The overall result will be higher contaminant loads and biomagnification in aquatic ecosystems. Changes in stratospheric ozone and corresponding ultraviolet radiation regimes are also expected to produce cumulative and/or synergistic effects on aquatic ecosystem structure and function. Reduced ice cover is likely to have a much greater effect on underwater UV radiation exposure than the projected levels of stratospheric ozone depletion. A major increase in UV radiation levels will cause enhanced damage to organisms (biomolecular, cellular, and physiological damage, and alterations in species composition). Allocations of energy and resources by aquatic biota to UV radiation protection will increase, probably decreasing trophic-level productivity. Elemental fluxes will increase via photochemical pathways.
Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Qin, Boqiang; Yao, Xiaolong; Zhang, Yibo
2017-12-26
Chromophoric dissolved organic matter (CDOM) is an important optically active substance in aquatic environments and plays a key role in light attenuation and in the carbon, nitrogen and phosphorus biogeochemical cycles. Although the optical properties, abundance, sources, cycles, compositions and remote sensing estimations of CDOM have been widely reported in different aquatic environments, little is known about the optical properties and composition changes in CDOM along trophic gradients. Therefore, we collected 821 samples from 22 lakes along a trophic gradient (oligotrophic to eutrophic) in China from 2004 to 2015 and determined the CDOM spectral absorption and nutrient concentrations. The total nitrogen (TN), total phosphorus (TP), and chlorophyll a (Chla) concentrations and the Secchi disk depth (SDD) ranged from 0.02 to 24.75 mg/L, 0.002-3.471 mg/L, 0.03-882.66 μg/L, and 0.05-17.30 m, respectively. The trophic state index (TSI) ranged from 1.55 to 98.91 and covered different trophic states, from oligotrophic to hyper-eutrophic. The CDOM absorption coefficient at 254 nm (a(254)) ranged from 1.68 to 92.65 m -1 . Additionally, the CDOM sources and composition parameters, including the spectral slope and relative molecular size value, exhibited a substantial variability from the oligotrophic level to other trophic levels. The natural logarithm value of the CDOM absorption, lna(254), is highly linearly correlated with the TSI (r 2 = 0.92, p < .001, n = 821). Oligotrophic lakes are distinguished by a(254)<4 m -1 , and mesotrophic and eutrophic lakes are classified as 4 ≤ a(254)≤10 and a(254)>10 m -1 , respectively. The results suggested that the CDOM absorption coefficient a(254) might be a more sensitive single indicator of the trophic state than TN, TP, Chla and SDD. Therefore, we proposed a CDOM absorption coefficient and determined the threshold for defining the trophic state of a lake. Several advantages of measuring and estimating CDOM, including rapid experimental measurements, potential in situ optical sensor measurements and large-spatial-scale remote sensing estimations, make it superior to traditional TSI techniques for the rapid monitoring and assessment of lake trophic states. Copyright © 2017 Elsevier Ltd. All rights reserved.
Contrasting effects of aquatic subsidies on a terrestrial trophic cascade
Bucher, Roman; Schäfer, Ralf B.; Entling, Martin H.
2017-01-01
Subsidies from adjacent ecosystems can alter recipient food webs and ecosystem functions, such as herbivory. Emerging aquatic insects from streams can be an important prey in the riparian zone. Such aquatic subsidies can enhance predator abundances or cause predators to switch prey, depending on the herbivores. This can lead to an increase or decrease of in situ herbivores and herbivory. We examined the effects of aquatic subsidies on a simplified terrestrial food web consisting of two types of herbivores, plants and predators (spiders). In our six-week experiment, we focused on the prey choice of the spiders by excluding predator immigration and reproduction. In accordance with predator switching, survival of leafhoppers increased in the presence of aquatic subsidies. By contrast, the presence of aquatic subsidies indirectly reduced weevils and herbivory. Our study shows that effects of aquatic subsidies on terrestrial predators can propagate through the food web in contrasting ways. Thereby, the outcome of the trophic cascade is determined by the prey choice of predators. PMID:28539461
Contrasting effects of aquatic subsidies on a terrestrial trophic cascade.
Graf, Nadin; Bucher, Roman; Schäfer, Ralf B; Entling, Martin H
2017-05-01
Subsidies from adjacent ecosystems can alter recipient food webs and ecosystem functions, such as herbivory. Emerging aquatic insects from streams can be an important prey in the riparian zone. Such aquatic subsidies can enhance predator abundances or cause predators to switch prey, depending on the herbivores. This can lead to an increase or decrease of in situ herbivores and herbivory. We examined the effects of aquatic subsidies on a simplified terrestrial food web consisting of two types of herbivores, plants and predators (spiders). In our six-week experiment, we focused on the prey choice of the spiders by excluding predator immigration and reproduction. In accordance with predator switching, survival of leafhoppers increased in the presence of aquatic subsidies. By contrast, the presence of aquatic subsidies indirectly reduced weevils and herbivory. Our study shows that effects of aquatic subsidies on terrestrial predators can propagate through the food web in contrasting ways. Thereby, the outcome of the trophic cascade is determined by the prey choice of predators. © 2017 The Author(s).
The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals
NASA Astrophysics Data System (ADS)
Casey, Michelle M.; Post, David M.
2011-05-01
Stable isotope methods are powerful, frequently used tools which allow diet and trophic position reconstruction of organisms and the tracking of energy sources through ecosystems. The majority of ecosystems have multiple food sources which have distinct carbon and nitrogen isotopic signatures despite occupying a single trophic level. This difference in the starting isotopic composition of primary producers sets up an isotopic baseline that needs to be accounted for when calculating diet or trophic position using stable isotopic methods. This is particularly important when comparing animals from different regions or different times. Failure to do so can cause erroneous estimations of diet or trophic level, especially for organisms with mixed diets. The isotopic baseline is known to vary seasonally and in concert with a host of physical and chemical variables such as mean annual rainfall, soil maturity, and soil pH in terrestrial settings and lake size, depth, and distance from shore in aquatic settings. In the fossil record, the presence of shallowing upward suites of rock, or parasequences, will have a considerable impact on the isotopic baseline as basin size, depth and distance from shore change simultaneously with stratigraphic depth. For this reason, each stratigraphic level is likely to need an independent estimation of baseline even within a single outcrop. Very little is known about the scope of millennial or decadal variation in isotopic baseline. Without multi-year data on the nature of isotopic baseline variation, the impacts of time averaging on our ability to resolve trophic relationships in the fossil record will remain unclear. The use of a time averaged baseline will increase the amount of error surrounding diet and trophic position reconstructions. Where signal to noise ratios are low, due to low end member disparity (e.g., aquatic systems), or where the observed isotopic shift is small (≤ 1‰) the error introduced by time averaging may severely inhibit the scope of one's interpretations and limit the types of questions one can reliably answer. In situations with strong signal strength, resulting from high amounts of end member disparity (e.g., terrestrial settings), this additional error maybe surmountable. Baseline variation that is adequately characterized can be dealt with by applying multiple end-member mixing models.
A Synthesis of the Effects of Pesticides on Microbial Persistence in Aquatic Ecosystems
Staley, Zachery R.; Harwood, Valerie J.; Rohr, Jason R.
2016-01-01
Pesticides are a pervasive presence in aquatic ecosystems throughout the world. While pesticides are intended to control fungi, insects, and other pests, their mechanisms of action are often not specific enough to prevent unintended effects, such as on non-target microbial populations. Microorganisms, including algae and cyanobacteria, protozoa, aquatic fungi, and bacteria, form the basis of many food webs and are responsible for crucial aspects of biogeochemical cycling; therefore, the potential for pesticides to alter microbial community structures must be understood to preserve ecosystem services. This review examines studies that focused on direct population-level effects and indirect community-level effects of pesticides on microorganisms. Generally, insecticides, herbicides, and fungicides were found to have adverse direct effects on algal and fungal species. Insecticides and fungicides also had deleterious direct effects in the majority of studies examining protozoa species, although herbicides were found to have inconsistent direct effects on protozoans. Our synthesis revealed mixed or no direct effects on bacterial species among all pesticide categories, with results highly dependent on the target species, chemical, and concentration used in the study. Examination of community-level, indirect effects revealed that all pesticide categories had a tendency to reduce higher trophic levels, thereby diminishing top-down pressures and favoring lower trophic levels. Often, indirect effects exerted greater influence than direct effects. However, few studies have been conducted to specifically address community-level effects of pesticides on microorganisms and further research is necessary to better understand and predict the net effects of pesticides on ecosystem health. PMID:26565685
Liao, Mengna; Yu, Ge; Guo, Ya
2017-01-01
Poyang Lake is suffering from persistent eutrophication, which is degrading the local ecosystem. A better understanding of the mechanisms that drive eutrophication in lake systems is essential to fight the ongoing deterioration. In this study, hydraulic residence time (HRT) was used to evaluate Poyang Lake’s trophic state. A hydrology and ecosystem forced model was constructed to simulate long-term changes in algae and aquatic plant biomass and total phosphorous (TP). A comparison analysis revealed that between 1812 and 1828 (i.e., a consistent-change stage), climate and hydrology were the main driving forces, while algae and aquatic plant biomass contributed only 20.9% to the trophic changes in Poyang Lake. However, between 1844 and 1860 the biomass predominated contributing 63.6%. This could be attributed to nutrient absorption by algae and aquatic plants. A correlation analysis of the water TP and algae and aquatic plant biomass revealed a strong positive relationship. However, the algae and aquatic plant growth rate tended to decline after the biomass reached half of the maximum. This research reconstructs the long-term trophic evolution of Poyang Lake and provides a better understanding of the relationship between climatic and hydrological changes and lake ecosystems. PMID:28046083
Kim, Seung Kyu; Lee, Dong Soo; Oh, Jae Ryong
2002-04-01
The trophic transfer of polychlorinated biphenyls (PCBs) was characterized for zooplankton (primarily Paracalanus spp. and Acartia spp.), pacific oyster (Crassostrea gigas), shore crab (Hemigrapsus penicillatus), and goby (Acanthogobius hasta) in the aquatic system of Incheon North Harbor, Korea. The congener pattern in the species was clearly divided by the main PCB uptake route. Compared with zooplankton and oyster, the fraction of heavier homologues increased in crab and goby that take PCBs from food. Linear relationships were observed between log (fugacity in lipid/fugacity in seawater) and log Kow for all the species. For zooplankton and oyster, such an observation should not be regarded as a true absence of superhydrophobicity, because establishment of equilibrium with seawater was not evident. For crab and goby, the absence of superhydrophobicity was evidenced by the trophic transfer factor that continuously increased with Kow up to 10(7.8). These results suggest that superhydrophobicity might be species specific. The trophic transfer factors and the fugacity levels in the lipid phase indicated that bioaccumulation in crab and goby advanced beyond the level in equilibrium with seawater in the harbor basin.
A study was conducted to determine if differential display could be used to detect differences in gene expression in the amphipod, Hyalella azteca. In a study of synthetic estrogen attenuation in different aquatic media, amphipods were exposed to 20 ng/L 17 a-ethynylestradiol in...
COMPARISON OF STABLE-NITROGEN (15N/14N) ISOTOPE RATIOS IN LARGE MOUTH BASS SCALES AND MUSCLE TISSUE
Stable-nitrogen (15N/14N) isotope ratios of fish tissue are currently used to determine trophic structure, contaminant bioaccumulation, and the level of anthropogenic nitrogen enrichment in aquatic systems. The most common tissue used for these measurements is fileted dorsal musc...
Du, Bowen; Haddad, Samuel P.; Luek, Andreas; Scott, W. Casan; Saari, Gavin N.; Kristofco, Lauren A.; Connors, Kristin A.; Rash, Christopher; Rasmussen, Joseph B.; Chambliss, C. Kevin; Brooks, Bryan W.
2014-01-01
Though pharmaceuticals are increasingly observed in a variety of organisms from coastal and inland aquatic systems, trophic transfer of pharmaceuticals in aquatic food webs have not been reported. In this study, bioaccumulation of select pharmaceuticals was investigated in a lower order effluent-dependent stream in central Texas, USA, using isotope dilution liquid chromatography–tandem mass spectrometry (MS). A fish plasma model, initially developed from laboratory studies, was tested to examine observed versus predicted internal dose of select pharmaceuticals. Pharmaceuticals accumulated to higher concentrations in invertebrates relative to fish; elevated concentrations of the antidepressant sertraline and its primary metabolite desmethylsertraline were observed in the Asian clam, Corbicula fluminea, and two unionid mussel species. Trophic positions were determined from stable isotopes (δ15N and δ13C) collected by isotope ratio-MS; a Bayesian mixing model was then used to estimate diet contributions towards top fish predators. Because diphenhydramine and carbamazepine were the only target compounds detected in all species examined, trophic magnification factors (TMFs) were derived to evaluate potential trophic transfer of both compounds. TMFs for diphenhydramine (0.38) and carbamazepine (1.17) indicated neither compound experienced trophic magnification, which suggests that inhalational and not dietary exposure represented the primary route of uptake by fish in this effluent-dependent stream. PMID:25313153
Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, U.S.A.) kettle ponds
Roman, C.T.; Barrett, N.E.; Portnoy, J.W.
2001-01-01
The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.
Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, USA) kettle ponds
Roman, C.T.; Barrett, N.E.; Portnoy, J.W.
2001-01-01
The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.
Application of Trophic Magnification Factors (TMFs) Under the ...
Directive 2013/39/EU amending and updating the Water Framework Directive (2000/60/EC) and its Daughter Directive (the so-called EQS Directive: 2008/105/EC) sets Environmental Quality Standards for biota (EQSbiota) for a number of bioaccumulative chemicals which can pose a threat to both aquatic wildlife (piscivorous birds and mammals) and human health via the consumption of contaminated prey or the intake of contaminated food originating from the aquatic environment. Member States (MS) of the European Union will need to establish programs to monitor the concentration of 11 priority substances in biota and assess compliance against these new standards for surface water classification. The biota standards essentially refer to fish and should be applied to the trophic level (TL) at which contaminant concentrations peak, so that the predator of the species at that TL is exposed to the highest contaminant levels in its food. For chemicals that are subject to biomagnification, the peak concentrations are theoretically attained at TL 3 to 4 in freshwater food webs and TL 5 in marine food webs, where the risk of secondary poisoning of top predators should also be considered. An EU-wide guidance effectively addresses the implementation of EQSbiota (EC 2014). Flexibility is allowed in the choice of target species used for monitoring because of the diversity of both habitats and aquatic community composition across Europe. According to that guidance, the consistency and co
W.F. Henley; M.A. Patterson; R.J. Neves; A. Dennis Lemly
2000-01-01
Sedimentation and turbidity are significant contributors to declines in populations of North American aquatic organisms. Impacts to lotic fauna may be expressed through pervasive alterations in local food chains beginning at the primary trophic level. Decreases in primary production are associated with increases in sedimentation and turbidity and produce negative...
M.W. Griswold; R.T. Winn; T.L. Crisman; W.R. White
2006-01-01
Streamside Management Zones (SMZs) are meant to protect riparian habitat and the stream ecosystem. Benthic macroinvertebrates are recognized bioindicators of water quality in streams, typically occupying multiple trophic levels in these systems and providing food for vertebrates. Thus, it is important to understand the effects of harvest within and adjacent to the SMZ...
Verhaert, Vera; Covaci, Adrian; Bouillon, Steven; Abrantes, Katya; Musibono, Dieudonné; Bervoets, Lieven; Verheyen, Erik; Blust, Ronny
2013-09-01
The present study aimed to evaluate the occurrence of persistent organic pollutants (POPs: (PCBs, PBDEs, DDTs, HCHs, CHLs and HCB) in sediments and biota from the middle Congo River Basin (CRB) and to investigate their trophic transfer through the aquatic food web using nitrogen stable isotope ratios. To our knowledge, no data on levels of POPs in sediment and biota from the CRB are present in the literature, and studies on trophic transfer and biomagnification profiles of POPs using δ(15)N are scarce in tropical regions. POP levels in the sediment and biota were low, with exception of total PCB levels found in fish from the Itimbiri River (1.4 to 44ng/g ww). Compared to concentrations found in fish from pristine to relatively industrial developed areas, the ∑PCB levels in fish from the Itimbiri were high, indicating the presence of a local PCB contamination source in this catchment. Based on minimum risk level criteria formulated by ATSDR, the consumption of PCB contaminated fish from the Itimbiri river poses a potential risk for humans. The POP levels in biota were not significantly related to the POP levels in sediments, and the BSAF concept (Biota-Sediment Accumulation Factor) was found to be a poor predictor of the bioavailability and bioaccumulation of environmental pollutants in the present study. With increasing trophic levels, a significant increase in PCB 95, 101, 110, 138, 146, 149, 153, 174, 180 & 187 and p,p'-DDT in Itimbiri and BDE 47 & 99 in Itimbiri, Aruwimi & Lomami river basins was observed. Trophic magnification factors were higher than 1, indicating that biomagnification occurs through the tropical food web. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhou, Yihui; Yin, Ge; Du, Xinyu; Xu, Maoying; Qiu, Yanling; Ahlqvist, Patrik; Chen, Qiaofeng; Zhao, Jianfu
2018-02-15
Short-chain chlorinated paraffins (SCCPs) are new group of persistent organic pollutants (POPs) listed in the Stockholm Convention. The Yangtze River Delta is among the industrially most developed areas in China, supporting a large production and consumption of chlorinated paraffins (CPs). Despite this, there is very limited data on the environmental exposure of SCCPs from the region. This study analyzed SCCPs in 14 wild aquatic organisms from Dianshan Lake, Shanghai, China. The concentrations of total SCCPs ranged from 10 to 1300μgg -1 lipid weight, with significantly higher levels (p<0.05) in benthic (benthic fish and invertebrates) than in non-benthic species (pelagic and mesopelagic fish). The abundance of C 10 congeners was much higher in the benthic species compared to in the non-benthic species. The calculated trophic magnification factors (TMFs) of SCCP congeners varied from 1.19 (C 10 H 12 Cl 10 ) to 1.57 (C 13 H 20 Cl 8 ). The TMFs were significantly correlated (p<0.01) with carbon-chain length in a positive linear relationship and with Log K ow in a parabolic curve relationship. Considering the high concentrations of SCCPs in wild aquatic organisms and the trophic magnification observed in the freshwater food web, further studies should be undertaken to assess the environmental fate of SCCPs and the public health risk in the Yangtze River Delta. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
A Computer Simulation of the Trophic Dynamics of an Aquatic System.
ERIC Educational Resources Information Center
Bowker, D. W.; Randerson, P. F.
1989-01-01
Described is a computer program, AQUASIM, which simulates interaction between environmental factors, phytoplankton, zooplankton, and fish in an aquatic ecosystem. The conceptual flow, equations, variables, rate processes, and parameter manipulations are discussed. (CW)
NASA Astrophysics Data System (ADS)
Werbrouck, Eva; Tiselius, Peter; Van Gansbeke, Dirk; Cervin, Gunnar; Vanreusel, Ann; De Troch, Marleen
2016-06-01
Copepods of the genus Acartia occur worldwide and constitute an important link to higher trophic levels in estuaries. However, biogeographical shifts in copepod assemblages and colonization of certain European estuaries by the invader A. tonsa, both driven or enhanced by increasing ocean temperature, raise the pressure on autochthonous copepod communities. Despite the profound effect of temperature on all levels of biological organization, its impact on the fatty acid (FA) dynamics of Acartia species is understudied. As certain FAs exert a bottom-up control on the trophic structure of aquatic ecosystems, temperature-induced changes in FA dynamics of Acartia species may impact higher trophic levels. Therefore, this study documents the short-term temperature responses of A. tonsa and A. clausi, characterized by their warm- versus cold-water preference respectively, by analyzing the FA profiles of their membrane and storage lipids under 5 and 15 °C. Copepods that were fed an ad libitum diet of the diatom Thalassiosira weissflogii (bloom conditions) under 15 °C increased their storage FA content substantially. Furthermore, the membrane FA composition of A. tonsa showed a more profound temperature response compared with A. clausi which might be linked with the eurythermal character of the former.
Rogers, Holly; Schmidt, Travis S.; Dabney, Brittanie L.; Hladik, Michelle; Mahler, Barbara J.; Van Metre, Peter C.
2016-01-01
Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.
Rogers, Holly A; Schmidt, Travis S; Dabney, Brittanie L; Hladik, Michelle L; Mahler, Barbara J; Van Metre, Peter C
2016-11-01
Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC 50 's ranged from 197.6 to 233.5 ng bifenthrin/g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.
ERIC Educational Resources Information Center
Christensen, David R.; LaRoche, Andrew
2012-01-01
This paper describes a series of laboratory exercises for upper level biology courses, independent research and/or honors programs. Students sampled fish from a local water body with the assistance of a local fish and wildlife agency. Tissue samples from collected fish were utilized to obtain estimates of the stable isotopes delta[superscript 13]C…
Choice of resolution by functional trait or taxonomy affects allometric scaling in soil food webs.
Sechi, Valentina; Brussaard, Lijbert; De Goede, Ron G M; Rutgers, Michiel; Mulder, Christian
2015-01-01
Belowground organisms often display a shift in their mass-abundance scaling relationships due to environmental factors such as soil chemistry and atmospheric deposition. Here we present new empirical data that show strong differences in allometric scaling according to whether the resolution at the local scale is based on a taxonomic or a functional classification, while only slight differences arise according to soil environmental conditions. For the first time, isometry (an inverse 1:1 proportion) is recognized in mass-abundance relationships, providing a functional signal for constant biomass distribution in soil biota regardless of discrete trophic levels. Our findings are in contrast to those from aquatic ecosystems, in that higher trophic levels in soil biota are not a direct function of increasing body mass.
Diets of aquatic birds reflect changes in the Lake Huron ecosystem
Hebert, Craig E.; Weseloh, D.V. Chip; Idrissi, Abode; Arts, Michael T.; Roseman, Edward F.
2009-01-01
Human activities have affected the Lake Huron ecosystem, in part, through alterations in the structure and function of its food webs. Insights into the nature of food web change and its ecological ramifications can be obtained through the monitoring of high trophic level predators such as aquatic birds. Often, food web change involves alterations in the relative abundance of constituent species and/or the introduction of new species (exotic invaders). Diet composition of aquatic birds is influenced, in part, by relative prey availability and therefore is a sensitive measure of food web structure. Using bird diet data to make inferences regarding food web change requires consistent measures of diet composition through time. This can be accomplished by measuring stable chemical and/or biochemical “ecological tracers” in archived avian samples. Such tracers provide insights into pathways of energy and nutrient transfer.In this study, we examine the utility of two groups of naturally-occurring intrinsic tracers (stable isotopes and fatty acids) to provide such information in a predatory seabird, the herring gull (Larus argentatus). Retrospective stable nitrogen and carbon isotope analysis of archived herring gull eggs identified declines in gull trophic position and shifts in food sources in Lake Huron over the last 25 years and changes in gull diet composition were inferred from egg fatty acid patterns. These independent groups of ecological tracers provided corroborating evidence of dietary change in this high trophic level predator. Gull dietary shifts were related to declines in prey fish abundance which suggests large-scale alterations to the Lake Huron ecosystem. Dietary shifts in herring gulls may be contributing to reductions in resources available for egg formation. Further research is required to evaluate how changes in resource availability may affect population sustainability in herring gulls and other waterbird species. Long-term biological monitoring programs are required to identify ecosystem change and evaluate its ecological significance.
Diet quality influences isotopic discrimination among amino acids in an aquatic vertebrate
USDA-ARS?s Scientific Manuscript database
Stable nitrogen isotopic composition of amino acids has recently been employed as a powerful tool in ecological food web studies, particularly for estimating the trophic position (TP) of animal species in food webs. However, the validity of these estimates depends on the consistency of the trophic d...
NASA Astrophysics Data System (ADS)
Gupta, Govind Sharan; Kumar, Ashutosh; Shanker, Rishi; Dhawan, Alok
2016-08-01
Nano titanium dioxide (nTiO2) is the most abundantly released engineered nanomaterial (ENM) in aquatic environments. Therefore, it is prudent to assess its fate and its effects on lower trophic-level organisms in the aquatic food chain. A predator-and-prey-based laboratory microcosm was established using Paramecium caudatum and Escherichia coli to evaluate the effects of nTiO2. The surface interaction of nTiO2 with E. coli significantly increased after the addition of Paramecium into the microcosm. This interaction favoured the hetero-agglomeration and co-sedimentation of nTiO2. The extent of nTiO2 agglomeration under experimental conditions was as follows: combined E. coli and Paramecium > Paramecium only > E. coli only > without E. coli or Paramecium. An increase in nTiO2 internalisation in Paramecium cells was also observed in the presence or absence of E. coli cells. These interactions and nTiO2 internalisation in Paramecium cells induced statistically significant (p < 0.05) effects on growth and the bacterial ingestion rate at 24 h. These findings provide new insights into the fate of nTiO2 in the presence of bacterial-ciliate interactions in the aquatic environment.
Gupta, Govind Sharan; Kumar, Ashutosh; Shanker, Rishi; Dhawan, Alok
2016-01-01
Nano titanium dioxide (nTiO2) is the most abundantly released engineered nanomaterial (ENM) in aquatic environments. Therefore, it is prudent to assess its fate and its effects on lower trophic-level organisms in the aquatic food chain. A predator-and-prey-based laboratory microcosm was established using Paramecium caudatum and Escherichia coli to evaluate the effects of nTiO2. The surface interaction of nTiO2 with E. coli significantly increased after the addition of Paramecium into the microcosm. This interaction favoured the hetero-agglomeration and co-sedimentation of nTiO2. The extent of nTiO2 agglomeration under experimental conditions was as follows: combined E. coli and Paramecium > Paramecium only > E. coli only > without E. coli or Paramecium. An increase in nTiO2 internalisation in Paramecium cells was also observed in the presence or absence of E. coli cells. These interactions and nTiO2 internalisation in Paramecium cells induced statistically significant (p < 0.05) effects on growth and the bacterial ingestion rate at 24 h. These findings provide new insights into the fate of nTiO2 in the presence of bacterial-ciliate interactions in the aquatic environment. PMID:27530102
Wang, Qiang; Chen, Meng; Shan, Guoqiang; Chen, Pengyu; Cui, Shuo; Yi, Shujun; Zhu, Lingyan
2017-11-15
Due to regulations on bisphenol A (BPA) in many countries, a variety of bisphenol analogues are being widely manufactured and applied. However, there is a big knowledge gap on bioaccumulation and biomagnification of these emerging bisphenols in aquatic organisms. The bioaccumulation and magnification of nine bisphenol analogues in aquatic organisms at different trophic levels collected from Taihu Lake, China, were evaluated. The total concentrations of the nine bisphenols in the lake waters were in the range of 49.7-3480ng/L (mean, 389ng/L). BPA, bisphenol AF (BPAF) and bisphenol S (BPS) were the most predominant analogues in the water. The mean natural logarithm bioaccumulation factor (log BAFs) of BPAF, bisphenol C (BPC), bisphenol Z (BPZ) and bisphenol E (BPE) were greater than BPA, and there was a significantly positive correlation between log BAFs of the biphenols and their octanol-water partition coefficients (log K ow ). The trophic magnification factors of BPAF, BPC and BPZ were 2.52, 2.69 and 1.71, respectively, suggesting that they had the potential to biomagnify in the food web. The results of this study call for further investigations on risk assessment of these emerging pollutants in the environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart
2014-01-01
Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems. PMID:24676331
Donnelly, Alison; Caffarra, Amelia; O'Neill, Bridget F
2011-11-01
Mismatches in phenology between mutually dependent species, resulting from climate change, can have far-reaching consequences throughout an ecosystem at both higher and lower trophic levels. Rising temperatures, due to climate warming, have resulted in advances in development and changes in behaviour of many organisms around the world. However, not all species or phenophases are responding to this increase in temperature at the same rate, thus creating a disruption to previously synchronised interdependent key life-cycle stages. Mismatches have been reported between plants and pollinators, predators and prey, and pests and hosts. Here, we review mismatches between interdependent phenophases at different trophic levels resulting from climate change. We categorized the studies into (1) terrestrial (natural and agricultural) ecosystems, and (2) aquatic (freshwater and marine) ecosystems. As expected, we found reports of 'winners' and 'losers' in each system, such as earlier emergence of prey enabling partial avoidance of predators, potential reductions in crop yield if herbivore pests emerge before their predators and possible declines in marine biodiversity due to disruption in plankton-fish phenologies. Furthermore, in the marine environment rising temperatures have resulted in synchrony in a previously mismatched prey and predator system, resulting in an abrupt population decline in the prey species. The examples reviewed suggest that more research into the complex interactions between species in terrestrial and aquatic ecosystems is necessary to make conclusive predictions of how climate warming may impact the fragile balances within ecosystems in future.
Density-dependent effects of omnivorous stream crayfish on benthic trophic dynamics
Ludlam, J.P.; Banks, B. T.; Magoulick, Daniel D.
2015-01-01
Crayfish are abundant and important consumers in aquatic food webs and crayfish invasions have demonstrated strong effects of crayfish on multiple trophic levels. Density may be an important factor determining the role of omnivorous crayfish in benthic communities, especially if density alters the strength of trophic interactions. The effect of crayfish density on a simple benthic food web using ceramic tiles was examined in three treatments (crayfish exclusion cage, cage control (open to crayfish), and exposed ceramic tiles) in mesocosms stocked with 6, 12, or 18 crayfish·m-2. We hypothesized that at low densities crayfish consumption of herbivorous chironomids would increase algal abundance, but at high densities crayfish would reduce both periphyton and invertebrates. In the experiment, periphyton and chironomid abundance increased with declining crayfish biomass on day 30 but not day 15. The magnitude of crayfish effects on day 15 periphyton chlorophyll a abundance increased with crayfish biomass, but crayfish effects on day 30 periphyton chlorophyll a or chironomid biomass did not increase with crayfish biomass. In this experiment there was little evidence for a trophic cascade at low crayfish densities and strong omnivory by crayfish dominated trophic dynamics.
Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.
Blinova, Irina; Kanarbik, Liina; Sihtmäe, Mariliis; Kahru, Anne
2016-02-01
Estonia is the worldwide leading producer of the fuel oils from the oil shale. We evaluated the ecotoxicity of water accommodated fraction (WAF) of two Estonian shale fuel oils ("VKG D" and "VKG sweet") to aquatic species belonging to different trophic levels (marine bacteria, freshwater crustaceans and aquatic plants). Artificial fresh water and natural lake water were used to prepare WAFs. "VKG sweet" (lower density) proved more toxic to aquatic species than "VKG D" (higher density). Our data indicate that though shale oils were very toxic to crustaceans, the short-term exposure of Daphnia magna to sub-lethal concentrations of shale fuel oils WAFs may increase the reproductive potential of survived organisms. The weak correlation between measured chemical parameters (C10-C40 hydrocarbons and sum of 16 PAHs) and WAF's toxicity to studied species indicates that such integrated chemical parameters are not very informative for prediction of shale fuel oils ecotoxicity.
Sun, Runxia; Luo, Xiaojun; Tang, Bin; Chen, Laiguo; Liu, Yu; Mai, Bixian
2017-03-01
Short chain chlorinated paraffins (SCCPs) are under review for inclusion into the Stockholm Convention on Persistent Organic Pollutants. However, limited information is available on their bioaccumulation and biomagnification in ecosystems, which is hindering evaluation of their ecological and health risks. In the present study, wild aquatic organisms (fish and invertebrates), water, and sediment collected from an enclosed freshwater pond contaminated by electronic waste (e-waste) were analyzed to investigate the bioaccumulation, distribution, and trophic transfer of SCCPs in the aquatic ecosystem. SCCPs were detected in all of the investigated aquatic species at concentrations of 1700-95,000 ng/g lipid weight. The calculated bioaccumulation factors (BAFs) varied from 2.46 to 3.49. The relationship between log BAF and the octanol/water partition coefficient (log K OW ) for benthopelagic omnivorous fish species followed the empirical model of bioconcentration, indicating that bioconcentration plays an important role in accumulation of SCCPs. In contrast, the relationship for the benthic carnivorous fish and invertebrates was not consistent with the empirical model of bioconcentration, implying that the bioaccumulation of SCCPs in these species could be more influenced by other complex factors (e.g., habitat and feeding habit). Preferential distribution in the liver rather than in other tissues (e.g., muscle, gills, skin, and kidneys) was noted for the SCCP congeners with higher log K OW , and bioaccumulation pathway (i.e. water or sediment) can affect the tissue distribution of SCCP congeners. SCCPs underwent trophic dilution in the aquatic food web, and the trophic magnification factor (TMF) values of SCCP congener groups significantly correlated with their corresponding log K OW values (p < 0.0001). The present study results improved our understanding on the environmental behavior and fate of SCCPs in aquatic ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mercury in alpine fish from four rivers in the Tibetan Plateau.
Shao, Junjuan; Shi, Jianbo; Duo, Bu; Liu, Chengbin; Gao, Yan; Fu, Jianjie; Yang, Ruiqiang; Jiang, Guibin
2016-01-01
As a global pollutant, high levels of mercury (Hg) have been found in remote ecosystem due to the long range atmospheric transport. In this study, a total of 60 fish samples were collected from four rivers across the Tibetan Plateau to study the accumulation of Hg in remote and high-altitude aquatic environment. The total Hg (THg) and methylmercury (MeHg) in fish muscles ranged from 11 to 2097 ng/g dry weight (dw) (average: 819 ng/g dw) and from 14 to 1960 ng/g dw (average: 756 ng/g dw), respectively. Significantly positive linear relationships were observed between the THg (r=0.591, p<0.01, n=36) and MeHg concentrations (r=0.473, p<0.01, n=36) with the trophic level of fish from Lhasa River, suggesting trophic transfer and biomagnification of Hg in this aquatic ecosystem. Moreover, the THg levels in fish had significantly positive correlations with the length (r=0.316, p<0.05, n=60) and weight (r=0.271, p<0.05, n=60) of fish. The high levels of Hg were attributed to the slow growth and long lifespan of the fish under this sterile and cold environment. Risk assessment revealed that the consumption of Oxygymnocypris stewartii, Schizothorax macropogon, Schizothorax waltoni, Schizopygopsis younghusbandi and Schizothorax o'connori would lead to a high exposure to MeHg. Copyright © 2015. Published by Elsevier B.V.
Recalde, Fátima C; Postali, Thaís C; Romero, Gustavo Q
2016-03-01
The role of matter and energy flow across ecosystem boundaries for the subsidized consumer populations is well known. However, little is known on the effects of allochthonous subsidies on food web structure and trophic niche dimensions of consumers in the tropics. We excluded allochthonous aquatic insects from tropical streams using greenhouse-type exclosures to test the influence of aquatic allochthonous subsidies on the trophic structure and niche dimensions of terrestrial predators using stable isotope methods. In exclosure treatments, abundance and biomass of terrestrial predators, and biomass of phytophages decreased and increased, respectively. Vegetation-living predators were more responsive to allochthonous inputs than those living on the ground. Overall, lower availability of allochthonous inputs did not affect community-wide metrics and niche width of predators. However, the niche width of some spider families had very low overlap between treatments, and others had wider isotopic niches in the control than in the exclusion treatment. Most of the C and N in predators living in control stretches came from aquatic subsidies, and those predators living in the exclusion treatments switched their diets to terrestrial sources, showing a preference of predators for allochthonous subsidies. Our results suggest that allochthonous subsidies are also relevant to tropical fauna living upon vegetation. Moreover, allochthonous resources may amplify the niche dimension of certain predators or considerably change the trophic niche of others. Our study highlights the importance of including modern isotopic tools in elucidating the role of allochthonous resources on the patterns of trophic structure and niche dimensions of consumers from donor ecosystems. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats
Lefcheck, Jonathan S.; Byrnes, Jarrett E. K.; Isbell, Forest; Gamfeldt, Lars; Griffin, John N.; Eisenhauer, Nico; Hensel, Marc J. S.; Hector, Andy; Cardinale, Bradley J.; Duffy, J. Emmett
2015-01-01
The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups. PMID:25907115
Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.
Lefcheck, Jonathan S; Byrnes, Jarrett E K; Isbell, Forest; Gamfeldt, Lars; Griffin, John N; Eisenhauer, Nico; Hensel, Marc J S; Hector, Andy; Cardinale, Bradley J; Duffy, J Emmett
2015-04-24
The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups.
Grzesiuk, Malgorzata; Spijkerman, Elly; Lachmann, Sabrina C; Wacker, Alexander
2018-07-30
Pharmaceuticals are found in freshwater ecosystems where even low concentrations in the range of ng L -1 may affect aquatic organisms. In the current study, we investigated the effects of chronic exposure to three pharmaceuticals on two microalgae, a potential modulation of the effects by additional inorganic phosphorus (P i ) limitation, and a potential propagation of the pharmaceuticals' effect across a trophic interaction. The latter considers that pharmaceuticals are bioaccumulated by algae, potentially metabolized into more (or less) toxic derivates and consequently consumed by zooplankton. We cultured Acutodesmus obliquus and Nannochloropsis limnetica in P i -replete and P i -limited medium contaminated with one of three commonly human used pharmaceuticals: fluoxetine, ibuprofen, and propranolol. Secondly, we tested to what extent first level consumers (Daphnia magna) were affected when fed with pharmaceutical-grown algae. Chronic exposure, covering 30 generations, led to (i) decreased cell numbers of A. obliquus in the presence of fluoxetine (under P i -replete conditions) (ii) increased carotenoid to chlorophyll ratios in N. limnetica (under P i -limited conditions), and (iii) increased photosynthetic yields in A. obliquus (in both P i -conditions). In addition, ibuprofen affected both algae and their consumer: Feeding ibuprofen-contaminated algae to P i -stressed D. magna improved their survival. We demonstrate, that even very low concentrations of pharmaceuticals present in freshwater ecosystems can significantly affect aquatic organisms when chronically exposed. Our study indicates that pharmaceutical effects can cross trophic levels and travel up the food chain. Copyright © 2018 Elsevier Inc. All rights reserved.
Inducible defenses in food webs: Chapter 3.4
Vos, Matthijs; Kooi, Bob W.; DeAngelis, Donald L.; Mooij, Wolf M.; de Ruiter, Peter; Wolters, Volkmar; Moore, John C.; Melville-Smith, Kimberly
2005-01-01
This chapter reviews the predicted effects of induced defenses on trophic structure and two aspects of stability, “local” stability and persistence, as well as presenting novel results on a third, resilience. Food webs are structures of populations in a given location organized according to their predator–prey interactions. Interaction strengths and, therefore, prey defenses are generally recognized as important ecological factors affecting food webs. Despite this, surprisingly, little light has been shed on the food web-level consequences of inducible defenses. Inducible defenses occur in many taxa in both terrestrial and aquatic food webs. They include refuge use, reduced activity, adaptive life history changes, the production of toxins, synomones and extrafloral nectar, and the formation of colonies, helmets, thorns, or spines. In the chapter, theoretical results for the effects of inducible defenses on trophic structure and the three aspects of stability are reviewed. This is done, in part, using bifurcation analysis—a type of analysis that is applied to nonlinear dynamic systems described by a set of ordinary differential or difference equations. The work presented in the chapter suggests that heterogeneity, as caused by induced defenses in prey species, has major effects on the functioning of food webs. Inducible defenses occur in many species in both aquatic and terrestrial systems, and theoretical work indicates they have major effects on important food web properties such as trophic structure, local stability, persistence, and resilience.
NASA Astrophysics Data System (ADS)
Agha, Ramsy; Saebelfeld, Manja; Manthey, Christin; Rohrlack, Thomas; Wolinska, Justyna
2016-10-01
Parasites are rarely included in food web studies, although they can strongly alter trophic interactions. In aquatic ecosystems, poorly grazed cyanobacteria often dominate phytoplankton communities, leading to the decoupling of primary and secondary production. Here, we addressed the interface between predator-prey and host-parasite interactions by conducting a life-table experiment, in which four Daphnia galeata genotypes were maintained on quantitatively comparable diets consisting of healthy cyanobacteria or cyanobacteria infected by a fungal (chytrid) parasite. In four out of five fitness parameters, at least one Daphnia genotype performed better on parasitised cyanobacteria than in the absence of infection. Further treatments consisting of purified chytrid zoospores and heterotrophic bacteria suspensions established the causes of improved fitness. First, Daphnia feed on chytrid zoospores which trophically upgrade cyanobacterial carbon. Second, an increase in heterotrophic bacterial biomass, promoted by cyanobacterial decay, provides an additional food source for Daphnia. In addition, chytrid infection induces fragmentation of cyanobacterial filaments, which could render cyanobacteria more edible. Our results demonstrate that chytrid parasitism can sustain zooplankton under cyanobacterial bloom conditions, and exemplify the potential of parasites to alter interactions between trophic levels.
Sampaio da Silva, D; Lucotte, M; Paquet, S; Davidson, R
2009-05-01
Mercury (Hg) contamination of riparian communities and of environmental compartments of the Amazon can be directly related to the occupation of the territory. The objective of this study was to identify the characteristics of aquatic environments that are associated with high levels of Hg in ichthyofauna. Our research aimed at determining the influence of variables related to fish ecology, types of aquatic environment, fishing activities by local riparian populations, and watershed use on the levels of contamination of ichthyofauna. Six sites were sampled during two distinct periods of the hydrological cycle: at the beginning of descending waters and during low waters. We focused on ten dominant fish species representing four trophic levels: Curimata inornata, Geophagus proximus, Schizodon vittatum, Leporinus fasciatus, Anostomoides laticeps, Hemiodus unimaculatus, Caenotropus labyrinthicus, Hoplias malabaricus, Plagioscion squamosissimus, Acestrorhynchus falcirostris. The study sites, which included lotic and lentic habitats, are exploited year-round by local riparian communities. Spatial variations in Hg contamination in ichthyofauna were determined by factorial analysis of variance taking into account fish diets, seasons, and sampling sites. Multiple regressions were used to check the influence of ecological and anthropogenic variables and variables related to watershed uses, on Hg levels in key species representing the four trophic groups. Each variable was checked independently. Next, multiple regressions were used to verify the concomitant influence of selected variables. Independently of the study site and the phase of the hydrologic cycle, fish Hg contamination followed the trend piscivores>omnivores>herbivores>detritivores. In all the aquatic study sites, Hg levels measured in predatory species were often higher than the 500 ng/g fresh weight threshold. Mean Hg levels in key species were significantly higher during descending waters in lotic environments, and during low waters in lentic environments. Data from this study demonstrated that simple models based on watershed use and on easily obtained variables such as the suspended particulate matter (SPM) load and SPM Hg concentrations, number of inhabitants, habitat types, and the stage in the hydrological cycle enable very good prediction of Hg levels in fish. Our cartographical data clearly showed that the watershed site with the highest aquatic vegetation cover (6% of the open water body) and with the lowest forest cover (62% of the land) corresponded to the highest Hg concentrations in fish. Conversely, the watershed site with 94% forest cover and 1% aquatic vegetation corresponded to the lowest levels Hg concentrations in fish. These results suggest that land uses of watersheds play a key role in the level of Hg contamination of local ichthyofauna.
Lagesson, A; Fahlman, J; Brodin, T; Fick, J; Jonsson, M; Byström, P; Klaminder, J
2016-10-15
Pharmaceuticals derived from manufacturing and human consumption contaminate surface waters worldwide. To what extent such pharmaceutical contamination accumulates and disperses over time in different compartments of aquatic food webs is not well known. In this study we assess to what extent five pharmaceuticals (diphenhydramine, oxazepam, trimethoprim, diclofenac, and hydroxyzine) are taken up by fish (European perch) and four aquatic invertebrate taxa (damselfly larvae, mayfly larvae, waterlouse, and ramshorn snail), by tracing their bioconcentrations over several months in a semi-natural large-scale (pond) system. The results suggest both significant differences among drugs in their capacity to bioaccumulate and differences among species in uptake. While no support for in situ uptake of diclofenac and trimethoprim was found, oxazepam, diphenhydramine, and hydroxyzine were detected in all analyzed species. Here, the highest bioaccumulation factor (tissue:water ratio) was found for hydroxyzine. In the food web, the highest concentrations were found in the benthic species ramshorn snail and waterlouse, indicating that bottom-living organism at lower trophic positions are the prime receivers of the pharmaceuticals. In general, concentrations in the biota decreased over time in response to decreasing water concentrations. However, two interesting exceptions to this trend were noted. First, mayfly larvae (primarily grazers) showed peak concentrations (a fourfold increase) of oxazepam, diphenhydramine, and hydroxyzine about 30days after initial addition of pharmaceuticals. Second, perch (top-predator) showed an increase in concentrations of oxazepam throughout the study period. Our results show that drugs can remain bioavailable for aquatic organism for long time periods (weeks to months) and even re-enter the food web at a later time. As such, for an understanding of accumulation and dispersion of pharmaceuticals in aquatic food webs, detailed ecological knowledge is required. Copyright © 2016 Elsevier B.V. All rights reserved.
Secondary production of benthic insects in three cold-desert streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaines, W.L.
1987-07-01
Aquatic insect production was studied in three cold-desert streams in eastern Washington (Douglas Creek, Snively Springs, and Rattlesnake Springs). The size-frequency method was applied to individual taxa to estimate total insect production. production was also assessed for functional groups and trophic levels in each stream. Optioservus sp. (riffle beetles) and Baetis sp. (mayflies) accounted for 72% of the total insect numbers and 50% of the total biomass in Douglas Creek. Baetis sp. accounted for 42% of the total insect numbers and 25% of the total biomass in Snively Springs. Simulium sp. (blackflies) and Baetis sp. comprised 74% of the totalmore » insect numbers and 55% of the total biomass in Rattlesnake Springs. Grazer-scrapers (49%) and collectors (48%) were the most abundant functional groups in Douglas Creek. Collectors were the most abundant functional group in Snively Springs and Rattlesnake Springs. Herbivores and detritivores were the most abundant trophic level in Snively Springs and Rattlesnake Springs. Dipterans (midges and blackflies) were the most productive taxa within the study streams, accounting for 40% to 70% of the total community production. Production by collectors and detritivores was the highest of all functional groups and trophic levels in all study streams.« less
Dubey, Vineet Kumar; Sarkar, Uttam Kumar; Pandey, Ajay; Lakra, Wazir Singh
2013-09-01
In India, freshwater aquatic resources are suffering from increasing human population, urbanization and shortage of all kind of natural resources like water. To mitigate this, all the major rivers have been planned for a river-interlinking through an interlinking canal system under a huge scheme; yet, the baseline information on ecological conditions of those tropical rivers and their fish communities is lacking at present. In view of that, the present study was undertaken to assess the ecological condition by comparing the trophic metrics of the fish community, conservation status and water chemistry of the two tropical rivers of the Ganga basin, from October 2007 to November 2009. The analysis of trophic niches of the available fish species indicated dominancy of carnivorous (19 species) in river Ken and omnivorous (23 species) in Betwa. The trophic level score of carnivorous species was recorded similar (33.33%) in both rivers, whereas omnivorous species were mostly found in Betwa (36.51%) than Ken (28.07%). Relatively undisturbed sites of Betwa (B1, B2 and B3) and Ken (K2, K3 and K5) were characterized by diverse fish fauna and high richness of threatened species. The higher mean trophic level scores were recorded at B4 of Betwa and K4 of Ken. The Bray-Curtis index for trophic level identified the carnivorous species (> 0.32) as an indicator species for pollution. Anthropogenic exposure, reflected in water quality as well as in fish community structure, was found higher especially in the lower stretches of both rivers. Our results suggest the importance of trophic metrics on fish community, for ecological conditions evaluation, which enables predictions on the effect of future morphodynamic changes (in the post-interlinking phases), and provide a framework and reference condition to support restoration efforts of relatively altered fish habitats in tropical rivers of India.
Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.
2006-01-01
Diet is an important exposure route for the uptake of trace metals by aquatic invertebrates, with trace metal trophic transfer depending on 2 stages - assimilation and subsequent accumulation by the predator. This study investigated the trophic transfer of trace metals from the sediment-dwelling polychaete worm Nereis diversicolor from metal-rich estuarine sediments in southwestern UK to 2 predators - another polychaete N. virens (Cu, Zn, Pb, Cd, Fe) and the decapod crustacean Palaemonetes varians (Cu, Zn, Pb, Cd, Fe, Ag, As, Mn). N. virens showed net accumulation of Cu, Zn, Pb and Cd from the prey; accumulation increased with increasing prey concentration, but a coefficient of trophic transfer decreased with increasing prey concentration, probably because a higher proportion of accumulated metal in the prey is bound in less trophically available (insoluble) detoxified forms. The trace metal accumulation patterns of P. varians apparently restricted significant net accumulation of metals from the diet of N. diversicolor to just Cd. There was significant mortality of the decapods fed on the diets of metal-rich worms. Metal-rich invertebrates that have accumulated metals from the rich historical store in the sediments of particular SW England estuaries can potentially pass these metals along food chains, with accumulation and total food chain transfer depending on the metal assimilation efficiencies and accumulation patterns of the animal at each trophic level. This trophic transfer may be significant enough to have ecotoxicological effects. ?? Inter-Research 2006.
Iswarya, V; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava
2018-04-01
Owing to the increase in the usage of titanium dioxide nanoparticles (TiO 2 NPs), their release into the aquatic environment is inevitable. In the aquatic ecosystem, TiO 2 NPs can bio-magnify at various trophic levels in the food chain through dietary exposure. In the current study, the trophic transfer potential of two crystalline phases of TiO 2, anatase and rutile nanoparticles (individual as well as a binary mixture) has been evaluated in the lake water matrix using algae-daphnia system. Chlorella sp. and Ceriodaphnia dubia were used as test organisms to represent the algae-daphnia food chain of the freshwater ecosystem. Other than crystallinity, the effect of irradiation (visible and UV-A) was also investigated at the test concentrations, 75, 300, and 1200 μM. TiO 2 NPs treated algal diet produced significant mortality only at the test concentrations, 300 and 1200 μM. The type of irradiation and crystallinity doesn't have any impact on the mortality of daphnids through the dietary exposure of TiO 2 NPs. Comparing the mixture with individual NPs, binary mixture induced less mortality on C. dubia which signifies the antagonistic effect of NPs when they coexist. Statistical modeling confirmed the antagonistic effect of the binary mixture on C. dubia. As individual NPs, anatase and rutile forms showed a maximum Ti accumulation under UV-A and visible irradiation, respectively. BMF of TiO 2 NPs has been in validation with the bioaccumulation noted in C. dubia. Individual NPs (75 μM) showed higher BMF value of ∼23 under both UV-A (anatase) and visible (rutile) irradiation. Individual NPs showing higher BMF confirmed their trophic transfer potential in the aquatic food chain, primarily through the diet. In contrast, the binary mixture obtained a higher BMF of 1.9 and 0.79 at 75 and 300 μM under visible and UV-A irradiation, respectively. The plausible reason behind this decrement was the antagonistic effect of the mixture which significantly reduced their Ti bioaccumulation on C. dubia. Copyright © 2018 Elsevier B.V. All rights reserved.
Grant, Christopher James; Lutz, Allison K; Kulig, Aaron D; Stanton, Mitchell R
2016-12-01
Unconventional natural gas development and hydraulic fracturing practices (fracking) are increasing worldwide due to global energy demands. Research has only recently begun to assess fracking impacts to surrounding environments, and very little research is aimed at determining effects on aquatic biodiversity and contaminant biomagnification. Twenty-seven remotely-located streams in Pennsylvania's Marcellus Shale basin were sampled during June and July of 2012 and 2013. At each stream, stream physiochemical properties, trophic biodiversity, and structure and mercury levels were assessed. We used δ15N, δ13C, and methyl mercury to determine whether changes in methyl mercury biomagnification were related to the fracking occurring within the streams' watersheds. While we observed no difference in rates of biomagnificaion related to within-watershed fracking activities, we did observe elevated methyl mercury concentrations that were influenced by decreased stream pH, elevated dissolved stream water Hg values, decreased macroinvertebrate Index for Biotic Integrity scores, and lower Ephemeroptera, Plecoptera, and Trichoptera macroinvertebrate richness at stream sites where fracking had occurred within their watershed. We documented the loss of scrapers from streams with the highest well densities, and no fish or no fish diversity at streams with documented frackwater fluid spills. Our results suggest fracking has the potential to alter aquatic biodiversity and methyl mercury concentrations at the base of food webs.
Warming increases chlorpyrifos effects on predator but not anti-predator behaviours.
Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; Stoks, Robby
2014-07-01
Recent insights indicate that negative effects of pesticides on aquatic biota occur at concentrations that current legislation considers environmentally protective. We here address two, potentially interacting, mechanisms that may contribute to the underestimation of the impact of sublethal pesticide effects in single species tests at room temperature: the impairment of predator and antipredator behaviours and the stronger impact of organophosphate pesticides at higher temperatures. To address these issues we assessed the effects of chlorpyrifos on the predator and antipredator behaviours of larvae of the damselfly Ischnura elegans, important intermediate predators in aquatic food webs, in a common-garden warming experiment with replicated low- and high-latitude populations along the latitudinal gradient of this species in Europe. Chlorpyrifos reduced the levels of predator behavioural endpoints, and this reduction was stronger at the higher temperature for head orientations and feeding strikes. Chlorpyrifos also impaired two key antipredator behavioural endpoints, activity reductions in response to predator cues were smaller in the presence of chlorpyrifos, and chlorpyrifos caused a lower escape swimming speed; these effects were independent of temperature. This suggests chlorpyrifos may impact food web interactions by changing predator-prey interactions both with higher (predators) and lower trophic levels (food). Given that only the interaction with the lower trophic level was more impaired at higher temperatures, the overall pesticide-induced changes in food web dynamics may be strongly temperature-dependent. These findings were consistent in damselflies from low- and high-latitude populations, illustrating that thermal adaptation will not mitigate the increased toxicity of pesticides at higher temperatures. Our study not only underscores the relevance of including temperature and prey-predator interactions in ecological risk assessment but also their potential interplay and thereby highlights the complexity of contaminant effects on predator-prey interactions being differentially temperature-dependent pending on the trophic level. Copyright © 2014 Elsevier B.V. All rights reserved.
Ren, Jiao; Wang, Xiaoping; Wang, Chuanfei; Gong, Ping; Wang, Xiruo; Yao, Tandong
2017-01-01
Biomagnification of some persistent organic pollutants (POPs) has been found in marine and freshwater food chains; however, due to the relatively short food chains in high-altitude alpine lakes, whether trophic transfer would result in the biomagnification of POPs is not clear. The transfer of various POPs, including organochlorine pesticides and polychlorinated biphenyls (PCBs), along the aquatic food chain in Nam Co Lake (4700 m), in the central Tibetan Plateau, was studied. The POPs levels in the water, sediment and biota [plankton, invertebrates and fish (Gymnocypris namensis)] of Nam Co were generally low, with concentrations comparable to those reported for the remote Arctic. The composition profiles of POPs in the fish were different from that in the water, but similar to their food. DDEs, DDDs, PCB 138, 153 and 180 displayed significant positive correlations with trophic levels, with trophic magnification factors (TMFs) ranged between 1.5 and 4.2, implying these chemicals can undergo final biomagnification along food chain. A fugacity-based dynamic bioaccumulation model was applied to the fish with localized parameters, by which the simulated concentrations were comparable to the measured data. Modeling results showed that most compounds underwent net gill loss and net gut uptake; only when the net result of the combined gut and gill fluxes would be positive, bioaccumulation could eventually occur. The net accumulation flux increased with fish age, which was caused by the continuous increase of gut uptake by aged fish. Due to the oligotrophic condition, efficient food absorption is likely the key factor that influences the gut POPs uptake. Long residence times with half-lives up to two decades were found for the higher chlorinated PCBs in Gymnocypris namensis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ecotoxicity literature review of selected Hanford Site contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driver, C.J.
1994-03-01
Available information on the toxicity, food chain transport, and bioconcentration of several Hanford Site contaminants were reviewed. The contaminants included cesium-137, cobalt-60, europium, nitrate, plutonium, strontium-90, technetium, tritium, uranium, and chromium (III and VI). Toxicity and mobility in both aquatic and terrestrial systems were considered. For aquatic systems, considerable information was available on the chemical and/or radiological toxicity of most of the contaminants in invertebrate animals and fish. Little information was available on aquatic macrophyte response to the contaminants. Terrestrial animals such as waterfowl and amphibians that have high exposure potential in aquatic systems were also largely unrepresented in themore » toxicity literature. The preponderance of toxicity data for terrestrial biota was for laboratory mammals. Bioconcentration factors and transfer coefficients were obtained for primary producers and consumers in representative aquatic and terrestrial systems; however, little data were available for upper trophic level transfer, particularly for terrestrial predators. Food chain transport and toxicity information for the contaminants were generally lacking for desert or sage brush-steppe organisms, particularly plants and reptiles« less
The protozooplankton-ichthyoplankton trophic link: an overlooked aspect of aquatic food webs.
Montagnes, David J S; Dower, John F; Figueiredo, Gisela M
2010-01-01
Since the introduction of the microbial loop concept, awareness of the role played by protozooplankton in marine food webs has grown. By consuming bacteria, and then being consumed by metazooplankton, protozoa form a trophic link that channels dissolved organic material into the "classic" marine food chain. Beyond enhancing energy transfer to higher trophic levels, protozoa play a key role in improving the food quality of metazooplankton. Here, we consider a third role played by protozoa, but one that has received comparatively little attention: that as prey items for ichthyoplankton. For >100 years it has been known that fish larvae consume protozoa. Despite this, fisheries scientists and biological oceanographers still largely ignore protozoa when assessing the foodweb dynamics that regulate the growth and survival of larval fish. We review evidence supporting the importance of the protozooplankton-ichthyoplankton link, including examples from the amateur aquarium trade, the commercial aquaculture industry, and contemporary studies of larval fish. We then consider why this potentially important link continues to receive very little attention. We conclude by offering suggestions for quantifying the importance of the protozooplankton-ichthyoplankton trophic link, using both existing methods and new technologies.
Species richness and trophic diversity increase decomposition in a co-evolved food web.
Baiser, Benjamin; Ardeshiri, Roxanne S; Ellison, Aaron M
2011-01-01
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.
Species Richness and Trophic Diversity Increase Decomposition in a Co-Evolved Food Web
Baiser, Benjamin; Ardeshiri, Roxanne S.; Ellison, Aaron M.
2011-01-01
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators — larvae of the pitcher-plant mosquito — indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species. PMID:21673992
Solar ultraviolet radiation and its impact on aquatic systems of Patagonia, South America.
Villafañe, V E; Helbling, E W; Zagarese, H E
2001-03-01
Solar ultraviolet radiation (UVR, 280-400 nm) is known to cause a number of detrimental effects in aquatic organisms. The area of Patagonia, which is sometimes under the influence of the Antarctic ozone "hole", occasionally receives enhanced levels of ultraviolet B radiation (UV-B, 280-315 nm). Great efforts have been put into creating a database for UVR climatology by installing a variety of instruments in several localities in the region. However, no comparable effort has been made to determine the impact of normal and enhanced levels of solar UVR upon organisms. Most of the photobiological research in aquatic systems of Patagonia has focused on determining the effects of solar UVR in phytoplankton photosynthesis, DNA damage, and mortality, fecundity and repair mechanisms in zooplanktonic species. Some work has also been done with fish larvae and interactions between species at low trophic levels of the aquatic food web. The results of these studies indicate that in order to assess the overall impact of UVR in a certain waterbody, it is also necessary to consider other variables, such as changes in cloudiness, ozone concentrations, differential sensitivity of organisms, and depth of the upper mixed layer/epilimnion. All factors that can preclude or benefit the acclimation of species to solar radiation.
Roles of epiphytes associated with macroalgae in benthic food web of a eutrophic coastal lagoon
NASA Astrophysics Data System (ADS)
Zheng, Xinqing; Huang, Lingfeng; Lin, Rongcheng; Du, Jianguo
2015-11-01
Macroalgae perform a significant function in the trophic dynamics in many coastal lagoons, and conventionally, they are the key trophic base that fuels the overall aquatic food web. However, few studies have considered the trophic contribution of epiphytes that attach to macroalgae in the diet of benthic primary consumers or their contribution to the trophic base of the aquatic food web. In this study, macrobenthic invertebrate biomass was combined with multiple-isotope-mixing models to distinguish the trophic importance of macroalgae and their associated epiphytic assemblages in the benthic food web during Ulva lactuca bloom in the Yundang Lagoon, a eutrophic coastal lagoon in Xiamen, China. Amphipods primarily dominated the zoobenthos, with the biomass varied from 40.9 g/m2 in January to 283.9 g/m2 in March. They mainly fed on U. lactuca and its associated epiphytes, which jointly contributed more than 60% to amphipod diets, but species-specific feeding habits were exhibited among amphipods. Using the zoobenthos biomass as a weighting factor, the contribution of U. lactuca and its epiphytes to total benthic communities during U. lactuca bloom exceeded 65%.The epiphytes were clearly utilized more than U. lactuca, with a median contribution ranging from 48.5% in January to 66.6% in March. Our findings demonstrate the trophic importance of the epiphytes in macroalgae-based coastal habitats, as found in many seagrass beds. Therefore, we propose that further food web studies of macroalgae-based ecosystems should pay greater attention to the role of epiphytes.
Knowledge of the trophic structure of biota in aquatic sites offers potential for the construction of models to allow the prediction of contaminant bioaccumulation. Measurements of trophic position have been conducted using stable-nitrogen isotope ratios ( 15N) measured in fish m...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broman, D.; Axelman, J.; Bergqvist, P.A.
Ratios of naturally occurring stable isotopes of nitrogen ({delta}{sup 15}N) can be used to numerically classify trophic levels of organisms in food chains. By combining analyses results of various HOCs (e.g. PCDD/Fs, PCBs, DDTs, HCHs and some other pesticides) the biomagnification of these substances can be quantitatively estimated. In this paper different pelagic and benthic northern Baltic food chains were studied. The {delta}{sup 15}N-data gave food chain descriptions qualitatively consistent with previous conceptions of trophic arrangements in the food chains. The different HOCs concentrations were plotted versus the {delta}{sup 15}N-values for the different trophic levels and an exponential model ofmore » the form e{sup (A+B*{delta}N)} was fitted to the data. The estimates of the constant B in the model allows for an estimation of a biomagnification power (B) of different singular, or groups of, contaminants. A B-value around zero indicates that a substance is flowing through the food chain without being magnified, whereas a value > 0 indicates that a substance is biomagnified. Negative B-values indicate that a substance is not taken up or is metabolized. The A-term of the expression is only a scaling factor depending on the background level of the contaminant.« less
Lotic community responses in the Lees Ferry reach
NASA Astrophysics Data System (ADS)
McKinney, T.; Rogers, R. S.; Ayers, A. D.; Persons, W. R.
Responses of periphyton, aquatic macrophytes, benthic macroinvertebrates, and rainbow trout to the 1996 controlled flood were investigated in the Lees Ferry tailwater reach below Glen Canyon Dam on the Colorado River. Lotic biota differed spatially and temporally in abundance and distribution following recession of flood waters, and there was no evidence that the flood benefitted trout or lower trophic levels. The flood was associated with short-term changes in lower trophic levels, but benthic vegetation and macrofauna with low resistance were resilient. Adverse impacts of the flood on lower trophic levels were greater and more prolonged in depositional areas than on cobble bar habitat, but recovery occurred in both habitat types 4-8 months after the flood. The flood likely resulted in some downstream displacement of smaller fish but had no effects on catch rate or condition indices of trout. Percentage of young-of-the-year trout 8 months after the event indicates that the flood did not prevent successful spawning. The flood had little direct influence on diets of trout, but relative gut volume increased in the week after the event, remained high in summer, and composition changed seasonally. Amphipods (Gammarus lacustris), chironomids, and snails were predominant food items, and Gammarus generally were eaten more often and comprised greater relative volume in the diet than other macroinvertebrate taxa.
Examination of an Oligocene Lacustrine Ecosystem Using C and N Stable Isotopes
NASA Astrophysics Data System (ADS)
Schweizer, M. K.; Wooller, M. J.; Toporski, J.; Fogel, M.; Steele, A.
2003-12-01
Stable isotopes of C and N are used to reconstruct the fossil Oligocene (25.8Ma) ecosystem at Lake Enspel, Westerwald, Germany. Enspel was a steep-sided, deep maar lake with anoxic bottom waters. Upon dying, terrestrial and aquatic organisms sank into the sediment where they were colonized by bacteria. These bacteria quickly became fossilized, preserving morphological detail and large amounts of organic matter from the original macroorganism. Carbon and nitrogen are sufficiently preserved in these fossils to permit stable isotope analysis. Stable isotopic signatures identify several trophic levels, including primary producers (terrigenous and aquatic plants, diatoms), primary consumers (tadpoles, some insects), and secondary consumers (carnivores such as fish). Primary producers are associated with depleted d13C and d15N values, primary consumers such as flies are one trophic shift higher, and fish are another shift higher. Signatures for the fish species show heavy-isotope enrichment correlated with increasing length, indicating an increasingly carnivorous diet. This study marks the first attempt to reconstruct a complete fossil ecosystem using stable isotope analysis, and confirms that techniques used to study modern food webs can be applied to extinct webs as well.
Locke, Sean A; Marcogliese, David J; Valtonen, E Tellervo
2014-01-01
Recent studies of aquatic food webs show that parasite diversity is concentrated in nodes that likely favour transmission. Various aspects of parasite diversity have been observed to be correlated with the trophic level, size, diet breadth, and vulnerability to predation of hosts. However, no study has attempted to distinguish among all four correlates, which may have differential importance for trophically transmitted parasites occurring as larvae or adults. We searched for factors that best predict the diversity of larval and adult endoparasites in 4105 fish in 25 species studied over a three-year period in the Bothnian Bay, Finland. Local predator-prey relationships were determined from stomach contents, parasites, and published data in 8,229 fish in 31 species and in seals and piscivorous birds. Fish that consumed more species of prey had more diverse trophically transmitted adult parasites. Larval parasite diversity increased with the diversity of both prey and predators, but increases in predator diversity had a greater effect. Prey diversity was more strongly associated with the diversity of adult parasites than with that of larvae. The proportion of parasite species present as larvae in a host species was correlated with the diversity of its predators. There was a notable lack of association with the diversity of any parasite guild and fish length, trophic level, or trophic category. Thus, diversity is associated with different nodal properties in larval and adult parasites, and association strengths also differ, strongly reflecting the life cycles of parasites and the food chains they follow to complete transmission.
Mark S. Wipfli
2005-01-01
This study examined the fluvial transport of invertebrates (aquatic and terrestrial) and coarse organic detritus from forested - headwaters in alternatives-to-clearcutting (ATC) harvest units to aquatic habitats downstream in the coastal mountains of southeastern Alaska. Fifty small streams (mean discharge 2.7 Ls-1, range 0.1-128.1 Ls-...
Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators.
Mogren, Christina L; Walton, William E; Parker, David R; Trumble, John T
2013-01-01
The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(-1) arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(-1) of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142-290 ng g(-1)). Buenoa scimitra accumulated 5120±406 ng g(-1) of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(-1) arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies.
Alberts, Jeremy M; Sullivan, S Mažeika P; Kautza, A
2013-10-01
Recent research has highlighted the transfer of contaminants from aquatic to terrestrial ecosystems via predation of aquatic emergent insects by riparian consumers. The influence of adjacent land use and land cover (LULC) on aquatic-to-terrestrial contaminant transfer, however, has received limited attention. From 2010 to 2012, at 11 river reaches in the Scioto River basin (OH, USA), we investigated the relationships between LULC and selenium (Se) and mercury (Hg) concentrations in four species of riparian swallows. Hg concentrations in swallows were significantly higher at rural reaches than at urban reaches (t=-3.58, P<0.001, df=30), whereas Se concentrations were positively associated with adjacent land cover characterized by mature tree cover (R(2)=0.49, P=0.006). To an extent, these relationships appear to be mediated by swallow reliance on aquatic emergent insects. For example, tree swallows (Tachycineta bicolor) at urban reaches exhibited a higher proportion of aquatic prey in their diet, fed at a higher trophic level, and exhibited elevated Se levels. We also found that both Se and Hg concentrations in adult swallows were significantly higher than those observed in nestlings at both urban and rural reaches (Se: t=-2.83, P=0.033, df=3; Hg: t=-3.22, P=0.024, df=3). Collectively, our results indicate that riparian swallows integrate contaminant exposure in linked aquatic-terrestrial systems and that LULC may strongly regulate aquatic contaminant flux to terrestrial consumers. Copyright © 2013 Elsevier B.V. All rights reserved.
Using a food-web model to assess the trophic structure and energy flows in Daya Bay, China
NASA Astrophysics Data System (ADS)
Chen, Zuozhi; Xu, Shannan; Qiu, Yongsong
2015-12-01
Daya Bay, is one of the largest and most important semi-closed bays along the southern coast of China. Due to the favorable geomorphological and climatic conditions, this bay has become an important conservation zone of aquatic germplasm resources in South China Sea. To characterize the trophic structure, ecosystem properties and keystone species, a food-web model for Daya Bay has been developed by the means of a mass-balance approach using the Ecopath with Ecosim software. The mean trophic transfer efficiency for the entire ecosystem as a whole is 10.9% while the trophic level II is 5.1%. The primary- and secondary-producers, including phytoplankton, zooplankton and micro-zoobenthos demonstrated the important overall impacts on the rest of the groups based on mixed trophic impact (MIT) analysis and are classified as the keystone groups. The analysis of ecosystem attributes indicated that ecosystem of Daya Bay can be categorized as an immature one and/or is in the degraded stage. A comparison of this model with other coastal ecosystems, including Kuosheng Bay, Tongoy Bay, Beibu Gulf and Cadiz Gulf, underpinned that the ecosystem of Daye Bay is an obviously stressed system and is more vulnerable to the external disturbance. In general, our study indicates that a holistic approach is needed to minimize the impacts of anthropogenic activities to ensure the sustainability of the ecosystem in the future.
Benjamin, Joseph R.; Bellmore, J. Ryan
2016-05-19
In this report, we outline the structure of a stream food-web model constructed to explore how alternative river restoration strategies may affect stream fish populations. We have termed this model the “Aquatic Trophic Productivity model” (ATP). We present the model structure, followed by three case study applications of the model to segments of the Methow River watershed in northern Washington. For two case studies (middle Methow River and lower Twisp River floodplain), we ran a series of simulations to explore how food-web dynamics respond to four distinctly different, but applied, strategies in the Methow River watershed: (1) reconnection of floodplain aquatic habitats, (2) riparian vegetation planting, (3) nutrient augmentation (that is, salmon carcass addition), and (4) enhancement of habitat suitability for fish. For the third case study, we conducted simulations to explore the potential fish and food-web response to habitat improvements conducted in 2012 at the Whitefish Island Side Channel, located in the middle Methow River.
Beauvais-Flück, Rebecca; Chaumot, Arnaud; Gimbert, Frédéric; Quéau, Hervé; Geffard, Olivier; Slaveykova, Vera I; Cosio, Claudia
2016-12-15
Mercury (Hg) represents an important risk for human health through the food webs contamination. Macrophytes bioaccumulate Hg and play a role in Hg transfer to food webs in shallow aquatic ecosystems. Nevertheless, the compartmentalization of Hg within macrophytes, notably major accumulation in the cell wall and its impact on trophic transfer to primary consumers are overlooked. The present work focusses on the trophic transfer of inorganic Hg (IHg) and monomethyl-Hg (MMHg) from the intracellular and cell wall compartments of the macrophyte Elodea nuttallii - considered a good candidate for phytoremediation - to the crustacean Gammarus fossarum. The results demonstrated that Hg accumulated in both compartments was trophically bioavailable to gammarids. Besides IHg from both compartments were similarly transferred to G. fossarum, while for MMHg, uptake rates were ∼2.5-fold higher in G. fossarum fed with the cell wall vs the intracellular compartment. During the depuration phase, Hg concentrations in G. fossarum varied insignificantly suggesting that both IHg and MMHg were strongly bound to biological ligands in the crustacean. Our data imply that cell walls have to be considered as an important source of Hg to consumers in freshwater food webs when developing procedures for enhancing aquatic environment protection during phytoremediation programs. Copyright © 2016 Elsevier B.V. All rights reserved.
Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake.
Xie, Zhengxin; Lu, Guanghua; Yan, Zhenhua; Liu, Jianchao; Wang, Peifang; Wang, Yonghua
2017-03-01
Pharmaceuticals are increasingly detected in environmental matrices, but information on their trophic transfer in aquatic food webs is insufficient. This study investigated the bioaccumulation and trophic transfer of 23 pharmaceuticals in Taihu Lake, China. Pharmaceutical concentrations were analyzed in surface water, sediments and 14 aquatic species, including plankton, invertebrates and fish collected from the lake. The median concentrations of the detected pharmaceuticals ranged from not detected (ND) to 49 ng/L in water, ND to 49 ng/g dry weight (dw) in sediments, and from ND to 130 ng/g dw in biota. Higher concentrations of pharmaceuticals were found in zoobenthos relative to plankton, shrimp and fish muscle. In fish tissues, the observed pharmaceutical contents in the liver and brain were generally higher than those in the gills and muscle. Both bioaccumulation factors (median BAFs: 19-2008 L/kg) and biota-sediment accumulation factors (median BSAFs: 0.0010-0.037) indicated a low bioaccumulation potential for the target pharmaceuticals. For eight of the most frequently detected pharmaceuticals in food webs, the trophic magnification factors (TMFs) were analyzed from two different regions of Taihu Lake. The TMFs for roxithromycin, propranolol, diclofenac, ibuprofen, ofloxacin, norfloxacin, ciprofloxacin and tetracycline in the two food webs ranged from 0.28 to 1.25, suggesting that none of these pharmaceuticals experienced trophic magnification. In addition, the pharmaceutical TMFs did not differ significantly between the two regions in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moring, James Bruce
2002-01-01
Five study sites, and a sampling reach within each site, were established on the Rio Grande in and near Big Bend National Park in 1999 to provide the National Park Service with data and information on the status of stream habitat, fish communities, and benthic macroinvertebrates. Differences in stream-habitat conditions and riparian vegetation reflect differences in surface geology among the five sampling reaches. In the most upstream reach, Colorado Canyon, where igneous rock predominates, streambed material is larger; and riparian vegetation is less diverse and not as dense as in the four other, mostly limestone reaches. Eighteen species of fish and a total of 474 individuals were collected among the five reaches; 348 of the 474 were minnows. The most fish species (15) were collected at the Santa Elena reach and the fewest species (9) at the Colorado Canyon and Johnson Ranch reaches. The fish community at Colorado Canyon was least like the fish communities at the four other reaches. Fish trophic structure reflected fish-community structure among the five reaches. Invertivores made up at least 60 percent of the trophic structure at all reaches except Colorado Canyon. Piscivores dominated the trophic structure at Colorado Canyon. At the four other reaches, piscivores were the smallest trophic group. Eighty percent of the benthic macroinvertebrate taxa collected were aquatic insects. Two species of blackfly were the most frequently collected invertebrate taxon. Net-spinning caddisflies were common at all reaches except Santa Elena. The aquatic-insect community at the Boquillas reach was least similar to the aquatic-insect community at the other reaches.
May, Jason T.; Hothem, Roger L.; Alpers, Charles N.; Law, Matthew A.
2000-01-01
Mercury that was used historically for gold recovery in mining areas of the Sierra Nevada continues to enter local and downstream water bodies, including the Sacramento Delta and the San Francisco Bay of northern California. Methylmercury is of particular concern because it is the most prevalent form of mercury in fish and is a potent neurotoxin that bioaccumulates at successive trophic levels within food webs. In April 1999, the U.S. Geological Survey, in cooperation with several other agencies the Forest Service (U.S. Department of Agriculture), the Bureau of Land Management, the U.S. Environmental Protection Agency, the California State Water Resources Control Board, and the Nevada County Resource Conservation District began a pilot investigation to characterize the occurrence and distribution of mercury in water, sediment, and biota in the South Yuba River, Deer Creek, and Bear River watersheds of California. Biological samples consisted of semi-aquatic and aquatic insects, amphibians, bird eggs, and fish. Fish were collected from 5 reservoirs and 14 stream sites during August through October 1999 to assess the distribution of mercury in these watersheds. Fish that were collected from reservoirs included top trophic level predators (black basses, Micropterus spp.) intermediate trophic level predators [sunfish (blue gill, Lepomis macrochirus; green sunfish, Lepomis cyanellus; and black crappie, Poxomis nigromaculatus)] and benthic omnivores (channel catfish, Ictularus punctatus). At stream sites, the species collected were upper trophic level salmonids (brown trout, Salmo trutta) and upper-to-intermediate trophic level salmonids (rainbow trout, Oncorhynchus mykiss). Boneless and skinless fillet portions from 161 fish were analyzed for total mercury; 131 samples were individual fish, and the remaining 30 fish were combined into 10 composite samples of three fish each of the same species and size class. Mercury concentrations in samples of black basses (Micropterus spp.), including largemouth, smallmouth, and spotted bass, ranged from 0.20 to 1.5 parts per million (ppm), wet basis. Mercury concentrations in sunfish ranged from less than 0.10 to 0.41 ppm (wet). Channel catfish had mercury concentrations from 0.16 to 0.75 ppm (wet). The range of mercury concentrations observed in rainbow trout was from 0.06 to 0.38 ppm (wet), and in brown trout was from 0.02 to 0.43 ppm (wet). Mercury concentrations in trout were greater than 0.3 ppm in samples from three of 14 stream sites. Mercury at elevated concentrations may pose a health risk to piscivorous wildlife and to humans who eat fish on a regular basis. Data presented in this report may be useful to local, state, and federal agencies responsible for assessing the potential risks associated with elevated levels of mercury in fish in the South Yuba River, Deer Creek, and Bear River watersheds.
Detecting Potential Water Quality Issues by Mapping Trophic Status Using Google Earth Engine
NASA Astrophysics Data System (ADS)
Nguy-Robertson, A. L.; Harvey, K.; Huening, V.; Robinson, H.
2017-12-01
The identification, timing, and spatial distribution of recurrent algal blooms and aquatic vegetation can help water managers and policy makers make better water resource decisions. In many parts of the world there is little monitoring or reporting of water quality due to the required costs and effort to collect and process water samples. We propose to use Google Earth Engine to quickly identify the recurrence of trophic states in global inland water systems. Utilizing Landsat and Sentinel multispectral imagery, inland water quality parameters (i.e. chlorophyll a concentration) can be estimated and waters can be classified by trophic state; oligotrophic, mesotrophic, eutrophic, and hypereutrophic. The recurrence of eutrophic and hypereutrophic observations can highlight potentially problematic locations where algal blooms or aquatic vegetation occur routinely. Eutrophic and hypereutrophic waters commonly include many harmful algal blooms and waters prone to fish die-offs from hypoxia. While these maps may be limited by the accuracy of the algorithms utilized to estimate chlorophyll a; relative comparisons at a local scale can help water managers to focus limited resources.
Willacker, James J.; Von Hippel, Frank A.; Ackerly, Kerri L.; O’Hara, Todd M.
2013-01-01
Mercury (Hg) is a widespread environmental contaminant known for the neurotoxicity of its methylated forms, especially monomethylmercury, which bioaccumulates and biomagnifies in aquatic food webs. Mercury bioaccumulation and biomagnification rates are known to vary among species utilizing different food webs (benthic vs limnetic) within and between systems. The authors assessed whether carbon and nitrogen stable isotope values and total Hg (THg) concentrations differed between sympatric benthic and limnetic ecotypes and sexes of threespine stickleback fish (Gasterosteus aculeatus) from Benka Lake, Alaska, USA. The mean THg concentration in the limnetic ecotype was significantly higher (26 mg/kg dry wt, 16.1%) than that of the benthic ecotype. Trophic position and benthic carbon percentage utilized were both important determinants of THg concentration; however, the 2 variables were of approximately equal importance in females, whereas trophic position clearly explained more of the variance than benthic carbon percentage in males. Additionally, strong sex effects (45 mg/kg dry wt, 29.4%) were observed in both ecotypes, with female fish having lower THg concentrations than males. These results indicate that trophic ecology and sex are both important determinants of Hg contamination even within a single species and lake and likely play a role in governing Hg concentrations in higher trophic levels. PMID:23456641
Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators
Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.
2013-01-01
The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l−1 arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g−1 of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142–290 ng g−1). Buenoa scimitra accumulated 5120±406 ng g−1 of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l−1 arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies. PMID:23826344
Burger, J; Gaines, K F; Boring, C S; Stephens, W L; Snodgrass, J; Gochfeld, M
2001-10-01
Levels of contaminants in fish are of considerable interest because of potential effects on the fish themselves, as well as on other organisms that consume them. In this article we compare the mercury levels in muscle tissue of 11 fish species from the Savannah River, as well as selenium levels because of its known protective effect against mercury toxicity. We sampled fish from three stretches of the river: upstream, along, and downstream the Department of Energy's Savannah River Site, a former nuclear material production facility. We test the null hypothesis that there were no differences in mercury and selenium levels in fish tissue as a function of species, trophic level, and location along the river. There were significant interspecific differences in mercury levels, with bowfin (Amia calva) having the highest levels, followed by largemouth bass (Micropterus salmoides) and pickerel (Esox niger). Sunfish (Lepomis spp.) had the lowest levels of mercury. As expected, these differences generally reflected trophic levels. There were few significant locational differences in mercury levels, and existing differences were not great, presumably reflecting local movements of fish between the sites examined. Selenium and mercury concentrations were positively correlated only for bass, perch (Perca flavescens), and red-breasted sunfish (Lepomis auritus). Mercury levels were positively correlated with body mass of the fish for all species except American eel (Anguilla rostrata) and bluegill sunfish (L. macrochirus). The mercury and selenium levels in fish tissue from the Savannah River are similar to or lower than those reported in many other studies, and in most cases pose little risk to the fish themselves or to other aquatic consumers, although levels in bowfin and bass are sufficiently high to pose a potential threat to high-level consumers. Copyright 2001 Academic Press.
Sink or link? The bacterial role in benthic carbon cycling in the Arabian sea oxygen minimum zone
NASA Astrophysics Data System (ADS)
Pozzato, L.; Van Oevelen, D.; Moodley, L.; Soetaert, K.; Middelburg, J. J.
2013-06-01
The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic aquatic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea Oxygen Minimum Zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient in these sediments. Moreover, metazoans directly consume labile particulate organic matter resources and thus compete with bacteria for phytodetritus.
Dalu, Tatenda; Wasserman, Ryan J.; Vink, Tim J. F.; Weyl, Olaf L. F.
2017-01-01
It is generally accepted that organisms that naturally exploit an ecosystem facilitate coexistence, at least partially, through resource partitioning. Resource availability is, however, highly variable in space and time and as such the extent of resource partitioning must be somewhat dependent on availability. Here we test aspects of resource partitioning at the inter- and intra-specific level, in relation to resource availability in an atypical aquatic environment using an isotope approach. Using closely related key organisms from an ephemeral pond, we test for differences in isotopic signatures between two species of copepod and between sexes within each species, in relation to heterogeneity of basal food resources over the course of the ponds hydroperiod. We show that basal food resource heterogeneity increases over time initially, and then decreases towards the end of the hydroperiod, reflective of the expected evolution of trophic complexity for these systems. Resource partitioning also varied between species and sexes, over the hydroperiod with intra- and inter-specific specialisation relating to resource availability. Intra-specific specialisation was particularly evident in the omnivorous copepod species. Our findings imply that trophic specialisation at both the intra- and inter-specific level is partly driven by basal food resource availability. PMID:28233858
Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes.
Blukacz-Richards, E Agnes; Visha, Ariola; Graham, Matthew L; McGoldrick, Daryl L; de Solla, Shane R; Moore, David J; Arhonditsis, George B
2017-04-01
Total mercury levels in aquatic birds and fish communities have been monitored across the Canadian Great Lakes by Environment and Climate Change Canada (ECCC) for the past 42 years (1974-2015). These data (22 sites) were used to examine spatio-temporal variability of mercury levels in herring gull (Larus argentatus) eggs, lake trout (Salvelinus namaycush), walleye (Sander vitreus), and rainbow smelt (Osmerus mordax). Trends were quantified with dynamic linear models, which provided time-variant rates of change of mercury concentrations. Lipid content (in both fish and eggs) and length in fish were used as covariates in all models. For the first three decades, mercury levels in gull eggs and fish declined at all stations. In the 2000s, trends for herring gull eggs reversed at two sites in Lake Erie and two sites in Lake Ontario. Similar trend reversals in the 2000s were observed for lake trout in Lake Superior and at a single station in Lake Ontario. Mercury levels in lake trout continued to slowly decline at all of the remaining stations, except for Lake Huron, where the levels remained stable. A post-hoc Bayesian regression analysis suggests strong trophic interactions between herring gulls and rainbow smelt in Lake Superior and Lake Ontario, but also pinpoints the likelihood of a trophic decoupling in Lake Huron and Lake Erie. Continued monitoring of mercury levels in herring gulls and fish is required to consolidate these trophic shifts and further evaluate their broader implications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Hebert, Craig E.; Popp, B.N.; Fernie, K.J.; Ka'apu-Lyons, C.; Rattner, Barnett A.; Wallsgrove, N.
2016-01-01
Through laboratory and field studies, the utility of amino acid compound-specific nitrogen isotope analysis (AA-CSIA) in avian studies is investigated. Captive American kestrels (Falco sparverius) were fed an isotopically characterized diet and patterns in δ15N values of amino acids (AAs) were compared to those in their tissues (muscle and red blood cells) and food. Based upon nitrogen isotope discrimination between diet and kestrel tissues, AAs could mostly be categorized as source AAs (retaining baseline δ15N values) and trophic AAs (showing 15N enrichment). Trophic discrimination factors based upon the source (phenylalanine, Phe) and trophic (glutamic acid, Glu) AAs were 4.1 (muscle) and 5.4 (red blood cells), lower than those reported for metazoan invertebrates. In a field study involving omnivorous herring gulls (Larus argentatus smithsonianus), egg AA isotopic patterns largely retained those observed in the laying female’s tissues (muscle, red blood cells, and liver). Realistic estimates of gull trophic position were obtained using bird Glu and Phe δ15N values combined with β values (difference in Glu and Phe δ15N in primary producers) for aquatic and terrestrial food webs. Egg fatty acids were used to weight β values for proportions of aquatic and terrestrial food in gull diets. This novel approach can be applied to generalist species that feed across ecosystem boundaries.
Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem
Rudman, Seth M.; Rodriguez-Cabal, Mariano A.; Stier, Adrian; Sato, Takuya; Heavyside, Julian; El-Sabaawi, Rana W.; Crutsinger, Gregory M.
2015-01-01
Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns. PMID:26203004
Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem.
Rudman, Seth M; Rodriguez-Cabal, Mariano A; Stier, Adrian; Sato, Takuya; Heavyside, Julian; El-Sabaawi, Rana W; Crutsinger, Gregory M
2015-08-07
Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns. © 2015 The Author(s).
Scholz-Starke, Björn; Bo, Li; Holbach, Andreas; Norra, Stefan; Floehr, Tilman; Hollert, Henner; Roß-Nickoll, Martina; Schäffer, Andreas; Ottermanns, Richard
2018-05-20
Dams have profound impacts on river ecosystems, amongst them inundation of land, altered dynamics of the water body or uprising reservoir backwaters influencing tributary or upstream river sections. Along the outstandingly ecologically important Yangtze River in China, the Three Gorges Reservoir (TGR) is the largest project, covering an area of 1080 km 2 . From the beginning, the dam-project came in for criticism on increasing environmental risks due to sub-merging former industrial and urban areas. We simulated dynamics of biotic and abiotic components of the TGR ecosystem (trophic guilds of aquatic organisms, hydrodynamics, nutrients), as well as the behaviour of the herbicidal substance propanil and its metabolites 3,4-Dichloroaniline (DCA) and 3,3',4,4'-tetrachloroazoxybenzene (TCAB). A modelling environment, provided by the AQUATOX software, was adapted to the specific situation at a tributary reach to the Yangtze river 'Daning River'. As the simulated food web contained several interconnected trophic levels, a significant biomagnification of metabolites was demonstrated by our simulation studies. In particular, newly emerging stagnant downstream sections of tributaries exhibited high probabilities due to accumulating pesticides from upstream sources. The common problem of algal blooms in the TGR-region was addressed by dose-response simulation experiments with essential nutrients. Impacts on structure and abundance of populations of aquatic organisms were shown. However, even high nutrient loads resulted in only slight changes of densities of organisms of all trophic levels. Nevertheless, the probabilities for large-scale algal blooms affecting drinking water quality were considered low because of high flow velocities and discharge rates towards the Yangtze River. We see high potential of simulation-based assessments that provide information for risk managers dealing with whole catchment areas. They are put in the position to differentiate the magnitude of impacts of various factors and decide about the most effective remediation measures. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaller, Jörg; Planer-Friedrich, Britta
2017-04-01
Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-decomposing organisms like invertebrate shredders, grazers, bioturbators, and filter feeder are key-species for the carbon and energy turnover within the decomposer community. We could show that invertebrate shredders and grazer affect element fixation or remobilization by changing binding properties of organic sediments and the attached biofilm. Bioturbators affect element fixation or remobilization by changing redox conditions within the uppermost sediment layer. Last but not least filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems significantly contributed to element mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p<0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. Except of the filter feeder D. polymorpha, the invertebrates are able to minimize the accumulation of non-nutrient elements due to specific strategies, which is an important strategy for species living in systems tending to element accumulation. However, D. polymorpha revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This accumulation by D. polymorpha is in line with previous observations of metal(loid) accumulation from biomonitoring studies. In summary, higher trophic level strongly contributes to element fixation or remobilization in aquatic systems.
Quantifying Trophic Interactions and Carbon Flow in Louisiana Salt Marshes Using Multiple Biomarkers
NASA Astrophysics Data System (ADS)
Polito, M. J.; Lopez-Duarte, P. C.; Olin, J.; Johnson, J. J.; Able, K.; Martin, C. W.; Fodrie, J.; Hooper-Bui, L. M.; Taylor, S.; Stouffer, P.; Roberts, B. J.; Rabalais, N. N.; Jensen, O.
2017-12-01
Salt marshes are critical habitats for many species in the northern Gulf of Mexico. However, given their complex nature, quantifying trophic linkages and the flow of carbon through salt marsh food webs is challenging. This gap in our understanding of food web structure and function limits our ability to evaluate the impacts of natural and anthropogenic stressors on salt marsh ecosystems. For example, 2010 Deepwater Horizon (DWH) oil spill had the potential to alter trophic and energy pathways. Even so, our ability to evaluate its effects on Louisiana salt marsh food webs was limited by a poor basis for comparison of the pre-spill baseline food web. To be better equipped to measure significant alterations in salt marsh ecosystems in the future, we quantified trophic interactions at two marsh sites in Barataria Bay, LA in May and October of 2015. Trophic structure and carbon flow across 52 species of saltmarsh primary producers and consumers were examined through a combination of three approaches: bulk tissue stable isotope analysis (δ13C, δ15N, δ34S), dietary fatty acid analysis (FAA), and compound-specific stable isotope analysis of essential amino acids (δ13C EAA). Bulk stable isotope analysis indicated similar trophic diversity between sites and seasons with the use of aquatic resources increasing concomitantly with trophic level. FAA and δ13C EAA biomarkers revealed that marsh organisms were largely divided into two groups: those that primarily derive carbon from terrestrial C4 grasses, and those that predominately derive carbon from a combination of phytoplankton and benthic microalgal sources. Differences in trophic structure and carbon flow were minimal between seasons and sites that were variably impacted by the DWH spill. These data on salt marsh ecosystem structure will be useful to inform future injury assessments and restoration initiatives.
Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations
Keller, Rebecca Hylton; Xie, Lingtian; Buchwalter, David B.; Franzreb, Kathleen E.; Simons, Theodore R.
2014-01-01
Mercury contamination in wildlife has rarely been studied in the Southern Appalachians despite high deposition rates in the region. From 2006 to 2008 we sampled feathers from 458 birds representing 32 species in the Southern Appalachians for total mercury and stable isotope δ 15N. Mercury concentrations (mean ± SE) averaged 0.46 ± 0.02 μg g−1 (range 0.01–3.74 μg g−1). Twelve of 32 species had individuals (7 % of all birds sampled) with mercury concentrations higher than 1 μg g−1. Mercury concentrations were 17 % higher in juveniles compared to adults (n = 454). In adults, invertivores has higher mercury levels compared to omnivores. Mercury was highest at low-elevation sites near water, however mercury was detected in all birds, including those in the high elevations (1,000–2,000 m). Relative trophic position, calculated from δ 15N, ranged from 2.13 to 4.87 across all birds. We fitted linear mixed-effects models to the data separately for juveniles and year-round resident adults. In adults, mercury concentrations were 2.4 times higher in invertivores compared to omnivores. Trophic position was the main effect explaining mercury levels in juveniles, with an estimated 0.18 ± 0.08 μg g−1 increase in feather mercury for each one unit rise in trophic position. Our research demonstrates that mercury is biomagnifying in birds within this terrestrial mountainous system, and further research is warranted for animals foraging at higher trophic levels, particularly those associated with aquatic environments downslope from montane areas receiving high mercury deposition.
Food-web stability signals critical transitions in temperate shallow lakes
Kuiper, Jan J.; van Altena, Cassandra; de Ruiter, Peter C.; van Gerven, Luuk P. A.; Janse, Jan H.; Mooij, Wolf M.
2015-01-01
A principal aim of ecologists is to identify critical levels of environmental change beyond which ecosystems undergo radical shifts in their functioning. Both food-web theory and alternative stable states theory provide fundamental clues to mechanisms conferring stability to natural systems. Yet, it is unclear how the concept of food-web stability is associated with the resilience of ecosystems susceptible to regime change. Here, we use a combination of food web and ecosystem modelling to show that impending catastrophic shifts in shallow lakes are preceded by a destabilizing reorganization of interaction strengths in the aquatic food web. Analysis of the intricate web of trophic interactions reveals that only few key interactions, involving zooplankton, diatoms and detritus, dictate the deterioration of food-web stability. Our study exposes a tight link between food-web dynamics and the dynamics of the whole ecosystem, implying that trophic organization may serve as an empirical indicator of ecosystem resilience. PMID:26173798
Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web
Fellman, Jason; Hood, Eran; Raymond, Peter A.; Hudson, J.H.; Bozeman, Maura; Arimitsu, Mayumi L.
2015-01-01
We used natural abundance δ13C, δ15N, and Δ14C to compare trophic linkages between potential carbon sources (leaf litter, epilithic biofilm, and particulate organic matter) and consumers (aquatic macroinvertebrates and fish) in a nonglacial stream and two reaches of the heavily glaciated Herbert River. We tested the hypothesis that proglacial stream food webs are sustained by organic carbon released from glacial ecosystems. Carbon sources and consumers in the nonglacial stream had carbon isotope values that ranged from -30‰ to -25‰ for δ13C and from -14‰ to 53‰ for Δ14C reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial stream sites was highly Δ14C-depleted (-215‰ to 175‰) relative to the nonglacial stream consistent with the assimilation of ancient glacier organic carbon. IsoSource modeling showed that in upper Herbert River, macroinvertebrates (Δ14C = -171‰ to 22‰) and juvenile salmonids (Δ14C = −102‰ to 17‰) reflected a feeding history of both biofilm (~ 56%) and leaf litter (~ 40%). We estimate that in upper Herbert River on average 36% of the carbon incorporated into consumer biomass is derived from the glacier ecosystem. Thus, 14C-depleted glacial organic carbon was likely transferred to higher trophic levels through a feeding history of bacterial uptake of dissolved organic carbon and subsequent consumption of 14C-depleted biofilm by invertebrates and ultimately fish. Our findings show that the metazoan food web is sustained in part by glacial organic carbon such that future changes in glacial runoff could influence the stability and trophic structure of proglacial aquatic ecosystems.
Bioaccumulation of organohalogenated compounds in sharks and rays from the southeastern USA.
Weijs, Liesbeth; Briels, Nathalie; Adams, Douglas H; Lepoint, Gilles; Das, Krishna; Blust, Ronny; Covaci, Adrian
2015-02-01
Organohalogenated compounds are widespread in the marine environment and can be a serious threat to organisms in all levels of aquatic food webs, including elasmobranch species. Information about the concentrations of POPs (persistent organic pollutants) and of MeO-PBDEs (methoxylated polybrominated diphenyl ethers) in elasmobranchs is scarce and potential toxic effects are poorly understood. The aims of the present study were therefore to investigate the occurrence of multiple POP classes (PCBs, PBDEs, DDXs, HCB, CHLs) and of MeO-PBDEs in various elasmobranch species from different trophic levels in estuarine and marine waters of the southeastern United States. Overall, levels and patterns of PCBs, PBDEs, DDXs, HCB, CHLs and of MeO-PBDEs varied according to the species, maturity stage, gender and habitat type. The lowest levels of POPs were found in Atlantic stingrays and the highest levels were found in bull sharks. As both species are respectively near the bottom and at top of the trophic web, with juvenile bull sharks frequently feeding on Atlantic stingrays, these findings further suggest a bioaccumulation and biomagnification process with trophic position. MeO-PBDEs were not detected in Atlantic stingrays, but were found in all shark species. HCB was not found in Atlantic stingrays, bonnetheads or lemon sharks, but was detected in the majority of bull sharks examined. Comparison with previous studies suggests that Atlantic stingrays may be experiencing toxic effects of PCBs and DDXs on their immune system. However, the effect of these compounds on the health of shark species remains unclear. Copyright © 2014 Elsevier Inc. All rights reserved.
Jonasson, Sara; Eriksson, Johan; Berntzon, Lotta; Spáčil, Zdenĕk; Ilag, Leopold L.; Ronnevi, Lars-Olof; Rasmussen, Ulla; Bergman, Birgitta
2010-01-01
β-methylamino-L-alanine (BMAA), a neurotoxic nonprotein amino acid produced by most cyanobacteria, has been proposed to be the causative agent of devastating neurodegenerative diseases on the island of Guam in the Pacific Ocean. Because cyanobacteria are widespread globally, we hypothesized that BMAA might occur and bioaccumulate in other ecosystems. Here we demonstrate, based on a recently developed extraction and HPLC-MS/MS method and long-term monitoring of BMAA in cyanobacterial populations of a temperate aquatic ecosystem (Baltic Sea, 2007–2008), that BMAA is biosynthesized by cyanobacterial genera dominating the massive surface blooms of this water body. BMAA also was found at higher concentrations in organisms of higher trophic levels that directly or indirectly feed on cyanobacteria, such as zooplankton and various vertebrates (fish) and invertebrates (mussels, oysters). Pelagic and benthic fish species used for human consumption were included. The highest BMAA levels were detected in the muscle and brain of bottom-dwelling fishes. The discovery of regular biosynthesis of the neurotoxin BMAA in a large temperate aquatic ecosystem combined with its possible transfer and bioaccumulation within major food webs, some ending in human consumption, is alarming and requires attention. PMID:20439734
Potapov, Anton M; Tiunov, Alexei V; Scheu, Stefan
2018-06-19
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13 C as compared to plant litter. This 'detrital shift' likely reflects preferential uptake of 13 C-enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15 N and 13 C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15 N resulting in overlap in isotope ratios between soil-dwelling detritivores and litter-dwelling predators. By contrast, 13 C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non-vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high-rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low-rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high-rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above- and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil-dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs. © 2018 Cambridge Philosophical Society.
Chen, Qiqing; Hu, Xialin; Yin, Daqiang; Wang, Rui
2016-06-01
The potential uptake and trophic transfer ability of nanoparticles (NPs) in aquatic organisms have not been well understood yet. There has been an increasing awareness of the subcellular fate of NPs in organisms, but how the subcellular distribution of NPs subsequently affects the trophic transfer to predator remains to be answered. In the present study, the food chain from Scenedesmus obliquus to Daphnia magna was established to simulate the trophic transfer of fullerene aqueous suspension (nC60). The nC60 contaminated algae were separated into three fractions: cell wall (CW), cell organelle (CO), and cell membrane (CM) fractions, and we investigated the nC60 uptake amounts and trophic transfer efficiency to the predator through dietary exposure to algae or algal subcellular fractions. The nC60 distribution in CW fraction of S. obliquus was the highest, following by CO and CM fractions. nC60 uptake amounts in D. magna were found to be mainly relative to the NPs' distribution in CW fraction and daphnia uptake ability from CW fraction, whereas the nC60 trophic transfer efficiency (TE) were mainly in accordance with the transfer ability of NPs from the CO fraction. CW fed group possessed the highest uptake amount, followed by CO and CM fed groups, but the presence of humic acid (HA) significantly decreased the nC60 uptake from CW fed group. The CO fed groups acquired high TE values for nC60, while CM fed groups had low TE values. Moreover, even though CW fed group had a high TE value; it decreased significantly with the presence of HA. This study contributes to the understanding of fullerene NPs' dietary exposure to aquatic organisms, suggesting that NPs in different food forms are not necessarily equally trophically available to the predator. Copyright © 2016 Elsevier Inc. All rights reserved.
Lewis, Tyler L; Heglund, Patricia J; Lindberg, Mark S; Schmutz, Joel A; Schmidt, Joshua H; Dubour, Adam J; Rover, Jennifer; Bertram, Mark R
2016-06-01
Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production.
Lewis, Tyler; Lindberg, Mark S.; Heglund, Patricia J.; Schmutz, Joel A.; Schmidt, Joshua H.; Dubour, Adam J.; Rover, Jennifer R.; Bertram, Mark R.
2016-01-01
Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production.
Predator personality structures prey communities and trophic cascades.
Start, Denon; Gilbert, Benjamin
2017-03-01
Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality - consistent individual differences in suites of behaviours - may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator-resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades. © 2017 John Wiley & Sons Ltd/CNRS.
Einoder, L D; MacLeod, C K; Coughanowr, C
2018-07-01
The Derwent estuary, in south east Tasmania, is highly contaminated with heavy metals, mainly due to past industrial pollution. This study sought to determine the extent of contamination, bioaccumulation, and biomagnification in the resident bird community and therefore to infer the potential for adverse effects in birds. Thirteen metals were measured from breast feathers (n = 51 individuals) of eight sympatric species of aquatic bird. Stable carbon (δ 13 C) and nitrogen (δ 15 N) isotopes were used to identify dietary sources of contaminants, trophic level, and potential biomagnification through food chains. Generalised linear models revealed that metal burdens were often poorly correlated with δ 13 C, indicating their uptake from a range of freshwater, brackish, and marine carbon sources-not surprising due to widespread contamination across the tidal estuary. Feather mercury increased significantly with trophic level (inferred from δ 15 N). White-bellied Sea-eagle Haliaeetus leucogaster samples contained 240 times more mercury than feral Goose Anser cygnoides. Feather arsenic and copper concentrations were significantly higher in birds feeding lower in the food chain. For several piscivorous species, both chick and adults were sampled revealing significantly higher feather mercury, zinc, and selenium in adults. Feathers from birds found dead along the banks of the estuary had significantly higher lead loads than from live birds, and numerous individuals had levels of mercury, zinc, and lead above toxic thresholds reported in other studies. These results highlight the need to include biota from higher trophic levels in contaminant monitoring programs to understand fully the fate and broader implications of contaminants in the environment.
Research of nickel nanoparticles toxicity with use of Aquatic Organisms
NASA Astrophysics Data System (ADS)
Morgaleva, T.; Morgalev, Yu; Gosteva, I.; Morgalev, S.
2015-11-01
The effect of nanoparticles with the particle size Δ50=5 nm on the test function of aquatic organisms was analyzed by means of biotesting methods with the use of a complex of test-organisms representing general trophic levels. The dependence of an infusoria Paramecium caudatum chemoattractant-elicited response, unicellular algae Chlorella vulgaris Beijer growth rate, Daphnia magna Straus mortality and trophic activity and Danio rerio fish kill due to nNi disperse system concentration, is estimated. It is determined that the release of chlorella into cultivated environment including nNi as a feed for daphnias raises the death rate of entomostracans. The minimal concentration, whereby an organism response to the effect of nNi is registered, depends on the type of test organism and the analysed test function. L(E)C20 is determined for all the organisms used in bioassays. L(E)C50 is estimated for Paramecium caudatum (L(E)C50 = 0.0049 mg/l), for Chlorella vulgaris Beijer (L(E)C50 = 0.529 mg/l), for Daphnia m. S (L(E)C50 > 100 mg/l) and for fish Danio rerio (L(E)C50 > 100 mg/l). According to the Globally Harmonized System hazard substance evaluation criteria and Commission Directive 93/67/EEC, nNi belongs to the “acute toxicity 1” category of toxic substances.
Benthic algae compensate for phytoplankton losses in large aquatic ecosystems.
Brothers, Soren; Vadeboncoeur, Yvonne; Sibley, Paul
2016-12-01
Anthropogenic activities can induce major trophic shifts in aquatic systems, yet we have an incomplete understanding of the implication of such shifts on ecosystem function and on primary production (PP) in particular. In recent decades, phytoplankton biomass and production in the Laurentian Great Lakes have declined in response to reduced nutrient concentrations and invasive mussels. However, the increases in water clarity associated with declines in phytoplankton may have positive effects on benthic PP at the ecosystem scale. Have these lakes experienced oligotrophication (a reduction of algal production), or simply a shift in autotrophic structure with no net decline in PP? Benthic contributions to ecosystem PP are rarely measured in large aquatic systems, but our calculations based on productivity rates from the Great Lakes indicate that a significant proportion (up to one half, in Lake Huron) of their whole-lake production may be benthic. The large declines (5-45%) in phytoplankton production in the Great Lakes from the 1970s to 2000s may be substantially compensated by benthic PP, which increased by up to 190%. Thus, the autotrophic productive capacity of large aquatic ecosystems may be relatively resilient to shifts in trophic status, due to a redirection of production to the near-shore benthic zone, and large lakes may exhibit shifts in autotrophic structure analogous to the regime shifts seen in shallow lakes. © 2016 John Wiley & Sons Ltd.
Organochlorine contaminants in cormorant, darter, egret, and ibis eggs from South Africa.
Bouwman, Henk; Polder, Anuschka; Venter, Belinda; Skaare, Janneche U
2008-03-01
During the last 15 years, no research has been published on the levels of pesticides in bird eggs from South Africa, despite the high levels found previously. We analysed eggs from African darter, cattle egret, reed cormorant, African sacred ibis, as well as single eggs from some other species, and found HCB, DDTs, HCHs, chlordanes and PCBs at detectable levels. The presence of mirex in all species was unexpected, since this compound was never registered in South Africa. It also seemed as if terrestrial feeding birds had higher DDE:PCB ratios when compared with aquatic feeding birds. Except for chlordane, the African darter eggs had the highest levels of all other compounds (mean 370 and 300 ng g(-1) ww Sigma pesticides and Sigma PCBs, respectively). Multivariate analysis clearly distinguished the aquatic and terrestrially feeding birds on pollution profile. The African darter (aquatic feeding) and the cattle egret (terrestrial feeding) would be good indicator candidates. Eggshell thinning was detected in the African darter, and was associated with most of the compounds, including DDE and PCBs. We raise a concern that generally longer living birds in warmer climates, laying fewer eggs per clutch, might be at increased risk when compared with trophically similar birds exposed to equivalent levels of pollution in colder climates. Given the scarcity of water and the high biodiversity in Southern Africa, climate change will exert strong pressure, and any additional anthropogenic contamination at levels that can cause subtle behavioural, developmental and reproductive changes, can have serious effects.
Quantifying multi-habitat support of Great Lakes fishes
Recent advances in trophic ecology have revealed the interconnectedness of diverse habitats in support of aquatic food webs. Understanding the degree to which different habitats support fish can be valuable for fisheries management and ecosystem protection. For example, stable is...
Microbial Life in Soil - Linking Biophysical Models with Observations
NASA Astrophysics Data System (ADS)
Or, Dani; Tecon, Robin; Ebrahimi, Ali; Kleyer, Hannah; Ilie, Olga; Wang, Gang
2015-04-01
Microbial life in soil occurs within fragmented aquatic habitats formed in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world
Microbial Life in Soil - Linking Biophysical Models with Observations
NASA Astrophysics Data System (ADS)
Or, D.; Tecon, R.; Ebrahimi, A.; Kleyer, H.; Ilie, O.; Wang, G.
2014-12-01
Microbial life in soil occurs within fragmented aquatic habitats in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world.
Pulsed flows, tributary inputs, and food web structure in a highly regulated river
Sabo, John; Caron, Melanie; Doucett, Richard R.; Dibble, Kimberly L.; Ruhi, Albert; Marks, Jane; Hungate, Bruce; Kennedy, Theodore A.
2018-01-01
1.Dams disrupt the river continuum, altering hydrology, biodiversity, and energy flow. Although research indicates that tributary inputs have the potential to dilute these effects, knowledge at the food web level is still scarce.2.Here we examined the riverine food web structure of the Colorado River below Glen Canyon Dam, focusing on organic matter sources, trophic diversity, and food chain length. We asked how these components respond to pulsed flows from tributaries following monsoon thunderstorms that seasonally increase streamflow in the American Southwest.3.Tributaries increased the relative importance of terrestrial organic matter, particularly during the wet season below junctures of key tributaries. This contrasted with the algal-based food web present immediately below Glen Canyon Dam.4.Tributary inputs during the monsoon also increased trophic diversity and food chain length: food chain length peaked below the confluence with the largest tributary (by discharge) in Grand Canyon, increasing by >1 trophic level over a 4-5 kilometre reach possibly due to aquatic prey being flushed into the mainstem during heavy rain events.5.Our results illustrate that large tributaries can create seasonal discontinuities, influencing riverine food web structure in terms of allochthony, food web diversity, and food chain length.6.Synthesis and applications. Pulsed flows from unregulated tributaries following seasonal monsoon rains increase the importance of terrestrially-derived organic matter in large, regulated river food webs, increasing food chain length and trophic diversity downstream of tributary inputs. Protecting unregulated tributaries within hydropower cascades may be important if we are to mitigate food web structure alteration due to flow regulation by large dams. This is critical in the light of global hydropower development, especially in megadiverse, developing countries where dam placement (including completed and planned structures) is in tributaries.
Borrell, Asunción; Tornero, Victoria; Bhattacharjee, Dola; Aguilar, Alex
2016-03-01
The Sundarbans forest is the largest and one of the most diverse and productive mangrove ecosystems in the world. Located at the northern shoreline of the Bay of Bengal in the Indian Ocean and straddling India and Bangladesh, the mangrove forest is the result of three primary river systems that originate further north and northwest. During recent decades, the Sundarbans have been subject to increasing pollution by trace elements caused by the progressive industrialization and urbanization of the basins of these three rivers. As a consequence, animals and plants dwelling downstream in the mangroves are exposed to these pollutants in varying degrees, and may potentially affect human health when consumed. The aim of the present study was to analyse the concentrations of seven trace elements (Zn, Cu, Cr, Hg, Pb, Cd and As) in 14 different animal and plant species collected in the Sundarbans in Bangladesh to study their transfer through the food web and to determine whether their levels in edible species are acceptable for human consumption. δ(15)N values were used as a proxy of the trophic level. A decrease in Zn, Cu, Pb and Cd levels was observed with increasing trophic position. Trace element concentrations measured in all organisms were, in general, lower than the concentrations obtained in other field studies conducted in the same region. When examined with respect to accepted international standards, the concentrations observed in fish and crustaceans were generally found to be safe for human consumption. However, the levels of Zn in Scylla serrata and Cr and Cd in Harpadon nehereus exceeded the proposed health advisory levels and may be of concern for human health. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Martens, A. M.; Silins, U.; Bladon, K. D.; Williams, C.; Wagner, M. J.; Luchkow, E.
2015-12-01
Wildfire alters landscapes and can have significant impacts on stream ecosystems. The 2003 Lost Creek wildfire was one of the most severe on Alberta's eastern rocky mountain slopes, resulting in elevated sediment production and nutrient (phosphorus, nitrogen, and carbon) export in impacted streams. These resulted in increased algal productivity and macroinvertebrate abundance and diversity, and as a result, fish in watersheds draining wildfire affected catchments were larger than those in the same age class from reference (unburned) watersheds. In the present investigation, stable isotope analysis of C and N was utilized to evaluate ecosystem energy dynamics and describe trophic relationships in those watersheds. Aquatic invertebrates from burned catchments showed enrichment in δ13C and δ15N relative to algae suggesting a reliance on algae (autochthony) as a primary source of energy. Invertebrates from unburned systems were depleted in δ13C relative to algae indicating reliance on allochthonous or terrestrial primary energy sources. Preliminary analysis of δ15N in macroinvertebrates showed slight enrichment in burned catchments suggesting a trophic shift. More comprehensive macroinvertebrate sampling and identification has been conducted; isotopic analysis will provide greater resolution of how specific families within feeding guilds have been affected by wildfire. This will provide more robust insights into how wildfires may impact stream ecology in mountain environments.
Endocrine disruption in aquatic systems: up-scaling research to address ecological consequences.
Windsor, Fredric M; Ormerod, Steve J; Tyler, Charles R
2018-02-01
Endocrine-disrupting chemicals (EDCs) can alter biological function in organisms at environmentally relevant concentrations and are a significant threat to aquatic biodiversity, but there is little understanding of exposure consequences for populations, communities and ecosystems. The pervasive nature of EDCs within aquatic environments and their multiple sub-lethal effects make assessments of their impact especially important but also highly challenging. Herein, we review the data on EDC effects in aquatic systems focusing on studies assessing populations and ecosystems, and including how biotic and abiotic processes may affect, and be affected by, responses to EDCs. Recent research indicates a significant influence of behavioural responses (e.g. enhancing feeding rates), transgenerational effects and trophic cascades in the ecological consequences of EDC exposure. In addition, interactions between EDCs and other chemical, physical and biological factors generate uncertainty in our understanding of the ecological effects of EDCs within aquatic ecosystems. We illustrate how effect thresholds for EDCs generated from individual-based experimental bioassays of the types commonly applied using chemical test guidelines [e.g. Organisation for Economic Co-operation and Development (OECD)] may not necessarily reflect the hazards associated with endocrine disruption. We argue that improved risk assessment for EDCs in aquatic ecosystems urgently requires more ecologically oriented research as well as field-based assessments at population-, community- and food-web levels. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Lopez-Duarte, P. C.; Able, K.; Fodrie, J.; McCann, M. J.; Melara, S.; Noji, C.; Olin, J.; Pincin, J.; Plank, K.; Polito, M. J.; Jensen, O.
2016-02-01
Multiple studies conducted over five years since the 2010 Macondo oil spill in the Gulf of Mexico indicate that oil impacts vary widely among taxonomic groups. For instance, fishes inhabiting the marsh surface show no clear differences in either community composition or population characteristics between oiled and unoiled sites, despite clear evidence of physiological impacts on individual fish. In contrast, marsh insects and spiders are sensitive to the effects of hydrocarbons. Both insects and spiders are components of the marsh food web and represent an important trophic link between marsh plants and higher trophic levels. Because differences in oil impacts throughout the marsh food web have the potential to significantly alter food webs and energy flow pathways and reduce food web resilience, our goal is to quantify differences in marsh food webs between oiled and unoiled sites to test the hypothesis that oiling has resulted in simpler and less resilient food webs. Diets and food web connections were quantified through a combination of stomach content, stable isotope, and fatty acid analysis. The combination of these three techniques provides a more robust approach to quantifying trophic relationships than any of these methods alone. Stomach content analysis provides a detailed snapshot of diets, while fatty acid and stable isotopes reflect diets averaged over weeks to months. Initial results focus on samples collected in May 2015 from a range of terrestrial and aquatic consumer species, including insects, mollusks, crustaceans, and piscivorous fishes.
Xie, Lingtian; Lambert, D.; Martin, C.; Cain, D.J.; Luoma, S.N.; Buchwalter, D.
2008-01-01
It has become increasingly apparent that diet can be a major source of trace metal bioaccumulation in aquatic organisms. In this study, we examined cadmium uptake, efflux, and subcellular compartmentalization dynamics in the freshwater oligochaete Lumbriculus variegatus. L. variegatus is an important component of freshwater food webs in Europe and North America and is potentially useful as a standard food source for laboratory-based trophic transfer studies. Cadmium accumulation and depuration were each followed for 10 days. Rate constants of uptake (ku) and efflux (ke) were estimated and subcellular Cd compartmentalization was followed over the course of uptake and efflux. The partitioning of Cd into operationally-defined subcellular compartments was relatively consistent throughout the 20-day experiment, with the majority of Cd accumulating in the cytosol. No major changes in Cd compartmentalization were observed over uptake or depuration, but there appeared to be some exchange between heat-stable and heat-labile cytosolic protein fractions. Cadmium accumulation from solution was strongly affected by ambient calcium concentrations, suggesting competition between Cd and Ca for uptake sites. Finally, we demonstrate the ability to manipulate the whole body calcium content of L. variegatus as a potential tool for examining calcium influences on dietary Cd dynamics. The potential for this species to be an important conduit of Cd to higher trophic levels is discussed, along with its potential as a standardized food source in metal trophic transfer studies. ?? 2007 Elsevier B.V. All rights reserved.
Bhuvaneshwari, M; Thiagarajan, Vignesh; Nemade, Prateek; Chandrasekaran, N; Mukherjee, Amitava
2018-01-01
The recent increase in nanoparticle (P25 TiO 2 NPs) usage has led to concerns regarding their potential implications on environment and human health. The food chain is the central pathway for nanoparticle transfer from lower to high trophic level organisms. The current study relies on the investigation of toxicity and trophic transfer potential of TiO 2 NPs from marine algae Dunaliella salina to marine crustacean Artemia salina. Toxicity was measured in two different modes of exposure such as waterborne (exposure of TiO 2 NPs to Artemia) and dietary exposure (NP-accumulated algal cells are used to feed the Artemia). The toxicity and accumulation of TiO 2 NPs in marine algae D. salina were also studied. Artemia was found to be more sensitive to TiO 2 NPs (48h LC 50 of 4.21mgL -1 ) as compared to marine algae, D. salina (48h LC 50 of 11.35mgL -1 ). The toxicity, uptake, and accumulation of TiO 2 NPs were observed to be more in waterborne exposure as compared to dietary exposure. Waterborne exposure seemed to cause higher ROS production and antioxidant enzyme (SOD and CAT) activity as compared to dietary exposure of TiO 2 NPs in Artemia. There were no observed biomagnification (BMF) and trophic transfer from algae to Artemia through dietary exposure. Histopathological studies confirmed the morphological and internal damages in Artemia. This study reiterates the possible effects of the different modes of exposure on trophic transfer potential of TiO 2 NPs and eventually the consequences on aquatic environment. Copyright © 2017 Elsevier Inc. All rights reserved.
González-Ortegón, E; Walton, M E M; Moghaddam, B; Vilas, C; Prieto, A; Kennedy, H A; Pedro Cañavate, J; Le Vay, L
2015-01-15
In a restored wetland (South of Spain), where different flow regimes control water exchange with the adjacent Guadalquivir estuary, the native Palaemon varians coexists with an exotic counterpart species Palaemon macrodactylus. This controlled m\\acrocosm offers an excellent opportunity to investigate how the effects of water management, through different flow regimes, and the presence of a non-native species affect the aquatic community and the trophic niche (by gut contents and C-N isotopic composition) of the native shrimp Palaemon varians. We found that increased water exchange rate (5% day(-1) in mixed ponds vs. 0.1% day(-1) in extensive ponds) modified the aquatic community of this wetland; while extensive ponds are dominated by isopods and amphipods with low presence of P. macrodactylus, mixed ponds presented high biomass of mysids, corixids, copepods and both shrimp species. An estuarine origin of nutrients and primary production might explain seasonal and spatial differences found among ponds of this wetland. A combined analysis of gut contents and isotopic composition of the native and the exotic species showed that: (1) native P. varians is mainly omnivorous (2) while the non-native P. macrodactylus is more zooplanktivorous and (3) a dietary overlap occurred when both species coexist at mixed ponds where a higher water exchange and high abundance of mysids and copepods diversifies the native species' diet. Thus differences in the trophic ecology of both species are clearly explained by water management. This experimental study is a valuable tool for integrated management between river basin and wetlands since it allows quantification of wetland community changes in response to the flow regime. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thines, Nicole J.; Bassman, John H.; Shipley, Lisa A.; Slusser, James R.
2004-10-01
Herbivores represent the interface between primary production and higher trophic levels. The effects of enhanced UV-B radiation on microbes, invertebrate herbivores, and detritivores has received limited study in both terrestrial and aquatic ecosystems. However, although direct effects (e.g. melanoma, cataracts) on mammals have been documented, indirect effects (e.g., resulting from changes in plant chemistry) of enhanced UV-B on mammalian herbivores have not been evaluated. Although the diet of mammalian herbivores has little effect on nutritional quality for their associated predators, to the extent changes in plant chemistry affect aspects of population dynamics (e.g., growth, fecundity, densities), higher trophic levels can be affected. In this study, different forage species of varying inherent levels of key secondary metabolites are being grown in the field under either ambient or ambient plus supplemental UV-B radiation simulating a 15% stratospheric ozone depletion for Pullman, Washington. At various time intervals, foliage is being sampled and analyzed for changes in secondary metabolites and other attributes. Using controlled feeding trials, changes in plant secondary metabolites are being related to preference and digestibility in specialist and generalist mammalian hindgut herbivores, digestion in ruminants and non-ruminants, and to selected aspects of population dynamics in mammalian herbivores. Results suggest how UV-B-induced changes in plant secondary chemistry affect animal nutrition, and thus animal productivity in a range of mammalian herbivores. Reductions in palatability and digestibility of plant material along with reductions in fecundity and other aspects of population dynamics could have significant economic ramifications for farmers, ranchers and wildlife biologists.
Stable nitrogen isotope ratios and accumulation of PCDD/F and PCB in Baltic aquatic food chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broman, D.; Naef, C.; Rolff, C.
Ratios of naturally occurring stable isotopes of nitrogen ({delta}{sup 15}N) can be used to numerically classify trophic levels of organisms in food chains. By combining analyses results of PCDD/Fs and non-ortho PCBs the biomagnification of these substances can be quantitatively estimated. The two Baltic food chains studied were one pelagic (phytoplankton -- settling particulate matter (SPM) -- zooplankton -- mysids -- herring -- cod) and one littoral (phytoplankton -- SPM -- blue mussel -- eider duck). The {delta}{sup 15}N-data gave food chain descriptions qualitatively consistent with previous conceptions of trophic arrangements in the food chains. Phytoplankton showed the lowest averagemore » {delta}{sup 15}N-value and the juvenile eider duck and the cod showed the highest average {delta}{sup 15}N-values for the littoral and pelagic food chains, respectively. The PCDD/Fs and PCBs concentrations were plotted versus the {delta}{sup 15}N-values for the different trophic levels and an exponential model of the form e{sup (A + B*{delta}N)} was fitted to the data. The estimates of the constant B in the model allows for an estimation of a biomagnification power (B) of different singular, or groups of, contaminants. A B-value around zero indicates that a substance is flowing through the food chain without being magnified, whereas a value > 0 indicates that a substance is biomagnified. Negative B-values indicate that a substance is not taken up or is metabolized. The A-term of the expression is only a scaling factor depending on the background level of the contaminant.« less
González-Mille, Donaji J; Ilizaliturri-Hernández, César A; Espinosa-Reyes, Guillermo; Costilla-Salazar, Rogelio; Díaz-Barriga, Fernando; Ize-Lema, Irina; Mejía-Saavedra, Jesús
2010-10-01
The region of Coatzacoalcos, Veracruz hosts one of the largest and most important industrial areas of Mexico and Latin America. Industrial development and rapid population growth, have triggered a severe impact on aquatic ecosystems of the region. The aim of this study was to determine the levels of POPs in sediment and in muscle tissue of five fish species from different trophic levels in downstream residents of the Coatzacoalcos River, and their integration with DNA damage in the fish, evaluated with the comet assay in whole blood as a biological indicator of stress, in order to obtain a baseline of the ecological condition of the region. The compounds detected in sediment and in muscle tissue were hexachlorobenzene (HCB), α-, β-, γ-hexachlorocyclohexane (HCH), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), mirex and polychlorinated biphenyls (PCBs). Sediment concentrations of these pollutants (except for mirex) exceeded the values of protection provided by international guidelines, suggesting a potential risk to aquatic life in the region. DNA damage recorded in the fish species is evidence of exposure to a mix of genotoxic pollutants, which combined with exposure to POPs, reflects the degree of environmental stress of aquatic organisms in the region. The results of this study show the importance of determining the presence of contaminants in the environment, the bioaccumulation in tissues and their effects on exposed organisms, providing an integrated approach in assessing the health of aquatic ecosystems.
Ma, Xindong; Zhang, Haijun; Wang, Zhen; Yao, Ziwei; Chen, Jingwen; Chen, Jiping
2014-05-20
Short chain chlorinated paraffins (SCCPs) are under the evaluation for inclusion into the Stockholm Convention on persistent organic pollutants. However, information on their bioconcentration and biomagnification in marine ecosystems is unavailable, limiting the evaluation of their ecological risks. In this study, seawater, sediment, zooplankton, invertebrates, and fishes collected from Liaodong Bay, Bohai Sea, North China were analyzed to investigate the residual level, congener group profile, bioaccumulation, and trophic transfer of SCCPs in a marine food web. The total concentrations of SCCPs ranged from 4.1 to 13.1 ng L(-1) in seawater, 65 to 541 ng g(-1) (dw) in sediment, and 86 to 4400 ng g(-1) (ww) in organisms. Correspondence analysis indicated the relative enrichment of C10Cl5 and C11Cl5 formula groups in most aquatic organisms. Both the logarithm bioaccumulation factors (log BAFs: 4.1-6.7) and biota-sediment accumulation factors (BSAFs: 0.1-7.3) of individual congeners implied the bioaccumulation of SCCPs. The trophic magnification factor (TMF) of ∑SCCPs was determined to be 2.38 in the zooplankton-shrimp-fish food web, indicating biomagnification potential of SCCPs in the marine ecosystem. The TMF values of individual congener groups significantly correlated with their log KOW values.
Benthic versus Planktonic Foundations of Three Lake Superior Coastal Food Webs
The structure of aquatic food webs can provide information on system function, trophic dynamics and, potentially, responses to anthropogenic stressors. Stable isotope analyses in a Lake Superior coastal wetland (Allouez Bay, WI, USA) revealed that the food web was based upon carb...
UPTAKE, TOXICITY, AND TROPHIC TRANSFER OF MERCURY IN A COASTAL DIATOM. (R824778)
The primary mechanisms controlling the accumulation of methylmercury and
inorganic mercury in aquatic food chains are not sufficiently understood.
Differences in lipid solubility alone cannot account for the predominance of
methylmercury in fish because inorganic m...
Vanni, Michael J; McIntyre, Peter B
2016-12-01
The metabolic theory of ecology (MTE) and ecological stoichiometry (ES) are both prominent frameworks for understanding energy and nutrient budgets of organisms. We tested their separate and joint power to predict nitrogen (N) and phosphorus (P) excretion rates of ectothermic aquatic invertebrate and vertebrate animals (10,534 observations worldwide). MTE variables (body size, temperature) performed better than ES variables (trophic guild, vertebrate classification, body N:P) in predicting excretion rates, but the best models included variables from both frameworks. Size scaling coefficients were significantly lower than predicted by MTE (<0.75), were lower for P than N, and varied greatly among species. Contrary to expectations under ES, vertebrates excreted both N and P at higher rates than invertebrates despite having more nutrient-rich bodies, and primary consumers excreted as much nutrients as carnivores despite having nutrient-poor diets. Accounting for body N:P hardly improved upon predictions from treating vertebrate classification categorically. We conclude that basic data on body size, water temperature, trophic guild, and vertebrate classification are sufficient to make general estimates of nutrient excretion rates for any animal taxon or aquatic ecosystem. Nonetheless, dramatic interspecific variation in size-scaling coefficients and counter-intuitive patterns with respect to diet and body composition underscore the need for field data on consumption and egestion rates. Together, MTE and ES provide a powerful conceptual basis for interpreting and predicting nutrient recycling rates of aquatic animals worldwide. © 2016 by the Ecological Society of America.
Godoy, B S; Simião-Ferreira, J; Lodi, S; Oliveira, L G
2016-04-01
Stream ecology studies see to understand ecological dynamics in lotic systems. The characterization of streams into Functional Process Zones (FPZ) has been currently debated in stream ecology because aquatic communities respond to functional processes of river segments. Therefore, we tested if different functional process zones have different number of genera and trophic structure using the aquatic insect community of Neotropical streams. We also assessed whether using physical and chemical variables may complement the approach of using FPZ to model communities of aquatic insects in Cerrado streams. This study was conducted in 101 streams or rivers from the central region of the state of Goiás, Brazil. We grouped the streams into six FPZ associated to size of the river system, presence of riparian forest, and riverbed heterogeneity. We used Bayesian models to compare number of genera and relative frequency of the feeding groups between FPZs. Streams classified in different FPZs had a different number of genera, and the largest and best preserved rivers had an average of four additional genera. Trophic structure exhibited low variability among FPZs, with little difference both in the number of genera and in abundance. Using functional process zones in Cerrado streams yielded good results for Ephemeroptera, Plecoptera, and Trichoptera communities. Thus, species distribution and community structure in the river basin account for functional processes and not necessarily for the position of the community along a longitudinal dimension of the lotic system.
Nonequilibrium Thermodynamics in Biological Systems
NASA Astrophysics Data System (ADS)
Aoki, I.
2005-12-01
1. Respiration Oxygen-uptake by respiration in organisms decomposes macromolecules such as carbohydrate, protein and lipid and liberates chemical energy of high quality, which is then used to chemical reactions and motions of matter in organisms to support lively order in structure and function in organisms. Finally, this chemical energy becomes heat energy of low quality and is discarded to the outside (dissipation function). Accompanying this heat energy, entropy production which inevitably occurs by irreversibility also is discarded to the outside. Dissipation function and entropy production are estimated from data of respiration. 2. Human body From the observed data of respiration (oxygen absorption), the entropy production in human body can be estimated. Entropy production from 0 to 75 years old human has been obtained, and extrapolated to fertilized egg (beginning of human life) and to 120 years old (maximum period of human life). Entropy production show characteristic behavior in human life span : early rapid increase in short growing phase and later slow decrease in long aging phase. It is proposed that this tendency is ubiquitous and constitutes a Principle of Organization in complex biotic systems. 3. Ecological communities From the data of respiration of eighteen aquatic communities, specific (i.e. per biomass) entropy productions are obtained. They show two phase character with respect to trophic diversity : early increase and later decrease with the increase of trophic diversity. The trophic diversity in these aquatic ecosystems is shown to be positively correlated with the degree of eutrophication, and the degree of eutrophication is an "arrow of time" in the hierarchy of aquatic ecosystems. Hence specific entropy production has the two phase: early increase and later decrease with time. 4. Entropy principle for living systems The Second Law of Thermodynamics has been expressed as follows. 1) In isolated systems, entropy increases with time and approaches to a maximum value. This is well-known classical Clausius principle. 2) In open systems near equilibrium entropy production always decreases with time approaching a minimum stationary level. This is the minimum entropy production principle by Prigogine. These two principle are established ones. However, living systems are not isolated and not near to equilibrium. Hence, these two principles can not be applied to living systems. What is entropy principle for living systems? Answer: Entropy production in living systems consists of multi-stages with time: early increasing, later decreasing and/or intermediate stages. This tendency is supported by various living systems.
Food-web structure of seagrass communities across different spatial scales and human impacts.
Coll, Marta; Schmidt, Allison; Romanuk, Tamara; Lotze, Heike K
2011-01-01
Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature information, we analyzed the structural features of food webs associated with Zostera marina across 16 study sites in 3 provinces in Atlantic Canada. Our goals were to (i) quantify differences in food-web structure across local and regional scales and human impacts, (ii) assess the robustness of seagrass webs to simulated species loss, and (iii) compare food-web structure in temperate Atlantic seagrass beds with those of other aquatic ecosystems. We constructed individual food webs for each study site and cumulative webs for each province and the entire region based on presence/absence of species, and calculated 16 structural properties for each web. Our results indicate that food-web structure was similar among low impact sites across regions. With increasing human impacts associated with eutrophication, however, food-web structure show evidence of degradation as indicated by fewer trophic groups, lower maximum trophic level of the highest top predator, fewer trophic links connecting top to basal species, higher fractions of herbivores and intermediate consumers, and higher number of prey per species. These structural changes translate into functional changes with impacted sites being less robust to simulated species loss. Temperate Atlantic seagrass webs are similar to a tropical seagrass web, yet differed from other aquatic webs, suggesting consistent food-web characteristics across seagrass ecosystems in different regions. Our study illustrates that food-web structure and functioning of seagrass habitats change with human impacts and that the spatial scale of food-web analysis is critical for determining results.
Food-Web Structure of Seagrass Communities across Different Spatial Scales and Human Impacts
Coll, Marta; Schmidt, Allison; Romanuk, Tamara; Lotze, Heike K.
2011-01-01
Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature information, we analyzed the structural features of food webs associated with Zostera marina across 16 study sites in 3 provinces in Atlantic Canada. Our goals were to (i) quantify differences in food-web structure across local and regional scales and human impacts, (ii) assess the robustness of seagrass webs to simulated species loss, and (iii) compare food-web structure in temperate Atlantic seagrass beds with those of other aquatic ecosystems. We constructed individual food webs for each study site and cumulative webs for each province and the entire region based on presence/absence of species, and calculated 16 structural properties for each web. Our results indicate that food-web structure was similar among low impact sites across regions. With increasing human impacts associated with eutrophication, however, food-web structure show evidence of degradation as indicated by fewer trophic groups, lower maximum trophic level of the highest top predator, fewer trophic links connecting top to basal species, higher fractions of herbivores and intermediate consumers, and higher number of prey per species. These structural changes translate into functional changes with impacted sites being less robust to simulated species loss. Temperate Atlantic seagrass webs are similar to a tropical seagrass web, yet differed from other aquatic webs, suggesting consistent food-web characteristics across seagrass ecosystems in different regions. Our study illustrates that food-web structure and functioning of seagrass habitats change with human impacts and that the spatial scale of food-web analysis is critical for determining results. PMID:21811637
Comparing isotope signatures of prey fish: does gut removal affect δ13C or δ15N?
Chipps, Steven R.; Fincel, Mark J.; VanDeHey, Justin A.; Wuestewald, Andrew
2011-01-01
Stable isotope analysis is a quick and inexpensive method to monitor the effects of food web changes on aquatic communities. Traditionally, whole specimens have been used when determining isotope composition of prey fish or age-0 recreational fishes. However, gut contents of prey fish could potentially alter isotope composition of the specimen, especially when recent foraging has taken place or when the gut contains non-assimilated material that would normally pass through fishes undigested. To assess the impacts of gut content on prey fish isotope signatures, we examined the differences in isotopic variation of five prey fish species using whole fish, whole fish with the gut contents removed, and dorsal muscle only. We found significant differences in both δ15N and δ13C between the three tissue treatments. In most cases, muscle tissue was enriched compared to whole specimens or gut-removed specimens. Moreover, differences in mean δ15N within a species were up to 2‰ among treatments. This would result in a change of over half a trophic position (TP) based on a 3.4‰ increase per trophic level. However, there were no apparent relationships between tissue isotope values in fish with increased gut fullness (more prey tissue present). We suggest that muscle tissue should be used as the standard tissue for determining isotope composition of prey fish or age-0 recreational fishes, especially when determining enrichment for mixing models, calculating TP, or constructing aquatic food webs.
Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska
McFarland, Jason J.; Wipfli, Mark S.; Whitman, Matthew S.
2018-01-01
Beaded streams are prominent across the Arctic Coastal Plain (ACP) of Alaska, yet prey flow and food web dynamics supporting fish inhabiting these streams are poorly understood. Arctic grayling (Thymallus arcticus) are a widely distributed upper-level consumer on the ACP and migrate into beaded streams to forage during the short 3-month open-water season. We investigated energy pathways and key prey resources that support grayling in a representative beaded stream, Crea Creek. We measured terrestrial invertebrates entering the stream from predominant riparian vegetation types, prey types supporting a range of fish size classes, and how riparian plants and fish size influenced foraging habits. We found that riparian plants influenced the quantity of terrestrial invertebrates entering Crea Creek; however, these differences were not reflected in fish diets. Prey type and size ingested varied with grayling size and season. Small grayling (<15 cm fork length (FL)) consumed mostly aquatic invertebrates early in the summer, and terrestrial invertebrates later in summer, while larger fish (>15 cm FL) foraged most heavily on ninespine stickleback (Pungitius pungitius) throughout the summer, indicating that grayling can be insectivorous and piscivorous, depending on size. These findings underscore the potential importance of small streams in Arctic ecosystems as key summer foraging habitats for fish. Understanding trophic pathways supporting stream fishes in these systems will help interpret whether and how petroleum development and climate change may affect energy flow and stream productivity, terrestrial–aquatic linkages and fishes in Arctic ecosystems.
López-Rodríguez, M J; Trenzado, C E; Tierno de Figueroa, J M; Sanz, A
2012-05-01
Plecoptera (Perlidae) are among the major macroinvertebrate predators in stream ecosystems and one of the insect families with lower tolerance to environmental alterations, being usually employed as bioindicators of high water ecological quality. The differences in the trophic roles of the coexisting species have been exclusively studied from their gut contents, while no data are available on the comparative digestive capacity. In the present paper, we make a comparative study of the activity of several digestive enzymes, namely proteases (at different pH), amylase, lipase, trypsin and chymotrypsin, in two species of stoneflies, Perla bipunctata and Dinocras cephalotes, which cohabit in the same stream. The study of digestive enzyme activity together with the analysis of gut contents can contribute to a better understanding of the ecology of these aquatic insects and their role in freshwater food webs. Thus, our results show that the two studied predator species inhabiting in the same stream present specializations on their feeding behaviors, facilitating their coexistence, and also differences in their capacity of use the resources. One of the main findings of this study is that D. cephalotes is able to assimilate a wider trophic resource spectrum and this could be one of the reasons why this species has a wider global distribution in all its geographical range. Copyright © 2012 Elsevier Inc. All rights reserved.
Freshwater ecosystems and aquatic insects: a paradox in biological invasions.
Fenoglio, Stefano; Bonada, Núria; Guareschi, Simone; López-Rodríguez, Manuel J; Millán, Andrés; Tierno de Figueroa, J Manuel
2016-04-01
Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur. © 2016 The Author(s).
Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies.
Epanchin, Peter N; Knapp, Roland A; Lawler, Sharon P
2010-08-01
Adjacent food webs may be linked by cross-boundary subsidies: more-productive donor systems can subsidize consumers in less-productive neighboring recipient systems. Introduced species are known to have direct effects on organisms within invaded communities. However, few studies have addressed the indirect effects of nonnative species in donor systems on organisms in recipient systems. We studied the direct role of introduced trout in altering a lake-derived resource subsidy and their indirect effects in altering a passerine bird's response to that subsidy. We compared the abundance of aquatic insects and foraging Gray-crowned Rosy-Finches (Leucosticte tephrocotis dawsoni, "Rosy-Finch") at fish-containing vs. fishless lakes in the Sierra Nevada Mountains of California (USA). Introduced trout outcompeted Rosy-Finches for emerging aquatic insects (i.e., mayflies). Fish-containing lakes had 98% fewer mayflies than did fishless lakes. In lakes without fish, Rosy-Finches showed an aggregative response to emerging aquatic insects with 5.9 times more Rosy-Finches at fishless lakes than at fish-containing lakes. Therefore, the introduction of nonnative fish into the donor system reduced both the magnitude of the resource subsidy and the strength of cross-boundary trophic interactions. Importantly, the timing of the subsidy occurs when Rosy-Finches feed their young. If Rosy-Finches rely on aquatic-insect subsidies to fledge their young, reductions in the subsidy by introduced trout may have decreased Rosy-Finch abundances from historic levels. We recommend that terrestrial recipients of aquatic subsidies be included in conservation and restoration plans for ecosystems with alpine lakes.
Rowan, D J
2013-07-01
Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any situation where reactor releases are episodic or pulse in nature, even if the magnitude of these releases is small. Copyright © 2012. Published by Elsevier Ltd.
Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism par...
1. Sublethal effects of predation can affect both population and community structure. Despite this, little is known about how the frequency of injury varies in relation to habitat, aquatic community characteristics or between trophically similar, coexisting taxa. 2. In a tidal ...
Toxicity of Engineered Nanoparticles in the Environment
Maurer-Jones, Melissa A.; Gunsolus, Ian L.; Murphy, Catherine J.; Haynes, Christy L.
2014-01-01
While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address. PMID:23427995
Toxicity of engineered nanoparticles in the environment.
Maurer-Jones, Melissa A; Gunsolus, Ian L; Murphy, Catherine J; Haynes, Christy L
2013-03-19
While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address.
Mercury Dynamics in Aquatic Food Webs of the Finger Lakes, New York
NASA Astrophysics Data System (ADS)
Cleckner, L.; Razavi, N. R.; Halfman, J. D.; Cushman, S. F.; Foust, J.; Gilman, B.
2016-12-01
Mercury (Hg) contamination of fish is a global concern due to the deleterious health effects in humans and wildlife associated with ingesting fish with elevated concentrations. A key to understanding elevated fish Hg concentrations is to examine methyl Hg dynamics at the base of food webs, including algae and zooplankton. Predicting determinants of methyl Hg concentrations in lower trophic level biota remains an active area of research. This study was conducted to assess Hg concentrations in biota of the Finger Lakes (New York, USA), a region where fisheries are an important economic driver, but where no comprehensive assessment of food web Hg dynamics has been completed to date. Sources of Hg in the region include atmospheric pollution from an active coal-fired power plant. The objectives of this study were to: 1) determine if fish Hg concentrations were of concern, 2) assess differences in Hg accumulation among lakes and determine predictors of fish Hg concentrations, and 3) evaluate the predictive power of monthly zooplankton methyl Hg concentrations on fish Hg concentrations. From May - October 2015, suspended particulate matter, zooplankton, and benthos were sampled monthly in five of the Finger Lakes (Honeoye, Canandaigua, Seneca, Cayuga, and Owasco Lakes). Fish were sampled once over the same study period and species were targeted from all trophic levels. Results for top predatory fish including Lake Trout (Salvelinus namaycush), Largemouth Bass (Micropterus salmoides), and Walleye (Sander vitreus) showed significant differences among lakes, and elevated concentrations are above US Environmental Protection Agency's screening value (300 ng/g wet weight). No clear pattern in Hg levels among lakes was evident in lower trophic level fishes such as Yellow Perch (Perca flavescens) and Golden Shiner (Notemigonus crysoleucas), but concentrations were low. Benthivorous Brown Bullhead (Ameiurus nebulosus) exhibited significant differences in Hg among lakes with elevated concentrations in Seneca Lake only. Methyl Hg concentrations in zooplankton did not vary significantly among lakes or by season. Predictors of biota Hg concentrations include lake morphometry, land cover, and water chemistry including dissolved organic carbon, as well as lower trophic methyl Hg concentrations.
Avian community responses to variability in river hydrology.
Royan, Alexander; Hannah, David M; Reynolds, S James; Noble, David G; Sadler, Jonathan P
2013-01-01
River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species' responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species' distributions highlights the need to include river flow data in climate change impact models of species' distributions.
2002-01-01
Background Bi-directional flow of nutrients between marine and terrestrial ecosystems can provide essential resources that structure communities in transitional habitats. On the Pacific coast of North America, anadromous salmon (Oncorhynchus spp.) constitute a dominant nutrient subsidy to aquatic habitats and riparian vegetation, although the contribution to terrestrial habitats is not well established. We use a dual isotope approach of δ15N and δ13C to test for the contribution of salmon nutrients to multiple trophic levels of litter-based terrestrial invertebrates below and above waterfalls that act as a barrier to salmon migration on two watersheds in coastal British Columbia. Results Invertebrates varied predictably in δ15N with enrichment of 3–8‰ below the falls compared with above the falls in all trophic groups on both watersheds. We observed increasing δ15N levels in our invertebrate groups with increasing consumption of dietary protein. Invertebrates varied in δ13C but did not always vary predictably with trophic level or habitat. From 19.4 to 71.5% of invertebrate total nitrogen was originally derived from salmon depending on taxa, watershed, and degree of fractionation from the source. Conclusions Enrichment of δ15N in the invertebrate community below the falls in conjunction with the absence of δ13C enrichment suggests that enrichment in δ15N occurs primarily through salmon-derived nitrogen subsidies to litter, soil and vegetation N pools rather than from direct consumption of salmon tissue or salmon tissue consumers. Salmon nutrient subsidies to terrestrial habitats may result in shifts in invertebrate community structure, with subsequent implications for higher vertebrate consumers, particularly the passerines. PMID:11914157
Methylmercury biomagnification in an Arctic pelagic food web.
Ruus, Anders; Øverjordet, Ida B; Braaten, Hans Fredrik V; Evenset, Anita; Christensen, Guttorm; Heimstad, Eldbjørg S; Gabrielsen, Geir W; Borgå, Katrine
2015-11-01
Mercury (Hg) is a toxic element that enters the biosphere from natural and anthropogenic sources, and emitted gaseous Hg enters the Arctic from lower latitudes by long-range transport. In aquatic systems, anoxic conditions favor the bacterial transformation of inorganic Hg to methylmercury (MeHg), which has a greater potential for bioaccumulation than inorganic Hg and is the most toxic form of Hg. The main objective of the present study was to quantify the biomagnification of MeHg in a marine pelagic food web, comprising species of zooplankton, fish, and seabirds, from the Kongsfjorden system (Svalbard, Norway), by use of trophic magnification factors. As expected, tissue concentrations of MeHg increased with increasing trophic level in the food web, though at greater rates than observed in several earlier studies, especially at lower latitudes. There was strong correlation between MeHg and total Hg concentrations through the food web as a whole. The concentration of MeHg in kittiwake decreased from May to October, contributing to seasonal differences in trophic magnification factors. The ecology and physiology of the species comprising the food web in question may have a large influence on the magnitude of the biomagnification. A significant linear relationship was also observed between concentrations of selenium and total Hg in birds but not in zooplankton, suggesting the importance of selenium in Hg detoxification for individuals with high Hg concentrations. © 2015 SETAC.
Stable isotope signatures reflect dietary diversity in European forest moths.
Adams, Marc-Oliver; Seifert, Carlo Lutz; Lehner, Lisamarie; Truxa, Christine; Wanek, Wolfgang; Fiedler, Konrad
2016-01-01
Information on larval diet of many holometabolous insects remains incomplete. Carbon (C) and nitrogen (N) stable isotope analysis in adult wing tissue can provide an efficient tool to infer such trophic relationships. The present study examines whether moth feeding guild affiliations taken from literature are reflected in isotopic signatures. Non-metric multidimensional scaling and permutational analysis of variance indicate that centroids of dietary groups differ significantly. In particular, species whose larvae feed on mosses or aquatic plants deviated from those that consumed vascular land plants. Moth δ(15)N signatures spanned a broader range, and were less dependent on species identity than δ(13)C values. Comparison between moth samples and ostensible food sources revealed heterogeneity in the lichenivorous guild, indicating only Lithosia quadra as an obligate lichen feeder. Among root-feeding Agrotis segetum, some specimens appear to have developed on crop plants in forest-adjacent farm land. Reed-feeding stem-borers may partially rely on intermediary trophic levels such as fungal or bacterial growth. Diagnostic partitioning of moth dietary guilds based on isotopic signatures alone could not be achieved, but hypotheses on trophic relationships based on often vague literature records could be assessed with high resolution. Hence, the approach is well suited for basic categorization of moths where diet is unknown or notoriously difficult to observe (i.e. Microlepidoptera, lichen-feeders).
Microbial Food-Web Drivers in Tropical Reservoirs.
Domingues, Carolina Davila; da Silva, Lucia Helena Sampaio; Rangel, Luciana Machado; de Magalhães, Leonardo; de Melo Rocha, Adriana; Lobão, Lúcia Meirelles; Paiva, Rafael; Roland, Fábio; Sarmento, Hugo
2017-04-01
Element cycling in aquatic systems is driven chiefly by planktonic processes, and the structure of the planktonic food web determines the efficiency of carbon transfer through trophic levels. However, few studies have comprehensively evaluated all planktonic food-web components in tropical regions. The aim of this study was to unravel the top-down controls (metazooplankton community structure), bottom-up controls (resource availability), and hydrologic (water residence time) and physical (temperature) variables that affect different components of the microbial food web (MFW) carbon stock in tropical reservoirs, through structural equation models (SEM). We conducted a field study in four deep Brazilian reservoirs (Balbina, Tucuruí, Três Marias, and Funil) with different trophic states (oligo-, meso-, and eutrophic). We found evidence of a high contribution of the MFW (up to 50% of total planktonic carbon), especially in the less-eutrophic reservoirs (Balbina and Tucuruí). Bottom-up and top-down effects assessed through SEM indicated negative interactions between soluble reactive phosphorus and phototrophic picoplankton (PPP), dissolved inorganic nitrogen, and heterotrophic nanoflagellates (HNF). Copepods positively affected ciliates, and cladocerans positively affected heterotrophic bacteria (HB) and PPP. Higher copepod/cladoceran ratios and an indirect positive effect of copepods on HB might strengthen HB-HNF coupling. We also found low values for the degree of uncoupling (D) and a low HNF/HB ratio compared with literature data (mostly from temperate regions). This study demonstrates the importance of evaluating the whole size spectrum (including microbial compartments) of the different planktonic compartments, in order to capture the complex carbon dynamics of tropical aquatic ecosystems.
Finger, John W; Hamilton, Matthew T; Kelley, Meghan D; Zhang, Yufeng; Kavazis, Andreas N; Glenn, Travis C; Tuberville, Tracey D
2018-07-01
Selenium (Se) is an essential nutrient which in excess causes toxicity. The disposal of incompletely combusted coal, which often is rich in Se, into aquatic settling basins is increasing the risk of Se exposure worldwide. However, very few studies have looked at the physiological effects of Se exposure on long-lived, top trophic vertebrates, such as the American alligator (Alligator mississippiensis). During a 7-week period, alligators were fed one of three dietary treatments: mice injected with deionized water or mice injected with water containing 1000 or 2000 ppm selenomethionine (SeMet). One week after the last feeding alligators were bled within 3 min of capture for plasma corticosterone (CORT). A few days later, all alligators were euthanized and whole blood and tail tissue were harvested to measure oxidative damage, an antioxidant-associated transcription factor, and antioxidant enzymes [glutathione peroxidase-1 (GPX1), superoxide dismutase-1 (SOD1), and SOD2] by Western blotting. There was a dose-dependent increase in baseline CORT levels in alligators administered SeMet. Except for blood SOD2 levels, SeMet treatment had no effect (p > 0.05 for all) on oxidative status: oxidative damage, GPX1, SOD1, and muscle SOD2 levels were similar among treatments. Our results illustrate that high levels of Se may act as a stressor to crocodilians. Future studies should investigate further the physiological effects of Se accumulation in long-lived, top-trophic vertebrates.
Food web structure shaped by habitat size and climate across a latitudinal gradient.
Romero, Gustavo Q; Piccoli, Gustavo C O; de Omena, Paula M; Gonçalves-Souza, Thiago
2016-10-01
Habitat size and climate are known to affect the trophic structure and dynamics of communities, but their interactive effects are poorly understood. Organisms from different trophic levels vary in terms of metabolic requirements and heat dissipation. Indeed, larger species such as keystone predators require more stable climatic conditions than their prey. Likewise, habitat size disproportionally affects large-sized predators, which require larger home ranges and are thus restricted to larger habitats. Therefore, food web structure in patchy ecosystems is expected to be shaped by habitat size and climate variations. Here we investigate this prediction using natural aquatic microcosm (bromeliad phytotelmata) food webs composed of litter resources (mainly detritus), detritivores, mesopredators, and top predators (damselflies). We surveyed 240 bromeliads of varying sizes (water retention capacity) across 12 open restingas in SE Brazil spread across a wide range of tropical latitudes (-12.6° to -27.6°, ca. 2,000 km) and climates (Δ mean annual temperature = 5.3°C). We found a strong increase in predator-to-detritivore mass ratio with habitat size, which was representative of a typical inverted trophic pyramid in larger ecosystems. However, this relationship was contingent among the restingas; slopes of linear models were steeper in more stable and favorable climates, leading to inverted trophic pyramids (and top-down control) being more pronounced in environments with more favorable climatic conditions. By contrast, detritivore-resource and mesopredator-detritivore mass ratios were not affected by habitat size or climate variations across latitudes. Our results highlight that the combined effects of habitat size, climate and predator composition are pivotal to understanding the impacts of multiple environmental factors on food web structure and dynamics. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Schreiner, K. M.; Bramburger, A.; Ozersky, T.; Sheik, C.; Steinman, B. A.
2016-02-01
Lake Superior is the largest freshwater lake in the world, supporting economically important fisheries and providing drinking water to hundreds of thousands of people. In recent decades, summer surface water temperature and the intensity and duration of water column stratification in the lake has increased steadily. These physical changes have resulted in significant perturbations to lower trophic level ecosystem characteristics. Recent observations of Great Lakes plankton assemblages have revealed multi-decadal patterns of community reorganization, with increased relative abundance of taxa characteristic of warmer waters. These changes, coupled with changing nutrient concentrations and colonization by non-native taxa, threaten to shift trophic structure and carbon dynamics at the bottom of the food web. To this end, this study seeks to quantify the impacts of this ecosystem shift on carbon fixation, the biological pump, and organic carbon cycling in Lake Superior. Utilizing a combined sampling approach, in the summer of 2015 we collected water, sediment, and biological samples across a nearshore-to-offshore gradient in the western arm of Lake Superior. Analyses included the community composition of bacteria, archaea, phytoplankton, and zooplankton; water column carbon and nutrient speciation; algal pigments and pigment degradation products; and net primary productivity. The collection of surface sediments allowed for additional assessment of benthic-pelagic coupling. The novel combination of this wide-ranging set of analyses to a locally and globally important water body like Lake Superior allowed us to fully assess the interactions between lower trophic level biology and carbon and nutrient cycling throughout the water column. Preliminary data indicates that microbial community composition was variable across the western arm of Lake Superior and showed signs of stratification at individual stations (>100 m deep). Sample collection occurred soon after lake stratification in July 2015, and the presence of a deep chlorophyll maximum was noted. The results shed light on the functioning of the biological pump and nutrient and carbon dynamics in a changing ecosystem and provides insight on how further change in Lake Superior and other aquatic systems will affect ecosystem function and services.
Wang, Zhibin; Zhang, Honggang; Pan, Gang
2016-06-15
Flocculant modified soils/clays are being increasingly studied as geo-engineering materials for lake restoration and harmful algal bloom control. However, the potential impacts of adding these materials in aquatic ecological systems remain unclear. This study investigated the potential effects of chitosan, cationic starch, chitosan modified soils (MS-C) and cationic starch modified soils (MS-S) on the aquatic organisms by using a bioassay battery. The toxicity potential of these four flocculants was quantitatively assessed using an integrated biotic toxicity index (BTI). The test system includes four aquatic species, namely Chlorella vulgaris, Daphnia magna, Cyprinus carpio and Limnodrilus hoffmeisteri, which represent four trophic levels in the freshwater ecosystem. Results showed that median effect concentrations (EC50) of the MS-C and MS-S were 31-124 times higher than chitosan and cationic starch, respectively. D. magna was the most sensitive species to the four flocculants. Histological examination of C. carpio showed that significant pathological changes were found in gills. Different from chitosan and cationic starch, MS-C and MS-S significantly alleviated the acute toxicities of chitosan and cationic starch. The toxicity order of the four flocculants based on BTI were cationic starch > chitosan > MS-S > MS-C. The results suggested that BTI can be used as a quantitative and comparable indicator to assess biotic toxicity for aquatic geo-engineering materials. Chitosan or cationic starch modified soil/clay materials can be used at their optimal dosage without causing substantial adverse effects to the bioassay battery in aquatic ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multi-trophic level response to extreme metal contamination from gold mining in a subarctic lake.
Thienpont, Joshua R; Korosi, Jennifer B; Hargan, Kathryn E; Williams, Trisha; Eickmeyer, David C; Kimpe, Linda E; Palmer, Michael J; Smol, John P; Blais, Jules M
2016-08-17
Giant Mine, located in the city of Yellowknife (Northwest Territories, Canada), is a dramatic example of subarctic legacy contamination from mining activities, with remediation costs projected to exceed $1 billion. Operational between 1948 and 2004, gold extraction at Giant Mine released large quantities of arsenic and metals from the roasting of arsenopyrite ore. We examined the long-term ecological effects of roaster emissions on Pocket Lake, a small lake at the edge of the Giant Mine lease boundary, using a spectrum of palaeoenvironmental approaches. A dated sedimentary profile tracked striking increases (approx. 1700%) in arsenic concentrations coeval with the initiation of Giant Mine operations. Large increases in mercury, antimony and lead also occurred. Synchronous changes in biological indicator assemblages from multiple aquatic trophic levels, in both benthic and pelagic habitats, indicate dramatic ecological responses to extreme metal(loid) contamination. At the peak of contamination, all Cladocera, a keystone group of primary consumers, as well as all planktonic diatoms, were functionally lost from the sediment record. No biological recovery has been inferred, despite the fact that the bulk of metal(loid) emissions occurred more than 50 years ago, and the cessation of all ore-roasting activities in Yellowknife in 1999. © 2016 The Author(s).
Multi-trophic level response to extreme metal contamination from gold mining in a subarctic lake
Korosi, Jennifer B.; Hargan, Kathryn E.; Williams, Trisha; Eickmeyer, David C.; Kimpe, Linda E.; Palmer, Michael J.; Smol, John P.; Blais, Jules M.
2016-01-01
Giant Mine, located in the city of Yellowknife (Northwest Territories, Canada), is a dramatic example of subarctic legacy contamination from mining activities, with remediation costs projected to exceed $1 billion. Operational between 1948 and 2004, gold extraction at Giant Mine released large quantities of arsenic and metals from the roasting of arsenopyrite ore. We examined the long-term ecological effects of roaster emissions on Pocket Lake, a small lake at the edge of the Giant Mine lease boundary, using a spectrum of palaeoenvironmental approaches. A dated sedimentary profile tracked striking increases (approx. 1700%) in arsenic concentrations coeval with the initiation of Giant Mine operations. Large increases in mercury, antimony and lead also occurred. Synchronous changes in biological indicator assemblages from multiple aquatic trophic levels, in both benthic and pelagic habitats, indicate dramatic ecological responses to extreme metal(loid) contamination. At the peak of contamination, all Cladocera, a keystone group of primary consumers, as well as all planktonic diatoms, were functionally lost from the sediment record. No biological recovery has been inferred, despite the fact that the bulk of metal(loid) emissions occurred more than 50 years ago, and the cessation of all ore-roasting activities in Yellowknife in 1999. PMID:27534958
Siriwong, W.; Thirakhupt, K.; Sitticharoenchai, D.; Rohitrattana, J.; Thongkongowm, P.; Borjan, M.; Robson, M.
2009-01-01
The presence of DDT and derivatives in the food web of freshwater ecosystems of Rangsit agricultural area, Pathum Thani Province, Thailand were investigated from June 2004 to May 2007. By using gas chromatography (GC) with micro electron capture detector (μ ECD), DDT and derivatives in water, sediment, and fifteen indicator species i.e., 2 producers; Eichhornia crassipes and plankton (phyto- and zoo- plankton), an herbivore; Trichogaster microlepis (3) 3 omnivores; Trichogaster trichopterus, Oreochromis niloticus, and Puntius gonionotus, 6 carnivores; Channa striatus, Oxyeleotris marmoratus, Macrognathus siamensis, Parambassis siamensis, Anabas testudineus, and Pristolepis fasciatus, and 3 detritivores; Macrobrachium lanchesteri, Pomacea sp., and Filopaludina mertensi were measured. Results show low concentration levels (part per billion) of DDT & derivatives in each food web compartment i.e. water, sediment, aquatic plant, plankton, fish, and invertebrates. Magnification patterns, i.e. bioconcentration, bioaccumulation, and biomagnification, based on habitat and foraging behavior of selected freshwater species indicates that DDT & derivatives can accumulate and be magnified through the food chain from the lowest up to the highest trophic level. Therefore, the presence of residues and the evidence of magnification patterns can be observed as ecological indicators for evaluating ecological health risk. PMID:20161116
Virioplankton dynamics are related to eutrophication levels in a tropical urbanized bay
Cabral, Anderson S.; Lessa, Mariana M.; Junger, Pedro C.; Thompson, Fabiano L.; Paranhos, Rodolfo
2017-01-01
Virioplankton are an important and abundant biological component of marine and freshwater ecosystems. Often overlooked, aquatic viruses play an important role in biogeochemical cycles on a global scale, infecting both autotrophic and heterotrophic microbes. Viral diversity, abundance, and viral interactions at different trophic levels in aqueous environments are not well understood. Tropical ecosystems are less frequently studied than temperate ecosystems, but could provide new insights into how physical and chemical variability can shape or force microbial community changes. In this study, we found high viral abundance values in Guanabara Bay relative to other estuaries around the world. Viral abundance was positively correlated with bacterioplankton abundance and chlorophyll a concentrations. Moreover, prokaryotic and viral abundance were positively correlated with eutrophication, especially in surface waters. These results provide novel baseline data on the quantitative distribution of aquatic viruses in tropical estuaries. They also provide new information on a complex and dynamic relationship in which environmental factors influence the abundance of bacterial hosts and consequently their viruses. Guanabara Bay is characterized by spatial and seasonal variations, and the eutrophication process is the most important factor explaining the structuring of virioplankton abundance and distribution in this tropical urbanized bay. PMID:28362842
Mercury exposure and effects on cavity-nesting birds from the Carson River, Nevada
Custer, Christine M.; Custer, T.W.; Hill, E.F.
2007-01-01
Mercury (Hg) concentrations were 15-40 times higher in the eggs and livers of tree swallows (Tachycineta bicolor) and house wrens (Troglodytes aedon) that nested along the Carson River at and below Dayton, Nevada than in the same species above the mining-impacted areas. Hg contamination was mainly the result of processing mills in the 1800s that used Hg to separate gold and silver from ore. The exposure pattern of tree swallows and house wrens along the Carson River was consistent with their trophic status (i.e., lower levels in liver tissue of aquatic insectivores than in piscivorous birds nesting nearby). Even though they are aquatic insectivores, tree swallows and house wrens were exposed to the same amount of Hg as piscivores in the Florida Everglades; this indicated the extreme level of Hg contamination in the Carson River. Only 70-74% of the eggs hatched. This was less than the nationwide average for these two species that generally hatch ???85% of eggs. Although the sample size was small, Hg might be impacting reproductive end points in cavity-nesting birds from the Carson River. Other trace elements were present at background concentrations. ?? 2006 Springer Science+Business Media, Inc.
Funck, J Arce; Clivot, H; Felten, V; Rousselle, P; Guérold, F; Danger, M
2013-11-15
The functioning of forested headwater streams is intimately linked to the decomposition of leaf litter by decomposers, mainly aquatic hyphomycetes, which enables the transfer of allochthonous carbon to higher trophic levels. Evaluation of this process is being increasingly used as an indicator of ecosystem health and ecological integrity. Yet, even though the individual impacts of contaminants and nutrient availability on decomposition have been well studied, the understanding of their combined effects remains limited. In the current study, we investigated whether the toxic effects of a reemerging contaminant, silver (Ag), on leaf litter decomposition could be partly overcome in situations where microorganisms were benefitting from high phosphorus (P) availability, the latter being a key chemical element that often limits detritus decomposition. We also investigated whether these interactive effects were mediated by changes in the structure of the aquatic hyphomycete community. To verify these hypotheses, leaf litter decomposition by a consortium of ten aquatic hyphomycete species was followed in a microcosm experiment combining five Ag contamination levels and three P concentrations. Indirect effects of Ag and P on the consumption of leaf litter by the detritivorous crustacean, Gammarus fossarum, were also evaluated. Ag significantly reduced decomposition but only at the highest concentration tested, independently of P level. By contrast, P and Ag interactively affected fungal biomass. Both P level and Ag concentrations shaped microbial communities without significantly affecting the overall species richness. Finally, the levels of P and Ag interacted significantly on G. fossarum feeding rates, high [Ag] reducing litter consumption and low P availability tending to intensify the feeding rate. Given the high level of contaminant needed to impair the decomposition process, it is unlikely that a direct effect of Ag on leaf litter decomposition could be observed in situ. However, subtle Ag effects in relation to nutrient levels in ecosystems could be expected. In particular, owing to higher consumption of low P leaf litter, shredding invertebrates could increase the ingestion of contaminated resources, which could, in turn, represent an important threat to headwater stream ecosystems. Copyright © 2013 Elsevier B.V. All rights reserved.
Most theoretical and empirical studies of productivity–species richness relationships fail to consider linkages among trophic levels. We quantified productivity–richness relationships in detritus-based, water-filled tree-hole communities for two trophic levels: invertebrate consu...
PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems.
McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas
2015-11-03
Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes.
Warila, James; Batterman, Stuart; Passino-Reader, Dora R.
2001-01-01
Silver (Ag) is discharged in wastewater effluents and is also a component in a proposed secondary water disinfectant. A steady-state model was developed to simulate bioaccumulation in aquatic biota and assess ecological and human health risks. Trophic levels included phytoplankton, invertebrates, brown trout, and common carp. Uptake routes included water, food, or sediment. Based on an extensive review of the literature, distributions were derived for most inputs for use in Monte Carlo simulations. Three scenarios represented ranges of dilution and turbidity. Compared with the limited field data available, median estimates of Ag in carp (0.07-2.1 Iμg/g dry weight) were 0.5 to 9 times measured values, and all measurements were within the predicted interquartile range. Median Ag concentrations in biota were ranked invertebrates > phytoplankton > trout > carp. Biotic concentrations were highest for conditions of low dilution and low turbidity. Critical variables included Ag assimilation eficiency, specific feeding rate, and the phytoplankton bioconcentration factor. Bioaccumulation of Ag seems unlikely to result in txicity to aquatic biota and humans consuming fish. Although the highest predicted Ag concentrations in water (>200 ng/L) may pose chronic risks to early survival and development of salmonids and risks of argyria to subsistence fishers, these results occur under highly conservative conditions.
Liu, Wenxiu; He, Wei; Wu, Jingyi; Qin, Ning; He, Qishuang; Xu, Fuliu
2018-05-12
Residual levels of perfluoroalkyl acids (PFAAs) in seven species of aquatic animals were analyzed by liquid chromatography-mass spectrometry. The distribution, composition, bioaccumulation, and biomagnification of PFAAs and their effect factors were studied. The results showed that: 1) Wet weight concentrations of 17 PFAAs in the aquatic animals ranged from 1.77 to 38.65 ng/g, with a mean value of 12.71 ± 9.21 ng/g. PFOS was the predominant contaminant (4.57 ± 4.57 ng/g, 6.76%-46.25%), followed by PFDA (1.95 ± 1.37 ng/g, 11.68%-21.25%) and PFUdA (1.84 ± 1.21 ng/g, 9.73%-35.34%. 2) PFAA residual levels in Culter erythropterus (30.98 ± 6.65 ng/g) were the highest, followed by Hemibarbus maculatus (16.79 ± 1.88 ng/g), while the PFAA levels in Carassius auratus were the lowest (2.22 ± 0.60 ng/g). 3) Biota-water bioaccumulation factors (BAFs), biota-suspended solid accumulation factors (BSSAFs) and biota-sediment accumulation factors (BSAFs) ranged from 0.35 to 12,370.51, 7.77 to 8452.92 and 9.10 to 6984.61, respectively. Bioaccumulation by shrimp and snails was significantly affected by Kow. 4) Food web magnification factors were greater than 1, indicating that biomagnification of PFAAs occurs across trophic levels. The bioaccumulation and biomagnification of PFAAs were significantly correlated with carbon chain length. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modeling Aquatic Toxicity through Chromatographic Systems.
Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí
2017-08-01
Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.
Perrot, Vincent; Pastukhov, Mikhail V; Epov, Vladimir N; Husted, Søren; Donard, Olivier F X; Amouroux, David
2012-06-05
Mercury undergoes several transformations that influence its stable isotope composition during a number of environmental and biological processes. Measurements of Hg isotopic mass-dependent (MDF) and mass-independent fractionation (MIF) in food webs may therefore help to identify major sources and processes leading to significant bioaccumulation of methylmercury (MeHg). In this work, δ(13)C, δ(15)N, concentration of Hg species (MeHg, inorganic Hg), and stable isotopic composition of Hg were determined at different trophic levels of the remote and pristine Lake Baikal ecosystem. Muscle of seals and different fish as well as amphipods, zooplankton, and phytoplankton were specifically investigated. MDF during trophic transfer of MeHg leading to enrichment of heavier isotopes in the predators was clearly established by δ(202)Hg measurements in the pelagic prey-predator system (carnivorous sculpins and top-predator seals). Despite the low concentrations of Hg in the ecosystem, the pelagic food web reveals very high MIF Δ(199)Hg (3.15-6.65‰) in comparison to coastal fish (0.26-1.65‰) and most previous studies in aquatic organisms. Trophic transfer does not influence MIF signature since similar Δ(199)Hg was observed in sculpins (4.59 ± 0.55‰) and seal muscles (4.62 ± 0.60‰). The MIF is suggested to be mainly controlled by specific physical and biogeochemical characteristics of the water column. The higher level of MIF in pelagic fish of Lake Baikal is mainly due to the bioaccumulation of residual MeHg that is efficiently turned over and photodemethylated in deep oligotrophic and stationary (i.e., long residence time) freshwater columns.
Mathematical relationships between metrics of chemical bioaccumulation in fish.
Mackay, Don; Arnot, Jon A; Gobas, Frank A P C; Powell, David E
2013-07-01
Five widely used metrics of bioaccumulation in fish are defined and discussed, namely the octanol-water partition coefficient (KOW ), bioconcentration factor (BCF), bioaccumulation factor (BAF), biomagnification factor (BMF), and trophic magnification factor (TMF). Algebraic relationships between these metrics are developed and discussed using conventional expressions for chemical uptake from water and food and first-order losses by respiration, egestion, biotransformation, and growth dilution. Two BCFs may be defined, namely as an equilibrium partition coefficient KFW or as a nonequilibrium BCFK in which egestion losses are included. Bioaccumulation factors are shown to be the product of the BCFK and a novel equilibrium multiplier M containing 2 ratios, namely, the diet-to-water concentration ratio and the ratio of uptake rate constants for respiration and dietary uptake. Biomagnification factors are shown to be proportional to the lipid-normalized ratio of the predator/prey values of BCFK and the ratio of the equilibrium multipliers. Relationships with TMFs are also discussed. The effects of chemical hydrophobicity, biotransformation, and growth are evaluated by applying the relationships to a range of illustrative chemicals of varying KOW in a linear 4-trophic-level food web with typical values for uptake and loss rate constants. The roles of respiratory and dietary intakes are demonstrated, and even slow rates of biotransformation and growth can significantly affect bioaccumulation. The BCFK s and the values of M can be regarded as the fundamental determinants of bioaccumulation and biomagnification in aquatic food webs. Analyzing data from food webs can be enhanced by plotting logarithmic lipid-normalized concentrations or fugacities as a linear function of trophic level to deduce TMFs. Implications for determining bioaccumulation by laboratory tests for regulatory purposes are discussed. Copyright © 2013 SETAC.
Bottom-up biodiversity effects increase resource subsidy flux between ecosystems.
Allen, Daniel C; Vaughn, Caryn C; Kelly, Jeffrey F; Cooper, Joshua T; Engel, Michael H
2012-10-01
Although biodiversity can increase ecosystem productivity and adjacent ecosystems are often linked by resource flows between them, the relationship between biodiversity and resource subsidies is not well understood. Here we test the influence of biodiversity on resource subsidy flux by manipulating freshwater mussel species richness and documenting the effects on a trophic cascade from aquatic to terrestrial ecosystems. In a mesocosm experiment, mussel effects on algae were linked through stable isotope analyses to mussel-derived nitrogen subsidies, but mussel biodiversity effects on algal accumulation were not significant. In contrast, mussel biodiversity significantly increased aquatic insect emergence rates, because aquatic insects were responding to mussel-induced changes in algal community structure instead of algal accumulation. In turn, mussel biodiversity also significantly increased terrestrial spider abundance as spiders tracked increases in aquatic insect prey after a reproduction event. In a comparative field study, we found that sites with greater mussel species richness had higher aquatic insect emergence rates. These results show that, because food webs in adjacent ecosystems are often linked, biodiversity effects in one ecosystem can influence adjacent ecosystems as well.
Terrestrial–aquatic linkages in spring-fed and snowmelt-dominated streams
Sepulveda, Adam
2017-01-01
The importance of trophic linkages between aquatic and terrestrial ecosystems is predicted to vary as a function of subsidy quantity and quality relative to in situ resources. To test this prediction, I used multi-year diet data from Bonneville cutthroat trout Oncorhynchus clarki Utah in spring-fed and snowmelt-driven streams in the high desert of western North America. I documented that trout in spring-fed streams consumed more (number and weight) aquatic than terrestrial invertebrates, while trout in snowmelt-driven streams consumed a similar number of both prey types but consumed more terrestrial than aquatic invertebrates by weight. Trout in spring-fed streams consumed more aquatic invertebrates than trout in snowmelt streams and trout consumed more terrestrial invertebrates in snowmelt than in spring-fed streams. Up to 93% of trout production in spring-fed streams and 60% in snowmelt streams was fueled by aquatic invertebrates, while the remainder of trout production in each stream type was from terrestrial production. I found that the biomass and occurrence of consumed terrestrial invertebrates were not related to our measures of in situ resource quality or quantity in either stream type. These empirical data highlight the importance of autotrophic-derived production to trout in xeric regions.
Gray, Sarah M; Akob, Denise M; Green, Stefan J; Kostka, Joel E
2012-01-01
The leaves of the carnivorous pitcher plant, Sarracenia purpurea, contain a microscopic aquatic food web that is considered a model system in ecological research. The species identity of the intermediate and top trophic level of this food web, as well the detritivore midge, are highly similar across the native geographic range of S. purpurea and, in some cases, appear to have co-evolved with the plant. However, until recently, the identity, geographic variation, and diversity of the bacteria in the bottom trophic level of this food web have remained largely unknown. This study investigated bacterial community composition inside the leaves of S. purpurea to address: 1) variation in bacterial communities at the beginning of succession at the local scale in different areas of the plant's native geographic range (southern and mid-regional sites) and 2) the impacts of bacterial consumers and other members of the aquatic food web (i.e., insects) on bacterial community structure. Communities from six leaves (one leaf per plant) from New York and Florida study sites were analyzed using 16S ribosomal RNA gene cloning. Each pitcher within each site had a distinct community; however, there was more overlap in bacterial composition within each site than when communities were compared across sites. In contrast, the identity of protozoans and metazoans in this community were similar in species identity both within a site and between the two sites, but abundances differed. Our results indicate that, at least during the beginning of succession, there is no strong selection for bacterial taxa and that there is no core group of bacteria required by the plant to start the decomposition of trapped insects. Co-evolution between the plant and bacteria appears to not have occurred as it has for other members of this community.
Goldstein, R.M.
1995-01-01
Available data on the ecology of aquatic organisms in the Red River of the North Basin, a study unit of the U.S. Geological Survey's National Water-Quality Assessment program, were collated from numerous sources. Lack of information for invertebrates and algae precluded a general summary of distribution and ecology throughout the basin. Data on fish species distributions in the major streams of the Red River of the North Basin were analyzed based on the drainage area of the stream and the number of ecoregions the stream flowed through. Species richness increased with both drainage area (log drainage area in square kilometers, R2=0.41, p=0.0055) and the number of ecoregions a river flowed through. However, theses two factors are autocorrelated because the larger the drainage, the more likely that the river will flow through more than one ecoregion. A cluster analysis identified five river groups based on similarity of species within the fish community. Analysis of trophic and taxonomic composition provided justification for the cluster groups. There were significant differences (p=0.05) in the trophic composition of the river cluster groups with respect to the number of predator species, omnivore species, benthic insectivore species, and general insectivore species. Although there were no significant differences in the number of species in the bass and sunfish family or the sucker family, the number of species in the minnow family and the darter subfamily were different (p=0.05) among the groups identified by cluster analysis. Data on contaminant concentrations in fish from the Red River of the North indicated that most trace elements and organochlorine compounds present in tissues were not at levels toxic to fish or humans. Minnesota and North Dakota have issued a fish consumption advisory based on levels of mercury and (or) PCBs found in some species.
Gray, Sarah M.; Akob, Denise M.; Green, Stefan J.; Kostka, Joel E.
2012-01-01
The leaves of the carnivorous pitcher plant, Sarracenia purpurea, contain a microscopic aquatic food web that is considered a model system in ecological research. The species identity of the intermediate and top trophic level of this food web, as well the detritivore midge, are highly similar across the native geographic range of S. purpurea and, in some cases, appear to have co-evolved with the plant. However, until recently, the identity, geographic variation, and diversity of the bacteria in the bottom trophic level of this food web have remained largely unknown. This study investigated bacterial community composition inside the leaves of S. purpurea to address: 1) variation in bacterial communities at the beginning of succession at the local scale in different areas of the plant’s native geographic range (southern and mid-regional sites) and 2) the impacts of bacterial consumers and other members of the aquatic food web (i.e., insects) on bacterial community structure. Communities from six leaves (one leaf per plant) from New York and Florida study sites were analyzed using 16S ribosomal RNA gene cloning. Each pitcher within each site had a distinct community; however, there was more overlap in bacterial composition within each site than when communities were compared across sites. In contrast, the identity of protozoans and metazoans in this community were similar in species identity both within a site and between the two sites, but abundances differed. Our results indicate that, at least during the beginning of succession, there is no strong selection for bacterial taxa and that there is no core group of bacteria required by the plant to start the decomposition of trapped insects. Co-evolution between the plant and bacteria appears to not have occurred as it has for other members of this community. PMID:23227224
NASA Astrophysics Data System (ADS)
Possamai, Bianca; Vieira, João P.; Grimm, Alice M.; Garcia, Alexandre M.
2018-03-01
Global climatic phenomena like El Niño events are known to alter hydrological cycles and local abiotic conditions leading to changes in structure and dynamics of terrestrial and aquatic biological communities worldwide. Based on a long-term (19 years) standardized sampling of shallow water estuarine fishes, this study investigated the temporal variability in composition and dominance patterns of trophic guilds in a subtropical estuary (Patos Lagoon estuary, Southern Brazil) and their relationship with local and regional driving forces associated with moderate (2002-2003 and 2009-2010) and very strong (1997-1998 and 2015-2016) El Niño events. Fish species were classified into eight trophic guilds (DTV detritivore, HVP herbivore-phytoplankton, HVM macroalgae herbivore, ISV insectivore, OMN omnivore, PSV piscivore, ZBV zoobenthivore and ZPL zooplanktivore) and their abundances were correlated with environmental factors. Canonical correspondence analysis revealed that less dominant (those comprising < 10% of total abundance) trophic guilds, such as HVP, HVM, ISV, PSV, increased their relative abundance in the estuary during higher rainfall and lower salinity conditions associated with moderate and very strong El Niño events. An opposite pattern was observed for the dominant trophic fish guilds like OMN and, at lesser extent, DTV and ZPL, which had greater association with higher values of salinity and water transparency occurring mostly during non-El Niño conditions. In contrast, ZBV's abundance was not correlated with contrasting environmental conditions, but rather, had higher association with samples characterized by intermediate environmental values. Overall, these findings show that moderate and very strong El Niño events did not substantially disrupt the dominance patterns among trophic fish guilds in the estuary. Rather, they increased trophic estuarine diversity by flushing freshwater fishes with distinct feeding habits into the estuary.
Mark S. Wipfli; Robert L. Deal; Paul E. Hennon; Adelaide C. Johnson; Toni L. de Santo; Thomas A. Hanley; Mark E. Schultz; Mason D. Bryant; Richard T. Edwards; Ewa H. Orlikowska; Takashi Gomi
2002-01-01
Red alder (Alnus rubra Bong.) appears to influence the productivity of young-growth conifer forests and affect the major resources (timber, wildlife, and fisheries) of forested ecosystems in southeast Alaska. We propose an integrated approach to understanding how alder influences trophic links and processes in young-growth ecosystems. The presence...
NASA Astrophysics Data System (ADS)
Poser, Kathrin; Peters, Steef; Hommersom, Annelies; Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Heege, Thomas; Philipson, Petra; Ruescas, Ana; Bottcher, Martin; Stelzer, Kerstin
2015-12-01
The GLaSS project develops a prototype infrastructure to ingest and process large amounts of Sentinel-2 and Sentinel-3 data for lakes and reservoirs. To demonstrate the value of satellite observations for the management of aquatic ecosystems, global case studies are performed addressing different types of lakes with their respective problems and management questions. One of these case studies is concentrating on deep clear lakes worldwide. The aim of this case study is to evaluate trends of chlorophyll-a concentrations (Chl-a) as a proxy of the trophic status based on the MERIS full resolution data archive. Some preliminary results of this case study are presented here.
Vignet, Caroline; Larcher, Thibaut; Davail, Blandine; Joassard, Lucette; Le Menach, Karyn; Guionnet, Tiphaine; Lyphout, Laura; Ledevin, Mireille; Goubeau, Manon; Budzinski, Hélène; Bégout, Marie-Laure; Cousin, Xavier
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) constitute a large family of organic pollutants emitted in the environment as complex mixtures, the compositions of which depend on origin. Among a wide range of physiological defects, PAHs are suspected to be involved in disruption of reproduction. In an aquatic environment, the trophic route is an important source of chronic exposure to PAHs. Here, we performed trophic exposure of zebrafish to three fractions of different origin, one pyrolytic and two petrogenic. Produced diets contained PAHs at environmental concentrations. Reproductive traits were analyzed at individual, tissue and molecular levels. Reproductive success and cumulative eggs number were disrupted after exposure to all three fractions, albeit to various extents depending on the fraction and concentrations. Histological analyses revealed ovary maturation defects after exposure to all three fractions as well as degeneration after exposure to a pyrolytic fraction. In testis, hypoplasia was observed after exposure to petrogenic fractions. Genes expression analysis in gonads has allowed us to establish common pathways such as endocrine disruption or differentiation/maturation defects. Taken altogether, these results indicate that PAHs can indeed disrupt fish reproduction and that different fractions trigger different pathways resulting in different effects. PMID:29051429
Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high Arctic.
Lescord, Gretchen L; Kidd, Karen A; De Silva, Amila O; Williamson, Mary; Spencer, Christine; Wang, Xiaowa; Muir, Derek C G
2015-03-03
Per- and polyfluorinated alkyl substances (PFASs) enter Arctic lakes through long-range atmospheric transport and local contamination, but their behavior in aquatic food webs at high latitudes is poorly understood. This study compared the concentrations of perfluorocarboxylates, perfluorosulfonates, and fluorotelomer sulfonates (FTS) in biotic and abiotic samples from six high Arctic lakes near Resolute Bay, Nunavut, Canada. Two of these lakes are known to be locally contaminated by a small airport and Arctic char (Salvelinus alpinus) from these lakes had over 100 times higher total [PFAS] when compared to fish from neighboring lakes. Perfluorononanoate (PFOA) and perfluorooctanesulfonate (PFOS) dominated in char, benthic chironomids (their main prey), and sediments, while pelagic zooplankton and water were dominated by lower chain acids and perfluorodecanesulfonate (PFDS). This study also provides the first measures of perfluoroethylcyclohexanesulfonate (PFECHS) and FTS compounds in water, sediment, juvenile char, and benthic invertebrates from lakes in the high Arctic. Negative relationships between [PFAS] and δ(15)N values (indicative of trophic position) within these food webs indicated no biomagnification. Overall, these results suggest that habitat use and local sources of contamination, but not trophic level, are important determinants of [PFAS] in biota from freshwater food webs in the Canadian Arctic.
Wei, Li-li; Zhou, Qiong; Xie, Cong-xin; Wang, Jun; Li, Jun
2016-01-15
Three Gorges Reservoir (TGR) reached the maximum water level (175 m) of impoundment in Oct. 2010. In order to reveal the potential influence of the greatest water-level impoundment on the heavy metal pollution in the typical waters of TGR, the content level of trace metals ( Hg, Cd and Pb) in biota and potential biomagnification along the aquatic food chain were investigated in the main stem of TGR from July 2011 to August 2012, as well as the relationship between the trace metal concentrations of aquatic consumers (fish and aquatic invertebrate) and biological factors. Our study showed that no individual data of the three trace metals in biota exceeded the edible safety criteria of aquatic products in China and FAO. In contrast with those before the impoundment of TGR, Hg showed a little higher, while Cd and Pb exhibited a little lower level after the impoundment. Trace metals in TGR exhibited relatively lower concentrations compared with those in reservoirs in other countries. Significant correlations were found between the Cd concentration and body size (body length and body weight) of Cyprinus carpio, as well as the Hg concentration and body size (body length and body weight) of Erythroculter ilishaeformis. As for feeding habits, there was statistically significant difference between trace metal concentrations in herbivorous, planktonic, omnivorous and carnivorous fish. However, no significant difference was found between the metal concentrations in fish with different habitats (pelagic, mesopelagic and benthic). Even so, the overall trend was that fish living in benthic layer had higher heavy metal concentrations than those in pelagic and mesopelagic zones. The regression slopes of log-Hg concentration versus delta(15)N, served as an indicator of trophic magnification factor (TMF). Significant correlations (P < 0.05) were observed for Hg in the food web of TGR. TMF of Hg in TGR indicated lower level (0.046-0.066) in contrast with those in the reservoirs of United States and Canada, and this was explained by the relatively lower organic carbon in the soil and sediment of TGR.
Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping
2017-11-01
Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of Marsh/Estuarine Water Quality and Ecological Models: An Interim Guide
1982-01-01
benthic oxygen demand, benthic scour and deposition, photosynthesis and respiration of aquatic plants, and nitrification (Dobbins 1964; O’Connor 1967... photosynthesis , algal respiration, decom- position, and mixing processes play dominant roles, the understanding and characterization of significant pro...Adams, S. M. 1979. "A Mathematical Model of Trophic Dynamics in Estuarine Seagrass Communities," Marsh-Estuarine Systems Simulation, Dame, R. F., ed
Vallotton, Nathalie; Price, Paul S
2016-05-17
This paper uses the maximum cumulative ratio (MCR) as part of a tiered approach to evaluate and prioritize the risk of acute ecological effects from combined exposures to the plant protection products (PPPs) measured in 3 099 surface water samples taken from across the United States. Assessments of the reported mixtures performed on a substance-by-substance approach and using a Tier One cumulative assessment based on the lowest acute ecotoxicity benchmark gave the same findings for 92.3% of the mixtures. These mixtures either did not indicate a potential risk for acute effects or included one or more individual PPPs that had concentrations in excess of their benchmarks. A Tier Two assessment using a trophic level approach was applied to evaluate the remaining 7.7% of the mixtures. This assessment reduced the number of mixtures of concern by eliminating the combination of endpoint from multiple trophic levels, identified invertebrates and nonvascular plants as the most susceptible nontarget organisms, and indicated that a only a very limited number of PPPs drove the potential concerns. The combination of the measures of cumulative risk and the MCR enabled the identification of a small subset of mixtures where a potential risk would be missed in substance-by-substance assessments.
Examining the Prey Mass of Terrestrial and Aquatic Carnivorous Mammals: Minimum, Maximum and Range
Tucker, Marlee A.; Rogers, Tracey L.
2014-01-01
Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey's body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems. PMID:25162695
Examining the prey mass of terrestrial and aquatic carnivorous mammals: minimum, maximum and range.
Tucker, Marlee A; Rogers, Tracey L
2014-01-01
Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey's body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems.
Riedl, Verena; Agatz, Annika; Benstead, Rachel; Ashauer, Roman
2018-04-01
Chemical impacts on the environment are routinely assessed in single-species tests. They are employed to measure direct effects on nontarget organisms, but indirect effects on ecological interactions can only be detected in multispecies tests. Micro- and mesocosms are more complex and environmentally realistic, yet they are less frequently used for environmental risk assessment because resource demand is high, whereas repeatability and statistical power are often low. Test systems fulfilling regulatory needs (i.e., standardization, repeatability, and replication) and the assessment of impacts on species interactions and indirect effects are lacking. In the present study we describe the development of the TriCosm, a repeatable aquatic multispecies test with 3 trophic levels and increased statistical power. High repeatability of community dynamics of 3 interacting aquatic populations (algae, Ceriodaphnia, and Hydra) was found with an average coefficient of variation of 19.5% and the ability to determine small effect sizes. The TriCosm combines benefits of both single-species tests (fulfillment of regulatory requirements) and complex multispecies tests (ecological relevance) and can be used, for instance, at an intermediate tier in environmental risk assessment. Furthermore, comparatively quickly generated population and community toxicity data can be useful for the development and testing of mechanistic effect models. Environ Toxicol Chem 2018;37:1051-1060. © 2017 SETAC. © 2017 SETAC.
A long-term assessment of pesticide mixture effects on aquatic invertebrate communities.
Hasenbein, Simone; Lawler, Sharon P; Geist, Juergen; Connon, Richard E
2016-01-01
To understand the potential effects of pesticide mixtures on aquatic ecosystems, studies that incorporate increased ecological relevance are crucial. Using outdoor mesocosms, the authors examined long-term effects on aquatic invertebrate communities of tertiary mixtures of commonly used pesticides: 2 pyrethroids (permethrin, λ-cyhalothrin) and an organophosphate (chlorpyrifos). Application scenarios were based on environmentally relevant concentrations and stepwise increases of lethal concentrations from 10% (LC10) to 50% (LC50) based on laboratory tests on Hyalella azteca and Chironomus dilutus; repeated applications were meant to generally reflect runoff events in a multiple-grower or homeowner watershed. Pyrethroids rapidly dissipated from the water column, whereas chlorpyrifos was detectable even 6 wk after application. Twelve of 15 macroinvertebrate and 10 of 16 zooplankton taxa responded to contaminant exposures. The most sensitive taxa were the snail Radix sp., the amphipod H. azteca, the water flea Daphnia magna, and copepods. Environmentally relevant concentrations had acute effects on D. magna and H. azteca (occurring 24 h after application), whereas lag times were more pronounced in Radix sp. snails and copepods, indicating chronic sublethal responses. Greatest effects on zooplankton communities were observed in environmentally relevant concentration treatments. The results indicate that insecticide mixtures continue to impact natural systems over multiple weeks, even when no longer detectable in water and bound to particles. Combinations of indirect and direct effects caused consequences across multiple trophic levels. © 2015 SETAC.
Wong, Charles S.; Mabury, Scott A.; Whittle, D. Michael; Backus, Sean M.; Teixeira, Camilla; DeVault, David S.; Bronte, Charles R.; Muir, Derek C.G.
2004-01-01
The enantiomeric composition of seven chiral PCB congeners was measured in the Lake Superior aquatic food web sampled in 1998, to determine the extent of enantioselective biotransformation in aquatic biota. All chiral PCB congeners studied (CBs 91, 95, 136, 149, 174, 176, and 183) biomagnified in the Lake Superior aquatic food web, based on biomagnification and food web magnification factors greater than unity. PCB atropisomers were racemic in phytoplankton and zooplankton, suggesting no biotransformation potential toward PCBs for these low trophic level organisms. However, Diporeia and mysids had significantly nonracemic residues for most chiral congeners studied. This observation suggests that these macrozooplankton can stereoselectively metabolize chiral congeners. Alternatively, macrozooplankton obtained nonracemic residues from feeding on organic-rich suspended particles and sediments, which would imply that stereoselective microbial PCB biotransformation may be occurring in Lake Superior sediments at PCB concentrations far lower than that previously associated with such activity. Widely nonracemic PCB residues in forage fish (lake herring, rainbow smelt, and slimy sculpin) and lake trout suggest a combination of both in vivo biotransformation and uptake of nonracemic residues from prey for these species. Minimum biotransformation rates, calculated from enantiomer mass balances between predators and prey, suggest metabolic half-lives on the order of 8 yr for CB 136 in lake trout and 2.6 yr for CB 95 in sculpins. This result suggests that significant biotransformation may occur for metaboliz able PCB congeners over the lifespan of these biota. This study highlights the potential of chiral analysis to study biotransformation processes in food webs.
Ecological restructuring in experimental aquatic mesocosms due to the application of diflubenzuron
Boyle, Terence P.; Fairchild, James F.; Haverland, Pamela S.; Lebo, Jon A.; Robinson-Wilson, Everett
1996-01-01
Diflubenzuron is a chitin-inhibiting insecticide that is registered for use in controlling a multitude of invertebrate pests. The selective mode of action of diflubenzuron provided us with a unique tool for examining the indirect responses of an experimental aquatic ecosystem following direct impacts at the primary consumer (invertebrate) trophic level. Twelve outdoor aquatic mesocosms (0.1 ha each) were randomly assigned to three treatments of diflubenzuron (four mesocosms/treatment): control, monthly (five total 10-μg/L applications), or biweekly (twice monthly; nine total 10-μg/L applications). Direct impacts on invertebrates (numbers and species composition of insects and zooplankton) and indirect impacts on fish (mortality, growth, and reproduction of bluegill sunfish and largemouth bass), phytoplankton (biomass and productivity), and water quality were measured over 16 weeks posttreatment. Both monthly and biweekly treatments of diflubenzuron decreased total numbers (fivefold reduction) and species richness (twofold reduction) and increased dominance (twofold increase) of zooplankton within 4 weeks posttreatment; Cladocerans, Copepods, and Rotifers were all sensitive. Diflubenzuron reduced species richness of emergent insects, which resulted in increased dominance by a few species; however, impacts on emergent insects were confounded by a treatment × time interaction. Direct reductions in invertebrate grazers caused indirect increases in algal biomass. Indirect effects on biomass (50% reduction) and individual weight (50% reduction) of juvenile bluegill occurred because of apparent decreases in invertebrate food resources. No statistically significant impacts were observed on adult bluegill or largemouth bass for the duration of the experiment. Results indicated that diflubenzuron had both direct and indirect impacts on the experimental aquatic ecosystems under the conditions tested.
Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem.
Oropesa, Ana Lourdes; Floro, António Miguel; Palma, Patrícia
2017-07-01
Nicotine is a "life-style compound" widely consumed by human populations and, consequently, often found in surface waters. This fact presents a concern for possible effects in the aquatic ecosystems. The objective of this study was to assess the potential lethal and sublethal toxicity of nicotine in aquatic organisms from different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Thamnocephalus platyurus, and Daphnia magna). The bioassays were performed by exposing the organisms to concentrations of nicotine in a range of 0.5-1000 μg/L. Results showed that nicotine, at tested concentration, was not acutely toxic to V. fischeri and T. platyurus. On the contrary, this substance exhibited toxicity to P. subcapitata and Daphnia magna. Thus, concentrations of nicotine of 100 and 200 μg/L promoted an inhibition in the growth of P. subcapitata. In addition, a concentration of 100 μg/L nicotine acted on the reproduction of the crustacean D. magna, by decreasing the number of juveniles produced by female. On the other hand, the results showed that concentrations equal to or greater than 10 μg/L induced the production of daphnids male offspring, which may indicate that nicotine is a weak juvenoid compound of the D. magna endocrine system. Furthermore, the result showed that concentrations tested of this chemical have the capacity to revert the effect of fenoxycarb, a strong juvenoid chemical insecticide. The results of the study revealed that nicotine can induce several changes in some of the most important key groups of the aquatic compartment, which can compromise, in a short time, the balance of aquatic ecosystem. Finally, a preliminary environmental risk assessment of this stimulant was performed from the highest measured concentration in surface water and the no observable effect concentration value in the most sensitive species, i.e., D. magna. This process revealed that nicotine can produce an important risk to aquatic organisms.
Spatial Patterns of Mercury Bioaccumulation in the Upper Clark Fork River Basin, MT
NASA Astrophysics Data System (ADS)
Staats, M. F.; Langner, H.; Moore, J. N.
2010-12-01
The Upper Clark Fork River Basin (UCFRB) in Montana has a legacy of historic gold/silver mine waste that contributes large quantities of mercury into the watershed. Mercury bioaccumulation at higher levels of the aquatic food chain, such as the mercury concentration in the blood of pre-fledge osprey, exhibit an irregular spatial signature based on the location of the nests throughout the river basin. Here we identify regions with a high concentration of bioavailable mercury and the major factors that allow the mercury to bioaccumulate within trophic levels. This identification is based on the abundance of mercury sources and the potential for mercury methylation. To address the source term, we did a survey of total mercury in fine sediments along selected UCFRB reaches, along with the assessment of environmental river conditions (percentage of backwaters/wetlands, water temperature and pH, etc). In addition, we analyzed the mercury levels of a representative number of macroinvertebrates and fish from key locations. The concentration of total mercury in sediment, which varies from reach to reach (tributaries of the Clark Fork River, <0.05 mg/kg to the main stem of the river, >5mg/kg) affects the concentration of mercury found at various trophic levels. However, reaches with a low supply of mine waste-derived mercury can also yield substantial concentrations of mercury in the biota, due to highly favorable conditions for mercury methylation. We identify that the major environmental factor that affects the methylation potential in the UCFRB is the proximity and connectivity of wetland areas to the river.
Maier, Michelle A.; Uchii, Kimiko; Peterson, Tawnya D.
2016-01-01
ABSTRACT Lethal parasitism of large phytoplankton by chytrids (microscopic zoosporic fungi) may play an important role in organic matter and nutrient cycling in aquatic environments by shunting carbon away from hosts and into much smaller zoospores, which are more readily consumed by zooplankton. This pathway provides a mechanism to more efficiently retain carbon within food webs and reduce export losses. However, challenges in accurate identification and quantification of chytrids have prevented a robust assessment of the relative importance of parasitism for carbon and energy flows within aquatic systems. The use of molecular techniques has greatly advanced our ability to detect small, nondescript microorganisms in aquatic environments in recent years, including chytrids. We used quantitative PCR (qPCR) to quantify the consumption of zoospores by Daphnia in laboratory experiments using a culture-based comparative threshold cycle (CT) method. We successfully quantified the reduction of zoospores in water samples during Daphnia grazing and confirmed the presence of chytrid DNA inside the daphnid gut. We demonstrate that comparative CT qPCR is a robust and effective method to quantify zoospores and evaluate zoospore grazing by zooplankton and will aid in better understanding how chytrids contribute to organic matter cycling and trophic energy transfer within food webs. IMPORTANCE The study of aquatic fungi is often complicated by the fact that they possess complex life cycles that include a variety of morphological forms. Studies that rely on morphological characteristics to quantify the abundances of all stages of the fungal life cycle face the challenge of correctly identifying and enumerating the nondescript zoospores. These zoospores, however, provide an important trophic link between large colonial phytoplankton and zooplankton: that is, once the carbon is liberated from phytoplankton into the parasitic zoospores, the latter are consumed by zooplankton and carbon is retained in the aquatic food web rather than exported from the system. This study provides a tool to quantify zoospores and evaluate the consumption of zoospores by zooplankton in order to further our understanding of their role in food web dynamics. PMID:27107112
Maier, Michelle A; Uchii, Kimiko; Peterson, Tawnya D; Kagami, Maiko
2016-07-01
Lethal parasitism of large phytoplankton by chytrids (microscopic zoosporic fungi) may play an important role in organic matter and nutrient cycling in aquatic environments by shunting carbon away from hosts and into much smaller zoospores, which are more readily consumed by zooplankton. This pathway provides a mechanism to more efficiently retain carbon within food webs and reduce export losses. However, challenges in accurate identification and quantification of chytrids have prevented a robust assessment of the relative importance of parasitism for carbon and energy flows within aquatic systems. The use of molecular techniques has greatly advanced our ability to detect small, nondescript microorganisms in aquatic environments in recent years, including chytrids. We used quantitative PCR (qPCR) to quantify the consumption of zoospores by Daphnia in laboratory experiments using a culture-based comparative threshold cycle (CT) method. We successfully quantified the reduction of zoospores in water samples during Daphnia grazing and confirmed the presence of chytrid DNA inside the daphnid gut. We demonstrate that comparative CT qPCR is a robust and effective method to quantify zoospores and evaluate zoospore grazing by zooplankton and will aid in better understanding how chytrids contribute to organic matter cycling and trophic energy transfer within food webs. The study of aquatic fungi is often complicated by the fact that they possess complex life cycles that include a variety of morphological forms. Studies that rely on morphological characteristics to quantify the abundances of all stages of the fungal life cycle face the challenge of correctly identifying and enumerating the nondescript zoospores. These zoospores, however, provide an important trophic link between large colonial phytoplankton and zooplankton: that is, once the carbon is liberated from phytoplankton into the parasitic zoospores, the latter are consumed by zooplankton and carbon is retained in the aquatic food web rather than exported from the system. This study provides a tool to quantify zoospores and evaluate the consumption of zoospores by zooplankton in order to further our understanding of their role in food web dynamics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
McCarthy, Matthew D.; Benner, Ronald; Lee, Cindy; Fogel, Marilyn L.
2007-10-01
Bulk nitrogen (N) isotope signatures have long been used to investigate organic N source and food web structure in aquatic ecosystems. This paper explores the use of compound-specific δ 15N patterns of amino acids (δ 15N-AA) as a new tool to examine source and processing history in non-living marine organic matter. We measured δ 15N-AA distributions in plankton tows, sinking particulate organic matter (POM), and ultrafiltered dissolved organic matter (UDOM) in the central Pacific Ocean. δ 15N-AA patterns in eukaryotic algae and mixed plankton tows closely resemble those previously reported in culture. δ 15N differences between individual amino acids (AA) strongly suggest that the sharply divergent δ 15N enrichment for different AA with trophic transfer, as first reported by [McClelland, J.W. and Montoya, J.P. (2002) Trophic relationships and the nitrogen isotopic composition of amino acids. Ecology83, 2173-2180], is a general phenomenon. In addition, differences in δ 15N of individual AA indicative of trophic transfers are clearly preserved in sinking POM, along with additional changes that may indicate subsequent microbial reworking after incorporation into particles. We propose two internally normalized δ 15N proxies that track heterotrophic processes in detrital organic matter. Both are based on isotopic signatures in multiple AA, chosen to minimize potential problems associated with any single compound in degraded materials. A trophic level indicator (ΔTr) is derived from the δ 15N difference between selected groups of AA based on their relative enrichment with trophic transfer. We propose that a corresponding measure of the variance within a sub-group of AA (designated Σ V) may indicate total AA resynthesis, and be strongly tied to heterotrophic microbial reworking in detrital materials. Together, we hypothesize that ΔTr and Σ V define a two dimensional trophic "space", which may simultaneously express relative extent of eukaryotic and bacterial heterotrophic processing. In the equatorial Pacific, ΔTr indicates an average of 1.5-2 trophic transfers between phytoplankton and sinking POM at all depths and locations. The Σ V parameter suggests that substantial variation may exist in bacterial heterotrophic processing between differing regions and time periods. In dissolved material δ 15N-AA patterns appear unrelated to those in POM. In contrast to POM, δ 15N-AA signatures in UDOM show no clear changes with depth, and suggest that dissolved AA preserved throughout the oceanic water column have undergone few, if any, trophic transfers. Together these data suggest a sharp divide between processing histories, and possibly sources, of particulate vs. dissolved AA.
Consumer-mediated recycling and cascading trophic interactions.
Leroux, Shawn J; Loreau, Michel
2010-07-01
Cascading trophic interactions mediated by consumers are complex phenomena, which encompass many direct and indirect effects. Nonetheless, most experiments and theory on the topic focus uniquely on the indirect, positive effects of predators on producers via regulation of herbivores. Empirical research in aquatic ecosystems, however, demonstrate that the indirect, positive effects of consumer-mediated recycling on primary producer stocks may be larger than the effects of herbivore regulation, particularly when predators have access to alternative prey. We derive an ecosystem model with both recipient- and donor-controlled trophic relationships to test the conditions of four hypotheses generated from recent empirical work on the role of consumer-mediated recycling in cascading trophic interactions. Our model predicts that predator regulation of herbivores will have larger, positive effects on producers than consumer-mediated recycling in most cases but that consumer-mediated recycling does generally have a positive effect on producer stocks. We demonstrate that herbivore recycling will have larger effects on producer biomass than predator recycling when turnover rates and recycling efficiencies are high and predators prefer local prey. In addition, predictions suggest that consumer-mediated recycling has the largest effects on primary producers when predators prefer allochthonous prey and predator attack rates are high. Finally, our model predicts that consumer-mediated recycling effects may not be largest when external nutrient loading is low. Our model predictions highlight predator and prey feeding relationships, turnover rates, and external nutrient loading rates as key determinants of the strength of cascading trophic interactions. We show that existing hypotheses from specific empirical systems do not occur under all conditions, which further exacerbates the need to consider a broad suite of mechanisms when investigating trophic cascades.
Cutting, Kyle A.; Cross, Wyatt F.; Anderson, Michelle L.; Reese, Elizabeth G.
2016-01-01
Introduction of non-native species is a leading threat to global aquatic biodiversity. Competition between native and non-native species is often influenced by changes in suitable habitat or food availability. We investigated diet breadth and degree of trophic niche overlap for a fish assemblage of native and non-native species inhabiting a shallow, high elevation lake system. This assemblage includes one of the last remaining post-glacial endemic populations of adfluvial Arctic grayling (Thymallus arcticus) in the contiguous United States. We examined gut contents and stable isotope values of fish taxa in fall and spring to assess both short- (days) and long-term (few months) changes in trophic niches. We incorporate these short-term (gut contents) data into a secondary isotope analysis using a Bayesian statistical framework to estimate long-term trophic niche. Our data suggest that in this system, Arctic grayling share both a short- and long-term common food base with non-native trout of cutthroat x rainbow hybrid species (Oncorhynchus clarkia bouvieri x Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). In addition, trophic niche overlap among Arctic grayling, hybrid trout, and brook trout appeared to be stronger during spring than fall. In contrast, the native species of Arctic grayling, burbot (Lota lota), and suckers (Catostomus spp.) largely consumed different prey items. Our results suggest strong seasonal differences in trophic niche overlap among Arctic grayling and non-native trout, with a potential for greatest competition for food during spring. We suggest that conservation of endemic Arctic grayling in high-elevation lakes will require recognition of the potential for coexisting non-native taxa to impede well-intentioned recovery efforts. PMID:27205901
Pascoe, Gary A.; Blanchet, Richard J.; Linder, Greg L.; Palawski, Don; Brumbaugh, William G.; Canfield, Tim J.; Kemble, Nile E.; Ingersoll, Chris G.; Farag, Aïda M.; DalSoglio, Julie A.
1994-01-01
A comprehensive field and laboratory approach to the ecological risk assessment for the Milltown Reservoir-Clark Fork River Sediments Site, a Superfund site in the Rocky Mountains of Montana, has been described in the preceding reports of this series. The risk assessment addresses concerns over the ecological impacts of upstream releases of mining wastes to fisheries of the upper Clark Fork River (CFR) and the benthic and terrestrial habitats further downstream in Milltown Reservoir. The risk characterization component of the process integrated results from a triad of information sources: (a) chemistry studies of environmental media to identify and quantify exposures of terrestrial and aquatic organisms to site-related contaminants; (b) ecological or population studies of terrestrial vegetation, birds, benthic communities, and fish; and (c) in situ and laboratory toxicity studies with terrestrial and aquatic invertebrates and plants, small mammals, amphibians, and fish exposed to contaminated surface water, sediments, wetland soils, and food sources. Trophic transfer studies were performed on waterfowl, mammals, and predatory birds using field measurement data on metals concentrations in environmental media and lower trophic food sources. Studies with sediment exposures were incorporated into the Sediment Quality Triad approach to evaluate risks to benthic ecology. Overall results of the wetland and terrestrial studies suggested that acute adverse biological effects were largely absent from the wetland; however, adverse effects to reproductive, growth, and physiological end points of various terrestrial and aquatic species were related to metals exposures in more highly contaminated depositional areas. Feeding studies with contaminated diet collected from the upper CFR indicated that trout are at high risk from elevated metals concentrations in surface water, sediment, and aquatic invertebrates. Integration of chemical analyses with toxicological and ecological evaluations of metal effects on the wetland and fishery has provided an important foundation for environmental decisions at this site.
Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs.
Becker, Daniel J; Chumchal, Matthew M; Broders, Hugh G; Korstian, Jennifer M; Clare, Elizabeth L; Rainwater, Thomas R; Platt, Steven G; Simmons, Nancy B; Fenton, M Brock
2018-02-01
Mercury (Hg) is a persistent and widespread heavy metal with neurotoxic effects in wildlife. While bioaccumulation of Hg has historically been studied in aquatic food webs, terrestrial consumers can become contaminated with Hg when they feed on aquatic organisms (e.g., emergent aquatic insects, fish, and amphibians). However, the extent to which dietary connectivity to aquatic ecosystems can explain patterns of Hg bioaccumulation in terrestrial consumers has not been well studied. Bats (Order: Chiroptera) can serve as a model system for illuminating the trophic transfer of Hg given their high dietary diversity and foraging links to both aquatic and terrestrial food webs. Here we quantitatively characterize the dietary correlates of long-term exposure to Hg across a diverse local assemblage of bats in Belize and more globally across bat species from around the world with a comparative analysis of hair samples. Our data demonstrate considerable interspecific variation in hair total Hg concentrations in bats that span three orders of magnitude across species, ranging from 0.04 mg/kg in frugivorous bats (Artibeus spp.) to 145.27 mg/kg in the piscivorous Noctilio leporinus. Hg concentrations showed strong phylogenetic signal and were best explained by dietary connectivity of bat species to aquatic food webs. Our results highlight that phylogeny can be predictive of Hg concentrations through similarity in diet and how interspecific variation in feeding strategies influences chronic exposure to Hg and enables movement of contaminants from aquatic to terrestrial ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diet quality influences isotopic discrimination among amino acids in an aquatic vertebrate
Chikaraishi, Yoshito; Steffan, Shawn A; Takano, Yoshinori; Ohkouchi, Naohiko
2015-01-01
Stable nitrogen isotopic composition of amino acids (δ15NAA) has recently been employed as a powerful tool in ecological food web studies, particularly for estimating the trophic position (TP) of animal species in food webs. However, the validity of these estimates depends on the consistency of the trophic discrimination factor (TDF; - Δδ15NAA at each shift of trophic level) among a suite of amino acids within the tissues of consumer species. In this study, we determined the TDF values of amino acids in tadpoles (the Japanese toad, Bufo japonicus) reared exclusively on one of three diets that differed in nutritional quality. The diets were commercial fish-food pellets (plant and animal biomass), bloodworms (animal biomass), and boiled white rice (plant carbohydrate), representing a balanced, protein-rich, and protein-poor diet, respectively. The TDF values of two “source amino acids” (Src-AAs), methionine and phenylalanine, were close to zero (0.3–0.5‰) among the three diets, typifying the values reported in the literature (∼0.5‰ and ∼0.4‰, respectively). However, TDF values of “trophic amino acids” (Tr-AAs) including alanine, valine, leucine, isoleucine, and glutamic acid varied by diet: for example, the glutamic acid TDF was similar to the standard value (∼8.0‰) when tadpoles were fed either the commercial pellets (8.0‰) or bloodworms (7.9‰), but when they were fed boiled rice, the TDF was significantly reduced (0.6‰). These results suggest that a profound lack of dietary protein may alter the TDF values of glutamic acid (and other Tr-AAs and glycine) within consumer species, but not the two Src-AAs (i.e., methionine and phenylalanine). Knowledge of how a nutritionally poor diet can influence the TDF of Tr- and Src-AAs will allow amino acid isotopic analyses to better estimate TP among free-roaming animals. PMID:26045955
Garchitorena, Andrés; Guégan, Jean-François; Léger, Lucas; Eyangoh, Sara; Marsollier, Laurent; Roche, Benjamin
2015-01-01
Host–parasite interactions are often embedded within complex host communities and can be influenced by a variety of environmental factors, such as seasonal variations in climate or abiotic conditions in water and soil, which confounds our understanding of the main drivers of many multi-host pathogens. Here, we take advantage of a combination of large environmental data sets on Mycobacterium ulcerans (MU), an environmentally persistent microorganism associated to freshwater ecosystems and present in a large variety of aquatic hosts, to characterize abiotic and biotic factors driving the dynamics of this pathogen in two regions of Cameroon. We find that MU dynamics are largely driven by seasonal climatic factors and certain physico-chemical conditions in stagnant and slow-flowing ecosystems, with an important role of pH as limiting factor. Furthermore, water conditions can modify the effect of abundance and diversity of aquatic organisms on MU dynamics, which suggests a different contribution of two MU transmission routes for aquatic hosts (trophic vs environmental transmission) depending on local abiotic factors. DOI: http://dx.doi.org/10.7554/eLife.07616.001 PMID:26216042
Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas
Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T. F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.
2015-01-01
Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing. PMID:26461104
The study of Phosphorus distribution at Putrajaya Wetland
NASA Astrophysics Data System (ADS)
Mubin Zahari, Nazirul; Malek, Nur Farzana Fasiha Abdul; Fai, Chow Ming; Humaira Haron, Siti; Hafiz Zawawi, Mohd; Nazmi Ismail, Iszmir; Mohamad, Daud; Syamsir, Agusril; Sidek, Lariyah Mohd; Zakwan Ramli, Mohd; Ismail, Norfariza; Zubir Sapian, Ahmad; Noordin, Normaliza; Rahaman, Nurliyana Abdul; Muhamad, Yahzam; Mat Saman, Jarina
2018-04-01
This study is concerning phosphorus distribution in Putrajaya Wetland. Phosphorus is one of the important component in nutrients for living things be it aquatic or non – aquatic organisms. Total phosphorus (TP) results will give some information on the trophic status of surface water in water bodies. The focus of this study is to determine the total phosphorus concentration in Putrajaya Wetland which is in the inlet of the wetland then outlet of the wetland (Central Wetland Lake). The water sample is taken from Putrajaya Wetland and the test was conducted in the laboratory. The result from this study shows the results for total phosphorus according to month, sampling station and cells. Lowest total phosphate at the Central Wetland compare with all the wetland arms cells.
Direct and indirect trophic effects of predator depletion on basal trophic levels.
Chen, Huili; Hagerty, Steven; Crotty, Sinead M; Bertness, Mark D
2016-02-01
Human population growth and development have heavily degraded coastal ecosystems with cascading impacts across multiple trophic levels. Understanding both the direct and indirect trophic effects of human activities is important for coastal conservation. In New England, recreational overfishing has triggered a regional trophic cascade. Predator depletion releases the herbivorous purple marsh crab from consumer control and leads to overgrazing of marsh cordgrass and salt marsh die-off. The direct and indirect trophic effects of predator depletion on basal trophic levels, however, are not understood. Using observational and experimental data, we examined the hypotheses that (1) direct trophic effects of predator depletion decrease meiofaunal abundance by releasing deposit feeding fiddler crabs from consumer control, and/or (2) indirect trophic effects of predator depletion increase meiofaunal abundance by releasing blue carbon via the erosion of centuries of accreted marsh peat. Experimental deposit feeder removal led to 23% higher meiofaunal density at die-off than at healthy sites, while reciprocally transplanting sediment from die-off and healthy sites revealed that carbon-rich die-off sediment increased meiofauna density by over 164%: six times stronger than direct trophic effects. Recovering sites had both carbon-rich sediment and reduced deposit feeding leading to higher meiofauna densities than both die-off and healthy sites. This suggests that consequences of the trophic downgrading of coastal habitats can be driven by both direct and indirect trophic mechanisms that may vary in direction and magnitude, making their elucidation dependent on experimental manipulations.
Allinson, Mayumi; Zhang, Pei; Bui, AnhDuyen; Myers, Jackie H; Pettigrove, Vincent; Rose, Gavin; Salzman, Scott A; Walters, Robert; Allinson, Graeme
2017-03-01
Urban stormwater samples were collected from five aquatic systems in Melbourne, Australia, on six occasions between October 2011 and March 2012 and tested for 30 herbicides and 14 trace metals. Nineteen different herbicides were observed in one or more water samples from the five sites; chemicals observed at more than 40% of sites were simazine (100%), MCPA (83%), diuron (63%) and atrazine (53%). Using the toxicity unit (TU) concept to assess potential risk to aquatic ecosystems, none of the detected herbicides were considered to pose an individual, group or collective short-term risk to fish or zooplankton in the waters studied. However, 13 herbicides had TU values suggesting they might have posed an individual risk to primary producers at the time of sampling. Water quality guideline levels were exceeded on many occasions for Cd, Cu, Cr, Pb and Zn. Similarly, RQ med and RQ max exceeded 1 for Cd, Cr, Cu, Mn, Ni, Pb, V and Zn. Almost all the metals screened exceeded a log 10 TU of -3 for every trophic level, suggesting that there may have been some impact on aquatic organisms in the studied waterbodies. Our data indicate that Melbourne's urban aquatic environments may be being impacted by approved domestic, industrial and sporting application of herbicides and that stormwater quality needs to be carefully assessed prior to reuse. Further research is required to understand the performance of different urban stormwater wetland designs in removing pesticides and trace metals. Applying the precautionary principle to herbicide regulation is important to ensure there is more research and assessment of the long-term 'performance' standard of all herbicides and throughout their 'life cycle'. Implementing such an approach will also ensure government, regulators, decision makers, researchers, policy makers and industry have the best possible information available to improve the management of chemicals, from manufacture to use.
Molfese, Carlotta; Beare, Doug; Hall-Spencer, Jason M
2014-01-01
The worldwide depletion of major fish stocks through intensive industrial fishing is thought to have profoundly altered the trophic structure of marine ecosystems. Here we assess changes in the trophic structure of the English Channel marine ecosystem using a 90-year time-series (1920-2010) of commercial fishery landings. Our analysis was based on estimates of the mean trophic level (mTL) of annual landings and the Fishing-in-Balance index (FiB). Food webs of the Channel ecosystem have been altered, as shown by a significant decline in the mTL of fishery landings whilst increases in the FiB index suggest increased fishing effort and fishery expansion. Large, high trophic level species (e.g. spurdog, cod, ling) have been increasingly replaced by smaller, low trophic level fish (e.g. small spotted catsharks) and invertebrates (e.g. scallops, crabs and lobster). Declining trophic levels in fisheries catches have occurred worldwide, with fish catches progressively being replaced by invertebrates. We argue that a network of fisheries closures would help rebalance the trophic status of the Channel and allow regeneration of marine ecosystems.
Gotelli, Nicholas J.; Smith, Aidan M.; Ellison, Aaron M.; Ballif, Bryan A.
2012-01-01
The array of biomolecules generated by a functioning ecosystem represents both a potential resource for sustainable harvest and a potential indicator of ecosystem health and function. The cupped leaves of the carnivorous pitcher plant, Sarracenia purpurea, harbor a dynamic food web of aquatic invertebrates in a fully functional miniature ecosystem. The energetic base of this food web consists of insect prey, which is shredded by aquatic invertebrates and decomposed by microbes. Biomolecules and metabolites produced by this food web are actively exchanged with the photosynthesizing plant. In this report, we provide the first proteomic characterization of the sacrophagid fly (Fletcherimyia fletcheri), the pitcher plant mosquito (Wyeomyia smithii), and the pitcher-plant midge (Metriocnemus knabi). These three arthropods act as predators, filter feeders, and shredders at distinct trophic levels within the S. purpurea food web. More than 50 proteins from each species were identified, 10 of which were predominantly or uniquely found in one species. Furthermore, 19 peptides unique to one of the three species were identified using an assembled database of 100 metazoan myosin heavy chain orthologs. These molecular signatures may be useful in species monitoring within heterogeneous ecosystem biomass and may also serve as indicators of ecosystem state. PMID:21538880
Berggren, M; Ström, L; Laudon, H; Karlsson, J; Jonsson, A; Giesler, R; Bergström, A-K; Jansson, M
2010-07-01
Carbon of terrestrial origin often makes up a significant share of consumer biomass in unproductive lake ecosystems. However, the mechanisms for terrestrial support of lake secondary production are largely unclear. By using a modelling approach, we show that terrestrial export of dissolved labile low molecular weight carbon (LMWC) compounds supported 80% (34-95%), 54% (19-90%) and 23% (7-45%) of the secondary production by bacteria, protozoa and metazoa, respectively, in a 7-km(2) boreal lake (conservative to liberal estimates in brackets). Bacterial growth on LMWC was of similar magnitude as that of primary production (PP), and grazing on bacteria effectively channelled the LMWC carbon to higher trophic levels. We suggest that rapid turnover of forest LMWC pools enables continuous export of fresh photosynthates and other labile metabolites to aquatic systems, and that substantial transfer of LMWC from terrestrial sources to lake consumers can occur within a few days. Sequestration of LMWC of terrestrial origin, thus, helps explain high shares of terrestrial carbon in lake organisms and implies that lake food webs can be closely dependent on recent terrestrial PP.
Hall, Ed K; Schoolmaster, Donald; Amado, A.M; Stets, Edward G.; Lennon, J.T.; Domaine, L.; Cotner, J.B.
2016-01-01
To address how various environmental parameters control or constrain planktonic respiration (PR), we used geometric scaling relationships and established biological scaling laws to derive quantitative predictions for the relationships among key drivers of PR. We then used empirical measurements of PR and environmental (soluble reactive phosphate [SRP], carbon [DOC], chlorophyll a [Chl-a)], and temperature) and landscape parameters (lake area [LA] and watershed area [WA]) from a set of 44 lakes that varied in size and trophic status to test our hypotheses. We found that landscape-level processes affected PR through direct effects on DOC and temperature and indirectly via SRP. In accordance with predictions made from known relationships and scaling laws, scale coefficients (the parameter that describes the shape of a relationship between 2 variables) were found to be negative and have an absolute value 1, others <1). We also found evidence of a significant relationship between temperature and SRP. Because our dataset included measurements of respiration from small pond catchments to the largest body of freshwater on the planet, Lake Superior, these findings should be applicable to controls of PR for the great majority of temperate aquatic ecosystems.
Jugnia, Louis-B; Sime-Ngando, Télesphore; Gilbert, Daniel
2006-10-01
The growth rate and losses of bacterioplankton in the epilimnion of an oligo-mesotrophic reservoir were simultaneously estimated using three different methods for each process. Bacterial production was determined by means of the tritiated thymidine incorporation method, the dialysis bag method and the dilution method, while bacterial mortality was assessed with the dilution method, the disappearance of thymidine-labeled natural cells and ingestion of fluorescent bacterial tracers by heterotrophic flagellates. The different methods used to estimate bacterial growth rates yielded similar results. On the other hand, the mortality rates obtained with the dilution method were significantly lower than those obtained with the use of thymidine-labeled natural cells. The bacterial ingestion rate by flagellates accounted on average for 39% of total bacterial mortality estimated by the dilution method, but this value fell to 5% when the total mortality was measured by the thymidine-labeling method. Bacterial abundance and production varied in opposite phase to flagellate abundance and the various bacterial mortality rates. All this points to the critical importance of methodological aspects in the elaboration of quantitative models of matter and energy flows over the time through microbial trophic networks in aquatic systems, and highlights the role of bacterioplankton as a source of carbon for higher trophic levels in the studied system.
Assessment of the trophic status of four coastal lagoons and one estuarine delta, eastern Brazil.
Cotovicz Junior, Luiz Carlos; Brandini, Nilva; Knoppers, Bastiaan Adriaan; Mizerkowski, Byanka Damian; Sterza, José Mauro; Ovalle, Alvaro Ramon Coelho; Medeiros, Paulo Ricardo Petter
2013-04-01
Anthropogenic eutrophication of aquatic ecosystems continues to be one of the major environmental issues worldwide and also of Brazil. Over the last five decades, several approaches have been proposed to discern the trophic state and the natural and cultural processes involved in eutrophication, including the multi-parameter Assessment of Estuarine Trophic Status (ASSETS) index model. This study applies ASSETS to four Brazilian lagoons (Mundaú, Manguaba, Guarapina, and Piratininga) and one estuarine delta (Paraíba do Sul River), set along the eastern Brazilian coast. The model combines three indices based on the pressure-state-response (PSR) approach to rank the trophic status and forecast the potential eutrophication of a system, to which a final ASSETS grade is established. The lagoons were classified as being eutrophic and highly susceptible to eutrophication, due primarily to their longer residence times but also their high nutrient input index. ASSETS classified the estuary of the Paraíba do Sul river with a low to moderate trophic state (e.g., largely mesotrophic) and low susceptibility to eutrophication. Its nutrient input index was high, but the natural high dilution and flushing potential driven by river flow mitigated the susceptibility to eutrophication. Eutrophication forecasting provided more favorable trends for the Mundaú and Manguaba lagoons and the Paraíba do Sul estuary, in view of the larger investments in wastewater treatment and remediation plans. The final ASSETS ranking system established the lagoons of Mundaú as "moderate," Manguaba as "bad," Guarapina as "poor," and Piratininga as "bad," whereas the Paraíba do Sul River Estuary was "good."
Fincel, Mark J.; James, Daniel A.; Chipps, Steven R.; Davis, Blake A.
2014-01-01
Diet studies have traditionally been used to determine prey use and food web dynamics, while stable isotope analysis provides for a time-integrated approach to evaluate food web dynamics and characterize energy flow in aquatic systems. Direct comparison of the two techniques is rare and difficult to conduct in large, species rich systems. We compared changes in walleye Sander vitreus trophic position (TP) derived from paired diet content and stable isotope analysis. Individual diet-derived TP estimates were dissimilar to stable isotope-derived TP estimates. However, cumulative diet-derived TP estimates integrated from May 2001 to May 2002 corresponded to May 2002 isotope-derived estimates of TP. Average walleye TP estimates from the spring season appear representative of feeding throughout the entire previous year.
Trophic classification of selected Colorado lakes
NASA Technical Reports Server (NTRS)
Blackwell, R. J.; Boland, D. H. P.
1979-01-01
Multispectral scanner data, acquired over several Colorado lakes using LANDSAT-1 and aircraft, were used in conjunction with contact-sensed water quality data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators. Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state.
NASA Astrophysics Data System (ADS)
Sickman, J. O.; Huang, W.; Lucero, D.; Anderson, M.
2012-12-01
The 14C isotopic composition of living organisms is generally considered to be in isotopic equilibrium with atmosphere CO2. During the course of investigations of aquatic foodwebs of the Colorado River, we measured substantial radiocarbon depression of organisms within planktonic and benthic foodwebs of Copper Basin Reservoir, a short residence-time water body at the intake to the Colorado River Aqueduct. All trophic levels had depressed radiocarbon content with inferred "age" of ca. 1,200 radiocarbon years (range: 0.85 to 0.87 fraction modern carbon (fmc)). Additional measurements of the radiocarbon content of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were made in other major rivers in California (New (near Salton Sea), Santa Ana (near Riverside), San Joaquin (near Fresno) and Salinas (near San Luis Obispo)). In the New River (which is composed primarily of irrigation tailwater derived from the Colorado River), the radiocarbon values for DIC closely matched those found in biota of the Copper Basin Reservoir (0.85 to 0.87 fmc), but radiocarbon values for DOC were slightly higher (0.91 to 0.95 fmc). In the other California rivers, radiocarbon concentrations in DIC were generally below modern and lower than corresponding levels in DOC; in the case of the Santa Ana River, DOC was older than DIC as a result of wastewater inputs from upstream treatment plants. Together these data suggest that the carbonate equilibrium of California rivers is influenced by weathering of carbonate minerals which produces HCO3- with no 14C. We hypothesize that this dead carbon can move into aquatic foodwebs via algae and phytoplankton uptake during photosynthesis, depressing the 14C content of aquatic foodwebs below that of the atmosphere. Based on a simple two-component mixing model incorporating carbonate weathering and atmospheric CO2, we estimate that 15-17% of the carbon in the aquatic foodweb of Copper Basin is derived directly from mineral weathering of carbonate minerals in the Colorado River basin. Worldwide, only a few cases of radiocarbon depression have been reported for aquatic ecosystems. The extent of 14C depression in the Colorado River is much larger than that observed in the Arctic or deep ocean environments.
Trophic signatures of seabirds suggest shifts in oceanic ecosystems.
Gagne, Tyler O; Hyrenbach, K David; Hagemann, Molly E; Van Houtan, Kyle S
2018-02-01
Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level-based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher-trophic level to lower-trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems.
Konovalenko, L; Bradshaw, C; Andersson, E; Kautsky, U
2017-04-01
In environmental risk assessments of nuclear waste, there is need to estimate the potential risks of a large number of radionuclides over a long time period during which the environment is likely to change. Usually concentration ratios (CRs) are used to calculate the activity concentrations in organisms. However, CRs are not available for all radionuclides and they are not easily scalable to the varying environment. Here, an ecosystem transport model of elements, which estimates concentrations in organisms using carbon flows and food transfer instead of CR is presented. It is a stochastic compartment model developed for Lake Eckarfjärden at Forsmark in Sweden. The model was based on available data on carbon circulation, physical and biological processes from the site and identifies 11 functional groups of organisms. The ecosystem model was used to estimate the environmental transfer of 13 elements (Al, Ca, Cd, Cl, Cs, I, Ni, Nb, Pb, Se, Sr, Th, U) to various aquatic organisms, using element-specific distribution coefficients for suspended particles (K d PM ) and upper sediment (K d sed ), and subsequent transfer in the foodweb. The modelled CRs for different organism groups were compared with measured CRs from the lake and literature data, and showed good agreement for many elements and organisms, particularly for lower trophic levels. The model is, therefore, proposed as an alternative to measured CR, though it is suggested to further explore active uptake, assimilation and elimination processes to get better correspondence for some of the elements. The benthic organisms (i.e. bacteria, microphytobenthos and macroalgae) were identified as more important than pelagic organisms for transfer of elements to top predators. The element transfer model revealed that most of the radionuclides were channelled through the microbial loop, despite the fact that macroalgae dominated the carbon fluxes in this lake. Thus, element-specific adsorption of elements to the surface of aquatic species, that may be food sources for organisms at higher trophic levels, needs to be considered in combination with generic processes described by carbon fluxes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Juncos, Romina; Arcagni, Marina; Rizzo, Andrea; Campbell, Linda; Arribére, María; Guevara, Sergio Ribeiro
2016-02-01
Volcanic eruptions are recognized sources of toxic elements to freshwater, including arsenic (As). In order to study the short term changes in the bioaccumulation of naturally occurring As by aquatic organisms in Lake Nahuel Huapi (Argentina), located close to the Puyehue-Cordón Caulle volcanic complex (PCCVC), we described As concentrations at different trophic levels and food web transfer patterns in three sites of the lake prior to the last PCCVC eruption (June 2011), and compared As concentrations in biota before and after the eruption. The highest As concentrations and greater variations both between sites and position in the water column, were observed in phytoplankton (3.9-64.8 µg g(-1) dry weight, DW) and small zooplankton (4.3-22.3 µg g(-1) DW). The pattern of As accumulation in aquatic organisms (whole body or muscle) was: primary producers (phytoplankton) > scrapper mollusks (9.3-15.3 µg g(-1) DW) > filter feeding mollusks (5.4-15.6 µg g(-1) DW) > omnivorous invertebrates (0.4-9.2 µg g(-1) DW) > zooplankton (1.2-3.5 µg g(-1) DW) > fish (0.2-1.9 µg g(-1) DW). We observed As biodilution in the whole food web, and in salmonids food chains, feeding on fish prey; but biomagnification in the food chain of creole perch, feeding on benthic crayfish. The impact of the 2011 PCCVC eruption on the As levels of biota was more evident in pelagic-associated organisms (zooplankton and planktivorous fish), but only in the short term, suggesting a brief high bioavailability of As in water after ash deposition. In benthic organisms As variations likely responded to shift in diet due to coverage of the littoral zone with ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schmidt, Radomir; Tantoyotai, Prapakorn; Fakra, Sirine C; Marcus, Matthew A; Yang, Soo In; Pickering, Ingrid J; Bañuelos, Gary S; Hristova, Krassimira R; Freeman, John L
2013-05-21
An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filter-feeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp ( Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested.
Aquaponic Growbed Water Level Control Using Fog Architecture
NASA Astrophysics Data System (ADS)
Asmi Romli, Muhamad; Daud, Shuhaizar; Raof, Rafikha Aliana A.; Awang Ahmad, Zahari; Mahrom, Norfadilla
2018-05-01
Integrated Multi-Trophic Aquaculture (IMTA) is an advance method of aquaculture which combines species with different nutritional needs to live together. The combination between aquatic live and crops is called aquaponics. Aquatic waste that normally removed by biofilters in normal aquaculture practice will be absorbed by crops in this practice. Aquaponics have few common components and growbed provide the best filtration function. In growbed a siphon act as mechanical structure to control water fill and flush process. Water to the growbed comes from fish tank with multiple flow speeds based on the pump specification and height. Too low speed and too fast flow rate can result in siphon malfunctionality. Pumps with variable speed do exist but it is costly. Majority of the aquaponic practitioner use single speed pump and try to match the pump speed with siphon operational requirement. In order to remove the matching requirement some control need to be introduced. Preliminarily this research will show the concept of fill-and-flush for multiple pumping speeds. The final aim of this paper is to show how water level management can be done to remove the speed dependency. The siphon tried to be controlled remotely since wireless data transmission quite practical in vast operational area. Fog architecture will be used in order to transmit sensor data and control command. This paper able to show the water able to be retented in the growbed within suggested duration by stopping the flow in once predefined level.
Pintar, Matthew R; Resetarits, William J
2017-08-01
Trophic interactions are critical determinants of community structure and ecosystem function. In freshwater habitats, top predators are traditionally viewed as drivers of ecosystem structure, shaping populations of consumers and primary producers. The temporary nature of small water bodies makes them dependent on colonization by many organisms, particularly insects that form highly diverse predator assemblages. We conducted mesocosm experiments with naturally colonizing populations of aquatic beetles to assess how prey (zooplankton) abundances influenced colonization and assemblages of natural populations of aquatic beetles. We experimentally demonstrate that zooplankton populations can be proximate regulators of predator populations and assemblages via prey-density-dependent predator recruitment. Our results provide support for the importance of prey populations in structuring predator populations and the role of habitat selection in structuring communities. We indicate that traditional views of predators as drivers of ecosystem structure in many systems may not provide a comprehensive picture, particularly in the context of highly disturbed or ephemeral habitats. © 2017 by the Ecological Society of America.
Dickman, Elizabeth M.; Newell, Jennifer M.; González, María J.; Vanni, Michael J.
2008-01-01
The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types. PMID:19011082
Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals
Tucker, Marlee A.; Rogers, Tracey L.
2014-01-01
Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. PMID:25377460
Predator Persistence through Variability of Resource Productivity in Tritrophic Systems.
Soudijn, Floor H; de Roos, André M
2017-12-01
The trophic structure of species communities depends on the energy transfer between trophic levels. Primary productivity varies strongly through time, challenging the persistence of species at higher trophic levels. Yet resource variability has mostly been studied in systems with only one or two trophic levels. We test the effect of variability in resource productivity in a tritrophic model system including a resource, a size-structured consumer, and a size-specific predator. The model complies with fundamental principles of mass conservation and the body-size dependence of individual-level energetics and predator-prey interactions. Surprisingly, we find that resource variability may promote predator persistence. The positive effect of variability on the predator arises through periods with starvation mortality of juvenile prey, which reduces the intraspecific competition in the prey population. With increasing variability in productivity and starvation mortality in the juvenile prey, the prey availability increases in the size range preferred by the predator. The positive effect of prey mortality on the trophic transfer efficiency depends on the biologically realistic consideration of body size-dependent and food-dependent functions for growth and reproduction in our model. Our findings show that variability may promote the trophic transfer efficiency, indicating that environmental variability may sustain species at higher trophic levels in natural ecosystems.
Fanti, Federico; Minelli, Daniela; Conte, Gabriele Larocca; Miyashita, Tetsuto
2016-01-01
Following extreme climatic warming events, Eocene Lagerstätten document aquatic and terrestrial vertebrate faunas surprisingly similar to modern counterparts. This transition in marine systems is best documented in the earliest teleost-dominated coral reef assemblage of Pesciara di Bolca, northern Italy, from near the end of the Eocene Climatic Optimum. Its rich fauna shows similarities with that of the modern Great Barrier Reef in niche exploitation by and morphological disparity among teleost primary consumers. However, such paleoecological understanding has not transcended trophic levels above primary consumers, particularly in carcharhiniform sharks. We report an exceptionally preserved fossil school shark (Galeorhinus cuvieri) from Pesciara di Bolca. In addition to the spectacular preservation of soft tissues, including brain, muscles, and claspers, this male juvenile shark has stomach contents clearly identifiable as a sphyraenid acanthomorph (barracuda). This association provides evidence that a predator-prey relationship between Galeorhinus and Sphyraena in the modern coral reefs has roots in the Eocene. A growth curve of the living species of Galeorhinus fitted to G. cuvieri suggests that all specimens of G. cuvieri from the lagoonal deposits of Bolca represent sexually and somatically immature juveniles. The modern trophic association between higher-degree consumers (Galeorhinus and Sphyraena) has a counterpart in the Eocene Bolca, just as Bolca and the Great Barrier Reef show parallels among teleost primary consumers. Given the age of Bolca, trophic networks among consumers observed in modern coral reefs arose by the exit from the Climatic Optimum. The biased representation of juveniles suggests that the Bolca Lagerstätte served as a nursery habitat for G. cuvieri. Ultraviolet photography may be useful in probing for exceptional soft tissue preservation before common acid preparation methods.
Molfese, Carlotta; Beare, Doug; Hall-Spencer, Jason M.
2014-01-01
The worldwide depletion of major fish stocks through intensive industrial fishing is thought to have profoundly altered the trophic structure of marine ecosystems. Here we assess changes in the trophic structure of the English Channel marine ecosystem using a 90-year time-series (1920–2010) of commercial fishery landings. Our analysis was based on estimates of the mean trophic level (mTL) of annual landings and the Fishing-in-Balance index (FiB). Food webs of the Channel ecosystem have been altered, as shown by a significant decline in the mTL of fishery landings whilst increases in the FiB index suggest increased fishing effort and fishery expansion. Large, high trophic level species (e.g. spurdog, cod, ling) have been increasingly replaced by smaller, low trophic level fish (e.g. small spotted catsharks) and invertebrates (e.g. scallops, crabs and lobster). Declining trophic levels in fisheries catches have occurred worldwide, with fish catches progressively being replaced by invertebrates. We argue that a network of fisheries closures would help rebalance the trophic status of the Channel and allow regeneration of marine ecosystems. PMID:25010196
Li, Wei; Podar, Mircea
2016-01-01
ABSTRACT The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MCM lake microalgae (Isochrysis and Chlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. IMPORTANCE Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential interactions with other microbes. Our work reveals that Antarctic lake protists rely on metabolic versatility for their energy and nutrient requirements in this unique and isolated environment. PMID:27084010
Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M
2016-06-15
The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MCM lake microalgae (Isochrysis and Chlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential interactions with other microbes. Our work reveals that Antarctic lake protists rely on metabolic versatility for their energy and nutrient requirements in this unique and isolated environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M.
The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activatedmore » cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (FlavobacteriaandMethylobacteriaceae) were independently associated with two key MCM lake microalgae (IsochrysisandChlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite ofChlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential interactions with other microbes. Ultimately, our work reveals that Antarctic lake protists rely on metabolic versatility for their energy and nutrient requirements in this unique and isolated environment.« less
Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M.
2016-04-15
The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activatedmore » cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (FlavobacteriaandMethylobacteriaceae) were independently associated with two key MCM lake microalgae (IsochrysisandChlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite ofChlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential interactions with other microbes. Ultimately, our work reveals that Antarctic lake protists rely on metabolic versatility for their energy and nutrient requirements in this unique and isolated environment.« less
O'Gorman, Robert; Stewart, Thomas J.; Taylor, William W.; Ferreri, C. Paola
1999-01-01
This article chronicles the ascent, dominance, and decline of the alewife (Alosa pseudoharengus) in the Great Lakes and tracks the gradual accumulation of knowledge on the fish's effect on the aquatic community. Changes in management strategies for alewife are followed, and the current management dilemma is framed in light of the alewife's effect on inidigenous fishes and the changing biota and trophic status of the Great Lakes.
Arceo-Carranza, D; Vega-Cendejas, M E; Hernández de Santillana, M
2013-01-01
The aim of this study was to determine the trophic structure and nycthemeral variations in the diet of dominant fish species (Ariopsis felis, Bairdiella chrysoura, Micropogonias undulatus, Eucinostomus gula, Eucinostomus argenteus, Lagodon rhomboides and Sphoeroides testudineus) in Celestun Lagoon, a biosphere reserve located in the southern Gulf of Mexico, and influenced by freshwater seeps. A total of 1473 stomachs were analysed and nine trophic groups were recorded. Bray-Curtis analyses with analyses of similarity (ANOSIM) statistical tests were used to determine two groups of feeding guilds: zoobenthivores and omnivores, with significant differences between time and habitat. The relationships between fish feeding habits, size class and environmental variables were investigated using canonical correspondence analysis (CCA). Most of the species showed a low niche breadth with high specialization towards amphipod consumption, with the exception of L. rhomboides (0·60), which indicated generalist feeding. This study in a protected area is an important source of information for drawing up conservation policies in relation to the management of aquatic resources, and will aid in the establishment of priority areas for conservation. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Mercury in Forage Fish from Mexico and Central America: Implications for Fish-Eating Birds.
Elliott, John E; Kirk, David A; Elliott, Kyle H; Dorzinsky, Jessica; Lee, Sandi; Inzunza, Ernesto Ruelas; Cheng, Kimberly M T; Scheuhammer, Tony; Shaw, Patrick
2015-11-01
Mercury (Hg) is a global contaminant of aquatic food chains. Aquatic birds, such as the osprey (Pandion haliaetus), with migratory populations breeding in Canada and the northern United States and wintering in the Central and South America, can be exposed to mercury on both the breeding and wintering ranges. We examined Hg levels in 14 fish taxa from 24 osprey wintering sites identified from satellite telemetry. Our main goal was to determine whether fish species that feature in the diet of overwintering and resident fish-eating birds reached toxicity thresholds for Hg. Mean Hg levels in fish whole carcasses ranged from a high of 0.18 µg g(-1) (wet weight) in Scomberomorus sierra to a low of 0.009 µg g(-1) in Catostomidae. Average Hg levels were within published toxicity threshold values in forage fish for only two sites in Mexico (Puerto Vallarta and San Blas Estuary), and all were marine species, such as mackerel (Scomberomorus sierra), sea catfish (Ariopus spp.), and sardinas species (Centropomus spp.). Except for one sample from Nicaragua, sea catfish from Puerto Morazan, none of the fish from sites in Central America had Hg levels which exceeded the thresholds. Nonmetric multidimensional scaling revealed geographical differences in Hg levels with significant pairwise differences between sites along the Pacific Ocean (Mexico) versus the Bay of Campeche, partly due to differences in species composition of sampled fish (and species distributions). Hg increased with trophic level, as assessed by nitrogen stable isotope ratios (δ(15)N but not δ(13)C), in freshwater and marine, but not estuarine, environments. Hg concentrations in forage fish do not account for the elevated Hg reported for many osprey populations on the breeding grounds, thus primary sources of contamination appear to be in the north.
NASA Astrophysics Data System (ADS)
Lassalle, G.; Chouvelon, T.; Bustamante, P.; Niquil, N.
2014-01-01
Comparing outputs of ecosystem models with estimates derived from experimental and observational approaches is important in creating valuable feedback for model construction, analyses and validation. Stable isotopes and mass-balanced trophic models are well-known and widely used as approximations to describe the structure of food webs, but their consistency has not been properly established as attempts to compare these methods remain scarce. Model construction is a data-consuming step, meaning independent sets for validation are rare. Trophic linkages in the French continental shelf of the Bay of Biscay food webs were recently investigated using both methodologies. Trophic levels for mono-specific compartments representing small pelagic fish and marine mammals and multi-species functional groups corresponding to demersal fish and cephalopods, derived from modelling, were compared with trophic levels calculated from independent carbon and nitrogen isotope ratios. Estimates of the trophic niche width of those species, or groups of species, were compared between these two approaches as well. A significant and close-to-one positive (rSpearman2 = 0.72 , n = 16, p < 0.0001) correlation was found between trophic levels estimated by Ecopath modelling and those derived from isotopic signatures. Differences between estimates were particularly low for mono-specific compartments. No clear relationship existed between indices of trophic niche width derived from both methods. Given the wide recognition of trophic levels as a useful concept in ecosystem-based fisheries management, propositions were made to further combine these two approaches.
Iijima, Masaya
2017-08-01
Although the establishment of trophic ecomorphology in living crocodylians can contribute to estimating feeding habits of extinct large aquatic reptiles, assessment of ecomorphological traits other than the snout shape has scarcely been conducted in crocodylians. Here, I tested the validity of the proposed trophic ecomorphological traits in crocodylians by examining the correlation between those traits and the snout shape (an established trophic ecomorphology), using 10 non-alligatoroid crocodylian species with a wide range of snout shape. I then compared the ontogenetic scaling of trophic ecomorphology to discuss its adaptive and taxonomic significance. The results demonstrated that degree of heterodonty, tooth spacing, size of supratemporal fenestra (STF), ventral extension of pterygoid flange and length of lower jaw symphysis are significantly correlated with snout shape by both non-phylogenetic and phylogenetic regression analyses. Gavialis gangeticus falls outside of 95% prediction intervals for the relationships of some traits and the snout shape, suggesting that piscivorous specialization involves the deviation from the typical transformation axis of skull characters. The comparative snout shape ontogeny revealed a universal trend of snout widening through growth in the sampled crocodylians, implying the existence of a shared size-dependent biomechanical constraint in non-alligatoroid crocodylians. Growth patterns of other traits indicated that G. gangeticus shows atypical trends for degree of heterodonty, size of STF, and symphysis length, whereas the same trends are shared for tooth spacing and ventral extension of pterygoid flange among non-alligatoroid crocodylians. These suggest that some characters are ontogenetically labile in response to prey preference shifts through growth, but other characters are in keeping with the conserved biomechanics among non-alligatoroid crocodylians. Some important taxonomic characters such as the occlusal pattern are likely correlated with ontogeny and trophic ecomorphology rather than are constrained by phylogenetic relationships, and careful reassessment of such characters might be necessary for better reconstructing the morphological phylogeny of crocodylians. © 2017 Anatomical Society.
Kwon, Sae Yun; Blum, Joel D; Nadelhoffer, Knute J; Timothy Dvonch, J; Tsui, Martin Tsz-Ki
2015-11-01
Studies of monomethylmercury (MMHg) sources and biogeochemical pathways have been extensive in aquatic ecosystems, but limited in forest ecosystems. Increasing evidence suggests that there is significant mercury (Hg) exchange between aquatic and forest ecosystems. We use Hg stable isotope ratios (δ(202)Hg and Δ(199)Hg) to investigate the relative importance of MMHg sources and assess Hg transfer pathways between Douglas Lake and adjacent forests located at the University of Michigan Biological Station, USA. We characterize Hg isotopic compositions of basal resources and use linear regression of % MMHg versus δ(202)Hg and Δ(199)Hg to estimate Hg isotope values for inorganic mercury (IHg) and MMHg in the aquatic and adjacent forest food webs. In the aquatic ecosystem, we found that lake sediment represents a mixture of IHg pools deposited via watershed runoff and precipitation. The δ(202)Hg and Δ(199)Hg values estimated for IHg are consistent with other studies that measured forest floor in temperate forests. The Δ(199)Hg value estimated for MMHg in the aquatic food web indicates that MMHg is subjected to ~20% photochemical degradation prior to bioaccumulation. In the forest ecosystem, we found a significant negative relationship between total Hg and δ(202)Hg and Δ(199)Hg of soil collected at multiple distances from the lakeshore and lake sediment. This suggests that IHg input from watershed runoff provides an important Hg transfer pathway between the forest and aquatic ecosystems. We measured Δ(199)Hg values for high trophic level insects and compared these insects at multiple distances perpendicular to the lake shoreline. The Δ(199)Hg values correspond to the % canopy cover suggesting that forest MMHg is subjected to varying extents of photochemical degradation and the extent may be controlled by sunlight. Our study demonstrates that the use of Hg isotopes adds important new insight into the relative importance of MMHg sources and complex Hg transfer pathways across ecosystem boundaries. Copyright © 2015 Elsevier B.V. All rights reserved.
The trophic fingerprint of marine fisheries.
Branch, Trevor A; Watson, Reg; Fulton, Elizabeth A; Jennings, Simon; McGilliard, Carey R; Pablico, Grace T; Ricard, Daniel; Tracey, Sean R
2010-11-18
Biodiversity indicators provide a vital window on the state of the planet, guiding policy development and management. The most widely adopted marine indicator is mean trophic level (MTL) from catches, intended to detect shifts from high-trophic-level predators to low-trophic-level invertebrates and plankton-feeders. This indicator underpins reported trends in human impacts, declining when predators collapse ("fishing down marine food webs") and when low-trophic-level fisheries expand ("fishing through marine food webs"). The assumption is that catch MTL measures changes in ecosystem MTL and biodiversity. Here we combine model predictions with global assessments of MTL from catches, trawl surveys and fisheries stock assessments and find that catch MTL does not reliably predict changes in marine ecosystems. Instead, catch MTL trends often diverge from ecosystem MTL trends obtained from surveys and assessments. In contrast to previous findings of rapid declines in catch MTL, we observe recent increases in catch, survey and assessment MTL. However, catches from most trophic levels are rising, which can intensify fishery collapses even when MTL trends are stable or increasing. To detect fishing impacts on marine biodiversity, we recommend greater efforts to measure true abundance trends for marine species, especially those most vulnerable to fishing.
Tucker, Marlee A; Rogers, Tracey L
2014-12-22
Predator-prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator-prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator-prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator-prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Long-chain omega-3 from low-trophic-level fish provides value to farmed seafood
Bibus, Douglas M
2015-01-01
Low-trophic-level fish are a crucial source of long-chain (LC) omega-3 fatty acids for farmed fish and humans. Many farm-raised fish species have a clear need for these nutrients. Farmed fish deposit the LC omega-3s in their flesh and transfer them up the food chain. However, the content of LC omega-3s in farm-raised seafood continues to decline, while the content of shorter-chain plant-sourced omega-3s, and pro-inflammtory omega-6s continue to increase. This reduces its nutritional worth. The value of low-trophic-level fish is often viewed merely as its price at the dock. Some reports and metrics steer public attention towards the mass balance between quantities of low-trophic-level fish and farmed seafood. However, the the nutritional value of seafood is more important than its mere quantities. The role of low-trophic-level fish in human nutrition, health, and wellbeing is a fundamental component of its economic value to society. PMID:26097289
Long-chain omega-3 from low-trophic-level fish provides value to farmed seafood.
Bibus, Douglas M
2015-03-01
Low-trophic-level fish are a crucial source of long-chain (LC) omega-3 fatty acids for farmed fish and humans. Many farm-raised fish species have a clear need for these nutrients. Farmed fish deposit the LC omega-3s in their flesh and transfer them up the food chain. However, the content of LC omega-3s in farm-raised seafood continues to decline, while the content of shorter-chain plant-sourced omega-3s, and pro-inflammtory omega-6s continue to increase. This reduces its nutritional worth. The value of low-trophic-level fish is often viewed merely as its price at the dock. Some reports and metrics steer public attention towards the mass balance between quantities of low-trophic-level fish and farmed seafood. However, the the nutritional value of seafood is more important than its mere quantities. The role of low-trophic-level fish in human nutrition, health, and wellbeing is a fundamental component of its economic value to society.
The Influence of Mean Trophic Level on Biomass and Production in Marine Ecosystems
NASA Astrophysics Data System (ADS)
Woodson, C. B.; Schramski, J.
2016-02-01
The oceans have faced rapid removal of top predators causing a reduction in the mean trophic level of many marine ecosystems due to fishing down the food web. However, estimating the pre-exploitation biomass of the ocean has been difficult. Historical population sizes have been estimated using population dynamics models, archaeological or historical records, fisheries data, living memory, ecological monitoring data, genetics, and metabolic theory. In this talk, we expand on the use of metabolic theory by including complex trophic webs to estimate pre-exploitation levels of marine biomass. Our results suggest that historical marine biomass could be as much as 10 times higher than current estimates and that the total carrying capacity of the ocean is sensitive to mean trophic level and trophic web complexity. We further show that the production levels needed to support the added biomass are possible due to biomass accumulation and predator-prey overlap in regions such as fronts. These results have important implications for marine biogeochemical cycling, fisheries management, and conservation efforts.
Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin
2016-04-13
Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity.
Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin
2016-01-01
Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity. PMID:27072196
Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory.
Welti, Nina; Striebel, Maren; Ulseth, Amber J; Cross, Wyatt F; DeVilbiss, Stephen; Glibert, Patricia M; Guo, Laodong; Hirst, Andrew G; Hood, Jim; Kominoski, John S; MacNeill, Keeley L; Mehring, Andrew S; Welter, Jill R; Hillebrand, Helmut
2017-01-01
Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment.
Tiede, Julia; Wemheuer, Bernd; Traugott, Michael; Daniel, Rolf; Tscharntke, Teja; Ebeling, Anne; Scherber, Christoph
2016-01-01
Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research. PMID:26859146
Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Stockwell, Jason D.; Yule, Daniel L.; Sass, Greg G.
2011-01-01
Diel vertical migrations are common among many aquatic species and are often associated with changing light levels. The underlying mechanisms are generally attributed to optimizing foraging efficiency or growth rates and avoiding predation risk (μ). The objectives of this study were to (1) assess seasonal and interannual changes in vertical migration patterns of three trophic levels in the Lake Superior pelagic food web and (2) examine the mechanisms underlying the observed variability by using models of foraging, growth, and μ. Our results suggest that the opossum shrimp Mysis diluviana, kiyi Coregonus kiyi, and siscowet lake trout Salvelinus namaycush migrate concurrently during each season, but spring migrations are less extensive than summer and fall migrations. In comparison with M. diluviana, kiyis, and siscowets, the migrations by ciscoes C. artedi were not as deep in the water column during the day, regardless of season. Foraging potential and μ probably drive the movement patterns of M. diluviana, while our modeling results indicate that movements by kiyis and ciscoes are related to foraging opportunity and growth potential and receive a lesser influence from μ. The siscowet is an abundant apex predator in the pelagia of Lake Superior and probably undertakes vertical migrations in the water column to optimize foraging efficiency and growth. The concurrent vertical movement patterns of most species are likely to facilitate nutrient transport in this exceedingly oligotrophic ecosystem, and they demonstrate strong linkages between predators and prey. Fishery management strategies should use an ecosystem approach and should consider how altering the densities of long-lived top predators produces cascading effects on the nutrient cycling and energy flow in lower trophic levels.
Trophic interactions, ecosystem structure and function in the southern Yellow Sea
NASA Astrophysics Data System (ADS)
Lin, Qun; Jin, Xianshi; Zhang, Bo
2013-01-01
The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.
Ross, R.M.; Bennett, R.M.; Snyder, C.D.; Young, J.A.; Smith, D.R.; Lemarie, D.P.
2003-01-01
Hemlock (Tsuga canadensis) forest of the eastern U.S. are in decline due to invasion by the exotic insect hemlock woolly adelgid (Adelges tsugae). Aquatic biodiversity in hemlock ecosystems has not been documented; thus the true impact of the infestation cannot be assessed. We compared ichthyofaunal assemblages and trophic structure of streams draining hemlock and hardwood forests by sampling first- and second-order streams draining 14 paired hemlock and hardwood stands during base flows in July 1997 at the Delaware Water Gap National Recreation Area of Pennsylvania and New Jersey. Over 1400 fish of 15 species and 7 families were collected, but hemlock and hardwood streams individually harbored only one to four species. Brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) were two to three times as prevalent in hemlock than hardwood streams. Insectivorous fishes occurred in significantly higher proportion in streams of hardwood (0.90) than hemlock (0.46) stands, while piscivores occurred more often in hemlock (0.85) than hardwood (0.54) stands. Functional (trophic) diversity of fishes in hemlock and second-order streams was numerically greater than that of hardwood and first-order streams. Species composition also differed by stream order and terrain type. Biodiversity is threatened at several levels within hemlock ecosystems at risk to the hemlock woolly adelgid in eastern U.S. forests.
Rivera-Usme, J J; Pinilla, G A; Rangel-Churio, J O; Castro, M I; Camacho-Pinzón, D L
2015-01-01
Aquatic macroinvertebrates (AMI) play an important role in the ecology of wetlands, either by their job as regulators of the cycles of matter, as for their energy storage function represented in their biomass, which is transferred to higher trophic levels. To answer the question of how biomass of different AMI trophic guilds is related with physicochemical variables in the wetland Jaboque (Bogotá, Colombia), four samplings were achieved between April 2009 and January 2010, according to periods of rain and drought in the region. The AMI biomass values obtained were rated as of intermediate rank. No temporal but spatial significant differences were found. Apparently these spatial differences appear to be associated with variations in anthropogenic pressure, which differs in each area of the wetland. In dry months (January and August), biomass was greater and dominated by detritivores. We observed a positive relationship between the specific conductance of water and the biomass of predators and detritivores and between water temperature and the biomass of detritivores and shredders. These relationships suggest that the physical and chemical variables influence the distribution, abundance, and biomass of functional groups. The physical and chemical conditions of water exhibited spatiotemporal fluctuations related to changes in the concentration of organic matter and nutrients, which presumably were related to the affluents discharges and the high impact of local human populations.
Short, Jeffrey W; Geiger, Harold J; Haney, J Christopher; Voss, Christine M; Vozzo, Maria L; Guillory, Vincent; Peterson, Charles H
2017-07-01
Gulf menhaden (Brevoortia patronus) exhibited unprecedented juvenile recruitment in 2010 during the year of the Deepwater Horizon well blowout, exceeding the prior 39-year mean by more than four standard deviations near the Mississippi River. Abundance of that cohort remained exceptionally high for two subsequent years as recruits moved into older age classes. Such changes in this dominant forage fish population can be most parsimoniously explained as consequences of release from predation. Contact with crude oil induced high mortality of piscivorous seabirds, bottlenose dolphin (Tursiops truncatus), waders, and other fish-eating marsh birds, all of which are substantial consumers of Gulf menhaden. Diversions of fresh water from the Mississippi River to protect coastal marshes from oiling depressed salinities, impairing access to juvenile Gulf menhaden by aquatic predators that avoid low-salinity estuarine waters. These releases from predation led to an increase of Gulf menhaden biomass in 2011 to 2.4 million t, or more than twice the average biomass of 1.1 million t for the decade prior to 2010. Biomass increases of this magnitude in a major forage fish species suggest additional trophically linked effects at the population-, trophic-level and ecosystem scales, reflecting an heretofore little appreciated indirect effect that may be associated with major oil spills in highly productive marine waters.
Trophic signatures of seabirds suggest shifts in oceanic ecosystems
Gagne, Tyler O.; Hyrenbach, K. David; Hagemann, Molly E.; Van Houtan, Kyle S.
2018-01-01
Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level–based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher–trophic level to lower–trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems. PMID:29457134
Complex trophic interactions of calanoid copepods in the Benguela upwelling system
NASA Astrophysics Data System (ADS)
Schukat, Anna; Auel, Holger; Teuber, Lena; Lahajnar, Niko; Hagen, Wilhelm
2014-01-01
Life-cycle adaptations, dietary preferences and trophic levels of calanoid copepods from the northern Benguela Current off Namibia were determined via lipid classes, marker fatty acids and stable isotope analyses, respectively. Trophic levels of copepod species were compared to other zooplankton and top consumers. Lipid class analyses revealed that three of the dominant calanoid copepod species stored wax esters, four accumulated triacylglycerols and another three species were characterised by high phospholipid levels. The two biomarker approaches (via fatty acids and stable isotopes) revealed a complex pattern of trophic positions for the various copepod species, but also highlighted the dietary importance of diatoms and dinoflagellates. Calanoides carinatus and Nannocalanus minor occupied the lowest trophic level (predominantly herbivorous) corresponding to high amounts of fatty acid markers for diatoms (e.g. 16:1(n - 7)) and dinoflagellates (e.g. 18:4(n - 3)). These two copepod species represent the classical link between primary production and higher trophic levels. All other copepods belonged to secondary or even tertiary (some deep-sea copepods) consumers. The calanoid copepod species cover the entire range of δ15N ratios, as compared to δ15N ratios of all non-calanoid taxa investigated, from salps to adult fish. These data emphasise that the trophic roles of calanoid copepods are far more complex than just interlinking primary producers with pelagic fish, which should also be considered in the process of developing realistic food-web models of coastal upwelling systems.
Ecosystem regime shifts disrupt trophic structure.
Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K
2018-01-01
Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological resilience and economic sustainability. © 2017 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagne-Maynard, William C.; Ward, Nicholas D.; Keil, Richard G.
The Amazon River outgasses nearly an equivalent amount of CO 2 as the rainforest sequesters on an annual basis due to microbial decomposition of terrigenous and aquatic organic matter. Most research performed in the Amazon has been focused on unraveling the mechanisms driving CO 2 production since the recognition of a persistent state of CO 2 supersaturation. However, although the river system is clearly net heterotrophic, the interplay between primary production and respiration is an essential aspect to understanding the overall metabolism of the ecosystem and potential transfer of energy up trophic levels. For example, an efficient ecosystem is capablemore » of both decomposing high amounts of organic matter at lower trophic levels, driving CO 2 emissions, and accumulating energy/biomass in higher trophic levels, stimulating fisheries production. Early studies found minimal evidence for primary production in the Amazon River mainstem and it has since been assumed that photosynthesis is strongly limited by low light penetration attributed to the high sediment load. Here, we test this assumption by measuring the stable isotopic composition of O 2 (δ 18O-O 2) and O 2 saturation levels in the lower Amazon River from Óbidos to the river mouth and its major tributaries, the Xingu and Tapajós rivers, during high and low water periods. An oxygen mass balance model was developed to estimate the input of photosynthetic oxygen in the discrete reach from Óbidos to Almeirim, midway to the river mouth. Based on the oxygen mass balance we estimate that primary production occurred at a rate of 0.39 ± 0.24 g O m 3 d -1 at high water and 1.02 ± 0.55 g O m 3 d -1 at low water. This translates to 41 ± 24% of the rate of O 2 drawdown via respiration during high water and 67 ± 33% during low water. These primary production rates are 2-7 times higher than past estimates for the Amazon River mainstem. In conclusion, it is possible that at high water much of this productivity signal is the result of legacy advection from floodplains, whereas limited floodplain connectivity during low water implies that most of this signal is the result of in situ primary production in the Amazon River mainstem.« less
Towards Mechanistic Understanding of Mercury Availability and Toxicity to Aquatic Primary Producers.
Dranguet, Perrine; Flück, Rebecca; Regier, Nicole; Cosio, Claudia; Le Faucheur, Séverine; Slaveykova, Vera I
2014-11-01
The present article reviews current knowledge and recent progress on the bioavailability and toxicity of mercury to aquatic primary producers. Mercury is a ubiquitous toxic trace element of global concern. At the base of the food web, primary producers are central for mercury incorporation into the food web. Here, the emphasis is on key, but still poorly understood, processes governing the interactions between mercury species and phytoplankton, and macrophytes, two representatives of primary producers. Mass transfer to biota surface, adsorption to cell wall, internalization and release from cells, as well as underlying toxicity mechanisms of both inorganic mercury and methylmercury are discussed critically. In addition, the intracellular distribution and transformation processes, their importance for mercury toxicity, species-sensitivity differences and trophic transfer are presented. The mini-review is illustrated with examples of our own research.
Gotelli, Nicholas J; Smith, Aidan M; Ellison, Aaron M; Ballif, Bryan A
2011-06-01
The array of biomolecules generated by a functioning ecosystem represents both a potential resource for sustainable harvest and a potential indicator of ecosystem health and function. The cupped leaves of the carnivorous pitcher plant, Sarracenia purpurea, harbor a dynamic food web of aquatic invertebrates in a fully functional miniature ecosystem. The energetic base of this food web consists of insect prey, which is shredded by aquatic invertebrates and decomposed by microbes. Biomolecules and metabolites produced by this food web are actively exchanged with the photosynthesizing plant. In this report, we provide the first proteomic characterization of the sacrophagid fly (Fletcherimyia fletcheri), the pitcher plant mosquito (Wyeomyia smithii), and the pitcher-plant midge (Metriocnemus knabi). These three arthropods act as predators, filter feeders, and shredders at distinct trophic levels within the S. purpurea food web. More than 50 proteins from each species were identified, ten of which were predominantly or uniquely found in one species. Furthermore, 19 peptides unique to one of the three species were identified using an assembled database of 100 metazoan myosin heavy chain orthologs. These molecular signatures may be useful in species monitoring within heterogeneous ecosystem biomass and may also serve as indicators of ecosystem state. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary.
Reinhart, Bethany L; Kidd, Karen A; Curry, R Allen; O'Driscoll, Nelson J; Pavey, Scott A
2018-06-01
Although estuaries are critical habitats for many aquatic species, the spatial trends of toxic methylmercury (MeHg) in biota from fresh to marine waters are poorly understood. Our objective was to determine if MeHg concentrations in biota changed along a salinity gradient in an estuary. Fourspine Stickleback (Apeltes quadracus), invertebrates (snails, amphipods, and chironomids), sediments, and water were collected from ten sites along the Saint John River estuary, New Brunswick, Canada in 2015 and 2016, with salinities ranging from 0.06 to 6.96. Total mercury (proxy for MeHg) was measured in whole fish and MeHg was measured in a subset of fish, pooled invertebrates, sediments, and water. Stable sulfur (δ 34 S), carbon (δ 13 C), and nitrogen (δ 15 N) isotope values were measured to assess energy sources (S, C) and relative trophic level (N). There were increases in biotic δ 13 C and δ 34 S from fresh to more saline sites and these measures were correlated with salinity. Though aqueous MeHg was higher at the freshwater than more saline sites, only chironomid MeHg increased significantly with salinity. In the Saint John River estuary, there was little evidence that MeHg and its associated risks increased along a salinity gradient. Copyright © 2018. Published by Elsevier B.V.
Atlas, William I.; Palen, Wendy J.
2014-01-01
Resource subsidies increase the productivity of recipient food webs and can affect ecosystem dynamics. Subsidies of prey often support elevated predator biomass which may intensify top-down control and reduce the flow of reciprocal subsidies into adjacent ecosystems. However, top-down control in subsidized food webs may be limited if primary consumers posses morphological or behavioral traits that limit vulnerability to predation. In forested streams, terrestrial prey support high predator biomass creating the potential for strong top-down control, however armored primary consumers often dominate the invertebrate assemblage. Using empirically based simulation models, we tested the response of stream food webs to variations in subsidy magnitude, prey vulnerability, and the presence of two top predators. While terrestrial prey inputs increased predator biomass (+12%), the presence of armored primary consumers inhibited top-down control, and diverted most aquatic energy (∼75%) into the riparian forest through aquatic insect emergence. Food webs without armored invertebrates experienced strong trophic cascades, resulting in higher algal (∼50%) and detrital (∼1600%) biomass, and reduced insect emergence (−90%). These results suggest prey vulnerability can mediate food web responses to subsidies, and that top-down control can be arrested even when predator-invulnerable consumers are uncommon (20%) regardless of the level of subsidy. PMID:24465732
Petranka, James W; Kennedy, Caroline A
1999-09-01
With rare exceptions, anuran larvae have traditionally been considered to occupy lower trophic levels in aquatic communities where they function as microphagous suspension feeders. This view is being challenged by studies showing that tadpoles with generalized morphology often function as macrophagous predators. Here, we review the literature concerning macrophagy by tadpoles and provide two additional examples involving generalized tadpoles. In the first, we demonstrate with laboratory and field experiments that wood frog (Rana sylvatica) tadpoles are major predators of macroinvertebrates in ponds. In the second, we show that green frog (R. clamitans) tadpoles can cause catastrophic reproductive failure of the wood frog via egg predation. These results and data from other studies challenge the assumption that generalized tadpoles function as filter-feeding omnivores, and question the general applicability of community organization models which assume that predation risk increases with pond permanence. We suggest that predation risk is greater in temporary ponds than in more permanent ponds for many organisms that are vulnerable to predation by tadpoles. This being so, a conditional model based upon interactions that are species-specific, life-stage-specific, and context-dependent may better explain community organization along hydrological gradients than models which assume that temporary ponds have few or no predators.
Lakeman-Fraser, Poppy; Ewers, Robert M.
2014-01-01
Gaining insight into the impact of anthropogenic change on ecosystems requires investigation into interdependencies between multiple drivers of ecological change and multiple biotic responses. Global environmental change drivers can act simultaneously to impact the abundance and diversity of biota, but few studies have also measured the impact across trophic levels. We firstly investigated whether climate (using temperature differences across a latitudinal gradient as a surrogate) interacts with habitat fragmentation (measured according to fragment area and distance to habitat edges) to impact a New Zealand tri-trophic food chain (plant, herbivore and natural enemy). Secondly, we examined how these interactions might differentially impact both the density and biotic processes of species at each of the three trophic levels. We found evidence to suggest that these drivers act non-additively across trophic levels. The nature of these interactions however varied: location synergistically interacted with fragmentation measures to exacerbate the detrimental effects on consumer density; and antagonistically interacted to ameliorate the impact on plant density and on the interactions between trophic levels (herbivory and parasitoid attack rate). Our findings indicate that the ecological consequences of multiple global change drivers are strongly interactive and vary according to the trophic level studied and whether density or ecological processes are investigated. PMID:24898374
NASA Astrophysics Data System (ADS)
Bacalso, Regina Therese M.; Wolff, Matthias
2014-11-01
A trophic model of the shallow Danajon Bank, in the Central Visayas, Philippines was developed using a mass-balance approach (Ecopath) to describe the system characteristics and fisheries interactions. The Ecopath model is composed of 37 functional groups and 17 fishing fleet types reflecting the high diversity of catches and fishing operations in the Danajon Bank. Collectively, the catch is dominated by lower trophic level fish and invertebrates as reflected in the mean trophic level of the fishery (2.95). The low biomass and high exploitation levels for many upper trophic level groups and the little evidence for strong natural physical disturbances suggest that top-down fishery is the main driver of system dynamics. The mixed trophic impacts (MTI) analysis reveals the role of the illegal and destructive fishing operations in influencing the ecosystem structure and dynamics. Furthermore, the illegal fisheries' estimated collective annual harvest is equivalent to nearly a quarter of the entire municipal fisheries catch in the area. Improved fisheries law enforcement by the local government units to curb these illegal and destructive fishing operations could substantially increase the potential gains of the legal fisheries.
Food web topology and parasites in the pelagic zone of a subarctic lake
Amundsen, Per-Arne; Lafferty, K.D.; Knudsen, R.; Primicerio, R.; Klemetsen, A.; Kuris, A.M.
2009-01-01
Parasites permeate trophic webs with their often complex life cycles, but few studies have included parasitism in food web analyses. Here we provide a highly resolved food web from the pelagic zone of a subarctic lake and explore how the incorporation of parasites alters the topology of the web. 2. Parasites used hosts at all trophic levels and increased both food-chain lengths and the total number of trophic levels. Their inclusion in the network analyses more than doubled the number of links and resulted in an increase in important food-web characteristics such as linkage density and connectance. 3. More than half of the parasite taxa were trophically transmitted, exploiting hosts at multiple trophic levels and thus increasing the degree of omnivory in the trophic web. 4. For trophically transmitted parasites, the number of parasite-host links exhibited a positive correlation with the linkage density of the host species, whereas no such relationship was seen for nontrophically transmitted parasites. Our findings suggest that the linkage density of free-living species affects their exposure to trophically transmitted parasites, which may be more likely to adopt highly connected species as hosts during the evolution of complex life cycles. 5. The study supports a prominent role for parasites in ecological networks and demonstrates that their incorporation may substantially alter considerations of food-web structure and functioning. ?? 2009 British Ecological Society.
Predicting wading bird and aquatic faunal responses to ecosystem restoration scenarios
Beerens, James M.; Trexler, Joel C.; Catano, Christopher P.
2017-01-01
In large-scale conservation decisions, scenario planning identifies key uncertainties of ecosystem function linked to ecological drivers affected by management, incorporates ecological feedbacks, and scales up to answer questions robust to alternative futures. Wetland restoration planning requires an understanding of how proposed changes in surface hydrology, water storage, and landscape connectivity affect aquatic animal composition, productivity, and food-web function. In the Florida Everglades, reintroduction of historical hydrologic patterns is expected to increase productivity of all trophic levels. Highly mobile indicator species such as wading birds integrate secondary productivity from aquatic prey (small fishes and crayfish) over the landscape. To evaluate how fish, crayfish, and wading birds may respond to alternative hydrologic restoration plans, we compared predicted small fish density, crayfish density and biomass, and wading bird occurrence for existing conditions to four restoration scenarios that varied water storage and removal of levees and canals (i.e. decompartmentalization). Densities of small fish and occurrence of wading birds are predicted to increase throughout most of the Everglades under all restoration options because of increased flows and connectivity. Full decompartmentalization goes furthest toward recreating hypothesized historical patterns of fish density by draining excess water ponded by levees and hydrating areas that are currently drier than in the past. In contrast, crayfish density declined and species composition shifted under all restoration options because of lengthened hydroperiods (i.e. time of inundation). Under full decompartmentalization, the distribution of increased prey available for wading birds shifted south, closer to historical locations of nesting activity in Everglades National Park.
Carbon and nutrient use efficiencies optimally balance stoichiometric imbalances
NASA Astrophysics Data System (ADS)
Manzoni, Stefano; Čapek, Petr; Lindahl, Björn; Mooshammer, Maria; Richter, Andreas; Šantrůčková, Hana
2016-04-01
Decomposer organisms face large stoichiometric imbalances because their food is generally poor in nutrients compared to the decomposer cellular composition. The presence of excess carbon (C) requires adaptations to utilize nutrients effectively while disposing of or investing excess C. As food composition changes, these adaptations lead to variable C- and nutrient-use efficiencies (defined as the ratios of C and nutrients used for growth over the amounts consumed). For organisms to be ecologically competitive, these changes in efficiencies with resource stoichiometry have to balance advantages and disadvantages in an optimal way. We hypothesize that efficiencies are varied so that community growth rate is optimized along stoichiometric gradients of their resources. Building from previous theories, we predict that maximum growth is achieved when C and nutrients are co-limiting, so that the maximum C-use efficiency is reached, and nutrient release is minimized. This optimality principle is expected to be applicable across terrestrial-aquatic borders, to various elements, and at different trophic levels. While the growth rate maximization hypothesis has been evaluated for consumers and predators, in this contribution we test it for terrestrial and aquatic decomposers degrading resources across wide stoichiometry gradients. The optimality hypothesis predicts constant efficiencies at low substrate C:N and C:P, whereas above a stoichiometric threshold, C-use efficiency declines and nitrogen- and phosphorus-use efficiencies increase up to one. Thus, high resource C:N and C:P lead to low C-use efficiency, but effective retention of nitrogen and phosphorus. Predictions are broadly consistent with efficiency trends in decomposer communities across terrestrial and aquatic ecosystems.
Lanza, Heather A; Cochran, Rebecca S; Mudge, Joseph F; Olson, Adric D; Blackwell, Brett R; Maul, Jonathan D; Salice, Christopher J; Anderson, Todd A
2017-08-01
Perfluoroalkyl substances (PFAS) have recently received increased research attention, particularly concerning aquatic organisms and in regions of exposure to aqueous film forming foams (AFFFs). Air Force bases historically applied AFFFs in the interest of fire training exercises and have since expressed concern for PFAS contamination in biota from water bodies surrounding former fire training areas. Six PFAS were monitored, including perfluorooctane sulfonate (PFOS), in aquatic species from 8 bayou locations at Barksdale Air Force Base in Bossier City, Louisiana (USA) over the course of 1 yr. The focus was to evaluate temporal and spatial variability in PFAS concentrations from historic use of AFFF. The PFOS concentrations in fish peaked in early summer, and also increased significantly downstream of former fire training areas. Benthic organisms had lower PFOS concentrations than pelagic species, contrary to previous literature observations. Bioconcentration factors varied with time but were reduced compared with previously reported literature values. The highest concentration of PFOS in whole fish was 9349 ng/g dry weight, with 15% of samples exceeding what is believed to be the maximum whole fish concentration reported to date of 1500 ng/g wet weight. Further studies are ongoing, to measure PFAS in larger fish and tissue-specific partitioning data to compare with the current whole fish values. The high concentrations presently observed could have effects on higher trophic level organisms in this system or pose a potential risk to humans consuming contaminated fish. Environ Toxicol Chem 2017;36:2022-2029. © 2016 SETAC. © 2016 SETAC.
Choi, Kyungho; Sweet, Leonard I; Meier, Peter G; Kim, Pan-Gyi
2004-02-01
The acute and chronic toxicity of four simple alkylphenols with butyl and propyl substitutions was evaluated with aquatic microbes, invertebrates, and fish. These alkylphenols-3-tert-butylphenol, 2-isopropylphenol, 3-isopropylphenol, and 4-isopropylphenol-have been detected in various environmental media, but their impact on aquatic fauna has seldom been evaluated. Relative susceptibility to each phenolic varied by test species. The marine bacterium Vibrio fischeri was the most susceptible to the alkylphenols, up to 3 orders of magnitude more sensitive than species of higher trophic levels. For 4-isopropylphenol, the 5-min Microtox EC(50) value was 0.01 mg/L, whereas the EC(50) for Ceriodaphnia after a 48-h exposure was 10.1 mg/L. Notable differences in sensitivity to the alkylphenols was also observed with the Microtox assay: 4-isopropylphenol was > 200 times more toxic to V. fischeri than was 2-isopropylphenol (EC(50) = 2.72 mg/L). For V. fischeri, the mixture toxicity of the alkylphenols was additive in nature and was predicted by a concentration addition model. The energy of the lowest unoccupied molecular orbital (ELUMO) explained the observed toxicity of the individual alkylphenols to V. fischeri (r(2) = 0.92, p < 0.05). These results suggest that the mode of action of polar narcotic alkylphenols to V. fischeri is different than that of other test organisms, possibly because of the differences in the cell structure of the prokaryotic V. fischeri. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 45-50, 2004.
NASA Astrophysics Data System (ADS)
Decima, M.; Landry, M. R.; Bradley, C. J.; Fogel, M. L.
2016-02-01
Food-web studies within marine environments are increasingly reliant upon results from compound-specific isotope analysis of amino acids (CSIA-AA). The approach is advantageous because it allows consumer trophic positions to be estimated without sampling the dynamic primary producers. The baseline signal in the source AA phenylalanine is preserved, and a constant enrichment in glutamic acid at each trophic step is assumed, regardless of consumer type or diet. However, a number of recent studies challenge the assumption of universal and invariant isotopic fractionation of glutamic acid for all trophic levels, as well as its specific applicability to the main grazers in the ocean: the protistan microzooplankton. We present results from both laboratory and field studies that further explore this issue. Experiments include six 2-stage chemostats, using two different microzooplankton-phytoplankton pairs and one copepod-phytoplankton pair, and one 3-stage experiment using a copepod-microzooplankton-phytoplankton chain. We confirm previous observations of negligible fractionation of glutamic acid in protistan consumers when nutrients are limiting. In contrast, a consistent trophic enrichment effect was observed for alanine, with increasing δ15N values by trophic level for both metazoan and protistan consumers. A re-analysis of published CSIA-AA data of zooplankton species show that an index using alanine and phenylalanine gives trophic level estimates closer to expected given current understanding of the linkages within microbial food webs. Our results examine the details of isotopic fractionation of alanine within defined food chains and generally support its potential use as a trophic level indicator that includes the protistan contribution to mesozooplankton diet.
The relationships between mercury and selenium in plankton and fish from a tropical food web.
do A Kehrig, Helena; Seixas, Tércia G; Palermo, Elisabete A; Baêta, Aida P; Castelo-Branco, Christina W; Malm, Olaf; Moreira, Isabel
2009-01-01
Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70-290 microm) and mesoplankton (>or=290 microm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 microg g(-1) dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g(-1)) than in Micropogonias furnieri (2.9 and 15.3 nmol g(-1)), Bagre spp (1.3 and 3.4 nmol g(-1)) and Mugil liza (0.3 and 5.1 nmol g(-1)), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.
Svanbäck, Richard; Quevedo, Mario; Olsson, Jens; Eklöv, Peter
2015-05-01
Among-individual diet variation is common in natural populations and may occur at any trophic level within a food web. Yet, little is known about its variation among trophic levels and how such variation could affect phenotypic divergence within populations. In this study we investigate the relationships between trophic position (the population's range and average) and among-individual diet variation. We test for diet variation among individuals and across size classes of Eurasian perch (Perca fluviatilis), a widespread predatory freshwater fish that undergoes ontogenetic niche shifts. Second, we investigate among-individual diet variation within fish and invertebrate populations in two different lake communities using stable isotopes. Third, we test potential evolutionary implications of population trophic position by assessing the relationship between the proportion of piscivorous perch (populations of higher trophic position) and the degree of phenotypic divergence between littoral and pelagic perch sub-populations. We show that among-individual diet variation is highest at intermediate trophic positions, and that this high degree of among-individual variation likely causes an increase in the range of trophic positions among individuals. We also found that phenotypic divergence was negatively related to trophic position in a population. This study thus shows that trophic position is related to and may be important for among-individual diet variation as well as to phenotypic divergence within populations.
Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio
2016-06-01
Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials.
Beta-blockers in the environment: part II. Ecotoxicity study.
Maszkowska, Joanna; Stolte, Stefan; Kumirska, Jolanta; Łukaszewicz, Paulina; Mioduszewska, Katarzyna; Puckowski, Alan; Caban, Magda; Wagil, Marta; Stepnowski, Piotr; Białk-Bielińska, Anna
2014-09-15
The increasing consumption of beta-blockers (BB) has caused their presence in the environment to become more noticeable. Even though BB are safe for human and veterinary usage, ecosystems may be exposed to these substances. In this study, three selected BB: propranolol, metoprolol and nadolol were subjected to ecotoxicity study. Ecotoxicity evaluation was based on a flexible ecotoxicological test battery including organisms, representing different trophic levels and complexity: marine bacteria (Vibrio fischeri), soil/sediment bacteria (Arthrobacter globiformis), green algae (Scenedesmus vacuolatus) and duckweed (Lemna minor). All the ecotoxicological studies were supported by instrumental analysis to measure deviation between nominal and real test concentrations. Based on toxicological data from the green algae test (S. vacuolatus) propranolol and metoprolol can be considered to be harmful to aquatic organisms. However, sorption explicitly inhibits the hazardous effects of BB, therefore the risks posed by these compounds for the environment are of minor importance. Copyright © 2014 Elsevier B.V. All rights reserved.
Salinisation of rivers: an urgent ecological issue.
Cañedo-Argüelles, Miguel; Kefford, Ben J; Piscart, Christophe; Prat, Narcís; Schäfer, Ralf B; Schulz, Claus-Jürgen
2013-02-01
Secondary salinisation of rivers and streams is a global and growing threat that might be amplified by climate change. It can have many different causes, like irrigation, mining activity or the use of salts as de-icing agents for roads. Freshwater organisms only tolerate certain ranges of water salinity. Therefore secondary salinisation has an impact at the individual, population, community and ecosystem levels, which ultimately leads to a reduction in aquatic biodiversity and compromises the goods and services that rivers and streams provide. Management of secondary salinization should be directed towards integrated catchment strategies (e.g. benefiting from the dilution capacity of the rivers) and identifying threshold salt concentrations to preserve the ecosystem integrity. Future research on the interaction of salinity with other stressors and the impact of salinization on trophic interactions and ecosystem properties is needed and the implications of this issue for human society need to be seriously considered. Copyright © 2012 Elsevier Ltd. All rights reserved.
Trophic structure of pelagic species in the northwestern Mediterranean Sea
NASA Astrophysics Data System (ADS)
Albo-Puigserver, Marta; Navarro, Joan; Coll, Marta; Layman, Craig A.; Palomera, Isabel
2016-11-01
Ecological knowledge of food web interactions within pelagic marine communities is often limited, impairing our capabilities to manage these ecologically and economically important marine fish species. Here we used stable isotope analyses to investigate trophic interactions in the pelagic ecosystem of the northwestern Mediterranean Sea during 2012 and 2013. Our results suggest that European sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, are consumers located at relatively low levels of the pelagic food web. Unexpectedly, the round sardinella, Sardinella aurita, appeared to be located at a higher trophic level than the other small pelagic fish species, although previous studies found similarity in their diets. Isotope data suggested that trophic niches of species within the genera Trachurus spp. and Scomber spp., were distinct. Atlantic bonito Sarda sarda, European hake Merluccius merluccius and European squid Loligo vulgaris, appeared to feed at higher trophic levels than other species. Despite some intraspecific seasonal variability for some species, community trophic structure appeared relatively stable through the year. These data provide an important step for developing models of food web dynamics in the northwestern Mediterranean Sea.
Trace elements in organisms of different trophic groups in the White Sea
NASA Astrophysics Data System (ADS)
Budko, D. F.; Demina, L. L.; Martynova, D. M.; Gorshkova, O. M.
2015-09-01
Concentrations of trace elements (Fe, Mn, Cu, Pb, Ni, Cr, Cd, As, Co, and Se) have been studied in different trophic groups of organisms: primary producers (seston, presented mostly by phytoplankton), primary consumers (mesozooplankton, macrozooplankton, and bivalves), secondary consumers (predatory macrozooplankton and starfish), and consumers of higher trophic levels (fish species), inhabiting the coastal zone of Kandalaksha Bay and the White Sea (Cape Kartesh). The concentrations of elements differ significantly for the size groups of Sagitta elegans (zooplankton) and blue mussel Mytilus edulis, as well as for the bone and muscle tissues of studied fish species, Atlantic cod Gadus morhua marisalbi and Atlantic wolffish Anarhichas lupus. The concentrations of all the studied elements were lower among the primary consumers and producers, but increased again at higher trophic levels, from secondary consumers to tertiary consumers ("mesozooplankton → macrozooplankton Sagitta elegans" and "mussels → starfish"). Ni and Pb tended to decline through the food chains seston→…→cod and mesozooplankton→…→stickleback. Only the concentrations of Fe increased in all the trophic chains along with the increase of the trophic level.
Pulses, linkages, and boundaries of coupled aquatic-terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Tockner, K.
2009-04-01
Riverine floodplains are linked ecosystems where terrestrial and aquatic habitats overlap, creating a zone where they interact, the aquatic-terrestrial interface. The interface or boundary between aquatic and terrestrial habitats is an area of transition, contact or separation; and connectivity between these habitats may be defined as the ease with which organisms, matter or energy traverse these boundaries. Coupling of aquatic and terrestrial systems generates intertwining food webs, and we may predict that coupled systems are more productive than separated ones. For example, riparian consumers (aquatic and terrestrial) have alternative prey items external to their respective habitats. Such subsidized assemblages occupy a significant higher trophic position than assemblages in unsubsidized areas. Further, cross-habitat linkages are often pulsed; and even small pulses of a driver (e.g. short-term increases in flow) can cause major resource pulses (i.e. emerging aquatic insects) that control the recipient community. For example, short-term additions of resources, simulating pulsed inputs of aquatic food to terrestrial systems, suggest that due to resource partitioning and temporal separation among riparian arthropod taxa the resource flux from the river to the riparian zone increases with increasing riparian consumer diversity. I will discuss the multiple transfer and transformation processes of matter and organisms across aquatic-terrestrial habitats. Key landscape elements along river corridors are vegetated islands that function as instream riparian areas. Results from Central European rivers demonstrate that islands are in general more natural than fringing riparian areas, contribute substantially to total ecotone length, and create diverse habitats in the aquatic and terrestrial realm. In braided rivers, vegetated islands are highly productive landscape elements compared to the adjacent aquatic area. However, aquatic habitats exhibit a much higher decomposition capacity for coarse particulate organic matter. Therefore, linking habitats that differ in their capacity to produce, store, and transform organic matter and nutrients may increase the overall functional performance of the entire ecosystem. Finally, the relative extent and the spatiotemporal dynamics of dry and wet areas within a catchment may control greatly the capacity of the river network to efficiently retain nutrients and organic matter. All these findings provide new opportunities for the future management of riparian corridors.
Aborgiba, Mustafa; Kostić, Jovana; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Elbahi, Samia; Knežević-Vukčević, Jelena; Lenhardt, Mirjana; Paunović, Momir; Gačić, Zoran; Vuković-Gačić, Branka
2016-01-01
Extreme hydrological events, such as water scarcity and flooding, can modify the effect of other stressors present in aquatic environment, which could result in the significant changes in the ecosystem functioning. Presence and interaction of various stressors (genotoxic pollutants) in the environment can influence the integrity of DNA molecules in aquatic organisms which can be negatively reflected on the individual, population and community levels. Therefore, in this study we have investigated the impact of flooding, in terms of genotoxicity, on organisms belonging to different trophic levels. The study was carried out on the site situated in the lower stretch of the Sava River which faced devastating effects of severe flooding in May 2014. The flooding occurred during our field experiment and this event provided a unique opportunity to assess its influence to the environment. The in situ effects of this specific situation were monitored by measuring physical, chemical and microbiological parameters of water, and by comparing the level of DNA damage in coelomocytes and haemocytes of freshwater worms Branchiura sowerbyi, haemocytes of freshwater mussels Unio tumidus and blood cells of freshwater fish Abramis bjoerkna/Abramis sapa, by means of the comet assay. Our study indicated that the flooding had a significant impact on water quality by decreasing the amount and discharge rate of urban wastewaters but simultaneously introducing contaminants from the nearby fly ash disposal field into river by runoff, which had diverse effects on the level of DNA damage in the studied organisms. This indicates that the assessment of genotoxic pollution in situ is strongly affected by the choice of the bioindicator organism. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of climate change and trophic coupling across four trophic levels in the Celtic Sea.
Lauria, Valentina; Attrill, Martin J; Pinnegar, John K; Brown, Andrew; Edwards, Martin; Votier, Stephen C
2012-01-01
Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect 'bottom-up' climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986-2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66 ± 0.02 °C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST (0-group: p = 0.02, slope = -0.305 ± 0.125; 1-group: p = 0.04, slope = -0.410 ± 0.193). Seabird demographics showed complex species-specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314 ± 0.014) as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = -0.144 ± 0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales.
Wendt-Rasch, L; Van den Brink, P J; Crum, S J H; Woin, P
2004-03-01
The effects of a pesticide mixture (asulam, fluazinam, lambda-cyhalothrin, and metamitron) on aquatic ecosystems were investigated in 20 outdoor aquatic microcosms. Ten of the microcosms simulated mesotrophic aquatic ecosystems dominated by submerged macrophytes (Elodea). The others simulated eutrophic ecosystems with a high Lemna surface coverage (Lemna). This paper describes the fate of the chemicals as well as their effects on the growth of Myriophyllum spicatum and the periphytic algal community. In the Elodea-dominated microcosms significant increase in the biomass and alterations of species composition of the periphytic algae were observed, but no effect on M. spicatum growth could be recorded in response to the treatment. The opposite was found in the Lemna-dominated microcosms, in which decreased growth of M. spicatum was observed but no alterations could be found in the periphytic community. In the Elodea-dominated microcosms the species composition of the periphytic algae diverged from that of the control following treatment with 0.5% spray drift emission of the label-recommended rate (5% for lambda-cyhalothrin), while reduced growth of M. spicatum in the Lemna-dominated microcosms was recorded at 2% drift (20% for lambda-cyhalothrin). This study shows that the structure of the ecosystem influences the final effect of pesticide exposure.
NASA Astrophysics Data System (ADS)
Stief, P.
2013-12-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
NASA Astrophysics Data System (ADS)
Stief, P.
2013-07-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments often is enhanced even more than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies revealed that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
Food Web Structure Shapes the Morphology of Teleost Fish Brains.
Edmunds, Nicholas B; McCann, Kevin S; Laberge, Frédéric
2016-01-01
Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology. © 2016 S. Karger AG, Basel.
Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming
Quist, M.C.; Bower, M.R.; Hubert, W.A.
2006-01-01
Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.
NASA Astrophysics Data System (ADS)
Hobson, Keith A.; Fisk, Aaron; Karnovsky, Nina; Holst, Meike; Gagnon, Jean-Marc; Fortier, Martin
The North Water Polynya is an area of high biological activity that supports large numbers of higher trophic-level organisms such as seabirds and marine mammals. An overall objective of the Upper Trophic-Level Group of the International North Water Polynya Study (NOW) was to evaluate carbon and contaminant flux through these high trophic-level (TL) consumers. Crucial to an evaluation of the role of such consumers, however, was the establishment of primary trophic linkages within the North Water food web. We used δ15N values of food web components from particulate organic matter (POM) through polar bears ( Ursus maritimus) to create a trophic-level model based on the assumptions that Calanus hyperboreus occupies TL 2.0 and there is a 2.4‰ trophic enrichment in 15N between birds and their diets, and a 3.8‰ trophic enrichment for all other components. This model placed the planktivorous dovekie ( Alle alle) at TL 3.3, ringed seal ( Phoca hispida) at TL 4.5, and polar bear at TL 5.5. The copepods C. hyperboreus, Chiridius glacialis and Euchaeta glacialis formed a trophic continuum (TL 2.0-3.0) from primary herbivore through omnivore to primary carnivore. Invertebrates were generally sorted according to planktonic, benthic and epibenthic feeding groups. Seabirds formed three trophic groups, with dovekie occupying the lowest, black-legged kittiwake ( Rissa tridactyla), northern fulmar ( Fulmarus glacialis), thick-billed murre ( Uria aalge), and ivory gull ( Pagophilia eburnea) intermediate (TL 3.9-4.0), and glaucous gull ( Larus hyperboreus) the highest (TL 4.6) trophic positions. Among marine mammals, walrus ( Odobenus rosmarus) occupied the lowest (TL 3.2) and bearded seal ( Erignathus barbatus), ringed seal, beluga whale ( Delphinapterus leucas), and narwhal ( Monodon monoceros) intermediate positions (TL 4.1-4.6). In addition to arctic cod ( Boreogadus saida), we suggest that lower trophic-level prey, in particular the amphipod Themisto libellula, contribute fundamentally in transferring energy and carbon flux to higher trophic-level seabirds and marine mammals. We measured PCB 153 among selected organisms to investigate the behavior of bioaccumulating contaminants within the food web. Our isotopic model confirmed the trophic magnification of PCB 153 in this high-Arctic food web due to a strong correlation between contaminant concentration and organism δ15N values, demonstrating the utility of combining isotopic and contaminant approaches to food-web studies. Stable-carbon isotope analysis confirmed an enrichment in 13C between POM and ice algae (-22.3 vs. -17.7‰). Benthic organisms were generally enriched in 13C compared to pelagic species. We discuss individual species isotopic data and the general utility of our stable isotope model for defining carbon flux and contaminant flow through the North Water food web.
Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems?
Cardwell, Rick D; Deforest, David K; Brix, Kevin V; Adams, William J
2013-01-01
In this review, we sought to assess from a study of the literature whether five in organic metals (viz., cadmium, copper, lead, nickel, and zinc) bio magnify in aquatic food webs. We also examined whether accumulated metals were toxic to consumers/predators and whether the essential metals (Cu and Zn and possibly Ni) behaved differently from non-essential ones (Cd and Pb). Biomagnification potential was indexed by the magnitude of single and multiple trophic transfers in food chains. In this analysis, we used three lines of evidence-laboratory empirical, biokinetic modeling, and field studies-to make assessments. Trophic transfer factors, calculatedfrom lab studies, field studies, and biokinetic modeling, were generally congruent.Results indicated that Cd, Cu, Pb, and Zn generally do not biomagnify in food chains consisting of primary producers, macro invertebrate consumers, and fish occupying TL 3 and higher. However, bio magnification of Zn (TTFs of 1-2) is possible for circumstances in which dietary Zn concentrations are below those required for metabolism. Cd, Cu, Ni, and Zn may biomagnify in specific marine food chains consisting of bivalves, herbivorous gastropods, and barnacles at TL2 and carnivorous gastropods at TL3. There was an inverse relationship between TTF and exposure concentration for Cd, Cu, Pb, and Zn, a finding that is consistent with previous reviews of bioconcentration factors and bioaccumulation factors for metals. Our analysis also failed to demonstrate a relationship between the magnitude of TTFsand dietary toxicity to consumer organisms. Consequently, we conclude that TTFs for the metals examined are not an inherently useful predictor of potential hazard(i.e., toxic potential) to aquatic organisms. This review identified several uncertainties or data gaps, such as the relatively limited data available for nickel, reliance upon highly structured food chains in laboratory studies compared to the unstructured food webs found in nature, and variability in TTFs between the organisms found in different habitats, and years sampled.
The Role of Highly Unsaturated Fatty Acids in Aquatic Food Webs
NASA Astrophysics Data System (ADS)
Perhar, G.; Arhonditsis, G. B.
2009-05-01
Highly unsaturated fatty acids (HUFAs) are important molecules transferred across the plant-animal interface in aquatic food webs. Defined here as carbon chains of length 18 (carbons) or more, with a double bond in the third (Omega 3) or sixth (Omega 6) bond from the methyl end, HUFAs are formed in primary producers (phytoplankton). With limited abilities to synthesize de novo, consumers and higher trophic organisms are required to obtain their HUFAs primarily from diet. Bioconversion of HUFAs from one form to another is in theory possible, as is synthesis via elongation and the transformation of a saturated to highly saturated fatty acid, but the enzymes required for these processes are absent in most species. HUFAs are hypothesized to be somatic growth limiting compounds for herbivorous zooplankton and have been shown to be critical for juvenile fish growth and wellbeing. Zooplankton tend to vary their fatty acid concentrations, collection strategies and utilization methods based on taxonomy, and various mechanisms have been suggested to account for these differences i.e., seasonal and nervous system hypotheses. Considering also the facts that copepods overwinter in an active state while daphnids overwinter as resting eggs, and that copepods tend to accumulate Docosahexaenoic acid (DHA) through collection and bioconversion, while daphnids focus on Eicosapentaenoic acid (EPA), one can link high DHA concentrations to active overwintering; but both EPA and DHA have similar melting points, putting DHA's cold weather adaptation abilities into question. Another characteristic setting copepods apart from daphnids is nervous system complexity: copepod axons are coated in thick myelin sheaths, permitting rapid neural processing, such as rapid prey attack and intelligent predator avoidance; DHA may be required for the proper functioning of copepod neurons. Recent modeling results have suggested food webs with high quality primary producers (species high in HUFAs, i.e. diatoms), at their base can attain inverted biomass distributions with efficient energy transfer between trophic levels, making HUFA pathways in aquatic food webs of special interest to fisheries and environmental managers. Built on our previous work, which implicitly considered HUFAs through a proxy (generic food quality term, which also indexes ingestibility, digestibility and toxicity), our aim is to elucidate the underlying mechanisms controlling HUFA transport through the lower aquatic food web, with an emphasis on the hypothesized somatic growth limiting potential. A biochemical submodel coupled to a plankton model has been formulated and calibrated, accounting explicitly for the omega 3 and omega 6 families of fatty acids; specifically, Alpha Linoleic acid (ALA, a precursor to EPA), EPA and DHA. Further insights into the role of HUFAs on food web dynamics and the subsequent implications on ecosystem functioning are gained through bifurcation analysis of the model. Our research aims to elucidate the existing gaps in the literature pertaining to the role and impact of HUFAs on plankton dynamics, which have traditionally been thought to be driven by stoichiometric ratios and limiting nutrients. In this study, we challenge the notion of nutrients being the primary driving factor of aquatic ecosystem patterns by introducing a modeling framework that accounts for the interplay between nutrients and HUFAs.
Casey, Jordan M; Baird, Andrew H; Brandl, Simon J; Hoogenboom, Mia O; Rizzari, Justin R; Frisch, Ashley J; Mirbach, Christopher E; Connolly, Sean R
2017-01-01
Removal of predators is often hypothesized to alter community structure through trophic cascades. However, despite recent advances in our understanding of trophic cascades, evidence is often circumstantial on coral reefs because fishing pressure frequently co-varies with other anthropogenic effects, such as fishing for herbivorous fishes and changes in water quality due to pollution. Australia's outer Great Barrier Reef (GBR) has experienced fishing-induced declines of apex predators and mesopredators, but pollution and targeting of herbivorous fishes are minimal. Here, we quantify fish and benthic assemblages across a fishing-induced predator density gradient on the outer GBR, including apex predators and mesopredators to herbivores and benthic assemblages, to test for evidence of trophic cascades and alternative hypotheses to trophic cascade theory. Using structural equation models, we found no cascading effects from apex predators to lower trophic levels: a loss of apex predators did not lead to higher levels of mesopredators, and this did not suppress mobile herbivores and drive algal proliferation. Likewise, we found no effects of mesopredators on lower trophic levels: a decline of mesopredators was not associated with higher abundances of algae-farming damselfishes and algae-dominated reefs. These findings indicate that top-down forces on coral reefs are weak, at least on the outer GBR. We conclude that predator-mediated trophic cascades are probably the exception rather than the rule in complex ecosystems such as the outer GBR.
NASA Astrophysics Data System (ADS)
Materatski, Patrick; Vafeiadou, Anna-Maria; Ribeiro, Rui; Moens, Tom; Adão, Helena
2015-12-01
Benthic nematodes are widely regarded as very suitable organisms to monitor potential ecological effects of natural and anthropogenic disturbances in aquatic ecosystems. During 2008, the seagrass beds of Zostera noltii located in the Mira estuary (SW Portugal) disappeared completely. However, during 2009, slight symptoms of natural recovery were observed, a process which has since evolved intermittently. This study aims to investigate changes in patterns of nematode density, diversity, and trophic composition between two distinct habitat conditions: "before" the collapse of seagrass beds, and during the early recovery "after" the seagrass habitat loss, through the analysis of: i) temporal and spatial distribution patterns of nematode communities, and ii) the most important environmental variables influencing the nematode assemblages. The following hypotheses were tested: i) there would be differences in nematode assemblage density, biodiversity and trophic composition during both ecological conditions, "before" and "after"; and ii) there would be differences in nematode assemblage density, biodiversity and trophic composition at different sampling occasions during both ecological conditions. Nematode density and diversity were significantly different between the two ecological situations. A higher density was recorded before, but a higher diversity was evident after the collapse of Z. noltii. In spite of the disturbance caused by the seagrass habitat loss in the Mira estuary, the nematode trophic composition did not significantly differ between the before and after seagrass collapse situations. Despite the significant differences found among sampling occasions, a consistent temporal pattern was not evident. The response of nematode communities following this extreme event exhibited considerable resistance and resilience to the new environmental conditions.
Rickwood, Carrie J; Dubé, Monique G; Weber, Lynn P; Lux, Sarah; Janz, David M
2008-01-31
The Junction Creek watershed, located in Sudbury, ON, Canada receives effluent from three metal mine wastewater treatment plants, as well as a municipal wastewater (MWW) discharge. Effects on fish have been documented within the creek (decreased egg size and increased metal body burdens). It has been difficult to identify the cause of the effects observed due to the confounded nature of the creek. The objectives of this investigation were to assess the: (1) effects of a mine effluent and municipal wastewater (CCMWW) mixture on fathead minnow (FHM; Pimephales promelas) reproduction in an on-site artificial stream and (2) importance of food (Chironomus tentans) as a source of exposure using a trophic-transfer system. Exposures to CCMWW through the water significantly decreased egg production and spawning events. Exposure through food and water using the trophic-transfer system significantly increased egg production and spawning events. Embryos produced in the trophic-transfer system showed similar hatching success but increased incidence and severity of deformities after CCMWW exposure. We concluded that effects of CCMWW on FHM were more apparent when exposed through the water. Exposure through food and water may have reduced effluent toxicity, possibly due to increased nutrients and organic matter, which may have reduced metal bioavailability. More detailed examination of metal concentrations in the sediment, water column, prey (C. tentans) and FHM tissues is recommended to better understand the toxicokinetics of potential causative compounds within the different aquatic compartments when conducting exposures through different pathways.
Bathymetric limits of chondrichthyans in the deep sea: A re-evaluation
NASA Astrophysics Data System (ADS)
Musick, J. A.; Cotton, C. F.
2015-05-01
Chondrichthyans are largely absent in abyssal (>3000 m) habitats in most regions of the world ocean and are uncommon below 2000 m. The deeper-living chondrichthyans include certain rajids, squaliforms and holocephalans. Several hypotheses have been erected to explain the absence of chondrichthyans from the abyss. These are mostly based on energetics: deep-sea food webs are impoverished due to their distance from primary production, and chondrichthyans, occupying the highest trophic levels, cannot be supported due to entropy among trophic levels. We examined this hypothesis by comparing trophic levels, calculated from dietary data, of deep-sea chondrichthyans with those of deep-sea teleosts. Chondrichthyans were mostly above trophic level 4, whereas all the teleosts examined were below that level. Both small and medium squaloids, as well as sharks and skates of large size, feed on fishes, cephalopods and scavenged prey, and thus occupy the highest trophic levels in bathydemersal fish communities. In addition, whereas teleosts and chondrichthyans both store lipids in their livers to support long periods of fasting, chondrichthyans must devote much of their liver lipids to maintain neutral buoyancy. Consequently teleosts with swim bladders are better adapted to survive in the abyss where food sources are sparse and unpredictable. The potential prey field for both chondrichthyans and teleosts declines in biomass and diversity with depth, but teleosts have more flexibility in their feeding mechanisms and food habits, and occupy abyssal trophic guilds for which chondrichthyans are ill adapted.
Wang, Shaofeng; Li, Biao; Zhang, Mingmei; Xing, Denghua; Jia, Yonfeng; Wei, Chaoyang
2011-08-01
Due to the fast development of industry and the overuse of agrichemicals in past decades, Lake Taihu, an important source of aquatic products for Eastern China, has simultaneously suffered mercury (Hg) contamination and eutrophication. The objectives of this study are to understand Hg transfer in the food web in this eutrophic, shallow lake and to evaluate the exposure risk of Hg through fish consumption. Biota samples including macrophytes, sestons, benthic animals, and fish were collected from Lake Taihu in the fall of 2009. The total mercury (THg), methyl mercury (MeHg), δ(13)C and δ(15)N in the samples were measured. The signature for δ(15)N increased with the trophic levels. Along with a diet composed of fish, the significant relationship between the δ(13)C and δ(15)N indicated that a pelagic foraging habitat is the dominant pathway for energy transfer in Lake Taihu. The concentrations of THg and MeHg in the organisms varied dramatically by ∼3 orders of magnitude from primary producers (macrophytes and sestons) to piscivorous fish. The highest concentrations of both THg (100 ng g(-1)) and MeHg (66 ng g(-1)), however, were lower than the guideline of 200 ng g(-1) of MeHg for vulnerable populations that is recommended by the World Health Organization (WHO). The daily intake of THg and MeHg of 92 and 56 ng day(-1) kg(-1) body weight, respectively, was generally lower than the tolerable intake of 230 ng day(-1) kg(-1) body weight for children recommended by the Joint FAO/WHO Expert Committee on Food Additives. Significant relationships between the δ(15)N and the logarithm of THg and MeHg showed an obvious biomagnification of Hg along the food web. The logarithmic bioaccumulation factor of MeHg in the fish (up to 5.7) from Lake Taihu, however, was relatively low compared to that of other aquatic ecosystems. Health risk of exposure to Hg by consumption of fish for local residents is relatively low in the Lake Taihu area. Dilution of Hg levels in the phytoplankton induced by eutrophication is a possible factor inhibiting accumulation of MeHg in fish in eutrophic Lake Taihu.
NASA Astrophysics Data System (ADS)
Winkler, G.; Cabrol, J.; Sage, R.; Nozais, C.; Tremblay, R.; Starr, M.
2016-02-01
The lower St. Lawrence estuary (LSLE) is influenced by river discharge and saltwater inflow. Together with arctic water inflow and ice cover in winter a strong stratification occurs resulting in a cold intermediate layer (CIL) from spring to autumn. This stratification provides thermal habitats. Here, we focus on two krill species Thysanoessa raschii and Meganyctiphanes norvegica that aggregate in the CIL and the warmer deep water layer, respectively. Both species are known to migrate into the surface layer to feed and thus transfering energy through the food web by linking lower with higher trophic levels. However, their specific feeding biology and trophic interactions are poorly understood. We tested the following hypotheses: (1) the diets vary throughout the season depending on food availability, (2) similar to thermal habitat separation, trophic niche separation between T. raschii and M. norvegica occurs, characterized by herbivory in T. raschii and carnivory in M. norvegica. Trophic position and feeding behavior of theses krill populations were monitored throughout one year 2014-2015 using a stable isotope approach. The two species showed a seasonal shift in their trophic position being on a higher trophic level in summer than in spring and autumn, which did not correspond to phytoplankton or zooplankton availability. Within the trophic space of carbon and nitrogen stable isotopes M. norvegica showed a relatively stable position, whereas T. raschii covered a much larger space throughout the year. M. norvegica was always positioned at a higher trophic level than T. raschii. Results of a stable isotope mixing model (SIAR) revealed 50% phytoplankton and 50% copepods in the diet of M. norvegica, while T. raschii showed a higher proportion of ca. 70% phytoplankton in its diet. Both species exploited several trophic levels, but in different proportions, thereby minimizing diet overlap, suggesting a further mechanism to enhance stable co-existence of these krill species in the highly stratified LSLE.
Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments
Peng, Cheng; Zhang, Wen; Gao, Haiping; Li, Yang; Tong, Xin; Li, Kungang; Zhu, Xiaoshan; Wang, Yixiang; Chen, Yongsheng
2017-01-01
The specific properties of metal-based nanoparticles (NPs) have not only led to rapidly increasing applications in various industrial and commercial products, but also caused environmental concerns due to the inevitable release of NPs and their unpredictable biological/ecological impacts. This review discusses the environmental behavior of metal-based NPs with an in-depth analysis of the mechanisms and kinetics. The focus is on knowledge gaps in the interaction of NPs with aquatic organisms, which can influence the fate, transport and toxicity of NPs in the aquatic environment. Aggregation transforms NPs into micrometer-sized clusters in the aqueous environment, whereas dissolution also alters the size distribution and surface reactivity of metal-based NPs. A unique toxicity mechanism of metal-based NPs is related to the generation of reactive oxygen species (ROS) and the subsequent ROS-induced oxidative stress. Furthermore, aggregation, dissolution and ROS generation could influence each other and also be influenced by many factors, including the sizes, shapes and surface charge of NPs, as well as the pH, ionic strength, natural organic matter and experimental conditions. Bioaccumulation of NPs in single organism species, such as aquatic plants, zooplankton, fish and benthos, is summarized and compared. Moreover, the trophic transfer and/or biomagnification of metal-based NPs in an aquatic ecosystem are discussed. In addition, genetic effects could result from direct or indirect interactions between DNA and NPs. Finally, several challenges facing us are put forward in the review. PMID:28336855
Aquatic ecotoxicity of ashes from Brazilian savanna wildfires.
Brito, Darlan Q; Passos, Carlos José S; Muniz, Daphne H F; Oliveira-Filho, Eduardo C
2017-08-01
In a global scenario of climate change, several studies have predicted an increase in fires in different parts of the world. With the occurrence of rains following the fires in the Brazilian savanna (Cerrado biome), the compounds present in ashes may enter aquatic environments and cause adverse effects to these ecosystems. In this context, this study evaluated the potential toxicity of ashes from two areas of Cerrado and an area of pasture, through ecotoxicological bioassays and using three aquatic species from distinct trophic levels, which were exposed to different dilutions of ashes: the microcrustacean Ceriodaphnia dubia, the fish Danio rerio and the mollusc Biomphalaria glabrata. The ashes from the three sampled areas showed higher concentrations of some elements in relation to the soil samples (B, Ca, K, Mg, Mn, P, S, Si, Sr, Zn), but only a small quantity of these compounds was solubilised. Our data showed that all ash samples caused acute toxicity to C. dubia (48hs-LC 50 = 13.4 g L -1 ; 48hs-LC 50 = 6.33 g L -1 ; 48hs-LC 50 = 9.73 g L -1 respectively for transition area, pasture, typical cerrado areas), while in relation to D. rerio and B. glabrata, no acute toxicity was observed when they were exposed to ashes from native Cerrado vegetation and pasture areas. Ashes from a transition area showed toxicity for D. rerio (48hs-LC 50 = 25.0 g L -1 ); possibly, this was due to the combination of multiple preponderant inorganic elements of ashes with other organic compounds not analysed, such as polycyclic aromatic hydrocarbons (PAHs). In summary, these results suggest that wildfires may pose risks to zooplankton communities and emphasize the need for more studies to better understand the complexity of the ecological effects of fire on aquatic ecosystems.
Miles, Jesse C.; Hua, Jessica; Sepulveda, Maria S.; Krupke, Christian H.
2017-01-01
The widespread usage of neonicotinoid insecticides has sparked concern over their effects on non-target organisms. While research has largely focused on terrestrial systems, the low soil binding and high water solubility of neonicotinoids, paired with their extensive use on the landscape, puts aquatic environments at high risk for contamination via runoff events. We assessed the potential threat of these compounds to wetland communities using a combination of field surveys and experimental exposures including concentrations that are representative of what invertebrates experience in the field. In laboratory toxicity experiments, LC50 values ranged from 0.002 ppm to 1.2 ppm for aquatic invertebrates exposed to clothianidin. However, freshwater snails and amphibian larvae showed high tolerance to the chemical with no mortality observed at the highest dissolvable concentration of the insecticide. We also observed behavioral effects of clothianidin. Water bugs, Belostoma flumineum, displayed a dose-dependent reduction in feeding rate following exposure to clothianidin. Similarly, crayfish, Orconectes propinquus, exhibited reduced responsiveness to stimulus with increasing clothianidin concentration. Using a semi-natural mesocosm experiment, we manipulated clothianidin concentration (0.6, 5, and 352 ppb) and the presence of predatory invertebrates to explore community-level effects. We observed high invertebrate predator mortality with increases in clothianidin concentration. With increased predator mortality, prey survival increased by 50% at the highest clothianidin concentration. Thus, clothianidin contamination can result in a top-down trophic cascade in a community dominated by invertebrate predators. In our Indiana field study, we detected clothianidin (max = 176 ppb), imidacloprid (max = 141 ppb), and acetamiprid (max = 7 ppb) in soil samples. In water samples, we detected clothianidin (max = 0.67 ppb), imidacloprid (max = 0.18 ppb), and thiamethoxam (max = 2,568 ppb). Neonicotinoids were detected in >56% of soil samples and >90% of the water samples, which reflects a growing understanding that neonicotinoids are ubiquitous environmental contaminants. Collectively, our results underscore the need for additional research into the effects of neonicotinoids on aquatic communities and ecosystems. PMID:28334022
Su, Guanyong; Saunders, David; Yu, Yijun; Yu, Hongxia; Zhang, Xiaowei; Liu, Hongling; Giesy, John P
2014-11-01
Since the phase-out of PBDEs, reports regarding occurrences of these compounds in the environment have become less frequent. To characterize potential influences of the phase-out of PBDEs' on concentrations in the environment, trends in concentrations as a function of time were investigated for two additive brominated flame retardants, PBDEs and HBCDs. Three aquatic species, including shrimp, common carp, and yellow catfish, were collected from Meiliang Bay of Tai Lake, 2009-2012. The analysis of PBDEs in three aquatic organisms has shown a downward-trend in the first three years but a significant upward-trend in the final year. Concentrations of HBCDs have not shown temporal increases in the investigated environments. Concentrations of both PBDEs and HBCDs in the three studied organisms increased as a function of trophic level, which suggested that these additive flame retardants can be biomagnified through the food web of Tai Lake. In accordance with previous publications, PBDE-47 contributed the greatest proportion of ∑PBDEs and had a detection frequency of 100%. α-HBCD was the predominate isomer that contributed to ∑HBCDs. Both β-HBCD and γ-HBCD were likely detected at lesser concentrations than the α-isomer due to differences in bioavailability. Concentrations of ∑PBDEs in the three aquatic organisms from Tai Lake ranged from 1.13 to 97.59 ng g(-1) lipid. These concentrations were generally less than those in biota from other countries, but equal to those found at other locations in China. Specimens from the Yangtze River had greater concentrations of ∑HBCDs (169.6-316.5 ng g(-1) lipid) than those collected at Tai Lake, which were comparatively greater than many reported concentrations in freshwater organisms from other countries. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of two commonly used fungicides on the amphipod Austrochiltonia subtenuis.
Vu, Hung T; Keough, Michael J; Long, Sara M; Pettigrove, Vincent J
2017-03-01
Fungicides are used widely in agriculture and have been detected in adjacent rivers and wetlands. However, relatively little is known about the potential effects of fungicides on aquatic organisms. The present study investigated the effects of 2 commonly used fungicides, the boscalid fungicide Filan ® and the myclobutanil fungicide Systhane ™ 400 WP, on life history traits (survival, growth, and reproduction) and energy reserves (lipid, protein, and glycogen content) of the amphipod Austrochiltonia subtenuis under laboratory conditions, at concentrations detected in aquatic environments. Amphipods were exposed to 3 concentrations of Filan (1 μg active ingredient [a.i.]/L, 10 μg a.i./L, and 40 μg a.i./L) and Systhane (0.3 μg a.i./L, 3 μg a.i./L, and 30 μg a.i./L) over 56 d. Both fungicides had similar effects on the amphipod at the organism level. Reproduction was the most sensitive endpoint, with offspring produced in controls but none produced in any of the fungicide treatments, and total numbers of gravid females in all fungicide treatments were reduced by up to 95%. Female amphipods were more sensitive than males in terms of growth. Systhane had significant effects on survival at all concentrations, whereas significant effects of Filan on survival were observed only at 10 μg a.i./L and 40 μg a.i./L. The effects of fungicides on energy reserves of the female amphipod were different. Filan significantly reduced amphipod protein content, whereas Systhane significantly reduced the lipid content. The present study demonstrates wide-ranging effects of 2 common fungicides on an ecologically important species that has a key role in trophic transfer and nutrient recycling in aquatic environments. These results emphasize the importance of considering the long-term effects of fungicides in the risk assessment of aquatic ecosystems. Environ Toxicol Chem 2017;36:720-726. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Mancinelli, Giorgio; Teresa Guerra, Maria; Alujević, Karla; Raho, Davide; Zotti, Maurizio; Vizzini, Salvatrice
2017-11-01
The Atlantic blue crab Callinectes sapidus is recognized as an Invasive Alien Species in the Mediterranean Sea. However, its trophic role and feeding flexibility in invaded benthic food webs have been addressed only recently. Here, field samplings were conducted in winter and summer in five coastal systems of the Apulia region (SE Italy), three located on the Ionian Sea (Mar Piccolo, Torre Colimena, and Spunderati) and two on the Adriatic Sea (Acquatina and Alimini Grande). Captured blue crabs were weighed and had their δ13C and δ15N isotopic signatures measured; their trophic level (TL) was estimated using the mussel Mytilus galloprovincialis as isotopic baseline. C. sapidus abundances varied greatly across systems and seasons, and in Adriatic systems the species was not collected in winter. Trophic levels showed significant spatial and temporal variations, although with no general pattern. In winter, the Mar Piccolo population showed the highest TL values; the lowest estimates were in Torre Colimena and Spunderati, where crabs showed δ13C signatures significantly higher than mussels, suggesting the contribution of 13C-enriched plant material in the diet. In summer, with the exception of the Mar Piccolo, Ionian populations increased their trophic level; both Adriatic populations were characterized by the lowest TL estimates. The analysis performed at the individual scale further indicated body weight-related changes in trophic level. For the Torre Colimena population, in particular, a hump-shaped pattern was observed in both seasons. The present study highlighted a considerable spatial and temporal trophic flexibility of C. sapidus at the population scale, while at the individual scale size-related shifts in trophic level were observed. The ability of the blue crab to vary its energy sources in relation with season, local environmental conditions, and ontogenetic stage is emphasized, suggesting that it may represent a key determinant of its invasion success.
Ontogenetic, spatial and temporal variation in trophic level and diet of Chukchi Sea fishes
NASA Astrophysics Data System (ADS)
Marsh, Jennifer M.; Mueter, Franz J.; Iken, Katrin; Danielson, Seth
2017-01-01
Climate warming and increasing development are expected to alter the ecosystem of the Chukchi Sea, including its fish communities. As a component of the Arctic Ecosystem Integrated Survey, we assessed the ontogenetic, spatial and temporal variability of the trophic level and diet of key fish species in the Chukchi Sea using N and C stable isotopes. During August and September of 2012 and 2013, 16 common fish species and two primary, invertebrate consumers were collected from surface, midwater and bottom trawls within the eastern Chukchi Sea. Linear mixed-effects models were used to detect possible variation in the relationship between body length and either δ13C or δ15N values among water masses and years for 13 fish species with an emphasis on Arctic cod (Boreogadus saida). We also examined the fish community isotopic niche space, trophic redundancy, and trophic separation within each water mass as measures of resiliency of the fish food web. Ontogenetic shifts in trophic level and diet were observed for most species and these changes tended to vary by water mass. As they increased in length, most fish species relied more on benthic prey with the exception of three forage fish species (walleye pollock, Gadus chalcogrammus, capelin, Mallotus villosus, and Pacific sandlance, Ammodytes hexapterus). Species that exhibited interannual differences in diet and trophic level were feeding at lower trophic levels and consumed a more pelagic diet in 2012 when zooplankton densities were higher. Fish communities occupied different isotopic niche spaces depending on water mass association. In more northerly Arctic waters, the fish community occupied the smallest isotopic niche space and relied heavily on a limited range of intermediate δ13C prey, whereas in warmer, nutrient-rich Bering Chukchi Summer Water, pelagic prey was important. In the warmest, Pacific-derived coastal water, fish consumed both benthic and pelagic prey. Examining how spatial gradients in trophic position are linked to environmental drivers can provide insight into potential fish community shifts with a changing climate.
2014-03-01
not provide effective control. Most tropical fi sh commercially available to hobbyists have recommended temperature requirements > 20 oC (e.g...at 10-12 oC (RR-C). This suggests lower lethal temperatures of 12-14 oC, but laboratory studies by the Florida Fish and Wildlife Conservation...55(5): 58-60. Flecker, A.S. 1992. Fish trophic guilds and the structure of a tropical stream: Weak vs. strong indirect effects . Ecology 73
[Research progress on food sources and food web structure of wetlands based on stable isotopes].
Chen, Zhan Yan; Wu, Hai Tao; Wang, Yun Biao; Lyu, Xian Guo
2017-07-18
The trophic dynamics of wetland organisms is the basis of assessing wetland structure and function. Stable isotopes of carbon and nitrogen have been widely applied to identify trophic relationships in food source, food composition and food web transport in wetland ecosystem studies. This paper provided an overall review about the current methodology of isotope mixing model and trophic level in wetland ecosystems, and discussed the standards of trophic fractionation and baseline. Moreover, we characterized the typical food sources and isotopic compositions of wetland ecosystems, summarized the food sources in different trophic levels of herbivores, omnivores and carnivores based on stable isotopic analyses. We also discussed the limitations of stable isotopes in tra-cing food sources and in constructing food webs. Based on the current results, development trends and upcoming requirements, future studies should focus on sample treatment, conservation and trophic enrichment measurement in the wetland food web, as well as on combing a variety of methodologies including traditional stomach stuffing, molecular markers, and multiple isotopes.
García-Comas, Carmen; Sastri, Akash R.; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-hao
2016-01-01
Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298
Limnological characteristics and trophic state of a newly created site: the Pareja Limno-reservoir
NASA Astrophysics Data System (ADS)
Molina-Navarro, E.; Martínez-Pérez, S.; Sastre-Merlín, A.
2012-04-01
The creation of dams in the riverine zone of large reservoirs is an innovative action whose primary goal is to generate water bodies that ensure a stable level of water there. We have termed these bodies of water "limno-reservoirs" because their water level becomes constant and independent of the fluctuations occurring in the main reservoir. In addition, limno-reservoirs represent environmental initiatives with corrective and/or compensatory effects. Pareja Limno-reservoir, located near the left side of Entrepeñas Reservoir (Guadalajara province, central Spain), is one of the first initiatives of this type in Spain. We are investigating the hydrology, limnology, microbiology, siltation risk and other aspects of this site. This research has a special interest since the building of limno-reservoirs is rising in Spain. To acquire knowledge about their behavior may be helpful for further constructions. In fact, every new reservoir building project usually includes a limno-reservoir. Moreover, there are many initiatives related with the construction of this kind of hydraulic infrastructures in the reservoirs under exploitation. This work focuses on the limnological study of the Pareja Limno-reservoir. To conduct this research, twelve seasonal sample collections at two sampling points (the dam and inflow zones) have been made in Pareja Limno-reservoir, from spring 2008 to winter 2011. The primary goal of this study is to describe the limnological characteristics of the limno-reservoir. Special interest is placed in the study of the trophic state through different indicators (nutrients, transparency, phytoplankton and zooplankton populations), as the European Water Framework Directive objective is to achieve a "good ecological status" in every aquatic ecosystem by 2015. The results of the study show that the Pareja Limno-reservoir follows a warm monomictic water stratification pattern. Water was slightly alkaline and conductivity values were mostly over 1000 μS cm-1 due to the high SO4= concentrations. The highest N and P levels were found in the winter, whereas the highest chlorophyll aand phytoplankton biomass values were found in the summer and autumn. The total zooplankton species richness was high, especially in the inflow zone. Globally, the results obtained suggest that the Pareja Limno-reservoir is oligo-mesotrophic, so it may be under the WFD requirements, although some differences were found using a variety of trophic state criteria.
A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing.
Liu, Pi-Jen; Shao, Kwang-Tsao; Jan, Rong-Quen; Fan, Tung-Yung; Wong, Saou-Lien; Hwang, Jiang-Shiou; Chen, Jen-Ping; Chen, Chung-Chi; Lin, Hsing-Juh
2009-09-01
Several coral reefs of Nanwan Bay, Taiwan have recently undergone shifts to macroalgal or sea anemone dominance. Thus, a mass-balance trophic model was constructed to analyze the structure and functioning of the food web. The fringing reef model was comprised of 18 compartments, with the highest trophic level of 3.45 for piscivorous fish. Comparative analyses with other reef models demonstrated that Nanwan Bay was similar to reefs with high fishery catches. While coral biomass was not lower, fish biomass was lower than those of reefs with high catches. Consequently, the sums of consumption and respiratory flows and total system throughput were also decreased. The Nanwan Bay model potentially suggests an overfished status in which the mean trophic level of the catch, matter cycling, and trophic transfer efficiency are extremely reduced.
Velthuis, Mandy; van Deelen, Emma; van Donk, Ellen; Zhang, Peiyu; Bakker, Elisabeth S
2017-01-01
Human activity is currently changing our environment rapidly, with predicted temperature increases of 1-5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus). In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition consistently leads to decreased carbon:nutrient ratios, elevated temperature does not change submerged aquatic plant carbon:nutrient stoichiometry in a consistent manner. This effect is rather dependent on nutrient availability and may be species-specific. As changes in the carbon:nutrient stoichiometry of submerged aquatic plants can impact the transfer of energy to higher trophic levels, these results suggest that eutrophication may enhance plant consumption and decomposition, which could in turn have consequences for carbon sequestration.
Nagelkerke, Leopold A J; van Onselen, Eline; van Kessel, Nils; Leuven, Rob S E W
2018-01-01
Invasions of Ponto-Caspian fish species into north-western European river basins accelerated since the opening of the Rhine-Main-Danube Canal in 1992. Since 2002, at least five Ponto-Caspian alien fish species have arrived in The Netherlands. Four species belong to the Gobiidae family (Neogobius fluviatilis, Neogobius melanostomus, Ponticola kessleri, and Proterorhinus semilunaris) and one to the Cyprinidae family (Romanogobio belingi). These species are expected to be potentially deleterious for the populations of four native benthic fish species: Gobio gobio (Cyprinidae), Barbatula barbatula (Nemacheilidae), Cottus perifretum, and C. rhenanus (Cottidae). Invasion success may be dependent on competitive trophic interactions with native species, which are enabled and/or constrained by feeding-related morphological traits. Twenty-two functional feeding traits were measured in nine species (in total 90 specimens). These traits were quantitatively linked to the mechanical, chemical and behavioral properties of a range of aquatic resource categories, using a previously developed food-fish model (FFM). The FFM was used to predict the trophic profile (TP) of each fish: the combined capacities to feed on each of the resource types. The most extreme TPs belonged to three alien species, indicating that they were most specialized among the studied species. Of these three, only P. kessleri overlapped with the two native Cottus species, indicating potential trophic competition. N. fluviatilis and R. belingi did not show any overlap, indicating that there is low trophic competition. The two remaining alien goby species (N. melanostomus and P. semilunaris) had average TPs and could be considered generalist feeders. They overlapped with each other and with G. gobio and B. barbatula, indicating potential trophic competition. This study suggests that both generalist and specialist species can be successful invaders. Since the FFM predicts potential interactions between species, it provides a tool to support horizon scanning and rapid risk assessments of alien species.
Cui, Lili; Wang, Shasha; Gao, Lirong; Huang, Huiting; Xia, Dan; Qiao, Lin; Liu, Wenbin
2018-03-01
Polychlorinated naphthalenes (PCNs) have been found widely in the aquatic environment and can be transferred through food chains, which can magnify or dilute their toxic effects on humans. In this study, PCNs were analyzed in samples of 17 species of fish with different dietary habits collected in the Bohai coastal area in China. Dichloronaphthalenes, which have rarely been quantified in previous studies, were determined. The total PCN concentrations were from 7.3 to 214 pg/g wet weight, and the highest concentration was found in ditrema. The trichloronaphthalenes were the most abundant PCNs, followed by the dichloronaphthalenes and pentachloronaphthalenes. The relatively high contributions of the less-chlorinated homologs to the total PCN concentrations indicated that the main PCN sources around the Bohai were industrial thermal process emissions rather than technical PCN formulations. The trophic magnification factors of the PCN homologs were from 3.1 to 9.9, indicating that PCNs were biomagnified by fish. The trophic magnification factor of dichloronaphthalene and trichloronaphthalenes was 5.8 and 6.4, respectively, indicating for the first time that dichloronaphthalene and trichloronaphthalenes can undergo trophic magnification by fish. The two highest trophic magnification factors were for the pentachloronaphthalenes and hexachloronaphthalenes, probably because these PCNs having fewer vicinal carbon atoms without chlorine atoms attached are less easily biotransformed than the other homologs. The dioxin-like toxicities of the PCNs in the samples, expressed as potential toxic equivalences (TEQs), were assessed. The highest total TEQ was 0.0090 pg/g ww, in Pacific herring, and the hexachloronaphthalenes were the dominant contributors to the total TEQs in the fish samples. The PCN TEQs were much lower than the polychlorinated dibenzo-p-dioxin and dibenzofuran and dioxin-like polychlorinated biphenyl TEQs found in fish from the Bohai in previous studies, and made marginal contributions to overall human exposure to dioxin-like TEQs, suggesting that PCNs pose no toxicological concerns. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent
2014-01-01
Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments.
Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments.
Meunier, Cédric L; Gundale, Michael J; Sánchez, Irene S; Liess, Antonia
2016-01-01
Increased reactive nitrogen (Nr ) deposition has raised the amount of N available to organisms and has greatly altered the transfer of energy through food webs, with major consequences for trophic dynamics. The aim of this review was to: (i) clarify the direct and indirect effects of Nr deposition on forest and lake food webs in N-limited biomes, (ii) compare and contrast how aquatic and terrestrial systems respond to increased Nr deposition, and (iii) identify how the nutrient pathways within and between ecosystems change in response to Nr deposition. We present that Nr deposition releases primary producers from N limitation in both forest and lake ecosystems and raises plants' N content which in turn benefits herbivores with high N requirements. Such trophic effects are coupled with a general decrease in biodiversity caused by different N-use efficiencies; slow-growing species with low rates of N turnover are replaced by fast-growing species with high rates of N turnover. In contrast, Nr deposition diminishes below-ground production in forests, due to a range of mechanisms that reduce microbial biomass, and decreases lake benthic productivity by switching herbivore growth from N to phosphorus (P) limitation, and by intensifying P limitation of benthic fish. The flow of nutrients between ecosystems is expected to change with increasing Nr deposition. Due to higher litter production and more intense precipitation, more terrestrial matter will enter lakes. This will benefit bacteria and will in turn boost the microbial food web. Additionally, Nr deposition promotes emergent insects, which subsidize the terrestrial food web as prey for insectivores or by dying and decomposing on land. So far, most studies have examined Nr -deposition effects on the food web base, whereas our review highlights that changes at the base of food webs substantially impact higher trophic levels and therefore food web structure and functioning. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sherwood, Owen A.; Jamieson, Robyn E.; Edinger, Evan N.; Wareham, Vonda E.
2008-10-01
With the aim of understanding of the trophic ecology of cold-water corals, this paper explores the tissue δ13C and δ15N values of 11 'coral' species (8 alcyonacean, 1 antipatharian, 1 pennatulacean, 1 scleractinian) collected along the Newfoundland and Labrador continental slope. Isotopic results delimit species along continua of trophic level and food lability. With an isotopic signature similar to macrozooplankton, Paragorgia arborea occupies the lowest trophic level and most likely feeds on fresh phytodetritus. Primnoa resedaeformis occupies a slightly higher trophic level, likely supplementing its diet with microzooplankton. Bathypathes arctica, Pennatulacea and other alcyonaceans ( Acanella arbuscula, Acanthogorgia armata, Anthomastus grandiflorus, Duva florida, Keratoisis ornata, Paramuricea sp.) had higher δ13C and δ15N values, suggesting these species feed at higher trophic levels and on a greater proportion of more degraded POM. Flabellum alabastrum had an isotopic signature similar to that of snow crab, indicating a primarily carnivorous diet. Isotopic composition did not vary significantly over a depth gradient of 50-1400 m. Coral δ13C increased slightly (<1‰) from the Hudson Strait to the southern Grand Banks, but δ15N did not. By modulating the availability and quality of suspended foods, substrate likely exerts a primary influence on the feeding habits of cold-water corals.
Temperature-altered predator-prey dynamics in freshwater ponds in Arctic Greenland
NASA Astrophysics Data System (ADS)
Culler, L. E.; Ayres, M.
2011-12-01
Temperature sets the pace of many biological processes including species interactions. Describing the response of terrestrial and aquatic habitats to climate warming therefore requires studies of cross-trophic level dynamics. I use freshwater pond ecosystems in Arctic Greenland to study how the thermal environment shapes interactions between predators and their prey. This system is of interest because warming trends are notable, freshwaters are responding rapidly and dynamically to changes in temperature, and the biology of freshwaters is intimately linked to the terrestrial environment. My focal species are the Arctic mosquito (Diptera: Culicidae, Aedes nigripes) and its invertebrate predator, a predaceous diving beetle (Coleoptera: Dytiscidae, Colymbetes dolabratus). Both species develop as larvae in snow-melt ponds in May and June. I used experimental and observational studies to test effects of temperature on larval mosquito growth rates and predation rates by C. dolabratus. Results indicate strong effects of temperature on growth rate and development time but weak effects of temperature on consumption of mosquitoes by their predators. Incorporation of measured temperature response functions into a mosquito demographic model will elucidate how mosquito population dynamics in Arctic Greenland may change with temperature. For example, warming increases growth rate and decreases development time of mosquito larvae, which shortens the time larvae are exposed to predation. Additionally, decreased development time leads to an earlier mosquito emergence, with potential consequences for the health of wildlife. Evaluation of this model will reveal the importance of considering cross-trophic level dynamics when predicting mosquito population response to warming. Future studies will address interesting properties emerging from modeling, such as how shorter development time affects adult size and fitness, and connecting results to terrestrial systems in Arctic Greenland.
Is the Ghost of Waste Management's Past Coming Back to Haunt Us In Our Seafood?
NASA Astrophysics Data System (ADS)
Rochman, C. M.; Tahir, A.; Serrato, S.; Williams, S.; Baxa, D.; Lam, R.; Teh, C.; Miller, J.; Werorilangi, S.; Teh, S.
2016-02-01
Plastic debris is recognized globally as a persistent contaminant, littered across multiple habitats worldwide. Most striking is its occurrence in wildlife. Plastic has been recovered from hundreds of species across multiple trophic levels and in animals we consider seafood. This has led policy-makers to ask about the extent that our seafood is contaminated with plastic debris and associated contaminants. To help address these policy-relevant and emerging scientific questions, we first measured the simple presence of anthropogenic debris in many different species of fish and one species of shellfish sold as seafood at local fish markets in Half Moon Bay, California, USA and Makassar, Sulawesi, Indonesia. We found anthropogenic debris in roughly 25% of all animals purchased, demonstrating that some seafood items are contaminated with plastic debris, including some that we consume whole (e.g., anchovies and oysters). Next, to understand if plastic debris can act as a vector for organic pollutants to move through the food chain and indirectly into the meat of fish at higher trophic levels, we designed a laboratory dietary exposure to measure the bioaccumulation of sorbed PCBs in Asian clams (Corbicula fluminea) and the biomagnifications in white sturgeon (Acipenser transmontanus). Asian clams were exposed for 30 days to separate treatments of microplastic (polyethylene terephthalate, polyethylene, polyvinyl chloride and polystyrene) with and without sorbed PCBs. Next, diets were formulated using purified ingredients and clams from the first exposure and fed to their predators (sturgeon) for 30 days. Chemical analyses, allowing us to understand how chemical contaminants from plastics move through food chains, will be presented. Combined, this work demonstrates the presence of plastic debris in seafood and will help us understand whether plastic acts as a vector for chemicals to transfer through aquatic foodwebs, including our own.
Abbasi, Naeem Akhtar; Eulaers, Igor; Jaspers, Veerle Leontina Bernard; Chaudhry, Muhammad Jamshed Iqbal; Frantz, Adrien; Ambus, Per Lennart; Covaci, Adrian; Malik, Riffat Naseem
2017-01-01
The exposure to legacy polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs) and unrestricted 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE), bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromo-benzoate (EH-TBB) was examined in tail feathers of 76 birds belonging to ten predatory species inhabiting Pakistan. In addition, different feather types of six individuals of Black kite (Milvus migrans) were compared for their brominated flame retardant (BFR) levels. Black kite was found to be the most contaminated species with a median (minimum-maximum) tail feather concentration of 2.4 (0.70-7.5) ng g -1 dw for ∑PBDEs, 1.5 (0.5-8.1) ng g -1 dw for ∑HBCDDs and 0.10 (
Total mercury levels in commercial fish species from Italian fishery and aquaculture.
Di Lena, Gabriella; Casini, Irene; Caproni, Roberto; Fusari, Andrea; Orban, Elena
2017-06-01
Total mercury levels were measured in 42 commercial fish species caught off the Central Adriatic and Tyrrhenian coasts of Italy and in 6 aquaculture species. The study on wild fish covered species differing in living habitat and trophic level. The study on farmed fish covered marine and freshwater species from intensive and extensive aquaculture and their feed. Mercury levels were analysed by thermal decomposition-amalgamation-atomic absorption spectrophotometry. Total mercury concentrations in the muscle of wild fish showed a high variability among species (0.025-2.20 mg kg -1 wet weight). The lowest levels were detected in low trophic-level demersal and pelagic-neritic fish and in young individuals of high trophic-level species. Levels exceeding the European Commission limits were found in large-size specimens of high trophic-level pelagic and demersal species. Fish from intensive farming showed low levels of total mercury (0.008-0.251 mg kg -1 ). Fish from extensive rearing showed variable contamination levels, depending on the area of provenience. An estimation of the human intake of mercury associated to the consumption of the studied fish and its comparison with the tolerable weekly intake is provided.
The energetics of fish growth and how it constrains food-web trophic structure.
Barneche, Diego R; Allen, Andrew P
2018-06-01
The allocation of metabolic energy to growth fundamentally influences all levels of biological organisation. Here we use a first-principles theoretical model to characterise the energetics of fish growth at distinct ontogenetic stages and in distinct thermal regimes. Empirically, we show that the mass scaling of growth rates follows that of metabolic rate, and is somewhat steeper at earlier ontogenetic stages. We also demonstrate that the cost of growth, E m , varies substantially among fishes, and that it may increase with temperature, trophic level and level of activity. Theoretically, we show that E m is a primary determinant of the efficiency of energy transfer across trophic levels, and that energy is transferred more efficiently between trophic levels if the prey are young and sedentary. Overall, our study demonstrates the importance of characterising the energetics of individual growth in order to understand constraints on the structure of food webs and ecosystems. © 2018 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Bemis, B. E.; Kendall, C.
2007-12-01
The concentration of mercury in fish tissues is widely used as an indicator of the magnitude of mercury contamination in aquatic ecosystems. Eastern mosquitofish (Gambusia holbrookii) is an important sentinel species used for this purpose in the varied environments of the Florida Everglades, because mosquitofish are abundant, have a short lifespan, and migrate little. Like other freshwater fish, the primary route of mercury uptake into mosquitofish tissues is through diet as bioavailable methylmercury. Yet, it is unclear whether variations in mosquitofish mercury observed across the Everglades are due primarily to differences in bioaccumulation (i.e., trophic position) or abundance of methylmercury available to the food web base. We use isotopic methods to investigate the importance of these two controls on mosquitofish mercury at the landscape scale. As part of the USEPA REMAP project, mosquitofish and periphyton were collected during September 1996 from over one hundred sites throughout the Everglades and analyzed for mercury concentration. The USGS analyzed splits of the samples for nitrogen (d15N), carbon (d13C), and sulfur (d34S) isotopic composition, to investigate the causes of mercury variations. The d15N value of tissues is often used to estimate the relative trophic positions of organisms in a food web, and should correlate positively with tissue mercury if bioaccumulation is an important control on mosquitofish mercury concentration. The d13C value can be useful for detecting differences in food web base (e.g., algal versus detrital), and thus the entry point of contaminants. Tissue d34S potentially indicates the extent of dissimilatory sulfate reduction in sediments, a process used by sulfate-reducing bacteria (SRB) during conversion of inorganic Hg(II) to bioavailable methylmercury. Because this process increases the d34S value of remaining sulfate, which enters the food web base, mosquitofish sulfur isotopes should show positive correlations with SRB activity, methylmercury production, and mosquitofish mercury concentrations. The d15N, d13C, and d34S values of mosquitofish and periphyton are significantly correlated, indicating that a component of the bulk periphyton analyzed in this study is part of the mosquitofish food web. Mosquitofish mercury does not correlate significantly with tissue d15N or the d15N difference between mosquitofish and periphyton. Thus, differences in trophic level (and bioaccumulation) among the fish do not contribute a detectable influence on mercury variations in the samples studied. In contrast with the d15N results, mosquitofish mercury levels show significant, positive correlations with mosquitofish d34S and the d34S difference between mosquitofish and periphyton. This suggests that during the period studied, mosquitofish mercury concentrations in the Everglades were primarily influenced by the bioavailability of mercury, rather than by differences in trophic position. This study demonstrates that isotopic measurements, especially d34S, can be useful tools for determining causes of high mercury concentrations in fish populations.
Beyond diversity: how nested predator effects control ecosystem functions.
Schneider, Florian Dirk; Brose, Ulrich
2013-01-01
The global decline in biodiversity is especially evident in higher trophic levels as predators display higher sensitivity to environmental change than organisms from lower trophic levels. This is even more alarming given the paucity of knowledge about the role of individual predator species in sustaining ecosystem functioning. The effect of predator diversity on lower trophic level prey is often driven by the increasing chance of including the most influential species. Furthermore, intraguild predation can cause trophic cascades with net positive effects on basal prey. As a consequence, the effects of losing a predator species appear to be idiosyncratic and it becomes unpredictable how the community's net effect on lower trophic levels changes when species number is declining. We performed a full factorial microcosm experiment with litter layer arthropods to measure the effects of predator diversity and context-dependent identity effects on a detritivore population and microbial biomass. We show that major parts of the observed diversity effect can be assigned to the increasing likelihood of including the most influential predator. Further, the presence of a second predator feeding on the first predator dampens this dominant effect. Including this intraguild predator on top of the first predator is more likely with increasing predator diversity as well. Thus, the overall pattern can be explained by a second identity effect, which is nested into the first. When losing a predator from the community, the response of the lower trophic level is highly dependent on the remaining predator species. We mechanistically explain the net effects of the predator community on lower trophic levels by nested effects of predator identities. These identity effects become predictable when taking the species' body masses into account. This provides a new mechanistic perspective describing ecosystem functioning as a consequence of species composition and yields an understanding beyond simple effects of biodiversity. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory
Welti, Nina; Striebel, Maren; Ulseth, Amber J.; Cross, Wyatt F.; DeVilbiss, Stephen; Glibert, Patricia M.; Guo, Laodong; Hirst, Andrew G.; Hood, Jim; Kominoski, John S.; MacNeill, Keeley L.; Mehring, Andrew S.; Welter, Jill R.; Hillebrand, Helmut
2017-01-01
Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment. PMID:28747904
NASA Astrophysics Data System (ADS)
Fischer, Jessica; Schoppmann, Kathrin; Laforsch, Christian
2017-06-01
Manned space missions, as for example to the planet Mars, are a current objective in space exploration. During such long-lasting missions, aquatic bioregenerative life support systems (BLSS) could facilitate independence of resupply from Earth by regenerating the atmosphere, purifying water, producing food and processing waste. In such BLSS, microcrustaceans could, according to their natural role in aquatic ecosystems, link oxygen liberating, autotrophic algae and higher trophic levels, such as fish. However, organisms employed in BLSS will be exposed to high acceleration (hyper- g) during launch of spacecrafts as well as to microgravity (μ g) during space travel. It is thus essential that these organisms survive, perform and reproduce under altered gravity conditions. In this study we present the first data in this regard for the microcrustaceas Daphnia magna and Heterocypris incongruens. We found that after hyper- g exposure (centrifugation) approximately one third of the D. magna population died within one week (generally indicating that possible belated effects have to be considered when conducting and interpreting experiments during which hyper- g occurs). However, suchlike and even higher losses could be countervailed by the surviving daphnids' unaltered high reproductive capacity. Furthermore, we can show that foraging and feeding behavior of D. magna (drop tower) and H. incongruens (parabolic flights) are rarely altered in μ g. Our results thus indicate that both species are suitable candidates for BLSS utilized in space.
Cherry, Julia A; Gough, Laura
2009-09-01
Responses of aquatic macrophytes to leaf herbivory may differ from those documented for terrestrial plants, in part, because the potential to maximize growth following herbivory may be limited by the stress of being rooted in flooded, anaerobic sediments. Herbivory on aquatic macrophytes may have ecosystem consequences by altering the allocation of nutrients and production of biomass within individual plants and changing the quality and quantity of aboveground biomass available to consumers or decomposers. To test the effects of leaf herbivory on plant growth and production, herbivory of a dominant macrophyte, Nymphaea odorata, by chrysomelid beetles and crambid moths was controlled during a 2-year field experiment. Plants exposed to herbivory maintained, or tended to increase, biomass and aboveground net primary production relative to controls, which resulted in 1.5 times more aboveground primary production entering the detrital pathway of the wetland. In a complementary greenhouse experiment, the effects of simulated leaf herbivory on total plant responses, including biomass and nutrient allocation, were investigated. Plants in the greenhouse responded to moderate herbivory by maintaining aboveground biomass relative to controls, but this response occurred at the expense of belowground growth. Results of these studies suggest that N. odorata may tolerate moderate levels of herbivory by reallocating biomass and resources aboveground, which in turn influences the quantity, quality and fate of organic matter available to herbivores and decomposers.
Sludge-grown algae for culturing aquatic organisms: Part I. Algal growth in sludge extracts
NASA Astrophysics Data System (ADS)
Hung, K. M.; Chiu, S. T.; Wong, M. H.
1996-05-01
This project is aimed at studying the feasibility of using sewage sludge to prepare culture media for microalgae ( Chlorella-HKBU) and the use of the sludge-grown algae as a feed for some aquatic organisms. Part I of the project included results on preparing sludge extracts and their use on algal culture. By comparing two culturing techniques, “aeration” and “shaking,” it was noted that both lag and log phases were shortened in the aeration system. A subsequent experiment noted that algal growth subject to aeration rates of 1.0 and 1.5 liters/min had similar lag and log phases. In addition, both aeration rates had a significantly higher ( P < 0.05) final cell density than that of 0.5 liters/min. A detailed study on the variation of growth conditions on the algal growth was done. The results indicated that pH values of all the cultures declined below 5 at day 12. The removal rates of ammonia N ranged from 62% to 70%. The sludge-grown algae contained a rather substantial amount of heavy metals (µg/g): Zn 289 581, Cu 443 682, Ni 310 963, Mn 96 126, Cr 25 118, and Fe 438 653. This implied that the rather high levels of heavy metals may impose adverse effects on higher trophic organisms.
Lahive, E; O'Halloran, J; Jansen, M A K
2015-01-01
Macrophytes contribute significantly to the cycling of metals in aquatic systems, through accumulation during growth and release during herbivory or decomposition. Accumulation of high levels of metals has been extensively documented in Lemnaceae (duckweeds). However, the degree of trophic transfer of metals from Lemnaceae to secondary consumers remains poorly understood. This study demonstrates that zinc accumulated in Lemna minor is bioavailable to the herbivore consumer Gammarus pulex. Overall, the higher the zinc content of L. minor, the more zinc accumulated in G. pulex. Accumulation in G. pulex was such that mortality occurred when they were fed high zinc-containing L. minor. Yet, the percentage of consumed zinc retained by G. pulex actually decreased with higher zinc concentrations in L. minor. We hypothesise that this decrease reflects internal zinc metabolism, including a shift from soluble to covalently bound zinc in high zinc-containing L. minor. Consistently, relatively more zinc is lost through depuration when G. pulex is fed L. minor with high zinc content. The developed Lemna-Gammarus system is simple, easily manipulated, and sensitive enough for changes in plant zinc metabolism to be reflected in metal accumulation by the herbivore, and therefore suitable to study ecologically relevant metal cycling in aquatic ecosystems. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Magalhães, Catarina; Stevens, Mark I; Cary, S Craig; Ball, Becky A; Storey, Bryan C; Wall, Diana H; Türk, Roman; Ruprecht, Ulrike
2012-01-01
Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the geological morphology and soil geochemistry in the remote Transantarctic Mountains (Darwin Mountains, 80°S). We examined the distribution and diversity of biota (bacteria, cyanobacteria, lichens, algae, invertebrates) with respect to elevation, age of glacial drift sheets, and soil physicochemistry. Results showed an abiotic spatial gradient with respect to the diversity of the organisms across different trophic levels. More complex communities, in terms of trophic level diversity, were related to the weakly developed younger drifts (Hatherton and Britannia) with higher soil C/N ratio and lower total soluble salts content (thus lower conductivity). Our results indicate that an increase of ion concentration from younger to older drift regions drives a succession of complex to more simple communities, in terms of number of trophic levels and diversity within each group of organisms analysed. This study revealed that integrating diversity across multi-trophic levels of biotic communities with abiotic spatial heterogeneity and geological history is fundamental to understand environmental constraints influencing biological distribution in Antarctic soil ecosystems.
Marine Mammal Impacts in Exploited Ecosystems: Would Large Scale Culling Benefit Fisheries?
Morissette, Lyne; Christensen, Villy; Pauly, Daniel
2012-01-01
Competition between marine mammals and fisheries for marine resources—whether real or perceived—has become a major issue for several countries and in international fora. We examined trophic interactions between marine mammals and fisheries based on a resource overlap index, using seven Ecopath models including marine mammal groups. On a global scale, most food consumed by marine mammals consisted of prey types that were not the main target of fisheries. For each ecosystem, the primary production required (PPR) to sustain marine mammals was less than half the PPR to sustain fisheries catches. We also developed an index representing the mean trophic level of marine mammal's consumption (TLQ) and compared it with the mean trophic level of fisheries' catches (TLC). Our results showed that overall TLQ was lower than TLC (2.88 versus 3.42). As fisheries increasingly exploit lower-trophic level species, the competition with marine mammals may become more important. We used mixed trophic impact analysis to evaluate indirect trophic effects of marine mammals, and in some cases found beneficial effects on some prey. Finally, we assessed the change in the trophic structure of an ecosystem after a simulated extirpation of marine mammal populations. We found that this lead to alterations in the structure of the ecosystems, and that there was no clear and direct relationship between marine mammals' predation and the potential catch by fisheries. Indeed, total biomass, with no marine mammals in the ecosystem, generally remained surprisingly similar, or even decreased for some species. PMID:22970153
Marine mammal impacts in exploited ecosystems: would large scale culling benefit fisheries?
Morissette, Lyne; Christensen, Villy; Pauly, Daniel
2012-01-01
Competition between marine mammals and fisheries for marine resources-whether real or perceived-has become a major issue for several countries and in international fora. We examined trophic interactions between marine mammals and fisheries based on a resource overlap index, using seven Ecopath models including marine mammal groups. On a global scale, most food consumed by marine mammals consisted of prey types that were not the main target of fisheries. For each ecosystem, the primary production required (PPR) to sustain marine mammals was less than half the PPR to sustain fisheries catches. We also developed an index representing the mean trophic level of marine mammal's consumption (TL(Q)) and compared it with the mean trophic level of fisheries' catches (TL(C)). Our results showed that overall TL(Q) was lower than TL(C) (2.88 versus 3.42). As fisheries increasingly exploit lower-trophic level species, the competition with marine mammals may become more important. We used mixed trophic impact analysis to evaluate indirect trophic effects of marine mammals, and in some cases found beneficial effects on some prey. Finally, we assessed the change in the trophic structure of an ecosystem after a simulated extirpation of marine mammal populations. We found that this lead to alterations in the structure of the ecosystems, and that there was no clear and direct relationship between marine mammals' predation and the potential catch by fisheries. Indeed, total biomass, with no marine mammals in the ecosystem, generally remained surprisingly similar, or even decreased for some species.
Astaxanthin production in marine pelagic copepods grazing on two different phytoplankton diets
NASA Astrophysics Data System (ADS)
Van Nieuwerburgh, Lies; Wänstrand, Ingrid; Liu, Jianguo; Snoeijs, Pauli
2005-02-01
The red carotenoid astaxanthin is a powerful natural antioxidant of great importance in aquatic food webs where it is abundant in eggs and body tissues of fish and crustaceans. Little is known about the impact of the phytoplankton diet on astaxanthin production in copepods, its major pelagic producers. We followed the transfer of carotenoids from phytoplankton to copepods in a mesocosm experiment on the northern Atlantic coast (Norway) and recorded the astaxanthin production in copepods. Wild copepods grazed on nutrient-manipulated phytoplankton blooms, which differed in community composition and nutrient status (nitrogen or silicate limitation). The copepod pigments consisted mainly of free astaxanthin and mono- and diesters of astaxanthin. We found no significant difference in astaxanthin production per copepod individual or per unit C depending on the phytoplankton community. However, in the mesocosms astaxanthin per unit C decreased compared with natural levels, probably through a lower demand for photoprotection by the copepods in the dense phytoplankton blooms. The total astaxanthin production per litre was higher in the silicate-limited mesocosms through increased copepod density. Pigment ratio comparisons suggested that the copepod diet here consisted more of diatoms than in the nitrogen-limited mesocosms. Silicate-saturated diatoms were less grazed, possibly because they could invest more in defence mechanisms against their predators. Our study suggests that the production of astaxanthin in aquatic systems can be affected by changes in nutrient dynamics mediated by phytoplankton community composition and copepod population growth. This bottom-up force may have implications for antioxidant protection at higher trophic levels in the food web.
Kwon, Sae Yun; Blum, Joel D.; Carvan, Michael J.; Basu, Niladri; Head, Jessica A.; Madenjian, Charles P.; David, Solomon R.
2012-01-01
We performed two controlled experiments to determine the amount of mass-dependent and mass-independent fractionation (MDF and MIF) of methylmercury (MeHg) during trophic transfer into fish. In experiment 1, juvenile yellow perch (Perca flavescens) were raised in captivity on commercial food pellets and then their diet was either maintained on unamended food pellets (0.1 μg/g MeHg) or was switched to food pellets with 1.0 μg/g or 4.0 μg/g of added MeHg, for a period of 2 months. The difference in δ202Hg (MDF) and Δ199Hg (MIF) between fish tissues and food pellets with added MeHg was within the analytical uncertainty (δ202Hg, 0.07 ‰; Δ199Hg, 0.06 ‰), indicating no isotope fractionation. In experiment 2, lake trout (Salvelinus namaycush) were raised in captivity on food pellets and then shifted to a diet of bloater (Coregonus hoyi) for 6 months. The δ202Hg and Δ199Hg of the lake trout equaled the isotopic composition of the bloater after 6 months, reflecting reequilibration of the Hg isotopic composition of the fish to new food sources and a lack of isotope fractionation during trophic transfer. We suggest that the stable Hg isotope ratios in fish can be used to trace environmental sources of Hg in aquatic ecosystems.
Stewart, A.R.; Saiki, M.K.; Kuwabara, J.S.; Alpers, Charles N.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.
2008-01-01
Physical and biogeochemical characteristics of the aquatic environment that affect growth dynamics of phytoplankton and the zooplankton communities that depend on them may also affect uptake of methylmercury (MeHg) into the pelagic food web of oligotrophic reservoirs. We evaluated changes in the quality and quantity of suspended particulate material, zooplankton taxonomy, and MeHg concentrations coincident with seasonal changes in water storage of a mining-impacted reservoir in northern California, USA. MeHg concentrations in bulk zooplankton increased from 4 ng??g-1 at low water to 77 ?? 6.1 ng??g-1 at high water and were positively correlated with cladoceran biomass (r = 0.66) and negatively correlated with rotifer biomass (r = -0.65). Stable isotope analysis revealed overall higher MeHg concentrations in the pelagic-based food web relative to the benthic-based food web. Statistically similar patterns of trophic enrichment of MeHg (slopes) for the pelagic and benthic food webs and slightly higher MeHg concentrations in zooplankton than in benthic invertebrates suggest that the difference in MeHg bioaccumulation among trophic pathways is set at the base of the food webs. These results suggest an important role for plankton dynamics in driving the MeHg content of zooplankton and ultimately MeHg bioaccumulation in top predators in pelagic-based food webs. ?? 2008 NRC.
Kwon, Sae Yun; Blum, Joel D; Carvan, Michael J; Basu, Niladri; Head, Jessica A; Madenjian, Charles P; David, Solomon R
2015-01-01
We performed two controlled experiments to determine the amount of mass-dependent and mass-independent fractionation (MDF and MIF) of methylmercury (MeHg) during trophic transfer into fish. In Experiment 1, juvenile yellow perch (Perca flavescens) were raised in captivity on commercial food pellets and then their diet was either maintained on un-amended food pellets (0.1 µg/g MeHg), or was switched to food pellets with 1.0 µg/g or 4.0 µg/g of added MeHg, for a period of 2 months. The difference in δ202Hg (MDF) and Δ199Hg (MIF) between fish tissues and food pellets with added MeHg were within the analytical uncertainty (δ202Hg; 0.07 ‰, Δ199Hg; 0.06 ‰) indicating no isotope fractionation. In Experiment 2, lake trout (Salvelinus namaycush) were raised in captivity on food pellets, and then shifted to a diet of bloater (Coregonus hoyi) for 6 months. The δ202Hg and Δ199Hg of the lake trout equaled the isotopic composition of the bloater after 6 months, reflecting re-equilibration of the Hg isotopic composition of the fish to new food sources and a lack of isotope fractionation during trophic transfer. We suggest that the stable Hg isotope ratios in fish can be used to trace environmental sources of Hg in aquatic ecosystems. PMID:22681311
The risk assessment of heavy metals in the ecosystem of urban creeks.
Komínková, D; Nabelková, J
2006-01-01
This paper is focused on risk assessment of heavy metals in freshwater ecosystems of urban creeks. The paper reports changes in an aquatic ecosystem leading to remobilization of heavy metals and consequently to changes of bioavailability. Concentrations of metals in water, bed sediment and benthic organisms from several small urban streams are monitored and evaluated. In the small urban streams studied copper, zinc and lead were determined as the most significant hazard metals. Although concentrations of these metals in water are very low (often below the detection limit of analytical equipment), concentrations in sediment were found in risky levels mainly in sampling sites affected by CSOs and SSOs from industrial and heavy traffic areas. The benthic organisms showed different ability to accumulate heavy metals (HM). The feeding type collector gatherer had in most cases the highest body concentration of HM and the predator species cumulate, to a high level, only zinc which has a high tendency to release from sediment, hence it is the most bio-available. The collector-filterer had mostly low values. The differences among species are due to the different feeding habits of each trophic level.
El-Serehy, Hamed A; Abdallah, Hala S; Al-Misned, Fahad A; Irshad, Rizwan; Al-Farraj, Saleh A; Almalki, Esam S
2018-02-01
The Bitter Lakes are the most significant water bodies of the Suez Canal, comprising 85% of the water volume, but spreading over only 24% of the length of the canal. The present study aims at investigation of the trophic status of the Bitter Lakes employing various trophic state indices, biotic and abiotic parameters, thus reporting the health of the Lake ecosystem according to the internationally accepted classification criteria's. The composition and abundance of phytoplankton with a dominance of diatoms and a decreased population density of 4315-7376 ind. l -1 reflect the oligotrophic nature of this water body. The intense growth of diatoms in the Bitter Lakes depends on silicate availability, in addition to nitrate and phosphate. If the trophic state index (TSI) is applied to the lakes under study it records that the Bitter Lakes have an index under 40. Moreover, in the total chlorophyll- a measurements of 0.35-0.96 µg l -1 there are more indicative of little algal biomass and lower biological productivity. At 0.76-2.3 µg l -1 , meanwhile, the low quantity of Phosphorus is a further measure of low biological productivity. In the Bitter Lakes, TN/TP ratios are high and recorded 147.4, and 184.7 for minimum and maximum ratios, respectively. These values indicate that in Bitter lakes, the limiting nutrient is phosphorus and confirm the oligotrophic status of the Bitter Lakes. The latter conclusion is supported by Secchi disc water clarity measurements, showing that light can penetrate, and thus algae can photosynthesize, as deep as >13 m. This study, therefore, showed that the Bitter Lakes of the Suez Canal exhibit oligotrophic conditions with clear water, low productivity and with no algal blooming.
Páez-Rosas, Diego; Rodríguez-Pérez, Mónica; Riofrío-Lazo, Marjorie
2014-12-15
The feeding success of predators is associated with the competition level for resources, and, thus, sympatric species are exposed to a potential trophic overlap. Isotopic Bayesian mixing models should provide a better understanding of the contribution of preys to the diet of predators and the feeding behavior of a species over time. The carbon and nitrogen isotopic signatures from pup hair samples of 93 Galapagos sea lions and 48 Galapagos fur seals collected between 2003 and 2009 in different regions (east and west) of the archipelago were analyzed. A PDZ Europa ANCA-GSL elemental analyzer interfaced with a PDZ Europa 20-20 continuous flow gas source mass spectrometer was employed. Bayesian models, SIAR and SIBER, were used to estimate the contribution of prey to the diet of predators, the niche breadth, and the trophic overlap level between the populations. Statistical differences in the isotopic values of both predators were observed over the time. The mixing model determined that Galapagos fur seals had a primarily teutophagous diet, whereas the Galapagos sea lions fed exclusively on fish in both regions of the archipelago. The SIBER analysis showed differences in the trophic niche between the two sea lion populations, with the western rookery of the Galapagos sea lion being the population with the largest trophic niche area. A trophic niche partitioning between Galapagos fur seals and Galapagos sea lions in the west of the archipelago is suggested by our results. At intraspecific level, the western population of the Galapagos sea lion (ZwW) showed higher trophic breadth than the eastern population, a strategy adopted by the ZwW to decrease the interspecific competition levels in the western region. Copyright © 2014 John Wiley & Sons, Ltd.
Is benthic food web structure related to diversity of marine macrobenthic communities?
NASA Astrophysics Data System (ADS)
Sokołowski, A.; Wołowicz, M.; Asmus, H.; Asmus, R.; Carlier, A.; Gasiunaité, Z.; Grémare, A.; Hummel, H.; Lesutiené, J.; Razinkovas, A.; Renaud, P. E.; Richard, P.; Kędra, M.
2012-08-01
Numerical structure and the organisation of food webs within macrozoobenthic communities has been assessed in the European waters (Svalbard, Barents Sea, Baltic Sea, North Sea, Atlantic Ocean and the Mediterranean Sea) to address the interactions between biodiversity and ecosystem functioning. Abundance and classical species diversity indices (S, H', J) of macrofaunal communities were related to principal attributes of food webs (relative trophic level and food chain length, FCL) that were determined from carbon and nitrogen stable isotope values. Structure of marine macrobenthos varies substantially at a geographical scale; total abundance ranges from 63 ind. m-2 to 34,517 ind. m-2, species richness varies from 3 to 166 and the Shannon-Weaver diversity index from 0.26 to 3.26 while Pielou's evenness index is below 0.73. The major source of energy for macrobenthic communities is suspended particulate organic matter, consisting of phytoplankton and detrital particles, sediment particulate organic matter, and microphytobenthos in varying proportions. These food sources support the presence of suspension- and deposit-feeding communities, which dominate numerically on the sea floor. Benthic food webs include usually four to five trophic levels (FCL varies from 3.08 to 4.86). Most species are assigned to the second trophic level (primary consumers), fewer species are grouped in the third trophic level (secondary consumers), and benthic top predators are the least numerous. Most species cluster primarily at the lowest trophic level that is consistent with the typical organization of pyramidal food webs. Food chain length increases with biodiversity, highlighting a positive effect of more complex community structure on food web organisation. In more diverse benthic communities, energy is transferred through more trophic levels while species-poor communities sustain a shorter food chain.
NASA Astrophysics Data System (ADS)
Travers, M.; Watermeyer, K.; Shannon, L. J.; Shin, Y.-J.
2010-01-01
Ecosystem models provide a platform allowing exploration into the possible responses of marine food webs to fishing pressure and various potential management decisions. In this study we investigate the particular effects of overfishing on the structure and function of the southern Benguela food web, using two models with different underlying assumptions: the spatialized, size-based individual-based model, OSMOSE, and the trophic mass-balance model, Ecopath with Ecosim (EwE). Starting from the same reference state of the southern Benguela upwelling ecosystem during the 1990s, we compare the response of the food web to scenarios of overfishing using these two modelling approaches. A scenario of increased fishing mortality is applied to two distinct functional groups: i) two species of Cape hake, representing important target predatory fish, and ii) the forage species anchovy, sardine and redeye. In these simulations, fishing mortality on the selected functional groups is doubled for 10 years, followed by 10 years at the initial fishing mortality. We compare the food web states before the increase of fishing mortality, after 10 years of overfishing and after a further 10 years during which fishing was returned to initial levels. In order to compare the simulated food web structures with the reference state, and between the two modelling approaches, we use a set of trophic indicators: the mean trophic level of the community and in catches, the trophic pyramid (biomass per discrete trophic level), and the predatory/forage fish biomass ratio. OSMOSE and EwE present globally similar results for the trophic functioning of the ecosystem under fishing pressure: the biomass of targeted species decreases whereas that of their potential competitors increases. The reaction of distant species is more diverse, depending on the feeding links between the compartments. The mean trophic level of the community does not vary enough to be used for assessing ecosystem impacts of fishing, and the mean trophic level in the catch displays a surprising increase due to the short period of overfishing. The trophic pyramids behave in an unexpected way compared to trophic control theory, because at least two food chains with different dynamics are intertwined within the food web. We emphasize the importance of biomass information at the species level for interpreting dynamics in aggregated indicators, and we highlight the importance of competitive groups when looking at ecosystem functioning under fishing disturbance. Finally, we discuss the results within the scope of differences between models, in terms of the way they are formulated, spatial dimensions, predation formulations and the representation of fish life cycles.
Yang, Jinny Wu; Wu, Wenxue; Chung, Chih-Ching; Chiang, Kuo-Ping; Gong, Gwo-Ching; Hsieh, Chih-Hao
2018-06-01
The importance of biodiversity effects on ecosystem functioning across trophic levels, especially via predatory-prey interactions, is receiving increased recognition. However, this topic has rarely been explored for marine microbes, even though microbial biodiversity contributes significantly to marine ecosystem function and energy flows. Here we examined diversity and biomass of bacteria (prey) and nanoflagellates (predators), as well as their effects on trophic transfer efficiency in the East China Sea. Specifically, we investigated: (i) predator diversity effects on prey biomass and trophic transfer efficiency (using the biomass ratio of predator/prey as a proxy), (ii) prey diversity effects on predator biomass and trophic transfer efficiency, and (iii) the relationship between predator and prey diversity. We found higher prey diversity enhanced both diversity and biomass of predators, as well as trophic transfer efficiency, which may arise from more balanced diet and/or enhanced niche complementarity owing to higher prey diversity. By contrast, no clear effect was detected for predator diversity on prey biomass and transfer efficiency. Notably, we found prey diversity effects on predator-prey interactions; whereas, we found no significant diversity effect on biomass within the same trophic level. Our findings highlight the importance of considering multi-trophic biodiversity effects on ecosystem functioning in natural ecosystems.
Body size, trophic level, and the use of fish as transmission routes by parasites.
Poulin, R; Leung, T L F
2011-07-01
Within food webs, trophically transmitted helminth parasites use predator-prey links for their own transfer from intermediate prey hosts, in which they occur as larval or juvenile stages, to predatory definitive hosts, in which they reach maturity. In large taxa that can be used as intermediate and/or definitive hosts, such as fish, a host species' position within a trophic network should determine whether its parasite fauna consists mostly of adult or larval helminths, since vulnerability to predation determines an animal's role in predator-prey links. Using a large database on the helminth parasites of 303 fish species, we tested whether the proportion of parasite species in a host that occur as larval or juvenile stages is best explained by their trophic level or by their body size. Independent of fish phylogeny or habitat, only fish body length emerged as a significant predictor of the proportion of parasites in a host that occur as larval stages from our multivariate analyses. On average, the proportion of larval helminth taxa in fish shorter than 20 cm was twice as high as that for fish over 100 cm in length. This is consistent with the prediction that small fishes, being more vulnerable to predation, make better hosts for larval parasites. However, trophic level and body length are strongly correlated among fish species, and they may have separate though confounded effects on the parasite fauna exploiting a given species. Helminths show varying levels of host specificity toward their intermediate host when the latter is the downstream host involved in trophic transmission toward an upstream definitive host. Given this broad physiological compatibility of many helminths with fish hosts, our results indicate that fish body length, as a proxy for vulnerability to predators, is a better predictor of their use by helminth larvae than their trophic level based on diet content.
Nutrients, phytoplankton, zooplankton, and macrobenthos
Rudstam, Lars G.; Holeck, Kristen T.; Watkins, James M.; Hotaling, Christopher; Lantry, Jana R.; Bowen, Kelly L.; Munawar, Mohi; Weidel, Brian C.; Barbiero, Richard; Luckey, Frederick J.; Dove, Alice; Johnson, Timothy B.; Biesinger, Zy
2017-01-01
Lower trophic levels support the prey fish on which most sport fish depend. Therefore, understanding the production potential of lower trophic levels is integral to the management of Lake Ontario’s fishery resources. Lower trophic-level productivity differs among offshore and nearshore waters. In the offshore, there is concern about the ability of the lake to support Alewife (Table 1) production due to a perceived decline in productivity of phytoplankton and zooplankton whereas, in the nearshore, there is a concern about excessive attached algal production (e.g., Cladophora) associated with higher nutrient concentrations—the oligotrophication of the offshore and the eutrophication of the nearshore (Mills et al. 2003; Holeck et al. 2008; Dove 2009; Koops et al. 2015; Stewart et al. 2016). Even though the collapse of the Alewife population in Lake Huron in 2003 (and the associated decline in the Chinook Salmon fishery) may have been precipitated by a cold winter (Dunlop and Riley 2013), Alewife had not returned to high abundances in Lake Huron as of 2014 (Roseman et al. 2015). Failure of the Alewife population to recover from collapse has been attributed to declines in lower trophic-level production (Barbiero et al. 2011; Bunnell et al. 2014; but see He et al. 2015). In Lake Michigan, concerns of a similar Alewife collapse led to a decrease in the number of Chinook Salmon stocked. If lower trophic-level production declines in Lake Ontario, a similar management action could be considered. On the other hand, in Lake Erie, which supplies most of the water in Lake Ontario, eutrophication is increasing and so are harmful algal blooms. Thus, there is also a concern that nutrient levels and algal blooms could increase in Lake Ontario, especially in the nearshore. Solutions to the two processes of concern—eutrophication in the nearshore and oligotrophication in the offshore—may be mutually exclusive. In either circumstance, fisheries management needs information on the productivity of lower trophic levels in Lake Ontario. In this chapter, we review the status of lower trophic levels in Lake Ontario with special attention to the current (2008-2013) and previous (2003-2007) reporting periods. During the two reporting periods, three whole-lake surveys of lower trophic levels were conducted: the Lower Trophic Level Assessment (LOLA) in 2003 and 2008 (Makarewicz and Howell 2012; Munawar et al. 2015b) and the Cooperative Science and Management Initiative (CSMI) in 2013. Analyses of the CSMI data are ongoing. In addition to the three one-year sources of information on lower trophic levels, several multi-year sources of information are available, including data from the surveillance program conducted since 1965 by Environment Canada (EC) (Dove 2009), monitoring conducted since 1980 by the U.S. Environmental Protection Agency’s (EPA) Great Lakes National Program Office (GLNPO) (Barbiero et al. 2014; Reavie et al. 2014), sampling for a Bioindex Program at two stations, one offshore and one in the Eastern Basin, assessments of Mysis diluviana (formerly Mysis relicta) conducted since 1980 by Fisheries and Oceans Canada (Johannsson et al. 1998, 2011) and the Ontario Ministry of Natural Resources and Forestry (OMNRF), and monitoring conducted since 1995 by the Biomonitoring Program (BMP) on the New York side of the lake (Holeck et al. 2015b). The BMP is a collaboration of the New York State Department of Environmental Conservation (DEC), U.S. Fish and Wildlife Service, U.S. Geological Survey (USGS), and Cornell University.
Hydrology, water quality, trophic status, and aquatic plants of Fowler Lake, Wisconsin
Hughes, P.E.
1993-01-01
The low annual phosphorus input (28 pounds per square mile) to the lake from the Oconomowoc River shows the benefit of upstream lakes on the Oconomowoc River. Fourteen percent of the phosphorus input load to Fowler Lake is deposited in the lake sediments and the rest is transported through the lake by surface-water flow to downstream Lac La Belle. Dense growths of macrophytes in the lake change in composition seasonally; chara sp. (muskgrass) and Myriophyllum sp. (milfoil) are abundant in June and Najas marina and Vallesneria Americana (wild celery) are abundant in August.
Trophic look at soft-bottom communities - Short-term effects of trawling cessation on benthos
NASA Astrophysics Data System (ADS)
Dannheim, Jennifer; Brey, Thomas; Schröder, Alexander; Mintenbeck, Katja; Knust, Rainer; Arntz, Wolf E.
2014-01-01
The trophic structure of the German Bight soft-bottom benthic community was evaluated for potential changes after cessation of bottom trawling. Species were collected with van-Veen grabs and beam trawls. Trophic position (i.e. nitrogen stable isotope ratios, δ15N) and energy flow (i.e. species metabolism approximated by body mass scaled abundance) of dominant species were compared in trawled areas and an area protected from fisheries for 14 months in order to detect trawling cessation effects by trophic characteristics. At the community level, energy flow was lower in the protected area, but we were unable to detect significant changes in trophic position. At the species level energy flow in the protected area was lower for predating/scavenging species but higher for interface feeders. Species trophic positions of small predators/scavengers were lower and of deposit feeders higher in the protected area. Major reasons for trophic changes after trawling cessation may be the absence of artificial and additional food sources from trawling likely to attract predators and scavengers, and the absence of physical sediment disturbance impacting settlement/survival of less mobile species and causing a gradual shift in food availability and quality. Our results provide evidence that species or community energy flow is a good indicator to detect trawling induced energy-flow alterations in the benthic system, and that in particular species trophic properties are suitable to capture subtle and short-term changes in the benthos following trawling cessation.
Status of Lake Superior’s lower trophic levels
To meet the Fish Community Objectives set for Lake Superior by the Great Lakes Fishery Commission, a key factor is the condition of the lower food web that supports productivity of fisheries. To assess the condition of lower trophic levels and inform the Lake Superior Technical C...
Brasso, Rebecka L; Chiaradia, André; Polito, Michael J; Raya Rey, Andrea; Emslie, Steven D
2015-08-15
The wide geographic distribution of penguins (Order Sphenisciformes) throughout the Southern Hemisphere provided a unique opportunity to use a single taxonomic group as biomonitors of mercury among geographically distinct marine ecosystems. Mercury concentrations were compared among ten species of penguins representing 26 geographically distinct breeding populations. Mercury concentrations were relatively low (⩽2.00ppm) in feathers from 18/26 populations considered. Population-level differences in trophic level explained variation in mercury concentrations among Little, King, and Gentoo penguin populations. However, Southern Rockhopper and Magellanic penguins breeding on Staten Island, Tierra del Fuego, had the highest mercury concentrations relative to their conspecifics despite foraging at a lower trophic level. The concurrent use of stable isotope and mercury data allowed us to document penguin populations at the greatest risk of exposure to harmful concentrations of mercury as a result of foraging at a high trophic level or in geographic 'hot spots' of mercury availability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of temperature variability on community structure in a natural microbial food web.
Zander, Axel; Bersier, Louis-Félix; Gray, Sarah M
2017-01-01
Climate change research has demonstrated that changing temperatures will have an effect on community-level dynamics by altering species survival rates, shifting species distributions, and ultimately, creating mismatches in community interactions. However, most of this work has focused on increasing temperature, and still little is known about how the variation in temperature extremes will affect community dynamics. We used the model aquatic community held within the leaves of the carnivorous plant, Sarracenia purpurea, to test how food web dynamics will be affected by high temperature variation. We tested the community response of the first (bacterial density), second (protist diversity and composition), and third trophic level (predator mortality), and measured community respiration. We collected early and late successional stage inquiline communities from S. purpurea from two North American and two European sites with similar average July temperature. We then created a common garden experiment in which replicates of these communities underwent either high or normal daily temperature variation, with the average temperature equal among treatments. We found an impact of temperature variation on the first two, but not on the third trophic level. For bacteria in the high-variation treatment, density experienced an initial boost in growth but then decreased quickly through time. For protists in the high-variation treatment, alpha-diversity decreased faster than in the normal-variation treatment, beta-diversity increased only in the European sites, and protist community composition tended to diverge more in the late successional stage. The mortality of the predatory mosquito larvae was unaffected by temperature variation. Community respiration was lower in the high-variation treatment, indicating a lower ecosystem functioning. Our results highlight clear impacts of temperature variation. A more mechanistic understanding of the effects that temperature, and especially temperature variation, will have on community dynamics is still greatly needed. © 2016 John Wiley & Sons Ltd.
Boosted food web productivity through ocean acidification collapses under warming.
Goldenberg, Silvan U; Nagelkerken, Ivan; Ferreira, Camilo M; Ullah, Hadayet; Connell, Sean D
2017-10-01
Future climate is forecast to drive bottom-up (resource driven) and top-down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over-reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three-level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO 2 and elevated temperature boosted primary production. Under elevated CO 2 , the enhanced bottom-up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO 2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO 2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production. © 2017 John Wiley & Sons Ltd.
Magalhães, Catarina; Stevens, Mark I.; Cary, S. Craig; Ball, Becky A.; Storey, Bryan C.; Wall, Diana H.; Türk, Roman; Ruprecht, Ulrike
2012-01-01
Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the geological morphology and soil geochemistry in the remote Transantarctic Mountains (Darwin Mountains, 80°S). We examined the distribution and diversity of biota (bacteria, cyanobacteria, lichens, algae, invertebrates) with respect to elevation, age of glacial drift sheets, and soil physicochemistry. Results showed an abiotic spatial gradient with respect to the diversity of the organisms across different trophic levels. More complex communities, in terms of trophic level diversity, were related to the weakly developed younger drifts (Hatherton and Britannia) with higher soil C/N ratio and lower total soluble salts content (thus lower conductivity). Our results indicate that an increase of ion concentration from younger to older drift regions drives a succession of complex to more simple communities, in terms of number of trophic levels and diversity within each group of organisms analysed. This study revealed that integrating diversity across multi-trophic levels of biotic communities with abiotic spatial heterogeneity and geological history is fundamental to understand environmental constraints influencing biological distribution in Antarctic soil ecosystems. PMID:23028563
Marvin-DiPasquale, Mark C.; Lutz, Michelle A.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.; DeWild, John F.; Brigham, Mark E.
2008-01-01
Mercury contamination of aquatic ecosystems is an issue of national concern, affecting both wildlife and human health. Detailed information on mercury cycling and food-web bioaccumulation in stream settings and the factors that control these processes is currently limited. In response, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) conducted detailed studies from 2002 to 2006 on various media to enhance process-level understanding of mercury contamination, biogeochemical cycling, and trophic transfer. Eight streams were sampled for this study: two streams in Oregon, and three streams each in Wisconsin and Florida. Streambed-sediment and pore-water samples were collected between February 2003 and September 2004. This report summarizes the suite of geochemical and microbial constituents measured, the analytical methods used, and provides the raw data in electronic form for both bed-sediment and pore-water media associated with this study.
Low-Reynolds-number swimming at pycnoclines.
Doostmohammadi, Amin; Stocker, Roman; Ardekani, Arezoo M
2012-03-06
Microorganisms play pivotal functions in the trophic dynamics and biogeochemistry of aquatic ecosystems. Their concentrations and activities often peak at localized hotspots, an important example of which are pycnoclines, where water density increases sharply with depth due to gradients in temperature or salinity. At pycnoclines organisms are exposed to different environmental conditions compared to the bulk water column, including reduced turbulence, slow mass transfer, and high particle and predator concentrations. Here we show that, at an even more fundamental level, the density stratification itself can affect microbial ecology at pycnoclines, by quenching the flow signature, increasing the energetic expenditure, and stifling the nutrient uptake of motile organisms. We demonstrate this through numerical simulations of an archetypal low-Reynolds-number swimmer, the "squirmer." We identify the Richardson number--the ratio of buoyancy forces to viscous forces--as the fundamental parameter that quantifies the effects of stratification. These results demonstrate an unexpected effect of buoyancy on low-Reynolds-number swimming, potentially affecting a broad range of abundant organisms living at pycnoclines in oceans and lakes.
Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O
2013-02-01
Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change.
Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O
2013-01-01
Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change. PMID:23467451
mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling.
Scott, Finlay; Blanchard, Julia L; Andersen, Ken H
2014-10-01
Size spectrum ecological models are representations of a community of individuals which grow and change trophic level. A key emergent feature of these models is the size spectrum; the total abundance of all individuals that scales negatively with size. The models we focus on are designed to capture fish community dynamics useful for assessing the community impacts of fishing.We present mizer , an R package for implementing dynamic size spectrum ecological models of an entire aquatic community subject to fishing. Multiple fishing gears can be defined and fishing mortality can change through time making it possible to simulate a range of exploitation strategies and management options. mizer implements three versions of the size spectrum modelling framework: the community model, where individuals are only characterized by their size; the trait-based model, where individuals are further characterized by their asymptotic size; and the multispecies model where additional trait differences are resolved.A range of plot, community indicator and summary methods are available to inspect the results of the simulations.
de Mutsert, Kim; Cowan, James H; Essington, Timothy E; Hilborn, Ray
2008-02-19
We used two high profile articles as cases to demonstrate that use of fishery landings data can lead to faulty interpretations about the condition of fishery ecosystems. One case uses the mean trophic level index and its changes, and the other uses estimates of fishery collapses. In earlier analyses by other authors, marine ecosystems in the Gulf of Mexico (GOM) and U.S. Atlantic Ocean south of Chesapeake Bay were deemed to be severely overfished and the food webs badly deteriorated using these criteria. In our reanalyses, the low mean trophic level index for the GOM actually resulted from large catches of two groups of low trophic level species, menhaden and shrimp, and the mean trophic level was slowly increasing rather than decreasing. Commercial targeting and high landings of shrimps and menhaden, especially in the GOM, drove the index as previously calculated. Reanalyses of fishery collapses incorporating criteria that included targeting, variability in fishing effort, and market forces discovered many false cases of collapse based simply upon a decline of catches to 10% of previous maximum levels. Consequently, we suggest that the low mean trophic level index calculated in the earlier article for the GOM did not reflect the overall condition of the fishery ecosystem, and that the 10% rule for collapse should not be interpreted out of context in the GOM or elsewhere. In both cases, problems lay in the assumption that commercial landings data alone adequately reflect the fish populations and communities.
Impacts of fishing low-trophic level species on marine ecosystems.
Smith, Anthony D M; Brown, Christopher J; Bulman, Catherine M; Fulton, Elizabeth A; Johnson, Penny; Kaplan, Isaac C; Lozano-Montes, Hector; Mackinson, Steven; Marzloff, Martin; Shannon, Lynne J; Shin, Yunne-Jai; Tam, Jorge
2011-08-26
Low-trophic level species account for more than 30% of global fisheries production and contribute substantially to global food security. We used a range of ecosystem models to explore the effects of fishing low-trophic level species on marine ecosystems, including marine mammals and seabirds, and on other commercially important species. In five well-studied ecosystems, we found that fishing these species at conventional maximum sustainable yield (MSY) levels can have large impacts on other parts of the ecosystem, particularly when they constitute a high proportion of the biomass in the ecosystem or are highly connected in the food web. Halving exploitation rates would result in much lower impacts on marine ecosystems while still achieving 80% of MSY.
Preston, Daniel L; Jacobs, Abigail Z; Orlofske, Sarah A; Johnson, Pieter T J
2014-03-01
Most food webs use taxonomic or trophic species as building blocks, thereby collapsing variability in feeding linkages that occurs during the growth and development of individuals. This issue is particularly relevant to integrating parasites into food webs because parasites often undergo extreme ontogenetic niche shifts. Here, we used three versions of a freshwater pond food web with varying levels of node resolution (from taxonomic species to life stages) to examine how complex life cycles and parasites alter web properties, the perceived trophic position of organisms, and the fit of a probabilistic niche model. Consistent with prior studies, parasites increased most measures of web complexity in the taxonomic species web; however, when nodes were disaggregated into life stages, the effects of parasites on several network properties (e.g., connectance and nestedness) were reversed, due in part to the lower trophic generality of parasite life stages relative to free-living life stages. Disaggregation also reduced the trophic level of organisms with either complex or direct life cycles and was particularly useful when including predation on parasites, which can inflate trophic positions when life stages are collapsed. Contrary to predictions, disaggregation decreased network intervality and did not enhance the fit of a probabilistic niche model to the food webs with parasites. Although the most useful level of biological organization in food webs will vary with the questions of interest, our results suggest that disaggregating species-level nodes may refine our perception of how parasites and other complex life cycle organisms influence ecological networks.
Watanabe, Fernanda Sayuri Yoshino; Alcântara, Enner; Rodrigues, Thanan Walesza Pequeno; Imai, Nilton Nobuhiro; Barbosa, Cláudio Clemente Faria; Rotta, Luiz Henrique da Silva
2015-01-01
Reservoirs are artificial environments built by humans, and the impacts of these environments are not completely known. Retention time and high nutrient availability in the water increases the eutrophic level. Eutrophication is directly correlated to primary productivity by phytoplankton. These organisms have an important role in the environment. However, high concentrations of determined species can lead to public health problems. Species of cyanobacteria produce toxins that in determined concentrations can cause serious diseases in the liver and nervous system, which could lead to death. Phytoplankton has photoactive pigments that can be used to identify these toxins. Thus, remote sensing data is a viable alternative for mapping these pigments, and consequently, the trophic. Chlorophyll-a (Chl-a) is present in all phytoplankton species. Therefore, the aim of this work was to evaluate the performance of images of the sensor Operational Land Imager (OLI) onboard the Landsat-8 satellite in determining Chl-a concentrations and estimating the trophic level in a tropical reservoir. Empirical models were fitted using data from two field surveys conducted in May and October 2014 (Austral Autumn and Austral Spring, respectively). Models were applied in a temporal series of OLI images from May 2013 to October 2014. The estimated Chl-a concentration was used to classify the trophic level from a trophic state index that adopted the concentration of this pigment-like parameter. The models of Chl-a concentration showed reasonable results, but their performance was likely impaired by the atmospheric correction. Consequently, the trophic level classification also did not obtain better results. PMID:26322489
NASA Astrophysics Data System (ADS)
Boyette, A.; Redalje, D.; Krause, J. W.; Graham, W. M.
2016-02-01
Plankton thin layers (PTLs) serve as trophic hot spots and have significant impacts on regional aquatic food webs. While much of the physical and biological dynamics associated with PTL formation, persistence, and dissipation have been examined, less is known about the variability in phytoplankton-productivity and microzooplankton-grazing rates. Thus, our overarching research objectives were to describe the trophic interactions between single-celled autrotrophic and heterotrophic eukaryotes (protists) within PTLs in the Mississippi Bight (MB). Specific objectives were to describe phytoplankton photosynthetic potential using photosynthesis-irradiance (P-E) parameters, quantify protist-grazing rates, and identify microplankton (20-200 µm) species and their particle characteristics (e.g. biovolume) using imaging flow cytometry (FlowCAM®). Although PTLs are ephemeral features, they may account for a considerable fraction of total water column primary production and contain a significant fraction of water-column integrated autotrophic biomass. The research presented here will fill information gaps in PTL dynamics, and will serve to calibrate regional ecological models that are key to our visualization of energy flows within this ecosystem.
Occurrence and amount of microplastic ingested by fishes in watersheds of the Gulf of Mexico.
Phillips, Melissa B; Bonner, Timothy H
2015-11-15
Ingestion of microplastics by fishes could be an emerging environmental crisis because of the proliferation of plastic pollution in aquatic environments. Microplastics in marine ecosystems are well documented, however only one study has reported percent occurrence of microplastics in freshwater fishes. The purpose of this study was to quantify the occurrences and types of microplastics ingested by fishes within several freshwater drainages of the Gulf of Mexico and an estuary of the Gulf of Mexico. Among 535 fishes examined in this study, 8% of the freshwater fishes and 10% of the marine fishes had microplastics in their gut tract. Percentage occurrence of microplastics ingested by fishes in non-urbanized streams (5%) was less than that of one of the urbanized streams (Neches River; 29%). Percent occurrence of microplastics by habitat (i.e., benthic, pelagic) and trophic guilds (herbivore/omnivore, invertivore, carnivore) were similar. Low but widespread occurrences among drainages, habitat guilds, and trophic guilds indicate proliferation of plastic pollution within watersheds of the Gulf of Mexico, but consequences to fish health are unknown at this time. Copyright © 2015 Elsevier Ltd. All rights reserved.
Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.
Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K
2017-03-01
Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Montori, Albert; Tierno de Figueroa, J. Manuel; Santos, Xavier
2006-10-01
We investigated the autumnal diet of the brown trout Salmo trutta, in a Prepyrenean stream (NW Iberian Peninsula) focusing on intraspecific dietary differences related to size and sex. The diet of trout included 18 types of prey, with Plecoptera and Ephemeroptera nymphs and Diptera larvae as the most consumed taxa. Large trout ate larger prey, than did small trout, and also increased the consumption of terrestrial-surface prey with respect to aquatic-benthic prey. As terrestrial-surface preys were larger than aquatic-benthic prey, the size-related differences in the diet of trout were related to gape-limitations. Although male and female trout did not differ in size, we found that males foraged on a more diverse type of prey than females, probably owing to male territoriality during the reproductive period. This study provides new evidence of dietary plasticity in the brown trout and confirms the importance of local dietary studies to better understand factors which drive trophic ecology of predators.
Woodcock, Paul; Edwards, David P.; Newton, Rob J.; Vun Khen, Chey; Bottrell, Simon H.; Hamer, Keith C.
2013-01-01
Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging. These food webs appear able to bend without breaking in the face of some forms of anthropogenic disturbance. PMID:23593302
Woodcock, Paul; Edwards, David P; Newton, Rob J; Vun Khen, Chey; Bottrell, Simon H; Hamer, Keith C
2013-01-01
Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging. These food webs appear able to bend without breaking in the face of some forms of anthropogenic disturbance.
Trophic models: What do we learn about Celtic Sea and Bay of Biscay ecosystems?
NASA Astrophysics Data System (ADS)
Moullec, Fabien; Gascuel, Didier; Bentorcha, Karim; Guénette, Sylvie; Robert, Marianne
2017-08-01
Trophic models are key tools to go beyond the single-species approaches used in stock assessments to adopt a more holistic view and implement the Ecosystem Approach to Fisheries Management (EAFM). This study aims to: (i) analyse the trophic functioning of the Celtic Sea and the Bay of Biscay, (ii) investigate ecosystem changes over the 1980-2013 period and, (iii) explore the response to management measures at the food web scale. Ecopath models were built for each ecosystem for years 1980 and 2013, and Ecosim models were fitted to time series data of biomass and catches. EcoTroph diagnosis showed that in both ecosystems, fishing pressure focuses on high trophic levels (TLs) and, to a lesser extent, on intermediate TLs. However, the interplay between local environmental conditions, species composition and ecosystem functioning could explain the different responses to fisheries management observed between these two contiguous ecosystems. Indeed, over the study period, the ecosystem's exploitation status has improved in the Bay of Biscay but not in the Celtic Sea. This improvement does not seem to be sufficient to achieve the objectives of an EAFM, as high trophic levels were still overexploited in 2013 and simulations conducted with Ecosim in the Bay of Biscay indicate that at current fishing effort the biomass will not be rebuilt by 2030. The ecosystem's response to a reduction in fishing mortality depends on which trophic levels receive protection. Reducing fishing mortality on pelagic fish, instead of on demersal fish, appears more efficient at maximising catch and total biomass and at conserving both top-predator and intermediate TLs. Such advice-oriented trophic models should be used on a regular basis to monitor the health status of marine food webs and analyse the trade-offs between multiple objectives in an ecosystem-based fisheries management context.
The Influence of Terrestrial Matter in Marine Food Webs of the Beaufort Sea Shelf and Slope
NASA Astrophysics Data System (ADS)
Bell, L.; Iken, K.; Bluhm, B.
2016-02-01
Forecasted increases in terrestrial organic matter (OMterr) inputs to the Beaufort Sea necessitate a better understanding of the contribution of this organic matter food source to the trophic structure of marine communities. This study investigated the relative ecological importance of OMterr across the Beaufort Sea shelf and slope by examining differences in community trophic structure concurrent with variation in terrestrial versus marine organic matter influence. Interannual variability in organism trophic level was assessed to confirm the persistent impact of these large-scale patterns in food source distribution on marine consumers. Oxygen stable isotope ratios (δ18O) of surface water confirmed the widespread influence of Canada's Mackenzie River plume across the Beaufort Sea. Carbon stable isotope ratios (δ13C values) of pelagic particulate organic matter (pPOM) and marine consumers from locations ranging from 20 to 1000 m bottom depth revealed a strong isotopic imprint of OMterr in the eastern Beaufort Sea, which decreased westward from the Mackenzie River. Food web length, based on the nitrogen stable isotope ratios (δ15N values) of marine consumers, was greater closer to the Mackenzie River outflow both in shelf and slope locations due to relatively higher δ15N values of pelagic and benthic primary consumers. Strong microbial processing of OMterr in the eastern regions of the Beaufort Sea is inferred based on a trophic gap between sources and lower trophic consumers. A large proportion of epifaunal biomass occupying higher trophic levels suggests that OMterr as a basal food source can provide substantial energetic support for higher marine trophic levels. These findings support the concept that terrestrial matter is an important source in the Arctic marine food web, and compel a more specific understanding of energy transfer through the OMterr-associated microbial loop.
The dynamics of methane emissions in Alaskan peatlands at different trophic levels
NASA Astrophysics Data System (ADS)
Zhang, L.; Liu, X.; Langford, L.; Chanton, J.; Hines, M. E.
2016-12-01
One major uncertainty in estimating methane (CH4) emission from wetlands is extrapolating from highly heterogeneous and inadequately studied local sites to larger scales. The heterogeneity of peatlands comes from contrasting surface vegetation compositions within short distances that are usually associated with different nutrient sources and trophic status. Different microbial communities and metabolic pathways occur at different trophic levels. Stable isotope C ratios (δ13C) have been used as a robust tool to distinguish methanogenic pathways, but different sources of parent compounds (acetate and CO2) with unique δ13C signatures, and unresolved fractionation factors associated with different methanogens, add complexity. To better understand the relationships between trophic status, surface vegetation compositions and methanogenic pathways, 28 peatland sites were studied in Fairbanks and Anchorage, Alaska in the summer of 2015. These sites were ordinated using multiple factor analysis into 3 clusters based on pH, temp, CH4 and volatile fatty acids production rates, δ13C values, and surface vegetation composition. In the low-pH trophic cluster (pH 4.2), Sphagnum fuscum was the dominant species with specific sedges (Ledum decumbens), and primary fermentation rates was slow with no CH4 detected. In the intermediate trophic level (pH 5.3), in which Sphagnum magellanicum was largely present, both hydrogenotrophic (HM) and acetoclastic methanogenesis (AM) were very active. Syntrophy was present at certain sites, which may provide CO2 and acetate with unique δ13C for CH4 production. At the highest pH trophic cluster examined in this study (pH 5.8), Carex tenuiflora, Carex aquatilis, and Sphagnum Squarrosum dominated. CH4 production rates were higher than those in the intermediate cluster and the apparent fractionation factor a was lower.
Burian, Alfred; Kainz, Martin J; Schagerl, Michael; Yasindi, Andrew
2014-06-01
1. The analysis of functional groups with a resolution to the individual species level is a basic requirement to better understand complex interactions in aquatic food webs. Species-specific stable isotope analyses are currently applied to analyse the trophic role of large zooplankton or fish species, but technical constraints complicate their application to smaller-sized plankton. 2. We investigated rotifer food assimilation during a short-term microzooplankton bloom in the East African soda lake Nakuru by developing a method for species-specific sampling of rotifers. 3. The two dominant rotifers, Brachionus plicatilis and Brachionus dimidiatus , were separated to single-species samples (purity >95%) and significantly differed in their isotopic values (4.1‰ in δ 13 C and 1.5‰ in δ 15 N). Bayesian mixing models indicated that isotopic differences were caused by different assimilation of filamentous cyanobacteria and particles <2 μm and underlined the importance of species-specific sampling of smaller plankton compartments. 4. A main difference was that the filamentous cyanobacterium Arthrospira fusiformis , which frequently forms blooms in African soda lakes, was an important food source for the larger-sized B. plicatilis (48%), whereas it was hardly ingested by B. dimidiatus . Overall, A . fusiformis was, relative to its biomass, assimilated to small extents, demonstrating a high grazing resistance of this species. 5. In combination with high population densities, these results demonstrate a strong potential of rotifer blooms to shape phytoplankton communities and are the first in situ demonstration of a quantitatively important direct trophic link between rotifers and filamentous cyanobacteria.
Burian, Alfred; Kainz, Martin J; Schagerl, Michael; Yasindi, Andrew
2014-01-01
1. The analysis of functional groups with a resolution to the individual species level is a basic requirement to better understand complex interactions in aquatic food webs. Species-specific stable isotope analyses are currently applied to analyse the trophic role of large zooplankton or fish species, but technical constraints complicate their application to smaller-sized plankton. 2. We investigated rotifer food assimilation during a short-term microzooplankton bloom in the East African soda lake Nakuru by developing a method for species-specific sampling of rotifers. 3. The two dominant rotifers, Brachionus plicatilis and Brachionus dimidiatus, were separated to single-species samples (purity >95%) and significantly differed in their isotopic values (4.1‰ in δ13C and 1.5‰ in δ15N). Bayesian mixing models indicated that isotopic differences were caused by different assimilation of filamentous cyanobacteria and particles <2 μm and underlined the importance of species-specific sampling of smaller plankton compartments. 4. A main difference was that the filamentous cyanobacterium Arthrospira fusiformis, which frequently forms blooms in African soda lakes, was an important food source for the larger-sized B. plicatilis (48%), whereas it was hardly ingested by B. dimidiatus. Overall, A. fusiformis was, relative to its biomass, assimilated to small extents, demonstrating a high grazing resistance of this species. 5. In combination with high population densities, these results demonstrate a strong potential of rotifer blooms to shape phytoplankton communities and are the first in situ demonstration of a quantitatively important direct trophic link between rotifers and filamentous cyanobacteria. PMID:25866422
Mycosporine-like amino acids are multifunctional molecules in sea hares and their marine community
Kicklighter, Cynthia E.; Kamio, Michiya; Nguyen, Linh; Germann, Markus W.; Derby, Charles D.
2011-01-01
Molecules of keystone significance are relatively rare, yet mediate a variety of interactions between organisms. They influence the distribution and abundance of species, the transfer of energy across multiple trophic levels, and thus they play significant roles in structuring ecosystems. Despite their potential importance in facilitating our understanding of ecological systems, only three molecules thus far have been proposed as molecules of keystone significance: saxitoxin and dimethyl sulfide in marine communities and tetrodotoxin in riparian communities. In the course of studying the neuroecology of chemical defenses, we identified three mycosporine-like amino acids (MAAs)—N-ethanol palythine (= asterina-330), N-isopropanol palythine (= aplysiapalythine A), and N-ethyl palythine (= aplysiapalythine B)—as intraspecific alarm cues for sea hares (Aplysia californica). These alarm cues are released in the ink secretion of sea hares and cause avoidance behaviors in neighboring conspecifics. Further, we show that these three bioactive MAAs, two [aplysiapalythine A (APA) and -B (APB)] being previously unknown molecules, are present in the algal diet of sea hares and are concentrated in their defensive secretion as well as in their skin. MAAs are known to be produced by algae, fungi, and cyanobacteria and are acquired by many aquatic animals through trophic interactions. MAAs are widely used as sunscreens, among other uses, but sea hares modify their function to serve a previously undocumented role, as intraspecific chemical cues. Our findings highlight the multifunctionality of MAAs and their role in ecological connectivity, suggesting that they may function as molecules of keystone significance in marine ecosystems. PMID:21709250
NASA Astrophysics Data System (ADS)
Churchill, Diana A.; Heithaus, Michael R.; Vaudo, Jeremy J.; Grubbs, R. Dean; Gastrich, Kirk; Castro, José I.
2015-05-01
Deep-water sharks are abundant and widely distributed in the northern and eastern Gulf of Mexico. As mid- and upper-level consumers that can range widely, sharks likely are important components of deep-sea communities and their trophic interactions may serve as system-wide baselines that could be used to monitor the overall health of these communities. We investigated the trophic interactions of deep-sea sharks using a combination of stable isotope (δ13C and δ15N) and stomach content analyses. Two hundred thirty-two muscle samples were collected from elasmobranchs captured off the bottom at depths between 200 and 1100 m along the northern slope (NGS) and the west Florida slope (WFS) of the Gulf of Mexico during 2011 and 2012. Although we detected some spatial, temporal, and interspecific variation in apparent trophic positions based on stable isotopes, there was considerable isotopic overlap among species, between locations, and through time. Overall δ15N values in the NGS region were higher than in the WFS. The δ15N values also increased between April 2011 and 2012 in the NGS, but not the WFS, within Squalus cf. mitsukurii. We found that stable isotope values of S. cf. mitsukurii, the most commonly captured elasmobranch, varied between sample regions, through time, and also with sex and size. Stomach content analysis (n=105) suggested relatively similar diets at the level of broad taxonomic categories of prey among the taxa with sufficient sample sizes. We did not detect a relationship between body size and relative trophic levels inferred from δ15N, but patterns within several species suggest increasing trophic levels with increasing size. Both δ13C and δ15N values suggest a substantial degree of overlap among most deep-water shark species. This study provides the first characterization of the trophic interactions of deep-sea sharks in the Gulf of Mexico and establishes system baselines for future investigations.
Rico-Sánchez, Axel Eduardo; Rodríguez-Romero, Alexis Joseph; López-López, Eugenia; Sedeño-Díaz, Jacinto Elías
2014-04-01
Lake Tecocomulco, Hidalgo, is a relic of the ancient lakes ofAnahuac, important for the conservation of resident and migratory birds. However, the composition of aquatic macroinvertebrates is unknown; this is an important gap in conservation as they play an important role in the food web. This study analyzed the spatial and temporal variations in macroinvertebrate assemblages and their relationship with habitat characteristics. We carried out four monitoring campaigns covering the rainy and dry seasons. The monitoring was conducted at six study sites (four in the littoral zone and two in the middle part of the lake), environmental factors were recorded at each study site, water samples were collected for their physical and chemical analysis and aquatic macroinvertebrates were collected. A principal component analysis (PCA) was used to group study sites based on physical and chemical characteristics. Richness of taxa was analysed with rarefaction. We assessed the importance value index of each taxon (considering their frequency of occurrence and abundance). Similarity analyzes were performed between study sites and similarity of taxa with indices of Jaccard and Bray-Curtis, respectively. We performed a canonical correspondence analysis (CCA) between environmental factors and macroinvertebrate taxa. The PCA showed a marked seasonal variation represented by warm periods, with high values of conductivity, alkalinity, hardness, sulfates, and macronutrients (N and P) and the cold period with low values. We found a total of 26 taxa of aquatic macroinvertebrates and the highest richness was found in August. The Jaccard similarity analysis found differences between the littoral area and the limnetic zone, which differ also in the composition of macrophytes. The littoral zone had the highest taxa richness of macroinvertebrates and macrophytes, while the lowest diversity was found in the offshore zone. The CCA related physicochemical characteristics of the water body with macroinvertebrate taxa showing the influence of both physicochemical characteristics and the composition of macrophytes in the spatio-temporal patterns of aquatic macroinvertebrates in the lake. The dominance of Corixidae highlights a strong grazing activity in the lake and in turn suggests an important amount of food available for higher trophic levels. Our study shows that the macroinvertebrates of Tecocomulco Lake have spatial and seasonal variations that are related to both environmental and biotic factors with groups being dominant.
Rodríguez-Preciado, José A; Amezcua, Felipe; Bellgraph, Brian; Madrid-Vera, Juan
2014-01-01
The Panama grunt is an abundant and commercially important species in the southeastern Gulf of California, but the research undertaken on this species is scarce despite its ecological and economic importance. We studied the feeding habits of Panama grunt through stomach content analyses as a first step towards understanding the biology of this species in the study area. Our results indicate that the Panama grunt is a benthic predator throughout its life cycle and feeds mainly on infaunal crustaceans. Diet differences among grunt were not found according to size, diet, or season. Shannon diversity index results indicate that Panama grunt has a limited trophic niche breadth with a diet dominated by a limited number of taxa as crustaceans. The estimated trophic level of this species is 3.59. Overall, the Panama grunt is a carnivorous fish occupying the intermediate levels of the trophic pyramid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Preciado, Jose A.; Amezcua-Martinez, Felipe; Bellgraph, Brian J.
The Panama grunt is an abundant and commercially important species in the SE Gulf of California, but the research undertaken on this species is scarce despite its ecological and economic importance. We studied the feeding habits of Panama grunt through stomach content analyses as a first step towards understanding the biology of this species in the study area. Our results show that the Panama grunt is a benthic predator throughout its life cycle and feeds mainly on infaunal crustaceans. Diet differences were not found according to size, diet or season. Shannon diversity index results indicate that Panama grunt have amore » limited trophic niche breadth with a diet dominated by a limited number of taxa. The estimated trophic level of this species is 3.59. Overall, the Panama grunt is a carnivorous fish occupying the intermediate levels of the trophic pyramid.« less
Predator decline leads to decreased stability in a coastal fish community.
Britten, Gregory L; Dowd, Michael; Minto, Cóilín; Ferretti, Francesco; Boero, Ferdinando; Lotze, Heike K
2014-12-01
Fisheries exploitation has caused widespread declines in marine predators. Theory predicts that predator depletion will destabilise lower trophic levels, making natural communities more vulnerable to environmental perturbations. However, empirical evidence has been limited. Using a community matrix model, we empirically assessed trends in the stability of a multispecies coastal fish community over the course of predator depletion. Three indices of community stability (resistance, resilience and reactivity) revealed significantly decreasing stability concurrent with declining predator abundance. The trophically downgraded community exhibited weaker top-down control, leading to predator-release processes in lower trophic levels and increased susceptibility to perturbation. At the community level, our results suggest that high predator abundance acts as a stabilising force to the naturally stochastic and highly autocorrelated dynamics in low trophic species. These findings have important implications for the conservation and management of predators in marine ecosystems and provide empirical support for the theory of predatory control. © 2014 John Wiley & Sons Ltd/CNRS.
Food Web Topology in High Mountain Lakes
Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne
2015-01-01
Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235
Food Web Topology in High Mountain Lakes.
Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne
2015-01-01
Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels.
Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu
2016-01-01
Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Trophic magnification of PCBs and its relationship to the octanol-water partition coefficient
Walters, D.M.; Mills, M.A.; Cade, B.S.; Burkard, L.P.
2011-01-01
We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (KOW) and organism trophic position (TP) at the Lake Hartwell Superfund site (South Carolina). We measured PCBs (127 congeners) and stable isotopes (??15N) in sediment, organic matter, phytoplankton, zooplankton, macroinvertebrates, and fish. TP, as calculated from ??15N, was significantly, positively related to PCB concentrations, and food web trophic magnification factors (TMFs) ranged from 1.5-6.6 among congeners. TMFs of individual congeners increased strongly with log KOW, as did the predictive power (r2) of individual TP-PCB regression models used to calculate TMFs. We developed log KOW-TMF models for eight food webs with vastly different environments (freshwater, marine, arctic, temperate) and species composition (cold- vs warmblooded consumers). The effect of KOW on congener TMFs varied strongly across food webs (model slopes 0.0-15.0) because the range of TMFs among studies was also highly variable. We standardized TMFs within studies to mean = 0, standard deviation (SD) = 1 to normalize for scale differences and found a remarkably consistent KOW effect on TMFs (no difference in model slopes among food webs). Our findings underscore the importance of hydrophobicity (as characterized by KOW) in regulating bioaccumulation of recalcitrant compounds in aquatic systems, and demonstrate that relationships between chemical KOW and bioaccumulation from field studies are more generalized than previously recognized. ?? This article not subject to U.S. Copyright. Published 2011 by the American Chemical Society.
Trophic magnification of PCBs and Its relationship to the octanol-water partition coefficient.
Walters, David M; Mills, Marc A; Cade, Brian S; Burkard, Lawrence P
2011-05-01
We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (K(OW)) and organism trophic position (TP) at the Lake Hartwell Superfund site (South Carolina). We measured PCBs (127 congeners) and stable isotopes (δ¹⁵N) in sediment, organic matter, phytoplankton, zooplankton, macroinvertebrates, and fish. TP, as calculated from δ¹⁵N, was significantly, positively related to PCB concentrations, and food web trophic magnification factors (TMFs) ranged from 1.5-6.6 among congeners. TMFs of individual congeners increased strongly with log K(OW), as did the predictive power (r²) of individual TP-PCB regression models used to calculate TMFs. We developed log K(OW)-TMF models for eight food webs with vastly different environments (freshwater, marine, arctic, temperate) and species composition (cold- vs warmblooded consumers). The effect of K(OW) on congener TMFs varied strongly across food webs (model slopes 0.0-15.0) because the range of TMFs among studies was also highly variable. We standardized TMFs within studies to mean = 0, standard deviation (SD) = 1 to normalize for scale differences and found a remarkably consistent K(OW) effect on TMFs (no difference in model slopes among food webs). Our findings underscore the importance of hydrophobicity (as characterized by K(OW)) in regulating bioaccumulation of recalcitrant compounds in aquatic systems, and demonstrate that relationships between chemical K(OW) and bioaccumulation from field studies are more generalized than previously recognized.
Trophic state, eutrophication and nutrient criteria in streams.
Dodds, Walter K
2007-12-01
Trophic state is the property of energy availability to the food web and defines the foundation of community integrity and ecosystem function. Describing trophic state in streams requires a stoichiometric (nutrient ratio) approach because carbon input rates are linked to nitrogen and phosphorus supply rates. Light determines the source of carbon. Cross system analyses, small experiments and ecosystem level manipulations have recently advanced knowledge about these linkages, but not to the point of building complex predictive models that predict all effects of nutrient pollution. Species diversity could indicate the natural distribution of stream trophic status over evolutionary time scales. Delineation of factors that control trophic state and relationships with biological community properties allows determination of goals for management of stream biotic integrity.
Comparing an ecosystem approach to single-species stock assessment: The case of Gazi Bay, Kenya
NASA Astrophysics Data System (ADS)
Tuda, Paul M.; Wolff, Matthias
2018-08-01
Gazi Bay located on the Kenyan South Coast is a semi-enclosed shallow tropical coastal ecosystem supporting an economically important multi-species and multi-gear artisanal fishery. In this study, we integrated the available scientific information of the system to develop a preliminary trophic mass-balance model to characterize the ecosystem structure and functioning, evaluate the ecological impacts of fishing on the ecosystem, and compare the results of the ecosystem assessment to those of previous single-species stock assessments. The model includes 23 functional groups aggregated into linear food chains, which resulted in nine discrete trophic levels sensu Lindeman (1942). Results from the mixed trophic impacts showed a bottom-up control in the system where herbivory dominated the energy flow to higher trophic levels but with a significant export of detritus out of the system. With a mean transfer efficiency of 12.6%, Finn cycling index 7.3%, path length 2.7, system omnivory index 0.19, and system ascendency and overhead 27 and 73%, respectively, it would appear that Gazi Bay is immature and perturbed likely due to fishery-induced exploitation. Overall, the fishery is operating at a level of primary consumers with a mean trophic level of the catch of 2.38. Fishing mortality is by far the leading cause of total mortality with the computed exploitation rates suggesting heavy exploitation of the key commercial species (F/Z > 0.5). A comparison of the results of the percentage of primary production required to sustain fisheries and the average trophic level of catch (%PPR-TLc) with those from similar tropical coastal systems shows that Gazi Bay is comparable to some of the most intensively exploited coastal ecosystems. This implies the impacts of the fishery are evident both at the species and ecosystem level, and there may be a need for precautionary measures for fisheries management.
Heavy metal bioaccumulation in Great Basin submersed aquatic macrophytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lytle, C.M.
1994-01-01
Seasonal element cycling and nutritional quality were determined in sago pondweed plant tissue. Leaf protein was 27% in July and 15% in December. Sago drupelet protein content was 9% in July and 6.5% in October. Sago plant tissue mineral, trace metal and non-structural carbohydrate content were high in the Fall. Submersed aquatic plant species from the Provo River drainage, Bear River MBR and Utah Lake - Provo Bay were significantly higher in heavy metals than aquatic species from remote wetlands. Extreme sodium concentrations were found in water, sediment and plant tissue in Ibis and Harrison pools (Fish Springs NWR). Boron,more » arsenic and selenium concentrations in plant tissue were much lower than those at Kesterson Reservoir, California. Submersed aquatic plants may act as channels that expedite the trophic movement of metal ions. The chemical structure of accumulated manganese and iron in sago pondweed plant tissue differed with time of year. June plant tissue manganese was fully hydrated. Accumulated manganese in October plant tissue was a Mn(II)Mn(III) mineral oxide. Accumulated iron was Fe(III) in both leaf and root tissue. Methylmercury was toxic to Lesser duckweed at very low doses (>0.1 [mu]g ml[sup [minus]1]). Increased pH improved frond survival in organic and inorganic mercury solutions. Duckweed should be considered as a sensitive phytoassay of methylmercury toxicity. Soil manganese and lead concentrations are correlated with distance from the roadway and traffic volume. Soil lead concentrations have moved deeper into the profile. Roadside aquatic plants were higher in manganese than herbaceous plants and grasses. Roadside snow and water were low in manganese and lead. Roadside soil and plants were apparently contaminated by Mn oxides from motor vehicle exhaust.« less
Nutrient discharge from China’s aquaculture industry and associated environmental impacts
NASA Astrophysics Data System (ADS)
Zhang, Ying; Bleeker, Albert; Liu, Junguo
2015-04-01
China’s aquaculture industry accounts for the largest share of the world’s fishery production, and provides a principal source of protein for the nation’s booming population. However, the environmental effects of the nutrient loadings produced by this industry have not been systematically studied or reviewed. Few quantitative estimates exist for nutrient discharge from aquaculture and the resultant nutrient enrichment in waters and sediments. In this paper, we evaluate nutrient discharge from aquacultural systems into aquatic ecosystems and the resulting nutrient enrichment of water and sediments, based on data from 330 cases in 51 peer-reviewed publications. Nitrogen use efficiency ranged from 11.7% to 27.7%, whereas phosphorus use efficiency ranged from 8.7% to 21.2%. In 2010, aquacultural nutrient discharges into Chinese aquatic ecosystems included 1044 Gg total nitrogen (184 Gg N from mariculture; 860 Gg N freshwater culture) and 173 Gg total phosphorus (22 Gg P from mariculture; 151 Gg P from freshwater culture). Water bodies and sediments showed high levels of nutrient enrichment, especially in closed pond systems. However, this does not mean that open aquacultural systems have smaller nutrient losses. Improvement of feed efficiency in cage systems and retention of nutrients in closed systems will therefore be necessary. Strategies to increase nutrient recycling, such as integrated multi-trophic aquaculture, and social measures, such as subsidies, should be increased in the future. We recommend the recycling of nutrients in water and sediments by hybrid agricultural-aquacultural systems and the adoption of nutrient use efficiency as an indicator at farm or regional level for the sustainable development of aquaculture; such indicators; together with water quality indicators, can be used to guide evaluations of technological, policy, and economic approaches to improve the sustainability of Chinese aquaculture.
Berlioz-Barbier, Alexandra; Buleté, Audrey; Faburé, Juliette; Garric, Jeanne; Cren-Olivé, Cécile; Vulliet, Emmanuelle
2014-11-07
Aquatic ecosystems are continuously contaminated by agricultural and industrial sources. Although the consequences of this pollution are gradually becoming visible, their potential impacts on aquatic ecosystems are poorly known, particularly regarding the risk of bioaccumulation in different trophic levels. To establish a causality relationship between bioaccumulation and disease, experiments on biotic matrices must be performed. In this context, a multi-residue method for the analysis of 35 emerging pollutants in three benthic invertebrates (Potamopyrgus antipodarum, Gammarus fossarum, and Chironomus riparius) has been developed. Because the variation in response of each individual must be taken into account in ecotoxicological studies, the entire analytical chain was miniaturised, thereby reducing the required sample size to a minimum of one individual and scaling the method accordingly. A new extraction strategy based on a modified, optimised and miniaturised "QuEChERS" approach is reported. The procedure involves salting out liquid-liquid extraction of approximately 10-20mg of matrix followed by nano-liquid chromatography-nano electospray ionisation coupled with tandem mass spectrometry. The validated analytical procedure exhibited recoveries between 40 and 98% for all the target compounds and enabled the determination of pollutants on an individual scale in the ng g(-1) concentration. The method was subsequently applied to determine the levels of target analytes in several encaged organisms which were exposed upstream and downstream of an effluent discharge. The results highlighted a bioaccumulation of certain targeted emerging pollutants in three freshwater invertebrates, as well as inter-species differences. 18 out of 35 compounds were detected and eight were quantified. The highest concentrations were measured for ibuprofen in G. fossarum, reaching up to 105 ng g(-1). Copyright © 2014 Elsevier B.V. All rights reserved.
Mineralization, watershed geochemistry, and metals in fish from a Subarctic River, Alaska
Gough, L.P.; Wang, B.; Crock, J.G.; Seal, R.R.; Weber-Scannell, P.
2005-01-01
We report on the levels of trace metals and metalloids in Arctic grayling (Thymallus arcticus), an important freshwater sport and subsistence fish in the Fortymile River, east-central Alaska. Functional biogeochemical baseline values and (or) ranges are presented for 38 major- and trace-elements in the muscle (fillet) and liver of 34 fish collected from 11 sampling sites in the watershed. In addition, we present N-, C-, and S-isotopic data for muscle samples. These data are the first to be reported for Arctic grayling in this region of Alaska. Geometric means for total Hg in muscle and liver tissue are 0.069 and 0.062 ppm, respectively. These levels are more than an order of magnitude below the FDA permissible value for methylmercury in fish fillets. In general, we noted little variation in the elemental concentrations in muscle tissue among samples at each of the 11 fish-sampling sites. No definitive link could be attributed between biogeochemical patterns and regional lithology. Stomach-content chemistry varied widely (relative muscle tissue or liver) and generally reflected sediment chemistry - a component of the ingested material. Stomach-content material was examined for the occurrence and frequency of macroinvertebrates and their chemical composition in three fish. Results showed considerable diversity, with 9 to 15 invertebrate taxa of which both aquatic and terrestrial individuals were found. The N-isotopic compositions of muscle fillet samples are homogeneous (??15N = 7.6 - 9.7 permil), reflecting a restricted, low trophic (primary predator) position for the grayling. C and S isotopic compositions (??13C and ??34S) of fillet samples range from -33.1 to -25.8 permil and -8.4 to 8.2 permil, respectively, suggesting heterogeneity of food sources (both aquatic and terrestrial). Copyright ASCE 2005.
Parain, Elodie C; Gravel, Dominique; Rohr, Rudolf P; Bersier, Louis-Félix; Gray, Sarah M
2016-07-01
Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller-bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top-down and bottom-up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal-transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non-local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top-down and bottom-up control.
Moorhouse, Tom P; Poole, Alison E; Evans, Laura C; Bradley, David C; Macdonald, David W
2014-02-01
Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates.
The impact of toxic cyanobacteria on the water quality in the Deep Subalpine Lakes (DSL)
NASA Astrophysics Data System (ADS)
Cerasino, Leonardo; Shams, Shiva; Salmaso, Nico; Dietrich, Daniel
2013-04-01
Toxic cyanobacteria represent an emerging threat for aquatic ecosystems worldwide. Eutrophication and climate changes are mentioned among factors favouring toxic blooms. The toxicity of cyanobacteria is related to the ability of some species (the most common in temperate waters belong to the genera Microcystis, Planktothrix, Dolichospermum) of producing a wide variety of toxic secondary metabolites, i.e. microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins. Some of these toxins can accumulate in water and aquatic organisms. They can therefore produce severe effects on humans by direct exposure (contact or ingestion of contaminated water) or by indirect exposure (by consumption of contaminated food). We have conducted a survey on the distribution of cyanobacterial toxins in the largest Italian lakes (Garda, Iseo, Como, Maggiore, Lugano), which are important water resources for drinking purposes and for recreational use. Cyanobacterial toxins were present in all lakes, although with a big variability in concentration. More specifically, in the frame of the European project EULAKES, we have investigated in detail the temporal dynamics of the toxin production in Lake Garda, and the mechanisms of trophic transfer of the microcystins along the lacustrine food chain. By applying advanced analytical techniques based on LC-MS technologies, we were able to detect several microcystins at sub-ppb level and follow their variations during the year. The total concentrations of microcystins were strictly linked to the temporal and vertical dynamics of Planktothrix rubescens. Laboratory experiments allowed us to determine the kinetics of microcystin accumulation in zooplankton (daphnia magna).
Moorhouse, Tom P; Poole, Alison E; Evans, Laura C; Bradley, David C; Macdonald, David W
2014-01-01
Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates. PMID:24634733
Tatsumoto, Hideki; Ishii, Yuichi; Machida, Motoi; Taki, Kazuo
2004-05-11
An artificial tidal flat was prepared for the mitigation tool on coastal environment. However, it is considered that most of the flat was not restored to the sufficient amenities for aquatic living things, migratory birds, etc. because none of the ecological mechanisms were understood or planned for. It is therefore investigated in this paper that historical transition factors in ecosystem structure are selected and traced with the diffusion of a public sewerage system, and with environmental factors such as water quality, sediment condition, and aquatic producers in the Yatsu Tidal Flat. As a result, it can be defined that the tidal flat, just like a lagoon, was formed artificially with reclamation and development of its circumference at the first step of transition; the water quality and sediment condition gradually became brackish water and muddy sediment conditions, interactively. The ecosystem pyramid forming orderly layers according to trophic level appeared as a high-bio-production potential in its tidal flat. In the second step, i.e., in recent years, the characteristics of water quality and sediment conditions evolved into a foreshore tidal flat, namely, conditions in the flat observed were that the progression of water included a high concentration of chloride ion as seawater and sediment conditions became sandy. Because of that, the inflowing fresh water and organic mater from the land area decreased with the improvement of the public sewerage system. The ecosystem pyramid was distorted into a chaos pyramid, with inversion of Ulva spp.
Kraus, Johanna M.; Pletcher, Leanna T.; Vonesh, James R.
2010-01-01
1. Cross-ecosystem movements of resources, including detritus, nutrients and living prey, can strongly influence food web dynamics in recipient habitats. Variation in resource inputs is thought to be driven by factors external to the recipient habitat (e.g. donor habitat productivity and boundary conditions). However, inputs of or by ‘active’ living resources may be strongly influenced by recipient habitat quality when organisms exhibit behavioural habitat selection when crossing ecosystem boundaries. 2. To examine whether behavioural responses to recipient habitat quality alter the relative inputs of ‘active’ living and ‘passive’ detrital resources to recipient food webs, we manipulated the presence of caged predatory fish and measured biomass, energy and organic content of inputs to outdoor experimental pools of adult aquatic insects, frog eggs, terrestrial plant matter and terrestrial arthropods. 3. Caged fish reduced the biomass, energy and organic matter donated to pools by tree frog eggs by ∼70%, but did not alter insect colonisation or passive allochthonous inputs of terrestrial arthropods and plant material. Terrestrial plant matter and adult aquatic insects provided the most energy and organic matter inputs to the pools (40–50%), while terrestrial arthropods provided the least (7%). Inputs of frog egg were relatively small but varied considerably among pools and over time (3%, range = 0–20%). Absolute and proportional amounts varied by input type. 4. Aquatic predators can strongly affect the magnitude of active, but not passive, inputs and that the effect of recipient habitat quality on active inputs is variable. Furthermore, some active inputs (i.e. aquatic insect colonists) can provide similar amounts of energy and organic matter as passive inputs of terrestrial plant matter, which are well known to be important. Because inputs differ in quality and the trophic level they subsidise, proportional changes in input type could have strong effects on recipient food webs. 5. Cross-ecosystem resource inputs have previously been characterised as donor-controlled. However, control by the recipient food web could lead to greater feedback between resource flow and consumer dynamics than has been appreciated so far.
Cherel, Yves; Hobson, Keith A
2005-08-07
Cephalopods play a key role in the marine environment but knowledge of their feeding habits is limited by lack of data. Here, we have developed a new tool to investigate their feeding ecology by combining the use of their predators as biological samplers together with measurements of the stable isotopic signature of their beaks. Cephalopod beaks are chitinous hard structures that resist digestion and the stable isotope ratios of carbon (delta13C) and nitrogen (delta15N) are indicators of the foraging areas and trophic levels of consumers, respectively. First, a comparison of delta13C and delta15N values of different tissues from the same individuals showed that beaks were slightly enriched in 13C but highly impoverished in 15N compared with lipid-free muscle tissues. Second, beaks from the same species showed a progressive increase in their delta15N values with increasing size, which is in agreement with a dietary shift from lower to higher trophic levels during cephalopod growth. In the same way, there was an increase in the delta15N signature of various parts of the same lower beaks in the order rostrum, lateral walls and wings, which reflects the progressive growth and chitinization of the beaks in parallel with dietary changes. Third, we investigated the trophic structure of a cephalopod community for the first time. Values of delta15N indicate that cephalopods living in slope waters of the subantarctic Kerguelen Islands (n=18 species) encompass almost three distinct trophic levels, with a continuum of two levels between crustacean- and fish-eaters and a distinct higher trophic level occupied by the colossal squid Mesonychoteuthis hamiltoni. delta13C values demonstrated that cephalopods grow in three different marine ecosystems, with 16 species living and developing in Kerguelen waters and two species migrating from either Antarctica (Slosarczykovia circumantarctica) or the subtropics (the giant squid Architeuthis dux). The stable isotopic signature of beaks accumulated in predators' stomachs therefore revealed new trophic relationships and migration patterns and is a powerful tool to investigate the role of the poorly known cephalopods in the marine environment.
How habitat-modifying organisms structure the food web of two coastal ecosystems
van der Zee, Els M.; Angelini, Christine; Govers, Laura L.; Christianen, Marjolijn J. A.; Altieri, Andrew H.; van der Reijden, Karin J.; Silliman, Brian R.; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A.; van der Veer, Henk W.; Piersma, Theunis; de Ruiter, Peter C.; Olff, Han; van der Heide, Tjisse
2016-01-01
The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity. PMID:26962135
How habitat-modifying organisms structure the food web of two coastal ecosystems.
van der Zee, Els M; Angelini, Christine; Govers, Laura L; Christianen, Marjolijn J A; Altieri, Andrew H; van der Reijden, Karin J; Silliman, Brian R; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A; van der Veer, Henk W; Piersma, Theunis; de Ruiter, Peter C; Olff, Han; van der Heide, Tjisse
2016-03-16
The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity. © 2016 The Author(s).
Gladyshev, Michail I; Sushchik, Nadezhda N; Anishchenko, Olesia V; Makhutova, Olesia N; Kolmakov, Vladimir I; Kalachova, Galina S; Kolmakova, Anzhelika A; Dubovskaya, Olga P
2011-02-01
One of the central paradigms of ecology is that only about 10% of organic carbon production of one trophic level is incorporated into new biomass of organisms of the next trophic level. Many of energy-yielding compounds of carbon are designated as 'essential', because they cannot be synthesized de novo by consumers and must be obtained with food, while they play important structural and regulatory functions. The question arises: are the essential compounds transferred through trophic chains with the same efficiency as bulk carbon? To answer this question, we measured gross primary production of phytoplankton and secondary production of zooplankton and content of organic carbon and essential polyunsaturated fatty acids of ω-3 family with 18-22 carbon atoms (PUFA) in the biomass of phytoplankton and zooplankton in a small eutrophic reservoir during two summers. Transfer efficiency between the two trophic levels, phytoplankton (producers) and zooplankton (consumers), was calculated as ratio of the primary production versus the secondary (zooplankton) production for both carbon and PUFA. We found that the essential PUFA were transferred from the producers to the primary consumers with about twice higher efficiency than bulk carbon. In contrast, polyunsaturated fatty acids with 16 carbon atoms, which are synthesized exclusively by phytoplankton, but are not essential for animals, had significantly lower transfer efficiency than both bulk carbon, and essential PUFA. Thus, the trophic pyramid concept, which implicitly implies that all the energy-yielding compounds of carbon are transferred from one trophic level to the next with the same efficiency of about on average 10%, should be specified for different carbon compounds.
Predicting Trophic Interactions and Habitat Utilization in the California Current Ecosystem
2014-09-30
on trophic interactions affecting habitat utilization and foraging patterns of California sea lions (CSL) in the California Current Large Marine...middle (sardine and anchovy) and higher (sea lions ) trophic level species. To this end, our numerical experiments are designed to isolate patterns of...NEMURO) embedded in a regional ocean circulation model (ROMS), and both coupled with a multi- species individual-based model (IBM) for forage fish
Trophic interaction modifications: an empirical and theoretical framework.
Terry, J Christopher D; Morris, Rebecca J; Bonsall, Michael B
2017-10-01
Consumer-resource interactions are often influenced by other species in the community. At present these 'trophic interaction modifications' are rarely included in ecological models despite demonstrations that they can drive system dynamics. Here, we advocate and extend an approach that has the potential to unite and represent this key group of non-trophic interactions by emphasising the change to trophic interactions induced by modifying species. We highlight the opportunities this approach brings in comparison to frameworks that coerce trophic interaction modifications into pairwise relationships. To establish common frames of reference and explore the value of the approach, we set out a range of metrics for the 'strength' of an interaction modification which incorporate increasing levels of contextual information about the system. Through demonstrations in three-species model systems, we establish that these metrics capture complimentary aspects of interaction modifications. We show how the approach can be used in a range of empirical contexts; we identify as specific gaps in current understanding experiments with multiple levels of modifier species and the distributions of modifications in networks. The trophic interaction modification approach we propose can motivate and unite empirical and theoretical studies of system dynamics, providing a route to confront ecological complexity. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Dietary biomagnification of organochlorine contaminants in Alaskan polar bears
Bentzen, T.W.; Follmann, Erich H.; Amstrup, Steven C.; York, G.S.; Wooller, M.J.; Muir, D.C.G.; O'Hara, T. M.
2008-01-01
Concentrations of organochlorine contaminants in the adipose tissue of polar bears (Ursus maritimus Phipps, 1774) vary throughout the Arctic. The range in concentrations has not been explained fully by bear age, sex, condition, location, or reproductive status. Dietary pathways expose polar bears to a variety of contaminant profiles and concentrations. Prey range from lower trophic level bowhead whales (Balaena mysticetus L., 1758), one of the least contaminated marine mammals, to highly contaminated upper trophic level ringed seals (Phoca hispida (Schreber, 1775)). We used ??15N and ??13C signatures to estimate the trophic status of 42 polar bears sampled along Alaska's Beaufort Sea coast to determine the relationship between organochlorine concentration and trophic level. The ?? 15N values in the cellular portions of blood ranged from 18.2% to 20.7%. We found strong positive relationships between concentrations of the most recalcitrant polychlorinated biphenyls (PCBs) and ??15N values in models incorporating age, lipid content, and ??13C value. Specifically these models accounted for 67% and 76% of the variation in PCB153 and oxychlordane concentration in male polar bears and 85% and 93% in females, respectively. These results are strong indicators of variation in diet and biomagnification of organochlorines among polar bears related to their sex, age, and trophic position. ?? 2008 NRC.
You are what you eat: stable isotope ecology of owl diets in Alberta, Canada
James M. Duxbury; Geoffery L. Holroyd
1997-01-01
Stable isotope ratio analysis (SIRA) was used to analyze the trophic level of the diets of three owl species: Barred Owl (Strix varia), Northern Hawk Owl (Surnia ulula) and Great Horned Owl (Bubo virginianus). Barred Owl and Northern Hawk Owl had diets from a similar trophic level. Both the Barred Owl and...
Calado, Ricardo; Leal, Miguel Costa
2015-01-01
The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions. © 2015 Elsevier Ltd. All rights reserved.
Hayer, Cari Ann; Holcomb, Benjamin M.; Chipps, Steven R.
2013-01-01
Iron is an important micronutrient found in aquatic systems that can influence nutrient availability (e.g., phosphorus) and primary productivity. In streams, high iron concentrations often are associated with low pH as a result of acid mine drainage, which is known to affect fish and invertebrate communities. Streams in the Black Hills of South Dakota are generally circumneutral in pH, yet select streams exhibit high iron concentrations associated with natural iron deposits. In this study, we examined relationships among iron concentration, priphyton biomass, macroinvertebrate abundance, and fish assemblages in four Black Hills streams. The stream with the highest iron concentration (~5 mg Fe/L) had reduced periphyton biomass, invertebrate abundance, and fish biomass compared to the three streams with lower iron levels (0.1 to 0.6 mg Fe/L). Reduced stream productivity was attributed to indirect effects of ferric iron Fe+++), owing to iron-hydroxide precipitation that influenced habitat quality (i.e., substrate and turbidity) and food availability (periphyton and invertebrates) for higher trophic levels (e.g., fish). Additionally, reduced primary and secondary production was associated with reduced standing stocks of salmonid fishes. Our findings suggested that naturally occurring iron deposits may constrain macroinvertebrate and fish production.
Booij, Kees; Robinson, Craig D; Burgess, Robert M; Mayer, Philipp; Roberts, Cindy A; Ahrens, Lutz; Allan, Ian J; Brant, Jan; Jones, Lisa; Kraus, Uta R; Larsen, Martin M; Lepom, Peter; Petersen, Jördis; Pröfrock, Daniel; Roose, Patrick; Schäfer, Sabine; Smedes, Foppe; Tixier, Céline; Vorkamp, Katrin; Whitehouse, Paul
2016-01-05
We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations in water, but this definition has little scientific basis. Insufficient quality control is a present weakness of passive sampling in water. Laboratory performance studies and the development of standardized methods are needed to improve data quality and to encourage the use of passive sampling by commercial laboratories and monitoring agencies. Successful prediction of bioaccumulation based on passive sampling is well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of several knowledge gaps, passive sampling presently is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined.
Loss of functionally unique species may gradually undermine ecosystems
O'Gorman, Eoin J.; Yearsley, Jon M.; Crowe, Tasman P.; Emmerson, Mark C.; Jacob, Ute; Petchey, Owen L.
2011-01-01
Functionally unique species contribute to the functional diversity of natural systems, often enhancing ecosystem functioning. An abundance of weakly interacting species increases stability in natural systems, suggesting that loss of weakly linked species may reduce stability. Any link between the functional uniqueness of a species and the strength of its interactions in a food web could therefore have simultaneous effects on ecosystem functioning and stability. Here, we analyse patterns in 213 real food webs and show that highly unique species consistently tend to have the weakest mean interaction strength per unit biomass in the system. This relationship is not a simple consequence of the interdependence of both measures on body size and appears to be driven by the empirical pattern of size structuring in aquatic systems and the trophic position of each species in the web. Food web resolution also has an important effect, with aggregation of species into higher taxonomic groups producing a much weaker relationship. Food webs with fewer unique and less weakly interacting species also show significantly greater variability in their levels of primary production. Thus, the loss of highly unique, weakly interacting species may eventually lead to dramatic state changes and unpredictable levels of ecosystem functioning. PMID:21106593
Biomonitoring and risk assessment on earth and during exploratory missions using AquaHab ®
NASA Astrophysics Data System (ADS)
Slenzka, K.; Dünne, M.; Jastorff, B.
2008-12-01
Bioregenerative closed ecological life support systems (CELSS) will be necessary in the exploration context revitalizing atmosphere, waste water and producing food for the human CELSS mates. During these long-term space travels and stays far away from Earth in an hostile environment as well as far for example from any hospital and surgery potential, it will be necessary to know much more about chemical and drug contamination in the special sense and by human's themselves in detail. Additionally, there is a strong need on Earth for more relevant standardized test systems including aquatic ones for the prospective risk assessment of chemicals and drugs in general on a laboratory scale. Current standardized test systems are mono species tests, and thus do not represent system aspects and have reduced environmental relevance. The experience gained during the last years in our research group lead to the development of a self-sustaining closed aquatic habitat/facility, called AquaHab ® which can serve regarding space exploration and Earth application. The AquaHab ® module can be the home of several fish species, snails, plants, amphipods and bacteria. The possibility to use different effect endpoints with certain beneficial characteristics is the basis for the application of AquaHab ® in different fields. Influence of drugs and chemicals can be tested on several trophic levels and ecosystem levels; guaranteeing a high relevance for aquatic systems in the real environment. Analyses of effect parameters of different complexity (e.g. general biological and water chemical parameters, activity of biotransforming enzymes) result in broad spectra of sensitivity. Combined with residual analyses (including all metabolites), this leads to an extended prospective risk assessment of a chemical on Earth and in a closed Life Support System. The possibility to measure also sensitive "online" parameters (e.g. behavior, respiration/photosynthetic activity) enables a quick and sensitive effect analysis of water contaminants in respective environments. AquaHab ® is currently under development to an early warning biomonitoring system using genetically modified fish and green algae. The implementation of biosensors/biochip in addition is also discussed.
Attermeyer, Katrin; Premke, Katrin; Hornick, Thomas; Hilt, Sabine; Grossart, Hans-Peter
2013-12-01
In aquatic systems, terrestrial dissolved organic matter (t-DOM) is known to stimulate bacterial activities in the water column, but simultaneous effects of autumnal leaf input on water column and sediment microbial dynamics in littoral zones of lakes remain largely unknown. The study's objective was to determine the effects of leaf litter on bacterial metabolism in the littoral water and sediment, and subsequently, the consequences for carbon cycling and food web dynamics. Therefore, in late fall, we simultaneously measured water and sediment bacterial metabolism in the littoral zone of a temperate shallow lake after adding terrestrial particulate organic matter (t-POM), namely, maize leaves. To better evaluate bacterial production (BP) and community respiration (CR) in sediments, we incubated sediment cores with maize leaves of different quality (nonleached and leached) under controlled laboratory conditions. Additionally, to quantify the incorporated leaf carbon into microbial biomass, we determined carbon isotopic ratios of fatty acids from sediment and leaf-associated microbes from a laboratory experiment using 13C-enriched beech leaves. The concentrations of dissolved organic carbon (DOC) increased significantly in the lake after the addition of maize leaves, accompanied by a significant increase in water BP. In contrast, sediment BP declined after an initial peak, showing no positive response to t-POM addition. Sediment BP and CR were also not stimulated by t-POM in the laboratory experiment, either in short-term or in long-term incubations, except for a short increase in CR after 18 hours. However, this increase might have reflected the metabolism of leaf-associated microorganisms. We conclude that the leached t-DOM is actively incorporated into microbial biomass in the water column but that the settling leached t-POM (t-POML) does not enter the food web via sediment bacteria. Consequently, t-POML is either buried in the sediment or introduced into the aquatic food web via microorganisms (bacteria and fungi) directly associated with t-POM(L) and via benthic macroinvertebrates by shredding of t-POM(L). The latter pathway represents a "benthic shortcut" which efficiently transfers t-POM(L) to higher trophic levels.
A unifying theory for top-heavy ecosystem structure in the ocean.
Woodson, C Brock; Schramski, John R; Joye, Samantha B
2018-01-02
Size generally dictates metabolic requirements, trophic level, and consequently, ecosystem structure, where inefficient energy transfer leads to bottom-heavy ecosystem structure and biomass decreases as individual size (or trophic level) increases. However, many animals deviate from simple size-based predictions by either adopting generalist predatory behavior, or feeding lower in the trophic web than predicted from their size. Here we show that generalist predatory behavior and lower trophic feeding at large body size increase overall biomass and shift ecosystems from a bottom-heavy pyramid to a top-heavy hourglass shape, with the most biomass accounted for by the largest animals. These effects could be especially dramatic in the ocean, where primary producers are the smallest components of the ecosystem. This approach makes it possible to explore and predict, in the past and in the future, the structure of ocean ecosystems without biomass extraction and other impacts.
Spider foraging strategy affects trophic cascades under natural and drought conditions.
Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong
2015-07-23
Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.
Spider foraging strategy affects trophic cascades under natural and drought conditions
Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong
2015-01-01
Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests. PMID:26202370
Biomass changes and trophic amplification of plankton in a warmer ocean.
Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier
2014-07-01
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels. © 2014 John Wiley & Sons Ltd.
Sepulveda, Adam; Lowe, Winsor H.; Marra, Peter P.
2012-01-01
5. Although we did not identify mechanisms that facilitate salamander and fish coexistence, our empirical data and use of novel approaches to describe the trophic niche did yield important insights on the role of predator–prey interactions and cannibalism as alternative coexistence mechanisms. In addition, we found that 95% kernel estimators are a simple and robust method to describe population-level measure of trophic structure.
'Trophic' and 'source' amino acids in trophic estimation: a likely metabolic explanation.
O'Connell, T C
2017-06-01
Amino acid nitrogen isotopic analysis is a relatively new method for estimating trophic position. It uses the isotopic difference between an individual's 'trophic' and 'source' amino acids to determine its trophic position. So far, there is no accepted explanation for the mechanism by which the isotopic signals in 'trophic' and 'source' amino acids arise. Yet without a metabolic understanding, the utility of nitrogen isotopic analyses as a method for probing trophic relations, at either bulk tissue or amino acid level, is limited. I draw on isotopic tracer studies of protein metabolism, together with a consideration of amino acid metabolic pathways, to suggest that the 'trophic'/'source' groupings have a fundamental metabolic origin, to do with the cycling of amino-nitrogen between amino acids. 'Trophic' amino acids are those whose amino-nitrogens are interchangeable, part of a metabolic amino-nitrogen pool, and 'source' amino acids are those whose amino-nitrogens are not interchangeable with the metabolic pool. Nitrogen isotopic values of 'trophic' amino acids will reflect an averaged isotopic signal of all such dietary amino acids, offset by the integrated effect of isotopic fractionation from nitrogen cycling, and modulated by metabolic and physiological effects. Isotopic values of 'source' amino acids will be more closely linked to those of equivalent dietary amino acids, but also modulated by metabolism and physiology. The complexity of nitrogen cycling suggests that a single identifiable value for 'trophic discrimination factors' is unlikely to exist. Greater consideration of physiology and metabolism should help in better understanding observed patterns in nitrogen isotopic values.
Intermediate-consumer identity and resources alter a food web with omnivory.
Kneitel, Jamie M
2007-07-01
1. Omnivory is an important interaction that has been the centre of numerous theoretical and empirical studies in recent years. Most of these studies examine the conditions necessary for coexistence between an omnivore and an intermediate consumer. Trait variation in ecological interactions (competition and predator tolerance) among intermediate consumers has not been considered in previous empirical studies despite the evidence that variation in species-specific traits can have important community-level effects. 2. I conducted a multifactorial microcosm experiment using species from the Sarracenia purpurea phytotelmata community, organisms that inhabit the water collected within its modified leaves. The basal trophic level consisted of bacterial decomposers, the second trophic level (intermediate consumers) consisted of protozoa and rotifers, and the third trophic level (omnivore) were larvae of the pitcher plant mosquito Wyeomyia smithii. Trophic level number (1, 2 and 3), resources (low and high), omnivore density (low and high) and intermediate consumer (monoculture of five protozoa and rotifers) identity were manipulated. Abundance of the basal trophic level, intermediate consumers, and growth of the omnivore were measured, as well as time to extinction (intermediate consumers) and time to pupation (mosquito larvae). 3. The presence of different intermediate consumers affected both bacteria abundance and omnivore growth. At high resource levels, Poteriochromonas, Colpidium and Habrotrocha rosa reduced bacteria densities greater than omnivore reduction of bacteria. Mosquito larvae did not pupate at low resource levels except when Poteriochromonas and Colopoda were present as intermediate consumers. Communities with H. rosa were the only ones consistent with the prediction that omnivores should exclude intermediate consumers at high resources. 4. These results had mixed support for predictions from omnivory food web theory. Intermediate consumers responded and affected this community differently under different community structures and resource levels. Consequently, variation in species-specific traits can have important population- and community-level effects and needs to be considered in food webs with omnivory.
Bengtsson, Mia M; Wagner, Karoline; Schwab, Clarissa; Urich, Tim; Battin, Tom J
2018-04-21
Phototrophic biofilms are ubiquitous in freshwater and marine environments where they are critical for biogeochemical cycling, food webs and in industrial applications. In streams, phototrophic biofilms dominate benthic microbial life and harbor an immense prokaryotic and eukaryotic microbial biodiversity with biotic interactions across domains and trophic levels. Here, we examine how community structure and function of these biofilms respond to varying light availability, as the crucial energy source for phototrophic biofilms. Using metatranscriptomics, we found that under light limitation dominant phototrophs, including diatoms and cyanobacteria, displayed a remarkable plasticity in their photosynthetic machinery manifested as higher abundance of messenger RNAs (mRNAs) involved in photosynthesis and chloroplast ribosomal RNA. Under higher light availability, bacterial mRNAs involved in phosphorus metabolism, mainly from Betaproteobacteria and Cyanobacteria, increased, likely compensating for nutrient depletion in thick biofilms with high biomass. Consumers, including diverse ciliates, displayed community shifts indicating preferential grazing on algae instead of bacteria under higher light. For the first time, we show that the functional integrity of stream biofilms under variable light availability is maintained by structure-function adaptations on several trophic levels. Our findings shed new light on complex biofilms, or "microbial jungles", where in analogy to forests, diverse and multi-trophic level communities lend stability to ecosystem functioning. This multi-trophic level perspective, coupling metatranscriptomics to process measurements, could advance understanding of microbial-driven ecosystems beyond biofilms, including planktonic and soil environments. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Brasso, Rebecka L; Polito, Michael J; Emslie, Steven D
2014-10-01
Inter-annual variation in tissue mercury concentrations in birds can result from annual changes in the bioavailability of mercury or shifts in dietary composition and/or trophic level. We investigated potential annual variability in mercury dynamics in the Antarctic marine food web using Pygoscelis penguins as biomonitors. Eggshell membrane, chick down, and adult feathers were collected from three species of sympatrically breeding Pygoscelis penguins during the austral summers of 2006/2007-2010/2011. To evaluate the hypothesis that mercury concentrations in penguins exhibit significant inter-annual variation and to determine the potential source of such variation (dietary or environmental), we compared tissue mercury concentrations with trophic levels as indicated by δ(15)N values from all species and tissues. Overall, no inter-annual variation in mercury was observed in adult feathers suggesting that mercury exposure, on an annual scale, was consistent for Pygoscelis penguins. However, when examining tissues that reflected more discrete time periods (chick down and eggshell membrane) relative to adult feathers, we found some evidence of inter-annual variation in mercury exposure during penguins' pre-breeding and chick rearing periods. Evidence of inter-annual variation in penguin trophic level was also limited suggesting that foraging ecology and environmental factors related to the bioavailability of mercury may provide more explanatory power for mercury exposure compared to trophic level alone. Even so, the variable strength of relationships observed between trophic level and tissue mercury concentrations across and within Pygoscelis penguin species suggest that caution is required when selecting appropriate species and tissue combinations for environmental biomonitoring studies in Antarctica.
USDA-ARS?s Scientific Manuscript database
The impact of linamarin and lotaustralin content in the leaves of Phaseolus lunatus L. on the second and third trophic levels was studied in Tetranychus urticae (Koch) and its predator Phytoseiulus persimilis Athias-Henriot. Chemical analyzes showed that the content of linamarin was higher in termin...
Habitat fragmentation resulting in overgrazing by herbivores.
Kondoh, Michio
2003-12-21
Habitat fragmentation sometimes results in outbreaks of herbivorous insect and causes an enormous loss of primary production. It is hypothesized that the driving force behind such herbivore outbreaks is disruption of natural enemy attack that releases herbivores from top-down control. To test this hypothesis I studied how trophic community structure changes along a gradient of habitat fragmentation level using spatially implicit and explicit models of a tri-trophic (plant, herbivore and natural enemy) food chain. While in spatially implicit model number of trophic levels gradually decreases with increasing fragmentation, in spatially explicit model a relatively low level of habitat fragmentation leads to overgrazing by herbivore to result in extinction of the plant population followed by a total system collapse. This provides a theoretical support to the hypothesis that habitat fragmentation can lead to overgrazing by herbivores and suggests a central role of spatial structure in the influence of habitat fragmentation on trophic communities. Further, the spatially explicit model shows (i) that the total system collapse by the overgrazing can occur only if herbivore colonization rate is high; (ii) that with increasing natural enemy colonization rate, the fragmentation level that leads to the system collapse becomes higher, and the frequency of the collapse is lowered.
Stephansen, Diana A; Svendsen, Tore C; Vorkamp, Katrin; Frier, Jens-Ole
2012-02-01
The concentrations and patterns of persistent halogenated compounds (PHCs), including polychlorinated biphenyls (PCBs), DDT, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB) and polybrominated diphenyl ethers (PBDEs) were examined in a pelagic food web from the southern Baltic Sea consisting of sediment, zooplankton, sprat, Atlantic salmon and anadromous brown trout. Lipid-normalized concentrations generally increased from low trophic levels to high trophic levels, with the exception of HCHs. Due to high concentrations of PBDEs in some zooplankton samples, biomagnification of BDE-47 was only observed for salmon/sprat and trout/sprat. Sprat collected individually and from salmon stomach had significantly different lipid-normalized concentrations and varied in their PHC pattern as well, possibly indicating a large natural variation within the Baltic Sea. The highest lipid-normalized concentrations were found in brown trout. Salmon and brown trout were similar in their PHC pattern suggesting similar food sources. Variation in PHC patterns among trophic levels was not smaller than that among geographically distinct locations, confirming the importance of comparable trophic levels for the assessment of PHC patterns, e.g. for tracing migratory fish. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bartrons, Mireia; Grimalt, Joan O.; de Mendoza, Guillermo; Catalan, Jordi
2012-01-01
Organohalogen compounds are some of the most notorious persistent pollutants disturbing the Earth biosphere. Although human-made, these chemicals are not completely alien to living systems. A large number of natural organohalogens, part of the secondary metabolism, are involved in chemical trophic interactions. Surprisingly, the relationship between organisms’ trophic position and synthetic organohalogen biotransformation capability has not been investigated. We studied the case for polybromodiphenyl ethers (PBDE), a group of flame-retardants of widespread use in the recent years, in aquatic food webs from remote mountain lakes. These relatively simple ecosystems only receive pollution by atmospheric transport. A large predominance of the PBDE congener currently in use in Europe, BDE-209, largely dominated the PBDE composition of the basal resources of the food web. In contrast, primary consumers (herbivores and detritivores) showed a low proportion of BDE-209, and dominance of several less brominated congeners (e.g. BDE-100, BDE47). Secondary consumers (predators) showed large biomagnification of BDE-209 compare to other congeners. Finally, top predator fish characterized by low total PBDE concentrations. Examination of the bromine stable isotopic composition indicates that primary consumers showed higher PBDE biotransformation capability than secondary consumers. We suggest that the evolutionary response of primary consumers to feeding deterrents would have pre-adapted them for PBDE biotransformation. The observed few exceptions, some insect taxa, can be interpreted in the light of the trophic history of the evolutionary lineage of the organisms. Bromine isotopic composition in fish indicates that low PBDE values are due to not only biotransformation but also to some other process likely related to transport. Our finding illustrates that organohalogen compounds may strongly disturb ecosystems even at low concentrations, since the species lacking or having scarce biotransformation capability may be selectively more exposed to these halogenated hydrophobic semi-volatile organic pollutants due to their high bioaccumulation potential. PMID:22848624
Predator Diet and Trophic Position Modified with Altered Habitat Morphology
Tewfik, Alexander; Bell, Susan S.; McCann, Kevin S.; Morrow, Kristina
2016-01-01
Empirical patterns that emerge from an examination of food webs over gradients of environmental variation can help to predict the implications of anthropogenic disturbance on ecosystems. This “dynamic food web approach” is rarely applied at the coastal margin where aquatic and terrestrial systems are coupled and human development activities are often concentrated. We propose a simple model of ghost crab (Ocypode quadrata) feeding that predicts changing dominant prey (Emerita talpoida, Talorchestia sp., Donax variablis) along a gradient of beach morphology and test this model using a suite of 16 beaches along the Florida, USA coast. Assessment of beaches included quantification of morphological features (width, sediments, slope), macrophyte wrack, macro-invertebrate prey and active ghost crab burrows. Stable isotope analysis of carbon (13C/12C) and nitrogen (15N/14N) and the SIAR mixing model were used to determine dietary composition of ghost crabs at each beach. The variation in habitat conditions displayed with increasing beach width was accompanied by quantifiable shifts in ghost crab diet and trophic position. Patterns of ghost crab diet were consistent with differences recorded across the beach width gradient with respect to the availability of preferred micro-habitats of principal macro-invertebrate prey. Values obtained for trophic position also suggests that the generalist ghost crab assembles and augments its diet in fundamentally different ways as habitat morphology varies across a highly dynamic ecosystem. Our results offer support for a functional response in the trophic architecture of a common food web compartment (ghost crabs, macro-invertebrate prey) across well-known beach morphologies. More importantly, our “dynamic food web approach” serves as a basis for evaluating how globally wide-spread sandy beach ecosystems should respond to a variety of anthropogenic impacts including beach grooming, beach re-nourishment, introduction of non-native or feral predators and human traffic on beaches. PMID:26824766
Eloranta, Antti P; Kahilainen, Kimmo K; Amundsen, Per-Arne; Knudsen, Rune; Harrod, Chris; Jones, Roger I
2015-01-01
Prey preference of top predators and energy flow across habitat boundaries are of fundamental importance for structure and function of aquatic and terrestrial ecosystems, as they may have strong effects on production, species diversity, and food-web stability. In lakes, littoral and pelagic food-web compartments are typically coupled and controlled by generalist fish top predators. However, the extent and determinants of such coupling remains a topical area of ecological research and is largely unknown in oligotrophic high-latitude lakes. We analyzed food-web structure and resource use by a generalist top predator, the Arctic charr Salvelinus alpinus (L.), in 17 oligotrophic subarctic lakes covering a marked gradient in size (0.5–1084 km2) and fish species richness (2–13 species). We expected top predators to shift from littoral to pelagic energy sources with increasing lake size, as the availability of pelagic prey resources and the competition for littoral prey are both likely to be higher in large lakes with multispecies fish communities. We also expected top predators to occupy a higher trophic position in lakes with greater fish species richness due to potential substitution of intermediate consumers (prey fish) and increased piscivory by top predators. Based on stable carbon and nitrogen isotope analyses, the mean reliance of Arctic charr on littoral energy sources showed a significant negative relationship with lake surface area, whereas the mean trophic position of Arctic charr, reflecting the lake food-chain length, increased with fish species richness. These results were supported by stomach contents data demonstrating a shift of Arctic charr from an invertebrate-dominated diet to piscivory on pelagic fish. Our study highlights that, because they determine the main energy source (littoral vs. pelagic) and the trophic position of generalist top predators, ecosystem size and fish diversity are particularly important factors influencing function and structure of food webs in high-latitude lakes. PMID:25937909
Towards the Integration of Niche and Network Theories.
Godoy, Oscar; Bartomeus, Ignasi; Rohr, Rudolf P; Saavedra, Serguei
2018-04-01
The quest for understanding how species interactions modulate diversity has progressed by theoretical and empirical advances following niche and network theories. Yet, niche studies have been limited to describe coexistence within tropic levels despite incorporating information about multi-trophic interactions. Network approaches could address this limitation, but they have ignored the structure of species interactions within trophic levels. Here we call for the integration of niche and network theories to reach new frontiers of knowledge exploring how interactions within and across trophic levels promote species coexistence. This integration is possible due to the strong parallelisms in the historical development, ecological concepts, and associated mathematical tools of both theories. We provide a guideline to integrate this framework with observational and experimental studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Steroids in house sparrows (Passer domesticus): Effects of POPs and male quality signalling.
Nossen, Ida; Ciesielski, Tomasz M; Dimmen, Malene V; Jensen, Henrik; Ringsby, Thor Harald; Polder, Anuschka; Rønning, Bernt; Jenssen, Bjørn M; Styrishave, Bjarne
2016-03-15
At high trophic levels, environmental contaminants have been found to affect endocrinological processes. Less attention has been paid to species at lower trophic levels. The house sparrow (Passer domesticus) may be a useful model for investigating effects of POPs in mid-range trophic level species. In male house sparrows, ornamental traits involved in male quality signalling are important for female selection. These traits are governed by endocrinological systems, and POPs may therefore interfere with male quality signalling. The aim of the present study was to use the house sparrow as a mid-range trophic level model species to study the effects of environmental contaminants on endocrinology and male quality signalling. We analysed the levels of selected PCBs, PBDEs and OCPs and investigated the possible effects of these contaminants on circulating levels of steroid hormones (4 progestagens, 4 androgens and 3 estrogens) in male and female adult house sparrows from a population on the island Leka, Norway. Plasma samples were analysed for steroid hormones by GC-MS and liver samples were analysed for environmental contaminants by GC-ECD and GC-MS. In males, we also quantified ornament traits. It was hypothesised that POPs may have endocrine disrupting effects on the local house sparrow population and can thus interfere with the steroid hormone homeostasis. Among female house sparrows, bivariate correlations revealed negative relationships between POPs and estrogens. Among male sparrows, positive relationships between dihydrotestosterone levels and PCBs were observed. In males, positive relationships were also found between steroids and beak length, and between steroids and ornamental traits such as total badge size. This was confirmed by a significant OPLS model between beak length and steroids. Although sparrows are in the mid-range trophic levels, the present study indicates that POPs may affect steroid homeostasis in house sparrows, in particular for females. For males, circulating steroid levels appears to be more associated with biometric parameters related to ornamental traits. Copyright © 2015 Elsevier B.V. All rights reserved.
Consequences of omnivory for trophic interactions on a salt marsh shrub.
Ho, Chuan-Kai; Pennings, Steven C
2008-06-01
Although omnivory is common in nature, its impact on trophic interactions is variable. Predicting the food web consequences of omnivory is complicated because omnivores can simultaneously produce conflicting direct and indirect effects on the same species or trophic level. We conducted field and laboratory experiments testing the top-down impacts of an omnivorous salt marsh crab, Armases cinereum, on the shrub Iva frutescens and its herbivorous and predatory arthropod fauna. Armases is a "true omnivore," consuming both Iva and arthropods living on Iva. We hypothesized that Armases would benefit Iva through a top-down trophic cascade, and that this benefit would be stronger than the direct negative effect of Armases on Iva. A field experiment on Sapelo Island, Georgia (USA), supported this hypothesis. Although Armases suppressed predators (spiders), it also suppressed herbivores (aphids), and benefited Iva, increasing leaf number, and reducing the proportion of dead shoots. A one-month laboratory experiment, focusing on the most common species in the food web, also supported this hypothesis. Armases strongly suppressed aphids and consumed fewer Iva leaves if aphids were available as an alternate diet. Armases gained more body mass if they could feed on aphids as well as on Iva. Although Armases had a negative effect on Iva when aphids were not present, Armases benefited Iva if aphids were present, because Armases controlled aphid populations, releasing Iva from herbivory. Although Armases is an omnivore, it produced strong top-down forces and a trophic cascade because it fed preferentially on herbivores rather than plants when both were available. At the same time, the ability of Armases to subsist on a plant diet allows it to persist in the food web when animal food is not available. Because omnivores feed on multiple trophic levels, their effects on food webs may differ from those predicted by standard trophic models that assume that each species feeds only on a single trophic level. To better understand the complexity of real food webs, the variable feeding habits and feeding preferences of different omnivorous species must be taken into consideration.
Molecular trophic markers in marine food webs and their potential use for coral ecology.
Leal, Miguel Costa; Ferrier-Pagès, Christine
2016-10-01
Notable advances in ecological genomics have been driven by high-throughput sequencing technology and taxonomically broad sequence repositories that allow us to accurately assess species interactions with great taxonomic resolution. The use of DNA as a marker for ingested food is particularly relevant to address predator-prey interactions and disentangle complex marine food webs. DNA-based methods benefit from reductionist molecular approaches to address ecosystem scale processes, such as community structure and energy flow across trophic levels, among others. Here we review how molecular trophic markers have been used to better understand trophic interactions in the marine environment and their advantages and limitations. We focus on animal groups where research has been focused, such as marine mammals, seabirds, fishes, pelagic invertebrates and benthic invertebrates, and use case studies to illustrate how DNA-based methods unraveled food-web interactions. The potential of molecular trophic markers for disentangling the complex trophic ecology of corals is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Cheng-Cheng; Dang, Fei; Cang, Long; Zhou, Dong-Mei; Peijnenburg, Willie J G M
2015-09-01
The mechanisms underlying Cd trophic transfer along the soil-lettuce-snail food chain were investigated. The fate of Cd within cells, revealed by assessment of Cd chemical forms and of subcellular partitioning, differed between the two examined lettuce species that we examined (L. longifolia and L. crispa). The species-specific internal Cd fate not only influenced Cd burdens in lettuce, with higher Cd levels in L. crispa, but also affected Cd transfer efficiency to the consumer snail (Achatina fulica). Especially, the incorporation of Cd chemical forms (Cd in the inorganic, water-soluble and pectates and protein-integrated forms) in lettuce could best explain Cd trophic transfer, when compared to dietary Cd levels alone and/or subcellular Cd partitioning. Trophically available metal on the subcellular partitioning base failed to shed light on Cd transfer in this study. After 28-d of exposure, most Cd was trapped in the viscera of Achatina fulica, and cadmium bio-magnification was noted in the snails, as the transfer factor of lettuce-to-snail soft tissue was larger than one. This study provides a first step to apply a chemical speciation approach to dictate the trophic bioavailability of Cd through the soil-plant-snail system, which might be an important pre-requisite for mechanistic understanding of metal trophic transfer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tao, Yuqiang; Yu, Jing; Xue, Bin; Yao, Shuchun; Wang, Sumin
2017-04-01
Hydrophobic organic contaminants (HOCs) are toxic and ubiquitous in aquatic environments and pose great risks to aquatic organisms. Bioaccumulation by plankton is the first step for HOCs to enter aquatic food webs. Trophic status is considered to dominate variations in bioaccumulation of HOCs in plankton in temperate and frigid deep oligotrophic waters. However, long-term driving factors for bioaccumulation of HOCs in planktonic food webs of subtropical shallow eutrophic waters have not been well investigated. China has the largest subtropical lake density in the Northern Hemisphere. Due to limited field data, long-term variations in the bioaccumulation of HOCs in these lakes are almost unknown. Here we take Lake Xuanwu as an example to investigate long-term variations in the bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbon (PAHs) in planktonic food webs of subtropical shallow eutrophic lakes in China, and elucidate the driving factors. Our results indicate that temperature rather than nutrients dominates long-term dynamics of planktonic biomass in this lake. Precipitation significantly enhances the concentrations of the PAHs, and total suspended particles, and consequently affects the distribution of the PAHs in the water column. Biomass dilution induced by temperature dominates bioaccumulation of the PAHs by both phytoplankton and zooplankton (copepods and cladocerans). Biomagnification of the PAHs from phytoplankton to zooplankton is positively correlated with temperature. Our study suggests that temperature and precipitation drive long-term variations in the bioaccumulation of the PAHs in the planktonic food webs of this subtropical shallow eutrophic lake. Lake Xuanwu has a similar mean annual temperature, annual precipitation, sunshine duration, and nutrient levels as other subtropical shallow eutrophic lakes in China. This study may also help to understand the bioaccumulation of HOCs in planktonic food webs of other subtropical shallow eutrophic lakes. Copyright © 2017 Elsevier B.V. All rights reserved.
Aquatic metabolism response to the hydrologic alteration in the Yellow River estuary, China
NASA Astrophysics Data System (ADS)
Shen, Xiaomei; Sun, Tao; Liu, Fangfang; Xu, Jing; Pang, Aiping
2015-06-01
Successful artificial hydrologic regulation and environmental flow assessments for the ecosystem protection require an accurate understanding of the linkages between flow events and biotic responses. To explore an ecosystem's functional responses to hydrologic alterations, we analysed spatial and temporal variations in aquatic metabolism and the main factors influenced by artificial hydrologic alterations based on the data collected from 2009 to 2012 in the Yellow River estuary, China. Gross primary production (GPP) ranged from 0.002 to 8.488 mg O2 L-1 d-1. Ecosystem respiration (ER) ranged from 0.382 to 8.968 mg O2 L-1 d-1. Net ecosystem production (NEP) ranged from -5.792 to 7.293 mg O2 L-1 d-1 and the mean of NEP was -0.506 mg O2 L-1 d-1, which means that the trophic status of entire estuary was near to balance. The results showed that seasonal variations in the aquatic metabolism are influenced by the hydrologic alteration in the estuary. High water temperature and solar radiation in summer are associated with low turbidity and consequently high rates of GPP and ER, making the estuary net autotrophic in summer, and that also occurred after water-sediment regulation in August. Turbidity and water temperature were identified as two particularly important factors that influenced the variation in the metabolic balance. As a result, metabolism rate did not decrease but increased after the regulation. ER increased significantly in summer and autumn and reached a maximum after the water-sediment regulation in September. GPP and NEP reached a maximum value after the water-sediment regulation in August, and then decreased in autumn. Estuarine ecosystem shifted from net heterotrophy in spring to net autotrophy in summer, and then to net heterotrophy in autumn. Our study indicated that estuarine metabolism may recover to a high level faster in summer than that in other seasons after the short-term water-sediment regulation due to higher water temperature and nutrients.
Klingelfus, T; Lirola, J R; Oya Silva, L F; Disner, G R; Vicentini, M; Nadaline, M J B; Robles, J C Z; Trein, L M; Voigt, C L; Silva de Assis, H C; Mela, M; Leme, D M; Cestari, M M
2017-12-01
Nanotechnologies are at the center of societal interest, due to their broad spectrum of application in different industrial products. The current concern about nanomaterials (NMs) is the potential risks they carry for human health and the environment. Considering that NMs can reach bodies of water, there is a need for studying the toxic effects of NMs on aquatic organisms. Among the NMs' toxic effects on fish, the interactions between NMs and the nervous system are yet to be understood. For this reason, our goal was to assess the neurotoxicity of polyvinylpyrrolidone coated silver nanospheres [AgNS (PVP coated)] and compare their effects in relation to silver ions (Ag + ) in carnivorous Hoplias intermedius fish after acute and subchronic trophic exposure through the analysis of morphological (retina), biochemical (brain) and genetic biomarkers (brain and blood). For morphological biomarkers, damage by AgNS (PVP coated) in retina was found, including morphological changes in rods, cones, hemorrhage and epithelium rupture, and also deposition of AgNS (PVP coated) in retina and sclera. In the brain biomarkers, AgNS (PVP coated) did not disturb acetylcholinesterase activity. However, lowered migration of the DNA tail in the Comet Assay of blood and brain cells was observed for all doses of AgNS (PVP coated), for both acute and subchronic bioassays, and in a dose-dependent manner in acute exposure. Ag + also reduced the level of DNA damage only under subchronic conditions in the brain cells. In general, the results demonstrated that AgNS (PVP coated) do not cause similar effects in relation to Ag + . Moreover, the lowered level of DNA damage detected by Comet Assay suggests that AgNS (PVP coated) directly interacts with DNA of brain and blood cells, inducing DNA-DNA or DNA-protein crosslinks. Therefore, the AgNS (PVP coated) accumulating, particularly in the retina, can lead to a competitive disadvantage for fish, compromising their survival. Copyright © 2017 Elsevier B.V. All rights reserved.
Cuvillier-Hot, Virginie; Salin, Karine; Devers, Séverine; Tasiemski, Aurélie; Schaffner, Pauline; Boulay, Raphaël; Billiard, Sylvain; Lenoir, Alain
2014-05-01
Phthalates are synthetic contaminants released into the environment notably by plastic waste. Semi-volatile, they adsorb to atmospheric particles and get distributed in all ecosystems. Effects of this major anthropogenic pollution in economical species in aquatic habitats have attracted large interest. On the contrary, very few studies have focused on wild terrestrial species. Yet, these lipophilic molecules are easily trapped by insect cuticle; ants and other insects have been shown to permanently bear among their cuticular components a non-negligible proportion of phthalates, meaning that they suffer from chronic exposure to these pollutants. Oral route could also be an additional way of contamination, as phthalates tend to stick to any organic particle. We show here via a food choice experiment that Lasius niger workers can detect, and avoid feeding on, food contaminated with DEHP (DiEthyl Hexyl Phthalate), the most widespread phthalate found in nature. This suggests that the main source of contamination for ants is atmosphere and that doses measured on the cuticle correspond to the chronic exposure levels for these animals. Such an ecologically relevant dose of DEHP was used to contaminate ants in lab and to investigate their physiological impact. Over a chronic exposure (1 dose per week for 5 weeks), the egg-laying rate of queens was significantly reduced lending credence to endocrine disruptive properties of such a pollutant, as also described for aquatic invertebrates. On the contrary, short term exposure (24h) to a single dose of DEHP does not induce oxidative stress in ant workers as expected, but leads to activation of the immune system. Because of their very large distribution, their presence in virtually all terrestrial ecosystems and their representation at all trophic levels, ants could be useful indicators of contamination by phthalates, especially via monitoring the level of activation of their immune state. Copyright © 2014 Elsevier Inc. All rights reserved.
Ex-ORISKANY Artificial Reef Project: Ecological Risk Assessment
2006-01-25
preferences used by PRAM and the Trophic Level determined by diet for each compartment modeled in the food chain...grouping organisms according to their habitat and diet preferences , PRAM also provided output to evaluate exposure point concentrations for the pelagic...dietary preferences used by PRAM (version 1.4C) and the Trophic Level determined by diet for each compartment modeled in the food chain. PRAM Default
Driver, Lucas; Justus, Billy
2016-01-01
Big Base and Little Base Lakes are located on Little Rock Air Force Base, Arkansas, and their close proximity to a dense residential population and an active military/aircraft installation make the lakes vulnerable to water-quality degradation. The U.S. Geological Survey (USGS) conducted a study from June through August 2015 to investigate the effects of water quality on phytoplankton species and density and trophic state in Big Base and Little Base Lakes, with particular regard to nutrient concentrations. Nutrient concentrations, trophic-state indices, and the large part of the phytoplankton biovolume composed of cyanobacteria, indicate eutrophic conditions were prevalent for Big Base and Little Base Lakes, particularly in August 2015. Cyanobacteria densities and biovolumes measured in this study likely pose a low to moderate risk of adverse algal toxicity, and the high proportion of filamentous cyanobacteria in the lakes, in relation to other algal groups, is important from a fisheries standpoint because these algae are a poor food source for many aquatic taxa. In both lakes, total nitrogen to total phosphorus (N:P) ratios declined over the sampling period as total phosphorus concentrations increased relative to nitrogen concentrations. The N:P ratios in the August samples (20:1 and 15:1 in Big Base and Little Base Lakes, respectively) and other indications of eutrophic conditions are of concern and suggest that exposure of the two lakes to additional nutrients could cause unfavorable dissolved-oxygen conditions and increase the risk of cyanobacteria blooms and associated cyanotoxin issues.
Cooper, W James; Carter, Casey B; Conith, Andrew J; Rice, Aaron N; Westneat, Mark W
2017-02-15
Most species-rich lineages of aquatic organisms have undergone divergence between forms that feed from the substrate (benthic feeding) and forms that feed from the water column (pelagic feeding). Changes in trophic niche are frequently accompanied by changes in skull mechanics, and multiple fish lineages have evolved highly specialized biomechanical configurations that allow them to protrude their upper jaws toward the prey during feeding. Damselfishes (family Pomacentridae) are an example of a species-rich lineage with multiple trophic morphologies and feeding ecologies. We sought to determine whether bentho-pelagic divergence in the damselfishes is tightly coupled to changes in jaw protrusion ability. Using high-speed video recordings and kinematic analysis, we examined feeding performance in 10 species that include three examples of convergence on herbivory, three examples of convergence on omnivory and two examples of convergence on planktivory. We also utilized morphometrics to characterize the feeding morphology of an additional 40 species that represent all 29 damselfish genera. Comparative phylogenetic analyses were then used to examine the evolution of trophic morphology and biomechanical performance. We find that pelagic-feeding damselfishes (planktivores) are strongly differentiated from extensively benthic-feeding species (omnivores and herbivores) by their jaw protrusion ability, upper jaw morphology and the functional integration of upper jaw protrusion with lower jaw abduction. Most aspects of cranial form and function that separate these two ecological groups have evolved in correlation with each other and the evolution of the functional morphology of feeding in damselfishes has involved repeated convergence in form, function and ecology. © 2017. Published by The Company of Biologists Ltd.
Li, Yun Kai; Gao, Xiao di; Wang, Lin Yu; Fang, Lin
2018-01-01
As the apex predators of the open ocean ecosystems, pelagic sharks play important roles in stabilizing the marine food web through top-down control. Stable isotope analysis is a powerful tool to investigate the feeding ecology. The carbon and nitrogen isotope ratios can be used to trace food source and evaluate the trophic position of marine organisms. In this study, the isotope values of 130 pelagic sharks from 8 species in Central Eastern Pacific were analyzed and their trophic position and niche were calculated to compare the intra/inter-specific resource partitioning in the Central Eastern Pacific ecosystem. The results exhibited significant differences in both carbon and nitrogen isotope values among the shark species. The trophic levels ranged from 4.3 to 5.4 in the Central Eastern Pacific shark community. The trophic niche of blue sharks and shortfin mako sharks showed no overlap with the other shark species, exhibiting unique ecological roles in the open ocean food web. These data highlighted the diverse roles among pelagic sharks, supporting previous findings that this species is not trophically redundant and the trophic niche of pelagic sharks can not be simply replaced by those of other top predator species.
Figueiredo, G G A A; Pessanha, A L M
2016-07-01
A comparison of three tidal creeks assessed the effects of the hydrological regime on trophic organization in juvenile fish assemblages of 21 species in a tropical estuary in north-eastern Brazil. There were seven trophic guilds represented spatially. Zooplanktivore and zoobenthivore guilds dominated the lower estuary, whereas omnivores and detritivores dominated the upper estuary. In the rainy season, the zooplanktivore and omnivore guilds were more common throughout the estuary, but in the dry season, zoobenthivores and piscivores occurred throughout. The trophic organization results show that (1) there was a higher complexity in tidal creeks in the upper estuary compared with the first tidal creek in the lower region and (2) trophic linkages increased in the upper estuary, principally the number of omnivore and detritivore species. Spatial variation in trophic structure was primarily associated with differences in the location of the tidal creeks along the estuary, and this variability was partly attributed to fish species richness; the number of species increased towards the upper estuary, and additional species occupied different trophic levels or used additional resources. © 2015 The Fisheries Society of the British Isles.
The trophic vacuum and the evolution of complex life cycles in trophically transmitted helminths
Benesh, Daniel P.; Chubb, James C.; Parker, Geoff A.
2014-01-01
Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web. PMID:25209937
Ullah, Hadayet; Goldenberg, Silvan U.; Fordham, Damien A.
2018-01-01
Global warming and ocean acidification are forecast to exert significant impacts on marine ecosystems worldwide. However, most of these projections are based on ecological proxies or experiments on single species or simplified food webs. How energy fluxes are likely to change in marine food webs in response to future climates remains unclear, hampering forecasts of ecosystem functioning. Using a sophisticated mesocosm experiment, we model energy flows through a species-rich multilevel food web, with live habitats, natural abiotic variability, and the potential for intra- and intergenerational adaptation. We show experimentally that the combined stress of acidification and warming reduced energy flows from the first trophic level (primary producers and detritus) to the second (herbivores), and from the second to the third trophic level (carnivores). Warming in isolation also reduced the energy flow from herbivores to carnivores, the efficiency of energy transfer from primary producers and detritus to herbivores and detritivores, and the living biomass of detritivores, herbivores, and carnivores. Whilst warming and acidification jointly boosted primary producer biomass through an expansion of cyanobacteria, this biomass was converted to detritus rather than to biomass at higher trophic levels—i.e., production was constrained to the base of the food web. In contrast, ocean acidification affected the food web positively by enhancing trophic flow from detritus and primary producers to herbivores, and by increasing the biomass of carnivores. Our results show how future climate change can potentially weaken marine food webs through reduced energy flow to higher trophic levels and a shift towards a more detritus-based system, leading to food web simplification and altered producer–consumer dynamics, both of which have important implications for the structuring of benthic communities. PMID:29315309
NASA Astrophysics Data System (ADS)
Kousteni, Vasiliki; Karachle, Paraskevi K.; Megalofonou, Persefoni
2017-06-01
Knowledge of the diet and trophic level of marine predators is essential to develop an understanding of their ecological role in ecosystems. Research conducted on the trophic ecology of the deep-sea sharks is rather limited. The purpose of this study was to examine the diet of the longnose spurdog Squalus blainville, a deep-sea shark categorized as "data deficient" within its distribution range, with respect to sex, maturity, age, season and sampling location. The stomach contents of 211 specimens, captured in the Aegean (off Skyros and the Cyclades Islands) and Cretan Seas, using commercial bottom-trawlers from 2005 to 2012, were analysed. The cumulative prey curve showed that the sample size was adequate to describe the species' diet. The identified prey items belonged to five major groups: Teleostei, Crustacea, Cephalopoda, Annelida and Phanerogams. Higher diet diversity was observed in females compared to males, in immature individuals compared to mature ones, regardless of sex, and in spring and winter compared to other seasons. Age and sampling location seemed to influence both the diet diversity and trophic spectrum of the species. Feeding intensity based on the vacuity index was not significantly influenced by any of the factors examined, while the stomach filling degree was significantly influenced by all factors, except sex, showing significantly higher values in mature females compared to immature ones, in older individuals, in autumn compared to winter, and a significantly lower value in the Cyclades Islands compared to other locations. Females showed a significant larger mouth length compared to males of the same length, while no between-sex differences were found in gut morphometrics. The estimated fractional trophic level (TROPH=4.41) classified the species as carnivore with a preference for Teleostei and Cephalopoda, confirming its high trophic position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmelee, R.W.; Wentsel, R.S.; Phillips, C.T.
1993-08-01
A microcosm technique is presented that uses community and trophic-level analysis of soil nematodes and microarthropods to determine the effects of chemicals on soil systems. Forest soil was treated with either copper, p-nitrophenol, or trinitrotoluene. Nematodes were sorted into bacterivore, fungivore, herbivore, and omnivore-predator trophic groups, and a hatchling category. Microarthropods were sorted to the acarine suborders Prostigmata, Mesostigmata, and Oribatida; the insectan order Collembola; and a miscellaneous group. Omnivore-predator nematodes and meso-stigmatid and oribatid mites were the groups most sensitive to copper and were significantly reduced at levels as low as 100 [mu]g g[sup [minus]1] copper. Total nematode andmore » microarthropod numbers declined above 200 [mu]g g[sup [minus]1] copper. Trophic structure analysis suggested that high sensitivity of nematode predators to intermediate levels of copper reduced predation on herbivore nematodes and resulted in greater numbers of nematodes compared to controls. p-Nitrophenol was very toxic to the nematode community, and all trophic groups were significantly reduced above 20 [mu]g g[sup [minus]1]. However, there was no effect of p-nitrophenol on microarthropods. Trinitrotoluene had no significant negative effect on total abundance of either groups of soil fauna, but oribatids were significantly reduced at 200 [mu]g g[sup [minus]1]. The results demonstrated that soil nematodes and microarthropods were sensitive indicators of environmental contaminants and that trophic-structure and community analysis has the potential to detect more subtle indirect effects of chemicals on soil food-web structure. The authors conclude that microcosms with field communities of soil microfauna offer high resolution of the ecotoxicological effects of chemicals in complex soil systems.« less
A Trophic Model of a Sandy Barrier Lagoon at Chiku in Southwestern Taiwan
NASA Astrophysics Data System (ADS)
Lin, H.-J.; Shao, K.-T.; Kuo, S.-R.; Hsieh, H.-L.; Wong, S.-L.; Chen, I.-M.; Lo, W.-T.; Hung, J.-J.
1999-05-01
Using the ECOPATH 3.0 software system, a balanced trophic model of a sandy barrier lagoon with intensive fishery activities at Chiku in tropical Taiwan was constructed. The lagoon model comprised 13 compartments. Trophic levels of the compartments varied from 1·0 for primary producers and detritus to 3·6 for piscivorous fish. Hanging-cultured oysters accounted for 39% of the harvestable fishery biomass and were the most important fishery species. The most prominent group in terms of biomass and energy flow in the lagoon was herbivorous zooplankton. Manipulations of the biomass of herbivorous zooplankton would have a marked impact on most compartments. Both total system throughput and fishery yield per unit area were high when compared to other reported marine ecosystems. This appears mainly due to high planktonic primary production, which is probably promoted by enriched river discharges draining mangroves and aquaculture ponds. Consequently, more than half of the total system throughput originates from primary producers in the lagoon. Although half of the primary production was not immediately used by upper trophic levels and flowed into the detrital pool, most of the detritus was directly consumed, passed up the food web and was exported to the fishery. Thus only a small proportion of energy was recycled through detritus pathways. This mechanism produces short pathways with high trophic efficiencies at higher trophic levels. The high fishery yield in the lagoon is due to high primary production and short pathways. This is the first model of a tropical sandy barrier lagoon with intensive fishery activities and thus may serve as a basis for future comparisons and ecosystem management.
Re-cycling mercury: the role of stocking non-native fish in high-altitude lakes
NASA Astrophysics Data System (ADS)
Hansson, S. V.; Le Roux, G.; Sonke, J.
2016-12-01
Mercury (Hg) is a globally distributed pollutant that can be carried long distances and be deposited remote from its original source. It is also one of the few natural abundant trace metals that serves no biological purpose, i.e. is highly toxic to humans and other biota. Studies have also shown that Hg-deposition increases with increasing altitude, leading to a higher load of contamination to these already sensitive environments. Any additional sources of Hg to high-altitude aquatic systems are therefore of high concern. Today introduced non-indigenous fish can be found in aquatic systems on all contents, with the exception of Antarctica. However, the social and economic benefits gained by these introductions often weighs against the ecological impacts. E.g. studies have shown that introduction of carnivore fish can lead to alternation of the aquatic food web and introduce pathogens causing population declines or even extinction. Few studies however have looked at the introduction of non-native fish to high altitude aquatic systems in the scope of heavy-metal contamination. By using a combined geochemical and isotopic approach, we therefore study the introduction of brown trout as a potential source of Hg-contamination in three high altitude lakes in the French Pyrenees. We combine analysis of δ13C and δ15N, with tot-Hg and Hg-isotopes in samples of biofilm, invertebrates, common minnow and brow trout and compare these with data from trout bred at a local fish farm, providing the fish used when stocking lakes in the nearby region. Our results show that levels of tot-Hg in trout from our sites surpasses literature values by 5 times or more and that MIF and MDF Hg-isotope signatures shows clear relationship with fish size and with δ15N. However, there is a clear difference in the Hg-isotopic signatures of the wild trout compared to the farmed. Whereas δ202Hg and Δ199Hg-signatures of the wild trout aligns with the onsite food chain (biofilm, plankton, common minnow), the farmed trout show isotopic signatures identical to marine biota, e.g. tuna and dolphin. This is also reflected in the δ15N-signatures where the farmed trout corresponds to trophic levels two steps above those of the wild trout. Drawing on these data we therefore ask; are we recycling mercury and shortcutting the natural Hg-cycle by stocking lakes with farmed fish?
Effects of spatial subsidies and habitat structure on the foraging ecology and size of geckos
Briggs, Amy A.; Young, Hillary S.; McCauley, Douglas J.; Hathaway, Stacie A.; Dirzo, Rodolfo; Fisher, Robert N.
2012-01-01
While it is well established that ecosystem subsidies—the addition of energy, nutrients, or materials across ecosystem boundaries—can affect consumer abundance, there is less information available on how subsidy levels may affect consumer diet, body condition, trophic position, and resource partitioning among consumer species. There is also little information on whether changes in vegetation structure commonly associated with spatial variation in subsidies may play an important role in driving consumer responses to subsidies. To address these knowledge gaps, we studied changes in abundance, diet, trophic position, size, and body condition of two congeneric gecko species (Lepidodactylus spp.) that coexist in palm dominated and native (hereafter dicot dominated) forests across the Central Pacific. These forests differ trongly both in the amount of marine subsidies that they receive from seabird guano and carcasses, and in the physical structure of the habitat. Contrary to other studies, we found that subsidy level had no impact on the abundance of either gecko species; it also did not have any apparent effects on resource partitioning between species. However, it did affect body size, dietary composition, and trophic position of both species. Geckos in subsidized, dicot forests were larger, had higher body condition and more diverse diets, and occupied a much higher trophic position than geckos found in palm dominated, low subsidy level forests. Both direct variation in subsidy levels and associated changes in habitat structure appear to play a role in driving these responses. These results suggest that variation in subsidy levels may drive important behavioral responses in predators, even when their numerical response is limited. Strong changes in trophic position of consumers also suggest that subsidies may drive increasingly complex food webs, with longer overall food chain length.
Arcagni, Marina; Campbell, Linda; Arribére, María A; Marvin-Dipasquale, Mark; Rizzo, Andrea; Ribeiro Guevara, Sergio
2013-06-01
Food web trophodynamics of total mercury (THg) and selenium (Se) were assessed for the double-basined ultraoligotrophic system of Lake Moreno, Patagonia. Each basin has differing proportions of littoral and pelagic habitats, thereby providing an opportunity to assess the importance of habitat (e.g. food web structure or benthic MeHg production) in the transfer of Hg and Se to top trophic fish species. Pelagic plankton, analyzed in three size classes (10-53, 53-200, and >200 μm), had very high [THg], exceeding 200 μg g(-1) dry weight (DW) in the smallest, and a low ratio of MeHg to THg (0.1 to 3%). In contrast, [THg] in littoral macroinvertebrates showed lower values (0.3 to 1.8 μg g(-1) DW). Juvenile and small fish species feeding upon plankton had higher [THg] (0.2 to 8 μg g(-1) muscle DW) compared to large piscivore fish species (0.1 to 1.6 μg g(-1) muscle DW). Selenium concentrations exhibited a much narrower variation range than THg in the food web, varying from 0.5 to 2.7 μg g(-1) DW. Molar Se:Hg ratios exceeded 1 for the majority of organisms in both basins, with most ratios exceeding 10. Using stable nitrogen isotopes as indicator of trophic level, no significant correlations were found with [THg], [Se] or Se:Hg. The apparent lack of biomagnification trends was attributed to elevated [THg] in plankton in the inorganic form mostly, as well as the possibility of consistent Se supply reducing the biomagnification in the food web of the organic portion of THg. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maske, H.; Cajal-Medrano, R.; Villegas-Mendoza, J.
2016-02-01
Organotrophic prokaryotes in aquatic environments account for about half of community respiration in surface oceans and are key trophic links in the plankton food web connecting dissolved organics and higher trophic levels. The transfer efficiency is partially characterized by the ratio of prokaryote respiration rates (r, day-1) to growth rates (m, day-1) and the resulting growth efficiency (Y). Much literature has been published about the response of these parameters to temperature in monospecific cultures, but little is known about the response of a community of pelagic prokaryotes were the sum of the genotypes and phenotype define the physiological potential. We inoculated 10 turbidostats and 39 chemostats with coastal bacteria and measured CO2 production, carbon biomass and cell abundance, with m ranging from 0.05 to 62 day-1 between 10 and 26oC. Under substrate limited conditions, common in the ocean, r showed no significant trend with temperature and was proportional to m implying constant Y. Under temperature-limited, nutrient replete growth the m of coastal prokaryote communities increased with temperature but r decreased (Q10: 0.4), resulting in an increase of Y with temperature (Q10: 2.5). The carbon demand rate (b, fmol C (cell day)-1) of turbidostat cultures showed a very high Q10 of 8.4. Casting the data in the framework of the metabolic theory of ecology (MTE), the physiological rates normalized to cell carbon showed no significant changes with temperature using either respiration or carbon demand as a proxy for physiological rate. Our results suggest that physiological patterns related to temperature are very different under nutrient limited or replete conditions and under neither condition it followed the pattern expected by MTE.
NASA Astrophysics Data System (ADS)
Molina-Navarro, Eugenio; Trolle, Dennis; Martínez-Pérez, Silvia; Sastre-Merlín, Antonio; Jeppesen, Erik
2014-02-01
Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate and land use change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental and recreational purposes. We also checked for the possible synergistic effects of changes in climate and land use on water flow and nutrient exports from the catchment. Simulations showed a noticeable impact of climate change in the river flow regime and consequently the water level of the limno-reservoir, especially during summer, complicating the fulfillment of its purposes. Most of the scenarios also predicted a deterioration of trophic conditions in the limno-reservoir. Fertilization and soil erosion were the main factors affecting nitrate and total phosphorus concentrations. Combined climate and land use change scenarios showed noticeable synergistic effects on nutrients exports, relative to running the scenarios individually. While the impact of fertilization on nitrate export is projected to be reduced with warming in most cases, an additional 13% increase in the total phosphorus export is expected in the worst-case combined scenario compared to the sum of individual scenarios. Our model framework may help water managers to assess and manage how these multiple environmental stressors interact and ultimately affect aquatic ecosystems.
NASA Astrophysics Data System (ADS)
Ivančić, Ingrid; Pfannkuchen, Martin; Godrijan, Jelena; Djakovac, Tamara; Marić Pfannkuchen, Daniela; Korlević, Marino; Gašparović, Blaženka; Najdek, Mirjana
2016-08-01
The northern Adriatic (NA) is a favorable basin for studying the adaptive strategies of plankton to a variety of conditions along the steep gradients of environmental parameters over the year. Earlier studies identified phosphorus (P)-limitation as one of the key stresses within the NA that shape the biological response in terms of biodiversity and metabolic adjustments. A wide range of reports supports the notion that P-limitation is a globally important phenomenon in aquatic ecosystems. In this study P stress of marine microphytoplankton was determined at species level along a trophic gradient in the NA. In P-limitation all species with considerable contributions to the diatom community expressed alkaline phosphatase activity (APA), compared to only a few marginal dinoflagellate species. Nevertheless, APA expressing species did not always dominate the phytoplankton community, suggesting that APA is also an important strategy for species to survive and maintain active metabolism outside of their mass abundances. A symbiotic relationship could be supposed for diatoms that did not express APA themselves and probably benefited from APA expressed by attached bacteria. APA was not expressed by any microphytoplankton species during the autumn when P was not limiting, while most of the species did express APA during the P-limitation. This suggests that APA expression is regulated by orthophosphate availability. The methods employed in this study allowed the microscopic detection of APA for each microphytoplankton cell with simultaneous morphologic/taxonomic analysis. This approach uncovered a set of strategies to compete in P-limited conditions within the marine microphytoplankton community. This study confirms the role of P-limitation as a shaping factor in marine ecosystems.
Arcagni, Marina; Campbell, Linda; Arribére, María A.; Marvin-DiPasquale, Mark; Rizzo, Andrea; Guevara, Sergio Ribeiro
2013-01-01
Food web trophodynamics of total mercury (THg) and selenium (Se) were assessed for the double-basined ultraoligotrophic system of Lake Moreno, Patagonia. Each basin has differing proportions of littoral and pelagic habitats, thereby providing an opportunity to assess the importance of habitat (e.g. food web structure or benthic MeHg production) in the transfer of Hg and Se to top trophic fish species. Pelagic plankton, analyzed in three size classes (10–53, 53–200, and > 200 μm), had very high [THg], exceeding 200 μg g− 1 dry weight (DW) in the smallest, and a low ratio of MeHg to THg (0.1 to 3%). In contrast, [THg] in littoral macroinvertebrates showed lower values (0.3 to 1.8 μg g− 1 DW). Juvenile and small fish species feeding upon plankton had higher [THg] (0.2 to 8 μg g− 1 muscle DW) compared to large piscivore fish species (0.1 to 1.6 μg g− 1 muscle DW). Selenium concentrations exhibited a much narrower variation range than THg in the food web, varying from 0.5 to 2.7 μg g− 1 DW. Molar Se:Hg ratios exceeded 1 for the majority of organisms in both basins, with most ratios exceeding 10. Using stable nitrogen isotopes as indicator of trophic level, no significant correlations were found with [THg], [Se] or Se:Hg. The apparent lack of biomagnification trends was attributed to elevated [THg] in plankton in the inorganic form mostly, as well as the possibility of consistent Se supply reducing the biomagnification in the food web of the organic portion of THg.
Influence of Black Mangrove Expansion on Salt Marsh Food Web Dynamics in Coastal Louisiana
NASA Astrophysics Data System (ADS)
Powell, C.; Baustian, M. M.; Polito, M. J.
2017-12-01
The range of black mangroves (Avicennia germinans) is projected to expand in the northern Gulf of Mexico due to reduced winter freeze events and an increased rate of droughts. The colonization of mangroves in salt marshes alters habitat structure and creates a novel basal carbon source for consumers. This addition may modify trophic linkages and the structure of estuarine food webs. To understand the implications of mangrove expansion on food web dynamics of traditional Spartina alterniflora marshes, two sites in coastal Louisiana with three habitat types, marsh-dominated, mangrove-dominated, and a transition or mix of the two, were studied. Community composition of juvenile nekton was sampled using fyke nets, minnow traps, and suction sampling and analyzed for abundance and diversity. Primary carbon sources (emergent vegetation, phytoplankton, macroalgae, benthic microalgae, submerged aquatic vegetation, and soil organic matter) and consumers ((blue crabs (Callinectes sapidus), brown shrimp (Farfantepenaeus aztecus), grass shrimp (Palaemonetes spp.), Gulf killifish (Fundulus grandis), periwinkle snails (Littoraria irrorata), eastern oysters (Crassostrea virginica), and southern ribbed mussels (Geukensia granosissima)) collected at each habitat type were measured using stable isotope analysis (δ13C, δ15N, δ34S) to identify trophic level, basal carbon sources, and assess how mangrove carbon is incorporated into salt marsh food webs. While data analysis is ongoing, preliminary results indicate that basal carbon sources supporting some marsh consumers (e.g., periwinkle snails) shift between habitat types, while others remain static (e.g., grass shrimp). This research will further develop our understanding of how climate induced shifts in vegetation influences valued marsh-dependent consumers in the estuarine ecosystems of northern Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Khataee, Alireza; Movafeghi, Ali; Nazari, Fatemeh; Vafaei, Fatemeh; Dadpour, Mohammad Reza; Hanifehpour, Younes; Joo, Sang Woo
2014-12-01
Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15-20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes' activity.
Integrating chytrid fungal parasites into plankton ecology: research gaps and needs.
Frenken, Thijs; Alacid, Elisabet; Berger, Stella A; Bourne, Elizabeth C; Gerphagnon, Mélanie; Grossart, Hans-Peter; Gsell, Alena S; Ibelings, Bas W; Kagami, Maiko; Küpper, Frithjof C; Letcher, Peter M; Loyau, Adeline; Miki, Takeshi; Nejstgaard, Jens C; Rasconi, Serena; Reñé, Albert; Rohrlack, Thomas; Rojas-Jimenez, Keilor; Schmeller, Dirk S; Scholz, Bettina; Seto, Kensuke; Sime-Ngando, Télesphore; Sukenik, Assaf; Van de Waal, Dedmer B; Van den Wyngaert, Silke; Van Donk, Ellen; Wolinska, Justyna; Wurzbacher, Christian; Agha, Ramsy
2017-10-01
Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Röpke, Cristhiana P.; Amadio, Sidinéia; Zuanon, Jansen; Ferreira, Efrem J. G.; Deus, Cláudia Pereira de; Pires, Tiago H. S.; Winemiller, Kirk O.
2017-01-01
Combined effects of climate change and deforestation have altered precipitation patterns in the Amazon. This has led to changes in the frequency of extreme events of flood and drought in recent decades and in the magnitude of the annual flood pulse, a phenomenon that influences virtually all aspects of river-floodplain ecosystem dynamics. Analysis of long-term data revealed abrupt and synchronous changes in hydrology and fish assemblage structure of a floodplain lake near the confluence of Amazon and Negro rivers. After an intense drought in 2005, the assemblage assumed a different and fairly persistent taxonomic composition and functional structure. Declines in abundance after 2005 were more pronounced for species of all sizes having equilibrium life history strategy, large species with periodic life history strategy, and for all trophic levels except primary consumers. Our results suggest that the extreme drought triggered changes in the fish assemblage and subsequent anomalous hydrological conditions have hampered assemblage recovery. These findings stress the need to account for climatic-driven hydrological changes in conservation efforts addressing aquatic biodiversity and fishery resources in the central Amazon. PMID:28071701
Light and spectral properties as determinants of C:N:P-ratios in phytoplankton
NASA Astrophysics Data System (ADS)
Hessen, Dag O.; Leu, Eva; Færøvig, Per J.; Falk Petersen, Stig
2008-10-01
Light is a major determinant not only for carbon (C)-fixation in autotrophs, but also for the cellular proportions of major elements like C, nitrogen (N) and phosphorus (P). High intensities of photosynthetically active radiation (PAR) increase C:P-ratios in experiments with arctic marine and freshwater phytoplankton species. While high levels of PAR promote high autotrophic productivity, the increased C:P may invoke a "paradox of enrichment" effect since this means lower stoichiometric food quality for herbivores. In contrast, exposure to ultraviolet radiation (UVR) gave reduced cellular C:P-ratios (and N:P) in phytoplankton. This was partly owing to a strong reduction in C-fixation under UVR, but also due to enhanced uptake of P, presumably in response to increased demands for nucleotide repair under UVR stress. The net outcome of these opposing effects will depend on optical properties and mixing depth in the water column. These stoichiometric responses could cause deviations from Redfield ratio in phytoplankton as well as affecting biogeochemical cycling and trophic transfer efficiency in aquatic food-webs.
The Bio Bay Game: Three-Dimensional Learning of Biomagnification
JASTI, CHANDANA; LAUREN, HILLARY; WALLON, ROBERT C.; HUG, BARBARA
2016-01-01
Pressing concerns about sustainability and the state of the environment amplify the need to teach students about the connections between ecosystem health, toxicology, and human health. Additionally, the Next Generation Science Standards call for three-dimensional science learning, which integrates disciplinary core ideas, scientific practices, and crosscutting concepts. The Bio Bay Game is a way to teach students about the biomagnification of toxicants across trophic levels while engaging them in three-dimensional learning. In the game, the class models the biomagnification of mercury in a simple aquatic food chain as they play the roles of anchovies, tuna, and humans. While playing, the class generates data, which they analyze after the game to graphically visualize the buildup of toxicants. Students also read and discuss two articles that draw connections to a real-world case. The activity ends with students applying their understanding to evaluate the game as a model of biomagnification. Throughout the activity, students practice modeling and data analysis and engage with the crosscutting concepts of patterns and cause and effect to develop an understanding of core ideas about the connections between humans and the environment. PMID:27990023
Wang, F; Leung, A O W; Wu, S C; Yang, M S; Wong, M H
2009-07-01
A multi-trophic, multi-exposure phase assessment approach was applied to characterize the toxicity of sediments collected from two rivers in Guiyu, China, an e-waste recycling centre. Elutriate toxicity tests (bacterium Vibrio fischeri and microalga Selenastrum capricornutum) and whole sediment toxicity test (crustacean Heterocypris incongruens) showed that most sediments exhibited acute toxicity, due to elevated heavy metals and PAHs levels, and low pH caused by uncontrolled acid discharge. The survival rates of crustaceans were negatively (p < 0.05) correlated with total PAHs in sediments (411-1755 mg kg(-1)); EC50s of V. fischeri on the elutriates were significantly correlated with elutriate pH (p < 0.01). Significant (p < 0.05) correlations between the induction of hepatic metallothionein in tilapia (Oreochromis mossambicus) and metal concentrations (Cu, Zn, Pb) in sediments were also observed, when fish were fed with diets containing sediment. The results showed that uncontrolled e-waste recycling activities may bring adverse effects to local aquatic ecosystem.
Röpke, Cristhiana P; Amadio, Sidinéia; Zuanon, Jansen; Ferreira, Efrem J G; Deus, Cláudia Pereira de; Pires, Tiago H S; Winemiller, Kirk O
2017-01-10
Combined effects of climate change and deforestation have altered precipitation patterns in the Amazon. This has led to changes in the frequency of extreme events of flood and drought in recent decades and in the magnitude of the annual flood pulse, a phenomenon that influences virtually all aspects of river-floodplain ecosystem dynamics. Analysis of long-term data revealed abrupt and synchronous changes in hydrology and fish assemblage structure of a floodplain lake near the confluence of Amazon and Negro rivers. After an intense drought in 2005, the assemblage assumed a different and fairly persistent taxonomic composition and functional structure. Declines in abundance after 2005 were more pronounced for species of all sizes having equilibrium life history strategy, large species with periodic life history strategy, and for all trophic levels except primary consumers. Our results suggest that the extreme drought triggered changes in the fish assemblage and subsequent anomalous hydrological conditions have hampered assemblage recovery. These findings stress the need to account for climatic-driven hydrological changes in conservation efforts addressing aquatic biodiversity and fishery resources in the central Amazon.
The Bio Bay Game: Three-Dimensional Learning of Biomagnification.
Jasti, Chandana; Lauren, Hillary; Wallon, Robert C; Hug, Barbara
2016-01-01
Pressing concerns about sustainability and the state of the environment amplify the need to teach students about the connections between ecosystem health, toxicology, and human health. Additionally, the Next Generation Science Standards call for three-dimensional science learning, which integrates disciplinary core ideas, scientific practices, and crosscutting concepts. The Bio Bay Game is a way to teach students about the biomagnification of toxicants across trophic levels while engaging them in three-dimensional learning. In the game, the class models the biomagnification of mercury in a simple aquatic food chain as they play the roles of anchovies, tuna, and humans. While playing, the class generates data, which they analyze after the game to graphically visualize the buildup of toxicants. Students also read and discuss two articles that draw connections to a real-world case. The activity ends with students applying their understanding to evaluate the game as a model of biomagnification. Throughout the activity, students practice modeling and data analysis and engage with the crosscutting concepts of patterns and cause and effect to develop an understanding of core ideas about the connections between humans and the environment.
Soupir, Craig A.; Brown, Michael L.; Kallemeyn, Larry W.
2000-01-01
Largemouth bass (Micropterus salmoides) and northern pike (Esox lucius) are top predators in the food chain in most aquatic environments that they occupy; however, limited information exists on species interactions in the northern reaches of largemouth bass distribution. We investigated the seasonal food habits of allopatric and sympatric assemblages of largemouth bass and northern pike in six interior lakes within Voyageurs National Park, Minnesota. Percentages of empty stomachs were variable for largemouth bass (38-54%) and northern pike (34.7-66.7%). Fishes (mainly yellow perch, Perca flavescens) comprised greater than 60% (mean percent mass, MPM) of the northern pike diet during all seasons in both allopatric and sympatric assemblages. Aquatic insects (primarily Odonata and Hemiptera) were important in the diets of largemouth bass in all communities (0.0-79.7 MPM). Although largemouth bass were observed in the diet of northern pike, largemouth bass apparently did not prey on northern pike. Seasonal differences were observed in the proportion of aquatic insects (P = 0.010) and fishes (P = 0.023) in the diets of northern pike and largemouth bass. Based on three food categories, jackknifed classifications correctly classified 77 and 92% of northern pike and largemouth bass values, respectively. Percent resource overlap values were biologically significant (greater than 60%) during at least one season in each sympatric assemblage, suggesting some diet overlap.
Assessment of toxicity of selenium and cadmium selenium quantum dots: A review.
Sharma, Virender K; McDonald, Thomas J; Sohn, Mary; Anquandah, George A K; Pettine, Maurizio; Zboril, Radek
2017-12-01
This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Santana, M F M; Moreira, F T; Turra, A
2017-08-15
Microplastics are emergent pollutants in marine environments, whose risks along food-web still need to be understood. Within this knowledge gap, MPs transference and persistence along trophic levels are key processes. We assessed the potential occurrence of these processes considering a less extreme scenario of exposure than used previously, with microplastics present only in the hemolymph of prey (the mussel Perna perna) and absent in the gut cavity. Predators were the crab Callinectes ornatus and the puffer fish Spheoeroides greeleyi. Transference of microplastics occurred from prey to predators but without evidences of particle persistence in their tissues after 10days of exposure. This suggests a reduced likelihood of trophic cascading of particles and, consequently, a reduced risk of direct impacts of microplastics on higher trophic levels. However, the contact with microplastics along food-webs is still concerning, modulated by the concentration of particles in prey and predators' depuration capacity and rate. Copyright © 2017. Published by Elsevier Ltd.
Biomass, size, and trophic status of top predators in the Pacific Ocean.
Sibert, John; Hampton, John; Kleiber, Pierre; Maunder, Mark
2006-12-15
Fisheries have removed at least 50 million tons of tuna and other top-level predators from the Pacific Ocean pelagic ecosystem since 1950, leading to concerns about a catastrophic reduction in population biomass and the collapse of oceanic food chains. We analyzed all available data from Pacific tuna fisheries for 1950-2004 to provide comprehensive estimates of fishery impacts on population biomass and size structure. Current biomass ranges among species from 36 to 91% of the biomass predicted in the absence of fishing, a level consistent with or higher than standard fisheries management targets. Fish larger than 175 centimeters fork length have decreased from 5% to approximately 1% of the total population. The trophic level of the catch has decreased slightly, but there is no detectable decrease in the trophic level of the population. These results indicate substantial, though not catastrophic, impacts of fisheries on these top-level predators and minor impacts on the ecosystem in the Pacific Ocean.
Pan, Wei-Ling; Cheng, Jing-O; Chen, Te-Hao; Kuo, Fu-Wen; Kao, Shu-Ji; Chang, Chih-Wei; Ho, Hsuan-Ching; Wang, Wei-Hsien; Fang, Li-Sing
2018-01-01
Notothenioid fish and invertebrate samples from Antarctica were collected in the austral summer of 2009, and analyzed for persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and polybrominated diphenylethers (PBDEs), as well as δ13C and δ15N stable isotopes for trophic level determination. In this study, the POP levels in the Antarctic biota samples were found to be ranked in the following order: OCPs > PAHs >> PBDEs. The POP levels in notothenioid fish and krill correlate to trophic levels; however, the POP concentrations in intertidal benthic invertebrates are higher than in notothenioid fish implying that specific biogeochemical factors may affect bioaccumulation in the Antarctica ecosystem. Biomagnification of POPs may have a smaller role than bioconcentration in Antarctica environment. In addition to the source, transport, exposure, and absorption for each group of POPs in the short food chain in Antarctica, the biological variation among species, interaction habitats, diet and metabolism are also factors for future studies on contaminant bioaccumulation. PMID:29641526
Ramírez, Alonso; Gutiérrez-Fonseca, Pablo E
2014-04-01
Aquatic macroinvertebrates are involved in numerous processes within aquatic ecosystems. They often have important effects on ecosystem processes such as primary production (via grazing), detritus breakdown, and nutrient mineralization and downstream spiraling. The functional feeding groups (FFG) classification was developed as a tool to facilitate the incorporation of macroinvertebrates in studies of aquatic ecosystems. This classification has the advantage of combining morphological characteristics (e.g., mouth part specialization) and behavioral mechanisms (e.g., way of feeding) used by macroinvertebrates when consuming resources. Although recent efforts have greatly advanced our ability to identify aquatic macroinvertebrates, there is limited information on FFG assignment. Furthermore, there has been some variation in the use of the FFG classification, in part due to an emphasis on using gut content analysis to assign FFG, which is more appropriate for assigning trophic guilds. Thus, the main goals of this study are to (1) provide an overview of the value of using the FFG classification, (2) make an initial attempt to summarize available information on FFG for aquatic insects in Latin America, and (3) provide general guidelines on how to assign organisms to their FFGs. FFGs are intended to reflect the potential effects of organisms in their ecosystems and the way they consume resources. Groups include scrapers that consume resources that grow attached to the substrate by removing them with their mouth parts; shredders that cut or chew pieces of living or dead plant material, including all plant parts like leaves and wood; collectors-gatherers that use modified mouth parts to sieve or collect small particles (< 1 mm) accumulated on the stream bottom; filterers that have special adaptations to remove particles directly from the water column; and predators that consume other organisms using different strategies to capture them. In addition, we provide details on piercers that feed on vascular plants by cutting or piercing the tissue using sharp or chewing mouth parts and consume plant liquids. We also provide a list of families of aquatic insects in Latin America, with an initial assignment to FFGs. We recommended caution when assigning FFGs based on gut contents, as it can provide misleading information. Overall, FFG is a very useful tool to understand the role of aquatic macroinvertebrates in stream ecosystems and comparisons among studies will benefit from consistency in their use.
Sato, Takuya; Watanabe, Katsutoshi
2014-07-01
Resource subsidies often weaken trophic cascades in recipient communities via consumers' functional response to the subsidies. Consumer populations are commonly stage-structured and may respond to the subsidies differently among the stages yet less is known about how this might impact the subsidy effects on the strength of trophic cascades in recipient systems. We show here, using a large-scale field experiment, that the stage structure of a recipient consumer would dampen the effects of terrestrial invertebrate subsidies on the strength of trophic cascade in streams. When a high input rate of the terrestrial invertebrates was available, both large and small fish stages switched their diet to the terrestrial subsidy, which weakened the trophic cascade in streams. However, when the input rate of the terrestrial invertebrates was at a moderate level, the terrestrial subsidy did not weaken the trophic cascade. This discrepancy was likely due to small fish stages being competitively excluded from feeding on the subsidy by larger stages of fish and primarily foraging on benthic invertebrates under the moderate input level. Although previous studies using single fish stages have clearly demonstrated that the terrestrial invertebrate input equivalent to our moderate input rate weakened the trophic cascade in streams, this subsidy effect might be overestimated given small fish stage may not switch their diet to the subsidy under competition with large fish stage. Given the ubiquity of consumer stage structure and interaction among consumer stages, the effects we saw might be widespread in nature, requiring future studies that explicitly involve consumer's stage structure into community ecology. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Donio, Mark; Pittfield, Taryn
2012-01-01
The Raritan Bay Slag Site (New Jersey) was designated a Superfund site in 2009 because the seawall, jetties, and sediment contained lead (Pb). Our objective was to compare Pb and mercury (Hg) levels in biota and public perceptions of exposure at the Superfund and reference sites. Samples (algae, invertebrates, fish) were collected from the Raritan Bay Slag Site and reference sites and analyzed for Pb and Hg. Waterfront users were interviewed using a standard questionnaire. Levels of Pb in aquatic organisms were compared to ecological and human health safety standards. Lead levels were related to location, trophic level, and mobility. Lead levels in biota were highest at the western side of the West Jetty. Mean Pb levels were highest for algae (Fucus = 53,600 ± 6990 ng/g = ppb [wet weight], Ulva = 23,900 ± 2430 ppb), intermediate for grass shrimp (7270 ± 1300 ppb, 11,600 ± 3340 ppb), and lowest for fish (Atlantic silversides 218 ± 44 ppb). Within species, Pb levels varied significantly across the sampling sites. Lead levels in algae, sometimes ingested by individuals, were sufficiently high to exceed human safety levels. Mercury levels did not differ between the Superfund and reference sites. Despite the fence and warnings, people (1) used the Superfund and reference sites similarly, (2) had similar fish consumption rates, and (3) were not concerned about Pb, although most individuals knew the metal was present. The fish sampled posed no apparent risk for human consumers, but the algae did.
Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Donio, Mark; Pittfield, Taryn
2014-01-01
The Raritan Bay Slag Site (New Jersey) was designated a Superfund site in 2009 because the seawall, jetties, and sediment contained lead (Pb). Our objective was to compare Pb and mercury (Hg) levels in biota and public perceptions of exposure at the Superfund and reference sites. Samples (algae, invertebrates, fish) were collected from the Raritan Bay Slag Site and reference sites and analyzed for Pb and Hg. Waterfront users were interviewed using a standard questionnaire. Levels of Pb in aquatic organisms were compared to ecological and human health safety standards. Lead levels were related to location, trophic level, and mobility. Lead levels in biota were highest at the western side of the West Jetty. Mean Pb levels were highest for algae (Fucus = 53,600 ± 6990 ng/g = ppb [wet weight], Ulva = 23,900 ± 2430 ppb), intermediate for grass shrimp (7270 ± 1300 ppb, 11,600 ± 3340 ppb), and lowest for fish (Atlantic silversides 218 ± 44 ppb). Within species, Pb levels varied significantly across the sampling sites. Lead levels in algae, sometimes ingested by individuals, were sufficiently high to exceed human safety levels. Mercury levels did not differ between the Superfund and reference sites. Despite the fence and warnings, people (1) used the Superfund and reference sites similarly, (2) had similar fish consumption rates, and (3) were not concerned about Pb, although most individuals knew the metal was present. The fish sampled posed no apparent risk for human consumers, but the algae did. PMID:22409490
Riascos, José M; Solís, Marco A; Pacheco, Aldo S; Ballesteros, Manuel
2017-06-28
The trophic flow of a species is considered a characteristic trait reflecting its trophic position and function in the ecosystem and its interaction with the environment. However, climate patterns are changing and we ignore how patterns of trophic flow are being affected. In the Humboldt Current ecosystem, arguably one of the most productive marine systems, El Niño-Southern Oscillation is the main source of interannual and longer-term variability. To assess the effect of this variability on trophic flow we built a 16-year series of mass-specific somatic production rate (P/B) of the Peruvian scallop ( Argopecten purpuratus ), a species belonging to a former tropical fauna that thrived in this cold ecosystem. A strong increase of the P/B ratio of this species was observed during nutrient-poor, warmer water conditions typical of El Niño, owing to the massive recruitment of fast-growing juvenile scallops. Trophic ecology theory predicts that when primary production is nutrient limited, the trophic flow of organisms occupying low trophic levels should be constrained (bottom-up control). For former tropical fauna thriving in cold, productive upwelling coastal zones, a short time of low food conditions but warm waters during El Niño could be sufficient to waken their ancestral biological features and display massive proliferations. © 2017 The Author(s).
Toxic effects of the antihistamine cetirizine in mussel Mytilus galloprovincialis.
Teixeira, Miguel; Almeida, Ângela; Calisto, Vânia; Esteves, Valdemar I; Schneider, Rudolf J; Wrona, Frederick J; Soares, Amadeu M V M; Figueira, Etelvina; Freitas, Rosa
2017-05-01
Recent studies have become increasingly focused on the assessment of pharmaceuticals occurrence in aquatic ecosystems, however the potential toxicity to non-target organisms is still largely unknown. The antihistamine cetirizine is a commonly used pharmaceutical, already detected in surface waters of marine aquatic systems worldwide. In the present study Mytilus galloprovincialis mussels were exposed to a range of cetirizine concentrations (0.3, 3.0, 6.0 and 12.0 μg/L), resembling moderate to highly contaminated areas, over 28 days. The responses of different biochemical markers were evaluated in mussels whole soft tissue, and included energy-related parameters (glycogen content, GLY; protein content, PROT; electron transport system activity, ETS), and oxidative stress markers (superoxide dismutase activity, SOD; catalase activity, CAT; glutathione S-transferases activity, GSTs; lipid peroxidation levels, LPO; reduced (GSH) and oxidized (GSSG) glutathione content). The results obtained demonstrated that with the increase of exposure concentrations mussels tended to increase their energy reserves and maintain their metabolic potential, which was significantly higher only at the highest concentration. Our findings clearly revealed that cetirizine inhibited the activity of GSTs and although induced the activity of antioxidant enzymes (SOD and CAT) mussels were not able to prevent cellular damages observed through the increase of LPO associated to the increase of exposure concentrations. Thus, this study confirmed that cetirizine induces toxic effects in Mytilus galloprovincialis, which, considering their trophic relevance, wide use as bioindicator and wide spatial distribution of this species, can result in ecological and economic negative impacts at a large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Species that are involved in multitrophic interactions are affected by the trophic levels that are above and below them in both indirect and direct ways. In this experiment, interactions among ants (Formica montana Wheeler; Hymenoptera: Formicidae), aphids (Myzus persicae [Sulzer]; Hemiptera: Aphidi...
Possible shift in macaque trophic level following a century of biodiversity loss in Singapore.
Gibson, Luke
2011-07-01
Biodiversity loss in tropical forests is a major problem in conservation biology, and nowhere is this more dire than in Southeast Asia. Deforestation and the associated loss of species may trigger shifts in habitat and feeding preferences of persisting species. In this study, I compared the habitat use and diet of long-tailed macaque (Macaca fascicularis) populations in Singapore from two time periods: museum specimens originally collected between 1893 and 1944, and living macaques sampled in 2009. I collected hair and used stable carbon and nitrogen isotope analysis to identify temporal changes in dietary source and trophic position, respectively. δ(13)C ratios were virtually identical, suggesting that macaques foraged in similar habitats during both time periods. However, δ(15)N ratios decreased considerably over time, suggesting that macaques today feed at a lower trophic level than previously. This decline in trophic level may be because of the disappearance or decline of other species that compete with macaques for fruit. This study highlights the effect of biodiversity loss on persisting species in degraded habitats of Southeast Asia, and improves our understanding of how species will adapt to further human-driven changes in tropical forest habitats.
Interannual variability in lower trophic levels on the Alaskan Shelf
NASA Astrophysics Data System (ADS)
Batten, Sonia D.; Raitsos, Dionysios E.; Danielson, Seth; Hopcroft, Russell; Coyle, Kenneth; McQuatters-Gollop, Abigail
2018-01-01
This study describes results from the first 16 years of the Continuous Plankton Recorder (CPR) program that has sampled the lower trophic levels (restricted to larger, hard-shelled phytoplankton and robust zooplankton taxa) on the Alaskan shelf. Sampling took place along transects from the open ocean across the shelf (to the entrance to Prince William Sound from 2000 to 2003 and into Cook Inlet from 2004 to 2015) to provide plankton abundance data, spring through autumn of each year. We document interannual variability in concentration and composition of the plankton community of the region over this time period. At least in part and through correlative relationships, this can be attributed to changes in the physical environment, particularly direct and indirect effects of temperature. For example; spring mixed layer depth is shown to influence the timing of the spring diatom peak and warmer years are biased towards smaller copepod species. A significant positive relationship between temperature, diatom abundance and zooplankton biomass existed from 2000 to 2013 but was not present in the warm years of 2014 and 2015. These results suggest that anomalous warming events, such as the "heat wave" of 2014-2015, could fundamentally influence typical lower trophic level patterns, possibly altering trophic interactions.
Shackell, Nancy L; Frank, Kenneth T; Fisher, Jonathan A D; Petrie, Brian; Leggett, William C
2010-05-07
Globally, overfishing large-bodied groundfish populations has resulted in substantial increases in their prey populations. Where it has been examined, the effects of overfishing have cascaded down the food chain. In an intensively fished area on the western Scotian Shelf, Northwest Atlantic, the biomass of prey species increased exponentially (doubling time of 11 years) even though the aggregate biomass of their predators remained stable over 38 years. Concomitant reductions in herbivorous zooplankton and increases in phytoplankton were also evident. This anomalous trophic pattern led us to examine how declines in predator body size (approx. 60% in body mass since the early 1970s) and climatic regime influenced lower trophic levels. The increase in prey biomass was associated primarily with declines in predator body size and secondarily to an increase in stratification. Sea surface temperature and predator biomass had no influence. A regression model explained 65 per cent of prey biomass variability. Trait-mediated effects, namely a reduction in predator size, resulted in a weakening of top predation pressure. Increased stratification may have enhanced growing conditions for prey fish. Size-selective harvesting under changing climatic conditions initiated a trophic restructuring of the food chain, the effects of which may have influenced three trophic levels.
NASA Astrophysics Data System (ADS)
Dewi, N. N.; Kamal, M.; Wardiatno, Y.; Rozi
2018-04-01
Ecopath model approach was used to describe trophic interaction, energy flows and ecosystem condition of Tangerang coastal waters. This model consists of 42 ecological groups, of which 41 are living groups and one is a detritus group. Trophic levels of these groups vary between 1.0 (for primary producers and detritus) to 4.03 (for tetraodontidae). Groups with trophic levels 2≤TL<3 and 3≤TL<4 have a range of ecotropic efficiency from 0 to 0.9719 and 0 to 0.7520 respectively.The Mean transfer efficiency is 9.43% for phytoplankton and 3.39% for detritus. The Mixed trophic impact analysis indicates that phytoplankton havea positive impact on the majority of pelagic fish, while detritus has a positive impact on the majority of demersal fish. Leiognathidae havea negative impact on phytoplankton, zooplankton and several other groups. System omnivory index for this ecosystem is 0.151. System primary production/respiration (P/R) ratio of Tangerang coastal waters is 1.505. This coastal ecosystem is an immatureecosystem because it hasdegraded. Pedigree index for this model is 0.57. This model describes ecosystem condition affected by overfishing and antropogenic activities. Therefore, through Ecopath model we provide some suggestions about the ecosystem-based fisheries management.
The Effect of Atrazine on Louisiana Gulf Coast Estuarine Phytoplankton.
Starr, Alexis V; Bargu, Sibel; Maiti, Kanchan; DeLaune, Ronald D
2017-02-01
Pesticides may enter water bodies in areas with a high proportion of agricultural land use through surface runoff, groundwater discharge, and erosion and thus negatively impact nontarget aquatic organisms. The herbicide atrazine is used extensively throughout the Midwest and enters the Mississippi River through surface runoff and groundwater discharge. The purpose of this study was to determine the extent of atrazine contamination in Louisiana's estuaries from Mississippi River water under different flow and nutrient regimes (spring and summer) and its effect on the biomass and oxygen production of the local phytoplankton community. The results showed that atrazine was consistently present in these systems at low levels. Microcosm experiments exposed to an atrazine-dilution series under low and high nutrient conditions to determine the phytoplankton stress response showed that high atrazine levels greatly decreased phytoplankton biomass and oxygen production. Phytoplankton exposed to low and moderate atrazine levels under high nutrient conditions were able to recover after an extended acclimation period. Communities grown under high nutrient conditions grew more rapidly and produced greater levels of oxygen than the low nutrient treatment groups, thus indicating that atrazine exposure may induce a greater stress response in phytoplankton communities under low-nutrient conditions. The native community also experienced a shift from more sensitive species, such as chlorophytes, to potentially more resilient species such as diatoms. The phytoplankton response to atrazine exposure at various concentrations can be especially important to greater trophic levels because their growth and abundance can determine the potential productivity of the entire ecosystem.
Correlated Biogeographic Variation of Magnesium across Trophic Levels in a Terrestrial Food Chain
Sun, Xiao; Kay, Adam D.; Kang, Hongzhang; Small, Gaston E.; Liu, Guofang; Zhou, Xuan; Yin, Shan; Liu, Chunjiang
2013-01-01
Using samples from eastern China (c. 25 – 41° N and 99 – 123° E) and from a common garden experiment, we investigate how Mg concentration varies with climate across multiple trophic levels. In soils, plant tissue (Oriental oak leaves and acorns), and a specialist acorn predator (the weevil Curculio davidi), Mg concentration increased significantly with different slopes from south to north, and generally decreased with both mean annual temperature (MAT) and precipitation (MAP). In addition, soil, leaf, acorn and weevil Mg showed different strengths of association and sensitivity with climatic factors, suggesting that distinct mechanisms may drive patterns of Mg variation at different trophic levels. Our findings provide a first step toward determining whether anticipated changes in temperature and precipitation due to climate change will have important consequences for the bioavailability and distribution of Mg in food chain. PMID:24223807
The trophic vacuum and the evolution of complex life cycles in trophically transmitted helminths.
Benesh, Daniel P; Chubb, James C; Parker, Geoff A
2014-10-22
Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems
Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise
2015-01-01
In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.
Both, Christiaan; van Asch, Margriet; Bijlsma, Rob G; van den Burg, Arnold B; Visser, Marcel E
2009-01-01
1. Climate change has been shown to affect the phenology of many organisms, but interestingly these shifts are often unequal across trophic levels, causing a mismatch between the phenology of organisms and their food. 2. We consider two alternative hypotheses: consumers are constrained to adjust sufficiently to the lower trophic level, or prey species react more strongly than their predators to reduce predation. We discuss both hypotheses with our analyses of changes in phenology across four trophic levels: tree budburst, peak biomass of herbivorous caterpillars, breeding phenology of four insectivorous bird species and an avian predator. 3. In our long-term study, we show that between 1988 and 2005, budburst advanced (not significantly) with 0.17 d yr(-1), while between 1985 and 2005 both caterpillars (0.75 d year(-1)) and the hatching date of the passerine species (range for four species: 0.36-0.50 d year(-1)) have advanced, whereas raptor hatching dates showed no trend. 4. The caterpillar peak date was closely correlated with budburst date, as were the passerine hatching dates with the peak caterpillar biomass date. In all these cases, however, the slopes were significantly less than unity, showing that the response of the consumers is weaker than that of their food. This was also true for the avian predator, for which hatching dates were not correlated with the peak availability of fledgling passerines. As a result, the match between food demand and availability deteriorated over time for both the passerines and the avian predators. 5. These results could equally well be explained by consumers' insufficient responses as a consequence of constraints in adapting to climate change, or by them trying to escape predation from a higher trophic level, or both. Selection on phenology could thus be both from matches of phenology with higher and lower levels, and quantifying these can shed new light on why some organisms do adjust their phenology to climate change, while others do not.
Jessop, Tim S.; Smissen, Peter; Scheelings, Franciscus; Dempster, Tim
2012-01-01
Humans are increasingly subsidizing and altering natural food webs via changes to nutrient cycling and productivity. Where human trophic subsidies are concentrated and persistent within natural environments, their consumption could have complex consequences for wild animals through altering habitat preferences, phenotypes and fitness attributes that influence population dynamics. Human trophic subsidies conceptually create both costs and benefits for animals that receive increased calorific and altered nutritional inputs. Here, we evaluated the effects of a common terrestrial human trophic subsidies, human food refuse, on population and phenotypic (comprising morphological and physiological health indices) parameters of a large predatory lizard (∼2 m length), the lace monitor (Varanus varius), in southern Australia by comparison with individuals not receiving human trophic subsidies. At human trophic subsidies sites, lizards were significantly more abundant and their sex ratio highly male biased compared to control sites in natural forest. Human trophic subsidies recipient lizards were significantly longer, heavier and in much greater body condition. Blood parasites were significantly lower in human trophic subsidies lizards. Collectively, our results imply that human trophic subsidized sites were especially attractive to adult male lace monitors and had large phenotypic effects. However, we cannot rule out that the male-biased aggregations of large monitors at human trophic subsidized sites could lead to reductions in reproductive fitness, through mate competition and offspring survival, and through greater exposure of eggs and juveniles to predation. These possibilities could have negative population consequences. Aggregations of these large predators may also have flow on effects to surrounding food web dynamics through elevated predation levels. Given that flux of energy and nutrients into food webs is central to the regulation of populations and their communities, we advocate further studies of human trophic subsidies be undertaken to evaluate the potentially large ecological implications of this significant human environmental alteration. PMID:22509271
Cavin, Lionel; Boudad, Larbi; Tong, Haiyan; Läng, Emilie; Tabouelle, Jérôme; Vullo, Romain
2015-01-01
The mid-Cretaceous vertebrate assemblage from south-eastern Morocco is one of the most diversified continental vertebrate assemblages of this time worldwide. The bony fish component (coelacanths, lungfishes and ray-finned fishes) is represented by relatively complete specimens and, mostly, by fragmentary elements scattered along 250 kilometres of outcrops. Here we revisit the bony fish assemblage by studying both isolated remains collected during several fieldtrips and more complete material kept in public collections. The assemblage comprises several lungfish taxa, with the first mention of the occurrence of Arganodus tiguidiensis, and possibly two mawsoniid coelacanths. A large bichir cf. Bawitius, is recorded and corresponds to cranial elements initially referred to ‘Stromerichthys’ from coeval deposits in Egypt. The ginglymodians were diversified with a large ‘Lepidotes’ plus two obaichthyids and a gar. We confirm here that this gar belongs to a genus distinctive from Recent gars, contrary to what was suggested recently. Teleosteans comprise a poorly known ichthyodectiform, a notopterid, a probable osteoglossomorph and a large tselfatiiform, whose cranial anatomy is detailed. The body size and trophic level for each taxon are estimated on the basis of comparison with extant closely related taxa. We plotted the average body size versus average trophic level for the Kem Kem assemblage, together with extant marine and freshwater assemblages. The Kem Kem assemblage is characterized by taxa of proportionally large body size, and by a higher average trophic level than the trophic level of the extant compared freshwater ecosystems, but lower than for the extant marine ecosystems. These results should be regarded with caution because they rest on a reconstructed assemblage known mostly by fragmentary remains. They reinforce, however, the ecological oddities already noticed for this mid-Cretaceous vertebrate ecosystem in North Africa. PMID:26018561
Divergent trophic levels in two cryptic sibling bat species.
Siemers, Björn M; Greif, Stefan; Borissov, Ivailo; Voigt-Heucke, Silke L; Voigt, Christian C
2011-05-01
Changes in dietary preferences in animal species play a pivotal role in niche specialization. Here, we investigate how divergence of foraging behaviour affects the trophic position of animals and thereby their role for ecosystem processes. As a model, we used two closely related bat species, Myotis myotis and M. blythii oxygnathus, that are morphologically very similar and share the same roosts, but show clear behavioural divergence in habitat selection and foraging. Based on previous dietary studies on synanthropic populations in Central Europe, we hypothesised that M. myotis would mainly prey on predatory arthropods (i.e., secondary consumers) while M. blythii oxygnathus would eat herbivorous insects (i.e., primary consumers). We thus expected that the sibling bats would be at different trophic levels. We first conducted a validation experiment with captive bats in the laboratory and measured isotopic discrimination, i.e., the stepwise enrichment of heavy in relation to light isotopes between consumer and diet, in insectivorous bats for the first time. We then tested our trophic level hypothesis in the field at an ancient site of natural coexistence for the two species (Bulgaria, south-eastern Europe) using stable isotope analyses. As predicted, secondary consumer arthropods (carabid beetles; Coleoptera) were more enriched in (15)N than primary consumer arthropods (tettigoniids; Orthoptera), and accordingly wing tissue of M. myotis was more enriched in (15)N than tissue of M. blythii oxygnathus. According to a Bayesian mixing model, M. blythii oxygnathus indeed fed almost exclusively on primary consumers (98%), while M. myotis ate a mix of secondary (50%), but also, and to a considerable extent, primary consumers (50%). Our study highlights that morphologically almost identical, sympatric sibling species may forage at divergent trophic levels, and, thus may have different effects on ecosystem processes.
Cavin, Lionel; Boudad, Larbi; Tong, Haiyan; Läng, Emilie; Tabouelle, Jérôme; Vullo, Romain
2015-01-01
The mid-Cretaceous vertebrate assemblage from south-eastern Morocco is one of the most diversified continental vertebrate assemblages of this time worldwide. The bony fish component (coelacanths, lungfishes and ray-finned fishes) is represented by relatively complete specimens and, mostly, by fragmentary elements scattered along 250 kilometres of outcrops. Here we revisit the bony fish assemblage by studying both isolated remains collected during several fieldtrips and more complete material kept in public collections. The assemblage comprises several lungfish taxa, with the first mention of the occurrence of Arganodus tiguidiensis, and possibly two mawsoniid coelacanths. A large bichir cf. Bawitius, is recorded and corresponds to cranial elements initially referred to 'Stromerichthys' from coeval deposits in Egypt. The ginglymodians were diversified with a large 'Lepidotes' plus two obaichthyids and a gar. We confirm here that this gar belongs to a genus distinctive from Recent gars, contrary to what was suggested recently. Teleosteans comprise a poorly known ichthyodectiform, a notopterid, a probable osteoglossomorph and a large tselfatiiform, whose cranial anatomy is detailed. The body size and trophic level for each taxon are estimated on the basis of comparison with extant closely related taxa. We plotted the average body size versus average trophic level for the Kem Kem assemblage, together with extant marine and freshwater assemblages. The Kem Kem assemblage is characterized by taxa of proportionally large body size, and by a higher average trophic level than the trophic level of the extant compared freshwater ecosystems, but lower than for the extant marine ecosystems. These results should be regarded with caution because they rest on a reconstructed assemblage known mostly by fragmentary remains. They reinforce, however, the ecological oddities already noticed for this mid-Cretaceous vertebrate ecosystem in North Africa.